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ABSTRACT

Average shear stress is an important parameter for prediction of sediment transport,
bank protection and other river engineering problems in natural streams. For this purpose
velocity measurements were taken on Kızılırmak River sub branch, named Sarimsakli stream
and Barsama station in center of Turkey. Acoustic Doppler Velocimeter (ADV) was used for
this purpose at six different periods and flow conditions. Nikuradse’s equivalent sand
roughnesses (ks) for each vertical along the wetted perimeter were determined using measured
velocity distributions. Shear velocity (u*) and shear stress (meas) were determined then
average values were calculated for each flow condition. The commonly used one-dimensional
mean boundary shear stress equation at cross-section was re-arranged according to entropy
parameter M and it reflects the real flow condition in natural stream.
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INTRODUCTION

Determination of shear stress distribution over the cross-section is necessary for many
important issues such as river resistance, sediment and pollutant transport, riverbank stability,
flood defense and river management. Modeling the boundary shear stress in river is not an
easy task due to the many parameters, such as the shape of the cross-section, roughness,
secondary flow etc., that affect the flow.

Flow in open channels and natural rivers are often described by the simplifying cross-
section averaged one-dimensional hydraulic equations. In uniform flow condition, the
simplest model for calculating the mean boundary shear stress at a cross-section is the flow
depth method, which is:

00 RS (1)

where τ0 is the boundary shear stress, γ is the specific gravity of water, R is the hydraulic
radius (=A/P in which A is the wetted area and P is wetted perimeter), and S0 is the bed slope.
However, this method is not appropriate for local, small-scale estimates of the variation in
shear stress. In reality, river hydrodynamics is quite complicated because the river cross-
sections and riverbed are usually complex and do not meet assumptions of one-dimensional
flow. Because of the difficulties associated with direct measurement of the wall shear stress,
τ0, the shear velocity, u*, is usually calculated by indirect methods.
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Preston [1] developed a simple technique for measuring local shear on smooth
boundaries in the turbulent boundary layer using a Pitot tube placed in contact with the
surface. Kırkgöz [2] and Kırkgöz & Ardıçlıoğlu [3] computed shear velocities using the
measured velocity distributions in the viscous sublayer. By assuming a linear velocity
distribution in the viscous sublayer, the shear velocity (u*) can be derived from Newton’s law
of viscosity as zuu*  where u represents the point velocity in the viscous sublayer at a
distance z from the bed and υ is the kinematics viscosity of the fluid. Another indirect method
commonly used is based on the logarithmic velocity distribution after Prandtl–Karman and
involves measurement of velocity profiles along lines normal to the boundary. The velocities
are not uniformly distributed in the channel section, due to the existence of free surface and
the friction along the channel wall. There are also some other factors which affect the velocity
distribution in a channel section, such as the unusual shape of the section, the roughness of the
channel and the presence of bends. However, the Karman–Prandtl velocity distribution
generally gives satisfactory results for flow in channels. Therefore, investigation of a
pressure–shear relationship based on logarithmic velocity distribution seems to be reasonable
[4], [5].

In this study, based on the field velocity measurements, average shear stresses for
natural streams were investigated for different flow conditions. The one-dimensional average
shear stress is also calculated and depends on flow conditions. The differences between one
dimensional model and measurements results were examined using an entropy approach.

VELOCITY and SHEAR STRESS DISTRIBUTION

The vertical distribution of streamwise velocity in turbulent open-channel flows is very
complex. The velocity distribution on rough surfaces is affected by the grading, shape, and
spacing of the surface roughness elements. The velocity distribution in a two-dimensional
open-channel flow over a fully rough, impermeable bed is usually considered to follow the
law of the wall;
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where, u is the streamwise velocity at z, u* (= / , in which  is the water density) is the
shear velocity, χ=0.4 is the universal von Karman constant, ks is the Nikuradse’s original
uniform sand grain roughness height and z is the distance from the bottom of the roughness
elements. The values of Nikuradse’s equivalent sand roughness were reported in the literature
for various wall roughness, and they are generally in the range ks(2-4)k, with k being the
average height of roughness elements [6], [7].

Chiu [8, 9 and 10] investigated flow properties by using probabilistic approaches and
proposed an entropy-based, two-dimensional velocity distribution function for the simulation
of the velocity field in open channel flow. Using this probabilistic formulation, the mean
velocity Um can be expressed as a linear function of the maximum velocity umax, through a
dimensionless entropy parameter M. The M value is an essential measure of information
about the characteristic of the channel section, such as changes in bed form, slope and
geometric shape [11]. The entropy parameter M is a function of the ratio of Um, umax and can
be derived as the following function of M. Chiu and Said [12] showed that M is a constant for
each channel section and invariant with the discharge or flow depth.
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FIELD MEASUREMENTS

Field measurements were undertaken on Kızılırmak basin, which is in central Anatolia
in Turkey. Field measurements achieved on Sarimsakli stream at Barsama station, which is a
tributary of the Kızılırmak River. The velocity measurements were undertaken through the
use of the SonTek/YSI FlowTracker Handheld ADV (Acoustic Doppler Velocimeter).
Velocity measurements were carried out six times at different periods and under several flow
conditions. For the velocity measurements, the cross-section was divided into different slices
depending on the stream width. Point velocity measurements were made at different positions
on the vertical direction starting 4 cm from the bed. Free surface velocity was then estimated
by extrapolating the upper two measurements. The flow characteristics are summarized in
Table 1. As shown in Table 1, flow measurements have done at Barsama station from 2005 to
2010. In this table, Q is the integrated discharge, Um (=Q/A) is the mean velocity, A is the
cross-section area, R is the hydraulic radius, and S0 is the bed slope. In Figure 1, sample bed
and water surface slope distributions were given for the Barsama_6 measurement. As shown
in figure, flow is uniform, bed and water surface slopes are found Sws=S0=0.012. Similar
results are observed for other measurements and determined slopes are given in Table 1.
Using Equation (1), average shear stresses (0) were calculated for six different flow
conditions and given Table 1 column (7). In this equation the specific weight of water was
taken =9810N/m3.

Table 1 Flow characteristics
No
-

Date
(d/m/y)

Q
(m3/s)

Um
(m/s)

R
(m)

S0
-

0
(N/m2)

(1) (2) (3) (4) (5) (6) (7)
Barsama_1 28.05.05 1.81 0.89 0.244 0.009 21.54
Barsama_2 19.05.06 2.44 1.05 0.256 0.009 22.60
Barsama_3 19.05.09 3.93 1.21 0.310 0.009 27.37
Barsama_4 31.05.09 0.96 0.60 0.185 0.009 16.33
Barsama_5 24.03.10 1.51 0.81 0.250 0.014 34.34
Barsama_6 18.04.10 2.15 0.87 0.399 0.012 46.92

Figure 1 Channel bed and free surface slope for Barsama_6 measurement
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DATA ANALYSIS and DISCUSSION

Sümer [13] introduced that for given measured velocity profile u(z), and taking χ=0.4,
the quantities u* and ks can be determined from Equation (2). When we plot u in semi log
graphs against z, the 0.1H ≤ z ≤ (0.2-0.3)H interval shows us where the logarithmic layer is
supposed to lie, while H shows water depth at a measured vertical. Extend the straight line
portion of the velocity profile to find its z-intercept; this is equal to ks/30. Using ks/30 values
and shear velocities (u*) having the best fit with measured data can be determined using
Equation (2). In Figure 2 (a) and (b) two sample vertical velocity measurements were given
for Barsama_4 and 6, at y=250 cm and y=704 cm respectively. As mentioned above, first of
all the measured velocities, u was plotted in a semi log graph against z, and the logarithmic
layer was determined for measured vertical, as seen on the right hand side of the figures.
Using this straight line, ks/30 value was assigned as 1.4 and 3.3 respectively. Then shear
velocities (u*) having the best fit with measured data was determined using Equation (2) by
trial and error method. Left side figures showed that best fit velocity distributions were
obtained for measured data by known shear velocities. For six different flow conditions, shear
velocities have been determined considering each measured verticals. When shear velocity
(u*) known local shear stress could be calculated with  2

*meas u . So, average shear stresses
are calculated by using obtained local shear stresses.

(a)

(b)

Figure 2 Velocity distributions for Barsama station
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When investigating sediment transport in open-channel flows, it is often necessary to
remove sidewall effects for computing effective bed shear stress. A lot of sidewall correction
methods are subject to some assumptions that have not been completely verified. Different
values of the bed shear stress may be obtained depending on these approach used in making
sidewall corrections [14]. They also informed that the shear stresses corrected in different
ways may vary significantly.

Average shear stress values (0_meas) for each flow condition were calculated using
determined local bed shear stress. In Table 2 both values for mean shear stresses were
calculated with equation (1), 0, and average values of the measured shear stresses along the
wetted perimeter, 0_meas, are given in colon (2) and (3) respectively. In Figure 3 these two
different values of mean shear stress were given for six different flow conditions. As shown in
this figure, average shear stresses calculated equation (1) is smaller than measured ones.

Table 2 Average shear stresses for Barsama station

Figure 3 Measured and calculated average shear stresses for Barsama station.

Entropy parameter M is an important constant which is related with most of the flow
properties for given cross-section. Figure 4 shows the relationship between the maximum
velocities (umax) versus the cross-sectional mean velocity (Um) for six different flow
conditions at Barsama station. As shown in the figure umax and Um present a linear
relationship and the M value for Barsama station was calculated by Equation (3) as 1.4.
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Barsama_1 21.54 30.83 30.16 30.13 2.18
Barsama_2 22.60 31.06 31.64 27.24 1.87
Barsama_3 27.37 35.69 38.32 23.31 7.36
Barsama_4 16.33 25.54 22.87 36.04 10.46
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Using this M=1.4 value, mean shear stresses, which are calculated by equation (1), are
multiplied and given in Table 2 at column (4) as 0_cor, which in turn denotes the corrected
mean shear stress value. The relation between 0_meas and 0_cor is shown in Figure 3. It’s show
that there is a good relation between these two mean shear stress values. Relative errors
( 100xmeas_00meas_0  ) between column (3) - (2) and (3) - (4) for each flows are given
in Table 5 at column (5) and (6) respectively. Average values of these errors were also
calculated and given in Table 3 as 29.11% and 5.65% respectively. It was found out that
common equation (1) for average shear stress could be corrected by entropy parameter M, as
given in equation (4). This equation represents non-uniformity and real flow conditions for
natural streams.

0cor_0 RSM (4)

Figure 4 Relation between Um and umax for Barsama station

CONCLUSION

The one-dimensional boundary shear stress equation is commonly used for average stress in
natural streams. Using this equation, average shear stresses are determined for Barsama
station for six different uniform flow conditions. In reality, open channel hydrodynamics is
quite complicated because the stream cross-sections and bed properties are usually complex.
A lot of factors effect flow so that velocity and shear stress distributions show differences.
Using the logarithmic velocity distribution valid in the fully turbulent part of the inner region,
the bottom shear stresses were calculated over different vertical lines along the cross section.
Average values were also determined for each flow condition. When calculated, these average
values are bigger than the one-dimensional formula result. Entropy parameter M is an
important constant which is related with most of the flow properties for given cross-section.
Entropy parameter M was calculated as 1.4 for six different flow conditions at Barsama
station. Using this constant value, one dimensional average shear stress equation was
rearranged and this rearranged equation represents non-uniformity and real flow conditions
for natural streams.
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