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ABSTRACT
Population projection models play a significant role in analyzing current

demographic processes, as well as in forecasting their future development. In this study,
we examine the number of birth per month, over the twenty-four year period 1985-2008
in Albania. We use data from INSTAT Albania official site. From a careful observation
of the data, we see that there are months where the number of births is clearly higher, as
well as others, where it seems to be lower. A decreasing trend is also evident. In our
study, we use the Box-Jenkins methodology and R software as a programming language
to consider process seasonal patterns. We model data by an ARIMA (p, d, q) stochastic
process and we use it to forecast the number of births in Albania on the future. The model
can be useful for governmental or nongovernmental agencies as well as insurances
companies interested on birth number evolution in Albania.
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1. Introduction and motivation

During the 20-th century number of births per month has increased. Usually this
phenomenon is considered in a pessimist way: according to statistics we are more than
our ancestors. This increase in population is associated with the use of resources and
threat to the ecosystem. Scientists note that the consequences of this rate growth will be
reflected at the level of carbon dioxide in the atmosphere, global warming and pollution.
Other sectors of the economy (employment, poverty, etc.), or the social (marriage,
religion, etc.) will be affected by these changes.

In this paper, we investigate the trend of number of births per month using the data
from INSTAT Albania (from January 1985 to December 2008) as an important potential
factor for the economical and social development of the country.

2. The model - ARIMA methodology
Number of births per month in Albania can be modeled as a stochastic process and

consequently we can use  the standard Box and Jenkins methodology (identification,
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estimation, diagnostics and forecasting), [1, 2] , to generate an appropriate ARIMA(p, d,
q) model for number of births per month in Albanian population.

The procedure of the ARIMA model goes through different iterative phases. Box
and Jenkins propose the following methodology:

1) Preliminary analysis of the series and possible transformation
The monthly data were collected for the period January 1, 1985 to December 31,

2008 in total 288 observations (Fig.1).

Figure 1. Number of births per month in Albania from January 1985 to December 2008

a) Detecting stationarity
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For an ARIMA model the series needs to be stationary; we can transform a time
series in a stationary time series by differencing until it becomes stationary. The plot and
the autocorrelogram (ACF) help to investigate and fix the differencing level. The best
value of d is the one that gives rise to a rapid decrease of the ACF towards zero. As seen
from the following graphs, our time series is not stationary.

Figure 2. ACF and PACF of number of birth per month
Autocorrelation and Partial Autocorrelation values are significantly important

(Figure 2).

b) Detecting seasonality
Many time series contain a seasonal phenomenon that repeats itself after a regular

period of time. This phenomenon is evident in our time series. Seasonality, or periodicity,
can usually be assessed from an autocorrelation plot, a seasonal subseries plot, or a
spectral plot.

As a first step to see for  seasonality, we consider the evolution of  the average
monthly number of births across 24 years (Figure 3).

It seems,   the averages are near to each other, except the last months of the year
where the average number of birth seems to be lower.
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Figure 3. Number of birth for each month of 24 years
c) Differencing for stationarity and seasonality

Figure 1, show clearly that our time series, of births number per month, has a trend.
By first differencing the data, Δyt=yt –yt-1, the graph of the new series is shown in Figure
5.

Figure 5. ACF and PACF of number of birth per month for the differenced time series
Later, we inspect the autocorrelation function of the first-differenced data for

significant piks at the seasonal frequencies to discover  the possible presence or absence
of seasonality in the original data. In fact, the reciprocal autocorrelation values  are
relatively  reduced, respectively to the same lag  in two series.  The same result can be
seen looking the lag plot of the original data and the differenced data (Figure 6 and Figure
7).
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Figure 6. Lag plot of the original data Figure 7. Lag plot of the differenced data

2) Estimation
The trend in our data was fitted by a linear regression line. The results are shown in

Figure 8.
The regress equation line is: 6864.724    18.758* B t  , B is the number of birth

per month, t is the time. Multiple R-squared: 0.758, Adjusted R-squared: 0.7569.

Figure 8. Linear Regression of time series

At the evaluation phase, the aim is to detect seasonality, if it exists, and to identify
the order for the seasonal autoregressive and seasonal moving average terms. By
inspecting the shape of ACF and PACF we predict that the model can be an ARIMA (p,
d, q) and considering seasonality, it can be an ARIMA (p, d, q) (P, D, Q)m model, m is the
seasonal frequency.
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Based on the model of Box and Jenkins (1970), the seasonal autoregressive
integrated moving average model is given by:

.cX.wcXb...XbXb)X(f nn2211  (1)

Where,
s = seasonal lag,
 coefficient for AR process,
 = coefficient for seasonal AR process,
 = coefficient for MA process,
 = coefficient for seasonal MA process.

B is the backward shift operator,s
D= (1– Bs)D and d = (1- B)d, wt is an uncorrelated

random variable with mean zero and constant variance, [3].

In R, we get a SARIMA (Seasonal Autoregressive Integrated Moving Average)
model.

The proposed model is:
ARIMA(2,1,2)(1,0,1)[12]

and the coefficients of the model are:
s = 12,=0.3319,=0.2136,=0.9552,=-0.5477,= -0.4098,=-0.6757

The information criteria values and error measurements are:
AIC= 4299.67,   AICc= 4300.08,   BIC= 4325.29
ME= -31.60, RMSE= 413.46, MAE= 287.99, MPE= -1.25, MAPE= 5.95, MASE= 0.67

We selected the one with the lowest values of error measurements or information
criteria between the proposed models, [4].

3) Diagnostic checking
One way to check if the model is satisfactory is to analyze the residuals. The nature

of birth data seems to be seasonal. Starting with the normality test for the  residuals,  we
investigate the residuals histogram. In addition, a normal probability plot or a Q-Q plot is
done to identify departures from normality. We also inspect the sample autocorrelations
of the residuals and check at the correlation structure of the residuals by ploting the
autocorrelation versus h and the error bounds of ±2/√n, [5].
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Figure 9.a Residuals of the regression model to
birth data 1985-2008

Figure 9.b Residuals of the ARIMA model to
birth data 1985-20
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We see, the residuals are nearly  close to normality, except for a few extreme values
in the tails. The ARIMA model seems to fit better our data.

In addition to autocorrelations plot, we perform a general test that takes into
consideration the magnitudes of all autocorrelations. As an example, it may be the
case that, individually, each value of autocorrelation at lag -h is small in magnitude,
say, each one is just slightly less that 2/√n  in magnitude, but, in group, the values
are large. The test  is done by Ljung–Box–Pierce Q-statistic:

2

1

( )
( 2)

H

h

h
Q n n

n h





 
 (2)

The value H in (2) is chosen somewhat arbitrarily, typically, H = 20. Under
the null hypothesis of model adequacy, asymptotically , 2

1 ,~ H p qQ     . Thus, we

would reject the null hypothesis at level α if the value of Q exceeds the (1−α)-
quantile of the 2

H p q   distribution, [5].

Also the ACF and p-values of the Ljung-Box statistic for  the residuals of the
ARIMA model, are within the confidence interval, so we have no evidence to reject
the model.

Figure 10. Ljung-Box statistic and ACF of residuals

Looking at the lag plot of the residuals of the ARIMA model, we see that the
autocorrelations and partial autocorrelations values are statistically equal to zero.

4) Forecasting
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The main purpose of estimating the birth models is to use them as input to a
demographic model that can be used  for forecasting the population of Albania.

In our SARIMA model we consider the seasonal patterns of birth data  and,
using some accuracy measurements, we choose the one with the best information
criteria or lowest error measurements. In Figure 12, we show the forecasted values
and the confidence intervals acording to three periods: 1985-2008 (288
observations), 1990-2008 (228 observations) and 2000-2008 (96 observations).

Figure 12. Forecasts from ARIMA model

CONCLUSION

The model presented in this paper and the preceding one, [4], represents only
a first step on the investigation that could be done using ARIMA models to the
demographic data concerning the Albanian population. As a useful methodology for
forecast, Box and Jenkins methodology require at the same time skills and
experience.

In this paper we show the usefulness of the Box and Jenkins methodology to
study and forecast the evolution of birth number in Albania from January 1985 to
December 2008. This number has decreased significantly during all this period. But
at the same time the evolution of this indicator in the last part of the period show
that the decreasing trend is slower: during the period from January 2000 to
December 2008, the birth number process seems to be stationary and the forecasting
process can be more useful.  Further studies and other data, related to birth number
or social and economic factors, are important for forecasting the development of
vital models in Albania.
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