
21

Towards a Universal RAM Machine Resistant to

Isolated Bursts of Faults

Ilir Çapuni Ervin Dervishaj

Computer Engineering Department

Epoka University

{icapuni, edervishaj10}@epoka.edu.al

Abstract—The most natural question of reliable computa-
tion, in every computation model and noise model, is whether
given a certain level of noise, a machine of that model exists
that can perform arbitrarily complex computations under
noise of that level. This question has positive answers for cir-
cuits, cellular automata, and recently for Turing machines [3],
[4].

Here, we raise the question of the existence of a random
access machine that—with some moderate slowdown — can
simulate any other random access machine even if the sim-
ulator is subjected to constant size bursts of faults separated
by a certain minimum number of steps from each other.

We will analyze and spell out the problems and di�culties
that need to be addressed in such construction.

Index Terms—Random access machines, faults, reliability.

I. Introduction

The problem of constructing fault-proof machines from

components that can fail was �rst considered by von Neu-

mann in [12], who addressed the problem in the Boolean

circuits model. New advances along this path were made

in [9], [10]. The question has been considered in uniform

models of computation as well. A simple rule for two-

dimensional cellular automata that keeps one bit forever even

though each cell can fail with some small probability was

given in [11]. A 3-dimensional reliably computing cellular

automaton using Toom’s rule was constructed in [7]. Alas,

all simple one-dimensional cellular automata appear to be

“ergodic” (forgetting everything about their initial con�gu-

ration in time independent of the size). The �rst, complex,

nonergodic cellular automaton was constructed in [5], and

improved upon in [6]. Surprisingly, even non-ergodic Turing

machines exists [3], [4].

Computing reliably with RAM machines is considered in a

myriad of papers with various assumptions on the noise. A

similar problem but where only the memory is subject to a

limited amount of noise is considered in [8]. The cited work

initiated an entire line of research approaching the problem

from data structures’ and algorithmic perspective. A recent

result in this line is [2].

Our approach di�ers from the papers above for that faults

can perturb the central unit and for that that the noise comes

in bursts that are spaced out of each other. The reason for

The �rst author’s dedication to this work was made possible by a research

grant RD 01-2013 of Zanus ltd, Ulqin Montenegro

these assumptions on noise is that — similarly as in [4],

[6]— we hope to use this construction as a building block

for a hierarchically organized RAM that can withstand faults

that occur independently of each other with some small

probability.

A. The random access machine model

We view the random-access machine as an extension of the

Turing machine in that that the tape consists of cells able to

store an arbitrary integer, and that the head can jump at any

cell of the memory M speci�ed by its address.

Register PC is a special register called the program
counter. Let Γ = {PC,R0, . . . ,Rk } be the set of registers of

the control unit. Register R0 will be called the accumulator.
The program is a sequence of instructions from the Table I.

De�nition I.1. A Random Access Machine is a pair (k,Π)
where k > 0 is the number of registers, and Π is the program

(i.e., a �nite sequence of instructions). y

The operation of a RAM machine is described below.

1) Initially, the input x is loaded in the �rst m cells of the

memory M , where m is the length of x . The registers

R1, . . . ,Rk , PC and the other memory cells M[m], M[m+

1], . . . are initialized to the value 0.

2) At each step of the execution, the random access

machine executes the program line pointed to by the

program counter PC. After executing the instruction,

the value of PC is incremented by 1, unless the in-

struction is jump, jzero, or jpos If the instruction

is jzero or jpos and the condition is not satis�ed,

PC is also incremented by 1.

Symbols are encoded by integers, and we assume that the

blank symbol is encoded by 0.

Example I.2. If Σ = {#,a,b}, then we might assign # = 0,a =
1,b = 2. Then the input abba would be represented in the

�rst four cells of the memory as 1,2,2,1. y

A con�guration of a Random Access Machine (k,Π) is a

k + 2-tuple

(PC,R0, . . . ,Rk ,M ),

where M ∈ ZZ is the memory con�guration.

ISCIM 2013, pp. 21-23 © 2013 Authors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Epoka University

https://core.ac.uk/display/152487691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


22

TABLE I

Instructions of a RAM machine

Instruction Semantics Description

load n R0 ← n Put the value n into R0

load Rk R0 ← Rk Put the value of Rk into R0

store Rk Rk ← R0 Put the value of R0 into Rk
read Rk R0 ← M[Rk ] Copy the value at memory location Rk into R0

write Rk M[Rk ]← R0 Write the value of R0 at a memory location Rk
add n R0 ← R0 + n Add the value n to R0

add Rk R0 ← R0 + Rk Add the value Rk to R0

mult Rk R0 ← R0 ∗ Rk Multiply the value in R0 with Rk
jump n PC← n Set the program counter to n
jzero n if R0 = 0 then PC← n If R0 is zero, then set the PC to n
jpos n if R0 > 0 then PC← n If R0 is positive, then set the PC to n

The work of the machine can be described as a sequence

of con�gurations C0,C1,C2, . . . , where Ct is the con�guration

at time t .
The program Π tells us how to compute the next con�g-

uration from the present one.

De�nition I.3 (Fault). We say that a fault occurs at time

t if con�guration Ct+1 is obtained from Ct by violating the

transition function speci�ed by the program. y

B. What faults can do

By de�nition, if a fault occurred at time t , then, at time t+1

a random cell and the content of the registers in the control

unit are arbitrary. This means that unlike the e�ects of bursts

in a Turing machine — where bursts produce islands of cells

of diameter β close to the head, in RAM model, these islands

are scattered in a memory in a random way. This is a major

di�culty in construction of a fault-tolerant RAM since this

means that the information stored in the memory decays.

For example, consider a computation whose space is

s . Suppose further that for time proportional to s2
, the

computation was carried out in only the �rst half of the

computation space. Then, within this time, the second half

of the computation space may be completely ruined by faults

that occurred during this time period.

II. The Desired Result

In this section we will spell out a desired result. Before we

need the following de�nition.

De�nition II.1 (Codes). Let Σ1,Σ2 be two subsets of Z. A

block code is given by a positive integer Q— called the block
size — and a pair of functions

ψ∗ : Σ2 → Σ
Q
1
, ψ ∗ : Σ

Q
1
→ Σ2

with the property ψ ∗ (ψ∗ (x )) = x . y

Now we can spell out the desired statement.

Let RAM machine M2 start from an input x with a

starting con�guration ξ0 and suppose that it halts

within T steps, writing the result in the memory

location with address 0. Let S be the amount of

space that M2 used during its computation.

Then, the following can be constructed.

1) RAM machine M1 with k registers that does

not have a halting state.

2) Constant Q and a block code (ψ∗,ψ
∗) of block

size Q .

3) Constants T ′ depending on T and S , and

constant k ′ = O (k ).

Suppose M1 starts from the initial con�guration

ξ ′
0
= ξ ′

0
(x ), and it operates under noise that consists

of isolated bursts of size at most β .

Then, at any time t , t > T ′, the result of M2 can be

decoded from the memory block k ′, . . . ,k ′ +Q − 1.

III. Solutions and difficulties

A. Solving the problem by simulating the fault-tolerant Turing
machine

It is natural to ask if we can achieve the needed fault

tolerance by just simulating the fault-tolerant Turing ma-

chine from [3] or [4]. The answer is alas negative. The fault-

tolerant Turing machines constructed in [3] and [4] have

an underlying assumption that the information on the tape

does not decay. However, here faults can ruin portions of

the memory far from the location of the head of the Turing

machine.

B. Redundancy and memory updates

Let us consider a di�erent solution. We will encode the

control unit of M2 using some error-correcting code into

a �xed constant size portion of the memory of M1. Using

the same code we will encode the memory of M2 onto the

memory of M1.

Then, similar to the simulations in [3], [4], we will simulate

one step of M2 by many steps of M1.

Since information “decays” in the memory, we need to �nd

a way to constantly update and check all the parts of the

computation space in the memory. Since RAM is a sequential

machine, we need to space out the bursts enough such that

the machine can “catch up” with the decay of the information

in the memory. However, the minimal distance between two

consecutive bursts will now depend on the amount of space

that M2 needs during the computation.



23

C. A hierarchical organization with digests
In the previous section we have seen that in order to

preserve the information from decaying in the memory, we

need to constantly refresh it by decoding and encoding with

an error-correcting code. Doing this for the entire space s of

computation may be time consuming.

Using the approach of [1] we may restrict doing this for a

part of the memory of size O (log s ) which will be considered

more reliable.

Giving a fully �edged construction based on this idea and

proving the desired result spelled out in Section II will be a

subject of our forthcoming research.

References

[1] Blum M., Evans W., Gemmel P., Kannan S., and Naor M.: Checking

the Correctness of Memories. In: Algorithmica, 1995, pp. 90-99.

[2] Christiano P, Demaine D. E., and Kishore Sh.: Lossless Fault-Tolerant

Data Structures with Additive Overhead. In Proceedings of the 12th
international conference on Algorithms and data structures (WADS’11),

Frank Dehne, John Iacono, and Jörg-Rüdiger Sack (Eds.). Springer-

Verlag, Berlin, Heidelberg, 243-254.

[3] Çapuni I., Gács, P. : A Turing machine resisting isolated bursts of

faults. In: Chicago Journal of Theoretical Computer Science, vol. 2013.

[4] Ilir Capuni. 2013. A Fault-Tolerant Turing Machine. Ph.D. Disser-

tation. Boston University, Boston, MA, USA. Advisor(s) Peter Gacs.

AAI3536949.

[5] Gács, P.: Reliable computation with cellular automata. Journal of
Computer System Science, 32/1, (1986) 15-78.

[6] Gács, P.: Reliable cellular automata with self-organization. Journal of
Statistical Physics 103/1-2 (2001), 45-267.

[7] Gács, P., Reif, J.A: Simple three-dimensional real-time reliable cellular

array. J. Comput. Syst. Sci. 36/2 (1988) 125-147.

[8] Finocchi, I., Grandoni, F., Italiano, F., G.: Designing Reliable Algo-

rithms in Unreliable Memories. Computer Science Review 1/2 (2007)

77-87.

[9] Pippenger,N.: On networks of noisy gates. In: Proc. of the 26-th IEEE
FOCS Symposium (1985) 30-38.

[10] Spielman, D.: Highly fault-tolerant parallel computation. In: Proc. of
the 37th IEEE FOCS Symposium (1996) 154-163.

[11] Toom, A.: Stable and attractive trajectories in multicomponent sys-

tems. In Multicomponent Systems (R.L. Dobrushin, ed.), Advances in

Probability 6, Dekker, New York, (1980) 549-575.

[12] von Neumann, J.: Probabilistic logics and the synthesis of reliable

organisms from unreliable components. In: Automata Studies (C.

Shannon and McCarthy eds.), Princeton University Press, Princeton,

NJ. (1956)


	Introduction
	The random access machine model
	What faults can do

	The Desired Result
	Solutions and difficulties
	Solving the problem by simulating the fault-tolerant Turing machine
	Redundancy and memory updates
	A hierarchical organization with digests

	References

