122

On the cohomology of the inverse semigroup G of the G-sets of a groupoid G

Anjeza Pasku[∗] , Xhezair Teliti † [∗]Universiteti Aleksander Moisiu ¨ Fakulteti i Teknologjisë dhe Informacionit anjezakrakulli@uamd.edu.al [†]Universiteti i Tiranës Fakulteti i Shkencave të Natyrës Departamenti i Matematikës xhezair.teliti@fshn.edu.al

Abstract—Renault has defined in [7] the cohomology of the inverse semigroup G of the G-sets of a given groupoid G as a functor from the category of G -presheaves to that of abelian groups. We show in our paper that G-presheaves is isomorphic to $\text{Ab}^{D(\mathcal{G})}$ where $D(\mathcal{G})$ is the division category defined from Loganathan in [6] and used there to give another description of the Lausch cohomology of inverse semigroups. This isomorphism allows us in turn to prove that Renault and Lausch cohomology groups of G are isomorphic.

Key words: Groupoid, cohomology, presheaves, inverse semigroup.

I. INTRODUCTION AND PRELIMINARIES

We give in this section a few basic notions from groupoids and inverse semigroups associated to them and show how cohomology groups of a groupoid are defined. All these can be found in [7]. By definition, a groupoid G is a set endowed with a product map $(x, y) \mapsto xy$: $G^2 \rightarrow G$ where G^2 is a subset of $G \times G$ called the set of composable pairs, and an inverse map $x \times x^{-1}$: $G \to G$ such that the following relations are satisfied:

- (i) $(x^{-1})^{-1} = x;$
- (ii) $(x, y), (y, z) \in G^2$, then $(xy, z), (x, yz) \in G^2$ and $(xy)z = x(yz);$
- (iii) $(x^{-1}, x) \in G^2$ and if $(x, y) \in G^2$, then $x^{-1}(xy) =$ y;
- (iv) $(x, x^{-1}) \in G^2$ and if $(z, x) \in G^2$, then $(zx)x^{-1} =$ z.

For every $x \in G$, we define $d(x) = x^{-1}x$ as the domain of x and $r(x) = xx^{-1}$ as the range of x. Note that a pair (x, y) is composable only if $r(y) = d(x)$. Also the relations $xd(x) =$ $x = r(x)x$, suggest that we call the set $G^0 = r(G) = d(G)$ the unit space of G. Here is a non trivial example of a groupoid.

Example I.1 Let U be a set and S a group which acts on U on the right. The action of s on u is denoted by $u \cdot s$. We let G be $U \times S$ and define the following groupoid structure: (u, s) and (v, t) are composable only if $v = u \cdot s$; $(u, s)(u \cdot s, t) =$ (u, st) , and $(u, s)^{-1} = (u \cdot s, s^{-1})$. Then, $r(u, s) = (u, e)$ and $d(u, s) = (u \cdot s, e)$. The map $(u, e) \mapsto u$ identifies G^0 with U.

An important notion in the theory of groupoids is that of a G -set. Let G be a groupoid and S a subset of G . We call S a G-set if the restriction of r and d to it is one-to-one, or equivalently if SS^{-1} , $S^{-1}S \subseteq G^0$. The set G of all G-sets of G can be made into an inverse semigroup, for if S and T are G-sets, then their product ST is again a G-set, and for any $S \in \mathcal{G}, G^{-1} \in \mathcal{G}.$

To define the cohomology of G we need to define first the presheaves. For this, let C be any category and A_0 a set. The set 2^{A_0} of all subsets of A_0 when ordered by inclusion becomes a category: there is an arrow $U \to V$ if $V \subseteq U$. By definition a C-presheaf A from 2^{A_0} to C is a contravariant functor whose object map is denoted by $U \rightarrow A_U$ and its morphism map by $A_U \rightarrow A_V$ whenever $V \subseteq U$. A partial isomorphism, or a partial symmetry ϕ of A is a bijection $\phi: V \to U$ where V and U are subsets of A_0 together with isomorphisms $\phi : A_{V'} \to A_{\phi(V')}$ for any $V' \subseteq V$, which are compatible with the restriction morphism. The latter means that for every $V'' \subseteq V'$, the following diagram commutes

Two partial isomorphisms ϕ and ϕ' can be composed: if ϕ : $V \to U$ and $\phi' : V' \to U'$, we let V'' be $\phi^{-1}(U' \cap V)$ and U'' be $\phi(U' \cap V)$; $\phi'' = \phi \circ \phi'$ is the bijection $V'' \to U''$ obtained by composing ϕ and ϕ' ; and for $W \subseteq V''$ we define $\phi'': \mathcal{A}_W \to \mathcal{A}_{\phi''(W)}$ by composing

$$
\mathcal{A}_W \xrightarrow{\phi^{\cdot\flat}} \mathcal{A}_{\phi'(W)} \xrightarrow{\phi} \mathcal{A}_{\phi \circ \phi'(W)}.
$$

The inverse of a partial isomorphism is defined in the obvious way. In this way the set $\mathcal{T}(\mathcal{A})$ of partial isomorphisms of $\mathcal A$ becomes an inverse semigroup which we call the isomorphism inverse semigroup of the given C-presheaf A.

For a given inverse semigroup G , we define a G -presheaf (A, \mathcal{L}) to be a C-presheaf A together with a homomorphism $\mathcal{L}: \mathcal{G} \to \mathcal{T}(\mathcal{A})$ such that $\mathcal{L}^0: \mathcal{G}^0 \to 2^{A_0}$ is an injection.

ISCIM 2013, pp. 122-125 (c) 2013 Authors Given a G-presheaf (A, \mathcal{L}) of abelian groups one can form

the following cochain complex. A n -cochain is a function $f: \mathcal{G}^n \to \mathcal{A}$ which satisfies the following conditions:

- (i) $f(s_0, s_1, ..., s_{n-1}) \in \mathcal{A}_{r(s_0 s_1...s_{n-1})}$;
- (ii) f is compatible with the restriction map, that is if $U = r(s_0s_1...s_{n-1})$ and $V = r(t_0t_1...t_{n-1})$ where $t_i = es_i$ for some idempotent e_i , then $f(t_0, t_1, ..., t_{n-1})$ is the restriction of $f(s_0, s_1, ..., s_{n-1}) \in A_U$ to V; and
- (iii) for $n > 0$, $f(s_0, ..., s_i, ...s_{n-1}) \in 2^{A_0}$ whenever s_i is an idempotent

The set $C^n(G, A)$ of *n*-cochains is an abelian group under pointwise addition. The sequence

$$
0 \longrightarrow C^{0}(\mathcal{G}, \mathcal{A}) \longrightarrow C^{1}(\mathcal{G}, \mathcal{A}) \longrightarrow \cdots
$$

$$
\longrightarrow C^{n}(\mathcal{G}, \mathcal{A}) \xrightarrow{\delta^{n}} C^{n+1}(\mathcal{G}, \mathcal{A}) \longrightarrow \cdots
$$

where

$$
\delta^0(f(s)) = \mathcal{L}(s)f \circ d(s) - f \circ r(s)
$$
 and

$$
\delta^n f(s_0, ..., s_n) = \mathcal{L}(s_0) f(s_1, ..., s_n)
$$

+
$$
\sum_{i=1}^n (-1)^i f(s_0, ..., s_{i-1} s_i, ..., s_n)
$$

+
$$
(-1)^{n+1} f(s_0, ..., s_{n-1})
$$

is a cochain complex. We denote by $Z^n(G, A)$ and $B^n(G, A)$ the groups of *n*-cocycles and that of *n*-coboundaries. The *n*th cohomology group $Z^n(G, A)/B^n(G, A)$ will be denoted by $H^n(\mathcal{G},\mathcal{A}).$

In the next section we will show that for any inverse semigroup S, S-presheaves form a category and that this category is isomorphic to the functor category $\mathbf{Ab}^{D(S)}$ where $D(S)$ has objects all the idempotents of S and morphisms $e \rightarrow f$ are triples (e, x, x') where x' is the inverse of x and $e \geq xx'$, $x'x = f$. The main result of [2] states that there is only one cohomology functor from a given category to Ab, therefore the Lausch cohomology defined on $Ab^{D(S)}$ has to coincide to that of renault define on S-presheaves.

II. S-PRESHEAVES AS FUNCTORS

Let S be an inverse semigroup, X a presheaf of abelian groups over $E(S)$ and $\alpha : S \to \mathcal{T}(X)$ be a representation of S by partial symmetries of X .

Lemma II.1 *Representation* α *gives rise to an* S*-module in the sense of Lausch.*

Proof. Theorem 5.8 ((i) \Leftrightarrow (ii)) of [5] states that α can be regarded as an action of S on the right of the presheaf X with values in Ab. Then as shown in p. 33 of [5] one can construct a clifford semigroup (X, \otimes) with semilattice of idempotents $E(S)$ and with a right action of S on X given by

$$
a \circ s = \alpha(es)\rho_{ess^{-1}}^e(a).
$$

which satisfies all the properties of an S -module. \blacksquare

Let S be a fixed inverse semigroup, we form the category of S-presheaves with objects representations of S by partial symmetries of presheaves of abelian groups over $E(S)$ and morphisms between two representations $\alpha : S \to \mathcal{T}(X)$ and $\beta: S \to \mathcal{T}(Y)$ are S-module morphisms $\tau: \mathbf{X} \to \mathbf{Y}$ between the corresponding S-modules of Lemma II.1 such that $\forall s \in S$,

$$
\tau(\alpha(s)(x)) = \beta(s)(\tau(x)).\tag{1}
$$

Here $\alpha(s)$ is meant to be be one of the components of the corresponding family and $x \in X(e)$ where $X(e)$ is the domain of that component of $\alpha(s)$. We have to show that S-presheaves is indeed a category. The only thing we have to check is that if α : $S \to \mathcal{T}(X)$, β : $S \to \mathcal{T}(Y)$ and γ : $S \to \mathcal{T}(Z)$ are objects from S-presheaves and $\tau_1 : \alpha \to \beta$, $\tau_2 : \beta \to \gamma$ are morphisms, then for every $s \in S$ and x from some domain of some component of $\alpha(s)$ we have

$$
\tau_2 \tau_1(\alpha(s)(x)) = \gamma(s)(\tau_2 \tau_1(x)). \tag{2}
$$

From the definitions of τ_1 and τ_2 we have

$$
\tau_1(\alpha(s)(x)) = \beta(s)(\tau_1(x))\tag{3}
$$

and

$$
\tau_2(\beta(s)(y)) = \gamma(s)(\tau_2(y)). \tag{4}
$$

Then replacing in (4) y by $\tau_1(x)$ we get

$$
\tau_2(\beta(s)(\tau_1(x))) = \gamma(s)(\tau_2 \tau_1(x)). \tag{5}
$$

Now (3) and (5) imply (2).

Given an inverse semigroup S with semilattice of idempotents E we define a category $\mathcal{P}(S)$ with objects the idempotents E of S and morphisms $e \rightarrow f$ are pairs $(e, s) \in$ $E \times S$ such that $f = s^{-1} e s$. Composition is given by $(s^{-1}es,t)(e,s) = (e,st)$. Let $P(S)$ the quotient of $P(S)$ by the congruence on the hom-sets of $\mathcal{P}(S)$ generated by the pairs

$$
(e, s) \sim (e, es)
$$
 and $(e, e) \sim id_e$.

We will write morphisms of $P(S)$ by the same symbols as their representatives in $P(S)$. Note that the semilattice $E(S)$ is a subcategory of $P(S)$.

The next two lemmas show two properties of functors from $\mathbf{Ab}^{P(S)}$.

Lemma II.2 *Every* $X \in \text{Ab}^{P(S)}$ gives rise to a right action *of* S on the **Ab**-bundle $X = \bigcup_{e \in E} X(e)$ *.*

Proof. Define a function $\circ : \mathbf{X} \times S \to \mathbf{X}$ by

 $a \circ s = X(e, s)(a)$ whenever $a \in X(e)$.

Let us check the three properties for the right action of S on X.

(Act 3) If $a \in X(e)$, then from the definition $a \circ s \in X(s^{-1}es)$ and the map $a \mapsto a \circ s$ is a morphism in **Ab** since $X(e, s)$ is such.

(Act 1) If $a \in X(e)$, then $a \circ e = X(e, e)(a) = id_{X(e)}(a) = a$. (Act 2) $(a \circ s) \circ t = X(s^{-1}es, t)X(e, s)(a) = X(e, st)(a) =$ $a \circ (st)$.

Lemma II.3 *Every* $X \in \text{Ab}^{P(S)}$ gives rise to an S-module $\mathbf{X} = \bigcup_{e \in E} X|_E(e)$ *where* $X|_E$ *is the restriction of* X *in* $E(S)$ *.*

Proof. We will show that the clifford semigroup X has the structure of an S-module. From $(iii) \Rightarrow (ii)$ of Theorem 5.8 of [5] we have that the Ab -bundle X of Lemma II.2 can be regarded as a representation of S by partial symmetries of a presheaf with values in Ab in the following way. First, as in the proof of Theorem 5.6 of [5] we form a semilattice of groups $X(e)$ (though we have one already) by defining for $e \ge f$, ρ_f^e : $X(e) \to X(f)$ by $\rho_f^e(a) = a \circ f$. But $a \circ f = X(e, f)(a) = a +$ f . This shows that the clifford semigroup arising by restricting X in $E(S)$ is the same as the one described in Theorem 5.6 of [5]. Then define a partial function

$$
a \cdot s = \begin{cases} a \circ s & \text{if } a \in X(e) \text{ and } ss^{-1} = e \\ \text{undefined} & \text{else} \end{cases}
$$

This is a right action of S on the presheaf $X|_E$ which satisfies (Rep 1)-(Rep 5) of Proposition 5.7 of [5] therefore from Example 3 of [5] X becomes an S-module with the S action defined by

$$
a \star s = \rho_{ess^{-1}}^e \cdot (es) = \rho_{ess^{-1}}^e(a) \circ (es).
$$
 (6)

On the other hand we see that

$$
\rho_{ess^{-1}}^{e}(a) \circ (es) = X(ess^{-1}, es)X(e, ss^{-1})(a)
$$

$$
= X(e, es)(a)
$$

$$
= X(e, s)(a)
$$

$$
= a \circ s.
$$

Comparing with (6) we see that actions \star and \circ are equal, therefore **X** is an S-module. \blacksquare

Define $G : S$ -presheaves $\rightarrow \text{Ab}^{P(S)}$ on objects by sending each representation $\alpha : S \to \mathcal{T}(X)$ to $G(\alpha) : P(S) \to \mathbf{Ab}$ which sends each idempotent e to $X(e)$ and each morphism $(e, s) : e \rightarrow s^{-1}e s$ to the composite

$$
G(\alpha)((e,s)) = \alpha(es)\rho_{ess^{-1}}^e.
$$
 (7)

The functorial properties of $G(\alpha)$ are easy to proof if we recall that (7) defines a right action on the presheaf X and that for $a \in X(e), G(\alpha)((e, s))(a)$ is the same as $a \circ s$ of Example 3 of [5].

Let $\tau : \alpha \to \beta$ is a morphism in S-presheaves where α : $S \to \mathcal{T}(X)$ and $\beta : S \to \mathcal{T}(Y)$. Define

$$
G(\tau): G(\alpha) \to G(\beta)
$$

as the family

$$
\{\tau_e: X(e) \to Y(e) | e \in E\}.
$$

To show that $G(\tau)$ is natural we have to show that for each $e \in E$, every morphism $(e, s) : e \rightarrow s^{-1}e s$ and every $a \in E$ $X(e)$, we have

$$
\tau_{s^{-1}es}G(\alpha)(e,s)(a) = G(\beta)(e,s)\tau_e(a),
$$

which from (7) is equivalent to

$$
\tau(a \circ s) = \tau(a) \circ s.
$$

This is true since from Lemma II.1 X and Y are S -modules with action \circ and $\tau : X \to Y$ is an S-module morphism.

Define G' : $\mathbf{Ab}^{P(S)} \to S$ -presheaves on objects X in the following way. From Lemma II.2 X gives rise to a right action of S on the Ab-bundle $X = \bigcup_{e \in E} X(e)$ and then as in the proof of $(iii) \Rightarrow (ii)$ of Theorem 5.8 of [5] one can define a representation $G'(X)$ of S by partial symmetries of the presheaf $X|_E$. It turns out that $G'(X) : S \to \mathcal{T}(X|_E)$ is defined by $s \mapsto X(ss^{-1}, s)$ where $X(ss^{-1}, s) : X(ss^{-1}) \rightarrow$ $X(s^{-1}s)$ is the map $a \mapsto a \circ s$.

Lemma II.4 *The module of Lemma II.1 arising from the representation* $G'(X)$ *is the same as the module of Lemma II.3 arising from* X*.*

Proof. Theorem 5.8 ((ii) \Rightarrow (i)) and Example 3 of [5] show that the module of Lemma II.1 arising from the representation $G'(X)$ is the clifford semigroup **X** of Lemma II.3 consisting of groups $X(e)$ together with structure morphisms $\rho_f^e = X(e, f)$, and the action of S on X is given by

$$
a \star s = \rho_{ess^{-1}}^e \cdot (es)
$$

= $X(ess^{-1}, es)X(e, ss^{-1})(a)$
= $X(e, es)(a)$
= $X(e, s)(a)$
= $a \circ s$.

This proves the lemma. \blacksquare

Define G' on morphisms. If $\tau : X \rightarrow Y$ is a natural transformation of functors in $\text{Ab}^{P(S)}$ then τ induces an Smodule morphism τ^* : $X \to Y$ of the corresponding Smodules X and Y of Lemma II.3. But Lemma II.4 claims that **X** matches to the module arising from $G'(X)$ and so does Y to $G'(Y)$. Also the fact that τ^* is a module morphism implies

$$
\tau^* X(s s^{-1}, s) = Y(s s^{-1}, s) \tau^*,
$$

which shows that $\tau^* : \mathbf{X} \to \mathbf{Y}$ can be regarded as a morphism between the respective representations $G'(X)$ and $G'(Y)$. We define

$$
G'(\tau) = \tau^*.
$$

The functorial properties are now clear.

Theorem II.1 Categories $\mathbf{Ab}^{P(S)}$ and S-presheaves are iso*morphic.*

Proof. Let us first show that for every $\alpha \in S$ -presheaves we have $G'G\alpha = \alpha$. From the definition of G' we have that $G'G\alpha$ is the homomorphism

$$
G'G\alpha : S \to \mathcal{T}(X)
$$

defined by

$$
s \mapsto G\alpha(ss^{-1}, s)
$$

where from (7), $G(\alpha)(ss^{-1}, s)$ is the morphism

$$
G\alpha(ss^{-1}, s) : X(ss^{-1}) \to X(s^{-1}s) = X(s^{-1}(ss^{-1})s).
$$

$$
G\alpha(ss^{-1},s) = \alpha((ss^{-1})s)\rho_{(ss^{-1})ss^{-1}}^{ss^{-1}} = \alpha(s),
$$

therefore $G'G\alpha = \alpha$. Secondly we show that for every $X \in$ $\mathbf{Ab}^{P(S)}$, $GG'X = X$. For this we have to show that $GG'X$ sends every morphism $(e, s) : e \to s^{-1}e s$ of $P(S)$ to $X(e, s)$. From (7) we have

$$
GG'X(e,s) = G'X(es)\rho_{ess^{-1}}^e
$$
 (8)

and from the definition of G' we have

$$
G'X(es) = X((es)(es)^{-1}, es) = X(ess^{-1}, es).
$$
 (9)

But $\rho_{ess^{-1}}^e = X(e, ss^{-1})$ and then from (8) and (9) we have

$$
GG'X(e, s) = X(ess-1, es)X(e, ss-1)
$$

= X(e, (ss⁻¹)(es))
= X(e, es) = X(e, s)

as desired.

Proposition II.1 *For an inverse semigroup* S*, categories* P(S) *and* D(S) *of [6] coincide.*

Proof. First notice that $P(S)$ coincides with $C(S)$ of [6]. Let $(e, x) : x \to x^{-1}e x$ be a morphism in $\mathcal{P}(S)$. We can write $x^{-1}e x$ as $(ex)^{-1}(ex)$ and observe that $e \geq (ex)(ex)^{-1}$, therefore (e, x) coincides with $(e, (ex), (ex)^{-1}) : e \rightarrow f =$ $(ex)^{-1}(ex)$ of $C(S)$. Conversely, let $(e, x, x^{-1}) : e \to f$ be a morphism in $C(S)$. Since $e \geq xx^{-1}$, we have $e(xx^{-1}) =$ xx^{-1} and then $x^{-1}e(xx^{-1})x = x^{-1}xx^{-1}x$ which is equivalent to $x^{-1}e x = x^{-1}x$. But $f = x^{-1}x$, then $x^{-1}e x = f$ and as a consequence (e, x, x^{-1}) matches with $(e, x) : e \rightarrow x^{-1}e x$ of $P(S)$. Lastly observe that our \sim is the same as \sim of p. 379 of [6], hence $P(S) = D(S)$.

Corollary II.1 *Cohomology groups of an inverse semigroup defined by Lausch are isomorphic to those defined by Renault.*

Proof. The cohomology of an inverse semigroup S after Renault is defined in S-presheaves which from Theorem II.1 and Proposition II.1 is isomorphic to $\mathbf{Ab}^{D(S)}$. But $\mathbf{Ab}^{D(S)}$ is an abelian category with enough injectives, therefore from the uniqueness theorem for cohomology functors [2] (see also [3]), there is only one cohomology functor on $\mathbf{Ab}^{D(S)}$. Since the cohomology after Lausch is defined in $\mathbf{Ab}^{D(S)}$, we have that both cohomologies coincide.

REFERENCES

- [1] Hilton, P.J., Stammbach, U., *A Course in Homological Algebra*, Second Edition, Springer-Verlag, 1997
- [2] Lang, S., *Rapport sur la Cohomologie des Groupes*, W. A. Benjamin, New York, Amsterdam, 1966
- [3] Lausch, H., *Cohomology of inverse semigroups*, J. Algebra 35 (1975), 273-303
- [4] Lawson, M. V., *Inverse Semigroups. The Theory of Partial Symmetries*, World Scientific, 1998
- [5] Lawson, M. V., Steinber, B., *Ordered groupoids and Etendues*, Cahiers de Topologie et Geometrie Differentielle Categoriques 45.2 (2004): 82- 108.
- [6] Loganathan, M., *Cohomology of Inverse Semigroups*, J. Algebra 70 (1981), 375-393
- [7] Renault, J., *A groupoid approach to* C∗*-algebras*, LNM 793, Springer-Verlag, 1980
- [8] Schubert. H., *Categories*, Springer Verlag, 1972