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Abstract—TIris based identification systems are considered
among the most promising recognition systems due to the inner
characteristics of the iris, such as uniqueness, stability and time
invariance. This paper proposes a new texture based iris recogni-
tion system based on Angular Radial Partitioning (ARP) and Sum
& Difference Histogram (SDH). After the iris segmentation step,
ARP is used to divide the iris’s texture into sectors, SDH allows
for the production of probability vectors, which are then used
to extract statistical features. Finally, classification is performed
with the K-Nearest Neighbour algorithm. Experimental results on
the Ubiris and Upol databases testify the superior performance of
the proposed approach, which can handle the presence of eyelids
and eyelashes, as well as partially occluded irises and out of
focus images. In all experiments the accuracy of the our system
is around 97% also when the training set is made up of only
two pictures per class, and the corresponding low percentage of
FAR suggests that the proposed approach is a good prototype for
biometric recognition systems run in identification mode.

Keywords—Iris recognition, Angular Radial Partitioning (ARP),
texture analysis, Sum & Difference Histogram (SDH).

I. INTRODUCTION

Recent call for better security together with the rapid
progress in electronic and Internet use, have brought biometrics
based personal identification systems into focus. Biometrics is
the science to identify a person by his/her inner characteristics,
which include (but are not limited to) a person’s fingerprint,
palm print, face, iris, voice, gait or signature. Biometrics based
systems are consider more reliable than the traditional ones,
based on identification cards, personal numbers and passwords,
because inner attributes cannot be lost, forgotten or shared.

The human iris is the annular and colourful part of the
eye between the black pupil and the white sclera. The iris
pattern contains many distinctive features such as pigment
spots, freckles, stripes, furrows, coronas etc., which are located
randomly at gestation time. Together with this unique aspect,
the iris has the advantages (1) to be an internal and well
protected organ of the eye, (2) to be a planar object, insensitive
to illumination effects, and (3) to be time invariant. Howeyver,
current iris-based recognition systems are severely limited by
low robustness, accuracy and speed of the algorithms when
dealing with poor quality images, which have been acquired
in presence of motion, partial cooperation and distance from
the camera.
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In this paper we propose a new texture-based iris recog-
nition system, which as the advantage to be robust to a large
variety of disturbance elements, such as partial occlusion of the
iris, presence of eyelashes on the iris’s texture, poor focus of
the image, and presence of reflection of the camera. Moreover,
we detailed our experiments so as to make it reproducible and
to allow for comparison with other iris recognition systems.

The first iris-based recognition system was proposed by
Daugman, [1] [2] [3], who segmented the iris region with
an integro-differential operator and encoded the iris feature
by 2D Wavelets demodulation, which resulted in 2048 bits
of phase information. The percentage of mismatched bits is
calculated with an XOR operator and the Hamming distance
gives the difference between any pair of iris codes. Wildes’
system [4] generated iris code using a Laplacian pyramid
with four different resolution levels; resulting features were
down-sampled with Fisher’s linear discriminant [5] and com-
pared via normalized correlation. Boles and Bonashash [6]
extracted the iris features from the zero-crossing representation
of a concentric circle of an iris image using one-dimensional
wavelet transform at various resolution levels; classification
is performed using two dissimilarity functions. Ma et al. [7]
decomposed the iris texture into a set of one-dimensional
(1D) intensity signals; the obtained iris features are down-
sampled with Fisher linear discriminant [5] and classification
is based on cosine similarity. Bowyer et al. [8] presented a
comprehensive survey on iris biometrics, which summarizes
the state of art up to 2008. In 2009, Chen and Chu [9]
extracted the iris feature using a Sobel operator and 1-D
wavelet transform and made classification with a mixture
of probabilistic neural network (PNN) and particle swarm
optimization (PSO). In 2011, Sibai et al. [10] performed iris
recognition with neural networks, while Pillai et al. [11] used
random projection and sparse representation. At current time,
iris based recognition systems are still considered as one of the
most promising biometric identification technique, and there is
big research effort to increase robustness, accuracy and speed
of these algorithms in case of problematic pictures. Among the
others, Si et al. [12] proposed (1) a new eyelashes detection
algorithm, (2) the use of a 2-D filter for feature extraction
and (3) a corner based iris identification method to speed up
the 1:N search in big irises databases; while Rahulkar and
Holambe [13] presented a shift, scale and rotation invariant



technique for iris feature extraction.

In the proposed iris recognition system (1) the iris region
is segmented using a variation of the Daugman’s integro-
differential operator, (2) each isolated iris pattern is then
partitioned into sectors with the Angular Radial Partitioning
(ARP) method [14], (3) the Sum & Difference Histogram
(SDH) technique [15] is used to represent every sector with a
couple of fix sized vectors, (4) which are then converted into a
set of statistical features. Finally, (5) classification is performed
via the K-Nearest Neighbour method using the Manhattan
distance.

We worked with the Ubiris and Upol databases, which are
common used databases having a wide variety of disturbance
elements, such as occluded irises, poor focus of the images,
illumination effects, and blurred edges. We compared our
results with the ones of similar experiments run by Celebi
[16] and Erbilek and Toygar [17].

To summarize, the main contribution of this work are
(1) the introduction of a new, promising, texture-based iris
recognition system and (2) the detailed description of the
experiments, so as to make them reproducible and allow for
comparison with other methods.

Section II describes the segmentation step, which includes
the isolation of the iris from the rest of the eye and the sub-
division of the iris texture into segments. Section III illustrates
the feature extraction process, with the Sum & Difference
Histograms technique followed by the extraction of statistical
features from texture. Section IV details the experiments run on
the Ubiris and Upol databases and compares our results against
the ones present in the literature. Conclusions are drawn in
Section V.

II. SEGMENTATION
A. Iris Segmentation

The first step in all iris recognition algorithms is to find
both the inside (papillary) and the outside (limbus) boundaries
of the iris. Different methods have been applied such as the
Daugman’s integro-differential operator, [1], [2], [3], and the
Canny’s edge detection with circular Hough Transform [18].

Equation 1 gives the formula of the integro-differential
operator of Daugman:
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where I(z,y) is the input image containing the eye,
(20, yo) is the centre of a circular arc ds of radius r, and G, ()
is a Gaussian smoothing function. The operator defined in (1)
is a circular edge detector that must be applied two times to
detect the papillary and the limbus boundaries, since they are,
generally, not concentric; that is, it is necessary to search for
the three parameters (g, yo,7) of the two circles separately.
The final result of these operations is the isolation of the iris
from the rest of the eye.

Most of the present iris-recognition algorithms are sensi-
tive to the outputs of the iris-segmentation step, where the

disturbances caused by an inaccurate detection of inner and
outer boundaries are generally removed by ignoring the borders
areas. Among the other, this problem was faced by (1) Jang et
al. in [19] who proposed a new solution to detect and localize
eyelids; (2) Tan et al. in [20] who focused on efficient and
robust segmentation of iris images; but, in the recent work of
Si et al., [12], it is pointed out that still there is not a feasible
solution for the presence of eyelashes.

We applied two different variations of the Daugman’s
integro-differential operator, one for each of the two databases
used.

On the Ubiris [21] database, we decreased the effect of the
presence of eyelids and eyelashes by restricting the original
image domain and considering only some angles, (61, 62), as
illustrated in figure 1:

iris boundary

pupil boundary

arcs used by
integro-

differential
operator

Fig. 1. Arc gradient model used in equation (1).

Notice that the two angles, (61, 65), can be different from
each other and their values can be changed, at segmentation
step, to detect each pupil and iris boundaries; we made
automatic segmentation by using a single value for the Ubiris
and another one for the Upol database.

The iris segmentation step in the Ubiris database is par-
ticularly challenging due to the presence of partially occluded
irises, as shown in figure 2:

Fig. 2.

Partially occluded iris in the Ubiris database.

That is, the Ubiris database stores eyes where the eyelid
covers most of the iris; obviously, in such a case, the iris
segmentation step fails and the identification process ends
in misclassification. In our experiments we did not choose
the images to work with, and, therefore, we used also these
partially (totally) occluded irises, which, obviously, contributed
to the error rate. That is, when all images of the Ubiris database
are used, the minimum error rate must be set to the number
of close eyes over the total number of images.

The particularity of the Upol [22] database is that the eye
is photographed through a black hole, which results in a black
circle outside the sclera. To segment the Upol database we used
the variation of equation (1) proposed by Hebaishy, [23]: while
searching for the limbus by increasing the radius r, the detected
outer circle is the first one having an integro-differential value



biggest that the threshold. Figure 3 shows some irises of the
Upol database: the 1st row stores the original pictures, the 2nd
row zooms on the corresponding problematic areas. Moreover,
while all irises have the black frame outside the sclera, some
cases are more challenging because of (1) the presence of
a white circle inside the pupil (due to the reflection of the
camera) and/or (2) blurred boundaries.

Fig. 3. 1st row: challenging irises in the Upol database, 2nd row: zoom on
the corresponding problematic areas.

To summarize, we point out that the segmentation of Upol
images was more challenging than the one of Ubiris database
mainly due to the circular black mask around the captured iris
image. Figure 4 shows segmented iris images from the Ubiris
and the Upol databases:
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Fig. 4. Segmented iris sample from the Ubiris (2 pictures on the left) and
the Upol (2 eyes on the right) databases.

B. Angular Radial Partitioning

The Angular Radial Partitioning (ARP) method [14] is
a common used technique for edge detection; the main ob-
jective of ARP is to re-write the original image into a new
structure, which must be is invariant to scale and rotation,
while being capable of supporting measurement of similarity
between images. In [16] Celebi used ARP for texture based
iris recognition systems. We followed his example and we used
ARP to partition the segmented iris region into a number of
sectors. More in details:

1. The iris texture is converted from Cartesian to polar coor-
dinate axes; that is Iris(x, y) becomes I(p, ), and we adopted
the convention to indicate with I(p, #) also the greylevel of the
pixel in position (p, 6);

2. The radius of the iris, R, is divided into M radial
partitions and the circle angle, 8 = 360°, is partitioned into N
angular sub-angles, which resulted in a M x N sectors.

Figure 5 illustrates this concept in case of # = 180° angle.

After ARP segmentation, the iris image is divided into a
set of sectors, {sector(k,i)} for all k = 0,..,M — 1 and
i=0,...,N — 1. In equation 2:
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Fig. 5. Angular Radial Partitioning(ARP) with M radial partitions and N
angular partitions.

Very often the papillary and limbus circles are not concen-
tric, that is the pupil centre is different from the iris one. ARP
uses the pupil circle centre coordinates to make segmentation;
if iris coordinates were used, partitions could slide bringing to
worse classification results.

The proposed system does not use first and last radial
partitions, because they could contain the data from the pupil’s
texture or the one form the sclera; this expedient reduces the
total complexity of the system and it has also the advantage to
limit the misclassification effect, due to the presence of eye-
lashes and eyelids around the upper/lower limbus’s areas. As
a result, the total number of acquired segment is (M —2) X N.

Figure 6 shows the results of ARP segmentation on Ubiris
and Upol databases; the picture has been produced by working
with the iris image I(p, #) and increasing the values of p and
0 so as to cover all iris; the outer and inner sectors will not
be considered.

Fig. 6. Results of the Angular Radial Partitioning on Ubiris (a) and Upol
(b) image samples.

III. FEATURE EXTRACTION
A. Sum & Difference Histograms (SDH)

The method used for texture analysis is the Sum and
Difference Histogram (SDH) algorithm introduced by Unser
in [15] and used for (marble) texture analysis by Alajardin et
al. [24]. SDH is an alternative to the Grey-level Co-occurrence
Matrices (GLCM) method [25]; it has the big advantage
of decreasing both memory storage and computational time
while keeping similar performance. Representing a texture of
a greyscale image with SDH technique requires the calculation
of the sum and difference vectors, with the corresponding
normalized sum and difference histograms. Let us consider
a K x L b-bit grey-level picture having Ng = 2" quantized
grey-levels, e.g. in case of b = 8 Ng = 256, and the range
(R) of intensity greylevel values Ry cyicver = [0, ..., Ng—1];
finally, let us define as yj; the grey-level of the pixel in
position (k,l), for k = 1,...,K and [ = 1,...,L. With
SDH, out of its 8 neighbours, for every pixel, we are interested
only in the four pixels situated in non-opposite directions, that



is D = {(-1,-1),(-1,0),(-1,1),(0,1)}. Figure 7 shows
the 8-Neighborhood of a texture pixel and names the four
neighbour pixels used by the Sum and Difference Histogram
(SDH): {Vi,V5,V3,V,}; adopting the same convention as
before, the position of the pixel gives also its greylevel values;
that is, V; is the name of the top-left pixel of yy ;, the centre
pixel (%), and it is also its greylevel value.
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Fig. 7.  8-Neighborhood of a texture pixel and the four neighbourhood
directions used by SDH algorithm.

Still considering the K x L b-bit grey-level picture, we
calculate the sum and the difference vectors using equation
(3) and (4) by moving the centre pixel, ¥, starting from
the bottom-left corner of the image and ignoring the top row
and the most right column of the picture, that is, for all | =
1,...,.L—-land k=1,..., K —1:

sumpg = yra + (Vi + Vo + V3 +Vy) /4 3)
diffeg =y — WV +Va+Vs+Vy)/4 )

In words, the sum (difference) vector stores the sum (mi-
nus) of the greylevel of pixel (k,[) with the average greylevels
of the fours neighbours of y ;. The resulting size of both
vectors, sumy,; and dif fy ;. is therefore (K —1) x (L—1), and
the range of their intensity grey-levels is, respectively, Rsym =
[O,...,Q* (NG — 1)] and Rdiff = [—(NG — 1),...,NG — 1}.
In case of 8-bit picture, Ryreyicver = [0, .. .,255], the range
of the sum vector is Rgym = [0,...,510] and the range
of the difference vector is Rg;fy = [—255,...,255]. In this
work, we applied the SDH technique sector wise; that is, for
every sector, we calculated the couple (sumy, ;, dif fi;) vector,
starting from the smallest values of p and 6 and increasing
by ’1’, either pixel or degree, at every step. Notice that for
little circle, p = 1, the increase of # = 1° can result in the
same pixel in the Cartesian coordinate; when this happens we
increased again the angle . That is, because the shape of a
sector is not square, we searched for the next centre pixel yy ;
and for its neighbours {V7, Vo, V5, V4 } using polar coordinates
and increasing either p or 6; the resulting pixel’s position is
then mapped into Cartesian coordinate and duplicated pixels
are ignored. The size of both vectors, sumy; and dif fi 1,
changes depending to the sector’s size, but the range of their
intensity grey-levels is fixed to Rgym = [0,...,2 % (Ng — 1)]
and Rgirr = [-(Ng—1),..., Ng —1]. The histograms of the
sum and the difference vectors are calculated using equations
(5) and (6), sector wise:

hsum (i) = Card{(k,1) € sector, sumy; =i}
foralli=0,...,2%(Ng—1) (5)

haisy(j) = Card{(k,1) € sector,dif fr, = j}
forallj=—-Ng—1,...,Ng—1 (6)

where “Card” is the total number of pixel having greylevel
value “4” in the considered sector. Knowing SectPixel =
> i hsum (@) = 32 haipg(j). the total number of pixels in the
actual sector, the normalized sum and difference histogram

vectors are the corresponding probability vectors:
Py (i) = hgum(i)/Sect Pizel 7

Pyirs(j) = haigs(j)/SectPizel )

Notice that the size of all histograms and probability
vectors is fixed to 2 * (Ng — 1); that is, their dimension is
independent to the sectors’s size. When the input picture is a
colourful one SDH calculates three sum and three difference
vectors, one for each colour channels, and converts them
into three couples of probability vectors, (Psym (7), Pairr(7)).
Interesting to point out that, the memory requirement of SDH
is always better that the one of the GLCM method; that is, in
case of RGB image, GLCM makes texture analysis considering
the 8-Neighbours of the centre pixel, ¥, by building and
processing 3 matrices of size Ng X N¢g. For example, in case
of a 8-bit RGB image, the memory requirement of SDH is
3x2x2x (Ng—1) = 3060 elements (3 for the palettes,
R,G,B; 2 for the sum and difference vectors; 2 X (Ng — 1) is
the fix size of every probability vector), while GLCM requires
3 X Ng X Ng = 196608 elements.

B. Statistical Features from Texture

Seven statistical features are calculated out of the two SDH
vectors of every ARP sector, namely: mean, variance, energy,
correlation, entropy, contrast and homogeneity features. Table
I gives their formulas.

TABLE 1. FORMULAS TO CALCULATE THE STATISTICAL PARAMETERS
Parameter Formulas
Mean %Ei'Ps(i):M
i
Variance 30— 2p)% - Py(i) + 3557 - Pa(j))
[ J
Energy ;PS(Z.)Z . Zpd(j)Q
Correlation %(Z(Z — 2[5)2133(1') — 2]2 . Pd(]))
[ J
Entropy 7ZP§(2) . logPs(i) — Zpd(]) ~10gPd(j)
3
Contrast Z]Q <Py (J) ]
Homogeneity i ﬁ - Py (] )
J

Interesting to notice that ARP sectors with different radial
distance from the centre have a variable number of pixels;
out of every sector the SDH algorithm calculates two fix size
vectors, (Psym, Pgifp), which are then converted into seven
features. In other words, sectors of different sizes contribute
with fix size feature vectors.

The length of the extracted feature vectors depends to the
type of the processed image: ranging from (M —2) x N x 7
in case of greyscale picture to (M —2) x N x 7 x 3 for RGB
images. In the specific case of M = 6 and N = 18, with



a 24-bits colour image, the resulting feature vector has size
(6 —2) x 18 x 7 x 3 =1512. As ARP partition counts were
decreased, feature vector length became shorter.

IV. EXPERIMENTS AND RESULTS

We evaluated the performance of the proposed texture-
based iris recognition system on two different databases; we
chose the Ubiris and the Upol databases since they are both
challenging databases and have different disturbance elements;
that is, while in the Ubiris database the main issues are illumi-
nation and partial occlusion, in the Upol database problematic
pictures have a white circle inside the pupil, due to reflection
of the camera, and/or blurred limbus contour.

The Ubiris [21] database includes 1877 images captured
from 241 people in two sessions using a Nikon E5700 model
camera; pictures capture in first session have less noise com-
paring with the ones of the second session. Images have
resolution of 150 x 200 pixels and are either 24-bits RGB
or greyscales. Ubiris is known as a challenging iris database
due to poor focus of the images and the presence of reflection
and partial occlusion of the iris; some statistics are shown in
table II.

TABLE II. UBIRIS DATABASE CHARACTERISTICS WITH

CLASSIFICATION PARAMETERS [26].

Percantages | Good Average Bad
Focus 73.83 % 17.53 % 8.63 %
Reflections 58.87 % 36.78 % 4.34 %
Visible Iris 36.73 % 47.83 % 15.44 %

Out of every subject we selected the first five pictures, with
the only exception of one person who has only four iris images.
That is, we did not choose good irises nor discard problematic
images, and we used both greyscale and RGB irises; this
selection process results in 5 x 241 — 1 = 1204 images. We
pre-processed the images with the MATLAB library function
“imfill” to clear the original samples from light reflections on
iris and pupil regions, as shown in Figure 8:
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Fig. 8.
row).

Original Ubiris images (Ist row) versus pre-processed ones (2nd

The Upol [22] iris database stores 128 x 3 = 384 images
captured from right and left eyes of 64 people’s. Images are
24 bits, have resolution 576 x 768 pixels and were taken with
SONY DXC-950P 3CCD camera. The main challenges of the
Upol database are (1) the black frame surrounding the sclera,
due to the particular process used to take the images, (2) the
presence of a white circle inside the pupil, due to the reflection
of the camera, and (3) a blurred limbus, the outer circle of the
iris. We worked with all images.

In all experiments we worked in a close environment,
where the input test sample belongs to one of the training
subject. To maximize the amount of training and testing
data, we made classification using the k-fold cross validation
technique: at the first round, the test set is made up of all
first instances of every class, which are classified using all
remaining samples as training images; the same process is
repeated with the second, third, ..., and m — th instance.

In case of the Upol database, having 64 subjects and 64 x
2 = 128 classes, n = 128 and m = 3, while the Ubiris
database has n = 241 classes and m = 5 samples per class;
it follows that the k-fold cross validation technique has k =
3, when working with the Upol database, and £ = 5, when
working with the Ubiris database.

We run our experiments in the identification mode (one-
to-many matching) and we evaluated the performance of our
system using the Correct Recognition Rate (CRR), which is
the percentage of correct classified irises out the total number
of test sample. We compared classification performances of K-
NN. Following the study of Celebi, [16], we fixed N = 18 and
we run different experiments ranging M in [6, 8,10, 12,20];
classification results are stored in the following tables:

TABLE III. CRR (%) ON UBIRIS GREY IMAGES FOR DIFFERENT
VALUES OF M (PARAMETER OF ARP) AND DISTANCES.
MxN:ARP Parameters 6x18 8x18 10x18 12x18 20x18
K-NN (Euclidean) 93.52 94.85 94.68 94.93 94.60
K-NN (Manhattan) 95.68 95.76 95.93 96.01 95.84
TABLE IV. CRR (%) ON UBIRIS COLOR IMAGES FOR DIFFERENT

VALUES OF M (PARAMETER OF ARP) AND DISTANCES.

MxN:ARP Parameters 6x18 8x18 10x18 12x18 20x18
K-NN (Euclidean) 94.85 95.01 95.26 95.68 94.68
K-NN (Manhattan) 95.84 96.09 96.17 96.51 95,68
TABLE V. CRR (%) ON UPOL GREY IMAGES FOR DIFFERENT VALUES
OF M (PARAMETER OF ARP) AND DISTANCES.
MxN:ARP Parameters 6x18 8x18 10x18 12x18 20x18
K-NN (Euclidean) 94.27 94.53 95.31 95.83 95.83
K-NN (Manhattan) 96.09 95.83 96.35 96.87 96.87
TABLE VI. CRR (%) ON UPOL COLOR IMAGES FOR DIFFERENT

VALUES OF M (PARAMETER OF ARP) AND DISTANCES.

MxN:ARP Parameters 6x18 8x18 10x18 12x18 20x18
K-NN (Euclidean) 95.31 95.05 95.31 96.35 95.57
K-NN (Manhattan) 96.35 97.39 96.87 97.39 96.87

Results of Tables III-VI show that the best performance is
reached with M = 12 and K-NN using the Manhattan distance.

6, 9

Having “n” classes, we created a Confusion Matrix, C'M,
of size n X n, where rows label the actual class and columns
the predicted class. The initial values of C'M (i, j) = 0, for all
i=1,...,nand j =1,...,n, and CM(%,j) is increased by
“1” whenever a sample of class; is assigned to class;; ideally,
CM is a diagonal matrix with all off-diagonal elements equal
to “0” and C(i,i) is equal to the total number of samples
belonging to class;. When classification errors occur, C(3, j)



is equal to the number of samples belonging to class; and
assigned to class;, i # j.

Predicted Class
C, G, G . |G
2 G Cu FN;:  Number  of
s G N\ | Cu Wrong Classified
8 Cs / \ Cas Samples of Class,
§ . ( J
S
FP;:  Number of <
Wrong Classified
Samples Assigned to G \ / Con

Class;
Fig. 9. The Class Confusion Matrix.

The following equations define (9) the False Positive of
class;, F'P;; which is equal to the sum of off-diagonal
elements of column(i); (10) the False Acceptance Rate of
class;, FAR;; (11) the weight of class;, W;; (12) the False
Acceptance Rate, FAR; which is equal to the weighted sum
of FAR;; (13) the False Negative of class;, F'N;; which is
equal to the sum of off-diagonal elements of row(i); (14)
the False Rejection Rate of class;, FRR;; and (15) the False
Rejection Rate; in all equations “Number Sample;” stands
for the number of samples belonging to class;:

FP; = Number of Wrong Classified Sample;
Assigned to Class; )
FP;

FAR; =
i (Total Num. Sample — Num. Sample;)

(10)

Number Sample;

- 11

' Total Number Sample (i
n

FAR = Z FAR; - W, (12)
i=1

FN; = Number of Sample; Wrongly
Assigned to Class; (13)
FN;

FRR; = 14

RE Number Sample; (14)

FRR=)_FRR; W, (15)

i=1

Notice that, in case of the Upol and Ubiris databases, all
weights are equal because all classes have the same number
of samples.

In the following table we report the values of FAR and FRR
in case of K-NN with the Manhattan distance and M x N =
12 x 18 ARP sectors:

Interesting to notice that the low value of FAR is due to
the very good performance of the proposed system but also
to the characteristics of our experiments, having only one test
sample per class and a high number of classes.

Figure 10 stores some of the misclassified irises belonging
to the Ubiris database. In this study, we did not choose the
pictures to work with, and figure 10 shows that misclassifi-
cation occurs for occluded irises, practically impossible to be

TABLE VII. PERFORMANCE MEASUREMENTS (%) OF THE PROPOSED

TEXTURE BASED IRIS IDENTIFICATION SYSTEM.

Database Color Format FAR FRR
0.02 3.99

Ubiris ey
color 0.01 3.49
re 0.03 3.12

Upol grey
color 0.02 2.60

recognized; that is, considering that 15.44% of the irises are
not visible, our average CRR of 96.5% is virtually equivalent
to the best possible performance.

Fig. 10. Misclassified irises in the Ubiris database.

With the aim to investigate on the correlation between
segmentation and classification steps, we report in table VIII
the average segmentation accuracy on both databases:

TABLE VIIL AVERAGE SEGMENTATION ACCURACY ON THE UBIRIS

AND UPOL DATABASES.

Dataset Accuracy (%)
Ubiris 97
Upol 83

Comparing these results with the CRR of table VII, we
may say that, in case of the Ubiris database, the majority of
the error is due to mis-segmentation; that is, we segmented in
a correct way 97% of the eyes, and we classify in a proper way
96% of them; the 1% difference is due to added classification
error. On the contrary, in case of the Upol database, only 83%
of the images are segmented in a correct way, .but still the
average CRR is 96%; that is, the sub-sequent classification
step can recover for little shifts in segmentation boundary, and
this is due, mainly, to the high resolution of the irises. Figure
11 stores some of the mis-segmented irises belonging to the
Upol database, only the last two were mis-classified:

Fig. 11. Mis-segmented irises in the Upol database.

One of the main problems encountered during this work
was to find a benchmark paper storing a clear description of
the experiments run, so as to be able to reproduce them and
compare the resulting performances. We chose the two papers
of Celebi [16] and Erbilek et al. [17] because we were attracted
by their algorithms and they have a partial description of the
experiments. That is, like Celebi and Erbilek, we worked with
the Ubiris and Upol databases in identification mode (one-to-
many matching); unfortunately, in case of the Ubiris database,
[16] does not give any other information, neither the section
of the used images, which remains undefined; while [17] used



images of section 1, they selected 80 subjects to work with (but
we do not know which subjects), and they manually cropped
all irises. Table IX stores a comparison of the results of these
three systems:

TABLE IX. UBIRIS DATABASE: CRR (%) COMPARISON OF DIFFERENT

IRIS BASED RECOGNITION SYSTEMS.

Celebi [16] Erbilek [17] Proposed

Session 1

96.51

Session 1

95.83

Not known

94.44

Session

CRR

In case of [16], not knowing the session of the used images,
it is possible to make only a mild comparison on the CRR.
On the contrary, comparing the performance of the proposed
system with the one of Erbilek et al., we point out that we
reached better results also by selecting the first five images of
all subjects and by using automatic segmentation of the irises.
That is, CRR values together with the random selections of the
images and the automatic segmentation of the irises make our
system superior to the one of [17]. Experiments on the Upol
database are too obscured to be compared.

V. CONCLUSIONS

In the proposed texture based iris recognition system, (1)
we made automatic segmentation of the iris using a variation
of the Daugman’s integro-differential operator followed by the
ARP technique, which is invariant to scale and rotation; (2)
we did not use the first and last radial partition, because they
could contain eyelids and eyelashes as well as data from the
pupil’s and sclera’s texture; (3) we extracted seven dimensional
feature out of every sector by re-writing the sector’s texture
into two probability vectors.

Our experiments indicate that this new system has the
advantage to be robust to a wide variety of disturbance
elements, such as partial occlusion of the iris, poor focus of
the image, illumination effects and blurred contours. Moreover,
the low percentage of FAR obtained in out trails suggests
that the proposed approach is a good prototype for biometric
recognition systems run in identification mode, where security
is a key issue. Another important advantage of this new
approach is the little number of samples per class necessary to
train it; that is, while in the Ubiris database we worked with
241 classes and we used only 4 training samples per class, in
the Upol database 2 training samples per class are enough to
identify a person out of 128 classes, 97% of the time.
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