Some Classes Of Semigroups That Have Medial Idempotent And Some Construction Theorem

Osman HYSA ${ }^{1}$, Edmond P SHA ${ }^{2}$
${ }^{1}$ Head of Mathematics Department at "Aleksander Moisiu" University, Durrës Email: o.hysa@yahoo.com - Phone: +355692040155
${ }^{2}$ Mathematics Department at "Natural Science Faculty " of Tirana University
Email: pishamondi@yahoo.com - Phone: +355692532476

Abstract

It's known that the set of idempotents of the semigroup, plays an important role for the structure of this semigroup. Specially, in the regular semigroups, an important role plays presence of the medial idempotent and normal medial idempotent. Blyth,T. S and R. B. McFadden have studied and constructed the regular semigroups which contain a normal medial idempotent in terms of idempotent-generated regular semigroups with a normal medial idempotent and inverse semigroups with an identity. M.Loganathan has described the construction of the regular semigroups which contain a medial idempotent. In this paper we will study further properties of medial idempotents on abundant semigroups. We will apply also the construction theory of abundant semigroups with a medial idempotent to quasi-adequate semigroups and will make a description of structure of those subsemigroups.

Keywords: abundant semigroup, quasi-adequate semigroup, adequate semigroup, medial idempotent, normal medial idempotent.

BASIC DEFINITIONS AND PROPERTIES

On a semigroup S, the elements a and b are related by $\quad{ }^{*}\left({ }^{*}\right)$ if and only if they are related by Green's relation () in some oversemigroup of S. ElQallali in [1] has shown that:

$$
\begin{array}{ll}
a & { }^{*} b \Leftrightarrow\left(\forall(x, y) \in S^{1} \times S^{1}, x a=y a \Leftrightarrow x b=y b\right) \\
a & { }^{*} b \Leftrightarrow\left(\forall(x, y) \in S^{1} \times S^{1}, a x=a y \Leftrightarrow b x=b y\right) \tag{2}
\end{array}
$$

from which it follows: If $e \in E(S)$, then

$$
\begin{align*}
& a \quad{ }^{*} e \Leftrightarrow e a=a \wedge\left(\forall(x, y) \in S^{1} \times S^{1}, x a=y a \Rightarrow x e=y e\right) \tag{3}\\
& a \quad{ }^{*} e \Leftrightarrow a e=a \wedge\left(\forall(x, y) \in S^{1} \times S^{1}, a x=a y \Rightarrow e x=e y\right) \tag{4}
\end{align*}
$$

Definition 1: The semigroup S is called abundant if and only if we have :

$$
\forall a \in S, \mathrm{R}_{a}^{*} \cap E(S) \neq \phi \wedge \mathrm{L}_{a}^{*} \cap E(S) \neq \phi
$$

Definition 2: The abundant semigroup S is called quasi-adequate if and only if $E(S)$ is subsemigroup of S.

Definition 3: The quasi - adequate semigroup S is called adequate if and only if $E(S)$ is commutative.

We can see from the definition, that * and * are respectively left congruence and right congruence on the S. It is also that in every semigroup $\subset{ }^{*}$ and \subset
${ }^{*}$ but when the elements a and b are regular we will have: $a \quad b \Leftrightarrow a \quad{ }^{*} b$ and $a \quad b \Leftrightarrow a \quad{ }^{*} b$. Furthermore, if S is regular semigroup, then $\quad={ }^{*}$ and $={ }^{*}$.

Let be S an abundant semigroup and let $e \in R_{a}^{*} \cap E(S), f \in L_{a}^{*} \cap E(S)$. From (3) and (4) it easy to see that $a=e a=a f=e a f$ (5). From [2] we have this Lemma:

Lemma 1: A semigroup S is adequate if and only if each ${ }^{*}$ - class and each ${ }^{*}$ class contain a unique idempotent and the subsemigroup $\langle E(S)\rangle=\overline{E(S)}$ is regular.

We shall denote by a^{+}and a^{*} the unique idempotent respectively of the classes R_{a}^{*} and L_{a}^{*} for some $a \in S$, where S is adequate. So $\left\{a^{+}\right\}=R_{a}^{*} \cap E(S)$ and $\left\{a^{*}\right\}=L_{a}^{*} \cap E(S)$. From this definition for the elements a^{+}and a^{*}, we have immediately $a=a^{+} a=a a^{*}=a^{+} a a^{*}$, furthermore for $a \in S$ and $e \in E(S)$ we have also $(e a)^{+}=e a^{+}$and $(a e)^{*}=a^{*} e$.

Definition 4: An idempotent u of the regular or abundant semigroup S is called medial if $\forall x \in \overline{E(S)}, x u x=x$ and a medial idempotent u is called normal if the band $u \bar{E} u$ is commutative.

Proposition 1: If S is an abundant semigroup with a medial idempotent u, then we have:

$$
\left(\forall x \in S, e \in R_{x}^{*} \cap E, f \in L_{x}^{*} \cap E\right), x=e u x=x u f=\text { euxuf }
$$

It follows from (5): $x=e x=e u e \cdot x=e u \cdot e x=e u x$, $x=x f=x \cdot f u f=x f \cdot u f=x u f$, so from $x=e u x$ and $x=x u f$ we have $x=$ euxuf. In [3] we have proved this proposition:

Proposition 2: If S is regular semigroup that contains a medial idempotent u, then $u S, S u$, and $u \mathrm{~S} u$ are orthodox semigroups such that:

$$
E(u S)=u \bar{E}=u E, \quad E(S u)=\bar{E} u=E u, \quad E(u S u)=u \bar{E} u=u E u
$$

and for any $x \in \bar{E}$, we have $x u x^{\prime}=x x^{\prime}$ and $x^{\prime} u x=x^{\prime} x$ and in similar way we can see also:

Proposition 3: If S is an abundant semigroup with a medial idempotent u then $u S$, $S u$ and
$u S u$ are quasi-adequate semigroups. Therefore
" $1^{\text {st }}$ International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)"

$$
E(u S)=u \bar{E}=u E, E(S u)=\bar{E} u=E u, E(u S u)=u \bar{E} u=u E u
$$

In [3] we have proved the following lemma:
Lemma 2: I. Let $e, e^{\prime} \in \bar{E} u, a \in u \bar{E} u$. If $e \mathcal{R} e^{\prime}$ in $\bar{E} u$ and $u e \cdot a=a$, then $u e^{\prime} \cdot a=a$, $e a=e^{\prime} a$
II. Let $f, f^{\prime} \in u \bar{E}, b \in u \bar{E} u$. If $f \mathcal{L} f^{\prime}$ in $u \bar{E}$ and $b \cdot f u=b$, then $b \cdot f^{\prime} u=b$, $b f=b f^{\prime}$

THE REGULAR SEMIGROUPS WITH A MEDIAL IDEMPOTENT

In this section we will prove that every regular semigroup S, with a medial idempotent u, can be described in terms of the subsemigroup generated by idempotents of $\mathrm{S}, \overline{E(S)}$, and of the subsemigroup $u S u$. We will see that the subsemigroup $u S u$ is orthodox semigroup with identity.

Let \bar{E} be an idempotent-generated regular semigroup with a medial idempotent u. Let S be an orthodox semigroup with identity whose band of idempotents

$$
E(\mathrm{~S}) \cong u \bar{E} u
$$

From this isomorphism we will identify the structures of $E(S)$ and $u \bar{E} u$, so u becomes the identity of the semigroup S .

Really, if e is the identity of S , then $e^{2}=e$, so $e \in E(\mathrm{~S})$. And since u is identity of $u \bar{E} u \cong E(\mathrm{~S})$, it follows that u becomes the identity of $E(\mathrm{~S})$.

So we have: $e u=u e=u \quad(e$ is identity of S , i.e. e is also identity of $E(\mathrm{~S}))$

$$
e u=u e=\mathrm{e} \quad(u \text { is identity of } u \bar{E} u \text {, i.e. } u \text { is also identity of } E(\mathrm{~S}))
$$

Hence we have:
$u=e$. Let $\bar{E} u / \mathcal{R}=\left\{\mathrm{R}_{e}: e \in \bar{E} u\right\}$ and $u \bar{E} / \mathcal{L}=\left\{\mathrm{L}_{f}: f \in u \bar{E}\right.$ \} respectively the set of \mathcal{R} - classes in $\bar{E} u$ and the set of \mathcal{L}-classes in $u \bar{E}$. In [3] we have proved:

Proposition 4: For any $e \in \bar{E} u, u \mathrm{R}_{e}=\mathrm{R} u e=\{g \in u \bar{E} u: g \mathcal{R} u e$ in $u \bar{E} u\}$
and for any $f \in u \bar{E}, \mathrm{~L}_{f} u=\mathrm{L}_{f u}=\{h \in u \bar{E} u$: $h \mathcal{L} f u$ in $u \bar{E} u\}$.

In [3] we have seen also that the set:
$W=\left\{\left(\mathrm{R}_{e}, x, \mathrm{~L}_{f}\right) \in \bar{E} u / \mathcal{R} \times \mathrm{S} \times u \bar{E} / \mathcal{L}:\right.$
it exists $x^{`} \in \mathrm{~V}(x), u e=x x^{`}$ and $\left.f u=x^{`} x\right\}$,
where $e \in \bar{E} u$ and $f \in u \bar{E}$, with the binary operation defined as follows:

$$
\left(R_{e}, x, \mathrm{~L}_{f}\right)\left(R_{h}, \mathrm{y} L_{k}\right)=\left(R_{e a}, x f h y, L_{b k}\right) \in W
$$

where $a, b \in E(\mathrm{~S})$ such that $a \mathcal{R}$ xfhy $\mathcal{L} b$ in S , is regular semigroup with medial idempotent. Now, if S is an regular smigroup with a medial idempotent medial u and $\quad E=E(\mathrm{~S})$ is the set of idempotents of S , then we have demonstrate (in Proposition 2) that $u S u$ is orthodox subsemigroup with identity u and $E(u S u)=$ $u \bar{E} u=u E u$. So, we can consider the semigroup $W=W(\overline{E(S)}, u S u)$ described above. Finally, our goal is to show that this semigroup S, can described in terms of $\overline{E(S)}$ and $u S u$, so we will prove:

Theorem 1: If S is an regular semigroup, containing an medial idempotent medial u, then $\quad \mathrm{S} \cong W=W(\overline{E(S)}, u S u)$, where the function: $\theta: S \rightarrow W=W($ $\overline{E(S)}, u S u)$ such that $\quad x \theta=\left(R_{x x^{\prime}}, u x u, L_{x^{\prime} x}\right)$ is an isomorphism of S to W and $x^{\prime} \in \mathrm{V}(x) \cap u S u$

Proof: Let be $x^{\prime}, x^{\prime \prime} \in \mathrm{V}(x) \cap u S u$ such that: $x \theta=\left(R_{x x^{\prime}}, u x u, L_{x^{\prime} x}\right)$ and $x \theta=\left(R_{x x^{\prime \prime}}\right.$, $\left.u x u, L_{x^{\prime \prime}}\right)$. Then $x x^{\prime}=\left(x x^{\prime \prime} x\right) x^{\prime}=\left(x x^{\prime \prime}\right)\left(x x^{\prime}\right)$ and $x x^{\prime \prime}=\left(x x^{\prime} x\right) x^{\prime \prime}=\left(x x^{\prime}\right)\left(x x^{\prime \prime}\right)$ where $x x^{\prime}, x x^{\prime \prime} \in E(S)$. But, $x^{\prime}, x^{\prime \prime} \in u S u$ i.e. $x^{\prime} u=x^{\prime}$ and $x^{\prime \prime} u=x^{\prime \prime}$, hence $x x^{\prime}=$ $x x^{\prime} u \in \overline{E(S)} u$. So, $x x^{\prime} \mathcal{R} x x^{\prime \prime}$ in $\overline{E(S)} u$ and equally we have $x^{\prime} x \mathcal{L} x " x$ in u $\overline{E(S)}$, that means $R_{x x^{\prime}}=R_{x x^{\prime \prime}}$ and $L_{x^{\prime} x}=L_{x^{\prime \prime x}}$, and so we have $\left(R_{x x^{\prime},} u x u, L_{x^{\prime} x}\right)=$ ($R_{x x "}, u x u, L_{x^{\prime \prime} x}$). This shows that θ is well defined. We se also that, for any $x \in S$,
" $1^{\text {st }}$ International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.
$\mathrm{V}(x) \cap u S u \neq \Phi$. Indeed, since S is regular semigroup, each element $x \in S$, has at least an inverse $x^{\prime} \in \mathrm{V}(x)$. On the other hand, we see that: $x \cdot u x^{\prime} u \cdot x=x x^{\prime} x=x$ and $u x^{\prime} u \cdot x \cdot u x^{\prime} u=u x^{\prime} x x^{\prime} u=u x^{\prime} u$. So, the element $u x^{\prime} u \in u S u$ is also an inverse of x, hence $u x^{\prime} u \in \mathrm{~V}(x)$ and we have $u x^{\prime} u \in \mathrm{~V}(x) \cap u S u$ i.e. $\mathrm{V}(x) \cap u S u \neq \Phi$. Lets show now, that $\forall x \in S,\left(R_{x x^{\prime}}, u x u, L_{x^{\prime} x}\right) \in W(\overline{E(S)}, u S u)$. Since $x^{\prime} \in \mathrm{V}(x)$ $\bigcap u S u$, we have x, $=$ иуи for some $y \in S$. But, when иуи is an inverse of x, we have:

$$
\begin{aligned}
& u x u \cdot u y u \cdot u x u=\text { ихи } x^{\prime} \text { ихи }=u x x^{\prime} x u=u x u \quad \text { and } \\
& u y u \cdot u x u \cdot u y u=u y u \cdot x \cdot u y u=x^{\prime} x x^{\prime}=x^{\prime}=u y u
\end{aligned}
$$

so, \quad ууи $\in \mathrm{V}(и х и)$ or $и у и=(и х и)$ ' therefore:
$u x x^{\prime}=u x \cdot u y u=u x u \cdot u y u=(и х и)(и х и)^{\prime} \quad$ and $\quad x^{\prime} x u=u y u \cdot x u=u y u \cdot u x u=$ (ихи) '(ихи)
showing that $\left(R_{x x^{\prime}}, u x u, L_{x^{\prime} x}\right) \in W(\overline{E(S)}, u S u)=\left\{\left(R_{e}, u x u, L_{f}\right) \in \overline{E(S)} u / \mathcal{R} \times u S u\right.$ $\mathrm{x} u \overline{E(S)} / \mathcal{L}$ where $(u x u)(u x u)^{\prime}=u e$ and $\left.(u x u)^{\prime}(u x u)=f u\right\}$, for every element x $\in S$.

Let proved now that θ is injective. If $x, y \in S$ such that $x \theta=y \theta$. Then:

$$
x \theta=y \theta \Rightarrow\left(R_{x x^{\prime}}, u x u, L_{x^{\prime} x}\right)=\left(R_{y y^{\prime}}, u y u, L_{y^{\prime} y}\right) \Rightarrow R_{x x^{\prime}}=R_{y y^{\prime}}, u x u=u y u, L_{x^{\prime} x}=L_{y^{\prime} y}
$$

and, from $x^{\prime}, y^{\prime} \in u S u$ it follows $u x^{\prime} u=u x^{\prime}=x^{\prime} u=x^{\prime}$ and $u y^{\prime} u=u y^{\prime}=y^{\prime} u=$ y^{\prime},
then: $y^{\prime} x y^{\prime}=\left(y^{\prime} u\right) x\left(u y^{\prime}\right)=y^{\prime}(u x u) y^{\prime}=y^{\prime}(u y u) y^{\prime}=y^{\prime} y y^{\prime}=y^{\prime}$. So,

$$
\begin{aligned}
& R_{x x^{\prime}}=R_{y y^{\prime}} \Rightarrow x x^{\prime} \mathcal{R} y y^{\prime} \Rightarrow x x^{\prime}=y y^{\prime} t \text { for some } t \in \overline{E(S)} u \text {, hence } \\
& x^{\prime} x=y y^{\prime} t x \Rightarrow x=y y^{\prime} t x \Rightarrow y^{\prime} x=y^{\prime} y y^{\prime} t x \Rightarrow y^{\prime} x=y^{\prime} t x .
\end{aligned}
$$

Now: $x=y y^{\prime} t x=y y^{\prime} x \Rightarrow x y^{\prime}=y y^{\prime} x y^{\prime} \Rightarrow x y^{\prime}=y y^{\prime} \Rightarrow x y^{\prime} y=y y^{\prime} y=y$ so $x y^{\prime} y=y$
" 1 st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.
On the other hand, from

$$
\begin{equation*}
L_{x^{\prime} x}=L_{y^{\prime} y} \text { it follows } x^{\prime} x \mathcal{L} y^{\prime} y \text { in } u \overline{E(S)} \text { so } y^{\prime} y=l x^{\prime} x \tag{6}
\end{equation*}
$$

for some $l \in u \overline{E(S)}$ from which it follows $y^{\prime} y x^{\prime}=l x^{\prime} x x^{\prime}$ or $l x^{\prime}=y^{\prime} y x^{\prime}(7)$
Now, we see: $u y y^{\prime} y u=u y u=u x u$

$$
\text { or } \begin{align*}
\quad(\text { uуu }) y^{\prime}(u y u)=u x u & \Rightarrow(u x u) y^{\prime}(u x u)=u x u \quad / \cdot x^{\prime} \\
\Rightarrow x^{\prime} u x y^{\prime} x u x^{\prime}= & x^{\prime} u x u x^{\prime} \Rightarrow x^{\prime} x y^{\prime} x x^{\prime}=x^{\prime} x x^{\prime} \Rightarrow x^{\prime} x y^{\prime} x x^{\prime}=x^{\prime} \quad / \cdot x \\
& \Rightarrow x x^{\prime} x y^{\prime} x x^{\prime} x=x x^{\prime} x \Rightarrow x y^{\prime} x=x \tag{8}
\end{align*}
$$

Thus, from (5), (6), (7) and (8) we have:

$$
\begin{gathered}
y=x y^{\prime} y=x\left(y^{\prime} y\right)=x\left(l x^{\prime} x\right)=x\left(l x^{\prime}\right) x=x\left(y^{\prime} y x^{\prime}\right) x=x\left(y^{\prime} u\right) y\left(u x^{\prime}\right) x=x y^{\prime}(u y u) x^{\prime} x \\
=x y^{\prime} u x u x^{\prime} x=x y^{\prime} x x^{\prime} x=x y^{\prime} x \quad=x
\end{gathered}
$$

that shows that θ is injective.
Let be now $\left(R_{e}, u x u, L_{f}\right) \in W(\overline{E(S)}, u S u)$ and $y=e x f \in S$. We can prove that
$y \theta=\left(R_{e}, u x u, L_{f}\right)$. Since $y \theta=(e x f) \theta=\left(R_{(e x f)(\text { exf })^{\prime}}\right.$, uexfu, $\left.L_{(\text {exf })^{\prime}(\text { exf })}\right)$, we must prove that:

$$
u e x f u=u x u, \quad R_{(e x f)(e x f)^{\prime}}=R_{e}, \quad L_{(e x f)^{\prime}(e x f)}=L_{f}
$$

Since $f u=(u x u)^{\prime}(u x u) \Rightarrow u x u \cdot f u=u x u \Rightarrow u x f u=u x u \quad$ and $u e=(u x u)(u x u)^{\prime} \Rightarrow u e \cdot u x u=u x u \Rightarrow u e x u=u x u\left[\right.$ where $\left.(u x u)^{\prime} \in \mathrm{V}(u x u)\right]$ we have: $\quad u e x f u=(u e u) x f u=u e(u x f u)=u e(u x u)=u e x u=u x u$.

So, u exfu $=u x u$ that means the middle component is the same.
Now, $\left(R_{e}, u x u, L_{f}\right) \in W$ and $\left(R_{(e x f)(e x f)^{\prime}}, u x u, L_{(e x f)^{\prime}(e x f)}\right) \in W$, means that there are inverses $(u x u)^{\prime},(u x u)^{\prime \prime} \in V(u x u)$ such that $u e=(u x u)(u x u)^{\prime}$ and $u(e x f)(e x f)^{\prime}=$ $(u x u)(u x u)^{\prime \prime}$ moreover (uxu)(uxu)' $\mathcal{R}(u x u)(u x u)^{\prime \prime}$ in $\overline{E(S)} u$ or ue \mathcal{R} $u(e x f)(e x f)^{\prime}$ or $e \mathcal{R}(e x f)(e x f)^{\prime}$ in $\overline{E(S)} u$ and therefore $R_{(e x f)(e x f)^{\prime}}=R_{e}$ in
" $1^{\text {st }}$ International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.
$\overline{E(S)} u$ (dually we can show that $L_{(\text {exf) (eff) }}=L_{f}$ in $u \overline{E(S)}$). We have shown: $($ exf $) \theta=\left(R_{(e x f)(\text { erf })^{\prime},}\right.$, uexfu, $\left.L_{(e x f)^{\prime}(e f f)}\right)=\left(R_{e}, u x u, L_{f}\right)$, that means θ is surjective.

Now remains to show that θ is a homomorphism. Let $x, y \in S$ and we will have:

$$
(x y) \theta=\left(R_{(x y)(x y)}, u x y u, L_{(x y)^{\prime}(x y)}\right) \quad \text { and }
$$

$x \theta y \theta=\left(R_{x x^{\prime}}, u x u, L_{x^{\prime} x}\right)\left(R_{y y}\right.$, uyu,$\left.L_{y^{\prime} y}\right)=\left(R_{x x^{\prime} a}, u x u x^{\prime} x y y^{\prime} u y u, L_{b y^{\prime} y}\right)=$ ($R_{x x^{\prime} a}$, ,uxyu, $L_{b y^{\prime} y}$)
where $a \mathcal{R} u x y u \mathcal{L} b$ in $u S u$ and a, b are idempotents in $u S u$. So, the middle component for $(x y) \theta$ and $x \theta y \theta$ is the same. But, $\left(R_{(x y)(x y)^{\prime}}, u x y u, L_{(x y)^{\prime}(x y)}\right) \in$ W and $\left(R_{x x^{\prime} a}, u x y u, L_{b y^{\prime} y}\right) \in W$, means there are $(u x y u)^{\prime},(u x y u)^{\prime \prime} \in \mathrm{V}(u x y u)$ such that $u(x y)(x y)^{\prime}=(u x y u)(u x y u)^{\prime}$ and
$u x x^{\prime} a=(u x y u)(u x y u)^{\prime \prime}$ moreover $(u x y u)(u x y u)^{\prime} \mathcal{R}(u x y u)(u x y u)^{\prime \prime}$ or $u(x y)(x y)^{\prime} \mathcal{R}$ $u x x^{\prime} a$ from which we have: $x x^{\prime} \cdot u(x y)(x y)^{\prime} \mathcal{R} x x^{\prime} \cdot u x x^{\prime} a$ or $(x y)(x y)^{\prime} \mathcal{R} x x^{\prime} a$ because \mathcal{R} is left congruence and $x x^{\prime} \in \overline{E(S)} u$, therefore $R_{(x y)(x y)^{\prime}}=R_{x x^{\prime} a}$ and (dually) $L_{(x y)^{\prime}(x y)}=L_{b y^{\prime} y}$.

So we have $(x y) \theta=x \theta y \theta$.
Finally we have prove: $\mathrm{S} \cong W=W(\overline{E(S)}, u S u)$

THE CONSTRUCTION OF QUASI-ADEQUATE SEMIGROUPS WITH NORMAL MEDIAL IDEMPOTENTS

In this section we will describe the construction of quasi-adequate semigroups with normal medial idempotents in terms of the band E with a normal medial idempotent u and of adequate semigroup S with the semilattice of idempotents $E^{0}=u E u$. Let be \mathcal{R} and \mathcal{L} the Green's relations on E. Then we have:

Lemma 3: If S is an abundant semigroup with a normal medial idempotent u, then
(1) S is a quasi-adequate semigroup if and only if u is a middle unit element
(2) S is an adequate semigroup if and only if u is a unit element

Proof:

(1) If u is a middle unit of S, then for all x in E we have $x^{2}=x x=x u x=x$ that means S is quasi-adequate semigroup. Now suppose that S is quasiadequate semigroup. Then E is a band and from [4], \mathfrak{D} is congruence on E, moreover the \mathfrak{D}-classes on E are rectangular bands, that means e \mathfrak{D} eue \mathfrak{D} ueu for all e in E or uefu \mathfrak{D} ef \mathfrak{D} ueu ufu for all e, f in E. Now, since u is a normal medial idempotent in E, from [5] we have $\mathfrak{D}=\mathcal{F}$ on E, where e $\mathcal{F} f \Leftrightarrow$ ueu $=u f u$. So, uefu $=$ ueu ufu from which it follows ef $=e u f$. Hence u is a middle unit for E. But u is also a middle unit for S, because for any $x, y \in S$, there exists $e, f \in E$ such that $x \mathcal{L}^{*} e$ and $y \mathcal{R}^{*} f$ so that $x y=x e f y=x e u f y=x u y$.
(2) If S is an adequate and $e \in E$, then $e=e u e=e^{2} u=e u=u e$. So, $x u=x x^{*} u=x x^{*}=x$ and $u x=u x^{+} x=x^{+} x=x$ for all x in S, where $\left\{x^{*}\right\}=L_{x}^{*} \cap E$ and $\left\{x^{+}\right\}=R_{x}^{*} \cap E$. Hence u is a unit element of S.
Conversely, if u is a unit element of S, then, by (1), u is a middle unit of S and E is band, moreover, for all e, f in E we have: $e f=u e u \cdot u f u=u f u \cdot u e u=f e$ that means S is adequate semigroup.

Lemma 4: If E is band with a normal medial idempotent u, then E is a normal band.

Proof: From (1) it follows that u is a middle unit of E and since $u E u$ is commutative we have: exye $=e \cdot u x u \cdot u y u \cdot e=e \cdot u y u \cdot u x u \cdot e=e y x e$, for all e, x, y in E. So, E is a normal band.

Now let E be a band with a normal medial idempotent u and S an adequate semigroup with the semilattice of idempotents $E^{0}=u E u$. Let be \mathcal{R} and \mathcal{L} the
" 1 st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.

Green's relations on E.■ From the last lemma it follows that E is a normal band and further we have:

Lemma 5: If $x, y \in S, e, f \in E$ and $e \mathcal{R} x^{*}, f \mathcal{L} y^{+}$, then
(1) \quad eff $=x y$
(2) $(x e f)^{+}=(x y)^{+},(e f y)^{*}=(x y)^{*}$

Proof:

(1) Since $e \mathcal{R} x^{*}$ and $f \mathcal{L} y^{+}$we have $x^{*} e=e$, $e x^{*}=x^{*}, f y^{+}=f$ and $y^{+} f=y^{+}$. So $e \in u E, f \in E u$, moreover
$x e f y=x x^{*}$ efy $y^{+} y=x x^{*} \cdot$ ueu $\cdot u f u \cdot y^{+} y=x \cdot u e u \cdot x^{*} y^{+} \cdot u f u \cdot y=x\left(e x^{*}\right) \cdot\left(y^{+} f\right) y=x x^{*} y^{+} y=x y$
(2) $\left(x \in S\right.$, ef $\left.\in u E u=E^{0}\right) \Rightarrow x e f \in S$. Now we have $y^{+} \mathcal{R}^{*} y \Rightarrow(x e f) y^{+} \mathcal{R}^{*}$ (xef) $y \Rightarrow$
$\left(\text { xefy } y^{+}\right)^{+} \mathcal{R}^{*}(x e f y)^{+} \Rightarrow\left(x e f y^{+}\right)^{+}=(x e f y)^{+} \Rightarrow(x e f)^{+}=(x y)^{+}$and similarly $(e f y)^{*}=(x y)^{*}$

Let be

$$
\mathrm{Q}=\mathrm{Q}(E, S)=\left\{(e, x, f) \in E u \times S \times u E: e \mathcal{L} x^{+}, f \mathcal{R} x^{*}\right\}
$$

and we define a binary operation on $\mathrm{Q}:(e, x, f)(g, y, h)=\left(e(x y)^{+}, x y,(x y)^{*} h\right)$
This binary operation is well-defined because

$$
e \mathcal{L} x^{+} \Rightarrow e(x y)^{+} \mathcal{L} x^{+}(x y)^{+} \Rightarrow e(x y)^{+} \mathcal{L}(x y)^{+} \text {and dually }(x y)^{*} h \mathcal{R}(x y)^{+}
$$

that means $\left(e(x y)^{+}, x y,(x y)^{*} h\right) \in E u \times S \times u E=\mathrm{Q}$. Now we have this:
Theorem 2: 1) Q with the binary operation defined above is semigroup
2) $E(Q)=\left\{(e, x, f) \in Q: x \in E^{0}\right\}$
3) Q is a quasi-adequate semigroup
4) $\bar{u}=(u, u, u)$ is normal medial idempotent of Q
" 1 st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.

$$
\text { 5) } E(Q) \cong E \text { and } \bar{u} Q \bar{u} \cong S
$$

Proof:

1) Let be $(e, x, f),(g, y, h),(s, z, t) \in Q$. We see that:
$[(e, x, f)(g, y, h)](s, z, t)=\left[e(x y)^{+}, x y,(x y)^{*} h\right](s, z, t)=\left(e(x y)^{+}(x y z)^{+}, x y z\right.$, $\left.(x y z)^{*} t\right)=$
$\left(e\left((x y)^{+}(x y) z\right)^{+}, x y z,(x y z)^{*} t\right)=\left(e(x y z)^{+}, x y z,(x y z)^{*} t\right)$. Similarly we find that
$(e, x, f)[(g, y, h)(s, z, t)]=\left(e(x y z)^{+}, x y z,(x y z)^{*} t\right)$. So Q is semigroup.
2) If $(e, x, f) \in E(Q)$ then $(e, x, f)^{2}=\left(e(x x)^{+}, x x,(x x)^{*} f\right)=\left(e(x x)^{+}, x x,(x x)^{*} f\right)=$ (e, x, f). So $x^{2}=x x=x \in E^{0}$.Conversely, $(e, x, f) \in \mathrm{Q}$ and $x^{2}=x \in E^{0}$, we have
$(e, x, f)^{2}=\left(e(x x)^{+}, x x,(x x)^{*} f\right)=\left(e x^{+}, x, x^{*} f\right)=(e, x, f)$, hence

$$
E(Q)=\left\{(e, x, f) \in Q: x \in E^{0}\right\}
$$

3) If $(e, x, f) \in Q$ we can prove that $(e, x, f) \mathcal{L}^{*}\left(e, x^{*}, f\right)$ in Q where $\left(e, x^{*}, f\right) \in$ $E(\mathrm{Q})$.

First $(e, x, f)\left(e, x^{*}, f\right)=\left(e\left(\begin{array}{ll}x & x^{*}\end{array}\right)^{+}, x x^{*},\left(\begin{array}{ll}x & x^{*}\end{array}\right)^{*} f\right)=\left(e x^{+}, x, x^{*} f\right)=(e, x, f)$
Second if $(g, y, h),(s, z, t) \in Q$ such that $(e, x, f)(g, y, h)=(e, x, f)(s, z, t)$ we must prove that $\left(e, x^{*}, f\right)(g, y, h)=\left(e, x^{*}, f\right)(s, z, t)$. But,

$$
\begin{aligned}
& (e, x, f)(g, y, h)=(e, x, f)(s, z, t) \Rightarrow\left(e(x y)^{+}, x y,(x y)^{*} h\right)=\left(e(x z)^{+}, x z,(x z)^{*} t\right) \\
& \Rightarrow \\
& \Rightarrow e(x y)^{+}=e(x z)^{+} \wedge x y=x z \wedge(x y)^{*} h=(x z)^{*} t \text { (i) and } \\
& \left(e, x^{*}, f\right)(g, y, h)=\left(e\left(x^{*} y\right)^{+}, x^{*} y,\left(x^{*} y\right)^{*} h\right) \wedge\left(e, x^{*}, f\right)(s, z, t)=\left(e\left(x^{*} z\right)^{+}\right. \\
& \left.x^{*} z,\left(x^{*} z\right)^{*} t\right)
\end{aligned}
$$

" 1 st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.

We notice that $x^{*} \in E$ and $x^{*} \mathcal{L}^{*} x$ which means $x y=x z \Rightarrow x^{*} y=x^{*} z \wedge e$ $\left(x^{*} y\right)^{+}=e\left(x^{*} z\right)^{+}$

For the third component we have: $x^{*} \mathcal{L}^{*} x \Rightarrow x^{*} y \mathcal{L}^{*} x y$ and also $\left(x^{*} y\right)^{*} \mathcal{L}^{*}$ $(x y)^{*}$. So, $\left(x^{*} y\right)^{*}=(x y)^{*}$ and similarly $\left(x^{*} z\right)^{*}=(x z)^{*}$. Now, from (i) it follows:
$(x y)^{*} h=(x z)^{*} t \Rightarrow\left(x^{*} y\right)^{*} h=\left(x^{*} z\right)^{*} t$.That means $\left(e, x^{*}, f\right)(g, y, h)=\left(e, x^{*}\right.$, $f)(s, z, t)$ Thus, $(e, x, f)(g, y, h)=(e, x, f)(s, z, t) \Rightarrow\left(e, x^{*}, f\right)(g, y, h)=\left(e, x^{*}, f\right)$ (s, z, t) and from (4)
follows that $(e, x, f) \mathcal{L}^{*}\left(e, x^{*}, f\right)$ in Q where $\left(e, x^{*}, f\right) \in E(Q)$. So each \mathcal{L}^{*} - class in Q has an idempotent. Dually we can prove that each \mathcal{R}^{*} - class in Q has an idempotent, hence Q is abundant semigroup. To show that Q is quasi-adequate we must prove that $E(\mathrm{Q})$ is subsemigroup of Q . So let $(e, x, f),(g, y, h) \in E(\mathrm{Q})$. Then $x, y \in E^{0}$ which means $x y \in E^{0}$ hence $(e, x, f)(g, y, h)=\left(e(x y)^{+}, x y\right.$, $\left.(x y)^{*} h\right) \in E(\mathrm{Q})$ and Q is quasi-adequate.
4) $\bar{u}=(u, u, u)$ is medial idempotent in Q because if $(e, x, f) \in \overline{E(Q)}=E(\mathrm{Q})$ we have:
$(e, x, f)(u, u, u)(e, x, f)=\left(e x^{+}, x, x^{*} u\right)(e, x, f)=\left(e, x, x^{*}\right)(e, x, f)=$ (e, x, f) and if $(u, u, u)(e, x, f)(u, u, u),(u, u, u)(g, y, h)(u, u, u) \in E(Q)$ then
$(u, u, u)(e, x, f)(u, u, u) \cdot(u, u, u)(g, y, h)(u, u, u)=(x, x, x)(y, y, y)=(x y, x$ $y, x y)=\quad=(y x, y x, y x)=(u, u, u)(g, y, h)(u, u, u) \cdot(u, u, u)(e, x, f)(u, u, u)$.

So $\bar{u} E(\mathrm{Q}) \bar{u}$ is commutative that means $\bar{u}=(u, u, u)$ is normal medial idempotent in Q .
5) Let be $\varphi: E(\mathrm{Q}) \rightarrow E$ such that $\varphi[(e, x, f)]=e f$ for each elements $(e, x, f) \in E(\mathrm{Q})$
φ - is surjective, because $\forall e \in E$ there exists $(e u, u e u, u e) \in E(\mathrm{Q})$ where $\varphi[(e u, u е и, и e)]=$ eиue $=e$ иe $=e$. Now let be $(e, x, f),(g, y, h) \in E(Q)$ such that $\varphi[(e, x, f)]=e f=g h=\varphi[(g, y, h)]$ then we have: $e \mathcal{L} x, f \mathcal{R} x, g \mathcal{L} y, h \mathcal{R}$ y from which follows

$$
\begin{aligned}
& e x=e, x e=x, x f=f, f x=x, g y=g, y g=y, y h=h, h y=y . \text { so, } \\
& e f=g h \Rightarrow e x f=g y h \Rightarrow u e x f=u g y h \Rightarrow x u e f=y u g h \Rightarrow x e f=y g h \Rightarrow x f=y h \Rightarrow f=h, \\
& e f=g h \Rightarrow e x f=g y h \Rightarrow e x f u=g y h u \Rightarrow e f u x=g h u y \Rightarrow e f x=g h y \Rightarrow e x=g y \Rightarrow e=g, \\
& e f=g h \Rightarrow x f=y h \Rightarrow x f u=y h u \Rightarrow f u x=h u y \Rightarrow f x=h y \Rightarrow x=y, \text { hence } \\
& (e, x, f)=(g, y, h) \text { that means } \varphi \text { - is injective, consequently } \varphi \text { - is bijective, } \\
& \text { moreover we have: }
\end{aligned}
$$

$\varphi[(e, x, f) \cdot(g, y, h)]=\varphi[(e x y, x y, x y h)]=e x y h=e f x y g h=e x f g y h=e f \cdot g h=\varphi[(e, x, f)] \cdot \varphi[(g, y, h)]$

So, we have proved that φ - is isomorphism and $E(Q) \cong E$.
Now let be $\psi: \bar{u} \mathrm{Q} \bar{u} \rightarrow S$ such that $\psi[(u, u, u)(e, x, f)(u, u, u)]=x$.
ψ - is surjective, because $\forall x \in S$ there exists $(u, u, u)\left(x^{+}, x, x^{*}\right)(u, u, u) \in \bar{u} \mathrm{Q} \bar{u}$ such that $\psi\left[(u, u, u)\left(x^{+}, x, x^{*}\right)(u, u, u)\right]=x$. Also, ψ - is injective because:
$x=y \Rightarrow\left(x^{+}, x, x^{*}\right)=\left(y^{+}, y, y^{*}\right) \Rightarrow(u, u, u)\left(x^{+}, x, x^{*}\right)(u, u, u)=(u, u, u)\left(y^{+}, y, y^{*}\right)(u, u, u)$
Therefore $\psi[(u, u, u)(e, x, \mathrm{f})(u, u, u) \cdot(u, u, u)(g, y, h)(u, u, u)]=$

$$
\begin{aligned}
& =\psi\left[(u, u, u)\left(e x^{+}, x, x^{*}\right) \cdot(g, y, h)(u, u, u)\right]= \\
& =\psi\left[(u, u, u)\left(e(x y)^{+}, x y,(x y)^{*}\right)(u, u, u)\right]=x y= \\
& =\psi[(u, u, u)(e, x, \mathrm{f})(u, u, u)] \cdot \psi[(u, u, u)(g, y, h)(u, u, u)] . \text { So, } \\
& \bar{u} \mathrm{Q} \bar{u} \cong S .
\end{aligned}
$$

From this construction we have the following theorem:
" $1^{\text {st }}$ International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)" in Collabaration between EPOKA University and "Aleksandër Moisiu" University of Durrës on June 2-4 2011, Tirana-Durres, ALBANIA.
Theorem 3: Any quasi-adequate semigroup S with a normal medial idempotent u can be constructed as above, in terms of the band $E(S)=E$ and of the adequate subsemigroup $u S u$.
" 1 st International Symposium on Computing in Informatics and Mathematics (ISCIM 2011)"

REFERENCES

[1] El Qallali "On the construction of a class of abundant semigroups" Miramare Trieste, September 1987
[2] John Fountain, Abundant Semigroups, Proceedingsof the Edinburgh Mathematicall Society (1979)
[3] Osman Hysa " Regular semigroups with medial idempotent and normal medial idempotent " Tiranë, Qershor 2009.
[4] J. M. Howie, An introduction to semigroup theori.
[5] Blyth, T. S and R. B. McFadden, On the construction of a class of regular semigroups, J. Algebra, 81 (1983), 1-22.

