
29

Software, Image and Audio Watermarking
Algorithmic Techniques

Ioannis Chionis Maria Chroni Angelos Fylakis Stavros D. Nikolopoulos
Department of Computer Science and Engineering, University of Ioannina

GR-45110 Ioannina, Greece
{ichionis, mchroni, afylakis, stavros}@cs.uoi.gr

Abstract—Digital watermarking involves embedding a water-
mark value within a digital object, such as image, audio, video,
text and software, to prove authenticity in case of intellectual
property infringement. Headed to this direction, in this paper
we survey our previous algorithmic techniques for software and
image watermarking and present a new developing idea based
on them for audio watermarking. Our watermarking techniques
take as an input a watermark that is an integer w which can
be efficiently encoded as a self-inverting permutation π∗. We
demonstrate multiple representations of self-inverting permu-
tations, namely reducible permutation graphs, two-dimensional
and one-dimensional matrices. We propose efficient algorithmic
techniques for watermarking software, image and audio that
exploit self-inverting permutation representations in order to
embed the watermark w by making imperceptible modifications
and producing equivalent watermarked objects of high fidelity.

I. INTRODUCTION

The last few years digital communication has become an
indispensable part for everyday life since most people use it
on a regular basis and do many daily activities online. This
frequent use of the world wide web raises issues concerning
security measures during internet usage since the web is
not risk-free. One of those risks is the fact that the web is
an environment where intellectual property is under threat
since a huge amount of public personal data is continuously
transferred, and thus such data may end up on a user who
falsely claims ownership. And that is where watermarks come
into place.

The idea of digital watermarking arose independently in the
year 1990 on an image watermarking study and it was around
1993 when Tirkel et al. [14] introduced the word “water mark”
which became “watermark” later on, while the first software
watermarking technique was presented in 1996 by Davidson
and Myhrvold [10]. Watermarks are symbols which are placed
into physical objects and their purpose is to carry information
about an object’s authenticity. In our case the watermarks have
digital form and they are embedded into digital objects; this
technique is called digital watermarking. Digital watermarking
is a technique for protecting the intellectual property of a
digital object; the idea is simple: a unique identifier, which
is called watermark, is embedded into a digital object which
may be used to verify its authenticity or the identity of its
owners [9]. A digital object may be audio, picture, video, or

software, and the watermark is embedded into the object’s data
in such a way that it is not detectable by human perception.

In this paper we present algorithmic techniques for water-
marking software, image and audio through the exploitation
of graph theoretical objects. Specifically those objects are the
three alternative representations of self-inverting permutations
that we suggest for hiding information in each case.

It is fair to point out that the main idea of this paper
along with a variety of algorithmic techniques for software
and image watermarking have been presented in several fora
by the authors during the last three years [2], [3], [4], [5],
[6], [7]. Based on the same idea we here extent the pool of
the physical objects that can be efficiently watermarked by
proposing an algorithmic technique for audio watermarking.

II. WATERMARK ENCODINGS

In this section we describe the discrete structures that are
used to encode a watermark number, namely permutations
and self-inverting permutations. We then briefly present the
different transformations of the self-inverting permutation into
a reducible permutation graph, a two-dimensional matrix and
one-dimensional matrix which are the key components that
are used to embed the watermark into any digital object i.e.
software, image and audio in our watermarking models.

A. Encoding Numbers as SiP
A watermark integer w can be converted to a self-inverting
permutation in several ways [13]. We have proposed an al-
gorithm which efficiently encodes an integer w into a self-
inverting permutation π and efficiently decodes it through the
use of bitonic permutations [2].
Definition 1. Let π = (π1, π2, . . . , πn) be a permutation over
the set Nn = {1, 2, . . . , n}, where n > 1. The inverse of the
permutation π is the permutation q = (q1, q2, . . . , qn) with
qπi = πqi = i. A self-inverting permutation (or, for short, SiP)
is a permutation that is its own inverse: ππi = i.

By definition, a permutation is a self-inverting permutation
(SiP) if and only if all its cycles are of length 1 or 2. Figure 1
shows the SiP π = (4, 7, 6, 1, 5, 3, 2) of the watermarked
number w = 4 which consists of cycles (1,4), (2,7), (3,6)
and (5). Hereafter, we shall denote a SiP by π∗.

We show below by an example the encoding of the water-
mark integer 4 into the corresponding SiP π∗; our algorithm’s
encoding process is described in [2] (see also [1]).ISCIM 2013, pp. 29-34 c⃝ 2013 Authors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Epoka University

https://core.ac.uk/display/152487675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

30

Watermark number w = 4

π
∗ = (4, 7, 6, 1, 5, 3, 2)

s

7

6

5

4

3

2

1

t

*

*

*

*

*

*

*

1 2 3 4 5 6 7

7

6

5

4

3

2

1

F [π∗] A
∗

*

*

4

14

20

22

33

38

44

*

.

.

.

.

.

.

.

.

.

.

.

.

*
.

.

.

*
.

.

.

*
.

.

.

*
.

.

.

B
∗

Fig. 1. The main data components used by our codec algorithms for software,
image and audio watermarking.

An example of encoding w to π∗. Let w = 4 be the input
watermark integer. We first compute the binary representation
B = 100 of the number 4; then we construct the binary number
B′ = 0001001 by concatenating the binary numbers 000, 100
and 1, and the binary sequence B∗ = (1, 1, 1, 0, 1, 1, 0) by
flipping the binary number B′; we compute the sequences
X = (4, 7) and Y = (1, 2, 3, 5, 6) by locating the indices of
0’s and 1’s in B∗, and then construct the bitonic permutation
π = (4, 7, 6, 5, 3, 2, 1) on n′ = 7 numbers; since n′ is an odd
number, we select 3 cycles (4, 1), (7, 2), (6, 3) of length 2
and one cycle (5, 5) of length 1, and then construct the self-
inverting permutation π∗ = (4, 7, 6, 1, 5, 3, 2).

B. SiP Encodings

Having proposed in [2] the encoding of a watermark integer
w into self-inverting permutation, we next present the dif-
ferent representations of a self-inverting permutation into a
reducible permutation graph, a two-dimensional matrix and
one-dimensional matrix.

(a) Reducible Permutation Graph (RPG)
We have proposed an efficient algorithm for encoding a self-
inverting permutation into a reducible permutation flow-graph
F [π∗] by using an efficient directed acyclic graph (DAG)
representation of the self-inverting permutation π∗. We also
proposed the decoding algorithm which extracts the self-
inverting permutation π∗ from F [π∗] by converting first the
the graph F [π∗] into a directed tree T [π∗] and then applying
DFS search on T [π∗] [3] (see also [5]). The whole encoding
process takes O(n) time and requires O(n) space, where n is

the length of the input permutation π∗. Given a self-inverting
permutation π∗ of length n our encoding algorithm works on
two phases:

(I) it first uses a strategy to transform the permutation
π∗ into a directed acyclic graph D[π∗] using certain
combinatorial properties of the elements of π∗;

(II) then, it constructs a directed graph F [π∗] on n+2 nodes
using the adjacency relation of the nodes of the DAG
D[π∗].

The reducible permutation graph F [π∗] we construct is a
directed graph on n + 2 nodes with outdegree exactly two,
in order to match real program graphs, and with descending
ordering on its nodes V (G) = {s = un+1, un, . . . , u1, u0 =
t}. Also, it has been proved that F [π∗] has always a unique
Hamiltonian path, and this path can be found on O(n) time.

Figure 1 shows the reducible permutation graph F [π∗] that
corresponds to the watermark number w = 4.

(b) Two-dimensional Representation of SiP
We have designed an efficient algorithm to encode a self-
inverting permutation π∗ = (π∗

1 , π
∗
2 , . . . , π

∗
n) of size n into

the two-dimensional space (2D representation) by mapping
specific cells of an n × n matrix A. In fact what we do is
to label the cell at row i and column π∗

i with the number π∗
i ,

for each i = 1, 2, . . . , n. The 2D representation A of π∗ is
a square and symmetric array on its main diagonal. Since a
self-inverting permutation has cycles of length two and only
one cycle of length one (see Subsection II-A), the matrix A
will always have only one element on its main diagonal. The
symmetric property is important and allows the reconstruction
of the self-inverting permutation in the case where an element
has been deleted from the matrix.

We have also described the two-dimensional marked rep-
resentation (2DM representation) of a permutation π∗ based
on the previously defined 2D representation of a permutation
π∗. The 2DM representation of π∗ can be applied in image
watermarking and incorporates the properties of the 2D repre-
sentation.

In our 2DM representation, a self-inverting permutation π∗

is represented by an n×n matrix A∗ as follows: if A(i, j) = π∗

then A∗(i, j) cell is marked by a specific symbol, i.e., the
character “*”, 1 ≤ i, j ≤ n.

Figure 1 illustrates the 2DM representation of the watermark
number w = 4.

(c) One-dimensional Representation of SiP
A self-inverting permutation π∗ = (π∗

1 , π
∗
2 , . . . , π

∗
n) of size

n can be represented in the one-dimensional space (1D
representation) by mapping specific cells of a matrix B of
size n2. In fact what we do is for each element π∗

i of the
self-inverting permutation π∗ we label the cell at position
(1, (i − 1)n + π∗

i) of matrix B by the number π∗
i , where i

is the position of element π∗
i in permutation π∗. Based on the

1D representation of the SiP we construct the one-dimensional
marked representation (1DM representation) of π∗ which we
use in order to watermark audio signals.

In the proposed 1DM representation, the self-inverting per-
mutation is represented by a one-dimensional matrix B∗ of size
n2, where the cells of B∗ are marked by a specific symbol,

31

such as the character “*” in our case. For each element i,
1 ≤ i ≤ n, of SiP π∗ the matrix B∗ is formulated as follows:
B∗[(i− 1)n+ π∗

i]=“*”.
Figure 1 illustrates the 1DM representation of the watermark

number w = 4.
Remark 1. It is easy to see that the 1DM representation of
π∗, can be constructed from its 2DM representation as follows:
if cell(i, j) of A∗ is marked by “*” then B∗[(i−1)n+ j]=“*”,
0 ≤ i, j ≤ n.

III. SOFTWARE WATERMARKING

Having encoded a watermark number w as reducible permu-
tation graph F [π∗] (see Subsection II-B), we next propose
a dynamic watermarking model for embedding the reducible
permutation graph F [π∗] into an application program P . Our
model uses the dynamic call-graph G(P, Ikey) of the program
P , taken by the specific input Ikey, and the reducible permu-
tation graph F [π∗], and produces the watermarked program
P ∗ having the following key property: its dynamic call-
graph G(P ∗, Ikey) and the reducible permutation graph F [π∗]
are isomorphic graphs. Within this idea the program P ∗ is
produced by only altering appropriate real-calls of specific
functions of the input program P .

The main idea of our embedding method is to alter the
execution-flow of appropriate function calls of P such that
the execution of the resulting program P ∗ with the input Ikey
produces a call-graph G(P ∗, Ikey) which after removing the
node fmain is isomorphic to watermark graph F [π∗].

In order to modify the execution flow of an application
program P and retain the functionality of P we modify the
functions that are executed with Ikey by applying specific
model components. The model components include the dy-
namic call-graph G(P ∗, Ikey), the call patterns, the control
statements, and the execution rules, see [6] for more details.
In fact for each function call (fi, fj) that is executed with
Ikey we either apply the components in fi if the function call
(fi, fj) corresponds to an edge in RPG, or we replace the
call (fi, fj) by a sequence of calls with corresponding edges
in the RPG, forming a shortest path, and then we apply the
components.

Figure 2 shows the dynamic call-graph G(P, Ikey) of an
application program P , the reducible permutation graph F [π∗]
which encodes the watermark number w = 4, and the dynamic
call graph G(P ∗, Ikey) of the watermarked program P ∗. We
observe that the edge (f4, f6) in G(P, Ikey) is not an edge in
F (π∗), and thus we correspond it in G(P ∗, Ikey) by a shortest
path from fi to fj in F (π∗), that is, the path (f4, f3, f5, f6).
Model Assessment. We evaluated our software watermarking
model based on several criteria [8], that is model’s performance
and resilience. The performance criteria mainly focus on the
data rate, the embedding overhead, the part protection and the
credibility. Our results (see [7]) show that our watermark-
ing model embeds a watermark without adding significant
overhead compared to the initial program P . The resilience
criteria mainly focus on the stealthiness and the distortion
of the watermark. In order to evaluate these criteria we
implemented our model on several application programs and

F [π∗]fmain

s

7

6

5

4

3

fs

f7

f6

f5

f4

f3

f2

f1

ft

2

1

t

(a) (b) (c)

fmain

fs

f7

f6

f5

f4

f3

f2

f1

ft

Fig. 2. (a) The dynamic call-graph G(P, Ikey) of an application
program P . (b) The reducible permutation graph F [π∗]. (c) The
dynamic call-graph G(P ∗, Ikey) of the watermarked program P ∗.

tested its resilience under several attacks. Our results (see [6])
show that the watermarked program resists on decompilation,
optimization and in most categories of obfuscation attacks as
well as in programming language transformation.

IV. IMAGE WATERMARKING

We have developed watermarking techniques which make
use of the structures described in Section II. In our image
watermarking method we embed a watermark integer w into
an image I by transforming it into a SiP, resulting in the
watermarked image Iw. We represent a SiP in 2D space since
images are 2D structures and thus we can efficiently embed
a watermark by marking the high frequency bands of specific
areas of the image I . The areas on the image are defined by
a grid of n× n size that we place on I and it is of the same
size with the 2DM representation matrix A∗ of the watermark
w.

We use the information stored in the 2DM representation
matrix A∗ (i.e. marks) in order to modify the corresponding
cells in the image I . The main idea of our method is that
we modify DFT’s magnitude of specific high frequencies such
that the least possible information is added ensuring thus
robustness and imperceptiveness. The additive information is
relied on the relationship between two groups of values which
are not groups of pixels but frequencies. What is important
in our method is the fact that we can successfully extract the
watermark w from image Iw even after image Iw has been

32

Input Image: I
Watermark: (4, 7, 6, 1, 5, 3, 2)

DFT

MAGNITUDE PHASE

FFT

DFT

Watermarked Image: I

IFFT

FFT

MARK

 obtained for
 each color of
the RGB model

w

Fig. 3. A flow of the embedding process in image watermarking.

compressed with a lossy method. Figure 3 demonstrates the
main operations performed by our embedding algorithm.

Model Assessment. We experimentally evaluated our embed-
ding and extracting algorithms on digital color images of
various sizes and quality characteristics based on two objective
image quality assessment metrics namely Peak Signal to Noise
Ratio (PSNR) and Structural Similarity Index Metric (SSIM).
We obtained positive results since watermark embedding did
not affect images’ quality and the watermark w was extractable
despite JPEG compression.

More precisely, after testing the algorithm for various im-
ages of different sizes and with different JPEG compression
ratios, watermarks were extractable and the PSNR and SSIM
values that we obtained remained over 40dB and over 0.9
respectively proving the algorithm’s attribute of high fidelity.
The pattern of the results was as follows. As image quality was
dropping due to higher JPEG compression ratio the results
from the quality metrics where dropping due to the more
robust marks required and as images where getting smaller
the quality metrics where dropping again as modifications in
smaller images have greater impact. But as mentioned the
results remained rather positive and the pattern was quite
similar for different images of the same sizes.

What is more, thanks to certain properties of self-inverting
permeations namely bionic properties [2], we are enabled to
overcome geometric attacks, i.e., rotation and cropping, and
recover the embedded watermarks without the loss or the
distortion of information.

V. AUDIO WATERMARKING

Audio watermarking has received great attention since piracy
in music industry leads to multibillion loss of profits and
encryption methods cannot be used since the content must be
played back in the original form. Digital audio watermarking,
similarly with digital image and software watermarking, is a
technique for protecting the intellectual property of the audio.
The basic idea behind all audio watermarking schemes is that
the watermark w is embedded in the host signal S producing
thus the watermarked audio signal Sw.

Several techniques from signal processing, cryptography,
coding theory, detection and estimation theory, information
theory, and computer science have been proposed in the litera-
ture [12]. The idea of the proposed technique for audio water-
marking comes from our image watermarking technique [4].
Since digital audio is an one-dimensional signal and a digital
image is a two-dimensional signal, we apply in the 1D space
a technique similar to image watermarking.

More precisely, in this work we propose an efficient al-
gorithm for encoding a self-inverting permutation π∗ into an
audio signal S by first mapping the elements of π∗ into a
1DM representation matrix B∗ of size n2 to mark specific
time segments of audio signal S in the frequency domain
resulting the watermarked audio signal Sw. We also propose an
efficient algorithm for extracting the embedded self-inverting
permutation π∗ from the watermarked audio signal Sw by
locating the positions of the marks in Sw.

A. Embed Watermark into Audio
We next describe the embedding algorithm of our proposed
technique which encodes a self-inverting permutation (SiP) π∗

into a digital audio signal S. Recall that the permutation π∗

is obtained over the set Nn∗ , where n∗ = 2n + 1 and n is
the length of the binary representation of an integer w which
actually is the audio’s watermark (authors’ technique in [2]);
see, Subsection II-A.

The watermark w, or equivalently the corresponding self-
inverting permutation π∗, is invisible and it is inserted in the
frequency domain of specific segments of the audio signal
S. More precisely, we mark the high frequencies of DFT’s
magnitude for each audio segment using two rectangle areas,
denoted hereafter as “Red” and “Blue”. The rectangle areas
are specified by the height and width as well as the distance
from the mean of the DFT’s magnitude matrix. In our imple-
mentation we use fixed widths and distance from the center
of the DFT’s magnitude matrix. The height is specified by the
maximum value in the defined area.
The algorithm takes as input a SiP π∗ and an audio signal
S, in which the user embeds the watermark, and returns the
watermarked audio signal Sw. We consider that our algorithm
consists of four phases, where in the first phase we construct
the 1DM representation of the watermark number w, in the
second phase we transform the input signal and acquire the fre-
quency representation of it while in the third phase we modify
signals’ frequencies according to the 1DM representation of
the signal and finally the watermarked audio signal is returned
(see Figure 4). We briefly describe below the four phases.

33

DFT
for each frame

B*

Initial signal S

Watermarked signal S w

Fig. 4. The encoding process of audio signal watermarking.

Phase I. Compute the 1DM representation of the permutation
π∗, i.e., construct a matrix B∗ of size n2.
Phase II. Segment the audio signal S in n2 continuing and
non overlapping frames fi, 1 ≤ i ≤ n2, of size

⌊
N−1
n2

⌋
,

where N is the length of the audio signal. Then, for each
frame fi we apply the Discrete Fourier Transform (DFT) using
the Fast Fourier Transform (FFT) algorithm and compute the
magnitude matrices for each frame. In each magnitude matrix
we define two areas of values, the “Red” and “Blue” which
are symmetric to the center of the matrix.
Phase III. Assign each DFT magnitude matrix into a one-to-
one correspondence with the elements of the matrix B∗ and
modify the DFT magnitude matrices that correspond to the
marked cells of the matrix B∗. In fact, in the DFT magnitude
matrices we modify the values of the “Red” rectangle area
such that the averege values of the “Red” rectangle surpasses
the average value of the “Blue” one by an appropriate factor.
Phase IV. Reconstruct the DFT of the corresponding modified
magnitude matrices in order to obtain the watermarked audio
signal Sw.
The “Red” and “Blue” Rectangle Areas. Concerning the
two imaginary rectangle areas referred in this section, they are
found in a frame’s DFT magnitude matrix and their positions
are selected in a similar manner to our image watermarking
method in [4] where the two areas were found in the 2D
space and they had the form of two ellipsoidal annuli with
equal width p = 2 on the outer bounds of a magnitude cell.
Now, in the audio case, we select two continuous rectangle
areas in the 1D space on the left and right boundaries of a
frame’s magnitude matrix, keeping once again at each one a
width equal to p > 0 and keeping symmetry in accordance
to the center of the matrix. Similar to the annuli at the image
watermarking technique, coming from the boundaries of the
left side, we first come across the “Red” and then the “Blue”
rectangle and from the right side it is the other way round.

B. Extract Watermark from Audio

The extracting algorithm of our proposed technique follows the
reverse procedure of the embedding. The main idea is that the
self-inverting permutation π∗ is obtained from the frequency
domain of specific frames of the watermarked audio signal
Sw. More precisely, using the same two “Red” and “Blue”

rectangles, we detect certain areas of the watermarked audio
signal Sw that the average values of the “Red” rectangle exceed
the average values of the “Blue” rectangle and these marked
frames enable us to obtain the 1DM representation of the
permutation π∗.

VI. CONCLUDING REMARKS

In this paper we survey algorithmic techniques for software and
image watermarking and present a new developing idea based
on them for audio watermarking. The key idea of all proposed
techniques is based on three alternative representations of self-
inverting permutations that we suggest for hiding information
in each case. We leave as an open problem a thorough
evaluation of our audio codec algorithms.

REFERENCES

[1] L.M.S. Bento, D. Boccardo, R.C.S. Machado, V.G. Pereira de Sa, and
J.L. Szwarcfiter, “Towards a provably resilient scheme for graph-based
watermarking,” 39th Int’l Workshop on Graph-Theoretic Concepts in
Computer Science (WG’13), LNCS Proceedings, 2013.

[2] M. Chroni and S.D. Nikolopoulos, “Encoding watermark integers as
self-inverting permutations,” 11th Int’l Conference on Computer Sys-
tems and Technologies (CompSysTech’10), ACM ICPS 471, pp. 125–
130, 2010.

[3] M. Chroni and S.D. Nikolopoulos, “An Efficient Graph Codec Sys-
tem for Software Watermarking,” 36th IEEE Conference on Comput-
ers, Software, and Applications (COMPSAC’12), IEEE Proceedings,
pp. 595–600, 2012.

[4] M. Chroni, A. Fylakis, and S.D. Nikolopoulos, “Watermarking Images
using 2D Representations of Self-inverting Permutations,” 8th Int’l Con-
ference on Web Information Systems and Technologies (WEBIST’12),
SciTePress Digital Library, pp. 380–385, 2012.

[5] M. Chroni and S.D. Nikolopoulos, “Design and Evaluation of a
Graph Codec System for Software Watermarking,” 2nd Int’l Confer-
ence on Data Management Technologies and Applications (DATA’13),
SciTePress Digital Library, 2013.

[6] I. Chionis, M. Chroni, and S.D. Nikolopoulos, “A dynamic watermark-
ing model for embedding reducible permutation graphs into software,”
10th Int’l Conference on Security and Cryptography (SECRYPT’13),
SciTePress Digital Library, 2013.

[7] I. Chionis, M. Chroni, and S.D. Nikolopoulos, “Evaluating the Wa-
terRpg software watermarking model on Java application programs,”
17th Panhellenic Conference on Informatics (PCI’13), ACM ICPS
Proceegings, 2013.

34

[8] C. Collberg, A. Huntwork, E. Carter, G. Townsend, and M. Stepp,
“More on graph theoretic software watermarks: Implementation, anal-
ysis, and attacks, Journal of Information and Software Technology,”
vol. 51, pp. 56–67, 2009.

[9] C. Collberg and J. Nagra, Surreptitious Software, Addison-Wesley, 2010.
[10] R.L. Davidson and N. Myhrvold, “Method and system for generating

and auditing a signature for a computer program,” US Patent 5.559.884,
Microsoft Corporation, 1996.

[11] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Aca-

demic Press Inc., New York, 1980.
[12] F. Husain, “A Survey of Digital Watermarking Techniques for Multime-

dia Data,” Int’l Journal of Electronics and Communication Engineering,
vol. 2, No. 1, pp. 37–43, 2012.

[13] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of
Algorithms, Addison-Wesley, 1996.

[14] A. Tirkel, G. Rankin, R. van Schyndel, W. Ho, N. Mee, and C. Osborne,
“Electronic water mark,” Digital Image Computing: Technqiues and
Applications (DICTA’93), pp. 666-672, 1993.

