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Abstract 

We present finite element simulations to predict the conductivity, elastic response and strain-

sensing capability of conductive composites comprising a polymeric matrix and carbon nanotubes. 

Realistic representative volume elements (RVE) of the microstructure are generated and both 

constituents are modelled as linear elastic solids, with resistivity independent of strain; the 

electrical contact between nanotubes is represented by a new element which accounts for quantum 

tunnelling effects and captures the sensitivity of conductivity to separation. Monte Carlo 

simulations are conducted and the sensitivity of the predictions to RVE size is explored. 

Predictions of modulus and conductivity are found in good agreement with published results. The 

strain-sensing capability of the material is explored for multiaxial strain states.    
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1. Introduction 

The applications of carbon nanotubes (CNT) have recently received growing interest due to their 

good combination of mechanical, electrical, and thermal properties (Coleman et al.). Consisting of 

cylindrical arrangements of one (single-wall, SWNT) or multiple (multi-wall, MWNT) graphite 

sheets, CNTs have stiffness in the TPa range (Treacy et al.) and electrical conductivities between 

103 and 107 S/m (Ebbesen et al.). Due to small dimensions, very high aspect ratios and low mass 

density, the excellent properties of these nanostructures can be exploited to their fullest if dispersed 

into lightweight matrices as engineering polymers (Spitalsky et al.), allowing development of 

multifunctional materials for a wide range of applications (Baughman et al.). Small concentrations 

of CNTs (as low as 0.0025 wt% (Sandler et al., 2003)) can render polymers conductive, by 

forming percolating networks (Stauffer and Aharony). Depending on the polymer and production 

process, a filler fraction of 1 wt% is usually able to place the composite conductivity in the order 

of 1 S/m (Bauhofer and Kovacs, 2009). 

When subject to deformation, these conductive pathways are distorted, resulting in a change of 

the electrical properties of the composite. By measuring the change in bulk resistance, the 

composite can operate as a self-sensing material that is multidirectional (Obitayo and Liu) and that 

possesses superior sensitivity to that of traditional resistance strain gauges (Pham et al., 2008). 

Carbon nanotubes undergo structural and band gap changes when subject to mechanical strain 

(Tombler et al.) and therefore their deformation can be detected by changes in their Raman spectra 

(Frogley et al.). Alternatively, when CNTs are embedded in a polymeric matrix, the resulting bulk 

electrical conductivity of the composite is sensitive to macroscopic strain (Dharap et al.; Zhang et 

al.), enabling real-time self-sensing. It is widely accepted (Alamusi et al.) that the piezoresistivity 

of CNT-polymer composites is linked to three major mechanisms: (i) the inherent piezoresistivity 

of CNTs (Park et al.), (ii) the deformation of the conductive paths that they form within the 

polymer and (iii) the change of inter-filler distances, directly influencing the tunnelling phenomena 

responsible for conductivity between adjacent nanotubes (Di Ventra; Kilbride et al., 2002). 

Several modelling approaches have been proposed to predict the electro-mechanical response of 

CNT-polymer composites (Alamusi et al.), including semi-empirical and numerical models. For 

example, (Pham et al.) proposed a simple model relating applied strain to a decrease in effective 
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volume fraction and a consequent decrease in conductivity (Stauffer and Aharony); (Park et al.) 

proposed a similar model which accounts for the effects of an increased average tunnelling distance 

between the CNTs at high strain; (Wichmann et al.) modelled a resistor network of parallel paths, 

including a sensitivity of tunnelling conductivity to strain; (Kuronuma et al.) used a similar 

approach but distinguished two types of contacts: overlapping and plane contacts. Some authors 

proposed micromechanics approaches limited to configurations of up to three nanotubes with 

predefined orientations (Ren and Seidel; Xu et al.). Most numerical approaches (De Vivo et al.; 

Gong and Zhu; Gong et al.; Hu et al.; Rahman and Servati) consider a 3D random network of 

resistors, with tunnelling resistors between neighbouring CNTs, and a fibre reorientation model 

(Taya et al.) to capture the effects of strain. More recently, (Panozzo et al.) proposed an analytical 

expression based on an equivalent network of parallel paths where CNTs are connected in series; 

the sensitivity to strain was computed based on an estimate of the average variation of the 

tunnelling separation distance, from inputs such as the undeformed electrical conductivity and 

some morphology parameters. Most authors considered the CNTs as rigid, while others modelled 

them as deformable, in accordance to continuum mechanics; (Grabowski et al.) recently proposed 

a multiscale approach where the elastic properties of CNTs are simulated with molecular 

dynamics. 

A survey of the literature shows that the main current challenges include ability: to model a 

realistic microstructure; to include curved CNTs; to explore the effects of matrix conductivity; and 

to obtain predictions which do not rely on several fitting parameters, that need calibrating against 

measurements. In this study we address these challenges: we model microstructures of arbitrary 

complexity, including a network of curved CNTs; we perform sequentially-coupled, physically-

based detailed analyses of both the mechanical and electrical response of the composites; we 

introduce the effects of quantum tunnelling at the junctions between CNTs, developing a new 

quantum tunnelling element based on the constitutive relation from Simmons; we explore the 

sensitivity of the predictions to RVE size; and we study the phenomenon of self-sensing in 

different load cases.  



4 

 

2. Construction of the RVEs  

The FE analyses simulate the electro-mechanical response of representative volume elements 

comprising a homogeneous matrix and a network of CNTs of arbitrary complexity. The RVEs 

consist of cubic volume elements of side length 𝐿RVE; the CNTs are represented by penalized basis 

splines (p-splines) and have diameter 𝐷CNT. A target volume fraction 𝑉f and the statistical 

distributions of nanotube dimensions and orientation are prescribed; the 𝑖-th nanotube is generated 

from a sequence of straight segments (up to the desired length 𝐿CNT𝑖) originating at a random 

location within the RVE, of coordinates generated by uniformly distributed pseudo-random 

numbers between 0 and 1. The first segment is assigned random azimuthal (𝛼0) and latitudinal 

(𝜙0) angles; subsequent j-th segments are randomly generated within the three-dimensional cone 

𝜃𝑗 ≤ 𝜃max, where 𝜃𝑗  is the angle formed by the j-th segment and the preceding ((j-1)-th) segment, 

as illustrated in Fig. 1. The angle 𝜃max is used to control the waviness of the nanotubes.  

 

 

Fig. 1. Illustration of the generation of a CNT. 

 

The segments are then replaced by p-splines sharing the intermediate endpoints; geometry 

periodicity is enforced by repositioning the sections that override the domain boundaries. Since 

the nanotubes are impenetrable, a search for intersections between CNTs is performed; when 

intersections are detected, the corresponding splines are locally perturbed so that the minimum 
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distance that separates two nanotubes is never smaller than the Van der Waals equilibrium distance 

of 𝑑VdW = 0.34 nm (Girifalco et al.; Yoon et al.). This guarantees that there is no force between 

the CNTs in the initial configuration and assumes that the CNTs are not separated by a polymer 

molecule. Further mechanical interaction between pairs of CNTs is not modelled, although it has 

been shown that local contact may affect the mechanical and electrical interaction between pairs 

of CNTs (Mirzaeifar et al.). As it will be shown below, in this study we model CNTs as 

one-dimensional beams; accounting for local deformation effects, while keeping the simplicity of 

the beam abstraction, would require additional parameters whose determination is not clear, as 

discussed by (Gong and Zhu, 2014). 

An example of a generated RVE is displayed in Fig. 2: Fig. 2(a) shows the initial distribution of 

p-splines, corresponding to different CNTs; in Fig. 2(b), geometric periodicity has been enforced. 

a) 

 

b) 

 

Fig. 2. Example of an RVE geometry: a) before and b) after enforcing geometry periodicity. 

 

To locate intersections, an approach similar to spatial filtering (Gonzalez and Woods) is used, as 

illustrated (in 2D) in Fig. 3. The domain is divided into equally-sized cubic raster cells with side 

length 𝑑min = 𝐷CNT + 𝑑VdW; the splines are seeded by points separated by a distance 𝐷CNT/10. 

Each point can be linked to the raster cell it belongs to, allowing easy identification of near 

neighbours. Intersection is detected when the minimum distance between points of different CNTs 

is smaller than the grid size 𝑑min. A similar procedure is used to detect electrical junctions; these 

are defined as locations where the distance between the centre-lines of two adjacent CNTs is such 
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that tunnelling conduction may occur; this is found by searching for all pairs of adjacent CNTs 

with distance smaller than 𝑑search = 𝐷CNT + 𝑑cut-off, where 𝑑cut-off = 4 nm, and identifying the pair 

of points with minimum distance. Nodes are placed corresponding to the pairs of points defining 

each tunnelling junction, for subsequent meshing. 

 

Fig. 3. Illustration in 2D of the procedure to identify contact points.  

While this approach is focused on a uniform dispersion, the initial CNT configuration could be, 

in principle, obtained from simulation methods such as Dissipative Particle Dynamics (Wescott et 

al.), however at a much higher computational cost. 

3. Homogenization 

The homogenized response of the macroscopic structure can be estimated based on the analysis 

of the RVEs after imposing periodic boundary conditions (PBCs). Below, we provide details of 

the homogenization schemes used for simulations of the mechanical and electrical response. 

3.1. Mechanical homogenization 

The constitutive equation for a liner elastic material can be written as 

𝜎𝑖𝑗(𝐱) = 𝐶𝑖𝑗𝑘𝑙(𝐱) 𝜀𝑘𝑙(𝐱) (1) 

 

where 𝐱 represents the position vector and 𝜎𝑖𝑗, 𝐶𝑖𝑗𝑘𝑙 and 𝜀𝑘𝑙 the stress, stiffness, and strain tensors. 

The latter is related to the displacement field 𝐮 by 
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 𝜀𝑘𝑙 =
1

2
 (𝑢𝑘,𝑙 + 𝑢𝑙,𝑘) (2) 

 

The averaged stress 𝜎𝑖𝑗 and strain 𝜀𝑘̅𝑙 tensors can be defined as spatial averages of the local 

distributions over the representative volume 𝑉 

 𝜎 𝑖𝑗 =
1

𝑉
 ∫ 𝜎𝑖𝑗 d𝑉
𝑉

 (3) 

and 

 𝜀𝑘̅𝑙 =
1

𝑉
 ∫ 𝜀𝑘𝑙 d𝑉
𝑉

 (4) 

 

Similarly, we can rewrite equation (1) in terms of averaged quantities 

𝜎𝑖𝑗 = 𝐶𝑖̅𝑗𝑘𝑙  𝜀𝑘̅𝑙 (5) 

 

Equation (5) indicates that the homogenized properties 𝐶𝑖̅𝑗𝑘𝑙 can be computed based on the RVE 

deformation from the averaged (or homogenized) stress and strain tensors. 

Since the macroscopic material can be represented by an infinite array of repeated RVEs, 

deformation of the RVE should be spatially periodic. This is enforced by prescribing PBCs along 

its boundaries. Following the approach described by (Suquet), the strain tensor can be expanded 

into average (𝜀𝑘̅𝑙) and fluctuation (𝜀𝑘𝑙
∗ ) terms, the latter having vanishing spatial average over the 

RVE volume 

𝜀𝑘𝑙 = 𝜀𝑘̅𝑙 + 𝜀𝑘𝑙
∗  (6) 

 

Integrating equation (6), assuming an irrotational displacement field and making use of equation 

(2), the displacement at any given point is 

𝑢𝑘 = 𝜀𝑘̅𝑙𝑥𝑙 + 𝑢𝑘
∗  (7) 
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where 𝑥𝑙 is the component of the position vector along 𝑙;  𝑢𝑘
∗

  can be shown to be periodic (Suquet) 

and therefore has the same value at homologous points of opposite boundaries. Considering two 

opposite surface boundaries of the RVE with positive (𝑙+) and negative (𝑙−) normals along the 

𝑋𝑙 axis, the respective displacements can be related as 

𝑢𝑘
𝑙+ − 𝑢𝑘

𝑙− = 𝜀𝑘̅𝑚(𝑥𝑚
𝑙+ − 𝑥𝑚

𝑙−) = 𝜀𝑘̅𝑙𝐿RVE (8) 

 

where the quantity in parentheses is exactly the RVE side length if 𝑙 =  𝑚 and zero otherwise. 

Equation (8) is enforced through constraint equations that relate the degrees of freedom (DOF) of 

each pair of homologous nodes on opposite boundaries to the 6 DOFs of a master node, 

corresponding to the 6 components of the homogenized strain tensor 𝜀𝑘̅𝑙. 

 

3.2. Electrical homogenization 

The electrical flow of current 𝐉 is described by Ohm’s law and its constitutive relation can be 

written as: 

𝐽𝑖(𝐱) = 𝜅𝑖𝑗(𝐱) 𝐸𝑗(𝐱) = −𝜅𝑖𝑗(𝐱)
𝜕𝑉

𝜕𝑥𝑗
(𝐱) (9) 

 

with 𝜅𝑖𝑗 being the electrical conductivity tensor, 𝐸 and 𝑉 the electric field and potential. Following 

the same procedure as for the mechanical case, one can define average quantities of the current 

density and electric field, analogous to equations (3) and (4). Equation (9) can therefore be written 

in terms of homogenized values 

𝐽𝑖̅ = 𝜅̅𝑖𝑗  𝐸̅𝑗 = −𝜅̅𝑖𝑗 (
𝜕𝑉

𝜕𝑥𝑗
)

̅̅ ̅̅ ̅̅ ̅̅
  (10) 

 

and the electrical potential within a periodic RVE is 

𝑉 = 𝐸̅𝑘𝑥𝑘 + 𝑉
∗  (11) 
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where 𝑉∗ is a periodic component of the electrical potential, having the same value at homologous 

points of opposite boundaries. Repeating the procedure described above, the periodic boundary 

conditions for the electrical potential can be written as 

𝑉𝑗+ − 𝑉𝑗− = 𝐸̅𝑗𝐿RVE  (12) 

 

Equation (12) is enforced at homologous boundary nodes via constraint equations relating the 

electric potential of the boundary nodes to the 3 components of the average electric field 𝐄̅. We 

note that this condition also implies that the total current flowing through opposite faces of the 

RVEs are equal and opposite. 

4. Finite Element simulations 

Two types of simulations are conducted, exploring the mechanical and electrical response of the 

RVE, respectively. The two types of simulations are then sequentially coupled in order to 

determine the strain-sensing response of the composite. In all cases, we perform Monte Carlo 

analyses: we consider multiple realizations (20 realisations unless otherwise stated) of the RVEs 

and repeat the corresponding simulations; then, we analyse the average and spread of the outputs. 

Details of the simulation techniques are presented below. 

4.1. Mechanical model 

The CNTs are represented as equivalent continuum fibres (Thostenson and Chou) and modelled 

as beams with a hollow cylindrical cross-section, using the B31 elements of Abaqus Standard 

(Simulia). The cross-section has the same diameter of the nanotubes and the thickness of each 

nanotube wall is set to 0.34 nm (Odegard et al.), corresponding to the interlayer spacing of 

graphene. This value has been the target of different studies, which reported values ranging from 

0.0617 to 0.69 nm (Huang et al.) and dependent on the load case (Odegard et al.). We stress here 

that in this study CNTs are modelled as a structure rather than a material, specifically as a 

one-dimensional beam element. Axial and bending stiffness of CNTs are obtained from 

calculations at lower scale (Guo and Zhang; Wu et al.); in our FE simulations however, we input 

the geometry of a hollow circular cross-section, which in conjunction with the material’s modulus, 

determines the effective axial and bending stiffnesses in the simulations. The choice of the wall 
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thickness is therefore dependent on the choice of Young modulus. In this study the choice of a 

thickness of 0.34 nm was made to allow a direct comparison with the results from (Yuan and Lu); 

the material response is taken as isotropic and linear elastic. 

The polymeric matrix is discretized into a regular mesh with 8-noded full integration brick 

elements (C3D8 in Abaqus). The relevant mechanical properties are listed in Table I. The 

nanotubes are assumed to be perfectly bonded to the matrix and modelled as embedded elements. 

Mechanical PBCs are prescribed only at the boundary nodes of the matrix phase, since the 

nanotubes are constrained to this phase. Since the beams representing the CNTs also have 

rotational DOFs which are not constrained by the embedment, rotations of CNT intersecting the 

RVE boundaries are enforced to be equal at homologous nodes. Six load cases are imposed: 3 for 

pure uniaxial strain and 3 for pure shear deformation in 3 mutually perpendicular planes. The 6 

components of the homogenized strain tensor are prescribed in turn and, for each, the 

corresponding homogenized stress tensor is determined from the reaction forces on appropriate 

auxiliary nodes. This allows assembly of the full stiffness matrix and calculations of the 

homogenized elastic engineering constants. For the case of isotropic RVEs, presented in the 

following, these reduce to the homogenized elastic modulus 𝐸̅comp  and Poisson’s ratio 𝜈̅comp. 

4.2. Electrical model 

Since CNTs are good conductors, their dispersion within an insulating matrix will result in a 

conductive material if they form a conductive percolating network. Due to the large ratio between 

the conductivities of CNTs and matrix, there is a concentration threshold above which the 

composite is said to be conductive – the critical volume fraction 𝑉fc. The macroscopic conductivity 

will therefore depend on the intrinsic conductivity of the constituents, the paths they form and the 

resistance of the tunnelling junctions. While the conductivity of the polymer matrix is often 

neglected, due to its low value and the increased modelling complexity, the present methodology 

allows for its inclusion without added effort. 

As in the mechanical model, the matrix is meshed by a regular tessellation; the nanotubes, 

modelled as one-dimensional conductors, are embedded within the matrix. This is done by linking 

the (voltage) degrees of freedom of the embedded CNT to the corresponding degrees of freedom 

of the matrix elements, via linear shape functions. The electrical analysis is performed using 
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Abaqus steady-state heat-transfer analysis (Simulia) since the constitutive equations for electrical 

and thermal conductivity are analogous (Reddy), replacing all thermal properties with the adequate 

electrical equivalents. The matrix is discretized with DC3D8 8-noded brick elements and the CNTs 

are modelled by DC1D2 2-noded link heat transfer elements. 

Electric PBCs are applied by enforcing a uniaxial homogenised electric field (or potential 

difference) along each of the 3 Cartesian directions, in three separate load steps. This allows 

constructing the full homogenised electrical conductivity matrix 𝜅̅𝑖𝑗. 

The resistance of all tunnelling junctions is modelled via a user element, described in detail in 

the next Section. 

4.2.1 Quantum tunnelling element 

Several authors have found experimental evidence (Kilbride et al.) that the conductivity between 

adjacent CNTs can be described by fluctuation-induced tunnelling electron transport (Di Ventra). 

The conductivity across two nanotubes is dependent on the probability of their electrons to 

penetrate and overcome the electric potential barrier between them and is here calculated using 

Simmons's generalized formula (Simmons). The tunnel current density 𝐽 across adjacent CNTs 

separated by a thin insulating layer of permittivity 𝜖 can be expressed as a function of the 

separation 𝑠 between them, as 

𝐽 = 𝐽0 {𝜑̅e
−𝐴√𝜑̅ − (𝜑̅ + 𝑒𝑉)e−𝐴√𝜑̅+𝑒𝑉̅̅ ̅̅ ̅̅ ̅̅ } 

𝐽0 =
𝑒

2𝜋ℎ(Δ𝑠)2
 and 𝐴 =

4𝜋Δ𝑠

ℎ
√2𝑚𝑒 

(13) 

 

where 𝑒 and 𝑚𝑒 represent the charge and mass of the electron, respectively, and ℎ is the Planck's 

constant. 𝜑̅ is the mean value of the potential barrier, which has two roots at positions 𝑠1and 𝑠2, 

with Δ𝑠 = 𝑠2 − 𝑠1. For a potential barrier of magnitude 𝜑0 these can be approximated (with image 

force effects included) by (Simmons) 

𝜑̅ = 𝜑0 − (
𝑒𝑉

2𝑠
) (𝑠1 + 𝑠2) − [

1.15ω𝑠

𝑠2 − 𝑠1
] ln

𝑠2(𝑠 − 𝑠1)

𝑠1(𝑠 − 𝑠2)
 (14) 
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𝑠1 =
1.2ω𝑠

φ0
 and 𝑠2 = {

𝑠1 + 𝑠 [1 −
9.2ω

3φ0+4ω−2𝑒𝑉
] , 𝑒𝑉 < 𝜑0

(𝜑0 − 5.6ω) (
𝑠

𝑒𝑉
) , 𝑒𝑉 ≥ 𝜑0

 

𝜔 =
𝑒2 ln 2

8𝜋𝜖𝑠
 

 

We take the potential barrier 𝜑0 equal to the CNT work function (the energy necessary to extract 

one electron from the CNT). Simmons's formula is valid in one-dimensional scenarios, such as in 

a parallel-plates capacitor; here, we describe the tunnelling junction between CNTs as an 

equivalent parallel-plate capacitor of area 𝐷CNT
2  and separation 𝑠 for any angle between crossing 

CNTs. This approximation neglects the effects of the circular shape of the CNT cross-section and 

of the angle between neighbouring CNTs. The choice is supported by the fact that (Nigro and 

Grimaldi) concluded that the effect of relative angle in resistive tunnelling processes is marginal 

for randomly dispersed CNTs, for all volume fractions. The assumption of a parallel-plate 

capacitor was found adequate in the case of the contact resistance measured for perpendicular 

SWNTs (Fuhrer et al.) at a separation of 𝑠 = 0.34 nm, coinciding with the van der Waals 

equilibrium spacing between adjacent graphene sheets.  

The separation distance is related to the coordinates of the two contact nodes 𝑃1 and 𝑃2 as follows 

𝑠 = max

{
 

 
𝑠min, √∑(𝑃1𝑖 − 𝑃2𝑖)

2
3

𝑖=1

− 𝐷CNT

}
 

 
 (15) 

 

Since compression between two nanotubes can decrease their minimum separation to 0.25 nm, as 

reported by (Yoon et al.), 𝑠min = 0.25 nm is used throughout this study. 

The resulting element is illustrated in Fig. 4, having 2 nodes and 1 DOF per node corresponding 

to the nodal electrical potential. Three constitutive parameters are assigned to each tunnelling 

element: potential barrier, relative permittivity and nanotube diameter; these allow relating the 

current 𝐼N (nodal flux) to the electric potential 𝑉N (nodal DOF) via the formulation presented 

above, linearized around the electric potential difference predicted by a parallel plate capacitor 

𝑉 = 𝑒𝑠/(𝜖𝐷CNT
2 ) . The respective Jacobian (stiffness) matrix is computed as 𝐾𝑖𝑗 = −𝑑𝐼N𝑖/𝑑𝑉N𝑗, 
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where N𝑖 refers to the i-th node of the element, and the corresponding right-hand-side vector (or 

residual nodal flux) as 𝐹𝑖 = −𝐼
N𝑖. This is integrated into a Fortran UEL subroutine in Abaqus 

(Simulia). 

 

Fig. 4. Example of the user element applied at the contact point between two nanotubes. 

4.3 Strain-sensing 

As discussed by (Alamusi et al.) and mentioned in the introduction, the piezoresistivity of CNT-

reinforced polymers is attributed to the change of tunnelling junction separations and to the 

inherent CNT piezoresistivity, with the latter contribution often neglected. While the 

piezoresistivity of SWNT can vary from negative to positive values depending on chirality, the 

piezoresistivity of a MWNT is expected to be low. In addition, the high stiffness of CNTs and their 

isotropic distribution lead to a very small influence of CNT piezoresistivity to the overall change 

of the composite resistance, estimated to be less than 5% (Oliva-Aviles et al.). Thus, the current 

approach focuses only on the first, dominant mechanism. 

To model the piezoresistive response of the RVEs, the mechanical and electrical models are 

coupled sequentially. The mechanical model is employed to determine, for each of the k tunnelling 

elements, the sensitivity (𝑆𝑘
𝑖𝑗

) of the tunnelling separation 𝑠𝑘  to each of the imposed homogenized 

strain component 𝜀𝑖̅𝑗, 𝑆𝑘
𝑖𝑗
= 𝜕𝑠𝑘/𝜕𝜀𝑖̅𝑗 (dependent on the load case). This sensitivity is included in 

the electrical model as a property of each tunnelling element: the element is modified to have 8 

DOFs: the electric potential at its two nodes and the 6 macroscopic strain components, defined as 

global DOFs. A schematic illustration of this is presented in Fig 5. 

The same periodic boundary conditions described for the electrical analysis are applied; 

simulations of the strain-sensing response are conducted in two steps: (1) a constant electric field 

is applied to the RVE; (2) selected homogenized strain component 𝜀𝑖̅𝑗 are prescribed under the 
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constant electric field. By measuring the change in current flow in the direction of the applied 

electric field, resistance versus strain histories can be obtained. 

We note that fully-coupled simulations can also be conducted on electro-mechanical models; 

however, a fully coupled approach is computationally less efficient than the proposed sequentially 

coupled technique; the two approaches yield identical outputs for small strains.  

 

 

Fig 5. Schematic illustration of the user-defined tunnelling element. 

 

5 Results and discussion 

The proposed methodology is now applied to predict the response of different composites 

comprising single-wall and multi-wall nanotubes (SWNT and MWNT, respectively) dispersed in 

polymeric matrices; the predictions are compared to published results for validation of the 

proposed technique. 

5.2 Mechanical properties  

To validate the mechanical model, we use as a benchmark the results of a study by (Yuan and 

Lu), considering a random distribution of SWNTs in a polypropylene (PP) matrix; these authors 

considered the effects of nanotube waviness (Herasati and Zhang) on the macroscopic elastic 

modulus. Relevant dimensions and elastic properties are provided in Table I. A volume fraction of 

𝑉f = 1.0% is considered. 
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To guarantee a correct representation of the microstructure, an appropriate RVE size must be 

determined. To do so, the dependence of the homogenized modulus 𝐸̅comp and Poisson’s ratio 

𝜈̅comp (averaged in the three Cartesian directions) is explored, as shown in Fig. 6 for 20 realizations, 

number obtained after a convergence study. 

 

Fig. 6. Dependence of the homogenized elastic properties on the RVE size. The bars represent standard deviation. 

 

The predicted elastic properties are insensitive to RVE size for 𝐿RVE ≥ 2.0×𝐿CNT; for                

𝐿RVE = 2.0×𝐿CNT the standard deviation is less than 0.5% of the mean. A mesh convergence study 

was also carried out for this RVE size, leading to FE models with approximately 1.1 million DOFs. 

The effect of waviness was explored by keeping the total length of the nanotubes constant and 

varying the maximum angle 𝜃max between consecutive segments from 0° to 25°; the corresponding 

effective elastic modulus is plotted in Fig. 7 against the average waviness ratio 𝜆 = 𝐿CNT/𝐿eff, 

where 𝐿eff is the distance between the start and end points. 

For straight CNTs (𝜆 = 1, or 𝜃max = 0°), an average modulus of 𝐸̅comp = 1.941 GPa is obtained, 

whereas (Yuan and Lu) report a value of 1.938 GPa, for the case of CNTs modelled as three-

dimensional solids (as opposed to beams). The sensitivity to waviness predicted by the current 

approach is also in line with the predictions presented in (Yuan and Lu) and shown in Fig. 7. The 

small offset between the two sets of predictions is at least partially due to the fact that results by 

(Yuan and Lu) consider a distribution of CNT lengths (however this is not clearly stated in their 
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paper), while our set of predictions consider CNTs of length equal to the average used by (Yuan 

and Lu).  

 

Fig. 7. Influence of the CNT waviness on the predicted homogenized Young’s modulus. 

 

Table I: Relevant material properties and CNT geometry (Hu et al., 2008; Yuan and Lu). 

Material 
Elastic 

modulus 

Poisson’s 

ratio 

Electrical 

conductivity 
Diameter Length 

SWNT 1.0 TPa - 104 S/m 10 nm 462 nm 

MWNT 1.0 TPa - 104 S/m 50 nm 5 μm 

PP 1.756 GPa 0.4 - - - 

Epoxy 1.0 GPa 0.35 10−6 S/m - - 

 

5.3 Electrical properties  

The proposed electrical model is now used to predict the electrical conductivity of a polymer 

nanocomposite with MWNTs, randomly dispersed in an epoxy matrix, as investigated by (Hu et 

al.). The MWNT dimensions considered by (Hu et al.) are presented in Table I. We take a nanotube 

conductivity of 104 S/m and a (negligible) conductivity of 10−6 S/m for the epoxy matrix. For 



17 

 

the tunnelling junctions, we consider a relative permittivity of 3.98 (representative of Epoxy) and 

a work fraction for the MWNTs of 4.95 eV (Shiraishi and Ata). 

A preliminary study is conducted to explore the sensitivity of the homogenized conductivity to 

RVE size. This is performed for the case 𝑉f = 1% ; the RVE size is increased and the 

corresponding homogenized conductivity is presented in Fig. 8 for a converged number of 20 

realizations. Predictions of the cross-terms of the conductivity matrix 𝜅𝑖𝑗 (𝑖 ≠ 𝑗) are also presented, 

as they can be used to quantify the anisotropy of the RVE. The electrical conductivity 𝜅̅comp tends 

to a constant value with an increasing RVE size. Simultaneously, the cross-terms of the 

conductivity matrix of the RVE decrease. Based on the results in Fig. 8, we consider an RVE of 

size 𝐿RVE = 1.5 𝐿CNT in the following.  

For this choice of volume fraction and RVE size, a mesh convergence study resulted in a mesh 

with approximately 150,000 degrees of freedom. Meshes of similar densities are adopted when 

considering different volume fractions. 

 

Fig. 8. Influence of the RVE size on the homogenized electrical conductivity. 

The effect of the filler fraction on the electrical conductivity is now examined. Twenty 

realizations of the RVEs are simulated for each volume fraction and the average homogenized 

conductivity is plotted in Fig. 9. This Fig. 9 shows the typical response of a percolation problem 

(Sahimi, 2003), with three distinct regions. For low concentrations, the composite has a very small 

conductivity, as the matrix isolates the nanotubes. At the critical volume fraction 𝑉fc, the nanotubes 
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become macroscopically connected (percolation occurs) and there is an abrupt increase in 

conductivity. After the percolation region, an increasing number of parallel conductive paths 

appear in the material as the volume fraction increases, and consequently the conductivity 

increases at a slower pace. 

The volume fraction at percolation point is found to be at around 𝑉fc ≃ 0.7%, in agreement with 

the predictions obtained using the excluded volume theory for capped cylinders (Balberg et al.), 

𝑉fc ≃ 0.68%). Furthermore, the standard deviation around the percolation point is very high. Since 

the CNTs begin to form an infinite cluster at the critical volume fraction, correspondingly the 

characteristic length of the problem tends to infinity (Stauffer and Aharony) and the anisotropy of 

the current distribution is also maximum. Since the CNTs begin to form an infinite cluster at the 

critical volume fraction, correspondingly the characteristic length of the problem tends to infinity 

(Stauffer and Aharony). This is in line with percolation theory, predicting that the correlation 

length and RVE size are proportional to |𝑉f − 𝑉fc|
−𝛽

, with 𝛽 > 0 (Stauffer and Aharony). 

Consequently, it is expected that the critical RVE size tends to infinity and that the anisotropy of 

the current distribution is maximum around this point. 

Fig. 9 includes experimental results from different authors, as reviewed by (Hu et al.) These are 

in good agreement with the predicted response, especially at high volume fractions, confirming 

the effectiveness of the proposed framework to predict the bulk electrical conductivity of CNT-

polymer composites. 
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Fig. 9. Homogenized electrical conductivity as a function of the CNT volume fraction. The bars represent the standard deviation 

and the experimental data is reproduced from the review by (Hu et al.) 

 

5.4 Strain-sensing 

Finally, we explore the strain-sensing behaviour of a MWNT-epoxy composite material with a 

volume fraction of 1%. Again, relevant material properties are given in Table I. 

The predicted resistance change Δ𝑅, normalized by the initial resistance 𝑅0, is plotted in Fig. 10 

for an RVE with size 𝐿RVE = 3×𝐿CNT = 15 μm; this RVE size was determined in a convergence 

study. The figure includes three separate sets of predictions, corresponding to three different load 

cases: (i) uniaxial stress, (ii) uniaxial strain, (iii) volumetric strain. Measurements and simulations 

by (Hu et al.) are shown for comparison.  
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Fig. 10. Simulated piezoresistivity of a MWNT-epoxy composite with 1% volume fraction for uniaxial stress, uniaxial strain and 

volumetric strain, averaged over 20 realizations. Presented are also the experimental values by (Hu et al.) 

The proposed models predict a significant variation of resistance with imposed strain, in all load 

cases examined. The predicted variations of resistance are of the same order of magnitude as those 

recorded in measurements; it should be noted that the boundary conditions in the experiments of 

(Hu et al.) were not explicitly reported. The specimens used in (Hu et al.) consist of relatively thin 

polymer films; consequently, we hypothesize that these were tested while adhered to a stiff 

substrate (to prevent buckling and wrinkling, especially in compression); consequently, their state 

of strain would be intermediate between those corresponding to uniaxial stress and uniaxial strain; 

this uncertainty prevents from ranking the accuracy of different modelling approaches. We also 

note that in real CNT-polymer composites the dispersion of CNTs is never perfectly uniform and 

the material presents agglomerates of CNTs, which are not accounted for in our analysis. 

It should be noted that estimating the sensitivity of separation distance of tunnelling junctions to 

applied strain, 𝑆𝑘
𝑖𝑗
= 𝜕𝑠𝑘/𝜕𝜀𝑖̅𝑗 is a well-known challenge, requiring a very dense meshing of the 

regions surrounding the junctions and an accurate description of the constitutive response of the 

materials at this length-scale (~1 nm). While we addressed these challenges with local mesh 

convergence and parametric studies, multi-scale modelling techniques could be employed to 

overcome this problem; this is left as a topic for future studies. 
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In tension, the RVE resistance increases with applied strain, as expected and reported by others 

(Gong and Zhu; Hu et al.; Pham et al., 2008); however, we observe that in compression, at small 

strains, the resistance decreases with increasing compressive strains; at larger compressive strains, 

the resistance may increase or decrease with the applied strain magnitude, depending on the 

boundary conditions. To further illustrate the reasons for this, in Fig. 11 we present, for the three 

different loading cases considered, the cumulative distributions of junction separations. Such 

distributions are provided for undeformed RVEs and for RVEs subject to tensile or compressive 

strains (in the direction of the applied electric field). 

 

Fig. 11. Cumulative distributions of the junction separation 𝑠 for uniaxial strain, uniaxial stress and volumetric strain. The initial 

distribution is compared to those at positive or compressive strains 

We observe that in compression, for all loading cases, the junction separation cannot decrease 

beyond the minimum value of 0.25 nm, therefore limiting the strain-sensing capability of the 

composite. In both tension and compression, there is a subset of junctions with increased 

separation (contributing to a higher macroscopic resistance), and a complementary subset with 

decreasing separation (contributing to the opposite effect). The net change of resistance depends 

on the relative size of the populations in the two subsets, and this in turn is strongly affected by 

the load case. Fig. 11 shows that, in the case of uniaxial compressive stress, a relatively higher 

number of junctions is increasing their separation, corresponding (at large strains) to a net increase 
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in macroscopic resistance. In contrast, for compressive volumetric or uniaxial strain, the number 

of junctions decreasing their separation is higher than those increasing it, which results in a 

decrease in macroscopic resistance.  

In the case of imposed pure shear strain, the resistance change ratio is shown in Fig. 12(a) 

(averaged over 60 realizations). Two cases are presented, corresponding to the electric potential 

being applied perpendicularly or parallel to one the shear directions. The sensitivity of the 

resistance to shear strain is one order of magnitude smaller when compared to the cases in Fig. 10. 

Since the sensitivity to compressive strain is smaller than that to tensile strain, it is expected that 

the resistance change should be smaller but positive. Furthermore, since the distributions of CNTs 

is isotropic (random), the response is symmetric for positive and negative shear strains. This is 

confirmed by Fig. 12(b), showing that the distributions of separation distances under positive or 

negative shear strains are identical.   

a)  b)  

 
 

Fig. 12. Simulations of a) piezoresistivity of a MWNT-epoxy composite with 1% volume fraction for pure shear loading, 

averaged over 60 realizations and b) cumulative distributions of the junction separation 𝑠. 

6 Conclusions 

We presented FE calculations to predict the electro-mechanical response of CNT-polymer 

composites. Realistic RVEs were generated and Monte Carlo analyses of the electrical and 

mechanical response were performed. The numerical predictions were validated by comparison to 

published data and employed to explore the strain-sensing response of the composites in different 

load cases. The main conclusions of the study are as follows. 
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• Modelling the CNTs as one-dimensional beams in a CNT-polymer composite with 

hollow cylindrical cross-section yields predictions of the elastic response in agreement 

with those obtained modelling the CNTs as three-dimensional solids. 

• A novel finite element was developed, and then implemented in the commercial FE 

software Abaqus; this element captures tunnelling conductivity effects at the junctions 

between adjacent CNTs and does not employ fitting parameters to be calibrated against 

experimental results. 

• The electrical conductivity percolation threshold of CNT-polymer composites can be 

accurately predicted by the proposed simulations; predictions are found in agreement 

with those of previously published analytical models. The sensitivity of conductivity to 

CNT volume fraction is also accurately captured. 

• The strain-sensing response of the composites to pure shear deformation is negligible, in 

the ranges of strain and volume fractions investigated. The strain-sensing response in 

presence of positive or negative volumetric strains is strongly dependent on the loading 

case considered. 

The physically-based models presented in this study may inspire and inform theoretical 

predictive models of the electro-mechanical response of CNT-polymer composites. With 

appropriate modifications, the models may also be employed to explore possible applications of 

CNT-polymer composites in damage detection. We leave these as topics for future investigations. 
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