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ABSTRACT 

This work presents mode-shape analysis of cross-ply laminated composite cylindrical 
shallow shells. First, kinematic relations of strains and deformation have been showed. Then, 
using Hamilton’s principle, governing differential equations have been obtained for a general 
curved shell. In the next step, stress-strain relation for laminated, cross-ply composite shells 
has been given. By using some simplifications and assuming Fourier series as a displacement 
field, differential equations are solved by matrix algebra for shallow shells. By the help of a 
computer algebra system called MATHEMATICA, a computer program has been prepared 
for the solution. The results obtained by this solution have been given tables and graphs. 
Example problems have been solved also by (ANSYS and SAP2000) programs, which are 
based on the finite element method (FEM). The comparison has been made using all of tables 
and graphs that are obtained by various theories.  

 
Keywords: Structural composites; Vibration; Anisotropy; Shell theory; Finite Element 

Method (FEM). 

1. Introduction 

A composite is a structural material, which consists of combining two or more 
constituents on a macroscopic scale to form a useful material. The goal of this three 
dimensional composition is to obtain a property which none of the constituents possesses. In 
other words, the target is to produce a material that possesses higher performance properties 
than its constituent parts for a particular purpose. Some of these properties are mechanical 
strength, corrosion resistance, high temperature resistance, heat conductibility, stiffness, 
lightness and appearance. In accordance with this definition, the following conditions must be 
satisfied by the composite material. It must be manmade and unnatural. It must comprise of at 
least two different materials with different chemical components separated by distinct 
interfaces. Different materials must be put together in a three dimensional body. It must 
possess properties, which none of the constituents possesses alone and that must be the aim of 
its production. The material must behave as a whole, i.e. the fiber and the matrix material 
(material surrounding the fibers) must be perfectly bonded. Structures composed of composite 
materials offer lower weight and higher strength and stiffness than those composed of most 
metallic materials [1]. 

Shells are common structural elements in many engineering structures, including 
concrete roofs, exteriors of rockets, ship hulls, automobile tires, containers of liquids, oil 
tanks, pipes, aerospace etc.  A shell can be defined as a curved, thin-walled structure. It can be 
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made from a single layer or multilayer of isotropic or anisotropic materials. Shells can be 
classified according to their curvatures. Shallow shells are defined as shells that have rise of 
not more than one fifth the smallest planform dimension of the shell [1]. 

Shells are three-dimensional (3D) bodies bounded by two relatively close, curved 
surfaces. The 3D equations of elasticity are complicated that’s why all shell theories (thin, 
thick, shallow and deep, etc.) reduce the 3D elasticity problem into a 2D one. This is done 
usually by Classical Lamination Theory-CLT and Kirchhoff hypothesis. 

 A number of theories exist for layered shells. Many of these theories were developed 
originally for thin shells and based on the Kirchhoff–Love kinematic hypothesis that straight 
lines normal to the undeformed mid-surface remain straight and normal to the middle surface 
after deformation. Among these theories Qatu [1] uses energy functional to develop equation 
of motion. Many studies have been performed on characteristics of shallow shells [2-6]. 
Recently, Latifa and Sinha [7] have used an improved finite element model for the bending 
and free vibration analysis of doubly curved, laminated composite shells having spherical and 
ellipsoidal shapes. Large-amplitude vibrations of circular cylindrical shells subjected to radial 
harmonic excitation in the spectral neighborhood of the lowest resonance are investigated by 
Amabili [8]. Gautham and Ganesan [9] deal with the free vibration characteristics of isotropic 
and laminated orthotropic spherical caps. Liew et al. [10] has presented the elasticity solutions 
for free vibration analysis of doubly curved shell panels of rectangular planform. Grigorenko 
and Yaremchenko [11] have analyzed the stress-strain state of a shallow shell with rectangular 
planform and varying thickness. Djoudi and Bahai [12] have presented a cylindrical strain 
based shallow shell finite element which is developed for linear and geometrically non-linear 
analysis of cylindrical shells. 

The aim of this study is to compare the  frequency parameters of the each mode 
obtained by the theories given in literature and obtained by the finite element formulation for 
different cases. Formulations for thick and thin shell theories, given Qatu [1], have been 
studied and a computer program has been written using those formulations by Mathematica 
[20] programing language. The solutions of problem by finite element method have been 
performed by commercial programs, named ANSYS [14] and SAP2000. Results obtained by 
different theories have been compared for different plan-form dimensions, lamination 
thickness, ratio of radius of curvature equals to 0.1 and elasticity ratio equals to 15 cases. The 
shell, that has been examined, has quadrangle plan-form varying from square to rectangle. 
Moreover, lamination thickness has been taken variable. For different lamination thicknesses, 
results of the theories are presented by tables. As a material, cross-ply, 4-layred lamination 
has been choosen. Elasticty ratio is 15. The results obtained from theories have been 
compared with literature, ANSYS and SAP2000 by using tables and graphs.  
 

2. Theories 

 

A lamina is made of isotropic homogeneous reinforcing fibers and an isotropic 
homogeneous material surrounding the fibers, called matrix material (Fig. 1). Therefore, the 
stiffness of the lamina varies from point to point depending on whether the point is in the 
fiber, the matrix or the fiber and matrix interface. Because of these variations, macro-
mechanical analysis of a lamina is based on average properties.  
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Fig.1. Fiber and matrix materials in laminated composite shallow shell 

 

There are many theories of shells. Classical shell theory, also known as Kirchhoff-
Love kinematic hypothesis, assumes that “The normals to the middle surface remain straight 
and normal to the mid-surface when the shell undergoes deformation”. However, according to 
first order shear deformation theory “The transverse normals do not remain perpendicular to 
the mid-surface after deformation” [15]. In addition, classical lamination theory says “laminas 
are perfectly bonded” [16-19]. The theory of shallow shells can be obtained by making the 
following additional assumptions to thin (or classical) and thick (or shear deformation) shell 
theories. It will be assumed that the deformation of the shells is completely determined by the 
displacement of its middle surface. The derivation of equations of motion is based on two 
assumptions. The first assumption is that the shallow shell has small deflections. The second 
assumption is that the shallow shell thickness is small compared to its radii of curvature. Also, 
the radii of curvature are very large compared to the in-plane displacement. Curvature 
changes caused by the tangential displacement component u and v are very small in a shallow 
shell, in comparison with changes caused by the normal component w. 

 

2.1. Geometric Properties 

 

 The vectorial equation of the undeformed surface could be written by the x and y 
cartesian coordinates as 

 

 r r(x, y)=
 

                (1) 

 
a small increment in r  vector is given as  
 

 ,x ,ydr r dx r dy= +
  

               (2) 

 

where x,r is the small increment in x direction and y,r  is the small increment in y 
direction (Fig. 2). The differential length of the shell surface could be found by dot product of 

rd  by itself 
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 2 2 2 2 2ds dr dr A dx B dy= • = +
 

             (3) 

 
where A and B are referred as Lame parameters and defined as 
 
 2

x xA r, r,= •
 

    2
y yB r, r,= •

 
             (4) 
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Fig.2. Coordinates of shell mid-surface 

Eq. (3) is called first fundamental form of the surface. Tangent vector to the surface 
could be obtained by taking derivative of Eq. (1) with respect to surface length. Then, 
applying Frenet’s formula to the derivative of tangent vector and multiplying both sides by 
unit normal vector gives second quadratic form. 

 

2.2. Kinematics of displacement 

 Let the position of a point, on a middle surface, shown by r (x, y)


. If this point 
undergoes the displacement by the amount of U


 then, final position of that point could be 

given as  
 

 r (x, y) r (x, y) U
′

= +
  

              (5) 

 
where U


 is the displacement field of the point and defined as 

 

 x y zU u i v i w i= + +
   

               (6) 
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where x y zi , i and i
  

 are the unit vectors in the direction of x, y and z. u, v, and w are the 
displacements in the direction of x, y and z respectively. Using Eqs. (5) and (6) strains are 
calculated as 
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where Rx, Ry, and Rxy are curvatures in x-plane, y-plane and xy- plane respectively. 
 
2.3. Stress Strain relation 

 For an orthotropic media there are 9 stiffness coefficients written in local coordinates. 

 

 ][]Q[][ ε=σ                 (8) 

 

where ][σ  is the stress matrices, ]Q[ is the stiffness matrices and ][ε  strain matrices. 
The stresses in global coordinates are calculated by applying transformation rules. Then, the 
stresses over the shell thickness are integrated to obtain the force and moment resultants. Due 
to curvatures of the structure, extra terms must be taken into account during the integration. 
This difficulty could be overcame by expanding the term [1/(1+z/Rn)] in a geometric series. 

 

2.4. Governing Equations 

  Equation of motion for shell structures could be obtained by Hamilton’s principle 
 

 ∫ =−+δ
2t

1t

0dt)UWT(                (9) 

 

where T is the kinetic energy of the structure  
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W is the work of the external forces 

 

 ABdxdy)mmwqvquq(W
x y

yyxxzyx∫ ∫ ψ+ψ+++=                    (11) 

 

in which xq , yq , zq  are the external forces u, v, w are displacements in x, y, z 
direction respectively. xm , ym , are the external moments and xψ , yψ  are rotations in x, y 
directions respectively. U is the strain energy defined as, 

 

 ( )∫ εσ+εσ+εσ+εσ+εσ+εσ= dxdydz
2
1U yzyzxzxzxyxyzzyyxx       (12) 

 

 Solving Eq. (9) gives set of equations called equations of motion for shell structures. 
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 When the shell has small curvature it is referred to as a shallow shell. Shallow shells 
are defined as shells that have a rise of not more than 1/5th the smallest planform dimension 
of the shell [1]. It has been widely accepted that shallow shell equations should not be used 
for maximum span to minimum radius ratio of 0.5 or more. For shallow shells, Lame 
parameters are assumed to equal to one (A=B=1). This gives Eq. (13) in simplified form as, 
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 Eq. (14) is defined as equation of motion for thick shallow shell. The force and 
moment resultants are 
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 The Navier type solution can be applied to thick and thin shallow shells. This type 
solution assumes that the displacement field of the shallow shells could be represented as sine 
and cosine trigonometric functions. 

 Consider a shell with shear diaphragm boundaries on all four edges. That is, boundary 
conditions for simply supported thick shells,  
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The displacement functions of satisfied the boundary conditions apply; 
 



 
8 

 ( ) ( ) ( ) ( )tωSinyySinxxCosUty,x,u mn

M

0m

N

0n
nmmn0 ∑∑

= =

=  

 ( ) ( ) ( ) ( )tωSinyyCosxxSinVty,x,v mn

M

0m

N

0n
nmmn0 ∑∑

= =

=  

 ( ) ( ) ( ) ( )tωSinyyCosxxSinWty,x,w mn

M

0m

N

0n
nmmn0 ∑∑

= =

=          (17) 

 ( ) ( ) ( ) ( )tωSinyySinxxCosψty,x,ψ mn

M

0m

N

0n
nmxmnx ∑∑

= =

=                

 ( ) ( ) ( ) ( )tωSinyyCxxSψty,x,ψ mn

M

0m

N

0n
nmymny ∑∑

= =

= osin  

 

Where, m n mn
m n, ,
a b
π π

α = β = ω  is  national  frequency.  

Where, mn mn mn mn mnU ,V , W , ,α βψ ψ  are arbitrary coefficients. 

   

Substituting the above equations into equation of motion and using a Fourier expansion.  
 

 























5554535251

4544434241

3534333231

2524232221

1514131211

KKKKK
KKKKK
KKKKK
KKKKK
KKKKK























ymn

xmn

mn

mn

mn

ψ
ψ
W
V
U

       

 























+

352

32

1

21

21

2

I-00K0
0I-00I-
00I-00
I-00I-0
0I-00I-

mnω























ymn

xmn

mn

mn

mn

ψ
ψ
W
V
U

=























y

x

n

y

x

m
m
P
P-
P-

                                          (18) 

 

Following equation can be used directly to find the natural frequencies of free 
vibrations.  
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3. Numerical Examples and Conclusions 

 

As an example, a simply supported cylindrical shell which has a ratio of radius of 
curvature (ratio of shell width/shell radius) equals to 0.1 in one plane and infinite radius of 
curvature in other plane, has been considered (Fig. 3). The shell, in hand, has a quadrangle 
planform where the ratio of plan-form dimensions varies from 1 to 4 (a/b=1, 2, 4). As a 
material, a laminated composite has been used with a [0°/90°/90°/0°] symmetrical cross-ply 
stacking sequence. Ratio of modulus of elasticity (E1/E2) which is the ratio of modulus of 
elasticity in fiber direction to matrix direction, has been taken as 15. Effect of shell thickness 
ratio that ratio of shell width to shell thickness, a/h=100 (thick shell) and a/h=10 (thin shell)  
has been examined.  

 

Fig.3. Cylindrical shallow shell 

  For each case, the shell has been solved with two theories. First theory used in the 
solution of composite laminated shallow shell is shear deformation shallow shell theory 
(SDSST). The second theory is the Finite element model (FEM). Entire structure is meshed 
by finite elements in this theory. Then assuming a suitable displacement fields for each 
meshing element, the behavior of the structure has been obtained. In this paper, two different  
finite element package programs, ANSYS and SAP2000 have been used. The structure is 
meshed by 25×25 elements in ANSYS model. A 8-noded quadratic element is considered as a 
meshing element named as SHELL99 [14]. The element has 100 layers to model the 
composite materials used in the structure. For each layer geometric and material properties is 
entered to program. Furthermore, thicknesses of each layer, fiber orientations and stacking 
sequence must be entered carefully. During solution process, subspace and block Lanczos 
mode extracting methods used separately to calculate first 30 frequencies. SAP2000 structural 
analysis packet program has been used also to verify ANSYS results. Four-node quadrilateral 
shell elements have been used by SAP2000 finite element program. Orthotropic and 
lamination properties of the problem could be modeled by using this element. 

 The governing Eq. (14) (using SDSST theory) derived in the theory section are solved 
by using Mathematica program separately. Furthermore, ANSYS packet program has been 
used in solution. The geometry of the shell structures has been created using arc-length 
method in ANSYS. Then, area element has been defined between the arc lines. Finally using 
SHELL99 finite element, the area has been meshed. Similar procedures have been applied in 
SAP2000 program. Due to software differences, modeling steps differs from ANSYS to 
SAP2000. Furthermore, finite elements also differs in both program hence, FEM results have 
little difference. 

 The problem defined at the beginning has been solved by FEM and Mathematica 
program (Fig. 3). The results obtained by FEM and Mathematica, have been compared in 
tables and graphs. 
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Table 1. Comparison of the frequencies (ω ) and nondimensional frequency parameters 
( 2 2

2a E hω ρΩ = ) of the shallow shell obtained by Shear Deformation Shell Theory (SDSST) 
and Finite Element Method (ANSYS & SAP2000) for six modes 
( 1a b = , 100a h = , 1 2 15E E = , 12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 2 5 6K = ) 

 
 

Frequency(ω) and 
Nondimensional 
Frequency(Ω) 
Parameters 

Mode Shapes 
(1,1) (1,2) (2,1) (2,2) (1,3) (2,3) 

       
 

      

Method 
 
 
 
       

ANSYS 
Frequency (ω) 0,06355 0,07793 0,09666 0,11253 0,11819 0,14997 

2 2
2a E hω ρΩ =  28,23443 34,62393 42,94346 49,99755 52,50920 66,62799 

Sap2000 
Frequency (ω) 0,06335 0,07753 0,09678 0,11208 0,11811 0,14899 

2 2
2a E hω ρΩ =  28,14700 34,44700 42,99911 49,79672 52,47578 66,19629 

SDSST 
Frequency (ω) 0,03141 0,05973 0,09606 0,11098 0,10982 0,14806 

2 2
2a E hω ρΩ =  13,95614 26,53820 42,67974 49,30593 48,79160 65,78098 

 
 
 
 
Table 2. Comparison of the frequencies (ω ) and nondimensional frequency parameters 

( 2 2
2a E hω ρΩ = ) of the shallow shell obtained by Shear Deformation Shell Theory (SDSST) 

and Finite Element Method (ANSYS & SAP2000) for six modes 
( 1a b = , 10=a h , 1 2 15E E = , 12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 2 5 6K = ) 

 
 

Frequency(ω) and 
Nondimensional 
Frequency(Ω) 
Parameters 

Mode Shapes 
(1,1) (1,2) (2,1) (2,2) (1,3) (2,3) 

       
 

      

Method 
 
 
 
       

ANSYS 
Frequency (ω) 0,25243 0,46610 0,67387 0,79500 0,83811 1,06904 

2 2
2a E hω ρΩ =  11,21531 20,70810 29,93939 35,32112 37,23615 47,49629 

Sap2000 
Frequency (ω) 0,25383 0,46776 0,67790 0,80235 0,83943 1,06658 

2 2
2a E hω ρΩ =  11,27755 20,78216 30,11844 35,64765 37,29503 47,38708 

SDSST 
Frequency (ω) 0,24729 0,46168 0,67160 0,79039 0,82572 1,05663 

2 2
2a E hω ρΩ =  10,98675 20,51179 29,83849 35,11589 36,68563 46,94494 
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Fig. 4. Comparison of the frequency parameters of the first six modes obtained by   

SDSST and FEM (For Table 1-2) 
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Table 3. Comparison of the frequencies (ω ) and nondimensional frequency parameters 

( 2 2
2a E hω ρΩ = ) of the shallow shell obtained by Shear Deformation Shell Theory (SDSST) 

and Finite Element Method (ANSYS & SAP2000) for six modes 
( 2a b = , 100a h = , 1 2 15E E = , 12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 2 5 6K = ) 

 
 

Frequency(ω) and 
Nondimensional 
Frequency(Ω) 
Parameters 

Mode Shapes 
(1,1) (2,1) (1,2) (2,2) (3,1) (3,2) 

       
Method 

       
 
       

ANSYS 
Frequency (ω) 0,07792 0,11249 0,18540 0,21282 0,22168 0,29480 

2 2
2a E hω ρΩ =  34,61891 49,97761 82,36936 94,55278 98,49128 130,97482 

Sap2000 
Frequency (ω) 0,07778 0,11259 0,18557 0,21215 0,22282 0,29343 

2 2
2a E hω ρΩ =  34,55585 50,02286 82,44702 94,25532 98,99809 130,36618 

SDSST 
Frequency (ω) 0,05973 0,11098 0,18157 0,21131 0,22081 0,29434 

2 2
2a E hω ρΩ =  26,53820 49,30593 80,66823 93,88395 98,10270 130,77349 

 
 
 
 
 
Table 4. Comparison of the frequencies (ω ) and nondimensional frequency parameters 

( 2 2
2a E hω ρΩ = ) of the shallow shell obtained by Shear Deformation Shell Theory (SDSST) 

and Finite Element Method (ANSYS & SAP2000) for six modes 
( 2a b = , 10=a h , 1 2 15E E = , 12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 2 5 6K = ) 

 
 

Frequency(ω) and 
Nondimensional 
Frequency(Ω) 
Parameters 

Mode Shapes 
(1,1) (2,1) (3,1) (1,2) (2,2) (4,1) 

       
Method 

       
 
       

ANSYS 
Frequency (ω) 0,46414 0,79268 1,24490 1,28418 1,45120 1,71915 

2 2
2a E hω ρΩ =  20,62120 35,21768 55,30951 57,05468 64,47528 76,37966 

Sap2000 
Frequency (ω) 0,46710 0,80322 1,26224 1,28411 1,44645 1,73019 

2 2
2a E hω ρΩ =  20,75257 35,68595 56,07962 57,05168 64,26426 76,87014 

SDSST 
Frequency (ω) 0,46168 0,79039 1,23691 1,26276 1,43127 1,70701 

2 2
2a E hω ρΩ =  20,51179 35,11589 54,95428 56,10285 63,58975 75,84034 
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Fig. 5. Comparison of the frequency parameters of the first six modes obtained by 

SDSST and  FEM (For Table 3-4) 
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Table 5. Comparison of the frequencies (ω ) and nondimensional frequency parameters 

( 2 2
2a E hω ρΩ = ) of the shallow shell obtained by Shear Deformation Shell Theory (SDSST) 

and Finite Element Method (ANSYS & SAP2000) for six modes 
( 4=a b , 100a h = , 1 2 15E E = , 12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 2 5 6K = ) 

 
 Frequency(ω) and 

Nondimensional 
Frequency(Ω) 
Parameters 

Mode Shapes 
(1,1) (2,1) (3,1) (4,1) (5,1) (1,2) 

Method       
       
       

ANSYS 
Frequency (ω) 0,18532 0,21253 0,29433 0,43302 0,62177 0,67799 

2 2
2a E hω ρΩ =  82,33340 94,42237 130,76809 192,38685 276,24350 301,22453 

Sap2000 
Frequency (ω) 0,18521 0,21197 0,29404 0,43532 0,63037 0,67924 

2 2
2a E hω ρΩ =  82,28619 94,17535 130,63942 193,40802 280,06512 301,77794 

SDSST 
Frequency (ω) 0,18157 0,21131 0,29434 0,43355 0,62192 0,67621 

2 2
2a E hω ρΩ =  80,66823 93,88395 130,77349 192,61986 276,31394 300,43386 

 
 
 
 
 
 
Table 6. Comparison of the frequencies (ω ) and nondimensional frequency parameters 

( 2 2
2a E hω ρΩ = ) of the shallow shell obtained by Shear Deformation Shell Theory (SDSST) 

and Finite Element Method (ANSYS & SAP2000) for six modes 
( 4=a b , 10=a h , 1 2 15E E = , 12 2 13 2 13 2 0.5G E G E G E= = =  12 0.25υ =  and 2 5 6K = ) 

 

 Frequency(ω) and 
Nondimensional 
Frequency(Ω) 
Parameters 

Mode Shapes 
(1,1) (2,1) (3,1) (4,1) (5,1) (,) 

Method       
       
       

ANSYS 
Frequency (ω) 1,28088 1,44541 1,74356 2,11521 2,52312 2,83047 

2 2
2a E hω ρΩ =  56,90792 64,21800 77,46421 93,97609 112,09918 125,75464 

Sap2000 
Frequency (ω) 1,28100 1,44683 1,74748 2,11563 2,50501 2,82076 

2 2
2a E hω ρΩ =  56,91329 64,28101 77,63831 93,99505 111,29466 125,32320 

SDSST 
Frequency (ω) 1,26276 1,43127 1,72622 2,09284 2,49546  

2 2
2a E hω ρΩ =  56,10285 63,58975 76,69392 92,98233 110,87050   
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Fig. 6. Comparison of the frequency parameters of the first six modes obtained by 

SDSST and FEM (For Table 5-6) 
 
A comparison has been made between the SDSST and FEM analysis results. In 

literature, there are no enough FEM and SDSST results considering shell plan-form 
dimensions and giving higher modes. Generally, first or first three mode results have been 
found in literature considering a typical shell plan-form dimension and/or a typical shell 
thickness. To get knowledge about the agreement of the FEM and SDSST higher modes must 
be calculated. 

 In this study, first six non dimensional frequency parameters, obtained from SDSST 
and FEM, have been given. A few differences have been observed in first mode results of the 
both theories (Fig. 4 and 5). This differences get smaller and almost zero in higher modes. 
Hence, observing only first modes using one method could result in misunderstanding the 
behavior of the structure. All modes must be calculated as a analysis result using both 
methods. 

 In the case of thin and square plan-form dimensions of shallow shell, SDSST’s and 
FEM’s first mode results differs from each other (Fig.4) This difference gets smaller for 
second mode and almost zero for higher modes. However, as the shell thickness increases, the 
results almost coincide for all modes. 
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 The effect of shell plan-form dimensions also has been studied for three cases 
(a/b=1,2,4). As the shell plan-form changes from square (a/b=1) to rectangle (a/b=4), the 
results of SDSST and FEM get closer. The difference between first mode results of SDSST 
and FEM for the case of square, thin shallow shell has been disappeared for the case of 
rectangle thin shallow shell.  
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