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Abstract

This dissertation documents my mathematical and computational research on plasmas

which contain small, charged particulate matter (dust) in the presence of magnetic fields.

Phenomena from two limiting cases of dust dominance are considered, these being where

the grains are plentiful enough to introduce new collective plasma behaviours and sparse

enough such that the grains are effectively passengers in the plasma.

The study into the former limit looks at the effect which immobile dust grains have

on transversely and obliquely propagating Alfvénic solitary waves, with application to

cometary and planetary magnetospheres. The spatial structure and permissible range

of speeds is derived for the transverse wave. For oblique waves the problem is partially

solved, with necessary, but not sufficient, restrictions on the wave speed and direction

being found.

Next is a study where dust is not dominant, looking at the plasma structure near to

a conducting wall which has an embedded magnetic dipole oriented perpendicular to

the surface, with application to dusty crystal experiments and lunar swirls. A study of

electron kinetic behaviour is carried out and a novel way to calculate their density is

formulated. Once implemented into a sheath model this reveals that a ring of positive

space charge appears in the sheath which is capable of influencing dust grain dynamics

and repelling incoming ions.
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1 Introduction

1.1 Plasma

“In the beginning was the plasma” [5]. Hannes Alfvén ended his Nobel lecture of 1970 in

this way to remind us from what we and our surroundings were born. In fact, one may

argue that the world we occupy now is not so different from its genesis, the three states

of matter familiar to us: solids, liquids and gases are incredibly rare in the universe, the

fourth state, plasma, being at least thousands of times more abundant [6].

The fourth state of matter The notion of four states of matter can be credited

to Empedocles in the 5th century, who’s account of the four elements of water, earth,

air and fire, and their intermingling, can be considered a rudimentary scientific exercise

(though clothed in mythology and symbolism). Before him, the Ionian philosophers

had singled out one substance or another as being the most fundamental and of these

Heraclitus deserves mention for his choice of fire. Though taken out of context, some of

his quotes do not inaccurately describe which medium dominates the Universe: “The

world, an entity out of everything, was created by neither gods nor men, but was, is

and will be eternally living fire” and “The thunderbolt steers the Universe”.

A more credible conjecture of a fourth state came early in the 19th century, when

Michael Faraday was considering the diminishing physical properties (shape, softness,

colour, opacity etc.) which accompanied phase transitions from solids up to gases. He

did not believe that this resignation of properties in the matter ceased at the gaseous

stage and conceived a further change “as far beyond vaporization as that is above

fluidity” to a new state he called “radiant matter” [7]. However, his logical progression

led him to erroneously believe that radiant matter would be qualitatively less rich than

gases, a deduction which could not be further from the truth.

Sixty three years later, William Crookes identified Faraday’s radiant matter with what

he observed in his low temperature electrical discharge [8] and his experimental work was

to be the foundation of a discovery which had profound implications for chemistry and

physics. This came two decades later when J.J Thompson explained Crookes’ findings

by inferring the existence of electrons [9], the first discovery of a subatomic particle.

Consequently, it could finally be understood that the fourth state of matter was a soup

of oppositely charged particles and in the early part of the 20th century the field of

‘plasma’ physics was born and nurtured by Irving Langmuir.

19
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Qualitative properties A plasma is defined as: A quasi-neutral gas, sufficiently

ionised to exhibit collective behaviours. “Quasi-neutral” refers to the property that on

a macroscopic scale, the charge density is effectively zero and “collective behaviours”

refer to any macroscopic phenomena which do not exist in gases. Charged particles are

influenced by, and provide sources of, electromagnetic fields and so collective behaviours

may be realised in many extra ways than in gases. One fact which illustrates this is that

whereas a gas can only support the propagation of sound waves (and allows the passage

of light), at least 12 species of wave can exist in a plasma [10]. Another consequence

of the involvement of electromagnetism is that the strong forces which are introduced

set the ionisation threshold as low as one ion-electron pair per million neutral particles

[11].

As well as the name ‘plasma’ [12], Langmuir introduced another term to refer to

an important region which accompanies most terrestrial plasmas. In his study of the

mercury arc discharge, he observed that in the vicinity of the walls and electrodes, the

density of positive ions far exceeded that of the electrons [13]. This positive space charge

region, which screens the wall from the plasma, he decided to call the ‘sheath’ and the

characteristic width was later found as the Debye length, λDe.

In 1924 it was Langmuir who presented “...phenomena of remarkable beauty which

may prove to be of theoretical interest” [14] in an address marking the Centenary of

the Franklin Institute in Philadelphia. What he described were streams of minute

globules of tungsten sputtered from the cathode of his plasma discharge, possibly the

first laboratory observation of dust in a plasma.

1.2 Dust and plasma

Plasmas are very rarely pure and often contain an additional component of liquid or

solid charged macro-particles referred to as ‘dust’. There is no strict definition for what

constitutes a dust grain, but this property of being electrically charged (or, at least,

exchanging charge with the plasma) is the key and perhaps only criterion since it is what

influences the grain dynamics and modifies the surrounding plasma. Properties such as

shape or material composition do not seem to feature, so long as they do not prevent

the all important charging process, however, the size of the grains is restricted. Since

the dominant charging mechanism is the accumulation of plasma ions and electrons,

this sets the lower limit on the size of a dust grain at the nanometer scale, below which

the cross section for particle collection becomes negligible. To ensure that the dust can

be considered a component of the plasma, the upper limit for grain size is set rather

simply as much less than the characteristic size of the plasma. Under this description,

examples of dust could range from a micron sized droplet of tungsten in a tokamak to

a communications satellite bathed in the solar wind.

After a cursory review of the dusty plasma literature it becomes apparent that the
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word ‘ubiquitous’ is an autological one 1. The context in which it appears so often is to

emphasise how common dust grains are in “cosmic plasmas, planetary plasmas, plasmas

near the earth and plasmas in the laboratory” [15]. It seems to be the case that there

is nearly always a supply of dust and so if a plasma is cool enough for grains to exist,

it will probably have some present.

Studies of dust in plasma can be divided into a few sub-disciplines loosely distin-

guished by the degree to which dust modifies, or introduces, collective behaviours. To

differentiate between these categories, the relevant quantities are firstly the ratio of the

Debye length (since dust grains are themselves surrounded by a sheath) and the inter

particle separation ∆ (set by the density of dust grains, ∆ = n
− 1

3
d ). The relative size

of these lengths determines to what extent dust grains interact with each other. The

other relevant quantity is the Havnes parameter [16], H ≡ Zdnd
ni

, which is a measure of

how much charge the dust grains hold as compared to the plasma. It is quite common

to see all cases of dust and plasma referred to as ‘dusty plasma’ and the definitions I

am about to introduce have been used, but certainly not consistently.

Dust in plasma In this case it is the dynamics and properties of individual grains

which are of interest. This can range from cases where dust is sufficiently sparse (∆ >

λDe) such that they can be assumed not to mutually interact and hold much less charge

than the background plasma (|H| ≈ 0), so that the plasma as a whole is unperturbed.

In these instances, the interesting questions revolve around topics such as where they

go (for example the droplet in the tokamak) or how much charge they hold (perhaps the

communications satellite). This second question on the charging of individual grains

also overlaps with diagnostics which operate by collection of plasma particles such as

Langmuir probes [17].

There is also the case where dust grains are close enough to interact (∆ < λDe), but

still not plentiful enough to have an appreciable effect on the plasma charge (|H| ≈
0). Collective behaviours of the dust appear, such as self arrangement into a crystal

formation, but collective behaviours of the plasma are unchanged. It is not uncommon

to see these referred to as instances of ‘complex plasma’.

Dusty plasma If the amount of charge invested in the dust grains is comparable

to that in the plasma (H ' 0), then the ions and electrons no longer preserve quasi-

neutrality on their own and plasma behaviour is modified [18] or dominated [19] by this

departure. The lengthscales of interest are generally large, meaning that dust particles

are considered a continuous plasma component on an equal footing with the ions and

electrons, albeit far heavier and with a much larger, variable charge.

This thesis deals with problems belonging to both of the above fields and now it’s

time for some more in-depth background for each. The examples provided serve to put

1An autological word is one which describes itself. For example: short, pentasyllabic and Afrikaans.
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into context dust and plasma in the real world, but they are also carefully chosen to

outline the topics this thesis will be most relevant to.

1.3 Examples of dust and plasma

1.3.1 Dusty plasma

The addition of a charged dust component expands the zoo of plasma waves and insta-

bilities further still. Up to two new features need to be accounted for: quasineutrality is

no longer preserved exclusively between electrons and ions and sometimes the dynamics

of dust grains become important. Whether or not the latter alteration is relevant di-

vides between two families of dusty plasma waves. The first is waves with characteristic

timescales too fast for the dust grains to respond and the second is a new ultra low

frequency regime where the inertia is provided by the heavy dust grains. An example

of each is provided in the next chapter, section 2.6, but for now I shall just describe the

qualitative features assuming, as is usually the case, that the dust grains are negatively

charged.

In the fast regime, where the dust is stationary, the plasma is robbed of a fraction

of its mobile negative charge. An important effect in plasma physics is that electrons

will tend to distribute themselves such that they screen out any regions of non-neutral

charge. Oftentimes the restoring force of a plasma wave is provided by electric fields

and so if the electron population is diminished, the screening of charge is less efficient

meaning that the electric fields are able to extend further to couple charged regions

of plasma more strongly. There are also consequences for magnetic waves: a drop

in electron density will lead to a suppression of the current they can provide and so

any magnetic fields are likely to be weakened. To understand the nature of the slow

regime, one may picture this as having analogous behaviour to quasineutral plasma. For

ordinary plasma waves where the ion inertia dominates, one may roughly picture this

as heavy positively charged particles surrounded by an inertia-less negatively charged

fluid. Likewise, in a dust inertia dominated wave one now has heavy negative particles

immersed in a positively charged inertialess fluid, since the ion inertia can be ignored

here too and they outnumber the electrons. Thus, slow waves tend to resemble their

plasma counterparts, with modified mass and charge densities.

It is fair to say that the theory of dusty plasma waves far exceeds the work done in the

laboratory. Both slow and fast modes of dusty plasma waves have been produced in the

laboratory in the form of dust-acoustic [20] and dust-ion acoustic [21] waves respectively.

Much theoretical work has been done on the implications of dust for electromagnetic

waves for both stationary and dynamic dust [22] [23] [24]. Such publications point

out that there are plenty of candidate dusty plasmas in space to support the waves of

their study (cometary atmospheres, interstellar molecular clouds, the lower and upper

mesosphere and planetary rings to name a few) [25] [26] [27], but, this appears to be, as

Verheest described, “...a situation where the theoretical studies concerning waves and
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instabilities in dusty (space) plasmas are far ahead of what observations can corroborate

at present. Due to the paucity of coming solar system missions specifically concerned

with planetary or cometary phenomena, the situation is unlikely to change much in the

near future.” [28]

There are many effects which complicate the analysis of these waves. First of these

is that a dust fluid is likely to consist of a variety grain sizes. In these cases the grain

mass and charge are replaced by their average values and so one needs to know the

probability distribution of sizes and a model which accurately calculates grain charge

as a function of radius. The effect of taking a power law and normal distribution for

the grain sizes has been investigated for dust acoustic waves [29]. Secondly, a dust

grain’s charge depends on its surroundings, both through the plasma parameters and

the density of neighboring grains [30]. Given that at least the former of these will be

oscillating in space, dust grains will be charged differently at different points in the

wave. A dust grain also takes a finite amount of time to adjust its charge to fit with

its new surroundings and so it is possible that for frequencies too fast for the dust to

equilibrate one must employ a fully transient model for the grain charge which is a

dynamical variable. This effect is responsible for the damping of Langmuir oscillations

in a dusty plasma [31]. Strong coupling of the grains may also become an important

feature [32] if the dust grain density is sufficiently high.

1.3.2 Dust in plasma

Now to give three areas of dust in plasma to which this work will be most pertinent.

The common features of these are, loosely speaking, dust grains in the sheath region

with an externally applied dipole magnetic field.

Semiconductor processing

A chemically reactive plasma discharge offers great scope to modify the surface proper-

ties of materials, or indeed, to create new ones [33]. Because of this, “plasma processing

technology is vitally important to several of the largest manufacturing industries in the

world” [34]. I shall now focus on the semiconductor industry, for which the processes of

deposition and etching are critical in the fabrication of microchips. The former process

allows thin films of metal to be layered onto a wafer and the latter carves out from these

the sub-micron features of the circuit. Owing to the delicate nature of microelectronics,

contamination by dust grains can degrade reliability by weakening adhesion between

layers or cause device failure by shorting the circuit [35]. Given that manufacturers are

not inclined to share their findings on tackling this problem, it is difficult to ascertain its

exact magnitude. It has been estimated that particulate contamination was responsible

for over 50% of device yield losses in 1990 [36], over 80% in 1996 [37] and as of 2006

semiconductor companies were spending billions of dollars annually to tackle the prob-

lem [35]. More recent publications still stress that particulate contamination remains a

key challenge [38] [39].
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During a routine inspection in 1989, Gary Selwyn of IBM made an accidental dis-

covery which revealed that particulate contamination was occurring during the plasma

processing phase [40], in fact, contamination inside the vessel was to the extent that

“often, the level of dust in a plasma process tool exceeds the cleanroom by several orders

of magnitude” [41]. Selwyn was intending to determine the chemical concentrations in

the plasma by measuring the weak fluorescence induced by laser illumination. Instead

of this, he observed the light to be strongly scattered by clouds of micron sized parti-

cles hovering over the lower electrode. The explanation for this starts with dust being

produced in situ either by nucleation [42] or by flaking off from the walls [43] and then

falling down through the vessel under gravity. The walls each have an associated sheath

region, the electric field acting to repel the dust grains (which are negatively charged)

back into the plasma. Grains will remain in the plasma and continue to fall until the

electrostatic repulsion of the lower electrode equals their weight and they levitate omi-

nously above the microchip being fabricated. When the plasma processing is complete,

the plasma is switched off and the grains fall onto the chip.

Several methods have been proposed for the removal of dust, each candidate differing

in the mechanism by which the particles are pushed: radiation pressure from a high

power laser beam [44], modulation of the electrode voltage [45], electrostatic wells [46],

thermophoretic force [47] and drag from a jet of plasma [48]. Most relevant to my

work here, a collaborator performed experiments with a bar magnet placed under the

lower electrode and was able to influence the levitating grains, intimating that this may

provide a mechanism for their removal (A. Dyson, private correspondence).

Laboratory dust in plasma

Though a curse for the semiconductor industry, the discovery that dust particles can be

suspended in a laboratory plasma discharge was a blessing for dusty plasma physicists

as it provided an ideal environment for their experimental study (see Fig. 1.1) which

had been lagging behind the theory at that time. The same basic apparatus is used,

with the addition of a mechanism to introduce dust to the discharge and usually an

enhanced radial electric field to ensure that the particles remain central and do not

disperse under their mutual repulsion. The length and time scales involved are also

particularly convenient. Relatively large interparticle spacings and relatively slow speeds

allow individual particle dynamics to be fully resolved. The experimentalist also has

the opportunity to manipulate the grains either collectively or individually with, for

example, electromagnetic fields or light pressure (or any other force which has been

suggested for their removal in the previous section). Notable early experiments led to

the discovery of Coulomb crystals [49] [50] [51] and provided verification of dust acoustic

waves [20] five years after their theoretical inception [18].

The spontaneous self organisation of dust into crystalline states has become an area of

great interest [52] as the archetypal complex plasma. Dust grains meet all the criteria to

be considered a new state of soft matter, defined by its founder Pierre-Gilles de Gennes
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Figure 1.1: Dust grain crystal levitated above the lower electrode as viewed from the
side (main) and above (inset). Image credit: Max Planck Institute for
Extraterrestrial Physics
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to be “supramolecular substances which exhibit special properties such as macroscopic

softness or elasticity ... and where the relevant physics is far above the quantum level”.

As well being interesting in their own right as a new type of soft matter, complex plasmas

are used to act as a macroscopic model system for phenomena in liquids and crystals.

To name just a few, the atomistic dynamics in fluids [53], kinetics of heat transport [54]

and properties of crystals [55] have been explored. Complex fluids, the counterpart to

complex plasmas have played this role in the past [56] (for this de Gennes received the

Nobel prize in 1991), but the more versatile nature of plasmas means there is scope to

study a greater variety of structures.

The effects of introducing a magnetic field to the arrangement has proved to be an

area of great interest. Magnetic fields indirectly influence dust dynamics by inducing

motions in the plasma which then impart momentum to the grains. If one is able

to accurately characterise the plasma behaviour, this serves as a tool to investigate the

forces on the grain. Also, differential motions of the grains can be induced [57], providing

the opportunity to examine, for example, the viscous properties of the dusty crystal.

With a constant axial magnetic field (this being the axis of symmetry, perpendicular to

the lower electrode), one of the phenomena which has interested the community most

is the rotation of the dust cloud [57] [58] [59], [60] [61]. It was not until the last of

these publications when the effect was truly understood: the magnetic fields deflect the

ions, inducing an azimuthal velocity component and then collisions of these with neutral

particles ‘stir’ the background gas which, in turn, imparts azimuthal momentum to the

dust grains.

Of interest to this thesis are those experiments which have studied the effects of a non-

uniform field geometry [62] [63] [3] (A. Dyson, private correspondence). In particular,

I will concentrate on the latter three of these where the magnetic field is sourced by a

small permanent magnet under the lower electrode providing, to lowest order, a dipole

type field. In addition to these, there are nearly identical experiments which have been

performed, but they are not strictly speaking complex plasma experiments and will be

introduced in the next section. As well as rotational motion of dust, a new feature

is observed which has so far not been explained: a radial redistribution of the dust

particles. In most cases, a void forms directly above the magnet leaving a ring shaped

cloud of dust, although, in one case the opposite was observed: the magnet lead to

particles becoming more tightly bound to the axis (A. Dyson). Radial redistribution

has been observed in all of the experiments using dipole field geometries and in only one

of the five aforementioned experiments using an axial field [57], thus one concludes that

the geometry of the field is central to understanding void formation, though, perhaps

not providing the only mechanism.

Lunar dust

Lunar dust plasma environment The moon is surrounded by a permanent, anisotropic

cloud of dust, characterised recently [64] with data from the Lunar Atmosphere and Dust
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Environment Explorer (LADEE) mission to weigh over 100kg, extending to a typical

altitude of 100km and consisting of grains of radius 0.3 − 1µm. This gravitationally

confined cloud is sustained by the plumes kicked up by the bombardment of interplan-

etary dust particles. The anisotropic flux of these particles is the reason why the dust

distribution is not spherically symmetric, but strongly enhanced around the morning

terminator (the line separating lunar day from night).

The interaction between the moon and solar wind leads to a complex and varied

environment containing “a veritable host of fascinating plasma physics” [65]. Supersonic

plasma flow and UV and soft X-rays from the Sun impinge upon the exposed dayside.

This solar radiation begets a population of photoelectrons dominating the sheath near

to the surface (< 10m), the photoelectron current exceeds that incoming from the solar

wind resulting in a net positive surface charge [66]. Due to the losses of ions and electrons

to the dayside and the high speed of the solar wind, a wake is formed downstream of

the moon extending for tens of lunar radii [67]. The nature of the downstream plasma

is beyond the scope of this work, but the end result just above the nightside is a tenuous

Debye sheath above a negative surface charge [68].

It is worth mentioning the controversial topic of electrostatic lofting of dust grains.

In the terminator region, dark and illuminated patches are juxtaposed resulting in

large potential differences over small distances. It has been suggested that the resulting

electric fields may be strong enough to unstick dust grains from the surface and to launch

them to altitudes up to 100km [69]. This population of dust has been conjectured to

explain observations made during the Apollo era of light scattering at high altitude

[70], however, LADEE did not discover this putative component leaving these effects

unexplained.

At any rate, the coexistence of the dust cloud and plasma indicates that the lunar

exosphere constitutes an example of dust in plasma. One may, in fact, argue this to be

true on a larger scale also: the moon itself is a solitary insulating dust grain suspended

in a supersonic plasma flow. Now I turn attention to one specific phenomenon occurring

on the lunar surface which has sparked much interest recently and has overlap with this

work.

Lunar swirls Visually striking, sinuous patterns on the lunar surface (see Fig. 1.2)

were first observed by astronomers during the Renaissance and have been the enigmatic

subject of intense study over the past few decades. These high albedo features have

an optical maturity far lower than their dark surroundings which appear so due to the

effects of space weathering. Although the moon does not posses a global magnetic field,

data from Apollo 15 and 16 subsatellites revealed that there exist isolated magnetised

crustal patches [71] and the size and location of lunar swirls is found to always overlap

with one of these ‘magnetic anomalies’ [72].

The leading hypotheses for swirl formation postulate that the magnetic field modifies

the plasma environment above the lunar surface. This can be further divided into two

categories, the first being the mini-magnetosphere theory, applying to stronger magnetic
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Figure 1.2: The archetypal lunar swirl, Reiner Gamma, as photographed by the Lunar
Reconnaissance Orbiter. For scale, the large crater is 117km to the east and
has diameter of 30km. Image Credit: NASA LRO WAC science team

anomalies such as Reiner Gamma [73]. A stand off of the solar wind is achieved approx-

imately at the altitude, L, where lunar magnetic pressure overcomes the ram pressure

of the incoming plasma at which point an abrupt boundary layer (magnetopause) of

characteristic thickness the electron skin depth, de, forms. Such features are sometimes

referred to as ‘magnetic bubbles’, in this analogy having a radius L, film thickness de

and an interior void of plasma. Thus, the patch of surface enclosed by the points to

which this bubble adheres is shielded from solar wind ion bombardment. On a far

grander scale, it is the same mechanism which protects the Earth’s inhabitants from

the solar wind.

For smaller anomalies, where the magnetic field is too weak for a stand off to form,

another mechanism has been suggested to prevent ions from reaching the surface [74].

In this case, only the electrons are directly influenced by the magnetic field and strong

electric fields arise near the surface due to their redistribution. This process is kinetic

in nature, resulting in a new physical regime an order of magnitude smaller than mini-

magnetospheres. It has been suggested that these fields mobilise dust particles, with the

preferential transport of the finest grains (which are also the brightest) being responsible

for the observed patterns [75]. However, it may instead be the case that ions are

deflected by the electric fields, again resulting in protection from space weathering. The

experiments and simulations related to this phenomenon are the ones I alluded to in the

previous section as having coincidental similarity to dusty crystal experiments. These

studies, as well as simulations, will be described in more depth in Chapter 4.

The work done in this field not only serves to demystify lunar patterns. The large

length scale and possibility of in situ diagnostics provides a natural laboratory with the

rare opportunity to study a wealth of plasma phenomena at the finest level [76]. It
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has also been suggested that a mini-magnetosphere effect could be employed to protect

spacecraft, and the crew members inside, from the hazard of interplanetary radiation

[77].

1.4 Focus of this work

This thesis covers topics from the two branches outlined in sections 1.3.1 and 1.3.2, both

involving plasmas where magnetic fields are present. The first, contained in Chapter 3,

is a study in the field of dusty plasma physics and extends the theory of dusty plasma

waves by considering two nonlinear magnetic plasma waves, as yet unstudied to include

immobile dust. The remaining chapters are then dedicated to a second task, a study

of plasma boundary interaction with an externally applied magnetic dipole, having

application to all three examples outlined in section 1.3.2 on ‘dust in plasmas’. The

current state of affairs is outlined at the start of Chapter 4 and then some improvements

which can be made will be developed there. The numerical methods required to realise

the new model which results are outlined in Chapter 5 and then findings of this are

given in Chapter 6. Before all of this can begin, it is necessary to introduce some basic

underlying theories.
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This chapter is reserved for results which are used throughout this work and are too

important or non-trivial to be taken for granted.

2.1 Maxwell-Boltzmann distribution

A gas of charged particles moving under the influence of an electric potential, φ(x),

presents an unimaginably complicated dynamical problem. Despite this, Boltzmann

succeeded in determining how the particles will distribute themselves, both in position

and velocity space. Under the assumption that the particles have had enough time

to settle to thermal equilibrium, he reasoned that the probability distribution function

(PDF) for finding a particle at a position x with a velocity v is

fx,v(x,v) = N exp

(
1
2mv · v + qφ(x)

kBT

)
, (2.1)

where T is the temperature, N is some normalizing factor to ensure that∫
d3x

∫
d3vfx,v = 1 and equation (2.1) is referred to as the ‘Maxwell-Boltzmann distri-

bution’ (MBD). The integral of this over velocity space is commonly referred to as the

Boltzmann Relation (BR), giving how the spatial distribution of particles depends on

the potential

n(x) = n0 exp

(
eφ(x)

kBTe

)
, (2.2)

with n0 being the particle density where the potential is zero. The part of the MBD

involving velocity is referred to as the Maxwellian Velocity Distribution (MVD)

fv(vx, vy, vz) =

(
m

2πkBT

) 3
2

exp

(
−
m(v2

x + v2
y + v2

z)

2kBT

)
≡ fvx(vx)fvy(vy)fvz(vz) , (2.3)

where

fvj (vj) =

(
m

2πkBT

) 1
2

exp

(
−
mv2

j

2kBT

)
(2.4)

is the PDF for the jth velocity component. The MBD has the astonishing feature that

despite the presence of a force field accelerating and decelerating particles, at any point

30
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Figure 2.1: Trajectories of electrons near to an absorbing (but also repelling) wall (a)
and the resulting velocity PDF at a height z (b).

in space the velocity distribution is the same. ET Jaynes, a heavyweight of statistical

mechanics, pointed out that “a Maxwellian velocity distribution, once established, is

maintained automatically, without any help from collisions, as the molecules [particles]

move about in any conservative force field” [78, p. 16].

One feature the MBD does not account for is sources and sinks of particles and the

following example will provide a useful illustration of how an absorbing surface modifies

the picture for a collisionless plasma. In one dimension (1D), imagine electrons with a

MVD at infinity and a repelling plane (which is a sink of particles) located at z = 0

with a potential φW < φ(∞) = 0. A particle at some height z will have got there

from infinity - if its z velocity, vz, is negative it is still on its inbound journey and if

it’s positive it has at some stage had its motion reflected. Consider the trajectories

of Fig. 2.1, showing how three particles contribute to the velocity PDF at a height z

during their inward and outward passages. From energy conservation, the inbound and

outbound speeds at z are the same for each particle and the v
(2)
z trajectory is significant

as it is one which just escapes a scrape with the surface. A patch of plasma at z will

feature −v(1)
z , −v(2)

z and −v(3)
z , as well as v

(1)
z and v

(2)
z but will be missing v

(3)
z which is

lost to the wall. To generalize this, the distribution function at a height z will be zero

for velocities vz > v
(W )
z (z) ≡

√
2e(φ(z)−φW )

m . The self-preserving property of a MVD still

applies, however, and the shape is maintained, just with a discontinuous chopped-off

region to account for particles lost to the wall (see Fig. 2.1 (b)). What this implies for

the density is a reduction in proportion to the fraction of particles which are missing.
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Performing this calculation

n = n0 exp

(
eφ(x)

kBTe

) ∫ v(W )
z (z)
−∞ fvz(vz) dvz∫ v(W )
z (∞)
−∞ fvz(vz) dvz

= n0 exp

(
eφ(x)

kBTe

) (
1 + erf

(√
m

2kBT
v

(W )
z (z)

))
(

1 + erf
(√

m
2kBT

v
(W )
z (∞)

)) . (2.5)

This form of the electron density has been used to provide a more accurate description

of the sheath profile [79].

2.2 Single particle motion in magnetic fields

2.2.1 Uniform B

In component form, the equations of motion for a particle in a uniform magnetic field,

B = Bẑ, are

dvx
dt

=
qB

m
vy , (2.6)

dvy
dt

= −qB
m
vx , (2.7)

dvz
dt

= 0 . (2.8)

Equations (2.6) and (2.7) can be decoupled by differentiating the first and substituting

it into the second to obtain:

d2vy
dt2

= −ω2
cvy (2.9)

where ωc = |q|B
m is the ‘cyclotron frequency’. This equation has a solution

vy = v⊥ sin(ωct) , (2.10)

for a particle which has a speed v⊥ in the x-y plane, taken to have vy(t = 0) = 0. It

then follows that vx is given by

vx = ±v⊥ cos(ωct) . (2.11)

where the ± is opposite of the sign of q. Integrating (2.11) and (2.10) one obtains

x = x0 ± rL sin(ωct) , (2.12)

y = y0 − rL cos(ωct) , (2.13)

where rL = mv⊥
|q|B is the ‘Larmor radius’. Together equations (2.12) and (2.13) describe

a circular orbit of radius rL and frequency ωc about a ‘guiding centre’ at (x0, y0, z(t)).
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Given that the z motion is unaffected by the magnetic field, orbits describe helices and

thus appear to be tied to field lines. If an electric field parallel to B is present the

picture remains the same, except with the guiding centre accelerated by the field in the

same way a particle would be.

2.2.2 E×B drifts

Now to examine the case when a uniform electric field is also present. Consider some

reference frame S, where there are uniform electric and magnetic fields, E and B, and

a charged particle initially at rest. To solve for the subsequent motion of the particle,

it is simpler to first transform to a frame, S′, where the electric and magnetic fields are

parallel - a problem which has just been solved. The electric and magnetic fields in this

new frame, E′ and B′, are given by the Lorentz transformations:

E′‖ = E‖ , (2.14)

B′‖ = B‖ , (2.15)

E′⊥ = γ (E⊥ + vF ×B) , (2.16)

B′⊥ = γ

(
B⊥ −

vF ×E

c2

)
, (2.17)

where vF is the velocity of frame S′ as observed in S and the ‖ and ⊥ subscripts indicate

coponents parallel and perpendicular to vF respectively. If one takes vF = −E×B
B2 ,

equations (2.14) and (2.15) become redundant since, vF being perpendicular to E and

B, both of the parallel components are zero. Given this choice of vF , there is no need for

the subscripts in E⊥ and B⊥ since E and B are purely perpendicular to vF (the same

applying to their primed counterparts). Substituting this velocity into the remaining

two equations and further assuming that |vF | � c yields

E′ =
(E ·B)

B2
B ≡ E‖B , (2.18)

and

B′ = B , (2.19)

where E‖B is the component of E parallel to B. In S′ the electric and magnetic fields

are in the same direction and thus the particle motion is described by gyration of radius

rL = m|vF |
qB around a guiding centre which has velocity vg = q

mE‖Bt. The only thing

left is to transform back to S, the motion in this frame is described by gyration, again

of radius rL, around a guiding centre moving at a velocity

u = −vF + vg =
E×B

B2
+

q

m
E‖Bt (2.20)
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i.e. the guiding centre is accelerated by the projection of the electric field in the B

direction and has a superimposed drift motion referred to as the ‘E × B drift’. If E

and B are purely perpendicular it is just this drift which is observed. It is interesting

to note that whilst the gyroradius changes between particle species, the E × B drift

velocity is independent of mass and charge.

2.2.3 Magnetic mirror

Following the derivation of Chen [10, p. 27], consider an azimuthally symmetric magnetic

field, primarily pointing in the positive z direction with its magnitude varying with z.

The field lines of this configuration will be directed mostly in the z direction but will

necessarily have a radial component to ensure that the field line density can change

in accordance with the magnitude, this radial field, Br, following from ∇ · B = 0. In

cylindrical coordinates this requires

∂(rBr)

∂r
= −r∂Bz

∂z
. (2.21)

Assuming that ∂Bz
∂r varies slowly in the r direction, one can take it to be constant and

thus the integral is easily evaluated

Br = −1

2
r
∂Bz
∂z

+ f(z) (2.22)

and by symmetry Br(r = 0, z) = 0 requires that f(z) = 0 and so

Br = −1

2
r
∂Bz
∂z

. (2.23)

This subsection is concerned with how a charged particle will respond to such a field,

with a uniform electric field, Ez, included for generality. Assuming that the particle

is tied to the field line described by r = 0 and has a gyroradius small enough not to

experience any significant changes in Bz from the value on axis, the radial velocity is zero

and the azimuthal velocity is constant at vθ = ∓v⊥ (where the ⊥ indicates directions

perpendicular to Bz and the ∓ corresponds to the particle charge to account for the

direction of gyration). Interesting information about the trajectory is thus contained in

the z equation of motion,

m
dvz
dt

= ±qv⊥Br + qEz . (2.24)

Substituting the form of Br from (2.23) into this and using the fact that r = rL the

dependence on the sign of q disappears,

m
dvz
dt

= −µ∂Bz
∂z

+ qEz , (2.25)
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where µ = 1
2
mv2⊥
B is the ‘magnetic moment’ of the particle with B the total field strength.

The previous analysis for the special case of a particle travelling along the axis generalises

to particles off axis too

F‖ = −µ∂B
∂s

+ qE‖ (2.26)

where s is a line element along B. Taking the scalar product of both sides with v‖ = ds
dt

gives

d

dt

(
1

2
mv2
‖

)
= −µdB

dt
− qdφ

dt
(2.27)

and when this is compared to conservation of energy,

d

dt

(
1

2
mv2
‖ +

1

2
mv2
⊥ + qφ

)
= 0 , (2.28)

it is inferred that

−µdB

dt
+

d(µB)

dt
= 0 , (2.29)

so that

dµ

dt
= 0 , (2.30)

meaning that the magnetic moment is invariant for any given gyrating particle. This

implies that as a particle moves to regions of increasing B, its v⊥ must increase to keep

µ constant. Since it must also conserve energy, this perpendicular kinetic energy is

taken from the parallel motion, which continues to decrease to zero at which point the

particle is reflected.

This is the picture for one particle, but it is interesting to consider how the distribution

of a collection of particles is modified by the magnetic mirror effect (also moving into a

retarding electric field). For electrons, the force in the z direction,

F‖ = −µdB

dz
+ e

dφ

dz

= −1

2

mv2
⊥0

B0

dB

dz
+ e

dφ

dz
, (2.31)

will lead to a z velocity as a function of z given by

vz =

√
v2
z0 +

2eφ

me
− v2
⊥0

(
B

B0
− 1

)
, (2.32)

where vz0 and v⊥0 are the initial z and perpendicular velocities respectively, coin-

ciding with the point where φ = 0. The infinitesimal contribution to the density

at z, dn(z, vz, v⊥0), made by particles which had the initial conditions vz0 → dvz0,
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v⊥0 → dv⊥0 is from continuity

dn(z, vz0, v⊥0) = vz0
dn(0, vz0, v⊥0)

vz

=
vz0 dn(0, vz0, v⊥0)√

v2
z0 + 2eφ

me
− v2
⊥0

(
B
B0
− 1
)

=
vz0 dn(0, vz0, v⊥0)√
v2
z0 − g(z, v⊥0)

(2.33)

where g(z, v⊥0) = v2
⊥0

(
B
B0
− 1
)
− 2eφ

me
. If a Maxwellian velocity distribution is assumed

at the starting point,

dn(0, vz0, v⊥0) = n0
4√
π

(
m

2kBTe

) 3
2

v⊥0 exp

(
−mv

2
⊥0

2kBTe

)
exp

(
− mv2

z0

2kBTe

)
dv⊥0 dvz0

(2.34)

and the total density is the integral over all initial conditions which can result in a

particle reaching z,

n(z) = n0
4√
π

(
m

2kBTe

) 3
2
∫ ∞

0
dv⊥0

∫ ∞
√
g(z,v⊥0)

v⊥0 exp
(
− mv2⊥0

2kBTe

)
exp

(
− mv2z0

2kBTe

)
v2
z0 − g(z, v⊥0)

dvz0 ,

(2.35)

which is integrated to yield

n =
B0

B
n0 exp

(
eφ

kBTe

)
. (2.36)

Reassuringly, this reduces to the BR for a uniform magnetic field. The picture is

incomplete, since there is one effect which has gone unnoticed thus far. If particles

truly are tied to field lines then one should expect that a set of particles which initially

described a cross section of A0, where the field was B0, should be reduced to an area

A1 = B0
B A0, where the field is B, to account for the higher field line density. The net

effect of this process is to lead to an increased electron density by a factor of B
B0

. It

is therefore the case that the combination of the effects of magnetic mirroring and this

‘squeezing’ by the field lines cancel each other out, leaving the density unchanged.

In summary, if particles are injected into a magnetic mirror, their tendency to follow

their associated field lines will result in a contraction of the plasma cross section as it

streams along. Despite a reduction in the plasma cross section, the density is unchanged

by an exact cancellation due to reflection of particles by the mirror. Chen arrived at

this same result from a different approach by considering equilibrium states in MHD

[10, p. 203].
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2.3 The magnetic dipole

It is an appropriate time to introduce the magnetic field configuration which will apear

most often in this work. The magnetic dipole field has, arguably, the most fundamental

magnetic field geometry, being the idealized result of a vanishingly small current loop.

It can accurately describe the field of electrons, atoms, bar magnets, planets or neutron

stars. The dipole properties are prescribed by a vector, M , called the magnetic moment,

with |M | indicating the strength and the direction aligned with the local value of B

as it passes through the source loop. The magnetic field at a point displaced r from a

magnetic dipole moment M is given by

B =
M
|r|3

(
3(M̂ · r)r

r · r − M̂

)
(2.37)

and has the field strength

B =
M
|r|4
√

3(M̂ · r)2 + r · r , (2.38)

where M ≡ µ0M
4π . Due to the azimuthal symmetry of the field, cylindrical coordinates

will be employed and so it will be useful here to list some key equations of the magnetic

dipole, which will be used repeatedly, in these coordinates. Firstly, the two components

of B and the magnitude are given as

Br =
3Mzr

(r2 + z2)
5
2

, (2.39)

Bz =
M(2z2 − r2)

(r2 + z2)
5
2

, (2.40)

B =
M
√

4z2 + r2

(r2 + z2)2
. (2.41)

Field lines, l(a), are derived from

dl =

(
B

B

)
da (2.42)

where l(a) gives the position of a point on the line, for some parameter a. This results

in the field lines given as

z =

√
Cr

4
3 − r2 (2.43)

where C is some constant depending on the chosen line. A selection of these are plotted

in Fig. (2.2). To make this diagram more informative, values of C are chosen such that

the line density is in proportion to the field strength.
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Figure 2.2: Magnetic field lines in cylindrical coordinates for a dipole centred at the
origin with its moment aligned with the z axis.

2.4 Plasma-boundary interaction

Imagine the transient period the instant after an electrically floating wall hypothetically

appears in a plasma. The early fluxes of plasma particles to the initially neutral wall

will be determined from classical kinetic theory as 1
4nj,W v̄j where nj,W are the values of

j particle densities at the wall and v̄j is the mean of the magnitude of their velocities.

Given the disparity between electron and ion thermal velocities, the wall will be over-

whelmingly inundated with electrons and will consequently charge negatively. This acts

to reduce ne,W , according to the BR, stymieing the electron current and, in addition,

acting to encourage more ions onto the surface. For the relatively low pressures I will

be considering, it turns out that the electric fields are so strong that the ion current is

not determined by random thermal flux, but provided by strong directed motion, far

exceeding the thermal velocity. To achieve a steady state, the wall must settle on a

potential suitably repulsive to electrons and attractive to ions such that their fluxes are

equal. This would imply that in the vicinity of the wall there is a region where the

densities of the electrons and ions are significantly different meaning that this region is

also a zone of strong electric fields.

This brief discussion helps one to appreciate that the electron and ion behaviour in

this region, known as the ‘sheath’, is wildly different and acts as justification for the

assumptions which will now form a simple model.
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2.4.1 Space-charge sheath

Following the derivation of Franklin [80, p. 51], consider a distinct boundary, at x = 0,

where there is a transition from plasma to sheath. The first assumption is that the

ions cross this boundary with a directed velocity ui0, where this is much faster than

their thermal velocity. Secondly, it is assumed that the plasma sheath boundary is

characterized by equal particle densities and density gradients. Thirdly, it is assumed

that no collisions occur in the sheath - implying no loss of momentum of the ions and

no particles produced through ionization. Lastly, I assume that the electron density is

everywhere described by the BR, despite the fact that this is liable to be incorrect near

to the wall. The relevant equations are then: ion continuity,

niui = n0u0 , (2.44)

the ion equation of motion,

miu
dui
dx

= −edφ

dx
, (2.45)

Boltzmann electron density,

ne = n0 exp

(
eφ

kBTe

)
, (2.46)

and Poisson’s equation,

d2φ

dx2
=

e

ε0
(ne − ni) . (2.47)

Supplementing these are the boundary conditions: ni(0) = ne(0), φ(0) = 0 and dφ
dx (0) =

dni
dx (0) = dne

dx (0) = 0. Introducing the normalizations:

η =
eφ

kBTe
, Ne =

ne
n0

, Ni =
ni
n0

, Ui =
ui
cs

, (2.48)

equations (2.44)-(2.47) boil down to one for the potential,

d2η

dx2
=

1

λ2
De

[
eη −

(
1− 2η

U2
i0

) 1
2

]
, (2.49)

where it’s clear that the characteristic lengthscale to which I should have normalized x

with is the electron Debye length, λDe =
√

ε0kBTe
nee2

, a value which serves plasma physics

as a whole to indicate the typical distance over which non-neutral regions are screened

out by the plasma. Implementing this normalization by taking X = x
λDe

and reducing

equation (2.49) to a first order equation by multiplying by dη
dX and then integrating from
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X = 0 to a point deeper in the sheath,

1

2

(
dη

dX

)2

= eη − 1 + U2
i0

√
1− 2η

U2
i0

− U2
i0 . (2.50)

Before this equation can be numerically integrated, one needs to know how to commence

the process and when to end it. The latter condition follows by remembering that the

wall is a special location, where the ion and electron currents are equal. From this one

is easily able to determine the potential at the wall by equating the particle fluxes,

n0ui0 =
1

4
n0ve,th exp

(
eφw
kBTe

)
, (2.51)

which implies that

ηW =
1

2
ln

(
mi

2πmeU2
i0

)
, (2.52)

providing the value of η at which one ceases to integrate (2.50) any further.

As for initiating the integration, if one tries to numerically integrate (2.50) by taking

η = 0, dη
dX = 0, the potential will not change. Instead, one must search for a solution

which tends asymptotically to zero. Defining ξ = XW −X, this means that one requires

η → 0 and dη
dξ → 0 as ξ →∞. Examining solutions of the form

η =
A

ξn
, (2.53)

equation (2.50) becomes in this asymtotic limit,

n(n+ 1)A

ξ2+n
≈ A

ξn

(
1− 1

U2
i0

)
− 1

2

A2

ξ2n

(
3

U2
i0

− 1

)
. (2.54)

On the RHS, the coefficient of ξ−n must be zero since it can have no term of equal order

on the LHS (n 6= 2 + n), implying that Ui0 = 1. This condition is the equality form of

what is known as the ‘Bohm criterion’, stated as ui0 ≥ uB =
√

kBTe
mi

, where uB is equal

to the ion sound speed (but in this context also referred to as the Bohm velocity). The

Bohm criterion is a weaker condition which follows from the requirement that the RHS

of (2.50) is positive. To ensure that the remaining RHS term in η−2n may equal the

LHS, it must first be the case that 2 + n = 2n, giving n = 2. The coefficients must also

be the same requiring in turn that A = −6. Therefore, far from the wall one can expect

the potential to behave as,

η ≈ − 6

ξ2
(2.55)

This serves as the condition to initiate numerical integration of the potential - one begins

at a position far from the wall, ξ0, with η(ξ0) = − 6
ξ20

and dη
dξ (ξ0) = 12

ξ30
.
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2.4.2 Presheath

A direct consequence of the Bohm criterion (in its equality form) is that there must be

some process occurring upstream of the sheath edge to accelerate the initially stationary

bulk plasma ions to uB. Contrary to the assumption that the electric field at the sheath

edge is zero, this acceleration is performed by some finite electric field in the plasma.

The region of plasma over which the potential drops by 1
2
miu

2
i0

e is referred to as the

‘presheath’ and is typically larger in extent than the sheath. Since the electric fields

in the sheath are still far stronger than those in the presheath, the assumption that

E = 0 at the sheath edge is not a poor one and so the findings of Section 2.4.1 are not

invalidated. The only real complications arise when deciding how to stitch together the

sheath and presheath solutions.

Following the derivation provided by Franklin in a paper [81], assuming quasineutral-

ity in the presheath, the electron and ion densities, as well as their bulk speeds, will

be equal. With an ionization rate per unit volume, g(n, x), the continuity equation is

stated as

d(un)

dx
= g(n, x) . (2.56)

Electrons are assumed to follow the Boltzmann relation, the location where n = n0

and φ = 0 is still taken to be in the bulk plasma, but strictly speaking this is now the

presheath edge, not the sheath edge. The steady state ion fluid equation of motion is

mi
d(nu2)

dx
= neE − neu

µ(x, u)
, (2.57)

where µ(x, u) is the ion mobility. These equations are readily put into their most

enlightening form by using the property of the BR that

dn

dx
= − enE

kBTe
, (2.58)

to yield

1

n

dn

dx
=

e
µ(x,v) + 2g(n,x)miu

n

kBTe −miu2
(2.59)

and

du

dx
=
g(n, x)(kBTe +miu

2) + eu
µ(x,u)

n(kBTe −miu2)
. (2.60)

To avoid these equations becoming singular it must be the case that u < uB, this result

holding regardless of the generation mechanism and collisional model which have been

left quite general so far. Given this limitation on the flow speed and comparing it with

the Bohm criterion, one concludes that the presheath can indeed accelerate particles

up to something very close to the Bohm speed at which point quasineutrality starts to



42 Chapter 2. Background Theory

break down. Around this point, there will be some transition region where neither the

sheath nor presheath models provide an adequate description and some mathematical

stitching together of these two regions is required.

2.5 Dust charging

Dust particles gain and lose charge through a variety of processes, dominating these

is donations of ions and electrons from the surrounding plasma. If these particles are

destined to cross paths with a dust grain, those which are not reflected at the surface

will pass into the grain material losing energy as they do. Once the ion or electron

is decelerated and becomes a part of the dust, its charge now belongs to its new host

too. Assuming this process is perfect - that every particle whose trajectory intersects

with the grain is instantly absorbed - the problem is then to determine the rate at

which particles are collected. Here I shall reproduce the most commonly used model

to describe the collection of plasma particles by dust grains, the orbital motion limited

(OML) theory.

The basic task of any charging theory is to consider plasma particles distant from the

grain and then to determine which combinations of initial conditions (initial velocity,

v0, and impact parameter, b) will result in trajectories exploring radial coordinates less

than the grain radius, a. The defining feature of OML, which will be seen shortly, is

the condition used to separate between collected and escapee particles. Assuming the

plasma is collisionless, conservation of energy requires that

1

2
mjv

2 + qjφ(r) =
1

2
mjv

2
0 , (2.61)

where mj and qj are the charge and mass of the particle of species j. Assuming spherical

symmetry, angular momentum conservation requires that

vtr = v0b , (2.62)

where vt is the tangential component of the particle velocity. From here, OML seeks to

find the critical impact parameter, bc(v0), for which a plasma particle just grazes the

surface of the grain. The significance of this is that all particles with the same velocity

v0 and an impact parameter b < bc are assumed to be collected, thus giving an effective

collection cross section of σ(v0) = πbc(v0)2. Evaluating (2.61) at r = a gives the velocity

of a particle at the grain surface,

va =

√
v2

0 −
2qj
mj

φd , (2.63)

where φd = φ(a) is the dust grain potential. One sets the conditions for a grazing

collision by requiring that this speed is entirely in the tangential direction, va = vt.
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Therefore, evaluating (2.62) under this condition at the surface of the grain,

vaa = v0bc , (2.64)

which is rearranged for the critical impact parameter and subsequently yielding the

cross section as

σ(v0) = πa2

(
1− 2qjφd

mjv2
0

)
. (2.65)

At a point afar from the grain the particle velocity is entirely radial and equal to v0,

thus the number of particles streaming through the collection cross section per second

is given by v0njfj(v0)σ(v0) (where fj(v0) is the velocity PDF and nj is the total species

density at infinity) and this equals the rate of collection by the dust. The current onto

the grain from species, j, is the integral of the particle flux over all possible values of v0

multiplied by the particle charge,

Ij = q0nj

∫ ∞
vmin

v0fj(v0)σ(v0) dv0 , (2.66)

where vmin is the slowest a particle can set out while still reaching the grain - for particles

which are attracted to the grain, vmin = 0. Considering ions of charge Ze, assuming

a MVD in equation (2.66) and evaluating the integral yields the ion current onto the

grain,

Ii = 4πa2ni0Ze

√
kBTi
2πmi

(
1− Zeφd

kBTi

)
. (2.67)

The electron current can then be obtained from equation (2.66), this time with vmin =√
2eφd
me

to account for the repulsive nature of the grain,

Ie = −4πa2ne0e

√
kBTe
2πme

exp

(
eφd
kBTe

)
. (2.68)

The equilibrium potential of the grain is the one which draws no net current,

dQd
dt

(φd0) = Ie + Ii = 0 , (2.69)

with Qd the grain charge and φd0 the equilibrium dust potential. Assuming quasineu-

trality far from the grain, Zni0 = ne0, and substituting (2.67) and (2.68) into (2.69)

gives an implicit form for the normalized steady state potential,√
Θ

µ

(
1− Z

Θ
ηd0

)
= exp(ηd0), (2.70)

where I have introduced the dimensionless plasma parameters µ = mi
me

and Θ = Ti
Te

. The
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normalized potential has the solution

ηd0 =
Θ

Z
−W0

(√
µΘ

Z
exp

(
Θ

Z

))
, (2.71)

where W0 is the principal branch of the Lambert W function. Obtaining a value for

the grain charge involves a potentially complicated calculation, since one needs to know

the charge distribution around the grain. For small grains, a� λDe, the potential can

effectively drop to zero, as if in vacuum, before shielding effects have a chance to take

over and thus a value for the charge follows from the formula for the capacitance of an

isolated charged sphere in vacuo,

Qd0 = Cdφd . (2.72)

where Cd = 4πε0a. With a little extra work one can determine the timescales of charg-

ing. In the early stages the initial electron current, Ie(t = 0) = Ie(φd = 0), is the

dominant source and so

τE ≈
Qd0

Ie(0)

=
Qd0

a2en0

√
me

8πkBTe
, (2.73)

where the subscript 0 in the charge indicates an equilibrium value as usual. For later

times, assuming that the grain is perturbed from its equilibrium charge, Qd = Qd0 +δQ,

leads to the time development

dQd
dt

=
d(Qd0 + δQ)

dt
=

d(δQ)

dt
= I(Qd0 + δQ)

≈ I(Qd0) +
∂I

∂Qd
(Qd0)δQ

=
∂I

∂Qd
(Qd0)δQ , (2.74)

where the equilibrium condition, I(Qd0) = 0, has been used. Differentiating the total

current with φd replaced by Qd
Cd

(i.e. this is a small particle calculation),

∂I

∂Qd
(Qd0) = −4πa2n0e

2

Cd

(
Z

√
1

2πmikBTi
+

√
1

2πmekBTe
exp

(
eQd0

kBTeC

))
(2.75)

Implying a timescale

τL =

[
∂I

∂Qd
(Qd0)

]−1

=
ε0

an0e2

(
Z

√
1

2πmikBTi
+

√
1

2πmekBTe
exp

(
eφd0

kBTe

))−1

.

(2.76)

To give some typical values for all of the findings so far: for a micron sized dust grain

immersed in a hydrogen plasma with Te = Ti = 1eV and n0 = 1015m−3, OML predicts
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a normalized potential ηd0 = −2.503, which is also the value of the potential in volts

since the electron temperature is 1eV. The grain is charged negatively with a surplus

of 870 electron charges and the early and late charging timescales are τE = 1.66×10−8s

and τL = 6.25× 10−6s respectively.

Like any theory, OML is limited where its assumptions begin to fail and it’s time

to find out when this occurs. Firstly, to safely assume that the plasma is collisionless

it must be the case that the mean free path of each species, λj , is longer than the

characteristic trajectory length. I did assume that particles covered an infinite distance

to arrive at the grain, but in actual fact, any distance � a would have been suitable.

Taking a as the typical trajectory lengthscale, the plasma can be assumed collisionless

so long as λj � a. It was also assumed that the dust grain is isolated and immersed

in a plasma background which is unchanging in space and time. The characteristic

lengthscale of the model remains as a and τL is taken as the timescale (seeing as it is

the longer of the two derived). Thus, with L and T as the typical length and time scales

of plasma variation, the model is valid if L � a and T � τL. Even if the plasma is

not time varying, if the dust moves through a non uniform region of lengthscale L with

speed vd, the dust grain witnesses change on a timescale of T = L
vd

.

Claiming that the dividing line between collection and escape is the trajectory of an

ion which just grazes the dust may not have appeared like an assumption, given that

it seems so intuitively reasonable. However, there may exist an ‘absorption radius’,

R(v0), such that any particle which ventures closer than this will inevitably fall to the

grain. When the particle terminates on the grain surface, it will do so with a finite

radial velocity and so one should actually be interested in those trajectories which

graze the absorption radius to determine the collection cross section. Particles which

graze the dust do not exist rendering the OML approach invalid. It can be shown [82]

that absorption radii emerge when the potential φ(r) drops off more steeply than r−2

and given that the space charge distribution around a dust grain will act to screen it

exponentially fast, this unfortunately seems likely to be the case. However, for grains

much smaller than the Debye length, the potential can effectively drop off at its vacuum

rate r−1 and so OML should provide reliable results here.

Given all of this, it’s fair to conclude that OML is a theory most suited to small

grains. Despite these shortcomings, OML remains the go to theory for the charging of

nearly all spherical dust grains and probes [83] immersed in plasma.

2.6 Dusty plasma waves

Whilst this thesis doesn’t cover the following types of wave, it is instructive to include

these pieces of theory to elucidate the influence dust has in the fast and slow regimes

alluded to in section 1.3.1.
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2.6.1 Dust-ion acoustic (DIA) waves

In this regime the frequency is sufficiently high such that the heavy dust grains do not

respond, but low enough for the electrons to establish thermal equilibrium with the

wave potential, φ. Accordingly, the dust density is constant at nd0 and the electron

density is given by the BR,

ne = ne0 exp

(
eφ

kBTe

)
. (2.77)

Continuity and momentum equations govern the dynamics of the ions, for planar waves

propagating in the x-direction these are

∂ni
∂t

+
∂(nivi)

∂x
= 0 , (2.78)

∂vi
∂t

= − e

mi

∂φ

∂x
− 3kBTi
mini0

∂ni
∂x

, (2.79)

and closing (2.77)-(2.79) is Gauss’ law,

∂2φ

∂x2
=

e

ε0
(ne − ni − Zdnd) . (2.80)

Linearizing these equations around their background values and looking for harmonic

solutions for the first order deviations of the form ∝ exp(i(kx−ωt)) yields the dispersion

relation for DIA waves,

ω =
cDIk√

1 + (kλDe)2
, (2.81)

where cDI is the dust-ion acoustic speed given by

cDI =

√
ni0
ne0

cS and cS =

√
kBTe
mi

. (2.82)

For negatively charged grains, ni0 > ne0 and so cDI > cS . This increase in phase

velocity is attributed to the depleted electron population leading to an increased Debye

radius and thus stronger electric fields.

2.6.2 Dust acoustic (DA) waves

The frequency associated with dust acoustic waves is so low that both electrons and

ions are able to remain in equilibrium with the wave potential and so in addition to

(2.77) the ion density follows the Boltzmann relation,

ni = ni0 exp

(
− eφ

kBTi

)
. (2.83)
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Dynamics of the dust are of central importance here and are determined analagously to

(2.78) and (2.79) from

∂nd
∂t

+
∂(ndvd)

∂x
= 0 , (2.84)

∂vd
∂t

= −Zde
md

∂φ

∂x
, (2.85)

where the dust thermal velocity is assumed to be negligible. As before, Gauss’ law

(2.80) closes this set of equations. The dispersion relation for the perturbed quantities

is found to be

ω =
cDAk√

1 + (kλD)2
, (2.86)

where cDA is the dust acoustic speed given by

cDA =

√
kBTi
md

nd0Z
2
d

ni0
(2.87)

and λD =
(
λ−2
De + λ−2

Di

)− 1
2 . The pressures of the ions and electrons act to restore the

wave whilst the inertia is provided by the dust. To avoid any confusion, I should point

out that this wave is not the same as a dust crystal wave where grains are strongly

coupled and the restoring force is provided by the bonding between lattice sites.



3 Dusty Alfvénic solitary waves

3.1 Background

In the previous section, two examples of well understood linear dusty plasma wave

phenomena were presented for the cases of mobile and immobile dust. The subject of this

chapter will be nonlinear waves and these are of the type where the dust grains remain

stationary. A dusty plasma wave tends to have a non dusty counterpart (in the previous

examples this was the ion-acoustic wave) and so the structure of this chapter will be

to introduce the dust-free case first, with the dusty treatment (containing new, original

work) following afterwards. But, before this gets started, I shall provide examples of

environments suitable to host these waves and some comments on how one goes about

performing theoretical analysis.

To find natural realisations of the types of waves this work will be applicable to one

has to look to space, where dust and plasma are two of the main ingredients. Since

the 1980’s, large amplitude spiky structures have been observed to propagate through

space plasmas. The electromagnetic kind, which I shall concentrate on, have been

observed around the Earth’s bow shock [84] and magnetopause boundary layer [85],

the Jovian middle magnetosphere [86], the surface of Io [87] and comet Halley’s coma

[88]. These manifest themselves as pulse-like magnetic disturbances, strongly enhanced

(or diminished) relative to the background field. As mentioned in the introduction,

observations of dusty plasma waves in space are very limited, but the fact that dust is

present in all of the planetary and comet magnetospheres just listed [89] provides an

indication that dusty versions of the existing nonlinear plasma waves may also exist.

In 2002 it was predicted that “Galileo and Casini data from Jupiter and Saturn dusty

magnetospheres will almost certainly yield data motivating more detailed studies of

nonlinear waves in dusty plasmas”[90], but so far, the predicted studies inspired by

these missions have been hard to come by [91] [92] [93]. Given that minimagnetospheres

occur in the dusty environment of the lunar exosphere, it is worth examining if dusty

plasma effects can emerge here. Using the dust conditions in the lunar environment

as found by LADEE (Zd ≈ 25000, nd ≈ 10−3m−3) with the density of the solar wind

(ni ≈ 6×106m−3), one finds a Havnes parameter of order 10−6, too low to expect dusty

plasma effects. Whilst the putative lofted grain population responsible for horizon glow

was not observed on this mission, no data was collected for altitudes below 3km and

so it remains possible that more significant amounts of dust may be mobilized at lower

altitudes, giving the chance that small magnetic anomalies may be regions conducive to

nonlinear dusty plasma phenomena.

48
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The names of the two waves under study here are the ‘Transverse Alfvénic Solitary

Wave’ and the ‘Oblique Alfvénic Solitary Wave’. It was just stated that if a wave

exits in a plasma then there most likely exists two (slow and fast) dusty counterparts

and these waves are no exception. The slow sort, where dust inertia dominates, has

been studied comprehensively [94] [95]. However, nowhere has the second counterpart

been considered: that for stationary dust grains which influence the wave only by storing

charge from the plasma - this work is performed for the first time here. Owing to the fact

that these structures are governed by nonlinear equations, they are difficult to analyze

mathematically and computer simulations play an indispensable role. Some progress

can be made by considering weak disturbances and taking a perturbative approach [96],

however, a complete theoretical description requires a treatment of large amplitude

features. The most convenient framework for this pursuit is to look for solitary wave

solutions, that is, unchanging, localised disturbances which move through the plasma.

This not only presents a tractable problem, but indicates the typical speed, length scale

and amplitude of these ‘spikes’ and any relationships between these quantities. Some

solitary waves further qualify to be referred to as ‘solitons’, a name whose standard-

model-esque “-on” suffix indicate the special property that two such solitary waves will

emerge unchanged if they collide - much like an electron and proton might. This may

possibly be the case for the waves under consideration here, but without proving it to

be true I will avoid using the term ‘soliton’.
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3.2 Transverse Alfvénic solitary waves

3.2.1 Dust-free

Transverse Alfvénic solitary waves without dust were first characterised by Adlam and

Allen [97] in 1958, here I reproduce their derivation of the important features of this

wave.

Consider a planar pulse of magnetic field propagating through a cold plasma in a

direction perpendicular to the background magnetic field of strength B0 (see Fig. 3.1).

In the frame in which the undisturbed plasma is stationary, the ‘lab frame’ (Fig. 3.1a),

the disturbance moves in the negative x direction at a speed, u0, with the axes oriented

such that the magnetic field is purely in the z direction and gradients exist only in the

x direction. The wave disturbs the plasma as it passes, sustaining itself by inducing a

transverse electron current in the y direction. After the passage of the wave, a given

patch of plasma is returned to its initial state, but displaced slightly in the direction of

propagation. The exact form of the plasma particle trajectories has been recently found

in a paper by one of the original authors, J. E. Allen, and myself [98].

Analysis is easiest in a frame moving with the disturbance, the ‘wave frame’ (Fig.

3.1b), since ∂
∂t = 0 for all quantities. In this frame, ions and electrons stream in from

xW = −∞ with speed u0, interact with the disturbance and then continue to +∞ as

they began. Assuming u0 � c, the magnetic field is unchanged by the transformation

from lab to wave frames, however, an electric field is induced in the y direction, Ey. This

follows from the Lorentz transformation of electromagnetic fields, but it is more intuitive

to consider the undisturbed plasma where it must be the case that Ey = B0u0 to ensure

that the incoming particles are not inconsistently deflected in this new reference frame

by the v × B force. Since there is no time evolution, Faraday’s law yields no spatial

variation in Ey and thus it is uniform throughout the wave frame.

The problem is tractable for arbitrary particle masses, however, I shall concentrate

on an electron-ion plasma and will use any approximations arising from the disparity in

their masses. The equations of motion of the ions and electrons in the x and y directions

are

meue
due
dxW

= −e (Ex + veBz) , (3.1)

meue
dve

dxW
= −e (u0B0 − ueBz) , (3.2)

miui
dui

dxW
= eEx , (3.3)

where u and v denote velocity components in the x and y directions respectively and

the heavy ion approximation means their transverse deflection can be ignored (ergo the

absence of a fourth equation of motion). By combining (3.1) and (3.3) the electric field
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Figure 3.1: Electron (small blue particle) and ion (large red particle) trajectories and
electromagnetic fields in the lab (a) and wave (b) reference frames. In (a),
the times t1 → −∞, t2 = 0, t3 → ∞ and so the approaching and leaving
wave snapshots should be imagined to be at xL → ±∞ respectively.
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is eliminated,

meue
due
dxW

+miui
dui

dxW
= −eveBz . (3.4)

With ion deflection negligible, the electrons make the significant contribution to the

transverse current so that Faraday’s Law takes the form

dBz
dxW

= µ0eneve (3.5)

and continuity of electrons and ions implies that

neue = niui = n0u0 . (3.6)

These equations are closed by the assumption of quasineutrality, implemented by taking

ni = ne ≡ n and immediately implying from the continuity equations (5.47) that ui =

ue ≡ u. Substituting this into (3.2) and (3.4) and using the normalizations XW = xW
de

,

U = u
vA

, V = v
v∗

, βz = Bz
B0

where,

de =

√
me

n0µ0e2
, vA =

√
B2

0

n0µ0mi
, v∗ =

√
B2

0

n0µ0me
, (3.7)

leaves three equations from which the wave profile is derived:

U
dU

dXW
= −Veβz , (3.8)

U
dVe

dXW
= −α+ Uβz , (3.9)

dβz
dXW

=
αVe
U

, (3.10)

where the Alfvén Mach number, α = u0
vA

, and in (3.8) terms of order me
mi

have been

neglected. The natural lengthscale, de = c
ωpe

, is the electron skin depth. The reason for

normalizing the x and y velocities differently is on the physical grounds that the elec-

trons undergo strong perpendicular deflections, reaching transverse speeds an order of

magnitude in excess of their incoming speed. Practically speaking, it is a demonstrably

useful normalization since all fundamental constants are successfully absorbed.

Eliminating Ve between (3.8) and (3.10) and integrating from XW = −∞ to XW gives

U = α+
β2
z − 1

2α
. (3.11)

Similarly, Ve is related to βz by taking the ratio of equations (3.8) and (3.9) to eliminate

XW and then using (3.11) to substitute for U and dU
dβ ,

Ve = ±βz − 1

2α

√
(2α)2 − (1 + βz)2 , (3.12)
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where the ± corresponds to XW < 0 and XW > 0 respectively. Finally, by substituting

equations (3.11) and (3.12) into (3.10), an equation relating βz and XW is arrived at,

dβz
dXW

= ±α(βz − 1)
√

(2α)2 − (1 + βz)2

2α2 + 1− β2
z

. (3.13)

Numerical integration of this equation provides the wave profile, βz(XW ), although an

analytic expression for XW (βz) may be found in this case. Solitary waves cannot exist

for arbitrary values of α though and it is worth introducing the notion of a Sagdeev

potential to help illustrate this and to ascertain what the allowed range is. By taking

the square of both sides of equation (3.13) and multiplying by 1
2 , an expression akin

to energy conservation results for an imaginary particle of mass unity and position βz,

moving through a potential φS(βz) (referred to as the ‘Sagdeev potential’) with XW

playing the role of time,

1

2

(
dβz

dXW

)2

=
α2(βz − 1)2(2α+ 1 + βz)(2α− 1− βz)

2(2α2 + 1− β2
z )2

≡ −φS(βz) . (3.14)

For the case at hand βz starts out at 1, meaning that the initial condition of the

Sagdeev pseudo-particle is a coordinate of 1, sitting where the potential is φS(1) = 0.

Sagdeev potentials for three different values of α are plotted in Fig. 3.2 which will be

useful for the following discussion. One can visualise the time evolution of the system

by imagining a ball (the Sagdeev particle) rolling along the terrain described by the

potential. Stationary points of the potential (where the Sagdeev particle speed is zero)

occur at the starting point, β0 = 1 and at β±0 = −1 ± 2α. To ‘get the ball rolling’ the

starting point must be an unstable equilibrium, d2φS
dβ2 (1) < 0, which from (3.14) gives

the condition that α > 1 and thus α = 0.5 in Fig. 3.2 does not qualify. If this condition

is met, after a tiny push either to the left or right the Sagdeev particle will roll through

the potential well until either it hits a stationary point and has its trajectory reflected or

doesn’t and continues to fall. Asymptotes of (3.14) appear at β±A = ±
√

2α2 + 1 and the

stationary points must be encountered before these to ensure that the journey back to

the starting point is completed. It is thus required that β−0 > β−A for rarefactive solitary

waves (where the field strength decreases and field lines become less dense) and β+
0 < β+

A

for compressive ones. The former inequality requires that α < 0 which contradicts the

recently found requirement that α > 1, meaning that a rarefactive mode does not exist.

The latter results in α < 2 implying that compressive solitary waves do exit below this

threshold speed. These two facts are reflected by the potentials for α = 1.5 and 2.5 in

Fig. 3.2, where a particle released to the right along the α = 1.5 potential will reach a

maximum coordinate of βz = 2 and then return back to the starting point. The α = 2.5

particle will continue to fall eternally. To conclude, solitary waves exist for the range of

Alfvén Mach numbers 1 < α < 2 with a characteristic width of the electron skin depth,

de, and are compressive in nature. Now that all of the facts are in place, profiles of the

plasma parameters in the wave frame are plotted in Fig. 3.3.
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Figure 3.2: Sagdeev potential dependence on Alfvén Mach number. α = 0.5 is too slow
to begin solitary wave formation whereas α = 2.5 is too fast to complete the
return back to the original state. α = 1.5 allows βz to grow from 1 to 2 and
back again. All trajectories which leave βz = 1 going left will not return.
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Figure 3.3: Profiles of normalized magnetic field, electric field, transverse electron veloc-
ity and plasma density for different wave speeds (α = 1.2, 1.4, 1.6, 1.8, 2.0).
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Perhaps the most interesting feature of the solitary wave are these constraints on α and

so a method to find these where the problem need not be solved entirely is favourable.

Whether or not the wave can grow in its early stages determines the minimum speed of

the wave. This development phase is studied by linearising about the initial conditions,

U = α + δu, βz = 1 + bz and then looking for evanescent solutions, that is, each first

order deviation ∝ exp (κX). This yields κ =
√
α− 1

α and the requirement that κ is real

produces α > 1, as found before. The maximum speed is set by the constraint that the

plasma must keep moving to the right, U > 0. To this end, one can derive this limit

from physical considerations of the flows of momentum and energy in the wave. I leave

the derivations to Appendix A, where two conservation laws are useful here, the first,

(A.25), stating that the momentum flux is constant at all points and is shared between

the ions and the magnetic field,

min0u0u+
B2
z

2µ0
= const. (3.15)

where Zd = 0 and electron x momentum has been ignored. The second, equation (A.28),

states how energy is shared between the field and particle kinetic energy,

1

2
n0u0

(
mev

2
e +miu

2
)

+
EyBz
µ0

= const. (3.16)

where again, Zd = 0 since this is dust-free. Since these equations have a physical

interpretation which is helped by the fundamental constants, I will not normalise these

quantities as previously. The flow speed of the plasma is slowest at the crest of the wave

(xW = 0) and so to ensure that u is always positive it is only necessary to confirm that

it’s positive at this point. When the wave speed takes its maximum value, u0 = umax,

the plasma is just brought to rest at the crest of the wave ui(xW = 0) = 0 - any faster

and the plasma is swept up by the disturbance, no longer resembling a solitary wave.

Because dBz
dx = 0 at the crest, ve is zero from Faraday’s law (confirmed by the profiles

in Fig. 3.3 ). Evaluating (3.15) and (3.16) with the LHS at the crest and the RHS in

the undisturbed plasma,

B2
max

2µ0
= min0u

2
max +

B2
0

2µ0
, (3.17)

B0Bmax
µ0

=
1

2
min0u

2
max +

B2
0

µ0
, (3.18)

which has the solution

umax = 2vA , (3.19)

Bmax = 3B0 , (3.20)

confirming the result found previously and without the hassle of solving for the Sagdeev

potential.
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3.2.2 With dust

Now to derive the properties of a new wave by adding a stationary dust component, this

is to be solved for in much the same way as before, the only equation which is modified

is the quasineutrality condition, now becoming,

Zdnd + ni − ne = 0 , (3.21)

which, when evaluated in the undisturbed plasma, gives

H + 1− ne0
ni0

= 0 , (3.22)

where H ≡ ndZd
ni0

is the Havnes parameter, a measure of how much charge is invested

in the grains (−1 < H < ∞, these limits corresponding to dust-ion and dust-electron

plasmas respectively). Combining the continuity equations with (3.21) and (3.22) gives

the relationship between the electron and ion x velocities,

ue =
1 +H
1
ui

+ H
u0

. (3.23)

After applying the same normalizations of (3.7), the corresponding equations to (5.47)

and (3.8)-(3.10) are for the dusty case

Ue = (1 +H)

(
1

Ui
+
H

α

)−1

, (3.24)

Ui
dUi
dX

= −Veβ , (3.25)

dVe
dX

= β − α

Ue
, (3.26)

dβ

dX
= α(1 +H)

Ve
Ue

, (3.27)

and these are solved in much the same way. To begin, Ui is related to β, eliminating Ve

between (3.25) and (3.27),

Ui
dUi
dX

= − Ue
α(1 +H)

β
dβ

dX
. (3.28)

Now, using (3.24) to eliminate Ue,

(α+HUi)
dUi
dX

= −β dβ

dX
, (3.29)

and then integrating and rearranging for β gives

β2 = 1− 2α(Ui − α)−H(U2
i − α2) . (3.30)
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Now Ve is related to β by first eliminating X between (3.25) and (3.26),(
Ui −

α+HUi
(1 +H)β

)
dUi
dVe

= −Ve , (3.31)

which results in:

V 2 = 2

α
(√

α2(1 +H)2 −Hβ2 +H − α(1 +H)
)

H2
+
β2 − 1

2H
+

1− β
1 +H

 . (3.32)

Substituting (3.32) and (3.30) into (3.27) gives

dβ

dX
=

(
α

−α+
√
H(1− β2) + α2(1 +H)2

+ 1

)

×
√

2α
(√

α2(1 +H)2 +H(1− β2)− α(1 +H)
)

+H(β2 − 1) +
2H2(1− β)

1 +H
(3.33)

and this correctly reduces to the non-dusty case in the limit H → 0. Now that a

Sagdeev potential has been found (provided by 1
2× the square of the RHS of (3.33) ),

the framework is in place to derive the new restrictions on α so that the new profiles can

be plotted. Linearising (3.33) with B = 1 + b has solutions of the form b ∝ exp (X/L) if

L =

(
1 +H − 1

α2(1 +H)

)− 1
2

, (3.34)

which admits evanescent solutions so long as L is real, leading to the condition on the

minimum velocity,

α >
1

1 +H
=
ni0
ne0

. (3.35)

Equation (3.34) corresponds to the characteristic scale length of the pulse and demon-

strates that negatively charged dust stretches the wave while positively charged dust

compresses it as shown in Fig. 3.4. This is because electron depletion increases the

electron skin depth, much like it resulted in an increased Debye length for the DIA

wave.

Now to determine the maximum speed. The analysis of whether stationary points are

met before asymptotes is more complicated than before, even though the solution itself

is not. Asymptotes occur at β±c = ±
√

1 + α2(2 +H) and depending on α and H there

can be up to 4 roots (in addition to the one at β = 1), which are β1,2
0 = H−1±2α(1+H)

1+H

and β3,4
0 = ±

√
H+α2(1+H)2

H (where the indices 1 and 3 denote roots where the + of the

± is used). Roots 3 and 4 can be discarded before proceeding with the analysis since

they always occur outside of the asymptotes. To prove this, if one tries to find where
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Figure 3.4: Characteristic width of a solitary wave for a speed α = 1.5 with varying
Havnes parameter. The minimum value of H is set by equation (3.35) and
the maximum follows from (3.38) - to be derived shortly.

the root occurs first:

β3
0 < β+

c , (3.36)√
H + α2(1 +H)2

H
<
√

1 + α2(2 +H) , (3.37)

then this implies that α <
√
−H

1+H which, in light of (3.35), can never be true. Root 1 is

the largest and thus corresponds to compressive solitary waves, the condition β1
0 < β+

c

requires that

α <
2

1 +H
(3.38)

and so its concluded that compressive solitary waves exist in the range 1
1+H < α < 2

1+H ,

plotted in Fig. 3.5. Root 2 only exists when

−1 < H <
1

3
, (3.39)

or
1

3
< H < 1 and α >

2H

H2 − 1
. (3.40)

For rarefactive solitary waves, β2
0 > β−c requires 2

3 < H < 2 and α < 2H
2+H−H2 which

have no regions of overlap with equations (3.39) and (3.40). Thus, as in the dust-free

case, there is no rarefactive mode as the Sagdeev potentials of Fig. 3.6 (a) illustrate for

one example of the wave velocity.

Now that the allowed range of α is known, analysis of the wave profile can commence.

The modified structure is explored for a constant velocity α = 1.5 and varying amounts
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Figure 3.5: Permitted velocity range of compressive dusty solitary waves as a function
of Havnes parameter.

of dust charge density in Fig. 3.6 (b). One can see in the broadening of the lengthscale

with increased dust as found in (3.34). Also, the amplitude of the wave reduces, for

a given velocity, as the dust concentration is increased. This is because a depleted

electron population provides a reduced transverse current and thus will result in a

smaller magnetic field.

The asymptote at H = −1 marks an area where the model breaks down. As H →
−1 the electron density approaches zero and under the current model of transversely

immobile ions this means that it still falls on the depleted electrons to provide all of

the current. To do so with a density approaching zero, the transverse electron velocity

has to approach infinity and since the transverse velocity depends on how fast they

are incoming the wave speed must also approach infinity. In reality, for low enough

values of H, the relatively slow ion deflection when coupled with their overwhelmingly

large density will produce a current which exceeds that of the electrons. Considering

the genesis of the wave, the incoming ion and electron x velocities are the same and

so their relative transverse velocities can be found from the ratio of their y equations

of motion as vi
ve

= mi
me

. Their relative densities are given from (3.22) and so the ratio

of initial transverse currents is ji0
je0

= ni0vi
ne0ve

= me
mi(1+H) . Finding the critical Havnes

parameter Hc, such that the ions contribute as much to the current as the electrons

yields: Hc = −1 + me
mi

, which marks the point at which the assumption of transversely

immobile ions breaks down.

It is worth now considering an approach using the macroscopic conservation laws.

The corresponding conservation equations to (3.15) and (3.16) for the dusty case are
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-1 1 2 3
B

-1.0

-0.8

-0.6

-0.4

-0.2

ϕS

H
-0.3

-0.1

0

0.1

0.3

(a) Sagdeev potentials

-3 -2 -1 1 2 3
x

1.2

1.4

1.6

1.8

2.0

2.2

2.4

B

H
-0.3

-0.1

0

0.1

0.3

(b) Solitary wave profiles

Figure 3.6: Sagdeev potentials (a) and wave profiles (b) for different Havnes parameters
and a Mach number of α = 1.5.
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given by taking Zd to be non-zero

min0u0ui +
B2
z

2µ0
+ eZdnd

∫
Exdx = const. (3.41)

1

2
men0u0

(
mev

2
e +miu

2
i

)
+
EyBz
µ0

+ u0eZdnd

∫
Exdx = const. (3.42)

New terms have arisen in each equation due to the presence of the dust. It is very

easy to ignore these, given that one may expect from momentum conservation a term

arising from the dust like mdndu
2
d which can then be temptingly disregarded due to the

grains not moving. However, a very large md and very small ud conspire to produce a

significant term in the conservation equations, which found its way there, potentially

unexpectedly, through modified quasineutrality. This non-trivial result may be easily

missed and would lead one to erroneously conclude that stationary dust grains have no

effect.

The electric field can be rewritten in terms of the ion speed from (3.3). This allows

the integrals of (3.41) and (3.42) to be evaluated to get:

min0u0ui +
B2
z

2µ0
+
Zdndmiu

2
i

2
= const. (3.43)

1

2
n0u0

(
mev

2
e +miu

2
i

)
+
EyBz
µ0

+
u0Zdndmiu

2
i

2
= const. (3.44)

For a wave travelling at the maximum velocity u0 = umax, with the LHS evaluated in

the undisturbed plasma and the RHS evaluated at the crest, ve = 0 and Bz = Bmax,

(3.43) and (3.44) become

B2
max

2µ0
=

(
1 +

H

2

)
mini0u

2
max +

B2
0

2µ0
(3.45)

and

B0Bmax

µ0
=
B2

0

µ0
+

(1 +H)min0u
2
max

2
. (3.46)

The solution to these two equations is

umax =
2

1 +H
vA , (3.47)

Bmax =
3 +H

1 +H
B0 . (3.48)

The first is in agreement with the maximum velocity found previously. The second is

extra information which gives the value of the magnetic field along the top edge of the

region in Fig. 3.5, i.e. the amplitude of a solitary wave which is on the verge of breaking.

For the non-dusty case, the maximum compression of the wave is a factor of 3, which

is consistent with taking H = 0 in (3.48).
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3.3 Oblique Alfvénic solitary waves

Nonlinear magnetic waves fall into two main classes, those which propagate normal

to the background field and those which propagate obliquely. This may seem like an

obvious statement, but the physical behaviour of both is quite distinct [99]. Introducing

θ as the angle between the background magnetic field and direction of wave propagation

(θ = π
2 being transverse and θ = 0 being parallel), normally moving solitary waves,

which have just been covered, are restricted to a narrow range of angles, θc � θ ≤ π
2

and oblique waves cover the remaining range 0 < θ � θc, where θc = π
2 −
√

me
mi

[100]. An

example which illustrates these two cases side by side can be found in the surrounding

plasma of the Earth’s bow shock. Downstream from the region where the solar wind

encounters the Earth’s magnetic field at a right angle, solitary waves of the type studied

previously (with scale lengths c
ωpe

) emerge. In practice, the plasma is most likely to be

incident within the broad range of angles 0 < θ � θc which results in the upstream

appearance of ‘oblique Alfvénic solitary waves’ which have a far greater scale length,
c
ωpi

.

3.3.1 Dust-free

Now to derive the features of the oblique solitary wave, following the paper of McKenzie

and Doyle [101]. The method is the same as before in that one searches for stationary

solutions to the equations of motion and Maxwell’s equations in the wave frame, but

the oblique field leads to particle motion allowed in 3 dimensions. To start, consider

the effect oblique propagation has on the electromagnetic fields. Faraday’s law requires

that electric fields transverse to the flow are constant since ∂
∂t = 0:

Ey = const. , Ez = const.

With oblique solitary waves, a component of magnetic field now exists in the direction

of propagation and the axes can be oriented such that at x = ±∞, (Bx, By, Bz) =

(Bx0, 0, Bz0) = (B0 cos θ, 0, B0 sin θ). Since there are only spatial variations in the x

direction, Bx is constant from Ampére’s law, and will be written as Bx0 from now on.

Electron inertia may be ignored for oblique solitary waves [101] (justification of this is

hard to find, but I offer my own in Appendix A.4, best understood after the problem

is solved) which means that the fields are prescribed from: −ue ×B = E. Using the y

and z components of this,

uBz − weBx0 = Ey , (3.49)

veBx0 − uBy = Ez (3.50)
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and because the electric fields are constant, these equations can be evaluated anywhere

to find their values. Taking the undisturbed plasma, where we = ve = By = 0 yields

Ey = u0Bz0 , (3.51)

Ez = 0 . (3.52)

The equations of motion for the ions with this field configuration are

miu
du

dx
= e(viBz − wiBy + Ex) , (3.53)

miu
dvi
dx

= e(wiBx0 − uBz + u0Bz0) , (3.54)

miu
dwi
dx

= e(uBy − viBx0) (3.55)

which completes the set of equations. It is easiest to solve these by absorbing the electron

motion and Ampére’s law in the momentum and energy flux conservation equations

which have been previously utilised to find the maximum speed of solitary waves. These

are derived in Appendix A, the result being (without electron inertia and Zd = 0) that

min0u0u+
B2
y +B2

z

2µ0
= const. (3.56)

min0u0vi −
Bx0By
µ0

= const. (3.57)

min0u0wi −
Bx0Bz
µ0

= const. (3.58)

1

2
min0u0

(
u2 + v2

i + w2
i

)
+
EyBz
µ0

= const. (3.59)

Substituting (3.56)-(3.58) into the transverse ion equations of motion, (3.54) and (3.55),

gives

U
dβy
dX

= α− cos2 θ

α
− βz

(
U − cos2 θ

α

)
, (3.60)

U
dβz
dX

= βy

(
U − cos2 θ

α

)
, (3.61)

where I have introduced the normalizations (some of which are the same for the trans-

verse case): U = u
vA

, βy,z =
By,z

Bz0
and X = x

di
with vA the Alfvén velocity for the

total background field B0 =
√
B2
x0 +B2

z0, di the ion skin depth and α still denoting the

Alfvén Mach number. To derive the Sagdeev potential for this wave, one must write

things in terms of the transverse magnetic field strength, β2
⊥ = β2

y + β2
z . Equations

(3.56), (3.60) and (3.61) then boil down to the Sagdeev potential,

φS(β2
⊥) = −1

2

(1− β2
⊥)2(β2

+ − β2
⊥)(β2

⊥ − β2
−)

(1 + 2
(

α
sin θ

)2 − β2
⊥)2

, (3.62)
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where

β2
± =

(
√
m± 2)2

m
and m =

sin2 θ

α2 − cos2 θ
. (3.63)

As has been the routine so far, the first task is to determine from (3.62) the values of

α which provide an unstable equilibrium at β⊥ = 1. Expanding to first order about

the starting point, β⊥ = 1 + b, and searching for evanescent solutions of the form

b ∝ exp(κX) leads to

κ2 =
1

α2 cos2 θ

(
1− α2

) (
α2 − cos2 θ

)
, (3.64)

where κ is normalised by d−1
i . Requiring that κ is real constrains the initial velocity to

be

cos θ < α < 1 . (3.65)

Already, markedly different behaviour can be noticed. Oblique solitary waves travel at

sub-Mach speeds and this limitation is set by the physics at the start of the wave. A

further contrast is that rarefactive modes exist in addition to the compressive one, that

is, cases where the disturbance is a region of weakened magnetic field. I will neglect to

repeat the analysis of the asymptotes and stationary points of (3.62) here, but Fig. 3.7

demonstrates one such case where the Sagdeev potential admits these two behaviours.

It is found that the stationary point corresponding to the rarefactive mode is always met

before the asymptote, meaning so long as (3.65) is respected, these can exist. Conversely,

the compressive stationary point is only encountered before the asymptote so long as

α <
√

2(1− sin θ) (3.66)

and so there is an additional speed limit placed on the compressive mode only. The

range of permitted parameters according to inequalities (3.65) and (3.66) is plotted in

Fig. 3.8. As compared to the rarefactive wave, the compressive wave is far more tightly

restricted.

Again, there are shortcuts to obtaining these results, though there is one shortcoming

to this approach which shall be seen shortly. One can obtain the first inequality (3.65),

by linearizing the variables of (3.56)-(3.60) about their initial values and looking for

solutions to these perturbations of the form exp (κx). As always, the second constrained

provided by the condition that U > 0 is tested by considering momentum and energy.

Evaluating (3.56), (3.58) and (3.59) for the limiting solitary wave travelling at u = umax,

with the RHS in the undisturbed plasma and the LHS at the crest of the wave where,
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Figure 3.7: Sagdeev potentials and associated magnetic field profiles for parameters
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u = 0, Bz = Bzmax,w = wmax, By = 0 and v = 0 gives

B2
zmax

2µ0
= mini0u

2
max +

B2
z0

2µ0
, (3.67)

mini0u0wmax −
BzmaxBx0

µ0
= −Bz0Bx0

µ0
, (3.68)

mini0
2

w2
max +

Bz0Bzmax

µ0
=
mini0u

2
max

2
+
B2
z0

µ0
, (3.69)

where (3.57) reduces to 0 = 0 and thus provides nothing useful. The solution to these

simultaneous equations yields

umax =

√
B2

0

µ0mini0

√
2(1− sin θ) , (3.70)

Bzmax = (sin θ − 2)B0 , (3.71)

wmax = −
√

B2
0

µ0mini0

√
2(1− sin θ)

(
1 + sin θ

cos θ

)
, (3.72)

the first of which confirms equation (3.66). The shortcoming of this approach alluded

to earlier is that one cannot tell that a rarefactive mode exists. Equation (3.71) does

confirm that the speed limit applies to compressive solitary waves since |Bzmax| > |B0|,
but that is all that can be extracted.

One final point to make is that given that electron inertia is disregarded for the

oblique solitary wave and is a key component of the transverse wave, the results for the

former do not reduce to those for the latter as θ → π
2 .

3.3.2 With dust

It is again time to study a new wave by adding a component of immobile dust. However,

the story for dusty oblique solitary waves is a bit more complicated than for transverse

ones and as a result, the problem is not yet solved entirely. Necessary conditions for

solitary wave existence are derived from linearisation of the wave in its early stages,

but the supplementary conditions resulting from the condition that plasma flow cannot

reverse remain to be solved for. An analytic expression for the Sagdeev potential could

not be arrived at, so, instead I shall see what one can find out from the macroscopic

conservation equations of the wave. For the last time, I refer the reader to Appendix A

for the derivation of these equations. Conservation of momentum flux states that

mini0u0ui +
B2
y +B2

z

2µ0
+ Zend

∫ x

−∞
Ex dx = mini0u

2
0 +

B2
z0

2µ0
, (3.73)

mini0u0vi −
ByBx0

µ0
− eZndu0

∫ x

−∞
(Bz −Bz0) dx = 0 , (3.74)

mini0u0wi −
BzBx0

µ0
+ eZndu0

∫ x

−∞
By dx = −Bz0Bx0

µ0
, (3.75)
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and the energy equation is

mini0u0

2

(
u2
i + v2

i + w2
i

)
+
EyBz
µ0

+ Zendu0

∫ x

−∞
Ex dx =

mini0u
3
0

2
+
EyBz0
µ0

, (3.76)

where the right hand sides have all been evaluated in the undisturbed plasma. To study

the early stages of the wave, assume that u = u0 + δu, Bz = Bz0 + bz in momentum

conservation and transverse EOM and looking for evanescent solutions of the form

exp(κx) results in:

mini0u0(1 +H)δu+
Bz0
µ0

bz = 0 , (3.77)

mini0u0vi −
Bx0

µ0
By −

eHni0u0bz
κ

= 0 , (3.78)

mini0u0wi −
Bx0

µ0
bz +

eHni0u0By
κ

= 0 , (3.79)

miu0κvi − eBx0wi + eu0bz + eBz0δu = 0 , (3.80)

miu0κwi − eu0By + eBx0vi = 0 . (3.81)

These simultaneous equations provides two solutions for the decay constant as

κ± =

√
f(α)±

√
f(α)2 − (2α2 cos θH)2

2α2 cos2 θ
, (3.82)

where f(α) is a quadratic equation in α2,

f(α) = −(1 +H)2α4 + (1 + cos2 θ)α2 − cos2 θ . (3.83)

The presence of two solutions is the first interesting result, probably indicating that

the compressive and rarefactive modes have different lengthscales. However, without

solving the problem entirely, this is hard to confirm and so I would hope that future

simulations can shed some light on this.

Now it needs to be determined where κ is real. In the numerator of (3.82), the second

term which is preceded by the ± always has a smaller magnitude than the first term.

Thus, to ensure that at least one solution for κ is real,

f(α) > 0 . (3.84)

This ± term must itself be real too, which requires that

f(α)2 − (2α2 cos θH)2 > 0 . (3.85)

The values of α and θ which satisfy these two inequalities depend on the sign of H.
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Figure 3.9: Graphical representation of the mutual solution of (3.84) and (3.85). By
taking the square of f(α) (dashed line), the position of the roots α1 and α2

stay the same. Then, by subtracting an always positive term cα4 (where
c > 0), the roots of the green curve lie in pairs either side of α1 and α2,
providing the central maxima does not lie under the x axis (which will not
be the case).

Negatively charged dust

Finding the allowed regions of parameter space is tricky and best understood with

graphical help, provided by Fig. 3.9 which should guide the reader through the upcoming

analysis. Neglecting negative values, (3.84) has two roots α1,2 (where I take α2 > α1).

The coefficient of α4 is always negative which implies that the inequality (3.84) is

satisfied for α1 < α < α2. As described in the caption of Fig. 3.9, the roots of

(3.85) occur in two pairs α±1 and α±2 , either side of α1 and α2 respectively. Thus, the

region satisfying both (3.84) and (3.85) is α+
1 < α < α−2 . Solving for these roots gives

the result:

(cos θ − 1) +
√

(1 + cos θ)2 − 4H cos θ

2(1 +H)
< α <

(1− cos θ) +
√

(1 + cos θ)2 − 4H cos θ

2(1 +H)
.

(3.86)

This reassuringly reduces to the known result, (3.65), when H = 0. The regions of

parameter space are plotted in Fig. 3.10. As a general rule, the presence of dust

tends to require higher speeds, more so for increasingly oblique solitary waves (θ → 0).

This is again probably due to the limited ability of a plasma to provide the necessary

current - an electron depleted plasma encountering oblique fields will not lead to a great

transverse current, unless it has a large incoming velocity to compensate for this.
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Positively charged dust

When H > 0, the relative sizes of the coefficients of (3.84) mean that the roots α+
1 and

α−2 take a form different to the negative dust case,

(1 + cos θ)−
√

(1− cos θ)2 − 4 cos θH

2(1 +H)
< α <

(1 + cos θ) +
√

(1− cos θ)2 − 4 cos θH

2(1 +H)
.

(3.87)

The regions of parameter space described by these limits are plotted in Fig. 3.11 with

the characteristic speeds being reduced in this case. A particularly novel feature is that

the solitary waves do not exist for the entire range of angles, but must be sufficiently

oblique such that

θ > arccos
(

1 + 2H − 2
√
H(1 +H)

)
(3.88)

This is noticeable even for very small values of H, as seen in Fig. 3.11, even a Havnes

parameter of 0.01 forbids the existence of solitary waves with θ < 0.61rad (35◦).
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As stated at the start of this section, the story is incomplete - the regions of parameter

space which allow the solitary waves to come into existence have been derived, but it

remains to determine the conditions under which the flow is reversed which will restrict

the zones in Figs. 3.10 and 3.11 further still. The integrals associated with the dust

grains in equations (3.73)-(3.76) present a stumbling block, in the transverse case these

could be dealt with by using (3.3) to eliminate the electric field, but the equations of

motion are now to complicated for this trick to work.

3.4 Summary

In this chapter two important classes of nonlinear waves have been introduced and

extended to include the effects of a stationary population of positively or negatively

charged dust grains. For transverse propagation, the spatial structure and range of

allowed velocities is solved for. For oblique propagation, necessary but not sufficient

conditions on the speed and direction of propagation are derived. This point now

marks the conclusion of the work done on dusty plasma with magnetic fields.



4 Electron distribution around a

magnetic dipole

Now that the work on dusty plasmas has been presented, the next study, of a phe-

nomenon in magnetised plasma where the dust is very sparse, can begin.

4.1 Experimental observations and simulations

In the introduction, it was stated that an almost interchangeable experimental arrange-

ment is used by two different camps of physics, namely, laboratory models of lunar swirls

and dusty crystal experiments. Each field’s own separate motivations for performing

such experiments were covered there, in this opening subsection I shall outline in more

detail how they have gone about their work, what they have found out and how well

their findings have been explained. This final step will then reveal which aspects this

thesis can contribute to.

Two experiments attempting to model the plasma structure above a lunar swirl (of

the type which does not form a mini-magnetosphere) with dipole moment perpendicular

to the surface have been performed by Wang [1] in 2013 and more recently Dropmann

[2] in 2016 (the names of the authors will be used to refer to each experiment). An

insulating lower electrode plays the role of the lunar surface, the plasma discharge

provides a laboratory solar wind and the magnetised crustal rocks are represented by a

small cylindrical permanent magnet positioned under the lower electrode. The magnetic

dipole moment of a magnetized moon patch has no reason to point in any particular

direction and so, to cover other possibilities, experiments have also been performed

with magnets oriented parallel [74] or obliquely [1] [2] to the surface, however, it is the

perpendicular case which is of interest here. Parameters for both (as well as other)

experiments are outlined in Table. 4.1. Some parameters are not explicitly stated in

the papers: the position of the dipole below the plasma-wall boundary, z0, is taken to

Group M, T m3 z0, mm Te, eV Sheath width
(approx.), mm

λMFP,e, mm Electrode

Dropmann 1.53× 10−8 4.7 4.9 6 17 Insulator

Wang 1.12× 10−7 12 2.5 60 2.6× 103 Insulator

Saitou 1.33× 10−8 6 2 6 29 Insulator

Law O(10−8) O(1) O(1) O(1) O(10) Conductor

Table 4.1: Experimental parameters for dust crystal and lunar swirl studies.

73
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Figure 4.1: Electric potential in the sheath above an insulating electrode. Dipole mag-
netic field lines are also included.

be the centre of the permanent magnet; the scaled magnetic dipole moment,M = µ0m
4π ,

is derived from the field measurements provided at certain points in the plasma (usually

Bz on axis just above the lower electrode) and the electron mean free path, λMFP,e, is

found using the electron-atom collision cross section in Argon [102], the background gas

in all of the experiments. A stronger magnet and longer Debye length mean that the

Wang arrangement is ostensibly a scaled up version of Dropmann’s. It is interesting to

point out that whilst Wang opted to use Langmuir and emissive probes to diagnose the

plasma potential, Dropmann elected to deduce the potential by releasing charged dust

grains and then tracking their trajectories.

Qualitatively similar results were obtained by both experiments: the surface potential

directly above the magnet is negative and then, extending out radially, the potential

becomes less negative in the lobe region (that is, where field lines are parallel to the sur-

face) and then continuing outwards it falls back down to approach its planar behaviour

as the influence of the magnet diminishes. This can be seen in Fig. 4.1, where a plot of

the data from Wang [1] has been included to illustrate the profile of electric potential in

the sheath. In both experiments, the strongest radial electric fields were found near to

the surface and were of order 104V m−1 for Dropmann and several hundreds for Wang.

The field is directed such that negative particles (if acted on purely by the electric field)

will be attracted towards the lobe regions - away from the centre and inwards from

the edges. For example, in Fig. 4.1 a negatively charged dust grain sitting near to the

surface would be pushed towards a radius of approximately 3cm.
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Whilst large-scale simulations of magnetic anomalies have been performed to resolve

the kilometer scale features [103] and the formation of mini-magnetospheres [104] [105],

there remains much work to be performed in characterising the charge separation which

is postulated to occur on the scale of tens to hunderds of meters in regions of rapid

magnetic field variation. Notable work was done by Zimmerman [4] in 2015, whose

representation included the flow speed of the solar wind and photoelectrons emitted

from the lunar surface. The magnetic field is not a true dipole however, since it is

the result of two infinite, antiparralel currents (in the z direction) located below the

surface leading to a field which falls of as r−2 as opposed to r−3 and is invariant to z

translations as opposed to azimuthal ones. As far as the structure of the electric field

goes, the previously shown experimental surface feature of a potential minimum flanked

by two maxima was recovered.

This concludes the work done by the lunar community, now it’s time to introduce

the experiments where the dust is the centre of attention. The only differences between

these studies and the lunar swirl ones are that the lower electrode is sometimes modified

in some way to prevent the dust grains from escaping radially and said electrode is also

usually conducting. The work of Saitou [3] uses very similar experimental parameters

to Dropmann (see Table 4.1), but to a rather different end: the non-uniformity of the

magnetic field sets up a sheared flow of dust grains which provides the possibility of

producing dusty plasma vortices. There is also Law who, in unpublished work [63], per-

formed similar experiments to investigate dust crystal dynamics with magnetic fields,

on this occasion with a conducting lower electrode. Only order of magnitude estimates

for Law’s parameters can be given from the information provided in his short paper.

In both of these experiments the dust is forced away from the axis, the time lapse of

the process as observed by Law is shown in Fig. 4.2 and the motions of the nega-

tively charged dust particles are consistent with the radial fields observed by Wang and

Dropmann.

The peculiar case of dust grains becoming more tightly bound to the axis may possibly

be explained when one includes the effects of ion drag [57]. A radial electric field which

acts to force dust outwards will also act to attract ions inwards and these will tend to

drag grains with them as they pass. This gives two competing effects and it may be

that for this anomalous result the experimental parameters were favourable for the ion

drag to exceed the electric force.

4.2 Theory of radial electric field generation

4.2.1 Current state

From the discussion sections of the aforementioned publications, there is a clear con-

sensus that the influence of the magnetic field on the electrons is responsible for the

radially modified sheath profile. As one progresses chronologically this becomes more

specific to suggest a redistribution of the electrons which subsequently generate radial
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Figure 4.2: Void formation as viewed from above. An ordinary dust crystal (A) takes on
a ring formation (E) after the magnet is switched on (B) and then returns
to its former (I) state after the field is removed at (G). Image credit: D. A.
Law

electric fields. To quote directly, starting with Law, “The radial motion of the dust,

when the magnetic field is switched on or off is likely due to a modified sheath struc-

ture, possibly caused by the electrons gyrating in the strong field directly above the

magnet.” In Wang’s paper, the notion of “electron shielding” is alluded to, to explain

the more positive electric potential near the lobes. In this paper, he also suggests that

the magnetic mirror effect is responsible for a depleted electron density on axis, leading

to higher potentials than in the planar case. In light of the analysis in section 2.2.3, it

seems unlikely that a reduced electron density will occur. It is more likely the case that

the potential on axes in influenced instead by the charge distribution off axis - a feature

Wang did not account for by erroneously assuming that ∂2φ
∂r2

= 0 on axis. Dropmann

commented that “electrons are bound by the field lines leading to a modified charge

distribution ” and the insight closest to the truth, in my opinion, was made by Zimmer-

mann who commented on the electron distribution of his simulations: “The dipole lobes

are magnetically inaccessible by solar wind electrons, which is consistent with reduced

cross-field mobility”.

So far, all of this is conjecture and no theoretical analysis has been performed to

determine where exactly these regions inaccessible to electrons are or to make predictions

on how these depend on the plasma and magnet parameters.
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4.2.2 What can be done

The first clear task is thus to perform basic theory of the electron kinetics, to ascertain

what the important parameters are and to then come up with a model for their spatial

distribution. To this end, I shall begin by examining what is meant when a particle is

said to be ‘magnetized’. Once this is defined, it will enable a thorough analysis of where

the electron behaviour is most affected by the field and thus, point to which regions are

important in understanding these features. The information gained here will help to

formulate a simple model for electron densities which can then be used to determine the

implications for the sheath structure. The remainder of this chapter will be dedicated

to that first task of electron kinetics.
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4.3 Magnetization condition for particles in a dipole field

To begin with, I shall lay out a working definition for what is meant by a ‘magnetized

particle’ as: A particle which has its motion dominated by the magnetic field. A first

necessary criterion is immediately presented: given that the magnetic field operates on

the typical length and time scales of λG and τG, for it to be the dominant influence there

must not be any interruptions occurring on shorter or faster scales. Such interference is

most likely caused by collisions of the particles with each other or the walls which confine

them. For collisions with other particles, one necessary requirement for magnetization

is thus

λ� rL and τc � τL , (4.1)

although, given that λ = vτ , if one of these conditions is satisifed it must be the case

the the other is automatically. For this work, the plasma is assumed to be collisionless

and thus this condition will not be a concern. However, it is still possible that the

wall presents a significant obstacle to magnetization. For it not to be, the distance

from the particle to the wall, d, must be greater than the component of the gyroradius

perpendicular to the wall, thus ensuring that the particle has enough space to complete

an orbit. Defining ε as the ratio of these two lengths, this condition is stated as

ε ≡ r⊥L
d
< 1 , (4.2)

where

r⊥L =
Br
B
rL =

cBr
B2

(4.3)

and

c =
mv⊥
e

. (4.4)

For a particle with coordinates (r, z) above a planar wall at z = 0 (illustrated in Fig.

4.4), the wall to particle distance is given simply as d = z and with a magnetic dipole

located below the wall at (0,−z0) equation (4.2) becomes

ε =
1

z

3cr(z + z0)
(
r2 + (z + z0)2

) 3
2

M(4(z + z0)2 + r2)
< 1 , (4.5)

after the appropriate values of the field strength have been substituted in. Given the

complicated form of ε, the importance of wall collisions is best studied on a case by case

basis. A plot of ε, taking as an example the parameters of Wang, is plotted in Fig. 4.4

and shows that collisions with the wall start to become important at radii greater than

10cm. Given that the radial extent of the lower electrode in these experiments is not

greater than this, it can be assumed that collisions with the wall are not an issue here.
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Figure 4.3: Diagram of quantities relevant to deriving the condition of particle-wall
collisions. In this case the particle is comfortably able to perform an orbit
without striking the wall.

Although collisions do not feature, one cannot yet conclude that particles are every-

where magnetized. In my previous definition I claimed that a magnetized particle must

be ‘dominated’ by the field, the absence of collisions only keeps this possibility open. To

now update my previous definition to be more specific I will class a magnetized particle

as:

A particle which has its motion accurately described by guiding centre drifts.

Since the problem has azimuthal symmetry (and azimuthal currents will not be great

enough to induce changes in the magnetic field), this is a 2D problem in r and z, implying

that azimuthal motions can be ignored. Therefore, a magentized particle is one which

appears to follow a particular field line when viewed in the r-z plane, for example one of

those plotted in Fig. 2.2. It is then the field geometry which is to determine whether or

not a particle is bound to a particular line - a particle will explore regions of space at a

gyroradius from its associated line and if the magnetic field is not uniform the particle

will experience a variety of field strengths in turn leading to deviations from the line it

was initially following.

It is necessary to derive some lengthscale associated with the variation of the magnetic

field to compare with the gyroradius of an orbiting particle. If the latter exceeds the

former, then it’s inferred that the particle is exposed to such a variety of magnetic

fields that it cannot be justifiably associated to just one field line. This notion of a

‘lengthscale’ has been used loosely before, but now warrants further introduction; in

1D, L(x), signifies the typical distance over which the function undergoes appreciable

change in the vicinity of x. For example, the notion that for exp(xa ), L = a may be
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Figure 4.4: Plot of ε, for the parameters of Wang. The contour ε = 1 is highlighted in
red, below this line particles are not magnetized.

familiar. To translate this into something mathematically more rigorous, consider a

function f(x) where, to first order, a deviation δx from x will result in a perturbation

of the function

∆f(x, δx) = δx
df

dx
. (4.6)

The function undergoes ‘appreciable change’ after a displacement δx = L1 (where the

subscript, 1, signifies that this is a first order calculation to differentiate from the up-

coming second order version) when the perturbation to f is comparable to its original

value

|∆f(x, L1)| = |f | , (4.7)

implying that

L1 =
|f |∣∣∣dfdx

∣∣∣ . (4.8)

The same idea is now extended to second order. The motivation behind this is that the

measure L1 →∞ as the gradient tends to zero and this can be avoided by considering

higher order terms which contribute to making ∆f nonzero. This is important here as

the magnetic dipole field, soon to be analysed under this framework, has the property

that ∂B
∂r = 0 when r = 0. To make this upgrade, some simplicity must be sacrificed

in order to gain some accuracy. At second order, the magnitude of ∆f depends on if
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the deviation from x is positive or negative. Considering deviations ±δx, the respective

perturbations are

∆f±(x, δx) = ±δxdf

dx
+

1

2
(δx)2 d2f

dx2
(4.9)

thus, the root mean square deviation is

√
〈(∆f(x, δx))2〉 =

√
1

2

(
∆f2

+ + ∆f2
−
)

= (δx)

((
df

dx

)2

+
1

4

(
d2f

dx2

)2

(δx)2

) 1
2

(4.10)

If the function undergoes appreciable change after a displacement of size L2 (the sub-

script, 2, here meaning ‘second order lengthscale’), then L2 is the solution of√
〈(∆f(x, L2))2〉 = |f(x)| , (4.11)

which has one real unique solution

L2 =

√√√√√√√−2
(

df
dx

)2
+ 2

√(
df
dx

)4
+ f2

(
d2f
dx2

)2

(
d2f
dx2

)2 . (4.12)

In Fig. 4.5, the two measures L1 and L2 are compared for four arbitrarily chosen

functions, the advantages of the latter are clear in regions where the gradient is small,

since L1 →∞.

Now to apply this analysis to the magnetic dipole field, and though a lengthscale of

B will not be explicitly calculated, the underlying principle is the same. Consider a

particle orbiting a field line (Fig. 4.6) so that at some moment in time the particle is

displaced δx from a point on the line, x, with |δx| = rL and δx ·B(x) = 0. The first

and second order changes in the magnetic field between a point at x and x + δx are

respectively

δB1 = δxT∇B(x) , (4.13)

δB2 =
1

2
δxT ĤB(x)δx , (4.14)

where ĤB(x) denotes the Hessian matrix of B evaluated at x, with elements given by

ĤB
i,j =

∂2B

∂xi∂xj
, (4.15)

where x1 = r, x2 = z, x3 = φ. Due to azimuthal symmetry, this matrix only has non

zero elements in the top left 2 × 2 submatrix since any deviations in the φ̂ direction

do not contribute to δB1,2. For the field of a magnetic dipole, the relevant quantities
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Figure 4.6: Particle performing an orbit around a field line.
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become

∇B(x) = − M
(r2 + z2)3

√
r2 + 4z2

(
3r
(
r2 + 5z2

)
12z3

)
(4.16)

for equation (4.13) and

ĤB(x) =
12M

(r2 + z2)4 (r2 + 4z2)
3
2

(
r6 + 10r4z2 + 22r2z4 − 5z6 rz3

(
7r2 + 25z2

)
rz3

(
7r2 + 25z2

)
3r4z2 + 5r2z4 − 16z6

)
(4.17)

for (4.14). Now to derive an expression for δx. As in the 1D case, where it was necessary

to average over two possible deviations ±δx, the direction of δx is not unique since the

particle could be at any stage of its orbit, indicated by θ in Fig. 4.6. This family

of vectors exists in the plane which contains x and is perpendicular to B(x) and two

vectors need to be found to span this space. An obvious first candidate is, φ̂, which must

be a member of this plane given that B has no azimuthal component. A simple choice

for the second is the vector described by θ = 0. Using δx ·B = δxrBr + δxzBz = 0,

this unit vector is given by Bz
B r̂ − Br

B ẑ. Combining this orthonormal basis, the set of

vectors which describe the displacement of a particle from its associated field line are

δx = rL

(
Bz cos θ

B
r̂ − Br cos θ

B
ẑ + sin θφ̂

)
, (4.18)

Equations (4.13) and (4.14) for a particle at stage, θ, in its orbit become after substi-

tution of (4.16), (4.17) and (4.18)

δB1 =M cos θrL
3r
(
r2 + 2z2

)
(r2 + z2)

5
2 (r2 + 4z2)

(4.19)

and δB2 =M cos2 θr2
L

6
(
r6 + 4r4z2 − 8r2z4 − 20z6

)
(r2 + z2)3 (r2 + 4z2)

5
2

. (4.20)

giving the mean square value of δB = δB1 + δB2, averaged over one orbit, as

〈(δB)2〉 =
1

2π

∫ 2π

0
(δB1 + δB2)2 dθ

=
1

2

(
MrL

3r
(
r2 + 2z2

)
(r2 + z2)

5
2 (r2 + 4z2)

)2

+
3

8

(
Mr2

L

6
(
r6 + 4r4z2 − 8r2z4 − 20z6

)
(r2 + z2)3 (r2 + 4z2)

5
2

)2

. (4.21)

This is a similar position to before (equation (4.10)), where when deriving a 2D length-

scale the procedure was to solve for rL such that 〈(δB)2〉 = B to give rL as the

lengthscale. Instead, the degree of magnetization will be indicated by the parame-

ter γ =

√
〈(δB)2〉
B , where a particle will be considered magnetized so long as γ � 1.
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Particle Energy (MeV) Lorentz Factor β = v
c γ

Inner belt, 1 - 3RE
Electron 0.1 - 1 1.2 - 2.96 0.55 - 0.94 10−5 - 10−4

Proton 10 - 100 1.01 - 1.11 0.15 - 0.43 0.007 - 0.2

Outer belt, 3 - 10RE
Electron 0.1 - 10 1.2 - 21 0.55 - 1 10−4 - 0.05

Table 4.2: Van Allen radiation belt parameters evaluated at z = 0 and r at the typical
altitude

Using the equation (4.21), γ is expressed as

γ =
c

M

√√√√9 (r2 + z2)5
(
r2 (r2 + 4z2)4 + 3

(
c
M
)2

(r2 + z2) (r6 + 4r4z2 − 8r2z4 − 20z6)2
)

2 (r2 + 4z2)8

(4.22)

and the lengthscale, Λ, to which r and z are normalized is identified as
√
M
c ,

Λ =

√
Mµ0e

4πmv⊥
, (4.23)

giving a first glimpse at the characteristic size of the region of magnetization of a dipole.

One point to make is that v⊥ is not a constant as it depends on the relative directions

of the magnetic field and particle velocity. For a particle with speed v, 0 < v⊥ < v

and so
√

Mµ0e
4πmv < Λ < ∞. However, by taking v⊥ ≈ v, one obtains an idea of the

typical lengthscales involved. In Fig. 4.7, γ is plotted to indicate which regions around

the dipole are magnetized. It is to be understood that the contour γ = 1 outlines the

transition between the magnetized and unmagnetized regions and the contour γ = 0.1

indicates the beginning of the strictly magnetized region. Only one quadrant has been

plotted here, but one can see that the magnetized region describes an approximate figure

of eight shape centred around the magnet with height and width of order Λ.

One example comes to mind to scrutinise the parameter, γ. A magnetic dipole of

strength µ0M
4π = 8×1015 approximately describes the Earth’s magnetic field and electrons

and ions from the solar wind may become trapped by this field, performing stable orbits

around magnetic field lines. These trapped populations are responsible for the Van Allen

radiation belts and given that their motions are magnetized by my definition, it should

be expected that these radiation belts occur in regions of low γ. Table 4.2 gives values

of γ where the particle energies have been used to find the velocity and relativistic

corrections to mass. Since γ is a function of r and z, I have decided to evaluate it at

just one location: where particles pass through the equator, z = 0. Electrons in the

outer and inner belts have γ values ranging from 10−5 - 10−2 thus confirming that these

particles are strongly magnetized. Protons in the inner belt have γ values ranging from

10−3-10−1 and so may also be considered magnetized, though to a lesser degree. In

conclusion, some confidence is to be drawn from the fact that the metric γ successfully
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Figure 4.7: Plot of γ on a log scale. The contour γ = 1 (and so log10(γ) = 0) is
highlighted in red.

recognises that the electrons and protons in the van Allen radiation belts are magnetized.

Now that it is clear where electrons may be considered to be magnetized, the next

question concerns what the effect of this is on their distribution.

4.4 Electron distribution

It has been shown that electrons may be considered to be magnetized within a typical

distance of Λ from the magnet. In the case at hand, electrons are assumed collisionless

implying that electrons cannot be transported into this region via collisions. Ionization

is also not significant meaning that electrons cannot access this region by being produced

locally. Under these assumptions, the electrons must approach this magnetized region

from the outside at an infinite distance away. The task, then, is to determine what

happens to electrons approaching the magnet in this way with the expectation that the

interesting behaviours will occur near this Λ sized region.

Without solving the equations of motion entirely, useful information can be extracted

from the Lagrangian formalism. This has been used previously to determine how many

secondary electrons are trapped near to the electrode of a magnetron discharge [106].

The Lagrangian for a particle (of mass, m and charge, q) moving in an electromagnetic
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field in cylindrical coordinates is

L =
1

2
m(ṙ2 + r2θ̇2 + ż2)− q(φ− ṙAr − rθ̇Aθ − żAz) , (4.24)

where Ai are the components of the magnetic vector potential. Azimuthal symmetry

implies L = L(r, z) and thus there is the conserved quantity

p0 =
∂L
∂θ̇

= mr2θ̇ + qrAθ . (4.25)

For a magnetic dipole moment M = M ẑ, the azimuthal component of the vector po-

tential is given by

Aθ =
µ0M

4π

r

(r2 + z2)
3
2

(4.26)

and so the conserved momentum is given as

p0 = mrvθ +
qµ0M

4π

r2

(r2 + z2)
3
2

. (4.27)

Rearranging this for vθ, gives an expression for the azimuthal velocity as a function of

position

vθ =
p0

mr
− qµ0M

4πm

r

(r2 + z2)
3
2

. (4.28)

Energy conservation requires that

1

2
m
(
v2
z + v2

r + v2
θ

)
+ qφ(r, z) = const. (4.29)

and given equation (4.28), the azimuthal velocity can be absorbed into the potential

term to create an effective potential. Substituting (4.28) into (4.29) and introducing a

change of notation, v ≡
√
v2
r + v2

z , to indicate the speed in the r-z plane results in

1

2
mv2 + ψ(r, z, p0) = const. (4.30)

where

ψ(r, z, p0) ≡ qφ+
1

2m

(
p0

r
− qµ0M

4π

r

(r2 + z2)
3
2

)2

. (4.31)

The effective potential, ψ, depends on the initial conditions of the particle which are

contained in the parameter p0.
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Figure 4.8: Initial condition for an incoming particle with speed V and impact param-
eter b, where R→∞.

4.4.1 1D

It is instructive to first consider a simpler problem, that is, particles moving in the z = 0

plane in the absence of electric fields (φ = 0). These particles will remain in this plane

so that the only coordinate of interest is r.

Trajectories

Particles of speed, V , and impact parameter, b, are fired in towards the dipole from an

infinite radius (see Fig. 4.8). For z = 0, equations (4.30) and (4.27) become

v2 = V 2 − 1

m2

(
p0

r
− qµ0M

4π

1

r2

)2

(4.32)

and

p0 = mrvθ +
qµ0M

4π

1

r
. (4.33)

Geometric properties help to find p0 in terms of b and V , from inspection of Fig. 4.8:

sin θ =
b

R
, (4.34)

sin θ =
vθ0
V

, (4.35)

cos θ =
v0

V
, (4.36)

where I have also defined v0 and vθ0 as the initial radial and azimuthal velocities re-

spectively. Elimination of θ implies that

vθ0 =
b

R
V (4.37)

and v0 = V

√
1−

(
b

R

)2

(4.38)

so that

p0 = lim
R→∞

(
mbV +

qµ0M

4π

1

R

)
= mbV . (4.39)



88 Chapter 4. Electron distribution around a magnetic dipole

-3 -2 -1 0 1 2 3

b

Λ

2 - 1

1

2

3

ri

Λ

Figure 4.9: Radius of closest approach as a function of impact parameter

Substituting this into (4.32) gives

v2 = V 2 − 1

m2

(
mbV

r
− qµ0M

4π

1

r2

)2

. (4.40)

This equation dictates the radii accessible to a particle. The innermost radius a particle

can reach, rmin(b, V ), is the solution of (4.40) for r when v = 0 and is given by the

piecewise function:

rmin =


−b+
√
b2−(2Λ)2

2 , b < −2Λ

b+
√
b2+(2Λ)2

2 , b > −2Λ
(4.41)

As anticipated the characteristic lengthscale from equation (4.23) , Λ, has reappeared

but this time with the slight tweak that Λ =
√

Mµ0e
4πmV , that is, v⊥ → V . Equation

(4.41) is plotted in Fig. 4.9. There is a discontinuity at b = −2Λ where if the impact

parameter is slightly less the electron reaches its innermost point at r = Λ and if b is

larger the electron reaches r0 = (
√

2 − 1)Λ. This is illustrated by the two highlighted

trajectories in Fig. 4.10. No electron can access the region r < r0 and it appears that

the inner most trajectory almost begins a guiding centre drift before being sent back.

It will be useful to re-express equation (4.41) as the range of impact parameters which

can be present at a radius r. This can be verified by inspection of Fig. 4.9 as being

bmin =

2Λ, r0 < r < Λ

−Λ2

r − r, r > Λ
(4.42)

and

bmax = −Λ2

r
+ r , r > r0 . (4.43)
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Figure 4.10: Particle trajectories for different impact parameters incident on a magnetic
dipole at the origin. Highlighted are two trajectories in green and red, just
either side of b = −2Λ. The red is just below and reaches r = r0, the green
is just above and turns back at r = Λ.

Density

The previous section uncovered how fast particles move and where they may go and

for this 1D example it is not much work to turn this into a statement on the particle

density. Here I shall perform the calculation to derive the analytic particle density but I

also explore if there are any suitable approximations to be made, with a view to finding

the density in the 2D system of interest where things are not so simple.

Exact From the equation of continuity, the infinitesimal contribution to the density

at a point r coming from particles with impact parameter b→ b+ db is

dn(b, r) =
dn(b,∞)v0R

vr
. (4.44)

where the initial density of ‘b electrons’ is dn(b,∞) = n0fb(b)db, with fb(b) the PDF for

b. To derive fb, referring again to Fig. 4.8, if the electrons are assumed isotropic at R,

then the PDF of θ for incoming particles (−π
2 < θ < π

2 ) is uniform, given by fθ(θ) = 1
π .

The probability distribution for b is then deduced from this as fb(b) = fθ(θ)
dθ
db , giving

from equation (4.34):

fb(b) =
1

π
√
R2 − b2

(4.45)
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Figure 4.11: Analytic and computational comparison of electron density

At some radius, r, the density is given by the integral of (4.44) over all contributing

impact parameters

n = n0

∫ bmax

bmin

fbv0R

vr
db . (4.46)

with bmin and bmax given by equations (4.42) and (4.43). Substitution of (4.45) and

assuming that particles are incident from afar, r � R, results in

n = n0

∫ bmax

bmin

1

πr

√
1−

(
b
r −

Mq
mV r2

)2
db . (4.47)

and integration of this yields the density as

n(r) =


0, r < r0

n0
π arccos

(
Λ
r

(
Λ
r − 2

))
, r0 < r < Λ

n0, r > Λ

(4.48)

This function is plotted in Fig. 4.11, as expected the density is zero for r < r0,

but perhaps unexpectedly, the density changes abruptly at r = Λ and then remains

constant. To test this expression, a simple code was written to fire in particles covering

a large range of impact parameters. The particle density was then inferred by tracking

the particle trajectories and and seeing how much time was spent at each radius.

So far, only monoenergetic electrons have been considered, leaving the final step to

extend this study to a population which follows some velocity PDF fv(v) at infinity.

The density is obtained by integrating (4.48) over v, but with a change of notation
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Figure 4.12: The exact electron density calculated for a Maxwellian velocity distribu-
tion, equation (4.50), in blue. Included are the particle densities trying to
replicate this profile by introducing an effective electric potential. In yellow
is the Boltzmann distribution for an electric potential given by equation
(4.52) and in green is a Boltzmann distribution for the same potential
scaled by a factor of three to better fit the exact solution.

n0 → n0fv(v)dv, where n0 still indicates the total particle density at infinity.

n(r) =

∫ vmax

vmin

n0f(v)

π
arccos

(Mq − 2r
√Mqmv

mr2v

)
dv +

∫ ∞
Mq

mr2

n0f(v) dv (4.49)

where the limits are vmin = (
√

2−1)2Mq
mr2

and vmax = Mq
mr2

. In normalized units for a MVD:

r → r
ΛT

, v → v
vT

, f(v)→ 2v exp
(
−v2

)
this becomes

n(r) = n0

∫ 1
r2

(
√
2−1)2

r2

2v exp
(
−v2

)
π

arccos

(
1

r
√
v

(
1

r
√
v
− 2

))
dv + n0

∫ ∞
1
r2

2v exp
(
−v2

)
dv

(4.50)

The numerical result of this is plotted in Fig. 4.12, alongside are a few other curves

whose meaning will become clear in the upcoming section.

Approximate Finding the 1D density proved to be a tractable problem, the final

result being given by equation (4.50). The 2D case will not yield an analytic result,

so it is worth checking to see if an approximate form can be found. A fairly crude

approximation is to assume that the particle density for a given v is 0 in the region where

the particles cannot access and n0fv(v) where they can. Under this approximation,

(4.48) is instead

dn(r, v) ≈

0, r < r0(v)

n0fv(v)dv, r > r0(v)
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and integrating this over all velocities

n(r) =

∫
dn(r, v) =

∫ ∞
0

n0fv(v) dv = n0 exp

(
(
√

2− 1)4M2q2

2mkBT

1

r4

)
, (4.51)

i.e. from this approximate picture, it is as if the density follows the Boltzmann relation

for an electric potential

φ =
(
√

2− 1)4M2q

2m

1

r4
. (4.52)

This can be understood from a different perspective, if an electric potential were to

represent the magnetic dipole as best it could, one key feature it would have to reproduce

is to keep particles away from r0. By conservation of energy, the effective potential must

then have equipotential lines described by

1

2
mV 2 = φ(r0) . (4.53)

Rearranging r0 = (
√

2− 1)Λ for V gives

V =
(
√

2− 1)2Mq

mr2
0

, (4.54)

and then taking the square and multiplying by 1
2m gives

1

2
mV 2 =

1

2

(
√

2− 1)4M2q2

mr4
0

(4.55)

which is in a form such that φ(r) can be found by comparison of (4.55) and (4.53) and

this matches (4.52).

The exact (4.49) and approximate (4.51) densities are plotted in Fig 4.12 and one

sees that the density is overestimated, but this is not unexpected. In Fig. 4.13, the

density for a single particle velocity is plotted for the exact and approximate density

profiles (as was performed in Fig. 4.11). Perhaps counter intuitively, the particle density

remains constant for a r−4 potential up to the the inaccessible region. Because the only

goal when constructing the effective potential was for it to stop particles at r0, the

density r0 < r < Λ has been overestimated as the exact solution drops to zero gradually

and the approximate remains constant. To improve the situation, some intervention is

required. By increasing the field strength, the error associated with overly high particle

densities can be offset by an increased innermost radius. It turns out that by doing this

adjustment by eye results in a best fit when the potential (4.52) is scaled up by a factor

of 3 and the effect of this is illustrated in Fig. 4.13. The corresponding density for this

adjusted effective potential is included in 4.12 and shows improved agreement.
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Figure 4.13: For a given electron velocity, particle densities are plotted for the magnetic
dipole field (Exact), for an initial guess at the effective potential (Approx-
imate) and an optimized version of this (Approximate with fitting).

4.4.2 2D

It is now time to extend the 1D study to the one of interest, the 2D case, where

particles are free to move in the z direction. In the same way as before, the first task is

to determine what regions the magnetic field forbids particles from accessing.

Trajectories

In this case the locus of points describing the boundary of the forbidden region is given

as: (
p0

mr
− qM

m

r

(r2 + z2)
3
2

)2

= V 2 (4.56)

where p0 is the conserved quantity as defined in equation (4.27). Though it was more

intuitive before to consider impact parameter instead of p0, such a picture is not useful

here and p0 will be used to characterise the incoming particles. Rearranging (4.56) for

z gives the equations of the contours separating the allowed and forbidden regions (the

2D version of equation (4.41)), the nature of which depends on p0
z > z+, p0 ≤ 0

z+ < z < z−, 0 < p0 ≤ 2
√
qMV m

z < z−, p0 > 2
√
qMV m

where

z±(r, p0) =

√(
qMr2

p0 ±mrV

) 2
3

− r2 . (4.57)



94 Chapter 4. Electron distribution around a magnetic dipole

These zones are plotted in Fig. 4.14 for different values of p0. Also highlighted in all

plots is the region which is never accessible, given as z < z0, where:

z0 = z+(r, 2
√
qMV m) (4.58)

Since this forbidden region is just a consequence of conservation laws, it may be as

readily accepted as any other result deriving from, say, energy or angular momentum

conservation. However, there is a simple physical picture which illuminates why this

region exists. Assuming to lowest order that inside of the magnetized region (defined

as γ < 1 in the previous chapter) the electrons are tied to magnetic field lines and that

outside particles are completely unmagnetized results in the picture given in Fig. 4.15.

Particles incident from above and the sides cross over the boundary and can follow their

newly associated field lines to access the region near to the origin. In this picture, there

are field lines which cannot be latched onto which occur to the inside of the line labeled

as ‘L’. Before these inner lines can be met, line L (or a line outside of this) will intercept

the particle first. This restricts the innermost electrons not to venture within a Larmor

radius from L, indicated by the yellow zone of Fig. 4.15.

The two restricted regions as found from the Lagrangian approach and this physical

argument are compared in Fig. 4.16 and show fairly good agreement. In fact there

is one final reconciliation of these approaches. Fig. 4.14 shows that the innermost

electrons have a value of p0 slightly less than 2 and the way they access this region is

through a small gap at around r = 1 (see p0 = 1.99). Electrons moving through this gap

correspond to ones taking a trajectory which hugs the r axis such as the one denoted

by ‘T’ in Fig. 4.15.

This is another first glimpse of a significant result: the zones in which electron motion

is restricted and the resulting space charge is what I propose leads to the radial electric

fields observed.

Density

This insight, that particles effectively move freely until they meet their ‘magnetizing’

field line, inspires a novel way to calculate particle densities. It was initially the intention

to use the effective electric potential approximation as demonstrated for the 1D case,

however, it is not clear that this is valid when actual electric fields are also present. The

important feature of this new approximation is that this method will be valid under

these conditions. Recall from section 2.1 that the MVD near an absorbing boundary

was modified by ‘chopping off’ the part of the distribution function correspodning to

particles not returned by the wall. In this case, I propose that the magnetic field lines

play an analagous role to the wall. At the point just inside of the yellow forbidden zone

(Fig. 4.15) for a particle of speed v, the velocity PDF would have remained a MVD,

as it was at infinity, were it not for the magnetic field. The effect of this field is to

intercept any particles travelling slower than v, before they can reach this point but to

leave everything travelling any faster alone. Thus, the velocity distribution should be a



4.4 Electron distribution 95

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p0=-1

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p0=-0.2

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p0=0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p0=0.5

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p0=1

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p0=1.99

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p0=2

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p0=2.1

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

p0=2.3

Figure 4.14: Regions (where the x axis label, r
Λ , and the y axis lable, z

Λ , have been
omitted in the figure to maximise area occupied by the plots) accessible
to electrons shaded blue as a function of p0. The region in yellow in not
accessible for any value of p0.
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Figure 4.15: Particles enter the magnetized region (red), performing orbits the instant
they make the transition. The yellow region, traced out by the particle
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Figure 4.17: Density scaling factor introduced by magnetic screening. This plot would
correspond to normalized particle density in the absence of electric fields.

MVD but with all particles slower than v missing.

The density then follows simply from the BR, but with the missing particles not

accounted for:

n(x) = n0 exp

(
eφ

kBTe

)∫ ∞
v(x)

f(v) dv

≡ n0 exp

(
eφ

kBTe

)
fB(x) (4.59)

where

fB(x) =

(
erfc(v(x)) +

2v(x) exp(−v(x)2)√
π

)
, (4.60)

and v(x) is velocity of a particle whose exclusion zone boundary passes through x, found

by inverting (4.57),

v(x) =
qM

m

1

r2

(
−1 +

√
1 +

r3

(r2 + z2)
3
2

)2

. (4.61)

Together, equations (4.59), (4.60) and (4.61) describe the electron density. The part

corresponding to the magnetic correction, (4.60), is plotted in Fig. 4.17.
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4.5 Comparison of electron model to observations

Now to see how well these findings correspond to the experimental observations outlined

at the start of this chapter. This shall be done in a qualitative way, by checking if

anything interesting occurs around the forbidden zones described by (4.57). With V

taken as the thermal velocity, the regions are compared with the sheath profiles obtained

by Wang, Dropmann and Saitou in Fig. 4.18.

In (a) the potential obtained by Wang is higher in the predicted electron exclusion

regions, indicative of a more positive charge density. In (b) the vertical acceleration

of dust grains found by Dropmann is compared to the forbidden zone. The reduced

force suspending the grains at the lobes also suggests electron depletion and, again,

the predicted depletion zone is, visually speaking, a good match. Given the idea that

particles cannot penetrate deeper than particular field lines, it is no coincidence that

the exclusion zones are mistakable for the magnetic field lines which the two authors

have helpfully included in their plots. Furthermore, given the strong electric fields in

the sheath, it is reassuring to have some confirmation that the mechanism by which

field lines intercept particles is unaffected by electric fields.

In (c), Saitou provides a cross sectional view of how a cloud of dust grains distribute

themselves in the sheath, showing a range of levitation heights and radii. The dust void

formed in the centre is consistent with negatively charged grains being forced to move

closer to the particularly positive region resulting from electron depletion. However, it

is surprising that dust particles should levitate higher directly above this region, given

that I would expect them to be pulled down towards the region as they were radially.

Since the cone represents a region filled with dust, it may be the case that those outer

particles sit higher as they are supported by the grains below them.

The simulations of Zimmerman require a special treatment given that the field geom-

etry differs from a pure dipole. The derivation of the form of his field and analysis of

what this implies for electron trajectories is left to Appendix B. The exclusion zone is

plotted in Fig. 4.19 and shows that solar wind electrons appear to penetrate deeper than

I would have predicted. One reason behind this is that the exclusion zone for electrons

which approach from infinity extends to 2000m on the surface, but the x dimension of

the simulation domain is 1250m implying that some electrons injected from the sides

are artificially magnetized. A second curve in Fig. 4.19 marks how close an electron

injected from the side can reach and confirms that these are able to go much deeper

than if they had been released at an appropriately far distance.

4.6 Summary

The key results of this chapter are the improved understanding of electron behaviour and

a way to determine their distribution with a simple model. The qualitative agreement

seen with experiment builds confidence in this work - the electron density model ideally

requires a more rigorous examination, but this will have to wait for the discussion of
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further work. Now it is time to see what the consequences are for the sheath. The

next section will outline how to implement the density given from (4.59)-(4.61) into a

sheath model, with the majority devoted to explaining the computational tools which

are necessary.
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Figure 4.18: Overlays of exclusion zones calculated for electrons travelling at the ther-
mal speed and experimental results of: (a) Wang - electric potential, (b)
Dropmann - radial acceleration of dust grains in units of g and (c) Saitou
- position of dust grain cloud. The colours of the exclusion boundaries
are not significant and are only chosen such that they stand out from the
colour schemes used by the original authors.
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Figure 4.19: Electric potential from simulations performed by Zimmerman. The yellow
curve gives the exclusion zone for thermal electrons approaching from in-
finity and the blue gives the exclusion zone for particles which start at the
computational boundary.



5 Sheath model and its implementation

What is interesting to consider, now that an electron model has been formulated, is the

effect this has on the sheath. It is just this aspect which is concentrated on, in other

words, the goal is not to produce an accurate model of lunar swirls, where one would

have to include photoelectrons, complex field geometry and the magnetic field and flow

speed of the solar wind. Instead, the task is to isolate the features which arise due to

the restricted movement of electrons. Because these complicating lunar swirl features

are not included in the laboratory studies either, it is more accurate to say that one is

trying to accurately describe lunar swirl experiments, not the swirls themselves. Also,

not to forget, the results obtained here will also be useful in better characterising the

sheath region of magnetised dusty crystal experiments.

5.1 Sheath model outline

The new sheath model, which includes the effects of magnetized electrons, is not so

different methodologically from the planar sheath treatment described in the theory

section 2.4: Electron density is given by an analytic expression of local properties, ion

density is given from continuity as they stream through and the sheath profile is the self

consistent solution of these particle densities with Poisson’s equation. The big difference

in the magnetized case is that variation of electron density in the radial direction now

means that this is a 2D problem. Furthermore, the ions will undergo deflections caused

by the radial electric fields and thus require more than just energy conservation to

determine their densities. Assuming that they are not so strongly deflected that they

undergo complete reflection out of the sheath, one can employ a fluid model to determine

their distribution.

It is important to discuss the relative size of the sheath, tens of λDe, and the typical

lengthscale of influence of the magnet, Λ. If Λ� λDe, the magnet only has an effect on

electrons deep in the sheath. Given that the density of electrons down there is highly

depleted by the wall electric field, the additional obstacle provided by the dipole lobe

region is of little consequence. In the experiments of Law, Dropmann and Wang, it is

the case that the extent of the sheath is slightly larger, but comparable, to the magnetic

effects Λ / λDe. In these cases, the changes to the plasma profile are basically restricted

to the sheath. For situations where the magnetic field has influence all the way to the

bulk plasma there are extra complications as one needs to also consider the presheath.

Since I will be making comparisons to Wang and Dropmann, there is no reason to solve

a problem more difficult that it needs to be and I will restrict these studies to look at

102
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magnetic field strengths which are not so big as to have effect in the bulk plasma.

To describe the sheath model in mathematical terms, the problem to be solved is

Poisson’s equation in cylindrical geometry,

1

r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂z2
=

e

ε0
(ni − ne) , (5.1)

with the electron density being given by

ne = n0 exp

(
eφ

kBTe

)(
erfc(v(r, z)) +

2v(r, z) exp(−v(r, z)2)√
π

)
, (5.2)

where

v(r, z) =
qM

m

1

r2

(
−1 +

√
1 +

r3

(r2 + z2)
3
2

)2

, (5.3)

and the ion density resulting from the solution to the fluid equation of motion

(ui · ∇)ui =
e

mi
E , (5.4)

and continuity

∇ · (niui) = 0 . (5.5)

The equations are to be solved in a domain of extent R and Z in the radial and vertical

directions respectively. The boundary conditions are:

i r = 0: On axis the radial electric field must be zero, thus requiring of the potential,

∂φ

∂r
(0, z) = 0 . (5.6)

ii r = R: If the domain is much wider than the area of magnetic influence, R � Λ,

then there are large distant regions where the plasma is not magnetically influenced

and a planar sheath can be established. So long as the radial boundary is taken to

be sufficiently far, one can use the planar sheath profile to describe the potential

here,

φ(R, z) = φP (z) , (5.7)

where φP is the planar sheath profile, as derived in section 2.4.

iii z = 0: Since the wall is conducting it describes an equipotential surface. Given

that the previous boundary condition provides the wall potential there as φ(R, 0) =

φP (0), this must also be the wall potential everywhere,

φ(r, 0) = φP (0) . (5.8)
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Figure 5.1: Computational domain for sheath model and expected qualitative features.
The typical area of influence of the magnet (which has its midpoint at z0

below the electrode surface) is highlighted in blue and is contained within
the sheath extending to a height Z and width R. Boundary conditions
corresponding to those listed are given and a rough estimate of what to
expect for the potentials is given in red. Trajectories of deflected ions are
shown at the top.

iv z = Z: In the same way as the boundary at r = R, if one goes far enough away from

the magnet in the z direction, then one recovers the planar sheath.

φ(r, Z) = φP (Z) . (5.9)

These boundary conditions, as well as other features of the model, are illustrated in

Fig. 5.1.

This model entails three necessary tasks which require computational methods to

accomplish. Needed is: a solver of Poisson’s equation in 2D, a solver of the ion fluid

density in 2D and an iterative scheme to find the self consistent solution of plasma

density and potential. The remainder of this chapter will describe what exact methods

are used for these three tasks and then my coding of these will be tested by benchmarking

the three components against known results. First, I shall quickly dedicate a section to

outline some of the basics on finite difference methods.
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5.2 Discretisation and finite differences

When a computer is used to deal with a continuous quantity the first step must be to

translate this into a form it can manage via discretisation. In 2D a function, u(x, y),

is represented by its values at a discrete set of points u(xi, yj) to form a matrix with

elements ui,j . The grid points are given by:

xi = x0 + ih (5.10)

yj = y0 + jh (5.11)

where i = 0, 1, ..., Nx, j = 0, 1, ..., Ny and the spacing between points, h, is used to

refer to any quantities being represented on the grid. For example, uh, denotes the

function u(x, y) cast onto a grid of spacing h, whereas u2h would imply the same function

represented on a coarser grid of twice the previous spacing. Furthermore, subscripts are

used to signify specific values on the grid, i.e. uhi,j is the discretized value of u at

(x0 + ih, y0 + jh). The labelling convention applies to operators too, where Oh has the

same (albeit discretised) effect on uh as O would on u. A common class of operators

worth mention is those which calculate derivatives. In the world of grid points, these

operate by using ‘finite differences’ in one of three ways, depending on the selected

points:

f ′(x) ≈ f(x+ h)− f(x)

h
(5.12)

≈ f(x)− f(x− h)

h
(5.13)

≈ f(x+ h)− f(x− h)

2h
(5.14)

with these three expressions referred to as ‘forward’, ‘backward’ and ‘central’ schemes

respectively.

There are three operators which will be useful in this chapter and it is worthwhile

introducing them now. Not unexpectedly, since the goal is to solve Poisson’s equation,

the first is the Laplacian, Lh, which in Cartesian coordinates operating on the potential

φh is, at the gridpoint (i, j), given by

(Lhφh)i,j =
φhi,j+1 + φhi+1,j + φhi,j−1 + φhi−1,j − 4φhi,j

4h2
(5.15)

where a central difference scheme has been employed. Later on this will require adapta-

tion for cylindrical coordinates and there is also the issue of when (i, j) is a point on the

boundary. The next two operators are special in that they regulate the movement be-

tween different grids - these operators do not correspond to anything physical. First of

these is the restriction operator, R. The job of this operator is to take a function defined

on a grid, uh, and to map this to the representation on a grid twice as coarse, u2h. This

is best understood from the illustration of Fig. 5.2, the operator given mathematically
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Figure 5.2: Restriction from the fine grid (circles) to the coarse grid (crosses). The
coarse grid indices are written in bold on the left and top, the fine grid
on the bottom and right and because the coarse grid spacing is twice as
large, u2h

i,j and uh2i,2j correspond to the value of u at the same point in space.
A weighted sum of the neighbouring points highlighted in red is used to
determine u2h

i,j according to equation (5.16).

as [107, p. 42]

u2h
i,j = (Rhuh)i,j =

1

4
uh2i,2j

+
1

8

(
uh2i,2j+1 + uh2i+1,2j + uh2i,2j−1 + uh2i−1,2j

)
+

1

16

(
uh2i+1,2j+1 + uh2i+1,2j−1 + uh2i−1,2j−1 + uh2i−1,2j+1

)
(5.16)

i.e. the operator, commonly known as the ‘full weighting’ (FW) operator, takes into ac-

count the values at nine points, giving greater weighting to those nearest by. Application

of R is akin to reducing the resolution of a jpeg image by quartering the pixel density,

but taking a weighted sum around each pixel to faithfully preserve as much information

as possible. The final operator is prolongation, P, which performs the opposite task of

restriction. Here a function u2h is interpolated under the action of P to fit to a finer

grid, giving uh. I should point out that whilst the purposes of P and R are opposite,

their effects are not since prolongation has to resort to interpolation, whereas restriction

uses a weighted average. To go back to the example of the jpeg, an image that has been

made grainy cannot then return back to its original resolution by increasing the pixel

density - information lost by restriction cannot be regained by prolongation. The way

P works is by a process called ‘bilinear interpolation’. As the name suggests, the value

of the function at (x, y) is worked out from two successive rounds of interpolation. Both
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are illustrated in Fig. 5.3, the first occuring in the x direction:

φx,y1 =
x2 − x
x2 − x1

φ1,1 +
x− x1

x2 − x1
φ2,1 (5.17)

φx,y2 =
x2 − x
x2 − x1

φ1,2 +
x− x1

x2 − x1
φ2,2 (5.18)

then, interpolation in the y direction vields the approximate value:

φx,y =
y2 − y
y2 − y1

φx,y1 +
y − y1

y2 − y1
φx,y2 (5.19)

When applied to a coarse to fine grid conversion, these equations look much simpler

since φx,y either occurs on top of, half way (in x or y) between two, or in the centre

of four coarse grid points. In these four cases elements are combined in the following

ways:

uh2i,2j = (P2hu2h)2i,2j = u2h
i,j (5.20)

uh2i+1,2j = (P2hu2h)2i+1,j =
1

2

(
u2h
i,j + u2h

i+1,j

)
(5.21)

uh2i,2j+1 = (P2hu2h)i,2j+1 =
1

2

(
u2h
i,j + u2h

i,j+1

)
(5.22)

uh2i+1,2j+1 = (P2hu2h)2i+1,2j+1 =
1

4

(
u2h
i,j+1 + u2h

i+1,j + u2h
i,j−1 + u2h

i−1,j

)
(5.23)

The Laplacian, prolongation and restriction operators have been presented in Carte-

sian coordinates here for simple demonstration. Their form in cylindrical coordinates,

as well as corrections which have to be made at boundary points, are given in Appendix

C.

5.3 Poisson solver

Now that it is understood how to translate a problem to the language of a computer,

it’s time to apply this to the first of the three components of my method, a solver of

Poisson’s equation:

Lφ = ρ , (5.24)

where L is the Laplacian operator and ρ is what I shall call the ‘source term’ (charge

density divided by ε0). Discretizing this equation on a uniform grid of mesh spacing, h,

these quantities take their discrete forms:

Lhφh = ρh . (5.25)

This equation can be solved directly for φh by inversion of the matrix Lh. However,

most of the time large grid sizes will render these matrices prohibitively large and

inversion will take too long. The remainder of this chapter will review the alternative
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Figure 5.3: Bilinear interpretation for the general case of continuous x and y (for the
prolongation operator, (x, y) will occur on fine grid sites). Intermediate
values (blue) φx,1 and φx,2 are each found from a weighted sums of φ1,1, φ2,1

and φ1,2, φ2,2 respectively. Then, φx,y is the result of another weighted sum
of these two values.

computational techniques which are employed to reach a solution.

5.3.1 Relaxation methods

One of the most basic strategies is provided by relaxation methods, where some initial

guess is gradually improved until it converges on the solution. A physical way to think

about this is to recast (5.24) as a diffusion equation,

∂φ

∂t
= Lφ− ρ , (5.26)

so that the steady state solution, ∂φ∂t = 0, is also the solution of (5.24). In this sense, an

initial guess will eventually relax to the answer. Expressing the pseudo-time derivative

in terms of a forward difference yields an equation for the development of φh:

φh(t+ δt) = φh(t) + δt
(
Lhφh − ρh

)
(5.27)

which for the two dimensional case, using the cartesian Laplacian operator from (5.15),

becomes

φhi,j(t+ δt) = φhi,j(t) +
δt

h2

(
φhi+1,j(t) + φhi−1,j(t) + φhi,j+1(t) + φhi+1,j−1(t)− 4φhi,j(t)

)
− ρhi,jδt

(5.28)
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Figure 5.4: Demonstration of Jacobi relaxation for 20 grid points (h=0.05). A poor
initial guess was intentionally chosen to demonstrate that high frequency
features are quickly smoothed out - then begins a long relaxation phase
until the solution (− sin(πx), shown in black) is reached.

The solution can’t be arrived at arbitrarily fast by making δt arbitrarily large however,

it turns out that this method is only stable if δt ≤ h2

4 . Still, one is free to take the

highest value permissable for δt = h2

4 and this makes equation (5.28) become:

φhi,j(t+ δt) =
1

4

(
φhi+1,j(t) + φhi−1,j(t) + φhi,j+1(t) + φhi+1,j−1(t)

)
−
h2ρhi,j

4
(5.29)

This equation is synonymous with the 2D ‘Jacobi’ relaxation method. In Fig. 5.4,

the result of a Jacobi method used to solve Poisson’s equation in 1D for a source term

ρ = π2 sin(πx) and boundary conditions φ(0) = φ(1) = 0 is shown. The important

lessons from this example are that relaxation methods can efficiently smooth out high

frequency features, but are slow to converge. In fact, the number of iterations required

to solve a problem defined on a J×J grid is of the order J2 and given that J is commonly

of order hundreds and above, this method is impractical.

Now that relaxation methods are understood, at this stage most textbooks and lecture

courses implore the reader not to use them for any of their own problems, stressing that

this antiquated method is not able to handle problems of any consequence. My previous

discussion was not simply included for the preservation of our computational heritage

however - although relaxation methods are not effective on their own, they will have

a small role to play in the preferred finite difference Poisson solver: the ‘multigrid

algorithm’.
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5.3.2 Multigrid methods

N-grid algorithm

To understand the workings of multigrid methods only the simplest case, a two grid

method, need be considered. As was the case with relaxation, some framework is re-

quired to take a guess and then guide it to the solution. Call such a guess φ̃h which can

be written as a deviation, vh (commonly referred to as the ‘error’ or the ‘correction’),

from the exact solution φh,

φh = φ̃h + vh . (5.30)

Also, define the ‘residual’ (sometimes referred to as ‘defect’), dh, as the difference be-

tween the density implied by the guess and the actual density:

dh = Lhφ̃h − ρh (5.31)

Substitution of these two newly defined quantities into (5.25) gives the relationship

between them as:

Lhvh = dh (5.32)

and so the discrepancies in the potential and density follow their own Poisson’s equation.

Given an initial guess, if one could determine the exact error the problem would be

solved instantly by substitution of these two quantities into equation (5.30). The error is

found by solving (5.32) for vh, the residual being easily calculated from (5.31). However,

the plan seems to have taken a fatally circular route: to find the error it is required

to solve Poisson’s equation, the very equation I’d set out to avoid solving directly due

to the oversized matrices involved. Of course this is not unexpected, if it were easy to

evaluate the error exactly then the problem would be solved in one step which would

not resemble an iterative scheme. What is needed is a fast way to estimate the error.

This has to be done via some approximation, though with multigrids it might be more

accurate to decribe it as a ‘coarsification’.

A finite difference problem can be made computationally easier, at the expense of

resolution, by evaluating on a coarser grid. This is how an appoximate value for vh is

found. Rather than solving equation (5.32) at the current resolution, h, the problem is

firstly cast on to a coarser grid of spacing H (where H will always be 2h here):

LHvH = dH (5.33)

This casting process is the same one referred to as ‘restriction’ previously and is mediated

by the restriction operator R, with dH = Rdh. Solving (5.33) is the next step and since

LH has smaller dimension, the solution is easier to obtain than (5.32). In fact, for now

I’ll assume that the grid, H, is sufficiently small such that vH can be solved for exactly

by, say, matrix inversion. Once vH is found, this coarse grid error needs to be cast

back onto the fine grid by some interpolation process, provided by the aforementioned

prolongation operator, P, acting as vh = PvH . The approximation is now ready to be
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updated:

φ̃hnew = φ̃h + vh (5.34)

In summary, this process can be split into the following steps:

Coarse grid correction

i Compute the defect on the fine grid, dh, from (5.31).

ii Restrict the defect to the coarse grid by dH = Rdh.

iii Solve for the exact coarse grid error, vH , from (5.32).

iv Prolong the coarse grid error back to the fine by vh = PvH .

v Use vh to improve the initial guess from φh to φhnew from (5.34)

These five steps will be referred to collectively as the performance of a ‘coarse grid

correction’. It’s not quite ready to be put into action just yet, however, and this is

where relaxation methods make a reappearance. Recall from earlier that high frequency

features are efficiently smoothed out. Given that the coarse grid correction is not able

to resolve components of the error below a typical wavelength H, relaxation methods

can be employed to deal with the fine details. This leads to a hybrid method which

combines the ideas of relaxation and coarse grid correction:

Two grid method

1. Guess a solution on the fine grid, φ̃h.

2. Pre-smoothing: The input value of φ̃h is smoothed by ν1 > 0 steps of a relaxation

method.

3. Coarse grid correction (steps i-v from above) applied to convert φ̃h to φ̃hnew.

4. Post-smoothing: φ̃hnew is smoothed by ν2 > 0 steps of a relaxation method.

All of these steps constitute one iteration of the ‘two grid method’. Depending on

whether φ̃hnew meets some convergence condition it can be fed back into the machine to

produce a further improved solution. A basic 1D example of this is presented in Fig.

5.5, to illustrate the significance of each step of the two grid method.

Until now it’s been assumed that the dimension of the coarse grid is small enough

such that (5.33) can be solved exactly within a reasonable length of time, but what if

this isn’t the case? It’s good to remind onesself that at this stage the task is effectively

the same as the starting point: to solve Poisson’s equation, except this time for the more

abstract quantity vH , instead of φ̃h, and a source term of dH , instead of ρh. Thus, there

is nothing to stop one from applying the two grid framework to this mathematically

identical problem, i.e. have a guess at vH , find the associated error (strangely this is

the ‘error of the error’) on a coarser grid of dimension 2H = 4h which is then used to
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Figure 5.5: A 1D example of the two grid method, enumerated previously as 1, 2, 3 i-v,
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hone the guess for vH . The excursion to an extra grid earns this the title of a ‘three

grid method’.

And if the dimension of the 4h grid is too large for a direct solution? Then one can

apply this idea recursively, going deeper until some coarsest level of an acceptably small

size is reached. If this takes N grids to achieve, then the process is referred to as an

N -Grid method. The journey from the finest grid, down through all of the coarse grids

and back again is called a ‘cycle’ and its exact structure depends on the value of a new

parameter γ. This number indicates how many ‘mini-cycles’ occur for each coarse grid,

that is, once a restriction to the H grid is performed to get vH , γ is the number of vHnew

values calculated. Again, this is understood best with an accompanying illustration and

so in Fig. 5.6 structures of different N-grid cycles are shown for γ values of 1 and 2, also

referred to as ‘V’ and ‘W’ cycles respectively. The efficiency of the multigrid machine

means that it is rarely necessary to take γ > 2.

Full multigrid algorithm (FMG)

So far, multigrid methods have been applied within an iterative scheme: guess a solution

on the fine grid and then improve this until some convergence criterion is met. It turns

out to be more efficient not to make a guess at all, but to start proceedings at the level

of the exact solution on the coarsest grid, say, 3× 3. Prolonging this extremely coarse

solution to the next grid up, 5 × 5, serves as the ‘guess’ for the solution at this level.

Given that the 3 × 3 solution was exactly correct and it has been prolonged by only

one level, this guess will not be too bad. An application of a 2 grid cycle polishes this

guess up and then it is ready to be prolonged to the next grid up. This process, and

how it differs from an N-grid method can be seen in Fig. 5.7. The parameter γ has a

slightly different meaning in the context of a FMG: once prolongation is performed up

from a grid H to find φ
H
2 , γ is the number of φ

H
2

new values which are calculated before

proceeding to the next grid up.

Analysis of the convergence rates of the N-grid and FMG methods is beyond the scope

of this thesis, but the important result is that the number of iterations required of a

J × J grid scales as J , in contrast to J2 for relaxation methods. Incredibly, this scaling

is basically independent of the dimension of the problem and so whereas a relaxation

method would take O(J3) steps to solve a 3D problem, a multigrid attempt would still

only require O(J) steps. This is the Holy Grail of numerical analysis.

5.4 Self consistent Poisson-Density Solution

Now to describe the second of the three computational blocks. Multigrid methods

provide the means to get from a given ρ to the implied φ. To solve the problem at

hand, there is an additional layer of complexity because ρ itself is a function of φ and

so the ultimate goal is the find the self-consistent solution which satisfies both Poisson’s

equation with ρ(φ) obeyed. The framework for this is also iterative, taking the following



114 Chapter 5. Sheath model and its implementation

S

R

E

S

P

γ = 1

(a) 2-grid

Smooth
φh

R

Smooth
v2h

R

Exact v4h

Smooth
v2hnew

P

Smooth
φhnew

P

γ = 1

S

R

S

R

E

S

P

E

R

S

P

S

P

γ = 2

(b) 3-grid

S

R

S

R

S

R

E

S

P

S

P

S

P

γ = 1

S

R

S

R

S

R

E

S

P

E

R

S

P

S

P

S

R

E

R

S

P

E

R

S

P

S

P

S

P

γ = 2

(c) 4-grid

Figure 5.6: Stages of 2-grid (a), 3-grid (b) and 4-grid (c) algorithms for γ = 1, 2. The
3-grid example with γ = 1 has the processes explicitly stated for clarity, the
others just use ‘S’ to indicate Smoothing and ‘E’ to indicate the calculation
of an Exact solution.

E φ8h

P

S φ4h

R

E v8h

S φ4hnew

P

S φ2h

P

S v4h

R

E v8h

R

S v4hnew

P

S φ2hnew

P

S φh

P

S v2h

R

S v4h

R

E v8h

R

S v4hnew

P

S v2hnew

P

S φhnew

P

Figure 5.7: A FMG cycle for 4 grids and γ = 1.



5.4 Self consistent Poisson-Density Solution 115

structure (where superscripts indicate iteration number):

Newton-Poisson Solver

1. Initial Density ρk(x)

2. Solve Poisson’s equation (with an FMG, for example) to find the implied potential

φk(x)

3. Calculate the density implied by this potential ρk+1(x)

4. Check how different ρk(x) and ρk+1(x) are.

5. If too dissimilar, go back to step 1 with initial density updated to ρk+1

5.4.1 Convergence

It is not guaranteed for this process to converge and it turns out that step 5 needs some

modification. Analysis of the conditions required for convergence has proved hard to

come by, so I will present the problem which has occurred and its subsequent resolution

with the expectation that it must have been solved before somewhere else. One under-

lying downfall of this method has proved to be overcorrection. Say a suggested density

(technically, ‘source term’), ρk, is slightly too large then the method will prescribe a

downwards kick. If this kick is too great, the overshoot may be so significant that the

new density is no closer than before (or, even if it is closer, the subsequent kick makes

a return to the starting point or beyond). This clumsy process continues with ρ being

batted back and forth but never settling, possibly even diverging. The solution to this

problem is to take a more conservative approach. Given an initial density ρk and an

updated density ρk+1, the cautious way to proceed is not to reject ρk outright and to

immediately adopt ρk+1, but to take a combination of the two attempts - mathemati-

cally speaking take (1− f)ρk + fρk+1, where 0 ≤ f < 1. This more sceptical treatment

of new values does potentially mean that this approach takes longer to reach an answer,

but it does mean that the changes in ρ are less abrupt and will be shown to guarantee

avoidance of the overcorrection pitfall described above (if f is chosen appropriately).

A simple example will be used to illustrate both the failure of the Newton-Poisson

solver and then the advantages of the weighted approach. Consider Poisson’s equation

in 1D with the boundary conditions φ(0) = φ(L) = 0

d2φ

dx2
= ρ(φ) (5.35)

Suppose that this is to be solved on the coarsest grid possible (this decision will be

justified at the very end), consisting of only 3 points at x = 0, L2 , L. The two at the

boundaries are both given from the boundary conditions as zero, so it is just the central
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point to be solved for. In finite difference terminology, with h = L
2 ,

φ1 + φ3 − 2φ2

h2
= ρ2, φ1 = φ3 = 0 (5.36)

which means that the solution for a given density is easily found by inversion of this:

φ2 = −h
2ρ2

2
(5.37)

Since only one value of density and one of potential is being solved for, the subscript

2’s will be dropped. Instead, subscripts will now be used to indicate the iteration

number, where ρ5, for example, will indicate the source term after the 5th iteration.

The subscript 0 goes against this rule as it will be used to indicate the exact solution,

ρ0. Now, suppose that the initial guess, ρ1, is quite close to the answer

ρ1 = ρ0 + δρ1 (5.38)

This results in an initial guess for the potential from (5.37) as being:

φ1 = −h
2(n0 + δρ1)

2

= φ0 −
h2δρ1

2

≡ φ0 + δφ1 (5.39)

i.e. an error of δρ1 in the density results in an error of −h2δρ1
2 in the potential. Now

to see how this error develops as the Newton-Poisson solver gets in motion. The new

density is going to be:

ρ2 = n(φ1)

= ρ(φ0 + δφ1)

≈ ρ0 +
∂ρ(ρ0)

∂φ
δφ1

≡ ρ0 + δn2 (5.40)

therefore, an initial error, δρ1 has become after one step :

δρ2 = −∂ρ(ρ0)

∂φ

h2δρ1

2
(5.41)

To test for convergence, it must be determined if the error is shrinking:
∣∣∣ δn2
δn1

∣∣∣ < 1.

Which, when written in terms of L = 2h requires that∣∣∣∣∂ρ∂φ(ρ0)
L2

8

∣∣∣∣ < 1 (5.42)
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Thus, as the density becomes more sensitive to changes in potential and the compu-

tational domain size increases, it becomes harder to achieve convergence. This is a

concerning result as it implies that the physicist has no control over whether the prob-

lem they are interested in is tractable. That is to say, if you wish to solve a particular

problem which does not satisfy the inequality (5.42), there are no values to tweak to

make this possible. This is where the weighted scheme comes to the rescue, the ad-

vantages of which can be verified mathematically. In this case, the new density is a

combination of the old and new:

δρ2 = (1− f)δρ1 − f
∂ρ(ρ0)

∂φ

h2δρ1

2
(5.43)

Which, under the same test for convergence yields:

f < fcrit =

∣∣∣∣∣∣ 2

1 + ∂ρ(ρ0)
∂φ

L2

8

∣∣∣∣∣∣ (5.44)

In contrast to the previous inequality there is now a parameter, f , which the physicist

can always dial down to make sure that the process converges. Before, in equation

(5.42), f was fixed to be unity.

5.4.2 Demonstration

When put to the test, this measure works remarkably well. Take as an example:

d2φ

dx2
= exp(φ) (5.45)

with boundary conditions φ(0) = φ(L) = 0. Attempts to solve this problem numerically

on a 3 piece grid are shown in Fig. 5.8 for different values of L. This demonstrates that

by decreasing f , at some point a malfunctioning convergence effort is fixed. However,

there is a balancing act here in that whilst convergence can be guaranteed by using

smaller values of f , at some point this will increase the time taken to do so - obviously,

if f = 0 convergence will take infinitely long because ρ will never change.

A slight drawback is that ρ0 and thus ∂ρ
∂φ(ρ0) is only known once the problem has

been solved and so the exact value of fcrit is unknown beforehand. This is a problem

because the value chosen for f determines whether or not the method is doomed and

if fcrit is unknown then it is difficult to recognise what a sensible value of f to take is.

This problem is not too great, however, since there are still ways to estimate ∂ρ(ρ0)
∂φ to

give an order of magnitude value of fcrit. In the sheath, where these methods are to be

applied, a reasonable guess would be the ratio of the density drop to the potential drop

across the sheath ∂ρ(ρ0)
∂φ ≈ n0e

ε0φW
. With some luck, this estimate may be good enough

to ensure convergence. If not, with some patience, the estimate serves as a starting

point for a trial and error approach: if this approximate fcrit is too high, keep reducing

until convergence is achieved. A further step would be not just to satisfy oneself with
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Figure 5.8: Convergence tests on large (L = 10) to small (L = 1) domains for different
values of f . f = 1 is included in all plots to demonstrate how the unweighted
approach is hopeless in the cases of (a) and (b). A few selected values in the
vicinity of fcrit are included to verify that this value marks the transition
to a convergent scheme. Also, the optimum f resulting in the most rapid
convergence is plotted, these values being 0.4, 0.55 and 0.9 in (a), (b) and
(c) respectively.
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the promise of a solution, but to find the optimal value for f so that this solution is

produced as efficiently as possible. Given that the computational time involved here

will be tolerable, this extra step will not be necessary.

One outstanding point needs to be addressed and that is my justification for using

a 3 point grid in my analysis. The reader may not have been surprised upon learning

that there are convergence issues when dealing with such a ludicrously course grid and

may argue that these issues could surely be alleviated by using a finer grid. However,

the starting point for a full multigrid algorithm is the solution on the 3 × 3 grid and

this acts as an influential initial condition. If convergence on the 3 × 3 grid cannot be

achieved, it will not be seen in any of the dependent fine grids. This is confirmed in the

next section, 5.6, when the code is benchmarked - it will be seen that if Newton-Poisson

convergence fails, increasing the grid sharpness has no effect.

Lastly, the previous analysis was for a 1D grid and so for the 2D case equation (5.44)

incurs a factor of 2

f < f2D
crit =

∣∣∣∣∣∣ 2

1 + ∂ρ(ρ0)
∂φ

L2

16

∣∣∣∣∣∣ (5.46)

where ρ0 is the density at the centre of the computational domain.

5.5 Fluid ions

Here I describe the third and final computational method, a finite difference scheme

to deduce ion densities from the continuity and fluid equations of motion. Assuming

that the top of the computational domain is far enough from the wall, the ion density

and velocity can be taken as uniform across this top layer. The ion properties below

are then determined from successive jumps down through layers of constant z, with

the equations of motion and continuity dictating how the velocity and density progress

through these jumps. This is best seen through the mathematics, firstly, continuity of

particles requires that

1

r

∂(rnvr)

∂r
+
∂(nvz)

∂z
= 0 (5.47)

and the radial and z equations of motion are respectively (with F the force per unit

mass):

vr
∂vr
∂r

+ vz
∂vr
∂z

= Fr (5.48)

vr
∂vz
∂r

+ vz
∂vz
∂z

= Fz (5.49)
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Rearranging (5.47)-(5.49) for changes with respect to z yields:

∂n

∂z
= − 1

vz

[
1

r

∂(rnvr)

∂r
+ n

∂vz
∂z

]
(5.50)

∂vr
∂z

=
1

vz

[
Fr − vr

∂vr
∂r

]
(5.51)

∂vz
∂z

=
1

vz

(
Fz − vr

∂vz
∂r

)
(5.52)

and finally, substituting (5.52) into (5.50) to erase the z derivative gives:

∂n

∂z
= − 1

vz

[
1

r

∂(rnvr)

∂r
+
n

vz

(
Fz − vr

∂vz
∂r

)]
(5.53)

Discretization of (5.51)-(5.53) provides the progression of vr, vz and n to the next layer

down, with all of the values on the RHS’s being known in previous layers. A compre-

hensive description of the discretization process is left to Appendix D, here I shall just

illustrate the typical workings of the method. In Fig 5.9, all layers with z indices of j

and higher are known and so at this stage the calculation is to find the values in the

layer j−1. This is done on a point by point basis and as an example I’ve picked the one

labelled [i, j − 1]. Say, for example, that one wishes to find vr[i, j − 1], by discretizing

equation (5.51) with a central difference method:

vr[i, j + 1]− vr[i, j − 1]

2h
=

1

vz[i, j]

(
Fr[i, j]− vr[i, j]

(vr[i+ 1, j]− vr[i− 1, j])

2h

)
(5.54)

giving the value as:

vr[i, j − 1] = vr[i, j + 1]− 2hFr[i, j]− vr[i, j] (vr[i+ 1, j]− vr[i− 1, j])

vz[i, j]
(5.55)

Again, the full treatment including vz and n as well as modifications for boundary points

is provided in Appendix D.

5.6 Benchmarking of solver

The three main computational blocks outlined previously are the multigrid solver (to de-

termine φ from ρ), the ion fluid solver (to determine ni from φ) and the Newton-Poisson

iterator (to marry these two parts self consistently). The pieces of code describing these

three processes are written by me and so before these are put to the task, they re-

quire benchmarking against simple problems to check that they perform their functions

properly. If physically correct results are achieved here, then one can have faith in the

output when tackling harder problems.

In the following tests a useful quantity will be the normalized error. Say the exact

solution of the potential at some point is φ(x, y) and the computed solution is φc, then
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i− 1 i i+ 1

j + 1

j

j − 1

Figure 5.9: Sites where vr, vz and n are known are given in blue, sites where they are
not are in red. The green point is another unknown, however, it is about to
be evaluated by using values at the sites (i, j), (i, j+1), (i-1, j) and (i+1, j).

define the normalized error as

Eφ =

∣∣∣∣φ(x, y)− φc
φ(x, y)

∣∣∣∣ (5.56)

with the same convention applying to the error of any other quantity. In the following

discussion the error will always be seen on a logarithmic scale since it is the order of

magnitude of which that is interesting.

5.6.1 Multigrid tests

To test the multigrid solver a case problem has been chosen which has an analytic solu-

tion for easy comparison. With a charge density of zero and the boundary conditions:

φ(r, 0) = φ(r, 1) = 0

∂φ

∂r
(0, z) = 0

φ(1, z) = sin(kz)

the analytic solution to Laplace’s equaion (Poisson with zero charge density) is given

by separation of variables as

φ(r, z) =
I0(kr)

I0(k)
sin(kz) (5.57)

where I0 is the 0th modified Bessel function of the first kind.

In Figs. 5.10 and 5.11 the multigrid has been put through its paces by using different

values of J , the number of grid points along each axis, with the normalized error from

the analytic solution (5.57) given alongside. These two figures differ in the value taken
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for k, which provides some variety in the boundary condition on the right hand wall. It

can be seen that for all values of J , the multigrid comes close to the analytic solution,

but if errors of the order 0.01-0.1% are desired it is best to select J > 33.

5.6.2 Ion fluid tests

For the ion fluid component an appropriate test is to see how well it resolves the density

in a planar sheath. A model 2D problem with an analytic solution has proved impossible

to find, but this 1D test should suffice. As with the multigrid examination, the ion fluid

code’s effort at solving the ion density is plotted alongside the normalized error between

this and the analytic solution in Fig. 5.12. To keep things more succinct I have opted

not to cycle through different values of J . When using J = 129, the magnitude of the

normalized error is typically 0.01-0.1%, the higher errors occurring at the right hand

edge region and growing deeper into the sheath.

The reason the error is highest at the edge is because central difference methods

cannot be applied at the domain boundary. Visually, the peculiar structure of the error

in this region may look concerning, but keeping in mind the magnitude is small this is

not a big issue. Just to be safe, to suppress any potential growth in the error, I will

apply a smoothing function to the edge region.

5.6.3 Newton-Poisson tests

Now that the multigrid and ion fluid codes can be trusted, the Newton-Poisson solver

can be examined by testing the entire algorithm, which is a combination of all three.

To perform checks the test system will again be the planar sheath. Taking the com-

putational box to have width 10cm and height 5cm and estimating a typical value of
∂ρ
∂φ ≈ en0

ε0φW
, this would imply from (5.46) a suitable f < 0.3. In section 5.4.2, the con-

vergence condition was only illustrated in 1D and so for completeness here the nature

in 2D is shown in Fig 5.13. To prove that J has no bearing on the stability, two values

J = 65 and J = 129 have been chosen. The solver is initiated with the values of the

analytic result, but f is taken as 0.5 and so any slight deviation is expected to grow.

Indeed, after only 10 or so cycles a slightly too high potential near the origin (i=9 in

(a) and i=11 in (b)) is overcompensated for leaving it too low (i=10 and 12) and then

subsequently higher (i=11 and 13) than it was in the first place marking the onset of

a fatal divergence. The fact that with J = 65 and J = 129 the solution diverges in

practically the same fashion demonstrates that the grid spacing, h, is not a relevant

quantity in the analysis of Newton-Poisson convergence.

It is all very well demonstrating that the code is able to fail, even if I claimed that

it would. Now it is necessary to show that by reducing f , convergence can be achieved

and, what’s more, this should occur when f / 0.3 as determined above. To compare

convergence properties the potential at a single point, somewhere near the mid-left at

(2.5cm, 2.5cm), is plotted in Fig. 5.14. Figs. 5.14 (a) and 5.14 (b) correspond to the

2D plots in Figs. 5.13 (a) and 5.13 (b) and a third plot for J = 257 has been included in
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Figure 5.10: On the left are the multigrid solver’s efforts at solving Laplace’s equation
(when k = 1 in the third boundary condition) for increasing values of J and
opposite are the normalized errors on a logarithmic scale. The increased
error on axis probably results because a definite value of the potential is
not known here, just the gradient.
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Figure 5.12: Analysis of ion density code error for the planar sheath. In this case J =
129.
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(c) just to make extra clear that J has no influence as far as convergence or divergence

is concerned. The onset of divergence at i ≈ 10 is replicated (although with f = 0.4

rather than 0.5) and reassuringly, convergence occurs for f = 0.3 and also for f = 0.2

in fewer steps (probably because it is not so dangerously close to the expected f = 0.3

borderline). Whilst making the grid finer can do nothing to help making the solution

converge it does, of course, minimize the error of the final solution. This can be seen

from the steady state values of the error, which are 0.1%, 0.02% and 0.007% for J values

65, 129 and 257 respectively.

5.7 Code Implementation

To recap the procedure of the code: At some given iteration (what constitutes an

‘iteration’ will be made concrete) the potential is calculated using the multigrid solver

with the charge density taken from the previous iteration. From this potential the

ion fluid solver and analytic electron densities are combined to find the newly implied

charge density. A weighted sum of this charge density and the one from the previous

iteration is to be fed to the next iteration. Thus, the performance of an iteration is the

action of updating the charge density. This covers how the code proceeds, but it also

requires a way to start and finish. The code is initialised with the potential profile of a

planar sheath and ceases when the changes in potential between subsequent iterations

is sufficiently small.

The language used is C++. For the multigrid algorithm handy example code can be

found in Numerical Recipes: The Art of Scientific Computing [108, p. 1073], though

this is for the case of a square domain in Cartesian coordinates with φ = 0 across the

boundary. The way this code efficiently allocates memory is recycled in my code but

it otherwise required major modifications to deal with the boundary conditions and

coordinate system tackled here. There is also the less difficult modification in going

from a square to rectangular domain.

The demands of the code are not great and it can be run on a desktop computer. For

the grid dimensions used (512 × 1024), each iteration of the code takes approximately

a second with the majority of this taken by the multigrid solver. Typically the code

required around a thousand iterations to reach convergence giving a typical runtime of

no longer than 20 or so minutes.

5.8 Summary

To conclude, a sheath model has been proposed and three computational methods es-

sential for its solving have been tested and deemed trustworthy. Now that the means

are in place to tackle the problem, the reader may be pleased to learn that this marks

the end of the departure from discussion of physics.
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Figure 5.13: The Newton-Poisson solver is initiated on the analytic solution, but with
f = 0.5 which is too large. The divergence progressing through each it-
eration of the Newton-Poisson method, i, is shown. The fact that this is
basically independent of J shows that it is futile to attempt to fix this
numerical instability with finer grids (as might be an instinctive course of
action).
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Figure 5.14: The solver is initialized with a potential 20% away from the solution. If
f is low enough the solver converges and the error of the final value is
improved with increasing J.



6 Sheath model results

6.1 Results

The code has been run for two sets of plasma parameters: the low density regime of

Wang (n0 = 1.5× 1013m−3, Te = 2.5eV) and the more typical discharge parameters of

Dropmann (n0 = 2.1 × 1015m−3, Te = 4.9eV). The domain size was chosen such that

increasing it any further yielded no discernible change in the results. This turned out to

be 15×30cm for Wang and 2×4cm for Dropmann. Likewise, the grid spacing is the one

which is small enough such that there is no reason to move to anything finer. This was

(0.29mm = 0.1λDe) for Wang and (0.039mm = 0.11λDe) for Dropmann (where these are

the respective Debye lengths for each experiment). The position of the magnet in the

simulation is the same as in the experiments, 12mm below the electrode for Wang and

4mm below for Dropmann, as per Table 4.1, and the strategy was to explore values of

magnetic moment of the same magnitude as the experiments and beyond. It turned out

that magnetic fields comparable, but not quite equal, to the experiments are reached

before the model breaks down, but the reasons why can be explained and are interesting.

6.1.1 Wang’s parameters

The development of a radial space charge distribution can be seen in Fig. 6.1, where

the sheath charge density is plotted for increasing magnetic moments. For M = 4 ×
10−8T m3 the charge density is fairly planar but as it is increased to 8× 10−8T m3 the

electron depletion near to the wall leads to the appearance of a positive space charge

of order 0.5en0 at a radius of 1.5cm and height 0.6cm - in the absence of the magnet

the space charge density would be approximately 0.3en0 at this point. The effect of

this positive space charge can be seen through the radial electric field (Fig. 6.2) which

acts to attract negative particles to this region. The strength of this radial field reaches

a maximum value of 50V m−1, coinciding with the region of highest positive charge

density and is about an order of magnitude less than the local vertical electric field

which is 540V m−1. Another effect this space charge has is that it repels the incoming

sheath ions. The plot range is extended to show the development of a positive potential

region high up in the sheath reaching a maximum of 0.4V (Fig. 6.3). The range of

potentials is chosen as −0.4 to 0.4V such as to concentrate attention on positive electric

potentials.

129
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Figure 6.1: Space charge density normalised to that of the ions in the bulk plasma, en0.
From the top down, the magnetic moment is 4, 6 and 8 (×10−8T m3).
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Figure 6.3: Electric potential, from the top down, the magnetic moment is 4, 6 and
8 (×10−8T m3). The vertical extent is extended to 10cm to capture the
potential growth emerging at the sheath edge.

The maximum magnetic dipole moment (to 2.s.f) which the code could handle was

MW
crit = 8.7×10−8T m3 which is a fraction 0.77 of the field used by Wang (see Table 4.1).

The plasma properties for this particular value,Mcrit, are given in Fig. 6.4. Above this

field strength, the ions begin to be reflected by the positive space charge and this results

in failure of the fluid code which requires the ions to keep moving downwards. Whilst the

potential drop in the sheath is 11.7V it only takes an increase of φcrit = 1
2
miv

2
B

e = 1.2V

to bring ions to rest. As seen in Fig. 6.4, the potential only reaches 0.5 V, which is
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about half way to this limit, however the reason the code malfunctions is probably due

to its iterative nature. Even if the solution it searches for does not contain φcrit, it

will settle on this solution by successive overestimates and underestimates. If φ is close

enough to φcrit a guess can occur which is higher than φcrit, causing a fatal error of the

fluid code. Ways to combat this will have to wait until the next section.
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Figure 6.4: Sheath profiles for the plasma parameters of Wang and the strongest magnet
that could be simulated, M =MW

crit.
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Figure 6.5: Sheath profiles for the plasma parameters of Dropmann and the strongest
magnet that could be simulated, M =MD

crit.

6.1.2 Dropmann’s parameters

Now for results from the second set of parameters. The qualitative behaviour as the

magnetic field is increased is the same here as for Wang and so I shall just present the

sheath profile at one value of magnetic moment. It makes sense to again select the

largest magnetic field that was possible to process, M =MD
crit = 4× 10−9T m3, which

is a fraction 0.26 that of the field used in Dropmann’s experiment. The sheath profiles

are plotted in Fig. 6.5. A potential difference of 2.45V is required to decelerate the ions

to rest and so it is curious that the code should be caused to malfunction by potentials

as small as 0.35V, but possible reasons why will, as before, be saved for later.

As a consequence of these weaker than hoped fields, the effects found here are not as

pronounced as those for Wang. The charge density has a maximum of approximately

0.37en0, where it would otherwise have been 0.32en0 without the magnet and the radial

electric field in this region reaches 240V m−1, an order of magnitude less than the local

vertical field of 7900V m−1. The closeness of the magnet to the plasma means that

the magnetic lobe region remains strong for larger radii and this is the reason why the

sheath profiles are more elongated in the radial direction than for Wang.
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6.2 Analysis

Now to discuss what these results have to say on some of the burning topics in the fields

of which these experiments are performed.

6.2.1 Ion reflection

Whilst the code ceases to operate before the regime where ions are reflected (or, at

least, strongly deflected), the growth in potential near the sheath edge suggests that

this will occur for magnetic fields not much stronger than those simulated. This would

contradict Wang who, based on the fact that they are unmagnetized, assumed that ions

pass through the sheath unaffected [74]. However, Zimmerman did observe reflected ion

trajectories in his simulations [4] and, as will be seen shortly, my findings have common

ground with Dropmann too.

It is interesting that this was found to happen with a conducting boundary as it

was my initial expectation that ions would only be reflected by an insulating surface.

My reasoning behind this is that in steady state an insulating boundary requires local

currents to be zero. With the electron current severely depleted at the surface below

the magnetic lobe region this patch must charge positively to repel the ions such that

there is no total current. It turns out that for my simulations, the positive space charge

is probably able to reflect ions without the need for surface charge, although, it is likely

that an insulating boundary will enhance ion repulsion. Indeed, Dropmann concluded

from his experiments that: “These [radial electric] fields significantly affect plasma

ion trajectories, increasing the ion flux in certain regions and decreasing it in others,

leaving portions of the surface of the glass plate shielded from the ion flux. Thus, the

interaction of plasma electrons with a magnetic field can generate regions of changed

electron density, creating strong electric fields that can alter the ion flow to a much

greater extent than the pure interaction of these ions with the magnetic field alone

would allow” [109]. What my simulations show is that this picture is probably correct,

but that an insulating boundary is not necessary for strong ion deflection to occur.

6.2.2 Radial forces

It was radial electric fields which were postulated to lead to a void of dust forming on

axis in dusty crystal experiments. Taking the recently solved sheath profile of Dropmann

with a magnet of strength M = MD
crit to best represent dusty crystal work, there is

enough information to calculate the electric and ion drag forces on the grain. Ions

can impart momentum to the grains in two ways, namely, direct impacts and Coulomb

interaction, the total force being expressed as (derived in [110]),

Fi = nimi(σcoll + σcoul)vivi , (6.1)
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where the respective momentum collision cross sections for direct impacts (collection)

and Coulomb collisions are

σcoll = πr2
d

(
1− 2eφd

miv2
i

)
, (6.2)

σcoul = 2πb20 ln

(
b20 + λ2

De

b20 + b2c

)
, (6.3)

with

b0 = rd
eφd
miv2

i

, (6.4)

bc = rd

√
1− 2eφd

miv2
i

. (6.5)

Here I shall consider the radial component of (6.1), which is to be compared with the

radial electric force, given simply as

FE,r = QdEr . (6.6)

The dust grain potential (and thus its charge) will be assumed the same at all locations

in the sheath. Solving for the OML potential with mono-energetic ions travelling at

the Bohm speed (i.e. this is the dust potential at the sheath edge) gives a value of

φd = −19.1V. The dust grain diameter used by Dropmann is fairly typical at 11.9µm and

in conjunction with the grain potential this implies a charge of Qd = −79000e (which is

close to Dropmann’s assumed charge of −105e). The material used in most experiments

for the dust is melamine formaldehyde which has a density of ρd = 1500kg m−3, giving

the mass of a dust grain at md = 1.3 × 10−12kg, requiring a vertical electric field to

support it of magnitude Ez = mdg
Qd

= 1030V m−1. By inspection of the code output

for the vertical field, this corresponds to a levitation height of about 2.7mm above the

lower electrode.

The profiles of the radial dust grain acceleration through the sheath and just at the

levitation height are plotted in Fig. 6.6 (a) and (b) respectively. In this case, the electric

force far exceeds that from the ions, leading to dust grain motion towards the region of

positive space charge density. At the levitation height of the grains, Fig. 6.6 (b), this

results in a stationary point at approximately r = 7.5mm. The maximum magnitude

of the acceleration is approximately 0.3g, which seems reasonable given that Dropmann

observed maximum accelerations of 4g, but with a magnetic moment 3.8 times greater

than my simulation and with the contribution of the charged insulating surface also.

Another outstanding issue is that of the anomalous inward motion of the dust as

observed by A. Dyson. To investigate this, I tried increasing the size of the dust grains

as, since FE ∝ rd and Fi ∝ r2
d (at least, for collection), one might expect this to work

in the favour of the ions. Results are plotted in Fig. 6.7 and it is found that for dust

diameters greater than approximately 400µm (i.e. rd > 200µm), the ion drag exceeds the
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Figure 6.6: Radial acceleration (normalised to gravitational acceleration, g) in a Drop-
mann sheath for rd = 5.95µm. The radial acceleration throughout (a) and
at the estimated levitation height of 2.7mm (b) is given.

electrostatic force and grains can be pushed towards the axis. However, at this diameter,

md = 5.03× 10−8kg and Qd = 2.65× 106e requiring an electric field of Ez = 106V m−1

to prevent the grain from falling to the surface. Fields of order 104V m−1 resulted from

my simulation, so it seems unlikely that a stable arrangement of grains of this size could

be achieved. There is, of course, still the fact that the magnetic fields in my simulation

are not as large as can be achieved in the laboratory and these findings do not rule out

the possibility of a transition to domination of radial forcing by ions.

6.2.3 Azimuthal ion motion

One final point to address is the consequences radial electric fields might have for dusty

crystal rotation. The neutral gas flow is viscous and thus momentum input from the

ions is communicated throughout the gas. In other words, to know the neutral gas

speed at some location it is essential to include the forcing from the ions everywhere.

Now that the electric environment has been fully characterised, one can calculate the
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Figure 6.7: Continued overleaf.
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Figure 6.7: Radial ion drag force, Fions, electrostatic force, FE , and their total, Ftot,
for increasing values of dust grain radius. For rd = 100µm, (a), the electric
field dominates and for rd = 300µm, (c), the ions do.
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Figure 6.8: E×B drift velocity (a) and ratio of contributions to E×B (b)

E×B drift velocity and this is plotted in Fig. 6.8 (a). This shows clockwise (as viewed

from above) rotation of the ions, reaching their maximum speeds deep in the sheath

where the magnetic field is parallel to the surface and thus perpendicular to the strong

vertical fields.

More specifically, one wishes to know if Er has much effect. To find this out, the

ratio of ErBz
EzBr

is given in 6.8 (b). This shows that the ErBz contribution is significant

as compared to EzBr near to the axis and higher up in the sheath. However, this is

also an area where the azimuthal speed is relatively small and so whilst the ErBz term

can be, in places, relatively large, its overall contribution is quite small. If higher fields

could be achieved, the radial electric fields would be able to have more dominance, but

as things stand it does not look like the rotation of a dusty crystal is affected by radial

electric fields for these parameters.



7 Conclusions

In this chapter the key results of this work are collected together and suggestions for

improvements and further directions of study are made.

7.1 Summary

This thesis documents my research on dust in magnetized plasmas for two limiting

cases: where the dust leads to new collective effects and where the dust is a passenger

in the plasma. These two regimes are defined in Chapter 1 as cases of “dusty plasma”

and “dust in plasma” respectively and their importance is illustrated by the examples

presented there. More specific context is provided at the start of each individual study,

to make clear the objectives of each section and to what it could apply to. To provide

some theoretical background, important results of dust and plasma physics are quoted

or derived where necessary in Chapter 2.

The first study in Chapter 3 looks at the effect immobile dust grains have on two

previously studied nonlinear plasma waves which propagate transversely and obliquely

to the background magnetic field. For the transverse case the problem was fully solved

by deriving the range of permissible velocities, plotted in Fig. 3.5, and the spatial

profile of the wave, where an example can be seen in Fig. 3.6. For the oblique case,

necessary restrictions on the wave direction and speed are derived by considering the

conditions which permit low amplitude waves to grow, these regions of parameter space

being plotted in Figs. 3.10 and 3.11. The work on oblique dusty waves is incomplete,

however, as the additional restrictions imposed on large amplitude waves are not found.

The second study commences in Chapter 4, looking at plasma boundary interaction

in the vicinity of a magnetic dipole with a view to shedding light on the properties of

small scale lunar swirls and unexplained events in dusty crystal experiments. It is found

that understanding the electron kinetics is crucial and, to this end, the remainder of

the chapter is devoted to describing their behaviour and formulating a simple model

to calculate their density. It is found that electrons are typically influenced within a

characteristic distance, Λ, from the magnet, this distance being defined in equation

(4.23) and the region of magnetization plotted in Fig. 4.7. This length could prove to

be an important parameter to consider when aiming for self similar behaviour between

laboratory swirls and real life ones. The most notable effect on the electrons is the

appearance of inaccessible zones near to the lobe regions of the magnetic field as seen in

Fig. 4.14, this being due to the magnetic field lines effectively capturing particles before

they can penetrate any deeper, this explanation illustrated in Fig. 4.15. This insight

141
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acts as the inspiration for a simple model to calculate electron densities (equations

(4.59) - (4.61)), drawing parallels with a method employed to calculate the density near

to an absorbing boundary which is introduced in section 2.1. Some confidence in my

description of the electron behaviour is gained by the agreement of the theoretically

predicted electron restricted zones and the regions of more positive electric potential

in the experiments of Wang, Dropmann and Saitou (Fig. 4.18). However, the electron

density model has yet to face more rigorous testing.

The remainder of the thesis studies the implications of this electron distribution on

the sheath. The sheath model, which entails solving Poisson’s equation in 2D self

consistently with fluid ions and the analytic electrons of Chapter 4, is summarised at

the start of Chapter 5 and requires the aid of computational methods which are outlined

in the remainder of this chapter. The results of the code are given in Chapter 6 where

my exploration of parameter space is sufficient to draw some interesting conclusions,

but ultimately cut short by the failure of my code to deal with strong deflection of

ions. It is still possible to infer that the effect of the electron restriction is to set up a

space charge in the plasma strong enough to repel incoming ions as indicated by the

development of a positive potential high in the sheath (Figs. 6.4 and 6.5). Calculations

of the forces on dust grains indicate that a cloud of grains is likely to form a ring shape

in agreement with experiments. For the parameters used in Chapter 6, it is found that

dust grains could not be caused to move inwards whilst still being light enough to be

levitated. The final brief exploration of azimuthal ion drifts indicate that the modified

electric environment leads to only a slight alteration of the ion rotation speeds and thus

probably does not greatly influence dust crystal rotation.

7.2 Future Work

On the solitary wave front, the most obvious extension is to complete the characteriza-

tion of the oblique dusty solitary wave. This firstly entails finding the restrictions on the

Mach number imposed by the maximum amplitude of the disturbance before particles

are reflected. After this, deriving the spatial profiles of the wave would complete the

picture. To perform both of these tasks, I am sure that numerical methods must be em-

ployed to deal with the integrals which arise in equations (3.73)-(3.76) due to the dust,

however, some fresh eyes on this problem may be able to spot an analytical trick which

has eluded me. Given that observational and experimental studies of waves of this type

are not likely in the foreseeable future, simulation of these phenomena is necessary in

order to test the validity of my findings. These may also shed light on the mysterious

appearance of the two lengthscales of equation (3.82), which I have cautiously attributed

to the compressive and rarefactive modes.

In terms of the dipole-boundary work, it would be very interesting to perform sim-

ulations of the electron trajectories to see exactly the electron kinetic behaviour. This

would serve two purposes: firstly, to vindicate my conclusion that particles are effec-

tively forbidden from penetrating any further than the field line which magnetises them
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and secondly, it would provide a density profile to scrutinise my electron density model.

The sheath code is constructed to point to basic implications of the electron model

and was able to perform this task, however, a Particle-in-Cell description of ion motion

would be immune from the effects of ion reflection and thus would be a useful upgrade,

allowing exploration of higher magnetic fields. Another possible route to ensuring the

code converges is to lower the parameter f , introduced in section 5.4.1 as a way to

make iterative steps less jumpy, which may have been too large for the simulations

of Dropmann’s parameters. A logical extension is to consider the case of magnetic

dipoles oriented at an arbitrary angle to the surface, or perhaps, modification of the

surface boundary condition to study insulating electrodes is another route one could

take, however, this is easier said than done. It would also be an improvement to consider

a more realistic magnetic field profile, rather than approximating it to lowest order as

a dipole.

As for new directions, as opposed to improvements, one final suggestion is a marriage

of the dipole-sheath with dust in plasma physics and comes from the fact that dust may

also be magnetized, so that it is the grains themselves which have a magnetic dipole

moment. Given that dipole magnetic fields have been observed to influence electron

motion (and lead to electric fields which influence the ions), this could lead to the

modified charging of, and interaction between, magnetized dust grains. The effects of

electron kinetics will likely arise if the magnetic lengthscale, Λ, exceeds the dust grain

radius, rd. As a back-of-the-envelope calculation, the grain radius at which this becomes

true is the solution to
√

µ0µde
4πmeve

> rd, where µd is the magnetic moment of the dust.

Now, before this is solved, the magnetic moment of a grain for a given magnetization

density, M , will depend on the radius as µd = 4
3πr

3
dM and so this results in the condition

rd >
√

3meV
µ0Me .

Perhaps the best option, and also the easiest to to achieve in the near future, is to

publish the work of this thesis and to make contact with the experimentalists whose

results have provided much of my motivation. At present, the Dusty Plasma group

at Imperial College is in contact with the Technological Plasmas Research group at

Liverpool who have the capabilities to perform the types of experiments which feature

in this thesis with a strong magnetic field of variable geometry. It would be incredibly

useful to hear the thoughts and comments from those with backgrounds outside of the

“theoretical and computational” which I have been providing.
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A Momentum and energy conservation

in a dusty plasma

Macroscopic conservation laws for momentum and energy in a dusty plasma are derived

which are useful for transverse and oblique solitary waves, both with and without dust.

The geometry used here is the same as for the waves: gradients are only in the x

direction and particles are free to move in x, y and z. The equations of motion of the

electrons and ion are,

meue
due
dx

= −e(veBz − weBy + Ex) , (A.1)

meue
dve
dx

= −e(weBx0 − ueBz + Ey) , (A.2)

meue
dwe
dx

= −e(ueBy − veBx0) (A.3)

and

miui
dui
dx

= e(viBz − wiBy + Ex) , (A.4)

miui
dvi
dx

= e(wiBx0 − uiBz + Ey) , (A.5)

miui
dwi
dx

= e(uiBy − viBx0) . (A.6)

The three components of Ampére’s law are

dBx
dx

= 0 , (A.7)

dBy
dx

= µ0e(niwi − newe) , (A.8)

dBz
dx

= µ0e(neve − nivi) . (A.9)

and quasineutrality for a dusty plasma is

Zdnd + ni − ne = 0 , (A.10)

where one can take Zd = 0 to recover the results for a dust-free plasma.
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A.1 Momentum

A.1.1 x direction

Taking the sum of ne× (A.1) and ni× (A.4),

meneue
due
dx

+miniui
dui
dx

= e(nivi − neve)Bz + e(niwi − newe)By + e(ni − ne)Ex
(A.11)

and then substituting in (A.8), (A.9) and (A.10) gives

meneue
due
dx

+miniui
dui
dx

= −Bz
µ0

dBz
dx

+
By
µ0

dBy
dx
− eZdndEx . (A.12)

Integration of this from x = x0 to x yields

meneu
2
e +miniu

2
i +

B2
y +B2

z

2µ0
− eZdnd

∫ x

x0

Ex dx = const. (A.13)

A.1.2 y direction

The sum of ne× (A.2) and ni× (A.5) is

meneue
dve
dx

+miniui
dvi
dx

= e(niwi − newe)Bx0 + eu0(ne0 − ni0)Bz + e(ni − ne)Ey
(A.14)

and substitution of (A.8) and (A.10) gives

meneue
dve
dx

+miniui
dvi
dx

=
Bx0

µ0

dBy
dx

+ eZdnd(u0Bz − Ey) , (A.15)

which becomes, after integration,

u0(mene0ve +mini0vi)−
Bx0By
µ0

+ eZdnd

∫ x

x0

(Ey − u0Bz) dx = const. (A.16)

A.1.3 z direction

The sum of ne× (A.3) and ni× (A.6) is

meuene
dwe
dx

+miuini
dwi
dx

= e(neve − nivi)Bx0 + eu0(ni0 − ne0)By (A.17)

and substitution of (A.9) and (A.10) gives

meuene
dwe
dx

+miuini
dwi
dx

=
Bx0

µ0

dBz
dx
− Zdndeu0By , (A.18)
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which is integrated as before to get

mene0u0we +mini0u0wi −
Bx0Bz
µ0

+ Zdndeu0

∫ x

x0

By dx = const. (A.19)

A.2 Energy

To start, take the sum of neue× (A.1) and niui× (A.4)

meneu
2
e

due
dx

+miniu
2
i

dui
dx

= e(niuivi − neueve)Bz

+ e(neuewe − niuiwi)By + eu0(ni0 − ne0)Ex , (A.20)

then, the sum of neve× (A.2) and nivi× (A.5)

meneueve
dve
dx

+miniuivi
dvi
dx

= e(niviwi − nevewe)Bx0

+ e(neueve − niuivi)Bz + e(niuivi − neueve)Ey (A.21)

next, newe× (A.3) and niwi× (A.6)

meneuewe
dwe
dx

+miniuiwi
dwi
dx

= e(niuiwi − neuewe)By

+ e(neweve − niwivi)Bx0 . (A.22)

and finally the subsequent sum of (A.20) (A.21) and (A.22) involves cancellation of

many terms on the RHS. With the substitution of (A.9) and (A.10), this becomes

neue
dKe

dx
+ niui

dKe

dx
= − 1

µ0
Ey

dBz
dx
− Zdndeu0Ex . (A.23)

where Ke = 1
2me(u

2
e + v2

e + w2
e) and Ki = 1

2mi(u
2
i + v2

i + w2
i ). Finally, integration of

this yields

1

2
meneue

(
u2
e + v2

e + w2
e

)
+

1

2
miniui

(
u2
i + v2

i + w2
i

)
+
EyBz
µ0

+ Zdndeu0

∫ x

x0

Ex dx = const. (A.24)

A.3 Summary

Four equations have been derived which correspond to conservation of energy and three

components of momentum and are collected here:
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meneu
2
e +miniu

2
i +

B2
y +B2

z

2µ0
− eZdnd

∫ x

x0

Ex dx = const. (A.25)

meneueve +miniuivi −
Bx0By
µ0

+ eZdnd

∫ x

x0

(Ey − u0Bz) dx = const. (A.26)

meneuewe +miniuiwi −
Bx0Bz
µ0

+ Zdndeu0

∫ x

x0

By dx = const. (A.27)

1

2
meneue

(
u2
e + v2

e + w2
e

)
+

1

2
miniui

(
u2
i + v2

i + w2
i

)
+
EyBz
µ0

+ Zdndeu0

∫ x

x0

Ex dx = const. (A.28)

A.4 Electron inertia

It is claimed at the start of section 3.3 that electron inertia may be ignored for sufficiently

oblique solitary waves and here a proof of the validity of this is given. This is not done on

physical grounds, instead, I check when the results which follow from ignoring electron

inertia are consistent with that assumption. The electron y momentum is given from

(3.50) as:

pe = meve =
meuBy
Bx0

. (A.29)

If one neglects electron momentum (and considers the dust free case), the ion y mo-

mentum comes from (A.26) as

pi = mivi =
Bx0By
u0n0µ0

(A.30)

and equations (A.29) and (A.30) are consistent with each other so long as pe
pi
� 1, thus

requiring:

cos2 θ � meuu0n0µ0

B2
0

≈ me

mi
(A.31)

where to reach the second equation, the Alfvén speed has been used as a typical value

for u0 and u. Therefore, the ion inertia dominates for oblique propagation at angles less

than π
2 −

√
me
mi

(c.f. the first paragraph of section 3.3).



B Zimmerman field configuration

It proved quicker to derive the magnetic field configuration of two antiparallel currents

than to find the result, so I shall provide the working here. The system of coordinates

used to describe two parallel wires separated by h carrying opposite currents of mag-

nitude I is given in Fig. B.1. The magnetic field at a point (x, y) due to the current

directed into the page is

B1 =
µ0I

2πr1
(sin(θ1)x̂− cos(θ1)ŷ) , (B.1)

and the outward current contributes

B2 =
µ0I

2πr2
(− sin(θ2)x̂− cos(θ2)ŷ) . (B.2)

The angles can be written in terms of lengths and the coordinates as

cos(θ1) =
x+ h

2

r1
(B.3)

sin(θ1) =
y

r1
(B.4)

cos(θ2) =
h
2 − x
r2

(B.5)

sin(θ2) =
y

r2
(B.6)

giving the total field components

Bx = B1,x +B2,x =
µ0I

2π

(
1

r2
1

− 1

r2
2

)
y , (B.7)

By = B1,y +B2,y = −µ0I

2π

(
x+ h

2

r2
1

+
h
2 − x
r2

2

)
. (B.8)

Using

r1 =

√
(x+

h

2
)2 + y2 , (B.9)

r2 =

√
(
h

2
− x)2 + y2 , (B.10)
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x

y

θ2

θ1

B1

B2

r1 r2

h

(x, y)

Figure B.1: Coordinate system to derive the magnetic field due to antiparralel currents.

and expanding (B.7) and (B.8) to lowest order in h
x and h

y gives

Bx ≈ −
µ0Ih

2π

2xy

(x2 + y2)2
, (B.11)

By ≈
µ0Ih

2π

(x2 − y2)

(x2 + y2)2
. (B.12)

By inspection, this has the magnetic vector potential

A =
µ0Ih

2π

x

x2 + y2
ẑ ≡ Az(x, y)ẑ . (B.13)

Finding the forbidden regions of this magnetic field is easy as it is in the form of a

problem previously solved (section 4.4.2). The Lagrangian for a particle moving through

this field is

L =
1

2
m
(
v2
x + v2

y + v2
z

)
+ qvzAz , (B.14)

implying a conserved quantity,

p0 =
∂L
∂vz

= mvz + qAz , (B.15)

which, for a particle of speed V incident from infinitely far away, has the range −mV <

p0 < mV . Rearranging (B.15) for vz gives

vz =
p0

m
+

qAx
m(x2 + y2)

(B.16)
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where A = µ0Ih
2π . Particles are reflected when all of the velocity is taken by the z

component

±V =
p0

m
− qAx
m(x2 + y2)

, (B.17)

describing a locus of points

y =

√
qAx

p0 ±mV
− x2 . (B.18)

The contour of closest approach applies when the denominator of the first term in (B.18)

is maximised, occurring when p0 = mV and resulting in

y =

√
qAx
2mV

− x2 . (B.19)

For Zimmerman’s simulations, the magnetic field at a height 125m on axis was 3µT

implying that A = 4.69× 10−2T m2.



C Cylindrical form of operators and

boundary considerations

For simplicity, the central difference Laplacian, restriction and prolongation operators

were presented in Cartesian coordinates. Here I give their cylindrical forms, which are

actually used, and cover any issues which occur at the computational boundary.

C.1 Laplacian

The Laplacian in cylindrical coordinates is

∇2f =
1

r

∂f

∂r
+
∂2f

∂r2
+
∂2f

∂z2
, (C.1)

resulting in a central difference discrete form,

(∇2f)hi,j =
f [i+ 1, j]− f [i− 1, j]

2ih2
+
f [i− 1, j] + f [i+ 1, j] + f [i, j − 1] + f [i, j + 1]− 4f [i, j]

h2
.

(C.2)

For the problems I solve, this only requires special considerations on axis, when i = 0.

A first issue which arises is the undefined value of the first term of (C.1) due to the

ratio of two zeroes. This can be resolved by using L’Hôpital’s rule

lim
r→0

1

r

∂f

∂r
=

(
∂2f
∂r2

)
(
∂r
∂r

) =
∂2f

∂r2
, (C.3)

thus giving

∇2f(0, z) = 2
∂2f

∂r2
+
∂2f

∂z2
, (C.4)

which has a finite difference form (substituting i = 0)

(∇2f)h0,j =
2f [−1, j] + 2f [1, j] + f [0, j − 1] + f [0, j + 1]− 4f [0, j]

h2
. (C.5)

This demonstrates the second issue in that grid points f [−1, j] are called for which do

not exist. One could resort to forward differences in r to avoid this problem but there

is a better solution. The way around this is to realise that due to azimuthal symmetry,

in passing from r = ih through r = 0 to the other side, one is not actually at r = −ih
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but at r = ih. Therefore, when i = 0, one can take the ‘ghost points’ f [−1, j] = f [1, j].

This gives the Laplacian at r = 0 as

(∇2f)h0,j =
4f [1, j] + f [0, j − 1] + f [0, j + 1]− 4f [0, j]

h2
. (C.6)

C.2 Restriction and prolongation

The job of these operators is to provide the correct weightings of points which come

from different regions of z and r. Since the coordinate z is unchanged from Cartesian

to cylindrical, the weighting of elements in the z direction is unchanged and I shall just

mention the corrections one has to make for radial effects.

C.2.1 Prolongation

Consider in cylindrical coordinates a fine grid point, f , which is at a radius, r, falling

half way between two coarse grid points, F1, F2. The coarse grid points are located at

r − h and r + h, their contribution to the fine grid point is weighted by the areas they

occupy between themselves and f , given as A1 and A2 respectively in Fig. C.1:

f =
A1F1 +A2F2

A1 +A2
. (C.7)

The areas are given by

A1 = πr2 − π(r − h)2 = πh(2r − h) (C.8)

A2 = π(r + h)2 − πr2 = πh(2r + h) (C.9)

and so the weighted average of F1 and F2 gives

f =
(2r − h)f1 + (2r + h)f2

4r
. (C.10)

For large radii, this reduces to a Cartesian prolongation operator, where F1 and F2 have

equal weighting.

C.2.2 Restriction

In much the same way, consider a coarse grid point, F , at r with fine grid points, f1 at

r − h, f3 at r + h and f2 on top of it at r. These three points occupy areas

A1 = π

(
r − h

2

)2

− π (r − h)2 = πh

(
r − 3h

4

)
, (C.11)

A2 = π

(
r +

h

2

)2

− π
(
r − h

2

)2

= 2πhr , (C.12)

A3 = π(r + h)2 − π
(
r +

h

2

)2

= πh

(
r +

3h

4

)
, (C.13)
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A1

A2

r + h

r

r − h

F1 f F2

Figure C.1: Contribution of coarse grid points (crosses) F1 and F2 to the fine grid point
(circle) f is weighted by the areas A1 and A2.

and thus

F =
A1f1 +A2f2 +A3f3

A1 +A2 +A3

=

(
r − 3h

4

)
f1 + 2rf2 +

(
r + 3h

4

)
f3

4r
. (C.14)

For large r, this reduces to the Cartesian (0.25, 0.5, 0.25) weighting. Restriction also

requires special attention for r = 0. Picture that a coarse grid point at r = 0 occupies

the circular region of radius r = h, this area being shared between the fine grid points

f0 and f1 as shown in Fig. C.2. The areas in this diagram are given by

A1 = πh2 − π
(
h

2

)2

=
3πh2

4
, (C.15)

A2 =
πh2

4
, (C.16)

and so the weighted sum gives

F0 =
A1f0 +A2f1

A1 +A2

=
f0 + 3f1

4
. (C.17)
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A1

A2

F0, f0 f1 F1

h

Figure C.2: Contribution of two fine grid points f0 and f1 to the coarse grid value on
axis, F0.



D Ion fluid discretization

Here I give full expressions for how the ion density, radial velocity and vertical velocities

are calculated in the finite difference scheme.

D.1 Density, n

The equation to be discretised is

∂n

∂z
= − 1

vz

[
1

r

∂(rnvr)

∂r
+
n

vz

(
Fz − vr

∂vz
∂r

)]
. (D.1)

With values known in the rows of constant z, j and j + 1, from central difference in z

the density at a point below in the row j − 1 is given as

n[i, j − 1] = n[i, j + 1] +
2h

vz

[
1

r

∂(rnvr)

∂r
+
n

vz

(
Fz − vr

∂vz
∂r

)]
, (D.2)

with i = 0, 1, 2....N . The exact calculation performed depends on whether the point

falls on a boundary or not and these will now be presented.

D.1.1 i 6= 0 and i 6= N

For points not on boundaries, the r derivatives can be calculated with central differences.

The two terms in square brackets on the RHS of (D.2) are given respectively as,

1

r

∂(rnvr)

∂r
=

1

2hi

(
(i+ 1)n[i+ 1, j]vr[i+ 1, j]− (i− 1)n[i− 1, j]vr[i− 1, j]

)
(D.3)

n

vz

(
Fz − vr

∂vz
∂r

)
=

n[i, j]

vz[i, j]

(
Fz[i, j]−

vr[i, j] (vz[i+ 1, j]− vz[i− 1, j])

2h

)
. (D.4)

D.1.2 i = 0

For points at the centre, one needs to perform some simplifying algebra before discretis-

ing. The first term, (D.3), becomes

1

r

∂(rnvr)

∂r
=

1

r

(
rn
∂vr
∂r

+ vr
∂(rn)

∂r

)
= n

∂vr
∂r

+
vrn

r
+ vr

∂n

∂r
. (D.5)
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At r = 0, the final term in (D.5) is eliminated since vr(0) = 0. The second term can be

found by L’Hôpital’s rule as:

lim
r→0

vrn

r
=

(
∂(vrn)
∂r

)
(
∂r
∂r

) =
∂(vrn)

∂r
(0) = n

∂vr
∂r

(D.6)

where, in the last step, vr(0) = 0 has been used. Therefore, the first term of (D.2)

becomes:

1

r

∂(rnvr)

∂r
(0) = 2n

∂vr
∂r

(D.7)

To discretise this, a forward difference method must be used:

1

r

∂(rnvr)

∂r
(0) = 2n[i, j]

(vr[1, j]− vr[0, j])
h

=
2n[i, j]vr[1, j]

h
(D.8)

The second term in the square brackets of (D.2) becomes after discretization and taking

vr = 0,

n

vz

(
Fz − vr

∂vz
∂r

)
=
nFz
vz

=
n[0, j]Fz[0, j]

vz[0, j]
. (D.9)

D.1.3 i = N

At points on the right hand boundary, one must use backwards differences to evaluate

derivatives. In this case the two terms I’ve been previously deriving are given by

1

r

∂(rnvr)

∂r
=

1

hN

(
Nn[N, j]vr[N, j]− (N − 1)n[N − 1, j]vr[N − 1, j]

)
,

(D.10)

n

vz

(
Fz − vr

∂vz
∂r

)
=

n[N, j]

vz[N, j]

(
Fz[N, j]−

vr[N, j] (vz[N, j]− vz[N − 1, j])

h

)
. (D.11)

D.2 Radial velocity, vr

In the same way as before, there is an equation requiring discretization:

∂vr
∂z

=
1

vz

(
Fr − vr

∂vr
∂r

)
, (D.12)

and this will depend on the radius at which this is evaluated. To start, after central

difference in z, the progression of vr as one moves downwards is given by

vr[i, j − 1] = vr[i, j + 1]− 2h
1

vz

(
Fr − vr

∂vr
∂r

)
. (D.13)
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D.2.1 i 6= 0 and i 6= N

For points not on boundaries, central differenced are used to calculate derivatives. Equa-

tion (D.13) becomes

vr[i, j − 1] = vr[i, j + 1]− 1

vz[i, j]

(
Fr[i, j]− vr[i, j]

(vr[i+ 1, j]− vr[i− 1, j])

2h

)
.

(D.14)

D.2.2 i = 0

By symmetry, the radial velocity on axis is given simply as

vr[0, j] = 0 . (D.15)

D.2.3 i = N

Radial derivatives for points on the outer boundary are evaluated using backwards

differences,

vr[i, j + 1] = vr[i, j − 1]− 1

vz[N, j]

(
Fr[N, j]− vr[N, j]

(vr[N, j]− vr[N − 1, j])

h

)
.

(D.16)

D.3 Vertical velocity, vz

The discretization process continues in identical fashion for vz. The equation dictating

the evolution of vz is

∂vz
∂z

=
1

vz

(
Fz − vr

∂vz
∂r

)
(D.17)

and with the z derivative derived from a central difference method

vz[i, j − 1] = vz[i, j + 1]− 2h

vz

(
Fz − vr

∂vz
∂r

)
. (D.18)

D.3.1 i 6= 0 and i 6= N

Central difference methods are used for points not on boundaries, giving the fully dis-

cretized form of (D.18) as

vz[i, j − 1] = vz[i, j + 1]− 2h

vz[i, j]

(
Fz[i, j]− vr[i, j]

vz[i+ 1, j]− vz[i− 1, j]

2h

)
. (D.19)
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D.3.2 i = 0

At r = 0, one takes vr = 0 and uses forward difference derivatives when required,

vz[0, j − 1] = vz[0, j + 1]− 2hFz[0, j]

vz[0, j]
. (D.20)

D.3.3 i = N

At the outer boundary, backwards difference methods are used to evaluate the radial

derivatives,

vz[N, j − 1] = vz[N, j + 1]− 2h

vz[N, j]

(
Fz[N, j]− vr[N, j]

vz[N, j]− vz[N − 1, j]

h

)
.

(D.21)

All of the calculations here required values to be known in two layers of z and so I

must fill in one plot-hole which is how to get the process started (when only the top

layer of z is known). For this case, one must take a forward difference derivative in z to

obtain a second layer and then the previous calculations which use central differences

can be employed.



E Permissions

Figure E.1: Permission for Figs. 4.1 and 4.18 (a) originally in [1].
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Figure E.2: Permission for Fig. 4.18 (b) originally in [2].
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Figure E.3: Permission for Fig. 4.18 (c) originally in [3].
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Figure E.4: Permission for Fig. 4.19 originally in [4].
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