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Abstract

This project consists of a two-pronged computational and experimental approach to the

study of flow in closed, thin rectangular ducts with a partial cubic blockage. Results are

presented at three different bulk Reynolds numbers, ReD = 5600, 10400 and 15600, based

on the channel height, which is also the blockage dimension. The new experimental data

produced consists of fluctuating pressure measurements at the cube surface, with 2D-2C

PIV snapshots captured simultaneously in the wake region. In addition to this, DNS

data is produced at the lowest Reynolds number of ReD = 5600, allowing more detailed

comparisons where PIV laser access was not possible. Comparisons are drawn between

the data and URANS CFD simulations. A literature review and preliminary testing

process narrowed down the considered URANS models to the two-layer k − ε model and

the Elliptic Blending Reynolds Stress Model, or EBRSM . In the light of the new data,

these two URANS models are compared in order to better understand their strengths and

weaknesses. Particular regard is given to the prediction of large-scale unsteady behaviour,

with a focus on vortex shedding. This unsteady phenomenon was found to be present

and to have a significant effect on the flow in the near-cube and wake regions. Results

show that certain aspects of this behaviour are captured with only limited accuracy by

the URANS models tested. As a result, inaccuracies are also found in the mean simulated

velocity fields. The shortcomings appear more pronounced at higher flow rates. At a

given flow rate, they are more severe in regions of the flow where organised unsteadiness

is large relative to the mean values. It is suggested that inaccuracies in mean URANS

predictions are a result of limitations in model capability for unsteady flows, and that

validation cases may be pertinent to address this.
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Nomenclature

Most abbreviations, notation and definitions are defined in context; the list given here is

by no means exhaustive. Items are presented if they appear within the text far separated

from their definitions.

Abbreviations

• CAD - Computer Aided Design

• CFL - Courant-Friedrichs-Lewy stability criterion

• DFT - Discrete Fourier Transform

• DNS - Direct Numerical Simulation

• EBRSM - Elliptic Blending Reynolds Stress Model

• FFT - Fast Fourier Transform

• RANS/URANS - Steady/Unsteady Reynolds-Averaged Navier-Stokes methodology

• RMS - Root Mean Square

• RSM - Reynolds Stress Model

Notation and Definitions

• φ - Phase

• ε - Turbulence dissipation rate

• (0, 0, 0) - Centre of coordinate system, at geometric centre of blockage

• Aptφ - Peak-trough amplitude characterising the spread in phase-averaged pressure

values

• D - characteristic dimension, for example, cylinder diameter, cube dimension

• H - rectangular channel height, smaller of the two dimensions
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• Nφ - Number of phase bins

• Nc - Number of cells in the computational domain

• Np - Number of periods

• Ns - Number of snapshots

• ReD - Reynolds number based on the characteristic diameter of the cube, D, which

is also the channel height

• ReDh - Reynolds number based on the hydraulic diameter of the channel, Dh =

4A/P

• Ret - turbulent Reynolds number based on the local turbulent conditions

• Reyw - Reynolds number based on the wall distance

• St - Strouhal number, the non-dimensionalised shedding frequency

• Stcp - Strouhal number using constant period method

• Stnccp - Strouhal number using using constant period method accounting for flow

constriction past block

• Stvp - Strouhal number using variable period method

• Tcp - Mean period using constant period method

• Tt - Turbulent timescale

• Tvp - Mean period using variable period method

• U, V,W - Mean u, v, w velocities

• Ub - Bulk velocity, integral of u with respect to y and z across channel cross-section

• W - rectangular channel width, larger of the two dimensions

• fFT - Frequency based on the spectral peak from the Fourier Transform

• fcp - Estimated shedding frequency, from mean period using constant period method
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• fncvp - Strouhal number using using variable period method accounting for flow

constriction past block

• fshed - Dominant shedding frequency

• fsnap - Rate at which velocity snapshots were recorded

• fvp - Estimated shedding frequency, from mean period using variable period method

• k - Turbulent kinetic energy

• nφ - Phase bin number

• np - Period number

• ns - Snapshot number

• nx, ny, nz - Number of cells in the x, y, z directions

• u, v, w - Velocity in x, y, z directions

• x, y, z - Streamwise direction, short dimension separating two large plates, wide

dimension spanning between small channel sides

• y+ - Normalised wall distance

• yw - Distance to the nearest wall
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1 Introduction

1.1 Project Aims

The principal aim of this project was to perform a study on computational methodology

for the prediction of single-phase flow within nuclear reactor sub-channels. The focus is

placed on issues that may arise from the presence of partial blockages in a rectangular

duct of relevance to the nuclear industry. Major turbulence modelling strategies that are

commonly used in industry are tested to see how well they fare under conditions that

are known to raise certain difficulties despite the absence of phase change, namely highly

unsteady flows around bluff bodies. Acknowledging first of all that the realistic prediction

of mean heat transfer within convection-dominated flows is heavily dependent on the

correct representation of mean flow structure, the need to scrutinise in detail mean flow

predictions from the chosen models is considered paramount. Under certain conditions,

unsteady components of the flow exist on scales so large as to be comparable to the

mean flow structures themselves. These exist across time-scales much longer than those

associated with turbulent eddies. Furthermore, the periodic regularity of such phenomena

may raise issues of resonance and unwanted acoustic noise. As a result, the ability of the

models to accurately predict the largest, most ordered fluctuations in velocity and pressure

needs to be tested.
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1.2 Rectangular Ducts of High Aspect Ratio

The prediction of flow in closed ducts is clearly of interest across a broad range of engi-

neering domains, applying to ventilation systems, heat exchangers, jet engines and heat

transfer in industrial processes among many others. As a result, much work has been done

to provide the engineer with the tools to calculate important quantities such as pressure

drops, bulk flow velocities and heat exchange rates, often constructed using experimental

correlations and applied via interpolation or extrapolation to a broad range of similar

cases. While these may be useful as a quick point of reference, deviation from the appro-

priate conditions of application may result in incorrect predictions, even for cases that

seem intuitively quite simple.

As an illustration of this point, one may regard the prediction of pressure drop within

straight rectangular ducts; a classical approach based on the hydraulic diameter [22] is

known to diverge from reality for thin ducts where the aspect ration Ra = W/H is large.

The authors of [14] designed an approach based on using the square root of the cross-

sectional area rather than the hydraulic diameter to provide some generality with regards

to duct shape, but even this approach was limited to smaller aspect ratios. One example

where these correlations may be limited is the coolant channel geometry of an MTR

type reactor [71], a rectangular duct with an aspect ratio of approximately 30. Partial

blockage of these ducts due to a hypothetical fuel plate buckling scenario was investigated

in [68] in order to ascertain the likelihood of boiling under such conditions; the coolant

flow became 3D due to the duct’s changing shape. Fully 3D RANS methodology was

employed accordingly, using the realizable k − ε model [74]. Validation of the model’s

predictive capabilities for temperature was provided in an earlier paper by the same

author [69] for the case of an unblocked duct of constant cross-section. In that study,

the average temperature across transverse sections of the flow was compared with that

generated under steady conditions by MTRTHA, a 1D systems code designed for Thermal

Hydraulics in the nuclear industry. Effective extrapolation from this is clearly dependent

on the ability of the code to accurately represent the redistribution of coolant across the

channel cross-section. Due to the smooth, steady changes in geometry this extrapolation

seems very reasonable, but it is worth highlighting that the predicted coolant temperature

was nevertheless a strong function of the location across the channel width. If geometry
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changes were sharper this assumption may have been unfounded.

Another difficulty is well known to arise in the process of predicting turbulent flows

in straight rectangular ducts, that of corner vortices. Experimental data relating to this

subject may be found in [7], [58] and [20]. These studies are accompanied by a thorough

explanation of the origins of such secondary flows within a Reynolds Averaging theoretical

framework; mean measurements of turbulent quantities are used to show how crucial it is

to allow for anisotropy of the Reynolds Stress Tensor. Early attempts to simulate these

resulted in the development of Explicit Algebraic Reynolds Stress Models [28], where an

experimental correlation was used to define the values of turbulence intensity components

within the duct cross section as a function of position and bulk velocity, with successful

results. For a discussion on more general methods of closure for the Reynolds Stress

components that do not require such a priori knowledge, readers are directed to [75].

This same author was also able to produce secondary flows in a rectangular duct using

a modified version of the k − ε model [76]. The interested reader is directed to [61],

for the details of a theoretical framework for a sub-set of “effective-viscosity” models

that are capable of dealing with anisotropy in the Reynolds Stress fields, although this

will not be discussed here. Finally, attention is drawn to [59] where DNS was used to

directly observe turbulent structures in the wall and corner regions. In that work, the

mean secondary flows were shown conclusively to be a manifestation of the statistically

preferential location of low speed streaks near the walls and of instantaneous vortices

aligned with the streamwise direction. These coherent structures are small in size and

exist over short time-scales, but their combined effect establishes the secondary flows in

the mean, which are typically ∼ 1% of the bulk velocity.

Concluding this discussion on rectangular ducts, many of the details required to suc-

cessfully model turbulent flow in the simple case of a straight rectangular channel are non-

trivial, from correlations for pressure-drop to simulation of velocity components. Even

without the introduction of any blockage, in fully-developed flow where all velocity gra-

dients in the streamwise direction vanish, care is needed in the selection of turbulence

models to represent secondary flows. Where smooth, gradual changes are present, the

accurate prediction of flow distribution can have consequences of industrial importance.

As will be demonstrated in what follows, the effect on flow fields of the presence of small

blockages is significant. Larger scale unsteady structures may have more drastic con-
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sequences on the mean flow prediction of turbulence models, as will be outlined in the

following section.

1.3 Bluff Body Interactions

1.3.1 Long Cylinders

The computational study of flow around blockages has had some success in the case of very

long cylinders in cross flow, relevant to objects such as tethers for oil rigs and bridge struts.

In these cases, the geometry far from the cylinder ends is effectively two-dimensional. In

cases where cylinders are shorter, the proximity of these end walls may be important, and

their effect on the flow within the central symmetry plane is essential to consider before

making assumptions about the degree to which the flow is 2D or 3D in nature. The

authors of [78] had performed experiments on a long cylinder with end plates attached at

the ends, which they moved to cover plate separations from 0.25D to 12D at Reynolds

numbers of 8,000 to 140,000. The researchers found that at fixed Reynolds numbers near

the upper end of the range, both Strouhal numbers and fluctuating lift may be modified

quite significantly by a change in L/D, the ratio of the cylinder length over the diameter.

They concluded that this was probably due to an an increase of the correlation in the

pressure across the cylinder length in general; for longer cylinders the shedding from the

cylinder surface was found to be out of phase with the fluctuating pressure in the centre.

What is more, this triggered a disturbance in the primary shedding cycle roughly every

1-20 cycles such that it appeared dampened over several shedding periods each time,

resulting in reduced lift. They also found that the effect of changes in aspect ratio was

dependent on Reynolds number, regular shedding and hence lift disappeared for L/D

from 1-3. At lower Reynolds numbers there was little effect of aspect ratio changes. As

a result, it was suggested that complex interactions between the end plates and the flow

resulting in cross flows aligned with the cylinder might have been the cause.

This helped to motivate the work carried out in [53], using the same end-plate design.

One of the stated aims of that study was to provide guidelines for choosing large enough

aspect ratio, in order to help following researchers design experiments with negligible

dependency on the third dimension aligned with the cylinder axis. The minimum cylinder

length studied was about five cylinder diameters. At all Reynolds numbers and all aspect
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ratios, the Strouhal number was roughly 0.2, but it varied with both. It peaked around

0.21 for a certain Reynolds number at all aspect ratios; with decreasing aspect ratio

this critical Reynolds number increased. For 10, 000 < Re < 40, 000, the minimum

required cylinder length to achieve independence of the end-plates was estimated to be

about L/D = 25. At 4, 000 < Re < 10, 000 they estimated it to be about 60. Noting

that these were conservative estimates, they suggested that the key parameter influencing

these results might be an “undisturbed axial correlation length”, and suggested making

cylinders four or five times as long as this, despite noting that obvious direct effects from

the end plates extended only about 5D from each plate.

In the same year, [45] made an experimental study of a square cylinder of length

9.75D spanning a closed rectangular duct, so based on the work of [53] the effect of

the cylinder walls was likely to be noticeable but not dominant. They collected LDA

measurements in the central plane near to the cylinder face that was side-on to the flow

in order to construct profiles of mean velocity and also of the fluctuations. In addition

to this, they simultaneously measured the pressure at the centre of the cylinder side

face in order to provide a reference point for the time dependency of the fluctuations.

Once the turbulent component had been filtered out from the pressure, it was possible

to phase-average the velocity data based on the time of its capture relative to the large

scale pressure fluctuations. This detail regarding mean structure, chaotic turbulence and

also organised fluctuation made it useful as a reference point for further studies, including

the set of LES studies detailed in [66] and the DNS study made in [79]. In the former of

these two, all the independent contributors used either periodic or slip conditions and the

domain span along the cylinder axis was 4D, whereas in [79] the cylinder length was πD

with periodic conditions on the boundaries at the cylinder ends. In all of these cases the

flow was treated as if no walls existed near the cylinder ends, nevertheless, comparisons

were drawn between these and the results in [45]. One of the principal conclusions of

the authors of [66] was that more difficulty was found in simulating flow around a long

cylinder than around a wall-attached cube, and it was suggested that this was down to

the transitional nature of the flow.

The DNS study in [79] argued that the domain was sufficiently long in the direction of

the cylinder axis by calculating two-point correlations of the velocity; a separation of about

half the domain span resulted in a drop in the values to near zero. This argument was
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pertinently used to show the suitability of the domain size for simulating flow without end

walls, but it did not prove that the simulation was perfectly equivalent to the experiments

where end walls were present. Discrepancies found between the results in [79] and [45]

were small, but present nonetheless. The clearest differences were in the magnitude of

streamwise velocities along the domain centreline in the region behind the cylinder, where

experimental values were consistently lower than the DNS ones. In particular, the DNS

predicted a lower magnitude for the maximum negative streamwise velocity here, although

profiles of streamwise velocity showed a good match further away from the centreline. It

is possible that the discrepancy is due to instantaneous cross-stream flows normal to both

the mean stream and the cylinder due to the flapping motion; these might have been

stronger in the experiments than in the DNS, and would not have shown up in the mean

if they were averaged out. However, there is no direct evidence to suggest this.

One experimental study of turbulent flow around a circular cylinder where lateral wall

effects were significant, [5], used a circular cylinder of length 4.8D spanning a duct of

rectangular cross section such that the blockage coefficent D/H was approximately 0.2.

This study was carried out with an aim to generate data for validation of turbulence

models at a high Reynolds number of 140,000. The authors deliberately chose a geometry

that would not result in “infinite-span” conditions, therefore accepting the presence of

strong 3D effects from the channel walls. Nevertheless, velocity data was presented only in

the central plane normal to the cylinder axis, meaning that interactions between structures

near the measurement plane and those near the wall could not be studied. This work has

been recently used as a reference point for studies on nominally 2D flow, for example [2],

where periodic boundary conditions were employed in the direction along the cylinder

axis, which measured only (πD) /2, under the assumption that these wall effects were

not important. Given the arguments made above that wall effects may be consequential

for L/D = 9.75, and the express acceptance in [5] that wall effects were likely to be

consequential at L/D = 4.8, this assumption seems to be rather tenuous, and may well

be the cause of discrepancies between the predicted pressure on the cylinder surface and

the experimental results. Despite a larger difference in Reynolds number, the match with

experimental data from [9] was better; an experiment with a cylinder having L/D = 29.3

where the ends were shielded from the boundary layers at the wind-tunnel walls with

end-plates.
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Since the work of [78] and [53] described above, it has been shown that significant

3D structure exists in the near wake of cylinders in cross flow, even when the flow is

largely two-dimensional. At relatively low Reynolds numbers, such a flow may undergo

a fairly sudden transition to a turbulent state [33]. These authors were able to clearly

demonstrate the onset of a secondary instability which appeared between Re = 175 and

Re = 225 through direct numerical simulation within a small domain. Triggered by

an initiating perturbation introduced by the researchers, a third component of spanwise

velocity appeared and amplified itself at the higher of the two Reynolds numbers but

at the lower it died out. Raising the Reynolds number further, to 300, then 333, and

finally to 500 where the flow became chaotic, the path towards fully turbulent flow was

observed, seeming to follow the classical “period doubling” route. The third component

of velocity was approximately 2 orders of magnitude smaller than the streamwise one,

but the authors questioned the validity of performing 2D simulation after the onset of 3D

behaviour. Using LES simulations at up to Re = 10, 000, the authors of [32] were able

to simulate the aerodynamic forces on such a cylinder. The values that they reported for

Strouhal number and time-averaged drag coefficient matched well with experiments, but

no comparison was made for fluctuating lift. The fluctuating shear forces in the direction

of the cylinder axis were approximately 2 orders of magnitude lower than those in the

cross-stream direction, but the 3D instability was seen to occur in the cylinder wake.

By visualising vorticity contours, the authors were able to clearly show large scale 3D

structure developing in the near-cylinder wake.

As the flow around long cylinders can be shown to have a significant third velocity

component at low Reynolds numbers, it might be remiss to not take this into account, with

or without the presence of walls. One clear feature of these type of flows is the appearance

of velocity components aligned with the cylinder. There is an interplay between the

parameters of Reynolds and L/D that may result in changes in the fluctuating quantities

due to the degree to which shedding is synchronised along the cylinder length, and this

may only be captured with 3D simulations.
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1.3.2 Wall-attached Blockages

Rather than placing end plates at both ends of a cylinder or confining it to span a channel

from wall to wall, a large number of studies have focussed on the flow around objects

attached to a flat floor with the upper end open to the free-flow, simulating how wind

may interact with tall structures or other types of protrusions from larger surfaces. One

such example of this is [29]. In this particular study, the object was not entirely contained

within the boundary layer, which reached approximately 10% of the cylinder height, 3D,

where D is the cylinder diameter. Pressure tappings were made at various locations on the

cylinder’s lateral walls and the free upper surface, and hot wire measurements were made

downstream of the cylinder at various heights from the floor. Strong periodic shedding

was evident at only 0.33D away from the wall in frequency spectra of the velocity and

pressure, that gradually decreased approaching the cylinder’s free end where it was much

weaker. Its strength was greatly reduced halfway up the cylinder height, apparently due

to the influence of the free surface as opposed to the effect of the wall. This conclusion

appears to be backed up by [81], where the width of the mean wake gradually decreased

from a peak around 1D away from the wall towards the cylinder’s free end at 4D. Rather

than being a feature of a steady flow structure, this is probably due to a decrease in the

size of the flapping motion nearing the free stream, where the flow over the top of the

cylinder tucks back in behind it. Due to the strength of the shedding in the lower section

of these cylinders and the strong effect of the top surface, it is quite logical to ask what

might happen when the cylinder height is of the order of its width; will an organised

periodic component remain or will it be too disturbed by the free end to be significant?

Flow around a wall-attached cube has been a focus of attention since at least 1991, where

visualisation of the flow structure through several means was used to build up a good

picture of the highly three-dimensional structures present in flow around a cube [39],

and an extension to that work was carried out in [49] where flow around wider cuboidal

objects was measured and visualised. In both cases, the channel was twice as high as the

cube. Key mean features included upstream vortices near the corner between the channel

floor and the cube, an area of flow separation after the leading edge and horseshoe shaped

vortices both behind the cube and stretching from upstream of the cube out past the sides

and further downstream. The highly three-dimensional flow behind the cube was present
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up to a cuboid width/height ratio of approximately W/H > 6 beyond which point there

was a region of flow that was largely 2D; the horseshoe shaped vortices no longer joined

together downstream of the cube but remained separate. Following on from this, LDA

measurements in the wake were collected to directly measure the production, convection

and transport of turbulent kinetic energy, and to infer indirectly the dissipation rate. This

detailed dataset has been used as a benchmark for several studies including LES [73] and

unsteady RANS [27], where the latter study also drew on the former as a reference point.

The work of [73] was able to provide some insight into a phenomenon that had been noted

by the original experimentalists; a strong bimodality in the velocity upstream near the

symmetry plane at the origins of the horseshoe vortex. They were able to show that in

certain regions of the flow, the solution jumped back and forth between two states quasi-

periodically. Performing spectral analysis of the force on the cube side, they found that

for a very long data collection time a clear peak did not exist at any particular frequency.

This is quite different to findings from long square cylinders without free ends [45], where a

clear dominant frequency was found at a Strouhal number consistent with other studies of

flow around long square cylinders. In addition to the study of flow around a long cylinder,

the authors of [66] applied LES to the study of flow around a cube at Re = 3, 000 and

40, 000, and in [65], several steady k − ε variants were compared with these results. One

of the principal conclusions of this paper was that unsatisfactory predictions were made

by the steady simulations, particularly with regards to the length of the recirculation

region. The author of [27] was able to show that a very good match to experiments for

the mean flow profiles could be achieved using unsteady RANS methodology, which could

not be achieved with a steady version of the same model, concluding that it was the

vortex shedding that made the difference. These authors found that a periodic back and

forth motion was manifest in several ways within the cube vicinity including movement

of the arch vortex behind the cube, a major 3D flow feature. In [66], it was noted that in

general better agreement with experiments was found for the flow around the cube than

for a long cylinder. This was despite the fact that in both cases the boundaries were not

resolved at one set of lateral walls, where either periodic or slip conditions were applied.

The match for mean stream-wise velocity profiles above the cube and in the recirculation

region beteween the LES and the experiments was very good at both Re = 3, 000 and

Re = 40, 000.
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In conclusion, it is clear that the unsteady flow associated with vortex shedding pro-

duces certain challenges that have been the focus of attention right up to the present

day. Crucially, it is essential to take into account the unsteady nature of the flow; mean

velocity predictions are significantly affected by the unsteady components, even in geomet-

rical symmetry planes. The tempting assumption of 2D shedding around long cylinders,

with the simplifications and associated economies in computational resources that may be

made, has been shown to be too restrictive. This modelling neglects 3D phenomena that

are present across the Reynolds number range from when laminar 2D shedding occurs

right up to highly turbulent flows where Re = O (105); such 3D phenomena are inherent

to these flows and make up significant parts of the flow physics. In cases where a cylinder

is set between the walls of closed rectangular ducts, it may be seen that discrepancies

arise in the prediction of such important quantities as stream-wise velocity in the recir-

culation region behind the bluff body, wherever careful consideration is not given to the

effects of the lateral wall boundary layers. Such effects have not been taken into account,

even in recent years, probably due to reasons of computational cost. These effects may

be present at L/D ratios near 10 and 5 and there is reason to assume that they may

become more dominant as this ratio reduces further; interactions between 3D structures

near the duct walls and those near the cylinder surfaces would inevitably cover a larger

part of the flow domain. In cases where a cylinder length approaches its diameter, and

the walls within which it is embedded become much closer together than those parallel

to it, it is unknown to what degree these interactions would change the physics of the

flow. To the knowledge of the current author, such a case has not been reported on either

experimentally or computationally.
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1.4 Contributions Made

During this study, two complementary approaches are followed, one computational and

one experimental, and conditions are carefully controlled so as to make them equivalent

for comparison. The computational calculations include high-fidelity DNS simulation as

well as unsteady RANS methodology, and the experimental study makes use of time-

resolved pressure recordings as well as instantaneous capture of sections of the flow using

PIV methodology. Key points of interest are summarised below:

• Turbulent flow within a new geometry is studied in detail: a cubic partial blockage

spans the smaller of the two dimensions in a wide, thin rectangular channel at three

different ReD numbers, 5600, 10400 and 15600 based on the channel height/blockage

size. Flow around this object results in previously unseen structure, and the effect

on shedding is scrutinised

• PIV measurements in the wake region provide 2D velocity snapshots as a point of

reference for velocity predictions at all three Reynolds numbers, both mean and

instantaneous flow structure is made available

• Time-resolved pressure tapping at the cube side provides a point of reference for

scrutinising the frequency and amplitude of organised fluctuations at all three Reynolds

numbers, and is phase-matched with the velocity data

• DNS simulation provides a further point of reference at the lowest of the three

Reynolds numbers, from which details of both the instantaneous and mean flow are

extracted for comparison.

• URANS predictions using different models are compared with both the experiments

and DNS in order to build up a picture of their various strengths and failings; during

this process they are also compared with each other in order to propose explanations

for the differences in predictions.

• Recommendations are made relating to the use of turbulence models for single-

phase flow in non-circular ducts, with a particular focus on the flow around partial

blockages
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• Avenues for further work are suggested in the light of the comparisons made, in-

cluding important areas of development for URANS methodology
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1.5 Outline of Thesis

The introduction section above provides context for the work, including project aims

and a background study of available literature on the subject. In all of what follows,

descriptions of more specific techniques, concepts and formulae are embedded within the

appropriate sections, with references given within each chapter.

Firstly, description of the experimental apparatus is given, with a focus placed on

facilitating any further related research. To this end, references are made to relevant

studies that may provide insight into flow-rig design. In addition to this, details of the

particular components is given, with specification where appropriate.

Secondly, in-depth detail of the experimental methodology is presented. The process

followed to capture the data is explained in detail. As part of this, some qualitative results

from preliminary experiments are given, with an intention to set the scene for the final set

of experiments. Where they are considered useful to show the suitability of the set-up,

or where they may be used to demonstrate details of the data-treatment process, some

analysed results are given.

The results of the experiments are presented next; fluctuating pressure and 2D-2C PIV

data is presented in the recovery region of the cube. Mean averaging and phase-averaging

of the flow is used to highlight quantities of interest, including phase-averaged pressure

amplitude and structure of the velocity fields.

Moving on to computational work, the turbulence models used are introduced after a

brief discussion of their origins. Attention is drawn where possible to the motivations and

reasoning for specific developments made by the respective authors, in order to give an

intuitive idea of how models might be expected to perform in the context of the present

study. Details of the mesh refinement and time-step selection process are explained, with

appropriate results shown to argue the suitability of the final choices.

Computational results are presented next, alongside each other in order to highlight

similarities and differences, with a focus on the most readily visible discrepancies and on

particular details in the modelling that may help to explain them. An overall picture of

flow structure is given alongside some specific phenomena of interest.

Validation of the URANS methodologies used is carried out by comparison to the

experimental results and the DNS; all results are non-dimensionalised by appropriate
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quantities. Key points regarding modelling strengths and weaknesses that have been

alluded to previously are focussed on using the new benchmarks. Successes and failures

to represent accurately the physics are discussed. Wherever the DNS or experiments are

considered unreliable or imperfect, caution is given with reasoning attached.

Final conclusions are drawn in order to draw together useful comments on the URANS

models; how suitable are they and what are their relative strengths and weaknesses?

Where conclusions agree with the scientific literature, this is highlighted, and any differ-

ences are discussed.

Lastly, suggestions for further work are outlined. These suggestions are targeted where

conclusions drawn from the current study are insufficiently evidenced and also where

phenomena of interest have been highlighted, particularly with regards to turbulence

modelling shortcomings.
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2 Experimental Apparatus

2.1 Flow Rig Design

In order to help inform the choices of materials and geometries in the design process,

a simple MATLAB program was created to help predict the pressure drop in different

sections of the circuit for given fluid properties. The friction factor estimate used for

predicting pressure drop in the main channel was that suggested in [14] for narrow, smooth

ducts of non-circular cross-section. For pressure drop in the pipes, that given by [22] was

applied. “K” factors from an online database [60] were used to find estimated coefficients

for various pipe fittings. Classic stress-strain formulae for flat plates with clamped edges

were used to estimate deflection of the main channel faces, and double checked against

results from a more detailed and well-defined Finite Volume Stress Analysis using Star-

CCM+. This program allowed quick and easy trial-and-error of different flow rates,

channel geometries and other parameters for setting useful bounds in the design criteria

before a more detailed, finalised design was produced. The hydraulic circuit (Figure 1) was

driven by a constant level overhead reservoir, with a free surface open to the atmosphere

approximately 4m above the main channel. This overhead tank had a nested design

consisting of two constituent tanks such that the water level in the internal tank was

held constant and the outer tank collected the overflow. The working fluid was tap water

from the mains supply, with bleach at 5ppm to prevent microbe development. Smooth

plastic piping having an internal diameter of 3” was used to direct the main flow from the

overhead tank to a cubic inlet box of 380mm internal width (Figure 3). Solidworks by

Dassault Sytemes was used to design the inlet box and main channel, and to produce 3D

CAD files that were sent to the manufacturers. The inlet box was made of clear acrylic

plastic. Flow rate through the channel was controlled with a ball valve set into the main

flow pipe, also having a 3” internal diameter. The main flow passed from the pipe into

this box via a sudden expansion through a hole made in the top face, slowing down as it

did so.

The inlet box (Figure 3) is conceived in such a way that the convergence guide piece

is easily accessible. It may be removed from the box in one piece, modified then replaced.

Within this box, baffles were used to direct the flow through a smooth change in cross
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Figure 1: Hydraulic circuit design

Figure 2: Assembly of main channel including inlet box for inlet and support struts
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Figure 3: Flow conditioning box before main channel inlet, with baffles removed

31



section, following the form of a cubic spline with both ends having a zero gradient. The

baffles are not explicitly displayed in Figure 2 or Figure 3, they were located in the grooves

that are shown. This form is similar to that used in the wind tunnel design outlined in [3].

Regarding the contraction ratio, defined as Rc = Ainlet/Aoutlet, consideration was given

to the findings in [6]. That study investigated the effect of contraction ratio on vortices

as they pass through, where large eddies may be amplified by vortex stretching. Both

streamwise-normal components of vorticity were generated by vortices of similar strength

due to careful inlet conditioning giving nearly homogeneous inlet turbulence. The authors

found that the contraction ratio and the inlet turbulence level are the parameters which

most significantly affect the turbulence level through the contraction. It was discovered

that for increasing contraction ratio from Rc > 4, the level of isotropy of turbulence far

from the wall increased until the turbulence became almost isotropic at Rc ∼ 8. Based on

these findings, a high contraction ratio was considered desirable so as not to emphasise

any large vortices that may be present at the inlet. A large inlet area also entails another

added benefit; a lower inlet velocity results in lower vortex-producing velocity gradients

near the inlet lip.

The baffles were symmetric about the channel’s central xy and xz planes and had a

constant side-on cross section. They were positioned such that they prevented fast-moving

fluid from the inlet pipe from entering directly into the main channel, the flow was forced

to change direction by 90◦ and align itself with the main channel after having slowed

down greatly. The reduction in cross-sectional area of the convergence baffle section

was from 40, 000mm2 to 1, 600mm2 between inlet and outlet, giving a ratio in the bulk

velocities across these surfaces that was the inverse of the contraction ratio of Rc = 25.

The final cross-section had a width of W = 200mm and a height of H = 8mm. Rather

than a perfectly smooth transition between the baffles and the main channel, there was

a lip protruding by a fraction of a mm. This remained to served as a trip to aid the

development of turbulence. Following this, the flow passed straight through the channel

wall for 40mm with no further change in cross-section, entering the main channel, which

also had the same width and a height of H = 8mm, corresponding to an aspect ratio

of Ra = W/H = 25. The assembly of the inlet box, main channel and support struts

was tested before commissioning (Figure 2). The straight section of the main duct was

1, 400m long, or 175H, and measurements were eventually made about 125H downstream
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of the duct inlet. For comparison, [50] reported that fully-developed flow was attained

in a square duct at only 37H downstream of the inlet and [26] reported that flow in a

rectangular duct having Ra = 12 was fully developed by 47H. Adjustable feet were fitted

to the channel’s Aluminium support legs in order to facilitate laser beam alignment. The

acrylic side piece faces were meticulously polished in the region where measurements took

place using a wet/dry sanding kit which consisted of many sheets having decreasing grain

size, the finest of which was 1µm. Spray polish was finally used to fill in any remaining

micro-scratches. After this treatment the side pieces were extremely transparent; looking

through them one could see a clear picture on the other side with very few apparent

aberrations. The refractive index of the acrylic was ∼ 1.49, whereas for the water it was

∼ 1.33.

Water exited from the duct by squirting directly out into a large main reservoir held

at atmospheric pressure. This main reservoir served as the water storage tank when

the circuit was not in operation, and had a capacity of ∼ 400l. When the circuit was in

operation, overflow from the overhead tank also returned directly to this main reservoir via

a 3” plastic pipe. Such a large diameter was chosen to ensure that the overflow could cope

with a high flow rate when the main valve was completely closed, to prevent accidental

overfilling of the overhead reservoir. Water was recirculated from the main reservoir to the

overhead tank with a Grundfos NBE series centrifugal pump, via 2” smooth plastic piping.

This pump was configured to order; it could provide a high enough flow rate to maintain

the level in the overhead tank with the ball-valve fully open, without overflowing the

overhead tank when the the valve was fully closed. The pump throughput was managed

via a rotary control on the power supply, which had an automatic start-up transient to

protect the pump from damage.

The main duct consisted of two large faces of 20× 300× 1400mm and two sidepieces

of 8 × 50 × 1400mm, fabricated entirely from clear acrylic plastic. The side pieces were

sandwiched between the two larger plates at the sides to leave a large straight internal

duct of 8× 200mm cross section. This design allowed for the modification of the channel

cross section via the side pieces. Waterproofing was ensured by placing rubber O-ring

type piping in grooves running the length of the channel. A neoprene seal was placed

between the convergence box and the main channel, and a small amount of silicone bath

sealant was used in crucial places to ensure that there were no leaks.
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2.2 Blockage Design

Two blockages were manufactured from different materials, having very precise dimensions

of 8mm3 (Figure 5). This characteristic dimension D was precisely the same as the

channel height H so that it could form a partial blockage spanning between the large

channel plates. Two different methods were used to manufacture the blockages. For the

first, precise milling machinery was used to fabricate a cube from a block of aluminium.

The absolute precision of the machinery movement was just 0.01mm. Holes were carefully

drilled to produce a small pressure tap in one of the cube faces. The diameter of the drill

bit used for the hole in the cube face was 1mm. The connection between the gauge and

the cube face was made by way of a 2mm diameter hole drilled through from below the

cube, forming a 90◦ angle with the small 1mm hole drilled through the cube wall. This

connection then passed through the channel wall, where the pressure gauge was threaded

in using PTFE tape to ensure a watertight connection. The differential pressure gauge

had one port open to the atmosphere, the other was connected to the hole in the cube

face. Both of these ports were pre-threaded, making their connection easier. In general,

the finish of the cube was imperfect due to very small chips that broke off from the cube

corners during milling. Although great care was taken and although these chips seemed

very small in absolute size, relative to the cube size they appeared significant enough

to disturb the flow somewhat. Moreover, despite careful blackening of the surface of the

aluminium cube, small scratches were easily introduced such that the silver colour showed

through, introducing a risk of hazardous laser reflections. For these reasons, a second cube

was manufactured before experiments with lasers were carried out.

The second cube was made to order in matte black plastic by high precision 3D printing

equipment, with a maximum spatial manufacturing error of 42µm. Visual inspection

under a microscope showed that this cube was very evenly manufactured, with neat edges

and flat surfaces. Reflections were greatly suppressed by the black finish allowing a laser to

be shone in the vicinity of the cube with minimal safety implications. A free passage from

the lower cube face to one of the cube side faces allowed pressure tapping. The diameter

of the hole for the pressure tapping was just 0.5mm, resulting in minimal disturbance

to the flow, and a point-like pressure reading. A syringe full of water was used to force

water through the pressure tapping prior to each experimentation in order to remove air
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Figure 4: Channel dimensions and cube location

Figure 5: Cube dimensions, section showing 0.5 mm pressure tapping which was
centrally located in a face parallel to the flow

bubbles. The blockages were inserted into the channel 125D downstream of the inlet, or

50D upstream of the outlet, (Figure 4), and were prevented from moving laterally with

a small pin. There were no noticeable movements in the cube at any flow rate. A very

small amount of bath sealant was placed on the lower surface of the cube before it was

wedged into the channel to ensure airtightness of the pressure tapping.

2.3 Pressure Transducer

In order to characterise the time-dependent periodic shedding phenomenon, a Kistler

4264A series differential pressure gauge was used. This piezoresistive pressure sensor has a

quoted accuracy of ±0.2% across a range from 0−1.5PSI, or 0−10343Pa, corresponding

to 20.7Pa. The high accuracy was important as a high degree of pressure resolution was

predicted to be necessary by the preliminary simulations, in order to resolve the small

pressure differences associated with vortex shedding. What is more, the transducer was

calibrated at the factory before shipping, to ensure its fidelity to the quoted accuracy.

The frequency response of the transducer was 2kHz, ∼ 57 times that of the shedding

frequency expected at the highest Reynolds number. The transducer was powered by

two 9V batteries, chosen for the stability of their output relative to that of a mains

power pack. Capture of the signal was done by way of a National Instruments USB 6002
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Figure 6: Pressure tap location at the centre of the cube face parallel to the mean flow
in the x direction

Digital Acquisition Device (DAQ). This piece of equipment was capable of reading voltages

across a range from −10V to +10V with 16 bit resolution, corresponding to a resolution

of ∼ 3 × 10−4V . Using the factory calibration curve, this corresponds to a change of

about 0.3Pa, beyond what the transducer is capable of. The maximum sampling rate of

this device was 50Ks/s meaning that the DAQ was more than adequate for resolving the

signal output by the transducer; this was the case both in terms of response time and

pressure resolution.

2.4 Particle Image Velocimetry Apparatus

2.4.1 Laser

The light source used was a New Wave Research Solo PIV Nd:YAG dual pulse laser, with

a dedicated power supply. The laser had an integrated harmonic generator which took the

infra-red light generated at 1024nm and converted it to visible, green light at 532nm. The

laser pulse duration was 3− 5ns, and the maximum pulse energy was ∼ 124mJ . Optical

pumping for this laser was provided by two flash lamps, one for each of the dual Nd:YAG

rods, and firing was initiated by “Q-switch” triggering, described below in Section 2.4.4.

For safety, care was taken to enclose the laser beam and reduce surface reflectivity as
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Figure 7: Basic layout of optical equipment on bench, not to scale

much as possible.

2.4.2 Beam Manipulation

A large, sturdy optical bench with pre-drilled and threaded holes was acquired in order to

mount the mirrors and lenses needed. A mounting frame for the bench was constructed

from extruded Aluminium profiles, with adjustable feet that had rubber pads to dampen

vibrations. Metal mounts were used for the optical components, and these mounts were

firmly fixed to the bench. It was possible to make minute changes in the positioning

and orientation of the optical components using adjustment screws without loosening

them from the bench, which allowed for fine-tuning of the beam path. Four main optical

components were used (Figure 7). Mirrors 1 and 2 were used for changing the beam

direction. Lens 1 was a plano-convex lens used for flattening the beam into an elliptical

shape. Its focal length was chosen in order that the ellipse was as flat as possible in the

cube vicinity. Lens 2 was a plano-concave lens, used for spreading the ellipse out in the

direction of its major axis in order to form a wide, thin laser sheet. The laser bench,

mounts and optical components were acquired from Thor Labs, and were optimised for

use in a narrow wavelength range corresponding to that of the laser used.

2.4.3 Camera

A LaVision Imager Pro Plus camera was used to capture the raw images of the illuminated

particles. This camera had a 4 MP resolution, or 2048× 2048 pixels. In addition, it had

CCD capability, which made possible the capture of two images in very quick succession.
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Image data for each of the two snapshots was transferred from the camera buffer memory

to the computer in the time between image pair capture. An adjustable camera lens was

used to allow the camera to be focussed in the region of interest. Addition of a filter

allowed all light outside of a narrow band comprising 532nm to be removed. In tandem

with the intensity of the laser light relative to that ambient in the lab, this filtering allowed

optical noise to be greatly reduced. The effects of any remaining optical noise, along with

any extra electrical noise from the CCD circuit, were further reduced by subtracting the

mean intensity reading for each pixel across 100 frames, see Section 3. In addition to

removing the mean of the noise component, this pixel by pixel treatment allowed for

any systematic variations due to inconsistencies in the CCD chip. For experiments at all

three Reynolds numbers, the field of view that was captured was very similar. For the

downstream measurements, the field of view included most of the cube and extended to

∼ 2.7D downstream, from x ∼ −4mm to x ∼ 21.5mm. Despite slight differences in the

field of view captured, the equivalent size of a pixel was 0.05mm ± 0.002mm across all

downstream measurements.
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2.4.4 Laser-Camera Synchronisation and Control

In order to manage the synchronisation of the the laser firing and the image capture,

DaVis 8 specialised PIV software was used, in conjunction with an external Programmable

Triggering Unit (PTU). These two elements comprise the “timing management system”

referred to in the following. All external triggering signals were sent by the PTU unit, ac-

cording to parameters communicated to it via the DaVis software. Feedback signals from

the laser firing unit were returned to this PTU in order to provide it with the information

it needed during experimental runtime. Triggering and timing was very precisely control-

lable due to a two step process consisting of flash-lamp triggering followed by “Q-switch”

triggering, which fired the laser. The flash-lamp firing was triggered by an external “top-

hat” shaped pulse of ∼ 5V in height which was > 100µs in length. Illumination of the

cavity put the lasing medium into an excited state, making the laser prone to fire. The

emission of a ∼ 110µs, ∼ 5V top-hat pulse via a “Lamp Synch OUT” channel ∼ 120ns

later allowed the timing of the lamp firing to be known precisely by the external timing

management system. The process of stimulated emission began with the rising edge of

the external Q-switch triggering from the timing management system. The delay length

between the “Lamp Synch OUT” pulse and the Q-switch triggering could be adjusted

within the timing management system, and was typically 180 − 200µs. Approximately

120ns after receipt of this second external input signal, a “Q-switch Synch” signal was

output to the timing management system, having the same ∼ 110µs, ∼ 5V top-hat form.

The Q-switch Synch OUT trigger line was fed in to a T-connector after which it passed to

the timing management system; it was also connected into the DAQ device alongside the

pressure transducer. Both channels were recorded simultaneously with the DAQ at a rate

of 20kHz, high enough to reliably catch each ∼ 110µs pulse so that the time at which the

images were recorded relative to the pressure signal could be known. The maximum error

in the time of receipt of this signal by the timing management system was ∼ 5 × 10−5s,

which was much greater than the delay between the signal’s emission and the firing of the

laser pulse. As a result, the error on the time-stamping of the laser pulse was also taken

to be ∼ 5 × 10−5s. This level of precision was more than sufficient to time-stamp each

velocity snapshot relative to pressure fluctuations, whose frequency of the order of 10Hz.

A total of 1000 velocity snapshots were recorded for each experiment.
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3 Experimental Methodology

3.1 Dye Flow Visualisation

In order to make qualitative observations of the condition of the flow past the blockage,

blue ink was injected at two separate locations, using a syringe with a thin needle. Firstly,

ink was injected by syringe 10mm downstream of the channel inlet on the centreline. Dye

was injected by hand in bursts of varying duration from half a second to a few seconds.

There were pauses between bursts in order to ensure that all ink from one burst was

washed out of the channel before the next, and the same process was carried out at

different flow rates. The dye was immediately convected downstream in a straight line

past the cube, verifying that there was no span-wise yaw in the mean flow following the z

direction. The width of the region that was coloured by the ink increased gradually with

distance downstream, initially at an equal rate in the positive and negative z directions,

and it exceeded no more than a few cube widths by the time it passed the cube 125 cube

widths downstream of the inlet. This verified that there were no large vortices aligned in

the y direction that were being advected in through the inlet convergence section. The

second injection location was at the pressure tapping hole in the side cube face. White

card was placed below the channel in order to make the ink more visible, and the cube

region was floodlit. Short bursts were produced by hand gently, as it was considered

important to not disturb the boundary layer any more than necessary by the process of

the injection itself. Care was taken not to place too much pressure on the syringe so

as not to force the ink through too quickly. A digital video camera with a frame rate

of 128 frames per second was used to record the ink being washed away from the cube

side, into the recirculation region, and finally being dragged downstream in the form of

Von-Karmann type vortices in a cone-shape of increasing width (Figures 8 and 9). Using

a simple stop-watch and counting the number of vortices that were apparently produced,

one could calculate the shedding period to be roughly 10Hz, which corresponded to the

Strouhal number of 0.2 expected for shedding at the same flow parameters with a long

cylinder [54]. These preliminary experiments were useful in order to ensure the quality

of the flow conditioning and also to show that periodic shedding did occur in a pattern

qualitatively similar to that of flow past long cylinders.
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Figure 8: Video recording at 128 frames/second, frames 1-10
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Figure 9: Video recording at 128 frames/second, frames 11-20
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3.2 Flow Rate Measurement and Control

Measurements were carried out based on three separate target Reynolds numbers. Based

on the hydraulic diameter of the channel, these ReDh numbers were 10800, 20000 and

30000. This corresponded to a ReD based on the channel height H of 5600, 10400 and

15600 respectively. The blockage was cubic and of dimension D, spanning the plate

separation fully, so D = H. The primary focus will be on the flow in the vicinity of the

cube far from the side walls where the physics is dictated by the geometry of characteristic

dimension D. For this reason, ReD will be used in what follows to characterise the flow

as opposed to ReDh. In order to test the repeatability of the flow rate as governed purely

by valve position, marks were drawn on the valve handle and flow rates were measured

and re-measured while changing back and forth between the marked positions. Flow

rates were measured by timing the filling of a bucket with a stopwatch. Several such

measurements were taken with each valve position change to reduce statistical error. The

process of measuring the flow rate took a few minutes and resulted in unavoidable small

amounts of spillage, so for some preliminary tests the target Reynolds numbers were not

matched accurately; where this is the case, it is clearly noted. The weight of the bucket

was measured with a luggage scale, accurate to ±1%. The value of the relative standard

deviation over these measurements was typically ∼ 2% at ReD = 5600, (Figure 10).

Where estimated errors in flow rate are given, they are based on the standard deviation

in the measurements taken.

The relative standard deviation was typically ∼ 4% at both ReD = 10400 and ReD =

15600. This was likely to be due to the more rapid filling of the bucket at the higher

flow rate. The temperature in the lab varied by several ◦C according to the time of

year, corresponding to a change in water viscosity of over 10%. It would have been

possible to iteratively adjust the valve position and re-measure the flow rate whenever

the temperature had changed, to reach a target flow rate corresponding to each fixed ReD

number at the current temperature. However, this was undesirable as an adjusted flow rate

would correspond to a different Strouhal number despite the match in Reynolds number.

In addition to the differences in ambient temperature, during prolonged experimentation

the temperature in the circuit was found to rise by several ◦C due to the heating provided

by the pump action. For these reasons, the temperature was maintained as steady as
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Figure 10: Flow rate measurement data, ReD = 5600

possible during experiments. A thermometer was immersed in the main reservoir to

measure water temperature to within 0.5 ◦C, corresponding to an accuracy of ∼1.5% in

the value for viscosity taken from lookup tables, provided by the International Association

for the Properties of Water and Steam [1]. Ice was used to cool the water whenever the

temperature was seen to have risen in order to maintain the temperature near 19.5 ◦C.

In order to prevent dilution of the circuit water, and hence a change in concentration of

seeding particles, the ice was placed inside a plastic bag that was partially submerged

in the main reservoir. This prevented it from entering the water in circulation, but still

allowed effective cooling. All data presented were taken with the temperature reading

between 19 ◦C and 20 ◦C, corresponding to a maximum change in water viscosity of

∼ 3%. Relative density changes were far smaller than this, at ∼ 0.1%.

3.3 Pressure Transducer Measurements

In order to quantify the background noise present, a total of four 10s test runs were carried

out, two with the power to the transducer switched off, and two with the power switched
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on but without any water flow. The noise was converted from voltage to an equivalent

pressure reading according to the calibration data, from which the typical RMS of the

noise was found to be equivalent to ∼ 4Pa. No discernible difference was seen between

the signals from the transducer while powered up and powered down in the absence of the

water flow. Having a maximum response frequency of 2kHz, the gauge was more than

sufficient to capture shedding frequencies of the order of 10Hz. In order to confirm the

reliability of the factory calibration, a test was carried out using a simple water column,

in order to ensure that there were no problems caused during transit. The estimated

pressure resolution attainable by this test was ∼ 20Pa, near that of the quoted accuracy

for the transducer, and the factory calibration curve matched within this margin of error

over the range 100− 1000Pa.

3.3.1 Preliminary Tests - Pressure

Readings were taken at three ReD numbers, 5600, 10900 and 15500, close to the target

ReD numbers of 5600, 10400 and 15600. These experiments were carried out using Cube

1, which was fabricated from Aluminium. The pressure signals appeared quite noisy and

complex to the eye, such that the the periodic behaviour was obscured, see Figure 11.

In order to extract the periodic shedding behaviour, a Fast Fourier Transform (FFT)

algorithm was first applied to the raw signal to calculate the DFT. MATLAB was chosen

for this purpose due to its versatility. In this first stage of the analysis, for some of the

experiments the spectrum was somewhat cluttered at low frequencies, where a single clear

peak was not seen but rather a cluster of peaks of the order of 1Hz, see Figures 13 and 14.

This inconsistency was probably due to low-frequency changes in pressure that were not

captured in sufficient number within the short experimental time. In all cases there was a

much clearer peak at higher frequency, albeit at a slightly lower power. The appearance

of this clear peak scaled roughly linearly with Reynolds number as evident in Figures 12,

13 and 14. This is exactly what would be expected from periodic shedding around a long

cylinder [54].

The Strouhal number dependency at these three ReD numbers is summarised in Table

1.
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Figure 11: Pressure signal as captured by the pressure transducer at ReD = 5600

ReD 5600 10900 15500
Ubulk(m/s) 0.734 ±2% 1.44 ±3% 2.04 ±5%
ReDnc 5800 11300 16100
fFT 12.5 ±1 25 ±1 35 ±2
Stcp 0.136 ±0.01 0.139 ±0.005 0.138 ±0.008
Stnccp 0.131 ±0.01 0.133 ±0.005 0.132 ±0.008

StOkajima 0.129 0.134 0.134

Table 1: Periodic shedding behaviour at three different bulk velocities

46



Frequency (Hz)
5 10 15 20 25 30

P
ow

er

(a) Run 1

Frequency (Hz)
5 10 15 20 25 30

P
ow

er

(b) Run 2

Frequency (Hz)
5 10 15 20 25 30

P
ow

er

(c) Run 3

Figure 12: Discrete Fourier Transform of the fluctuating pressure signal at ReD = 5600,
Ub = 0.734m/s, ReDnc = 5800, three separate runs each of 10s capture time
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Figure 13: Discrete Fourier Transform of the fluctuating pressure signal at ReD = 10900,
Ub = 1.44m/s, ReDnc = 11400, three separate runs each of 10s capture time
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Figure 14: Discrete Fourier Transform of the fluctuating pressure signal at ReD = 15500,
Ub = 2.04m/s, ReDnc = 16100, three separate runs each of 10s capture time
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Comparisons of the Strouhal number for each Reynolds number were made using

data from a study of flow around a long square cylinder reported by [54], also placed

in Table 1. A piecewise-cubic spline method was used to interpolate between the data

to draw better equivalence between the two sets. The Strouhal numbers calculated with

the channel bulk velocity are denoted Stcp and the numbers calculated with the bulk

flow through the slightly constricted section past the cube are denoted Stnccp. The slight

modification in velocity required to account for flow constriction within the channel as the

flow passes the cube made only a small difference to the Strouhal number. However, the

multiplication by 25/24 made the result approach that in the quoted study. In conclusion,

all Strouhal numbers calculated from the current data are similar to those expected in [54],

and match within the margins of error. In [54], a very slight increase in Strouhal number

with increasing ReD number was observed over the range of Reynolds number in question,

but the size of the error margins in the data makes it impossible to draw conclusions on

whether or not this was the case with the preliminary experiments described above.

3.3.2 Constant Period Method

Taking the frequency obtained from the DFT as a starting point, it is possible to per-

form a phase-averaging on the data in order to estimate the amplitude of the periodic

component of the shedding. Two different methods were applied in order to do this. The

simplest method of phase-averaging began with separating the entire continuous signal

into a number Np of periods of equal length Tp, which were timestamped, and which corre-

sponded to the period of the primary oscillations. Following this, each period was further

separated into a number Nφ of sub-divisions, or “phase-bins” of equal length, which were

also timestamped. All data points were then sorted into the appropriate phase-bin among

the Np×Nφ, according to their capture time relative to these threshold times. A mean, or

ensemble average, was taken across the Np periods for each phase-bin. Denoting the phase

by φ, the initial time by t0, and the period number by np, the phase-averaged pressure at

a given phase φ may be expressed as:

p(t0 + φ+ 2npπ) = pφ =
1

Np

Np∑
np=1

p(t0 + φ+ 2npπ) (1)
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where the bar signifies an arithmetic mean, in this case, the phase-average. In some of

what follows, this will be referred to as the “phase-averaged” pressure. As it is presented

in Equation 1, φ could represent an exact phase, but in the analysis described it repre-

sents one of the finite number of discrete bins of finite width. In the limiting case, each

individual phase-bin may in practice only include one sample per cycle, and represent as

precise a phase as is possible. At a limiting Np, the phase-average is therefore calculated

by taking one sample per bin per period. This threshold is identified here by:

Nthresh = Tpfs (2)

where fs is the sampling frequency. fs was equal to 2kHz in the experiments on which

this “Constant Period” analysis was done such that in the cases of the three experiments,

Nthresh was approximately 169, 80 and 57 at ReD =5600, 10900 and 15500. Some results

are presented with the arithmetic mean across the Nφ phase-averages subtracted. This

mean may be written as

1/Nφ

Nφ∑
nφ=1

pφ (3)

where each of the Nφ phase-averages is identified by an nφ number. This average of the

separate phase-averages is not equivalent to the time-averaged mean, and is used only for

the purpose of making the amplitude of the phase-averaged pressure more readily identi-

fiable in the data presented.

A plot of the ensemble averages may be made, using the phases of the bins as the inde-

pendent variable. The size of the spread in the phase-averages may be represented by the

peak-trough amplitude of the phase-average plot, denoted by Apφ. It is worth noting that

for a number of phase bins lower than Nthresh, (Equation 2), the amplitude calculated is

expected to be slightly lower than for the case Nphi = Nthresh due to averaging across the

bin width, a phenomenon known as “phase-blurring”. For each analysis, an increasing

number of phase-bins was used until this phase-blurring became unnoticeable. However,

in real unsteady flows the Constant Period method may have severe limitations. Such a

method is highly sensitive to frequency or phase change, such that a small error in the

prediction of the primary period or a small discontinuity in the periodic phenomenon will

yield results that appear anomalous in so much as they fail to adequately represent the

51



Phase φ expressed in degrees
0 50 100 150 200 250 300 350 400

p(
t 0
+
φ
+
2n

π
)
−
1/
N

φ

N
φ

∑ n
φ
=
1
p φ

-30

-20

-10

0

10

20

30

(a) Phase-averaging at 34.6Hz
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(b) Phase-averaging at 35.1Hz
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(c) Phase-averaging at 35.6Hz

Figure 15: Ensemble-averages of the captured pressure signal using periods defined by
three different guess frequencies, ReD = 15500

size of the fluctuations. This phenomenon may be used to an advantage in some respect.

A simple trial and error process will allow the establishment of a more precise average

period by searching for the period that yields the highest amplitude, under the condition

that the plot looks “clean”, for example Figure 15, where a slight change in frequency

either side of 35.1Hz results in a less clear phase-averaged pressure plot. The starting

point for the period determined by this trial and error process was taken to be the inverse

of the peak frequency returned by a DFT of the data. The estimated frequency that was

eventually found following this “Constant Period” method will be denoted by fcp from

here onwards.

Another advantage of this form of analysis is that it allows for an estimate of the am-

plitude of the organised fluctuations simply by inspecting a plot of the ensemble averages

in much the same way as one might read from a graph of any roughly sinusoidal function,

see for example Figure 16, such as those which are typically produced by URANS simu-
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Figure 16: Phase-averaging of the captured pressure signal at three separate ReD
numbers
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ReD 5600 10900 15500
Ubulk(m/s) 0.734 ±2% 1.44 ±3% 2.04 ±5%
fcp(Hz) 11.8 ±0.2 24.9 ±0.1 35.1 ±0.5
Stcp 0.129 ±2% 0.14 ±3% 0.138 ±5%
Stnccp 0.123 ±2% 0.138 ±3% 0.138 ±5%

Amplitude (Pa) 36 ±3 56 ±4 90 ±5

Table 2: Analysis of the Periodic shedding behaviour at three different bulk velocities
using the constant period method

lations. Results shown were selected to show the cleanest phase-average plots extractable

from the data sets using this method. Some otherwise similar test runs produced data

from which such clean sinusoidal patterns of high amplitude could not be produced, and

results for these are not included here. In the light of longer test runs, as will be de-

scribed below, this inconsistency appears to be due to low-frequency changes in pressure

that were not captured within the short experimental time. The results of this analysis

are summarised in Table 2.

The results for Strouhal number presented in Table 2 appear to show a trend consis-

tent with that in the preliminary tests and with the data - there is a slight increase in

Strouhal number between the lowest Reynolds number and the higher two, where it levels

off. However, the calculated value of Strouhal number is lower at the lowest Reynolds

number than that in [54] and that taken straight from the peak in the Fourier Transform

in Table 1. At the highest Reynolds number, the Strouhal number is higher than that

shown in [54] and in Table 1. As the study [54] was conducted with a long cylinder, it

is not necessarily to be expected that the results would match perfectly. What is more,

the degree of arbitrariness that is inherent in the Constant Period method analysis may

have been responsible for a small error that would be impossible to estimate. The flow

exiting the channel appeared to maintain a steady rate, but it is important to reiterate

that measurement of the instantaneous channel bulk flow rate was not possible. In fact, a

mean flow rate was used, the measurement of which took a few minutes. Due to the error

in the measurement of volume in each bucket several measurements were required, each

of which took roughly 30 seconds. It was therefore not possible to quantify accurately

the steadiness of the flow rate over smaller periods of time. Apparent limitations in the

“Constant Period” phase-averaging technique used suggested that the flow rate may be

changing slightly, or that small phase changes may have occurred in the shedding. An
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unsteady free surface in the overhead reservoir is one possible cause of small pressure fluc-

tuations. Observation of the water level during operation suggests that it was constant

to within 1mm in general, equivalent to ∼ 10Pa, but small splashes and unevenness in

the free surface due to impingement of the flow from the replenishment pump against the

inner reservoir wall may be responsible for slightly higher pressure fluctuations of a few

10s of Pa. For reference, at ReD = 5600, the pressure drop in the unblocked channel

may be estimated at ∼ 420Pa, using the correlation-based equation given in [14]. This

calculation suggests that a change of 10Pa to a new steady channel pressure-drop would

correspond to a change in bulk flow rate of only ∼ 1.3%, and at higher flow rates the

relative change in bulk flow rate would be lower still. Fluctuating pressure changes of

this size would not be sufficient to accelerate the flow very quickly, a simple force bal-

ance suggests they would result in an acceleration of the fluid in the channel of less than

0.01m/s2. As a result, these pressure fluctuations are not likely to have caused a signif-

icant shift in bulk velocity, or consequently in shedding frequency. If other uncontrolled

pressure fluctuations did occur that were larger than this, for example due to slug flow

in the main flow pipe, the flow rate may have been modified. Overall, the magnitudes of

the phase-averaged fluctuations were small compared to those of the URANS simulations;

this will be further discussed in Section 4. The sinusoidal type forms appeared quite

messy in general; despite many shedding periods of data being recorded, results were not

consistent. It is considered likely that the lower frequency pressure fluctuations, manifest

in the spectra shown in Figures 13 and 14, were responsible for changes in the flow rate.

As a result, they may have affected the shedding period. In order to fairly represent these

lower frequency fluctuations, much longer experiment times would be needed to capture

an adequate number of cycles.

3.3.3 Variable Period Method

The second method used for estimation of the primary shedding frequency was designed

to allow for the possibility of a slight variation of flow rate and hence shedding period

from cycle to cycle, and is similar to that used by [45]. The process of data treatment

requires several steps:

• Read raw data
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• Identify dominant frequencies present using FFT

• Identify range of frequencies associated with periodic shedding

• Create filter isolating these frequency components only

• Reconstruct filtered signal from selected range of components

• Find peaks in filtered signal

• Phase-average raw data according to peaks

This method was able to adjust for the effects of any small changes in bulk flow rate

as a range of frequencies could be used to represent the shedding rather than a single

frequency. As before, the calculation of the Discrete Fourier Transform using a Fast

Fourier Transform (FFT) algorithm was carried out using MATLAB. Data was collected

using Cube 2, captured simultaneously with the PIV data. As the flow rates were adjusted

more carefully, the Reynolds numbers were ReD = 5600,10400 and 15600 with error

margins of ±2%, ±4% and ±4% respectively. Simple application of the FFT algorithm to

the raw signal resulted in a spectrum with many peaks, and the frequency resolution of

5× 10−5Hz was far higher than needed due to the large sample size. This was probably

due to slower fluctuations that were not captured over the shorter experimentation times

of the preliminary tests.

3.3.4 Windowing Function

In order to maximise statistical convergence with the available data, the “Method of

Overlapping Segments” was applied. This consists of dividing the discretised signal into

overlapping sections, for which the individual power spectra are calculated, before per-

forming a mean average of the individual segments to produce one single spectrum. Two

different methods were used to calculate the FFT, characterised by a “Boxcar” and a

“Hanning” window function in the time domain. The Boxcar type function corresponds

to the simple application of an FFT to an entire recorded signal, whereas the Hann method

requires the application of a smoothing function to the data before the FFT. The Hann

function that was used is alternatively known as the “Raised-Cosine” function in some

literature, and is that described in [55]. It is known that the simpler Boxcar method
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results in “frequency leakage”. Within the power spectrum, this manifests itself as power

apparent at frequencies that do not exist in the original input waveform, and as such

is an undesirable non-physical phenomena associated purely with the analysis. In order

to minimise frequency leakage, each of the individual segments had a Hann windowing

function applied to it before calculation of the FFT. In order to calculate the number of

samples to place within each segment, it was first necessary to decide on a desired fre-

quency resolution ∆fsreq. This was initially chosen to be around 0.3Hz. Estimation of the

required number of samples Nsreq for each segment followed from this desired frequency

resolution, and the closest number of of the type Ns = 2n was selected to give Nsreq before

the signal was split up and the window function applied. The sample time required for a

resolution of ∆fsreq with a Hann type window function was calculated from:

Tsreq =
4

∆fsreq
(4)

As the FFT algorithms work best with sample numbers of the type Ns = 2n, 262,144

samples were used as a starting point, corresponding to a window length of Tsreq = 13.1s

and an estimated frequency bandwidth of ∆fsreq = 0.305Hz. This same analysis was

applied with higher and lower frequency bandwidths, keeping Nsreq of the form Ns = 2n,

with estimated ∆fsreq ranging from 0.15 to 1.2 Hz. Graphs of the power spectrum were

plotted side by side to observe any changes in Figures 17, 18 and 19. At this stage of

the analysis, relative peak heights are sufficient to provide the necessary information;

the frequency at which the peak heights occur, the breadth of the peak clusters and their

relative heights are important to the filter design process. For this reason, the power axis is

presented as a linear scale with no values. Results are presented from the pressure signals

that were recorded simultaneously along with the PIV data. The bulk flow velocities

were measured to be 0.716m/s ± 2%, 1.32m/s ± 2% and 2.07m/s ± 4%, matching the

three target ReD numbers of 5600, 10400 and 15600 respectively within the quoted error

margins.

Results showed that mitigating frequency leakage did not appear to significantly

change the breadth of the peaks. In each case, the lower frequency peak was higher

than the higher frequency one. With increasing Reynolds number, this effect was promi-

nent such that at the highest Reynolds number the low frequency peak was ∼ 3 times the
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Figure 17: Spectra produced by the method of overlapping segments, with increasing
frequency bandwidth estimates, ReD = 5600
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Figure 18: Spectra produced by the method of overlapping segments, with increasing
frequency bandwidth estimates, ReD = 10400
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Figure 19: Spectra produced by the method of overlapping segments, with increasing
frequency bandwidth estimates, ReD = 15600
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ReD 5600 10400 15600
Ubulk 0.716 ±2% 1.32 ±4% 2.07 ±4%
ReDnc 5800 10800 16300
fFT 9.5 ±5% 23 ±2% 35 ±1%
StD 0.106 ±5% 0.139 ±4% 0.135 ±4%
Stnc 0.102 ±5% 0.134 ±4% 0.130 ±4%

StOkajima 0.129 0.134 0.134

Table 3: Periodic shedding behaviour at three different bulk velocities, picking only the
second highest peak after Hann windowing analysis

magnitude of that at the higher frequency, whereas at ReD = 5600 it was only ∼ 3 times

larger. For all three ReD, the low frequency peak appeared around the same frequency of

∼ 2Hz, whereas the higher frequency peak scaled roughly linearly with Reynolds number,

and hence Ub. For shedding at the higher frequency peak, the Strouhal number behaviours

as a function of Reynolds number are summed up in Table 3. The origin of these lower

frequency peaks is unknown.

3.3.5 Filter Design

Bandpass filters were designed to only allow through frequencies around the peak associ-

ated with the periodic shedding near the Strouhal number frequency, (the higher of the

two peaks), while filtering out the large lower frequency fluctuations. A “Butterworth”

type bandpass filter of order 2 was used first of all, (see Figure 20 for an illustration of the

frequency response of the filter). This filter was applied to the raw signal to reconstruct

a filtered signal only from the retained components. Such a filter is associated with a

phase shift in the reconstructed signal; it was visually evident that some of the peaks in

the filtered signal appeared to be shifted relative to the peaks in the raw signal. In an

attempt to improve upon this, a “zero-phase” filtering technique was used based on the

original Butterworth filter. In order to remove phase-shift, the signal is first filtered as

before, then the filtered sequence is reversed and filtered again. The effect of this was

that the positions of the peaks in the signal filtered using the zero-phase technique appear

to match the original signal better than those of the original Butterworth filter, (Figures

21a 20).
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Figure 20: FFT power spectrum and Filter frequency response overlaid to illustrate
properties of the bandpass filters, ReD = 5600
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3.3.6 Period Identification

A peak finding algorithm was employed to find the peaks of each local period in the

filtered signal, which were time-stamped, see Figure 21b. These time-stamps are referred

to as “peak times”. The periods between the peak times were calculated and the standard

deviations of these period lengths were also calculated in order to provide an estimate

for the error on this mean period. Using this method, the mean period lengths were

0.0910s ± 0.0213, 0.045s ± 0.0077 and 0.0282s ± 0.0028 at ReD = 5600, ReD = 10400

and ReD = 15600 respectively. In order to provide a second estimate, the peaks of

the inverted signal were time-stamped using the same algorithm, which are referred to

as “trough times” from here onwards. Calculating the local time periods based on the

trough times resulted in the same mean period length and standard deviations for all

three datasets. A third method consisted of taking an average of each period length

from the peak times and its corresponding nearest period length from the trough times,

with the standard deviation calculated from the averaged period length set. There was

still no change in the first three significant figures for the mean period using this third

method, although the standard deviation was reduced slightly. The mean periods with

these smaller standard deviations are summarised in Table 4, where the error is quoted as

being ± half the standard deviation. Strouhal numbers are also presented based on these

mean period lengths. Histograms showing the spread in period length are presented in

Figure 22, which give a description of the final period lengths identified after the filtering

process. The histograms are broader at the lower Reynolds numbers, suggesting a larger

spread in period lengths, although the spectral peak was less easily identifiable at the

higher flow rates. This is a consequence of the effect of the filtering, which was designed

after an extensive trial and error process, and is not directly representative of the original

pressure signal.

3.4 Particle Image Velocimetry

Particle Image Velocimetry, or PIV, is a well established tool used for capturing instan-

taneous velocity fields over a measurement region that may be 2D or 3D, unlike Laser

Doppler Anemometry (LDA) which focusses on a very small point-like region. The partic-

ular variant of this technique that was implemented was “2D-2C” PIV, or two dimensional,
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ReD 5600 10400 15600
Ubulk(m/s) 0.722 ±1% 1.34 ±4% 2.01 ±4%
Tvp(s) 0.0910 ±0.0096 0.0463 ±0.00355 0.0280 ±0.0013
fvp(Hz) 11.0 ±1.1 21.6 ±1.6 35.7 ±1.7
Stvp 0.122 ±0.012 0.123 ±0.0096 0.143 ±0.0068
Stncvp 0.117 ±0.012 0.118 ±0.0096 0.137 ±0.0068

Table 4: Analysis of the Periodic shedding behaviour at three different bulk velocities
using the variable period method
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Figure 22: Histograms showing the spread in mean period length calculated using the
Variable Period method at three ReD numbers
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two component PIV. Firstly, a two-dimensional field was illuminated by a flattened and

diverged laser beam formed into a light sheet, which shone into the measurement field

where it reflected from seeding particles. Secondly, a single CCD chip camera placed per-

pendicular to the light sheet enabled the capture of two frames in very quick succession.

Next, an automated process of local velocity determination was performed by comparing

the values of an auto-correlation function between the pairs of images. By determining

the value of the auto-correlation function between small “interrogation windows” in the

first image and many different interrogation windows in the second image, which are offset

in different directions by different distances, the best match can be found. This corre-

sponds to the flow direction, and the velocity magnitude depends on the shift. A good

reference regarding this technique and its practical implementation may be found in [62],

from which many of the following points are drawn. One of the first practical considera-

tions to take into account is the alignment of the laser light plane. The positioning of the

lenses and their focal lengths was chosen in such a way that the light sheet was as thin

as possible when passing the cube. The shape, orientation and positioning of the light

was determined just before entry to the perspex side pieces by observing through safety

goggles its reflection from white card covered in a luminous marker fluid. The emergent

light sheet from the other side could also be visualised in this way, allowing estimates

of the error in thickness and positioning. It was estimated from this procedure that the

position of the illuminated region in the cube vicinity was no more than 0.5mm away

from the central plane in the z direction across the whole measurement area. In order to

obtain measurements close to the cube, the light sheet encompassed the blockage itself.

As a result, there were reflections from the cube, so it was not possible to obtain velocity

readings in some areas close to it, see for example Figure 23. However, the matte black

plastic finish to the cube greatly reduced the intensity of these reflections such that the

area where velocity readings were not possible was quite small. Another important practi-

cal point to consider was the ability of the seeding particles to follow the flow in a natural

manner, effectively acting like fluid particles. They should react to velocity gradients in

the same manner in all directions. Their tendency to be convected along with the flow

must far outweigh their tendency to sink or float. For spherical particles, a ratio between

the force magnitudes from Stokes’ drag law and the particle’s buoyancy may be written
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Figure 23: Single PIV image , encompassing cube and extending 3D downstream

as

|Fdrag|
|Fbuoy|

=
3

2

µf |Up −Uf |
(ρp − ρf ) r2 |g|

(5)

where the subscripts p and f denote the particle and the fluid, and a ratio� 1 is desirable.

Following [62], the velocity lag of a spherical particle in a continuously accelerating fluid

may be given by

Up −Uf =
2

9
r2
p

(ρp − ρf )
µ

a (6)

In the case of non-continuously accelerating particles, a characteristic time taken for

particles to attain velocity equilibrium with the surrounding fluid is given by

τepf =
2

9
r2
p

ρp
µ

(7)

Taking into consideration these factors, the particles should be chosen such that ρf ∼ ρp

and such that r is small. However, it is essential that enough light be scattered from the

particles in order for their location to be captured by the camera, and this is a function of

r. As the beam-particle-camera triplet forms an approximate right-angle, backscattering
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is not as important as scattering at 90 deg. The direction of light scattering by a spherical

glass particle in water at λ = 532nm is summarised in Mie diffraction patterns shown in

[62], suggesting that particle sizes larger than 10µm might be preferable at this viewing

angle. In addition to this, scattering from the particles occurs in all directions, meaning

that particles out of the laser plane may be sufficiently illuminated to register on the

camera for a high density of seeding particles. With all these considerations in mind,

the chosen seeding particles were hollow glass spheres of mean diameter 10µm, with a

size distribution of 2− 20µm. Initially, a single heaped teaspoon of seeding particles was

added to the water in the main reservoir and allowed to mix around the circuit, driven by

the pump. Individual PIV images were captured periodically in order to gauge by eye the

suitability of the seeding density. A zoom function was used to view close-ups of small

areas in the vicinity of the cube in order to ascertain that there was a large enough number

of seeding particles to populate the images. The cube itself was visible in the images, so

the location of it’s corners was used to define the origin of the coordinate system, and it’s

side length was used to define the scale. In fact, it was the image of the upper cube face

that was visible to the camera, rather than it’s cross-section in the central plane. However,

the error in side length introduced by this was calculated to be no more than D/125. The

length covered by a pixel side was equivalent to ∼ 0.01mm. Due to lack of sharpness of

the cube image, which was very slightly out of focus, positioning of the cube could not

be determined more accurately than to within ∼ 8 pixels. Therefore, ∼ 8µm is the final

estimate of the maximum error in vector placement for each map produced. This was

considered to be more than adequate for the comparisons made, and much smaller than

0.5mm, the estimated laser plane thickness. Optimisation of the time separation of the

frames was carried out automatically by the PIV software (Davis 8 by LaVision) based

on the average movement of the entire image by a fixed number of pixels. Processing

of the raw PIV images was carried out using this same software, and is similar to that

described in [72]. The first stage consisted of shift correction and rotation, removing the

effects of vibrations in the rig, and rotating them so that the cube sides were parallel to

the image window edges. Next, intensities of the images were normalised to ensure that

any differences in intensity of the light produced by the two separate laser cavities were

accounted for. A multi-level iterative method similar to that described in [25] was then

applied, beginning with an interrogation window of 512× 512 pixels, and ending with an
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ReD 5600 10400 15600
Ubulk (m/s) 0.722 ±1% 1.34 ±4% 2.01 ±4%

Minimum detectable pixel shift 0.04 0.04 0.04
Uncertainty in velocity (m/s) 0.006 0.011 0.016

Table 5: Estimated uncertainty in PIV measurements using integrated tool within
software

8× 8 window. A 50% overlap was used so that the auto-correlation process was applied

also on a staggered grid, offset by 4 pixels. Post-processing consisted of multiple passes

of a routine which improved the quality of the generated results by applying an adaptive

filtering process; each of these passes included several stages. Firstly, vector calculations

that are deemed to be unreliable due to having a low value of cross-correlation peak ratio

are removed. Secondly, where calculated vector values are considerably different to the

RMS values of those in the surrounding area, the vectors are assumed to be spurious and

substituted for interpolated ones. Finally, a smoothing filter is applied. The multiple

passes of the routine are conducted with increasingly stringent requirements on cross-

correlation peak ratios and matches with the RMS values of the vectors in the surrounding

area, which shrinks with the window size, following the basic methodology in [25]. The

complexity of the routine makes it extremely difficult to keep track of error estimates, but

an automated tool for error estimation is included in the Davis 8 package. The estimated

uncertainties in the detectable shift between images are well below the size of a pixel. As

a result, the estimated velocity uncertainties are only ∼ 0.8% of the bulk velocities in

each case (Table 5).
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ReD 5600 10400 15600
Ub(m/s) 0.722 ±1% 1.34 ±4% 2.01 ±4%
Aptφ(Pa) 84 ±4 108 ±4 156 ±4

Aptφ
ρU2

b
0.161 0.0603 0.0387

Table 6: Peak-trough amplitude of the phase-averaged pressure signal

4 Experimental Results

4.1 Phase-averaged Pressure

Once the period timestamps had been identified following the Variable Period Method

(Section 3), they were used to define the separation of the pressure signal into phase-bins.

Results are presented for the three different Reynolds numbers (Figures 24a, 24b and

24c).

There is an increase in magnitude of the phase-averaged pressure fluctuations with in-

creasing Reynolds number (Table 6). In addition to this, a non-dimensionalised pressure

amplitude is also presented using ρU2
b . The amplitude of the this non-dimensionalised

phase-averaged pressure decreases with increasing Reynolds number. These results char-

acterise the average size of the pressure fluctuations that took place at frequencies near

the dominant shedding frequency. It is worth recalling that the analysis process filtered

out the large amplitude fluctuations at lower frequencies in order to define the period

cut-offs, (Section 3). The phase-averaging took place on the original signal so these large

fluctuations were not completely discarded, however, they may have simply been averaged

out. As a result, the phase-averaged amplitudes are smaller than the largest fluctuations

as read directly from the original signal.

4.2 Mean Velocity

The velocity at a point described by the vector x at the moment of a snapshot ns is

denoted by u (x, ns). As the measurement plane was 2D with a constant y value in the

coordinate system used, the components of the vector x are denoted x and z. Velocity

components were measured only in this plane and are denoted by u and w. The mean

velocity field U (x), where the value at each point described by x is the arithmetic mean
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Figure 24: Phase-averages in Pa of pressure signal using variable period method, 24
phase bins
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at that location across a number Ns of snapshots is denoted by:

UNs (x) =
1

Ns

Ns∑
ns=1

u (x, ns) (8)

where Ns is very large. Assuming that the mean flow is stationary over the experimenta-

tion time and that Ns is sufficiently high, U remains effectively constant with any further

increase in number of snapshots. The required number Ns of snapshots is to be deter-

mined. In order to characterise the captured field of the velocity across all x between the

limits x1, x2, z1 and z2 at any given snapshot ns one may define:

Iuns =
1

(x2 − x1) (z2 − z1)

∫ x2

x1

∫ z2

z1

√
u (x, ns) • u (x, ns) dx dz (9)

where the square root of the dot product is used to characterise the velocity at x using its

magnitude. The velocity field was measured at a high number Nx×Nz of discrete points

(xnx , znz), so a good approximation to this integral may be written as

Iuns =
1

Nx ×Nz

Nx∑
nx=1

Nz∑
nx=1

√
u (xnx , znz , ns) • u (xnx , znz , ns) (10)

In order to characterise the mean field of the velocity magnitude across all measured x

and z points one may define

IUNs
=

1

Nx ×Nz

Nx∑
nx=1

Nz∑
nx=1

√
U (xnx , znz) •U (xnx , znz) (11)

where the square root of the dot product is used to characterise the mean velocity at

(xnx , znz) using its magnitude. The frequency of firing of the laser pulse fsnap = 4Hz was

much lower than the shedding frequency fshed = O(10)Hz, so two consecutive velocity

fields were assumed to uncorrelated. However, it was considered that there may be an

effect associated with the fact that the velocity measurements took place at a fixed fre-

quency and that the shedding also took place at a roughly constant frequency. Although

separated well in time a string of consecutive measurements may have a tendency to rep-

resent only certain phases of the shedding cycle for a low number Ns. In order to remove

the effect of such a phenomenon and to therefore realistically characterise the decrease
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(a) Unmodified snapshot order

Number of snapshots
0 100 200 300 400 500 600 700 800 900 1000

M
a
g
n
it
u
d
e
o
f
R
el
a
ti
v
e
E
rr
o
r

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(b) Random snapshot order

Figure 25: Convergence of IUNs
- snapshots added in an unmodified order compared
with a random order

in statistical error associated purely with an increase in the number of snapshots, the

snapshots were selected in a random order. With each additional snapshot, IUNs
was

calculated over the new Ns and the values recorded for Ns = 1 to Ns = 1000. For com-

parison, results were also produced using the same method but with snapshots selected

sequentially in the order they were captured (Figure 25). The magnitude of the relative

error in IUNs
as a function of the number of snapshots is presented in Figure 26. The

results are similar across the three Reynolds numbers, that is to say that the value of IUNs

drops sharply within 100 snapshots. In all three cases the relative error in IUNs
dropped

to ∼ 2% within 50 snapshots. Within 100 snaphots, it had dropped to ∼ 1%. The slope

had levelled of well before Ns = 1000, indicating that the number of captured snapshots

was more than sufficient. Four different mean plots were calculated using an increasing

number of randomly-selected snapshots (Figure 27). These show that a roughly symmet-

ric mean field forms between Ns = 12 and Ns = 100. By using all 1000 snapshots in each

case, a clearly symmetric mean field was generated for the experiments at each Reynolds

number. These converged mean velocity fields are shown in Figure 28.

Defining the length of the recirculation region, Lr, as the distance from the rear of

the cube to the point on the centreline where the mean velocity magnitude is equal to

0, we see a decrease with increasing Reynolds number (Table 7). The difference in Lr

between the low and mid Reynolds numbers is 1.7mm, and only 0.9mm between the mid

and upper Reynolds numbers, suggesting a convergence towards a high Reynolds number

asymptote, although with only three different Reynolds number datasets this is not well
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(a) ReD = 5600
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(b) ReD = 10400
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(c) ReD = 15600

Figure 26: Magnitude of the relative error in the IUNs
integral for increasing Ns,

characterising the convergence with number of snapshots of the mean velocity
magnitude across the entire measurement domain.
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(a) Ns = 12 (b) Ns = 25

(c) Ns = 50 (d) Ns = 100

Figure 27: Mean velocity field calculated from an increasing number Ns of snapshots,
ReD = 5600
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(a) ReD = 5600 (b) ReD = 10400

(c) ReD = 15600

Figure 28: Mean velocity in cube wake within the plane y = 0, PIV measurements
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ReD 5600 10400 15600
Lr 20.2mm± 0.1mm 18.7mm± 0.1mm 17.8mm± 0.1mm

Table 7: Recirculation length, from the experimental mean velocity

characterised. The size of this recirculation region may also be visualised by plotting an

iso-velocity contour at U = 0m/s, (Figure 29). It may be seen that the recirculation

regions decrease slightly in length following x with a small increase in width following z

for a given x. The increased velocity gradients co-linear with z must result in increased

static pressure gradients in the opposite directions; at the higher ReD numbers negative

U values are also higher inside the recirculation zone.

4.3 Phase-Averaged Velocity

Using the same period cut-off points that were used to phase-average the pressure signal,

each of the velocity snapshots was allocated a phase-bin number corresponding to the

relative phase of its time-stamp. It was necessary to use a high number of individual

snapshots for each phase-averaged field to reduce the statistical error, but also important

to use phase-bins that were narrow enough to reduce phase-blurring. The best possible

balance between these two conflicting criteria was judged by trial-and-error. The same

method of analysis was followed to generate phase-averaged velocities for different numbers

of phases, and coherent patterns in velocity structure were searched for by eye. Before

this analysis was carried out, it was hoped that the recirculation region for the different

phases would show a clear pattern of moving side to side with phase change, analogous

to the flapping motion often observed within studies for flow past long cylinders. Such a

pattern was seen to be present in the Dye Flow Visualisation carried out as a preliminary

study, although the larger field of view made it easier to discern and the frame rate was

much higher than the shedding frequency. It was not possible to clearly discern such

a pattern phase-averaging the data by the trial-and-error method. As the first phase

began at the peak of the filtered signal, and the last phase directly preceded it, it is not

expected that there should be a large difference between the two phases. For each set

of velocity measurements, an uneven number of phases was used such that the central

phase would represent the phase that was as far separated as possible from the first and

last phases. Results are presented for the 5 phase analysis in Figures 30, 31 and 32. In
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(a) ReD = 5600 (b) ReD = 10400

(c) ReD = 15600

Figure 29: Mean streamwise velocity, showing iso-velocity contour at U = 0
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each case there were an average of 200 snapshots per phase and no single phase contained

less than 140 snapshots. It is not clear that the recirculation region has moved a great

distance from side to side between phases in a consistent manner. In Section 4.1 it was

shown that 100 randomly selected snapshots was sufficient to show a clear resemblance

in the mean velocity to that produced using 1000 snapshots. This was first demonstrated

via convergence of the IUNs
integral. In addition to this, the mean velocity vector maps

confirmed that this convergence with increasing Ns was also noticeable by eye. It is not

known why similarly clear patterns could not be observed in the phase-averaged velocity.

The phase relationship between the pressure at the cube side face and the velocity in

the recirculation region may have been much more complex than was expected, perhaps

3D effects were significant. It is also possible that the influence of the larger pressure

fluctuations discussed in Section 3 obscured the relationship.
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(a) Phase 1
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(b) Phase 2
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(c) Phase 3
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(d) Phase 4
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(e) Phase 5

Figure 30: Phase-averaged velocity field, ReD = 5600

80



x position (mm)
0 5 10 15 20

z
p
os
it
io
n
(m

m
)

-10

-8

-6

-4

-2

0

2

4

6

8

10

Velocity magnitude (m/s)

0 0.5 1 1.5 2 2.5 3 3.5

(a) Phase 1
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(b) Phase 2
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(c) Phase 3
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(d) Phase 4
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(e) Phase 5

Figure 31: Phase-averaged velocity field, ReD = 10400
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(c) Phase 3

x position (mm)
0 5 10 15 20

z
p
os
it
io
n
(m

m
)

-10

-8

-6

-4

-2

0

2

4

6

8

10

Velocity magnitude (m/s)

0 1 2 3 4 5

(d) Phase 4
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Figure 32: Phase-averaged velocity field, ReD = 15600
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5 Computational Modelling

5.1 Incompressible Navier-Stokes Equations

The Navier-Stokes equations for incompressible flow in the absence of body forces may

be written as:

∂ui
∂xi

= 0 (12)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

(13)

where τij is the viscous stress tensor. Using the Stoke’s relation, this may be defined as:

τij = 2µsij −
2

3
µ
∂uk
∂xk

δij (14)

δ is the Kronecker symbol, and sij, the rate of strain tensor, is given by:

sij =
1

2

(
∂ui
∂xj

+
∂ui
∂xj

)
(15)

5.2 Reynolds Decomposition and the RANS Equations

Time-averaging of a scalar quantity φ is defined as:

φ = Φ =
1

∆T

∫ ∆T

t=0

φ(t)dt (16)

where the uppercase Φ is used to denote the time averaged mean quantity. When Φ no

longer changes for any further increase in ∆T , ∆T is said to be sufficiently large. The

ensemble mean of a scalar quantity is calculated by collecting a number Ns of discrete

samples, each of which may be denoted by a unique number n. This mean is defined as:

〈φ〉 = Φ =
1

Ns

Ns∑
n=1

φn (17)

when Φ no longer changes for any further increase in n, the sample size Ns is sufficiently

large and the average is said to be statistically converged. In some of what follows, the

upper-case notation will be used to denote a mean without making a precise distinction
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between time averaging and ensemble averaging, enabling the notation to be made more

concise. The Reynolds decomposition splits each component of the velocity field into its

ensemble mean value and a fluctuating part:

u1 = U1 + u′1 (18)

u2 = U2 + u′2 (19)

u3 = U3 + u′3 (20)

The pressure is decomposed in the same fashion:

p = P + p′ (21)

These relations may be substituted into the Navier-Stokes equations, after which “Reynolds

Averaging” is carried out, taking the ensemble mean values of each of the terms. Assuming

constant physical properties ρ and µ, one arrives at the Reynolds Averaged Navier-Stokes,

or RANS equations:

∂Ui
∂xi

= 0 (22)

ρUj
∂Ui
∂xj

= −∂P
∂xi

+ 2µ
∂Sij
∂xj
− ρ

∂
(
u′iu
′
j

)
∂xj

(23)

where Sij is the ensemble mean of the strain rate:

Sij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
(24)

The RANS equations resemble the Navier-Stokes equations, but the appearance of a new

set of terms on the right require additional models for the closure of the system. These

terms are usually called “Reynolds stresses”, they are turbulent terms which must be

modelled:

Tij = −ρu′iu′j (25)

where Tij is a “Reynolds Stress Tensor”. This is perfectly valid in cases of “steady” flow,

which consists of a steady mean component with small, chaotic fluctuations superimposed

over it. For unsteady flows, Unsteady RANS, or “URANS” methodology is used. URANS

84



is based on the RANS framework, in the sense that the instantaneous components are

separated into turbulent and non-turbulent parts.

5.3 Normalised Wall Distance

In order to correctly predict the flow in the boundary layer where gradients are sharp, it is

necessary to follow one of two general approaches. Either one must use a large number of

grid points near the wall, such that the details of the boundary layer are directly resolved,

or one must use “wall-functions” to prescribe quantities of interest based on a knowledge

of their behaviour within boundary layers across a broad range of flows. In order to help

characterise the flow behaviour across such a broad range, it is useful to cast the distance

to the nearest wall, yw, in a non-dimensionalised form using quantities of relevance in

the near-wall region. This new wall-distance y+ is formed using a reference velocity, the

“friction velocity” u∗, and the kinematic viscosity ν to form a non-dimensionalised group:

y+ =
u∗yw
ν

(26)

where u∗ is given by:

u∗ =

√
τw
ρ

(27)

and τw is the wall shear stress. This y+ may be used in order to help judge how the wall-

cell height compares to the thickness of the boundary layer, and therefore facilitate choice

of wall treatment. The velocity in the region of wall-influence may be non-dimensionalised

using u∗ following:

u+ =
u

u∗
(28)

The wall treatment used in this study depends on a blending factor that is a function

of the wall-distance based Reynolds number Reyw; this factor is used to define u∗. It

is used to blend between the classical High-Reynolds wall function approach and Low-

Reynolds number approaches, which will be described below after an introduction to the

eddy-viscosity modelling concept.
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5.4 Eddy-Viscosity Modelling

In real flows, the transition from laminar to turbulent flow is associated with an increased

effective viscosity of the fluid µe, and this effective viscosity is traditionally modelled as

the sum of two separate contributions in order to reflect this effect:

µe = µl + µt (29)

where µl is the molecular viscosity and µt is the effective turbulent viscosity associated

with the additional turbulent eddies. Eddy-viscosity models make use of this turbulent

viscosity concept by modelling Tij in an analogous way to modelling the stresses in laminar

flow, thus:

Tij = 2µtSij −
2

3

(
µt
∂Ul
∂xl

+ ρk

)
δij (30)

In incompressible flow the divergence vanishes. Dimensional analysis reveals that the

turbulent viscosity µt might be expected to depend on a velocity scale ut and a length

scale lt, that would be somehow characteristic of the eddies, in the following way:

µt ∼ ρutlt (31)

5.4.1 k − ε Models

To outline the rationale for the k − ε class of models, one may use dimensional analysis

to express ut and lt in terms of k and ε as follows:

ut ∼ k1/2 (32)

lt ∼
k3/2

ε
(33)

resulting in:

µt = Cµρ
k2

ε
(34)

The k − ε model consists of the solving of two transport equations for these k and

ε variables in addition to the four that are solved for Continuity and Conservation of

Momentum, and is therefore often said to belong to the class of turbulence modelling
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strategies known as “two equation” models.

One early example of the k−ε model may be seen in [30]. There are two variants of the

k− ε model detailed in [30]. The first set are sometimes referred to as the Standard-k− ε

model, and sometimes as the High-Reynolds number k − ε model. The second set are

normally referred to as the Low-Reynolds number k−ε model; it was the latter which were

the main contribution of the paper. The authors focussed on the accurate prediction of

“laminarisation” which may occur when a boundary layer is strongly accelerated. Under

these conditions, the viscous sublayer of the boundary layer may thicken. Although it will

not be discussed within this project, this may have important effects on the prediction of

heat-transfer. The authors cited previous work by [56], which had prescribed turbulent

viscosity via an algebraic formula dependent on wall distance. However, under certain

conditions the boundary layer may behave differently, changes in turbulent quantities

may depend on stream-wise position as well as wall-normal position. The authors of [30]

were able to improve upon the High-Reynolds number formulation in the case of flow

accelerating through converging plates, showing a better match with experimental data.

They did this by introducing their Low-Reynolds Number approach, which comes into

effect in the viscous sub-layer near the wall. Within their formulation, algebraic functions

that were explicitly dependent on wall distance were not employed. Rather, a new set of

algebraic functions acted on two coefficents, taking their original values from the High-

Reynolds number formulation and modifying them according to local turbulent Reynolds

number Ret = ρk2/µε. As a result, localised areas of low turbulence activity near the

walls could be predicted.

Tests of the k− ε model under a broad range of conditions were compiled together in

[41]. Here, details were included of its application to a plane jet in a moving stream, a wall

jet on a conical surface, pipe flow, the boundary layer on a turbine blade, a wall jet where

a recirculation region was present after a backward-facing step, coaxial jets, a cavity flow,

flow along a twisted tape where a swirling motion was induced and flow within square

ducts. Results across these vastly different scenarios were mixed and will not be described

in detail here, but certain themes were evident. The model performed well where its ability

to transition between laminar and turbulent flow was tested, for example the development

of a boundary layer over a turbine blade with differing levels of free stream turbulence

upstream. In the case of backward-facing step flow, with a recirculation region, the Low-
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Reynolds number variant gave much better predictions for ε immediately after the step.

This was supposed to be because fluid from downstream moved back up towards the step

face, and that as a result ε was dependent on the downstream values, not wall distance.

Notably, the models fell short in the prediction of corner flows in straight rectangular

ducts, these being turbulent in origin. As a result, the authors remarked that there may

be a need for further development of models which calculate explicitly the Reynolds Stress

fields.

Two-layer k− ε models Since the aforementioned paper [41], many modifications and

tweaks have been made to the k − ε model, such that it would be very difficult to cover

them all. However, one milestone that is certainly worth mentioning is that of “two-layer”

models covered in [64]. In this type of model, the near-wall region is resolved by applying

a one-equation model with wall distance dependency and a two-layer model is applied

further out into the bulk region. Of particular interest in the context of the current

project, the article covered application to a range of separated flows and also to vortex

shedding around a square cylinder. In all of the cases of separated flow where the flow

was largely steady, the two-layer k − ε variant model improved predictions throughout

the recirculation region when compared to the Standard k− ε model with wall functions.

This was evident in every comparison presented including wall-friction, mean velocity

and turbulent kinetic energy comparisons. For the case of flow throughout the separation

zone past a large axisymmetric body of revolution, the two-layer k − ε model improved

predictions relative to the Low-Reynolds variant of the k − ε model; The Low-Reynolds

model failed to predict separation that was present in the experiments, but the two-layer

model did. What is more, the two-layer model was shown to be successfully applicable

to flow past a sphere, where a very small separation zone was observed in experiments.

In the separation zone and wake, velocity profiles were a good match. In the case of flow

around a square cylinder described in [64], which summarised some results from [18], the

Standard-k − ε model with wall functions failed to reproduce the vortex shedding at all.

This could be seen as a serious failure; the vortex shedding phenomena is of practical

significance in many engineering contexts as well as being of academic interest. It is not

clear what effect the mesh-refinement had on this, it may be the case that the use of the

wall-functions tempted the researchers to apply too coarse a mesh. The two-layer model
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that was introduced did reproduce the shedding phenomenon, although it under-predicted

the strength of it. The authors remarked that there was an over-prediction of the length

of the recirculation region, and explained this by the under-prediction in the strength of

the shedding; a lower degree of momentum exchange due to less cross-stream movement

would result in an extension of the low-velocity bubble. Two RSM models that account

for transport of the Reynolds Stresses, one with wall-functions and one with the two-layer

blending approach were also tested. These did not show clearly better mean-velocity

results than the k − ε, they will be discussed later on (Section 5.5), but of the two, the

two-layer model showed better agreement with the results.

As part of the process of constructing a two-layer model, it is necessary to have a

means of defining what constitutes “near-wall” and what constitutes “bulk” regions. One

method of doing this was outlined in [31], in which the final equation set was the same

throughout the domain, and in which a blending parameter was used to blend between

the High-Reynolds two-equation model in the bulk and a one-equation model right next

the wall. This was achieved by means of a blending factor that could be tuned to move

from a smooth to a sharp transition between the two-layers, making it flexible. The

author found that by doing this they were able to reduce numerical stiffness, which is

associated with matching the solution in two layers at explicitly defined positions, and

also that they could increase the wall-cell height relative to the Low-Reynolds approach.

Also, the author was able to obtain better predictions of the pressure recovery within the

divergence section of a diffuser, relative to the High-Reynolds and Low-Reynolds number

approaches that were tested.

5.4.2 Final k − ε model

The model used for the calculations presented here [10] is of the two-layer type as discussed

above. It is based on that of [64], combining a High-Reynolds and a Low-Reynolds

approach via blending functions.

As given in [10], the transport equations for the turbulent kinetic energy and turbulent

dissipation rate far from the wall are:
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Cε1 Cε2 Cl
1.44 1.92 2.556

Table 8: Coefficients appearing in the k − ε model

k transport equation

ρ
Dk

Dt
=

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+ µt

(
∂Ui
∂xj

)2

− ρε (35)

ε transport equation

ρ
Dε

Dt
=

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+

1

Tt

[
Cε1µt

(
∂Ui
∂xj

)2

− Cε2ρε

]
(36)

These have their origins in the two-layer k − ε model described above, found in [64].

However, they are applicable in three dimensions, hence the i, j sub-indices. The charac-

teristic timescale of the turbulence, is given by:

Tt = max

(
k

ε
,

√
ν

ε

)
(37)

The constants that appear are given in Table 8.

An “all-y+” formulation is used, which makes use of a blending factor. Within [10]

this blending factor is defined as:

β = exp

(
−Reyw

11

)
(38)

and the wall-distance Reynolds number is:

Reyw =

√
ky

ν
(39)

This is used to calculate u∗ in the near-wall cell as follows:

u∗ =

√
β
νU

y
+ (1− β)C

1
2
µ k (40)

where U is the velocity in the wall-cell parallel to the wall. This reference velocity goes
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towards calculating y+ for post-processing, and also is used as an input to the equation:

Pk = βµt

(
∂Ui
∂xj

)2

+ (1− β)
1

µ

(
ρu∗

U

u+

)2
∂u+

∂y+
(41)

This equations governs the wall-cell production of turbulent kinetic energy Pk, replacing

the simpler, non-blended term (Equation 35) within the wall-cell only. Next, the question

of how to prescribe the dissipation of turbulence in the near-wall cell must be addressed.

The final model used for this [10] is a blending of the traditional High-Reynolds number

and Low-Reynolds number approaches, following a method like that described above from

[31]. Near to the wall, the value for the turbulent dissipation rate ε is calculated from:

ε =
k3/2

lε
(42)

which is blended with the solution in the bulk from Equation 36. The precise details

of the blending process necessitate description of the numerical solution procedure, which

will not be covered here. Based on the work of Wolfshtein [83], the length scale lε is

dependent on the wall-distance Reynolds number:

lε = Cl

[
1− exp

(
−Reyw

2Cl

)]
(43)

In [10], Cl = 2.556 to three decimal places. In a similar fashion, also based on the

work of [83], the near-wall turbulent viscosity is:

µt
µ

= 0.2300Reyw

[
1− exp

(
−Reyw

70

)]
(44)

The constant 0.2300 which appears here is correct to four decimal places.

Following [31], a hyperbolic function is used to indicate wall proximity, which is also

based on the wall distance Reynolds number:

λ2l =
1

2

[
1 + tanh

(
Reyw − 60

4.352

)]
(45)

where the coefficients 4.352 and 60 are produced from default values [10]. This function

allows for a smooth transition between the values in the near-wall cell and those farther

out. Using this blending function the turbulent viscosity is calculated with:
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µt = λ2lµt

∣∣∣∣
k−ε

+ (1− λ2l)µ

(
µt
µ

) ∣∣∣∣
2l

(46)

The left-most k−ε term is similar to that of the Standard-k−ε model above (Equation

34). The additional element on the right is the Kolmogorov timescale, which provides a

lower threshold based on constant fluid properties:

µt = Cµρk max

(
k

ε
,

√
ν

ε

)
(47)

whereas the 2l term to the right uses the near-wall turbulent viscosity ratio from

(Equation 44). Therefore, the turbulent viscosity that is finally calculated is blended

between the two.

5.5 Reynolds Stress Transport Modelling

5.5.1 Reynolds Stress Models

Reynolds Stress Models (RSM) fall into a category known as second-order closures, the

simplest category of the higher order closure models originally derived by Chou in 1945

[12]. Rather than representing the Reynolds stresses purely in terms of turbulent viscosity

and mean or quasi-steady flow quantities an exact transport equation for them is derived.

In the process, unknowns are introduced at a level one deeper than the now solved-for

stresses, for example, triple-correlations of fluctuating components appear. In addition

to these, the “pressure rate-of-strain” correlation is introduced. The main advantage

of Reynolds Stress Models is the ability to account for certain effects associated with

anisotropy in the Reynolds Stress tensor. As discussed previously, this may be important

for the simulation of corner vortices in straight ducts, for example [28], where an explicit

relationship for the Reynolds Stress distribution was created from experimental data.

However, this “Explicit Algebraic” approach is too case specific to be of use as a general

tool for industry, and as a result it will not be discussed in detail. An early example of

a successful closure and numerical solution of this set of equations is found in [24]; these

authors presented the exact Reynolds Stress Transport equations in the following form:

92



Du′iu
′
j

Dt
= −(u′iu

′
k

∂Uj
∂xk

+ u′ju
′
k

∂Ui
∂xk

)︸ ︷︷ ︸
Production

+
p′

ρ
(
∂u′i
∂xj

+
∂u′j
∂xi

)︸ ︷︷ ︸
Redistribution

+
∂

∂xk
[ν
∂u′iu

′
j

∂xk
− u′iu′ju′k −

p′

ρ
(u′iδjk + u′jδik)]︸ ︷︷ ︸

Diffusion

−2ν
∂u′i
∂xk

∂u′j
∂xk︸ ︷︷ ︸

Dissipation

(48)

The “Production” terms are solved for directly at this level of closure, representing

the production of the stresses by shearing of the Reynolds-Averaged velocity. Within

“Diffusion”, only the triple correlation u′iu
′
ju
′
k requires modelling. The authors demon-

strated that it could be calculated using only second-order correlations under certain

assumptions. Firstly, the third-order velocity correlations were written in terms of the

exact transport equation for the fourth-order correlations. Some of the fourth order cor-

relations were written in terms of second-order ones, and certain terms were neglected.

The “Dissipation” term was assumed to be isotropic, and consequently that it may be

represented using a scalar vale, ε in the following manner:

2ν
∂u′i
∂xk

∂u′j
∂xk

=
2

3
δijε (49)

Under this assumption of isotropy, they also neglected the viscous diffusion term. Finally,

they turned their attention to the “Redistribution” term, also often referred to as the

“pressure-strain” correlation. Physically, it accounts for the movement of the Reynolds

stresses due to interactions between the fluctuating pressure and the strain in fluctuating

velocity:

φ∗ij =
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(50)

It may be noted at this point that the pressure-strain correlation term is traceless due

to continuity; this means that it does not contribute directly to the kinetic energy of

the turbulence. Due to its anisotropic nature it serves to redistribute energy between

the off-diagonal stress components, rather than increasing the kinetic energy components.

Hence, it is labelled as a “redistribution” term. In order to determine accurately the

level of anisotropy in the Reynolds stresses one must effectively model it. These terms

were modelled under the assumption that inhomogeneity in the turbulence did not affect
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the outcome much. In reality, such inhomogeneity is quite strong in near-wall regions,

but this was not taken into account. Modelling of this pressure-strain term has been the

focus of much work since [24]. Of note, [40] addressed wall-effects on the pressure-strain

correlation. Drawing on published experimental data they remarked that the streamwise

stress component is much larger near the wall than it is in flow where turbulence was

nearly homogeneous. Inversely, the wall-normal component is smaller near the wall than

in homogeneous turbulence. This “blocking” effect of the wall on the fluctuating wall-

normal velocity is felt out to y+ ∼ 100 in some instances. They also remarked that, in

light of data for fully developed flows in between two planes, wall effects make the normal

stresses unequal even near the mean velocity maximum in some cases. As a result, they

then took into account the wall effect on this pressure-strain rate, modelling it separately

for the near-wall and bulk regions. Compared with the data of [11], the new model gave

much better predictions for the streamwise stresses than the [24] model, with slightly

better predictions of the overall kinetic energy k. In all other comparisons made, they did

not find a superior performance. They suggested that further work on the modelling of

ε might prove fruitful, although admitting that it was possible that improvements in the

modelling of the pressure-strain rate may also be crucial. [64] summarised some results

of [18] for vortex shedding around a long cylinder, who used the Reynolds Stress model

of [40]. In order to calculate ε the author applied wall-functions for one test, and also

used a two-layer model for ε in order to compare the outcomes. Mean velocity predictions

were clearly improved throughout the recirculation region behind the cylinder by the

application of the two-layer model, they overpredicted it less compared to the RSM with

wall-functions. Results for total fluctuating energy in the same region were not able to

show a clear advantage for either, the two-layer model overpredicted it and the model

with wall-functions underpredicted it. However, as the mean velocity predictions were

improved by the two-layer approach this is less important. It may hint that the greater

degree of fluctuation in the cylinder wake improved predictions by increasing momentum

exchange between the bulk and the recirculating fluid; this would serve to reduce the level

of overprediction of velocity when using the two-layer approach.

Another notable paper in this year which focussed on the modelling of the pressure-

strain rate, [77], tested a new method against four independent points of reference. These

references were designed such that they provided differing levels of anisotropy in the
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Reynolds Stress tensor, and measurements thereof, thereby making them particularly

useful for testing the ability of the model. The rationale behind the modelling strategy

was that the time-evolution for the decay of and return to isotropy should be accurately

reproduced. One of the reference points was a DNS simulation [43], focussed on turbu-

lent flow under high strain rates in one direction, so as to be applicable near flat walls.

Beginning from an initial state of isotropy, these simulations evolved in time so that the

move towards anisotropy could be recorded. The new model predicted a very similar

time-evolution for k to the [40] model, both models matched well with the DNS data and

neither was clearly better. However, the new model showed slightly better agreement

with the data regarding time-evolution of the anisotropy tensor components, predicting

a higher degree of anisotropy which was more in line with the data. Its predictive ca-

pabilities in homogeneous turbulence under plane strain were essentially unchanged with

respect to the [40] model, showing that a disadvantage had not been introduced in the

bulk of the flow. However, within an axisymmetric contraction, the new model showed

clearly better predictions for both k and the anisotropic components relative to the DNS

data, particularly regarding the evolution of k. In an axisymmetric expansion, k pre-

dictions were very similar from the two models but the newer one showed much better

predictions of the anisotropic components. In summary, the development with respect

to time towards anisotropy from an artificially imposed isotropic initial condition was

better mapped with the new model. However, no results were presented that showed the

variation within space of the Reynolds Stresses, which leave some questions unanswered.

The need to account for anisotropy within the Reynolds Stress tensor near walls was one

of the motivations behind [16], who managed to allow for the strong wall effect via a

different means. An elliptical blending equation which progressively changed the model

behaviour from that of the simpler quasi-homogeneous model in the bulk to a near-wall

behaviour; boundary conditions could be imposed on the blending equation which then

affected the solution in the interior. Essentially, this equation was used to introduce wall

effects via boundary conditions, rather than by prescribing wall-cell centroid values in

terms of wall-normal distance and flow conditions. It may be noted at this point that

this method requires the solution of as many elliptical equations as there are independent

components of the redistributive terms, ie 6, which constitutes a large increase in compu-

tational cost. Comparisons for this model were made with experimental and DNS data,
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for channel flow and boundary layers with and without adverse pressure gradients, and

the model performed well at just about every point of comparison. The most significant

discrepancies were seen against the boundary layer data of [70], in a region of adverse

pressure gradient. As the flow moved downstream, under-predictions in velocity of up to

9% were seen in the outermost regions of the boundary layer, and very close to the wall

it was overpredicted by roughly the same amount. This was only in the regions farthest

downstream after a pressure increase due to volume expansion. Another feature of the

[16] model is that it is by nature independent of co-ordinate system. This was tested by

simulating flow over a convex curved surface and comparing with [21], using exactly the

same empirical constants as in the plane channel flow. The model successfully predicted a

drop in skin friction after the bend. Shear stress profiles, kinetic energy and mean velocity

profiles matched reasonably well, although some discrepancies were seen throughout the

curved section. Based on [16], a new method was proposed in [47] that retains many of the

advantages of the model, while reducing the number of additional equations that needed

solving. It is able to take into account wall-effects on the pressure-strain term, dependent

on an elliptical relaxation equation of the same form as in [16]. However, it only solved

one of them rather than six, greatly reducing model complexity. The authors tuned the

model such that such that predictions of the anisotropy of the dissipation tensor εij fitted

better to DNS results of [52].

In the limit y ∼ 0, the new model had strictly the same behaviour for φ∗ij − εij as

the model from [16], although not necessarily for either of the two tensors individually.

The choice of different modelling for each component of φwij necessitated the calculation of

the wall-normal direction for reference. The authors were able to produce a wall-normal

unit vector from the blending parameter field. This vector could be calculated at any

point in the domain and it depends on the local properties of turbulence. As it does not

necessarily align itself with the solid boundaries away from the wall surface, it could be

aptly renamed a “wall-effect” orientation vector; the geometry has an indirect effect on it

by way of the calculated solution. Results compared with DNS channel flow [52] showed

excellent mean velocity predictions up to y+ ∼ 10, and fairly good results beyond this,

with some discrepancies between this value and y+ > 100. The new model reproduced

the anisotropy in the Reynolds Stress tensor quite well near the wall, the results were

similar to that of [16]. Predictions of u′u′ were too small and were inferior to those of
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[16], but v′v′ predictions were very good near the wall. The w′w′ components were not

well predicted, but were no worse than those of [16]. The new model did not predict

the near-wall budgets of u′v′ and u′w′ components as accurately as [16], although the

shape of the profile was very similar and the discrepancies were only important close

to the wall. The ε predictions were also not a good match with the DNS results for

y+ < 50, those of [16] were a little better overall, but neither of the models matched well

for y+ < 1. In summary, predictions were nearly as accurate as those of [16], retaining the

ability to predict wall effects on the Reynolds Stress tensor with a significantly reduced

computational cost.

5.5.2 Final Reynolds Stress Model

The final model used, as implemented in Star-CCM+, was the Elliptic Blending Reynolds

Stress Model, or EBRSM of [38]. It is based on that of [47] with some changes made

by authors including [46] and [13]. The resultant model was reported to be numerically

robust with improved convergence capabilities. The equation governing the transport of

Reynolds stresses may be written as:

∂u′iu
′
j

∂t
+

∂Uku′iu
′
j

∂xk
= Pij + Dt

ij + φ∗ij − εij +
∂

∂xk

(
ν
u′iu
′
j

∂xk

)
(51)

where Pij, εij, D
t
ij, denotes terms responsible for production, dissipation, and turbulent

diffusion of the Reynolds stress components. It employs a different blending function for

the pressure-strain rate and dissipation:

φ∗ij =
(
1− α3

)
φwij + α3φhij (52)

εij =
(
1− α3

)
εwij + α3εhij (53)

which makes use of a blending parameter α, the solution of an elliptic equation:

α− L2
α∇2α = 1 (54)
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The lengthscale is given by:

Lα = CLmax

(
k3/2

ε
, Cη

ν3/4

ε1/4

)
(55)

with Cη = 80.0, taken from [47] (Equation 55). However, the lengthscale coefficient is

given by CL = 0.133. The cubic dependency on α is due to [42]. That author argued

that it would lead to a better prediction of u′v′ throughout the majority of the boundary

layer, and that it was worth sacrificing some accuracy in a very small region near the wall

to do so. The pressure-strain far from the wall is taken from [77]:

φhij = −
(
C1 + C∗1

Pkk
2ε

)
εaij + (C3 − C∗3

√
aklakl) kSij

+ C4k

(
aikSjk + ajkSik −

2

3
almSlmδij

)
+ C5k (aikWjk + ajkWik) (56)

Here, Sij and Wij are the strain and rotation rates of the Reynolds-Averaged velocity

field, and aij is the anisotropy tensor defined as:

aij =
u′iu
′
j

k
− 2

3
δij (57)

φwij, the near-wall part of the pressure strain term, is originally from [47]:

φwij = −5
ε

k

(
u′iu
′
knjnk + u′ju

′
knink −

1

2
u′ku

′
lnknl (ninj − δij)

)
(58)

The [38] model actually includes an extra additive term to the rotation rate Wij, but it

is equal to zero in non-rotating systems such as the one studied in the current work so it

is omitted for simplicity.

The tensor for the dissipation rate is:

εwij =
u′iu
′
j

k
ε (59)

in the near-wall region and:

εhij =
2

3
εδij (60)

far away from the wall. The scalar value of the turbulent dissipation rate ε used in these
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Cε1 Cε2 C1 C∗1 C3 C∗3 C4 C5 CT A1 CL Cη Cµ
1.44 1.83 1.7 0.9 0.8 0.65 0.625 0.2 6.0 0.085 0.133 80 0.07

Table 9: Coefficients used for EBRSM model

equations comes from the transport equation:

∂ε

∂t
+ uj

∂ε

∂xj
=

1

Tt

(
Cε1

Pkk
2
− Cε2ε

)
+ E +Dt

ε +
∂

∂xk

(
ν
∂ε

∂xk

)
(61)

following [47]. However, the term E is taken from [4]:

E = A1νu′ku
′
lnknl

k

ε

(
1− α3

)(∂||Sijni||nk
∂xk

)2

(62)

with A1 = 0.085, calibrated to channel flow for a range of Reynolds numbers. The

turbulent timescale is identical to that in[47] (Equation 64). The diffusion terms Dt
ij

and Dt
ε given in Equations 51 and 61 are calculated using a “Simple Gradient Diffusion

Hypothesis”, which was introduced by [38], citing reasons of numerical robustness. These

authors used the following equation for the turbulent viscosity:

νt =
[(

1− α3
)
u′iu
′
jninj + α3k

]
CµTt (63)

with Cµ = 0.07. The turbulent timescale is given by:

Tt = max

(
k

ε
, CT

(ν
ε

)1/2
)

(64)

with CT = 6.0. The second term was introduced because in regions far away from the

wall the gradients of α are not well-defined, which was reported to produce spurious

oscillations. Model constants are summarised in Table 9, some of the origins of these are

discussed throughout this section, but others are presented without comment. This model

was tested by the authors [38] in a broad range of conditions. In curved pipe flow, it was

compared with DNS results. For its ability to predict a wing-tip vortex, it was compared

with experiments, at high Reynolds number. Finally, it was tested for flow around a two-

dimensional airfoil with a complex geometry, a “Coanda airfoil”. In all three test cases, it

was compared with a k−ε model and also the SST kω model. It outperformed these other

models at every point of comparison within the pipe and for the wing-tip. For the flow
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around the “coanda” airfoil, it did not perform as well in some respects. It gave better

predictions of the size and shape of the recirculation region behind the airfoil. However,

both the k − ε and the SST kω predicted a more realistic lift coefficient, and the k − ε

also predicted a more accurate separation angle behind the airfoil. Predictions from the

k− ε and the SST kω models for the pressure coefficient around the surface of the airfoil

were better than the EBRSM , particularly that of the SST kω. The authors remarked

that there was a low degree of turbulence around the leading edge of the low pressure side

of the foil. This tendency towards relaminarisation of the flow entailed a further drop in

pressure, which meant that the overall lift was overpredicted. In summary, the EBRSM

performed much better in internal flows, but not necessarily as well for the external flow

around the airfoil. This was associated with a tendency for unwanted relaminarisation

around bluff bodies.

The configuration used in the current study is likely to introduce issues related to

those seen in both internal and external flows; the flow will be fully-developed and con-

strained within a thin channel before reaching the cube, but in the cube region sudden

changes in geometry will induce separation and shedding. However, unlike some of the

test cases used to validate the models, the separated flow will be subject to strong shear

due to walls parallel to the bulk flow and largest shedding component. In the test cases

considered throughout the validation process of some of the models discussed, large-scale

unsteady physics was not featured. The EBRSM model has its origins partly in [77],

which investigated the ability of the model to represent the time-evolution of the Reynolds

Stress Tensor, but this seems far separated from the large-scale unsteady shedding from

a vortex cylinder. Nevertheless, reasonably successful application of RSM models to vor-

tex shedding around long cylinders has been demonstrated, for example [64], and it is

therefore hoped that they will perform well for the current case.

5.6 URANS Computational Methodology

All simulations used methods designed for incompressible flows. URANS computations

were carried out using Star-CCM+, and what follows is based on the details given in [10].

A second-order upwind spatial differencing scheme that employs a Gauss type method

was used to compute the gradients, necessary to project onto the cell faces. These gradi-
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ents are limited using a Venkatakrishnan type scheme [80], essentially ensuring that face

values are bracketed by those at the neighbouring cells. The method is more dissipative

than a central-difference one, which is advantageous for flows where low Peclet numbers

occur. It is of course more accurate than a first-order upwind treatment, and pays for this

only in inferior convergence properties due to a reduced numerical dissipation; this is an

acceptable trade-off when residuals may be monitored and convergence is scrutinised for

each time-step. As such, it is considered suitable for a wide range of flow conditions. The

velocity components and pressure were first solved for in an uncoupled manner on a colo-

cated grid. Pressure-velocity coupling used a Rie and Chow pressure correction approach

[63] based on a SIMPLE type predictor-corrector algorithm [57]. The temporal scheme

was implicit and 2nd-order with respect to time, making use of the current timestep and

the previous two in its formulation. Computational grids were all of Cartesian form, with

grid refinement in selected regions where gradients were high.

5.6.1 Meshing

5.6.1.1 Unblocked Channel

Inlet conditions were designed based on the criteria that the flow was fully-developed

before meeting with the obstacle. Firstly, steady-state RANS simulations were set up with

periodic boundary conditions, where the mass flow rate was imposed in the streamwise

direction and the solution from the exit fed back into the inlet. One such “infinitely

long” simulation was set up for each combination of turbulence model and mass flow

rate. Mesh independence was tested for these unblocked channel simulations, at both

ReD = 5600 and ReD = 15600, using steady-state RANS simulations. Near wall cell

heights were chosen such that y+ values were approximately equal to 1 for each case.

A hyperbolic expansion was used to stretch the mesh in the y direction such that there

was a smooth, gradual increase in cell size towards the channel centre. In order to make

comparisons between the different meshes, profiles of streamwise velocity and turbulent

kinetic energy were plotted in the domain centre far from the recycling inlet/outlet planes

and channel sides. Simulations were left to run until all globalised residuals had stopped

changing; by this point channel pressure drop, u and k at the channel centre had already

reached a steady state. Plots were made as a function of y, from one wall to another. At
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ReD = 5600 (Figures 33a, 33b), ny = 33 cells was sufficient to achieve mesh independence

whereas at Re = 15600 ny = 49 cells were necessary (Figures 33a, 34a). Near the small

walls at the extremes of z, a similar hyperbolic stretching was used to resolve the near-

wall gradients, although this was found to affect the results much less at the centre-line.

Solutions were taken from the unblocked channel simulations having ny = 65 at all three

Reynolds numbers, and were used to set the inlet profiles for the simulations of flow around

a blockage. These blocked channel simulations used the unblocked channel meshes as a

boundary point for the minimum required mesh resolution; all results presented for flow

around the blockage used a higher number of cells in the y direction. The mesh used at

ReD = 10400 was the same as that used at ReD = 15600.

As part of this process, pressure drop predictions in the unblocked channel were com-

pared. In particular, the effect of changing wall-cell heights and wall-treatments was

investigated. This was to ensure that the pressure drop predictions were not drastically

changed by, for example, applying the two-layer k−ε model with low y+ values as opposed

to the Standard-k − ε with high y+ values. As a result of this process, the Menter-SST-

k − Ω model [51] was discounted. When the normalised wall-cell height was reduced to

y+ ∼ 5 or less, pressure predictions were significantly different to all the k− ε models and

EBRSM models tested, particularly at the highest Reynolds number. They were also

very different to those of the same Menter-SST-k−Ω model when y+ values were greater

than 15, which were in agreement with the k−ε and EBRSM models. Similar issues were

encountered when using another version of the k−Ω approach with a wall-treatment that

was suitable across a range of y+ values. It is not known whether this was due to problems

of model implementation within Star-CCM+, or to issues inherent in the combination of

the models with the wall-treatment. It was desirable to refine meshes in the region of

the cube, necessitating a model/wall-treatment combination that could deal with low y+

values, and it was also desirable that the model could also deal with changing y+ values.

As a result, the k − Ω models were not deemed suitable.

In addition to the pressure drop and to the solution spanning the small dimension from

the duct floor to the duct ceiling, the effect of modelling on the prediction of secondary

corner flows was investigated. The Standard-k− ε model could not predict the formation

of these, nor could the two-layer k − ε. Non-linear versions of the k − ε model could, for

example that of [44], although they vastly under-predicted them. Several Reynolds Stress
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models were tested, and were able to better reproduce the secondary flows, although they

too underpredicted their strength. Due to the small size of these (the secondary velocities

are approximately 1% of the bulk velocity), and the width of the duct, they had very little

effect on the flow near the duct centre. In addition to this, they were found to make an

inconsequential difference to the prediction of temperature within a rectangular nuclear

sub-channel. Setup parameters were chosen to reflect those of [68], and the solution at the

outlet was used to define inlet conditions so as to allow turbulence-induced secondary flows

to develop to their maximum possible strength. more. Despite this, there was a maximum

change in temperature of only ∼ 1.5C, confined mostly to very small regions the regions

near the corners. Results of this study were presented at the 2015 University Nuclear

Technology Forum, under the title “Modelling of turbulence-induced secondary flows in

non-circular channels”. However, since this point their prediction has been disregarded as

it was considered unimportant to flow around blockages located far from the duct corners.

5.6.1.2 Blocked Channel

A fully Cartesian grid with localised refinement near the cube was used to mesh the

domain for the blocked channel simulations. The mesh far from the cube was equivalent

to that in the unblocked channel simulations. Firstly, a “base mesh” was generated in

a domain comprising the central plane at y = 0, that only extended a small distance in

the y direction, and this base mesh was extruded using a stretching function in order to

resolve the boundary layers on the large channel walls at y = ±D/2 (Figure 35). Within

the base mesh, gradients in the x and z directions were well resolved due to a refinement

strategy that focussed on the blockage, the finest areas were immediately adjacent to it

and. Four areas were selected near the cube, one at each face, within which cells were

anisometric and yw distances were selected in order to resolve the sharp gradients near

the surface (Figure 36). In total, six different levels of refinement were used passing from

the bulk to the cube faces (Figure 37). The cells were in general isometric with respect

to x and z within a rectangular region containing the cube, the near upstream and side

regions and the downstream recirculation region. Rather than adaptive mesh refinement,

large sections of the mesh were refined; regions where velocity gradients were large were

well resolved all the way through the moving velocity field at each point in the cycle.

103



y/D
-0.5 0 0.5

k
1 2
U

2 b

0

0.01

0.02

0.03

0.04

ny=17

ny=33

ny=49

ny=65

(a) k − ε

y/D
-0.5 0 0.5

k
1 2
U

2 b

0

0.01

0.02

0.03

0.04

0.05

ny=17

ny=33

ny=49

ny=65

(b) EBRSM

Figure 33: Turbulent kinetic energy spanning the channel in the y direction, ReD = 5600
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Figure 35: 3D mesh showing stretching in y direction, Mesh 4

Figure 36: 2D base mesh showing x, z refinement strategy in near-cube region, Mesh 4

Figure 37: 2D base mesh showing x, z refinement strategy across domain, Mesh 4
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Mesh 2 3 4 5 6
Nc 424k 930k 4.9M 16.8M 45M

Table 10: Total number of cells on different meshes

Figure 38: Location of pressure probe on cube side face and velocity probe offset from
trailing corner. Probes contained within plane y = 0, highlighted in green

Rather than taking a purely pragmatic approach, the cell number was pushed to

an extreme in order to completely eliminate the effects of grid spacing (Table 10), at

ReD = 10400 using the EBRSM .

Six different meshes were tested, ranging from very coarse (Mesh 1) to extremely well

refined (Mesh 6). Mesh 1 was used to quickly generate initial conditions for the more

refined meshes. In order to quantify the effect that mesh refinement had on the near-cube

solution, the pressure at the cube side face was monitored along with the streamwise

velocity at (x = 1.25D, y = 0, z = 1.25D) (Figure 38). The velocity probe location was

chosen as a large variation in velocity was seen at this point.

Results are presented for all but the coarsest mesh and the most refined at ReD =

10400. They are not included for the very large Mesh 6 as results from this mesh overlaid

those of Mesh 5 perfectly. Pressure at the cube side is displayed (Figure 39b), and

velocity at (x = 1.25D, y = 0, z = 1.25D) in (Figure 39a). Based on these comparisons,

the solution had become independent of the grid spacing by Mesh 5. Differences between

the solutions on Meshes 4 and 5 were very small, such that the maximum difference in

pressure was less than 2% of the amplitude of the fluctuations. These differences were
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much smaller still for velocity. Differences between the solutions on Meshes 3 and 4 were

no more than 14% of the amplitude of the fluctuations for pressure, and less than 8% for

velocity. Meshes 4 and 5 were also tested at ReD = 5600 and ReD = 15600; the solutions

for the two meshes were found to match similarly well at these Reynolds numbers, that

is to say that the difference between the solutions on Meshes 4 and 5 were no more than

2− 3% of the amplitude of fluctuations.

In conclusion, Mesh 3 was probably well-refined enough for many engineering purposes,

and Mesh 5 was useful as a reference point showing the limits of the modelling strategies.

Mesh 6 was excessive and served only to prove that Mesh 5 was suitable as a limiting

case. Finally, Mesh 4 was sufficiently well refined for the purposes of this study and has a

significantly smaller number of cells than Mesh 5. As a result, it has been used to generate

the solutions used for comparisons between the models.

5.6.2 Convergence Criteria

The number of internal iterations within each timestep over which the predictor-corrector

algorithm ran was limited according to the progression of global residuals, which were

used to judge the state of the solution across the whole domain, hence providing a good

estimate of the degree of convergence. This global residual may be calculated for a scalar

φ as the RMS value of the local residuals across all Nc computational cells in the domain.

Rφ
global =

√√√√ 1

Nc

Nc∑
n=1

(
rφn
)2

(65)

where each rφn is the local residual at cell n for the scalar value φ. The largest time-

dependent fluctuations observed were aligned in the spanwise direction, and the residuals

for the spanwise momentum were therefore monitored alongside those of the streamwise

momentum and continuity. In order to gain some intuitive idea of their relative size, par-

ticularly when changing between different Reynolds numbers, the residuals for continuity

were normalised by the value of the mass flux at the inlet. Residuals for the streamwise

and spanwise momentum were both normalised by the streamwise momentum flux at the

inlet, which was dominant among the three components due to the fully-developed inlet

flow conditions. Allowing the simulations to run for 100 inner iterations per timestep, it
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Figure 39: Change in fluctuating solution with mesh refinement, EBRSM , ReD = 10400
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was evident that these normalised residuals had ceased to change after a much smaller

number of timesteps, where they fluctuated slightly around a steady value. Moreover,

this steady value did not change from timestep to timestep. The criteria for convergence

were then set at values near the end of the steep drop in magnitude for each residual,

just as they reached their fully converged values. Time dependent fluctuations of the so-

lution were found to be periodic and roughly sinusoidal in form; the solution was allowed

to reach a statistically steady state where both the frequency and the amplitude of the

oscillations remained constant.

5.6.3 Boundary Conditions

The solution from the unblocked channel simulations (Section 5.6.1.1) was extracted over

a cross section of the domain, normal to the flow. This method allowed the fully-developed

values for all solved-for variables to be fed in directly at the inlet, such that any change

with progression into the domain was certainly due to effects introduced by the blockage

downstream. Pressure on the inlet face was extrapolated from the nearest cell-centroids.

Both velocity and pressure values on the outlet face were extrapolated from the nearest

cell-centroid values using the reconstruction gradients. A no-slip condition was imposed

on the velocity at each side wall and also on the blockage faces, where wall treatments were

dependent on the particular model used. Pressure on these no-slip faces was extrapolated

from the near-wall cells. The reference point for pressure was set at the centre of the inlet

face in each case, where fluctuations were extremely small, typically less than 0.1% of the

size of the fluctuations near the cube.

5.6.4 Domain Size

In order to estimate the streamwise domain lengths needed to eliminate boundary effects

on the solution in the near-cube region, preliminary simulations were carried out on Mesh

4, (Table 10) with extrusions of different lengths added to the mesh both upstream and

downstream. When upstream extrusions were added, the distance from the centre of the

cube to the outlet, or downstream length, was fixed. The different distances from the

inlet to the cube centre, or upstream lengths, that were trialled were Lu = 12.5D, 18.75D

and 25D. When downstream extrusions were added, the upstream length was fixed, and
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the different distances from the cube centre to the outlet were Ld = 15D, 20D, 25D and

50D. The k − ε model was chosen for this purpose. The pressure at the cube side and

the streamwise velocity near the trailing edge (Figure 38) were recorded as for the mesh

refinement.

Results are presented for ReD = 5600. The pressure was more sensitive to the outlet

length and the velocity was more sensitive to the inlet length. Fluctuations in both

pressure and velocity had become nearly independent of the downstream length for Ld >

25D; the difference in the solutions with Ld = 25D and Ld = 50D was much smaller than

the differences between the solutions with Ld = 20D and Ld = 25D (Figures 41a 41b), and

was only ∼ 3% the size of the fluctuations. As a result, Ld was set at 25D for all “final”

simulations that were used for making comparisons with other models or data. Following

the same reasoning, Lu was also set at 25D for “final” simulations, as the solution had

become nearly independent of Lu at this length (Figures 40a, 40b). These distances were

chosen for accuracy more so than practicality; they eliminated the inlet and outlet lengths

as contributing variables while requiring more computational resources. It is clear that in

many cases shorter inlet and outlet lengths would be sufficient for engineering purposes,

for example Lu = 12.5D and Ld = 20D. However, in terms of computational resources

these inlet lengths did not make the simulations infeasible as the streamwise cell length

could be stretched towards the inlets and outlets where streamwise gradients were low,

while having insignificant effect on the results. The same size domain was used for “final”

simulations at all three ReD numbers.

5.7 DNS

All DNS calculations presented here were carried out using Incompact3d [35], an open-

source code that was first introduced and described in [36]. This code is designed specif-

ically for high-fidelity simulations of single-phase incompressible flows, and is adapted

towards use on High Performance Computing Clusters [37]. The equations solved by

Incompact3d may be expressed as:

∂ui
∂xi

= 0 (66)

∂ui
∂t

= −1

2

(
∂uiuj
∂xj

+ uj
∂ui
∂xj

)
− ∂p

∂xi
+ ν

∂2ui
∂x2

j

+ fi (67)
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Figure 40: Change in fluctuating solution with different inlet lengths, k − ε, ReD = 5600
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based on the Navier-Stokes equation in skew-symmetric form with a uniform density of

ρ = 1 and with an external forcing function fi. Gravitational forces are assumed to be

negligible compared to the impulsive forces. Collecting together several terms to set:

F k = −1

2

(
∂uiuj
∂xj

+ uj
∂ui
∂xj

)
+ ν

∂2ui
∂x2

j

(68)

the authors described the time advancement by means of a fractional step method:

u∗i − uki
∆t

= akF
k + bkF

k−1 − ck
∂p̃k

∂xi
+ ckf̃

k+1
i (69)

u∗∗i − u∗i
∆t

= ck
∂p̃k

∂xi
(70)

uk+1
i − u∗∗i

∆t
= −ck

∂p̃k+1

∂xi
(71)

where the ˜ symbol overhead denotes an average value over a given sub-step:

p̃k+1 =
1

ck∆t

∫ tk+1

tk
pdt (72)

f̃k+1
i =

1

ck∆t

∫ tk+1

tk
fidt (73)

The particular fractional step method employed was a third order Runge-Kutta type

method. The scheme follows a description in [82], where a class of such methods is outlined

based on criteria set on the coefficients. These criteria allow them to overwrite previously

stored solution history at each sub-step while ensuring that there is no accumulation

of the dominant round-off errors passing from sub-step to sub-step, hence reducing the

necessary data held to one memory location for each position and velocity component. For

this reason they are sometimes said to be “low-storage” methods. This is essential in the

case of large simulations requiring many individual cells. The introduction of solid regions

in the domain is achieved by an immersed boundary method, or IBM, where a velocity

field is imposed on the solid region that satisfies the no-slip condition at the immersed

boundary walls, using information obtained in the fluid region. This target velocity is set

in such a way as to reduce spurious oscillations near the walls by improving the regularity

of the solution in the immersed wall region [19]. Rather than continuity being strictly

verified across the whole domain, the code solves a modified Poisson equation for the
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pressure adjusted to allow for this modified velocity field:

∇2p̃k+1
i =

1

ck∆t

∂(1− ε)ui
∂xi

(74)

where ε is set to 0 and 1 outside and inside the solid body respectively. Notably, this

means that continuity is still satisfied within the region that represents the physical fluid;

the continuity may be violated only in the region that represents the immersed solid,

which is free to act as a source/sink in the process of aiding regularity of the solution

near the border between the two. In order to reduce computational cost, the pressure is

obtained by solving a Poisson equation in spectral space making use of 3D FFT routines

to greatly increase efficiency. Spatial discretisation follows a finite-difference method

using compact schemes on Cartesian meshes that are of high order, allowing it to reduce

the required number of computational cells relative to lower order methods; there is a

reduction of a factor of two in each direction for the number of grid points. In the bulk,

it employs a compact sixth-order formulation that requires five point stencils for both

the first and second order derivatives. In the cases of symmetric, anti-symmetric and

periodic boundary conditions the stencils are employed unmodified, with no ghost nodes

required. They are not added in the case of no-slip boundaries either - rather single-sided

formulations are used that are third order accurate for both first and second derivatives

- making use of three and four stencil points respectively. At the second near most cells,

fourth order accurate schemes are used before passing to full sixth order accuracy by the

third cell.

5.7.1 Domain Size

The domain size was chosen based on a balance between the need to represent the same

physics encountered in the experiments and practicality, as a great deal of computational

resources were required. Based on the channel height Ly = D, the domain streamwise

length was Lx = 43D, and the domain width was Lz = 25D, as in the experiments (Figure

42).

In order to achieve near-fully-developed flow conditions upstream of the blockage,

there was a distance of 27D from the inlet to the upstream cube face. At each timestep,

the velocity across the “recycling plane” 7D from the inlet was fed back into the inlet as
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Figure 42: Channel dimensions and cube location for DNS simulation

the inlet boundary condition. This first 7D long “recycling region” part of the domain

was used in order to simulate fully-developed flow as an inlet condition. Fully-developed

turbulent channel flow in a wide rectangular duct at a similar Re was carried out in [34],

where the outlet velocity at x = 2πD was recycled on each timestep to provide the inlet

velocity. These authors found that two-point correlations for all three velocity components

were near zero 3.5D downstream of the inlet.

In the current study, initialisation of turbulence was provided by first running a coarser

solution on a smaller domain. In this preliminary simulation, the solution was taken 5D

downstream of the cube where turbulence had been triggered by interaction with the

cube, and the turbulent flow was fed back into the inlet. Once this initial turbulent flow

had passed once through the domain, a recycling plane was set 5D from the inlet and

the solution was fed back into the inlet at each timestep. This simulation was allowed

to develop until the entire field appeared turbulent, after the turbulence had spread to

the domain edges. By this point, it had passed through the domain many times. This

preliminary solution was then taken and interpolated onto the grid of the larger domain,

and copied where necessary to fill the domain with turbulent flow. The simulation was

then allowed to develop with the recycling plane set 7D from the inlet. The flow passed

many times through the domain until the turbulence had spread throughout, such that

the entire field appeared turbulent. From this point on, probes were employed to monitor

the solution at various points in the domain, and statistics were collected to monitor

development of the solution. It was not known a priori what effect the blockage would

have on the solution in the recycling region; a small effect of the blockage on the solution

at the recycling plane could feasibly become magnified as it is repeatedly fed back in

at the inlet. The distance from the recycling plane to the blockage was 20D; this was

long enough to ensure that a URANS solution was nearly independent of inlet length in
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a similar case (Section 5.6), when a fixed inlet profile was applied. After a number of

shedding cycles, a mean velocity profile could be read at the recycling plane along the

line (x = 7D, y = 0, z). In a completely unblocked channel having the same boundary

conditions this would be expected to be a simple straight line, but there was a very slight

dip near the centre directly upstream of the block; mean velocity was plotted within the

recycling plane, 7D from the inlet. As the dip was only approximately 1.4% of Ub, the

upstream length was considered sufficient. From the downstream cube face to the outlet

there was a distance of 15D; there were no negative streamwise velocities at the outlet.

URANS models at ReD = 5600 had required slightly more than this for the fluctuating

pressure at the cube side to become unaffected by the outlet boundary (Section 5.6), but

the fluctuating velocity near the cube did not change much with a greater outlet length.

Ideally, a larger outlet length would have been used, but it was necessary to control the

domain length to reduce the cost of the simulation.

5.7.2 Meshing

The mesh used was Cartesian, having nx = 1025, ny = 129 and nz = 1024, a total of

135M cells. Grid points were arranged in a regular fashion following x and z and the mesh

was stretched in the y direction such that the mesh was very fine near the large channel

walls.

5.7.3 Boundary Conditions

Boundary conditions for velocity in the streamwise direction were of the inflow/outflow

type. At the inlet, the velocity was recycled as explained in the above section. At

the outlet, streamwise velocity gradients were set to zero. At y = ±Ly/2, a no slip

Dirichlet condition was imposed on the velocity via u∗ (Equation 69). At z = ±Lz/2, a

periodic boundary condition was applied on the velocity. For the pressure at the external

boundaries, homogeneous Neumann conditions were imposed throughout. Within the

immersed boundary region itself, a pressure field is calculated from the modified Poisson

equation (Equation 74), where the right hand side is zero everywhere but right near the

boundary.
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5.7.4 Timestep

The CFL condition, necessary but not sufficient to guarantee stability of the numerical

scheme, would have been met with a timestep of ∼ 0.04, defined by ∆t = D/Ub. However,

a trial and error process was followed before settling on the final timestep size of 0.000625,

as the timestep requirements were difficult to estimate a priori. Larger timesteps resulted

in instabilities developing in the solution. The solution was monitored at several points

within the domain and even the smallest fluctuations appeared very well resolved in time

at the final chosen timestep, so it was considered that there was no need to further reduce

it.
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6 Computational Results

6.1 URANS

6.1.1 Fluctuating Pressure

The pressure at the centre of the side cube face, located at (x = 0, y = 0, z = D/2), was

used to make comparisons between the unsteady predictions of the two models, like in

the experimental setup. All pressures were negative relative to the reference point which

was set at the centre of the channel inlet 25D upstream of the blockage. Basic trends

with respect to ReD number were all as expected, that is to say that the amplitude,

the magnitude of the mean value and the frequency of the oscillations increased with

increasing flowrate for both models (Figures 43a, 43b, 43c). At ReD = 5600 the results

matched quite well in every respect. At ReD = 10400 the frequencies matched quite well

but the amplitudes and mean values did not. Again, at ReD = 15600 the frequencies

matched quite well but the amplitudes and mean values did not. At first glance, the

graphs tend to follow an odd pattern; at ReD = 5600 they overlay each other to a large

extent with similar mean values, at ReD = 10400 the k− ε overlays the upper part of the

EBRSM plot with a higher mean, and yet at ReD = 15600 the k − ε appears to move

back towards the mean value of the EBRSM plot, overlaying a more central part of it.

This apparent discrepancy is down to the great increase in amplitude of the EBRSM

fluctuations between the second highest and the highest ReD numbers; the means carry

on diverging from each other with increasing ReD number but the k−ε plot is nonetheless

covered by the EBRSM plot due to this huge increase in amplitude, that is to say that

the EBRSM peaks are much higher than those of the k − ε and the troughs are also

much lower.

6.1.2 Fluctuating Velocity

In order to compare the ability of the two unsteady models to predict the unsteady

velocity fields, the streamwise velocity was monitored at (x = 5D/4, y = 0, z = 5D/4).

The same general trends were evident as in the fluctuating velocity, that is to say that

frequency, mean values and amplitudes all increased with increasing ReD (Figures 44a,
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Figure 43: Fluctuating pressure at cube side (x = 0, y = 0, z = 0.5D)
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ReD 5600 10400 15600

ρU2
b 520 1791 4030

Pressure Amplitude k − ε (Pa) 59 277 602
Pressure Amplitude EBRSM (Pa) 88 305 1769

Mean Pressure k − ε (Pa) -322 -928 -2088
Mean Pressure EBRSM (Pa) -316 -998 -2446

Period k − ε (s) 0.091 0.050 0.036
Period EBRSM (s) 0.084 0.047 0.033

Table 11: Fluctuating pressure at cube side (x = 0, y = 0, z = D/2), k − ε vs EBRSM

ReD 5600 10400 15600

Ub 0.722 1.34 2.01
u amplitude k − ε (m/s) 0.0499 0.118 0.186

u amplitude EBRSM (m/s) 0.0879 0.311 0.645
Mean u k − ε (m/s) 0.887 1.62 2.27

Mean uEBRSM (m/s) 0.912 1.58 2.17

Table 12: Fluctuating streamwise velocity behind trailing edge, k − ε vs EBRSM

44b, 44c). Unlike in the case of the pressure discussed above (Section 6.1.1), the relative

trends in mean value were clear; the mean predicted by the EBRSM was slightly lower

at the lowest flowrate, slightly higher at the central flowrate and higher still at the highest

flowrate (Table 12). The scale on the graph was chosen in order to make clear the relative

size of the fluctuations, which make the differences in the mean values appear exaggerated;

the relative difference in the means was 5%, 2.4% and 11% at ReD = 5600, 10400 and

15600 respectively.

6.1.3 Flow Structure Overview

The mean flow structure in the immediate cube vicinity consists of several key features,

centred around vortex cores, which may be loosely grouped into upstream, side and down-

stream sections (Figure 45). The particular method used to find the vortex cores is that

introduced in [67]. This work makes use of the “jerk vector” b, the components of which

are defined by:

bi =
D2ui
Dt2

(75)

The author summarised the methodology in the following manner: “the core line is the

location of all points where b is parallel to u”. One of the principal advantages of defining

vortex core lines in this manner is that second-order derivatives of the velocity are sufficient
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Figure 44: Fluctuating streamwise velocity behind trailing edge at
(x = 1.25D, y = 0, z = 1.25D)
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as opposed to the the third-order derivatives needed for a more mathematically rigorous

approach. The inaccuracy inherent in this methodology is only present where core lines

are strongly curved. Core lines are near-straight where quantitative comparisons are made

between the various simulations and/or experiments. Upstream of the cube, the mean

flow impinges on the block and flows out to the sides in the z direction, but is constrained

by the channel walls at y = ±D
2

, causing it to flow back on itself near the channel walls,

resulting in “upstream vortices”. The upstream vortices are therefore roughly analogous

to those observed upstream of the cube in [49], that is to say they consist of flow moving

down from the centreline and back out along the channel floor. However, due to the

extra degree of symmetry about y = 0 they appear in pairs. The “side vortices” may be

viewed as the result of simultaneous shear within two perpendicular planes. Firstly, sharp

velocity gradients in the xz planes just behind the leading edges create the beginnings of

a recirculation bubble similar to that shown in [48]. Secondly, shear in the xy planes due

to the channel walls deforms what would otherwise be a vortex aligned in the y direction,

such that the vortex cores follow a horseshoe shape with a break in the centre, attached

near the upper and lower corners at the leading edges of the cube. These side vortices

that appear separated in the mean velocity field appear to be joined at certain parts of

the cycle such that the vortex core passes the y = 0 plane. At other parts of the cycle,

this critical point does not appear as the fast moving flow washes away the recirculation

bubble. The “rear vortices” may be viewed as representing the statistically preferential

locations of vortices behind the cube that are separated in time, rather than the location

of two vortices separated in space that appear simultaneously. This is evident in the

instantaneous velocity (Figure 46), where often only one vortex core appears behind the

cube at one time; this vortex location tracks from side to side and moves away downstream

following the dominant shedding period. There is a small part of the shedding cycle

during which two weak individual vortices are present (Figure 47) but one of these is soon

dissipated as it is washed downstream. As this process takes place twice per cycle, on

opposite sides of the symmetry plane at z = 0, there are two mean vortices.

Some differences in the overall structure of the calculated flow field may be highlighted

by plotting contours of the mean velocity, beginning from near the leading edges, passing

the cube, and throughout the recirculation region together. In the y = 0 plane that is

±D
2

from the large channel faces, the shape of the contour U = 0 is different in the k − ε
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Figure 45: Mean vortex cores in the cube vicinity

Figure 46: Instantaneous flow in the cube vicinity, showing vortex cores and their
intersection of the velocity field in the plane parallel to the large faces that bisects the

duct at y = 0
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(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3 (d) Snapshot 4

(e) Snapshot 5 (f) Snapshot 6

Figure 47: Snapshots of instantaneous velocity showing location of main vortex cores at
different phases, from beginning of period to halfway through. EBRSM , ReD = 5600
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ReD 5600 10400 15600
Lrexp 20.2mm± 0.1mm 18.7mm± 0.1mm 17.8mm± 0.1mm
Lrk−ε 22.1mm 20.3mm 19.6mm

LrEBRSM 19.2mm 11.3mm 9.8mm

Table 13: Recirculation length, k − ε vs EBRSM

simulations (Figures 48a, 49a) to the EBRSM simulations (Figures 48b, 49b). One way

of quantifying this is to look at the recirculation length, Lr, defined as the length along

the centreline at (y = 0, z = 0) at which the mean streamwise velocity drops to 0 (Figure

48a). Results for Lr are summarised in Table 13. At ReD = 5600, the recirculation length

predicted by the k − ε model is longer than that predicted by the EBRSM model; the

difference is more noticeable at ReD = 10400 and even more so at ReD = 15600. Both

models follow the general trend of a decreasing Lr with increasing ReD. The shapes of

the recirculation region, bounded by U = 0 are also noticeably different, with the k − ε

model showing a sharp return of the contour towards the centreline just after the cube

before a longer, more slender recirculation region appears, whereas the EBRSM predicts

a smoother overall shape.

126



(a) k − ε

(b) EBRSM

Figure 48: Contour U = 0 within plane y = 0, ReD = 5600
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(a) k − ε

(b) EBRSM

Figure 49: Contour U = 0 within plane y = 0, ReD = 15600
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6.1.4 Solution Upstream

Upstream of the blockage, there are already differences between the k − ε and EBRSM

models. The fully developed solutions showed differences of only ∼ 1.4% in the centreline

velocity at (y = 0, z = 0). Vector plots of velocity upstream of the cube in the plane

y = 0 show very little difference in the solutions. However, velocity in the plane z = 0

(Figures 50a and 50b) shows clear differences in the size of the z aligned vortices.

This is not surprising given that the k− ε model used does not account for anisotropy

in the Reynolds stress field. For illustration, in fully developed duct flow, an inability

of a model to allow for Reynolds stress anisotropy in planes normal to the flow results

in an inability to predict corner vortices that are aligned with it, [58], which motivated

the development of Explicit Algebraic Reynolds Stress methods [28] and non-linear k− ε

models [76]. In 3D flow regions of high shear and highly anisotropic fields for both velocity

and Reynolds stresses, this effect should also be expected to result in different predictions

for vorticity. One way of highlighting this is to compare the results for turbulent kinetic

energy (Figures 51a and 51b), where k for the EBRSM model is calculated as the trace of

the Reynolds stress tensor; the three diagonal elements involved are not in general equal.

Differences in the value of k in the boundary layer exist already in unblocked channel flow

(Section 5.6.1.1), but not at the centre line. Just upstream of the cube, a large increase

in k is predicted by the k − ε near the centreline which does not appear in the EBRSM

simulation. This is due to the well-known “stagnation point anomaly” [17], an issue that

results in high values for k at stagnation points.

Unlike the comparison made in the plane z = 0, the k−ε and EBRSM mean velocity

fields appear to show very good qualitative agreement on the y = 0 plane(Figures 52a,

52b). This is to be expected as transport in this faster-moving fluid is dominated by

convection, whereas in the the z = 0 plane slower-moving fluid and high k values near

the channel walls induces the Reynolds stresses to play a larger part.
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(b) EBRSM

Figure 50: Mean velocity upstream of the blockage in the plane z = 0,ReD = 5600
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Figure 51: Mean Turbulent Kinetic Energy upstream of the blockage in the plane z = 0,
ReD = 5600
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Figure 52: Mean velocity upstream of the blockage in the plane y = 0,ReD = 5600
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ReD 5600 10400 15600
k − ε (±2.8mm,±5.1mm) (±2.75mm,±5.1mm) (±2.9mm,±5.1mm)

EBRSM (±2.95mm,±4.85mm) (±2.7mm,±4.9mm) (±3.15mm,±4.70mm)

Table 14: (y, z) location of intercept between mean vortex cores of side vortices and
plane (x = 0, y, z), to nearest 0.05mm

6.1.5 Solution near the Cube Sides

The vortex cores associated with the mean “side vortices” (Figure 45) extend from the

leading corners downstream and towards the plane y = 0 where they approach each

other but do not meet. As such, there is no clear point in this plane that may be said

to characterise their location. Contrarily, comparison of the mean velocity in the plane

x = 0 (Figures 53a, 53b) yields the locations of the two vortex strands and provides

information regarding gradients due to the combined effects of both the cube sides and

the channel walls. The coloured mean velocity magnitudes highlight how the flow may

be separated into two main cells; one cell consists of slow moving fluid through which

the side vortices pass and the other is fast moving where streamwise motion dominates

the flow. Within the slow region, a zone of near-stagnant fluid stretches from near the

uppermost corner to the lowermost, following a curved horseshoe form, maintaining it’s

distance from the wall near the central plane region. This basic pattern is unchanged at

the highest Reynolds number (Figures 55a, 55b). However, at each Reynolds number the

horsehoe forms appear slightly different for the k − ε and EBRSM models. A pocket

of faster moving fluid sandwiched between near-stagnant fluid and the cube flows in the

anti-streamwise direction back past the cube faces (Figure 54).

As outlined above (Section 6.1.4, the velocity predictions from the k−ε and EBRSM

in general match quite well upstream of the cube in the central y = 0 plane. Much larger

differences are seen in the region of the cube side, and may be seen to have a knock-on

effect in the recirculation region. Contours of U = 0 from near the cube’s leading edges

to the recirculation region (Figures 48a and 48b) show a side recirculation bubble that

extends much further downstream for the EBRSM model at ReD = 5600.

The same comparison made at ReD = 15600 shows better agreement in one respect,

essentially the recirculation bubble tucks in behind the cube at a shorter distance down-

stream for the EBRSM model, bringing it more in line with the k − ε model (Figures
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(a) k − ε

(b) EBRSM

Figure 53: Mean velocity to the cube side in the plane x = 0, ReD = 5600
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Figure 54: Mean velocity to the cube side in the plane y = 0, EBRSM , ReD = 15600

49a and 49b). However, beyond this the downstream solution is quite different.
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(a) k − ε

(b) EBRSM

Figure 55: Mean velocity to the cube side in the plane x = 0, ReD = 15600
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6.1.6 Solution in the Recirculation Region

Whereas upstream of the cube, the mean flow was very similar in structure, in the flow

past the cube differences appeared. This is particularly evident in the z = 0 plane within

the recirculation zone. This region is bordered in each case by a crescent shaped pocket of

slow moving fluid, downstream of which streamwise components are all positive (Figures

56a,56b,57a,57b). Within the recirculation zone, the k − ε model predicts the separation

of the fastest-moving flow into two separate cells above and below the central y = 0 plane,

whereas the EBRSM predicts a single fast moving pocket of fluid that forms a crescent

shape with the largest velocity magnitudes found near the central plane.

In order to further highlight these differences, contours of the mean velocity magnitude

may be plotted (Figures 58a,58b, 59a,59b). The basic structure is the same for each

model at the two different Reynolds numbers, although each feature is closer to the cube

at ReD = 15600. Due to the very short recirculation zone predicted by the EBRSM at

ReD = 15600, the zone of high velocity magnitude is smaller and the magnitude not so

high.

6.2 DNS

The DNS simulations required large computational resources to run and as a result not

many shedding cycles could be captured in time to form a fully statistically converged

dataset; mean values for the velocity showed unexpected asymmetry. This means that the

quantitative comparisons that can be made are limited in accuracy, but it is nonetheless

possible to see certain basic patterns in the solution that may serve to compare the

URANS models with. All positions are converted to mm, and the velocities are presented

in normalised form.

6.2.1 Flow Structure Overview

Contours of the time-averaged streamwise velocity U = 0 in the near cube region within

the plane y = 0 are sufficiently well formed to compare the URANS solution with (Figure

60). The recirculation length LrDNS is equal to 19.7mm± 0.1mm, which is closer to that

predicted by the experiments and the EBRSM model than it is to the k − ε calculation

(Table 13). The general shape of the recirculation region in y = 0 matches better with
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(a) k − ε

(b) EBRSM

Figure 56: Mean velocity downstream of the blockage in plane z = 0, ReD = 5600
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(a) k − ε

(b) EBRSM

Figure 57: Mean velocity downstream of the blockage in plane z = 0, ReD = 15600
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(a) k − ε

(b) EBRSM

Figure 58: Mean velocity contours downstream of the blockage in the plane z = 0,
ReD = 5600
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(a) k − ε

(b) EBRSM

Figure 59: Mean velocity contours downstream of the blockage in the plane z = 0,
ReD = 15600
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Figure 60: Contour U = 0 within plane y = 0, DNS, ReD = 5600

the EBRSM (Figure 48b) than it does with the k− ε (Figure 48a); the contour follows a

smooth curve as it extends downstream past the cube sides rather than suddenly tucking

in behind the cube.

6.2.2 Solution Upstream

Upstream of the block in the plane z = 0, two very clear vortices may be seen (Figure

61) near the upper and lower channel faces as observed in the URANS simulations, but

not enough data has been collected for a clear symmetrical pattern to form. In the plane

y = 0, the mean flow-field appears more symmetrical (Figure 63a); upstream velocity

fluctuations in this plane appear to be smaller than those in z = 0, and the flow is

dominated by the streamwise component until right near the cube where it sweeps out

equally to both sides 63a). This dominance of the main flow is evident in (Figures 63a

and 63b); the flow does not appear significantly different from snapshot to snapshot, nor

does any given snapshot appear very different from the mean.

It is tempting to describe the well-known shedding mechanism for flow around a long

cylinder as a 2D phenomenon although it has been shown that there is a strong third

component to it [8]. Following this thinking, one might erroneously expect that any

large-scale unsteadiness in the instantaneous upstream flow should be aligned with the

y = 0 plane, being triggered by the shedding downstream of it, but this is not the case.
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Figure 61: Mean velocity upstream of the blockage in the plane z = 0, DNS,
ReD = 5600

Figure 62: Mean velocity contours upstream of the blockage in the plane z = 0, DNS,
ReD = 5600
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(a) Mean

(b) Instantaneous

Figure 63: Mean and Instantaneous velocity upstream of the blockage in the plane
y = 0, DNS, ReD = 5600
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(a) Vortices equal strength, same
streamwise location

(b) Top vortex stronger and further
upstream

(c) Bottom vortex stronger and further
upstream

Figure 64: Instantaneous snapshots illustrating different vortex locations and strengths,
upstream of the cube in z = 0 plane, DNS at ReD = 5600
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The upstream vortices may be found in different positions, having different strengths

(Figure 64). On average, they are located approximately 2mm upstream of the cube

near the duct floor and ceiling and are approximately of the same strength, others are

sometimes found ∼ 0.5mm upstream of that location and are stronger. Flow in these

corner regions is loosely analogous to that in [39], and has the same structure, albeit with

an extra degree of symmetry. These authors reported a bi-modal distribution for velocity

in the upstream corner zone, so it is possible that the same mechanism is responsible

for the fluctuation in movement and strength of the upstream vortices in the current

case. In the current DNS results, the fluctuations of the two vortices seemed to be out of

phase; when one was strong the other was weak and when one moved upstream the other

did not. The mean velocity (Figure 61) appears to show smaller, much less prominent

vortices further upstream of the primary ones, although these are hard to discern. These

may be due to the knock-on effect of the primary ones; (Figure 64c) appears to show

a small counter-rotating vortex immediately upstream of the larger one. Despite the

unsteadiness of the incoming flow, and the tendency for these vortices to move back and

forth, changing in strength, they were strong enough to appear clearly in every snapshot

without exception.

6.2.3 Solution near the Cube Sides

The mean velocity at the cube side is presented as before in the plane x = 0 (Figure

65). The basic structure is similar to that predicted by both the k − ε model (Figure

53a) and the EBRSM model (Figure 53b). It is not immediately clear by viewing the

vector map (Figure 65) which of the two models give the better match, this will be

further investigated in (Section 7.4). Due to incomplete convergence to self-repeating

sheding, there is an anomaly on the location of the intersection of the side vortices with

the plane. There is a slight degree of asymmetry, the upper of the two is located at

(y = 3.14mm, z = 5.14mm) and the lower is located at (y = −3.43mm, z = 5.17mm). Of

the two URANS models, neither is clearly a better match with the DNS solution.
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Figure 65: Mean velocity to the cube side in the plane x = 0, DNS, ReD = 5600

6.2.4 Solution in the Recirculation Region

In the downstream recirculation zone, the mean flow does not appear to be completely

symmetrical, probably due to the limited dataset. However, patterns in the mean flow are

clear enough to discern which of the two URANS models matches better. The recirculation

region, bounded in the plane z = 0 by a crescent shaped patch of low mean velocity

magnitude, shows a clear patch of high velocity near the central plane, returning towards

the cube rear (Figure 66). This is the general form predicted by the EBRSM model

(Figure 56b), as opposed to the separated cells of high velocity predicted by the k − ε

model (Figure 56a). As mentioned previously, the recirculation length LrDNS = 19.7mm

matches well with the experiments and the EBRSM model, but not so well with the

k − ε. The instantaneous solution in the plane y = 0 may be used to illustrate the

shedding phenomenon (Figure 67). The snapshots were chosen equally spaced in time,

and roughly in phase with the EBRSM simulation (Figure 47). Due to the high degree

of turbulence, it is harder to clearly distinguish the precise location of vortex cores. It is

not clear that the shedding follows a perfectly regular period, this is not necessarily to

be expected. In fact the experimental results for pressure at the cube side face (Section

4) suggest that this is not the case. Nonetheless, it is clear that vortices aligned with y

are generated and sweep downstream in qualitatively the same way as predicted by the
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Figure 66: Mean velocity downstream of the blockage in the plane z = 0, DNS,
ReD = 5600

URANS simulations.
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(a) Snapshot 1 (b) Snapshot 2

(c) Snapshot 3 (d) Snapshot 4

(e) Snapshot 5 (f) Snapshot 6

Figure 67: Snapshots of instantaneous velocity from DNS simulation, from the
beginning of the period to halfway through
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7 Comparisons and Validation

In order to make fair comparisons between the different instances of experimental results

and numerical simulation, it is necessary to non-dimensionalise the results by appropriate

characteristic dimensions. In what follows throughout this section, lengths will be non-

dimensionalised by D, which is the cube dimension and also the channel height. Velocities

will be non-dimensionalised by Ub, the duct bulk velocity, and pressures will be normalised

by ρU2
b . The turbulent kinetic energy k is non-dimensionalised by U2

b . Reference data are

provided both by experiments and a DNS simulation, and the two are compared where

possible; DNS data are available at ReD = 5600 only and the PIV measurements are only

available in the wake. Experimental results from the pressure tapping are available at all

three Reynolds numbers, and are compared with the URANS calculations.

7.1 Fluctuating Pressure at Cube Side

The phase-averaging technique carried out previously (Section 4) provides an estimation

of the magnitude and frequency of the periodic shedding; it averages out chaotic turbulent

fluctuations and is able to adjust to slow changes in phase and frequency so as to allow for

irregularities in flow rate. The phase-averaged pressure signals from the experiments are

plotted together with the URANS results at the three ReD numbers (Figures 68a, 68b,

68c). Due to the small size of the fluctuations, which are of the order of tens of Pa, the

error bars appear large at ReD = 5600. The amplitude of the phase-averaged pressure

fluctuations predicted by the URANS models are in agreement with the experiments at

this flow rate; the k − ε model matches extremely well the phase-averaged data and the

EBRSM matches the “adjusted amplitude” very closely too. However, due to the size

of the error it can not be demonstrated that this is not coincidence. At the higher ReD

numbers, the models both predict a pressure amplitude far higher than that extracted

from the data via the phase-averaging technique.

The phase-averaged pressure is calculated from the original signal based on periods

that are extracted from the filtered signal (Section 3), and that are used to produce a

phase-averaged pressure signal with a certain amplitude. The process is designed to allow

for small deviations in frequency and phase, but it is likely that the reported amplitude
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(a) ReD = 5600 (b) ReD = 10400

(c) ReD = 15600

Figure 68: Normalised pressure at the cube side, experiments vs URANS. Plotted with
experimental error bars, including adjusted pressure amplitudes
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was reduced during this process. The spectrum of the fluctuations at the higher two ReD

numbers was much richer than at ReD = 5600; the peaks were much less clear and a

lot more was filtered out to leave the signal that eventually defined the period cut-off

times. One result of this was that the peaks in amplitude of the phase-averaged pressure

appeared lower than those present in the raw signal. The data for phase-averaging was

collected from the original signal so as to mitigate this effect, and resulted in an amplitude

slightly higher than that of the filtered signal, but differences in phase between the peaks

in the filtered signal and the large, slow fluctuations meant that these latter components

might be expected to corrupt the process. This was thought to be a possible explanation

for the lower amplitude found. In an attempt to allow for this, the heights of the peaks

in the original signal were collected visually for hundreds of periods, until their mean

height had ceased to change. The slightly higher average peak heights obtained by this

method are then used to scale up the phase-averaged amplitudes and are presented as

“Exp Manually Adjusted” points. (Figures 68a, 68b, 68c). These scale-up ratios were

0.35, 1.18 and 1.19 at ReD = 5600,10400 and 15600 respectively. At ReD = 5600 (Figure

68a) this process shifted the experimental result towards the EBRSM prediction; before

adjustment it closely matched the k − ε result. However, the movement of the phase-

averaged values is within the range of the error bars, so this does not lead to a firmer

conclusion as to which model gives a superior prediction. At the higher two Reynolds

numbers (Figures 68b, 68c), this adjustment was largely irrelevant considering the size of

the differences between the computations and the experiments. It may be noted that both

of the URANS methodologies show an increase in normalised pressure amplitude when

passing from the lowest Reynolds number to the highest whereas the experimental results

show a decrease. There is no reason to presume that the phase-averaged experimental

results did not represent well the amplitude of the fluctuations captured by the transducer,

as the manual peak-finding process was a second check regarding this point. It is possible

that despite the efforts made, there were some bubbles in the small hole of the pressure

tapping, that could have led to some damping, which would lead to a reduction in captured

amplitude. However, there were also preliminary tests made using a different cube with

a hole diameter of 1mm rather than 0.5mm, which would be less prone to blockage.

These were analysed using the trial-and-error “constant period method” (Section 3). By

this approach, the amplitudes at the three Reynolds numbers 5,800, 10,900 and 15,500

152



ReD 5600 10400 15600
Normalised pressure amplitude, experimental 0.154 0.062 0.04

Normalised pressure amplitude, adjusted 0.208 0.074 0.05
Normalised pressure amplitude,k − ε 0.150 0.208 0.227

Normalised pressure amplitude, EBRSM 0.224 0.530 0.664

Table 15: Fluctuating pressure at cube side (x = 0, y = 0, z = D/2), k − ε vs EBRSM

ReD 5600 10400 15600
St, k − ε 0.140 0.138 0.136

St, EBRSM 0.152 0.147 0.149
St, experimental 0.122 0.123 0.143

Table 16: Fluctuating pressure at cube side (x = 0, y = 0, z = D/2), k − ε vs EBRSM
vs Experiments

were 0.07, 0.03 and 0.02. These Reynolds numbers are very close to those of the final

experiments. As the amplitudes produced in these preliminary experiments are lower

than those of the final experiments, and are not as good a match, it seems that the

larger hole may not have improved anything. One other uncontrolled factor that might

have affected the amplitude of shedding was fluctuations in the duct flow rate, it was not

possible to verify how steady the flow was over time periods of the order of a shedding

cycle. The higher flow rates at the higher two ReD and the greater movements in free

surface height in the overhead reservoir may have been responsible for the entrainment of

more air into the feed circuit, which may have obstructed flow in the pipework somewhat;

vibrations and noise in the pipes suggested that there was some unsteadiness. In order

to completely eliminate this effect a sturdier flow-rig with a larger overhead tank would

have been required; this was beyond the scope of the study for practical reasons. Over

the three cases, there was a large discrepancy between the amplitude predictions from the

two models (Table 15), and the k − ε model matched better with the data to a certain

extent.

In conclusion, both the k − ε and the EBRSM models show quite good agreement

with the experimental results at the lower flow rate; the amplitude predicted by the

k − ε matches the phase-averaged value to within ∼ 4% and the EBRSM matches

the “adjusted” amplitude to within ∼ 4% also. The bounds of experimental error are

very large, and are based on the error quoted by the manufacturers, who calibrated it

before shipping. The error is ±50% of the phase-averaged amplitude of the signal read

at ReD = 5600. This is very large, and makes conclusions about relative accuracy of the
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two models necessarily limited; the EBRSM prediction is ∼ 40% higher than that of

the k − ε. The predictions do not match well at the higher two Reynolds numbers, but

it is unclear how much of this is down to limitations in the experimental setup and how

much is a result of limitations in the modelling process. Nevertheless, the k − ε model

appears to match better over the three flowrates. It is worth reiterating at this stage that

the major model developments that were introduced (Section 6) were designed to fit data

from steady flows. The extension to unsteady flow predictions is conceptually simple; an

unsteady term is introduced and a quasi-steady state is attained before marching forward

at each timestep. However, despite the great deal of effort made to accurately model

each element contributing to the steady-flow simulation, the thinking process was largely

decoupled from considerations of unsteadiness in the physics, this will addressed further

in “Conclusions” (Section 8).

7.2 Upstream

In order to compare quantitatively the values of mean velocity upstream of the cube,

plots have been made at a fixed value of x = −1.5D, 1D upstream of the leading face

(Figure 69). In the plane z = 0, the mean streamwise velocity U/Ub is plotted from the

lower duct face to the upper face. In the plane y = 0, the streamwise U/Ub and spanwise

W/Ub velocities are plotted from z = −1.5D to z = +1.5D, one cube height farther

out to the side than the respective cube faces. Not enough data has been collected to

completely smooth out the velocity profiles from the DNS results, but it is nonetheless

clear that a reasonably good match is found between all three of the methods, across each

of the comparisons made. A perturbation is seen in the mean spanwise velocity W/Ub,

where a small region of fluctuations is predicted by the DNS, upstream of the cube. In

the same place, a small, localised perturbation in mean streamwise velocity may be seen.

These perturbations are likely to be numerical in nature, and have an amplitude of no

more than 0.05Ub. The DNS solution quickly moves closer towards the URANS solutions

beyond these regions, which are ∼ 0.3D in size. It is not certain if these had a major

effect on the mean solution downstream, but they may have had some significance so they

will be considered in the discussion of the flow further downstream.
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Figure 69: Comparison of mean velocity profiles upstream of the cube at x = −1.5D
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Figure 70: Contours of U = 0 within the plane y = 0 near the cube sides

7.3 Cube Side

Contours for U = 0 in the plane y = 0 by the cube sides show a clear trend in the

shapes of the “side bubble” (Figure 70). Due to laser light reflections from the cube sides,

results from the PIV experiments were not helpful in this regard; only the DNS results at

ReD = 5600 are useful as a reference. These show a better agreement with the EBRSM

model near the leading edge, the “side bubble angle” formed by the contour and the

cube edge is a very good match near the leading edge. The side bubble angle remains

more or less fixed during the periodic fluctuations predicted by the URANS models, the

large scale unsteadiness begins downstream of it. Therefore, the relative performance of

the URANS models near the leading edge depends more on their ability to deal with

steady physics and is not too strongly affected by the periodic shedding motion. That the

EBRSM prediction of side-bubble angle should be so much better than that of the k− ε

might be taken as an indicator that predictions downstream should be better, as in this

region of very high shear near the leading edge the model is more successful. However,

downstream, the DNS contour moves back towards the centreline more quickly than that

of the EBRSM , approaching the k − ε prediction. At all three Reynolds numbers, the

k−ε predicts a lower side bubble angle and moves in behind the cube at a shorter distance
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downstream. It is also worth remembering that there was some discrepancy in the results

upstream of the cube (Figure 69); perhaps these affected the results.

In order to further investigate this, it is logical to compare velocity profiles from the

cube side face outwards in the z direction at different x locations (Figure 71). In all four

of the x locations, the k − ε model predicts a velocity trough that is lower than that of

the ERSM , and this trough is closer to the wall. In terms of an overall match along the

length of the profile, the EBRSM shows better agreement at x = −0.25D. By x = 0,

closest to the cube centre, neither of the two models is clearly better over the length of

the profile, although the k − ε has a trough value which matches well with that of the

DNS. By x = 0.25D, halfway between the cube centre and the trailing edge, the k − ε

clearly matched the DNS more closely. At x = 0.5D, in line with the cube’s rear face,

the k − ε still matches the DNS more closely. In conjunction with the U = 0 contours

(Figure 70), this serves to demonstrate model performance from the cube’s leading edge,

where the EBRSM matches better, to the trailing edge, where the k− ε matches better.

In Section 6, vector maps were presented showing the mean velocity in the plane x = 0,

which may be seen as cutting the domain into an upstream and a downstream section. In

the k − ε, EBRSM and DNS results, the two branches of the “side vortices”, as defined

by the vortex cores, were shown to pass through this plane. These were manifest as two

vortices apparent near the corners formed by the cube sides and the duct walls, roughly

aligned in the streamwise direction. The z coordinate of each of these vortices was about

±0.625D. Plots of the mean streamwise velocity U/Ub are shown along profiles which pass

roughly through these mean vortices (Figure 72); also, profiles of W/Ub are shown (Figure

73). The maximum size of the normalised V/Ub components was ∼ 4% (results are not

presented for these here). It is clear from the DNS results that there are insufficient data

to reach a statistically steady state, but certain rough conclusions can nonetheless be

drawn. Firstly, the DNS results for streamwise velocity along this profile match better to

those of the EBRSM model than the k−ε, when the entirety of the profile is considered.

Secondly, the EBRSM successfully predicts a dip in W near the central plane that is

present in the DNS data, and this dip is not seen in the k − ε predictions. The k − ε

and EBRSM solutions for W are actually close, but when the entirety of this profile is

considered it is fair to say that the EBRSM gives a better match despite the uncertainty

in the final converged result.

157



(a) x = −0.25D (b) x = 0

(c) x = 0.25D (d) x = 0.5D

Figure 71: U(z) extending out from the cube side in the plane y = 0, at different x
locations, x increasing from top-left to bottom-right
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Figure 72: U near the cube side from the floor to the ceiling
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Figure 73: W near the cube side from the floor to the ceiling

159



One might view the recirculation bubble as being the result of two different flows; the

first flow is entrained by the faster moving fluid in the bulk which tends to sweep fluid

away and the second replenishes the bubble by feeding fluid in from behind the cube. As a

result of this, the overall prediction of the side bubble is also dependent on the prediction

of the flow in the recirculation region, as will be discussed further on.

In order to further illustrate this, velocity “visualisation streamlines” have been pro-

duced that end inside the side bubble region in a small constrained “seeding plane” located

at x = 0. These “visualisation streamlines” are constructed by stepping forward a small

increment in the direction of the the instantaneous velocity vector, determining the align-

ment of the instantaneous velocity vector in the new location, and so on. It is through

the small “seeding plane” that the recirculating flow passes as it moves back upstream

close to the cube side, as may be seen by following the visualisation streamlines. The

seeding plane extends from the duct floor to the duct roof, and from z = 0.5D at the

cube side to z = 0.55D, an area in which the flow direction is principally opposed to

that in the channel bulk. Results are shown for k − ε and EBRSM (Figure 74) at the

same phase within the shedding cycle. The phase was determined by reference to the

fluctuating velocity at (x = 1.25D, y = 0, z = 1.25D) and the fluctuating pressure at the

cube side face as before. The length of the visualisation streamlines was also equal in

terms of number of incremental steps aligned with the velocity vector. The flow is highly

three-dimensional in nature in the cube vicinity, it is subject to shear in two planes and

detaches from the trailing edge. Therefore, it is not surprising that the predictions from

the two models are different, given the ability of the EBRSM to calculate the transport

of the Reynolds Stresses whereas the k−ε can not; as discussed above the EBRSM gives

superior predictions close to this region. These differences are manifest in the streamlines

given in (Figures 75, 76). It seems that the fluid that passes through this area has its

origins in slightly different regions in the two simulations. As the flow is unsteady, follow-

ing visualisation streamlines in the reverse direction does not strictly reveal the origins

of a fluid particle; they are not equivalent to streamlines in steady flow. However, it

may be assumed that they tell us qualitatively something about the regions of the flow

from which the fluid came, as long as this assumption is only made in regions where the

solution is relatively steady. Under this assumption, there is some proportion of the flow

that comes from upstream, past the leading edge near the duct ceiling and floor. In the
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k − ε simulation, these visualisation streamlines encroach further in towards the channel

centre, whereas in the EBRSM case they are confined to a smaller region right near the

duct ceiling and floor. The tendency of the flow to be slowed down as it becomes closer

to the the duct floor and ceiling allows it to become entrained, and this effect takes hold

closer to the central y = 0 plane in the k− ε case. At the part of the shedding cycle that

is displayed, the maximum value of streamwise velocity, as predicted by the EBRSM

model, is slightly higher than that of the k − ε (Figure 77). The relatively fast-moving

flow immediately downstream of the leading edge appears to sweep past the side bubble

in the EBRSM predictions as opposed to becoming entrained into it. The side bub-

ble predicted by the EBRSM is larger on both sides of the cube in this instantaneous

snapshot as well as in the mean, suggesting that its larger size would persist even if the

mean flow were steady downstream of it. As a result, it seems that the differences in the

model predictions within this region of the flow are down to differences in the steady flow

predictive qualities, as opposed to differences in prediction of unsteady flow components.

Following the visualisation streamlines back from the central part of the seeding plane

at y ∼ 0 (Figures 75, 76), it seems that some of the flow that passes the point (x = 0, y =

0, z = 0.5D) may originate from the other side of the cube in the k − ε case, although

caution must be taken as the visualisation streamlines align with instantaneous vectors

as opposed to acting like tracer particles. In the EBRSM case, some of the visualisation

streamlines that pass by the pressure tapping point at (x = 0, y = 0, z = 0.5D) suggest

that the fluid was recently in a different y plane; the visualisation streamlines follow a

path from near the duct floor in towards the pressure tapping point, having passed along

the cube surface near the trailing edge. The instantaneous structure of the flow is quite

different from the two model predictions, it is highly 3D. Given the complexity of this

flow, and its dependency on the ability of the models to predict strongly 3D structures,

it is not surprising that the fluctuating pressure here at the cube side face is strongly

dependent on model choice. Due to the fact that some of the fluid passing by the pressure

tap comes from downstream behind the cube, pressure predictions are also likely to be

affected by the solution in the recirculation region.
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(a) k − ε

(b) EBRSM

Figure 74: Velocity visualisation streamlines in the cube vicinity in the plane y = 0 at
the same point within a shedding cycle
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(a) Facing cube side

(b) Facing top of cube

(c) Isometric projection facing cube from behind and to side

Figure 75: Visualisation streamlines leading into the plane
(x = 0,−0.5 < y < 0.5, 0.5 < z < 0.55), k − ε, ReD = 5600
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(a) Facing cube side

(b) Facing top of cube

(c) Isometric projection facing cube from behind and to side

Figure 76: Visualisation streamlines leading into the plane
(x = 0,−0.5 < y < 0.5, 0.5 < z < 0.55), EBRSM , ReD = 5600
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(a) k − ε

(b) EBRSM

Figure 77: Velocity in the cube vicinity in the plane y = 0 at the same phase within a
shedding cycle
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Figure 78: Contours of U = 0 downstream of the cube in the plane y = 0, ReD = 5600

Figure 79: Contours of U = 0 downstream of the cube in the plane y = 0, ReD = 10400
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Figure 80: Contours of U = 0 downstream of the cube in the plane y = 0, ReD = 15600

7.4 Recirculation Region

Downstream of the cube, contours of zero streamwise velocity in the plane y = 0 are

overlaid in (Figures 78, 79, 80). The length of the recirculation regions is summarised by

the “recirculation length” Lr in (Table 17). Across all Reynolds numbers, the k−ε model

Lr predictions match better with the experiments and DNS than those of the EBRSM .

They are a much better match with the experiments at ReD = 10400 and ReD = 15600,

where the EBRSM under-predicts the recirculation length by a large amount, it is only

about 45% of the experimental one. The contours of U = 0 from the k− ε quickly tuck in

behind the cube between x = 0.5 and x = 0.75 at all three Reynolds numbers, but do not

do so for the EBRSM model. At ReD = 5600, the DNS results show a fairly good match

with the experiments, the basic shape and size of the contour is similar although the

match is not perfect. This may be as a consequence of an insufficient degree of statistical

convergence, if not enough shedding cycles were captured.

It is perhaps surprising that the k − ε model shows more accurate predictions for Lr

than the EBRSM . The flow is highly 3D and there are strong shear forces acting within

more than one plane, so the ability of the EBRSM model to transport the Reynolds

Stresses in three dimensions might be expected to result in superior predictions, but this
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ReD 5600 10400 15600
Lrk−ε 2.76± 0.01 2.54± 0.01 2.45± 0.01

LrEBRSM 2.40± 0.01 1.41± 0.01 1.24± 0.01
Lrexp 2.55± 0.02 2.35± 0.02 2.24± 0.02
LrDNS 2.47± 0.01 − −

Table 17: Recirculation length normalised by D, behind cube in plane y = 0

is not the case. [64] compared predictions from a two-layer k−ε and from Reynolds Stress

models, plotting the mean streamwise velocity behind a rectangular cylinder alongside

experimental results. The same basic pattern of differences in recirculation length was

found; the Reynolds Stress models showed a return to high positive velocities much closer

to the cylinder than the k − ε did. It is possible that this was due to differences in the

overall strength of the organised cross-stream fluctuations; a lower degree of momentum

transfer from the faster-moving fluid far away from the centreline would result in a longer

recirculation zone. The instantaneous velocity in the plane y = 0 (Figure 77) shows this

difference in strength quite clearly; the snapshots were taken at identical parts of the

shedding cycle. The plots for fluctuating velocity in (Section 6) showed a clear pattern

of higher amplitude for the EBRSM predictions than the k − ε, and the difference in

amplitude increases with Reynolds number, which is consistent with this hypothesis.

Following from the discussion on the overall length of the recirculation bubble, the

mean streamwise velocity is compared along the line (x, y = 0, z = 0) throughout the

recirculation region in (Figures 81a, 82a, 82b). At ReD = 5600, the results from the DNS

do not match as closely as might be expected with the experiments, possibly due to a

low degree of statistical convergence. There are two clear spikes at x ∼ 1.2 and x ∼ 1.45

which are in the same location at all three flowrates, despite the dependency of overall

flow structure on Reynolds number. This suggests that they might be due to unwanted

reflections from the cube and/or aberrations in the perspex duct wall. As a result, they

are ignored in the analysis.

For the region immediately behind the cube the EBRSM model matches better with

the experiments than the k − ε does, particularly at ReD = 10400 and ReD = 15600.

However, further downstream the k − ε gives a better prediction, such that the overall

match is better across all x values within the recirculation region. Further downstream

still, the k − ε matches better with the DNS right up to the point where the k − ε
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Figure 81: U along line (x, y = 0, z = 0) downstream of the cube, ReD = 5600

169



x/D
0.5 1 1.5 2 2.5 3

U
/
U
b

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KE

EBRSM

EXP

(a) ReD = 10400

x/D
0.5 1 1.5 2 2.5 3

U
/
U
b

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KE

EBRSM

EXP

(b) ReD = 15600

Figure 82: U along line (x, y = 0, z = 0) downstream of the cube, from x = 0.5D to
x = 2.6D
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(a) KE

(b) EBRSM

Figure 83: Mean turbulent kinetic energy in the near-cube and wake region,
ReD = 15600, normalised by U2

b

and EBRSM plots rejoin (Figure 81b). Following [64], one might expect the k − ε

to predict smoother changes in mean velocity along this centreline than the EBRSM ,

which shows a sharper trough that rapidly rises again such that the recirculation region is

shorter; this is the case with a long cylinder at high Reynolds numbers. It could also be

expected to predict a longer overall recirculation length, as discussed above. Also in [64],

the predictions did not clearly show which was better, the k − ε or the Reynolds Stress

models, when compared along the equivalent profile. However, in the present comparison

the k − ε predictions clearly are.

Differences in the mean turbulent kinetic energy in the central plane (Figure 83)
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could go some way to explaining this. They are much higher for the k − ε model than

they are for the EBRSM , the ratio in the peak values between the two models being

∼ 1.3. The well-known “stagnation point anomaly” alluded to previously (Section 6)

is part of the reason for this discrepancy and as a result, it may be expected that the

predictions in organised fluctuating kinetic energy tend to be lower for the k − ε. This

train of thought was developed by referring to [23], in which flow around a rectangular

cylinder was simulated using three different variants of the k− ε model, and compared to

data from [15]. In [23], the fluctuating kinetic energy was separated into two parts; the

organised, periodic velocity fluctuations and the modelled turbulent fluctuations, which

are parcelled together in k. The fluctuating velocity was directly recorded as was the

modelled turbulent kinetic energy k. Time-means were taken of both and a time-mean

total fluctuating kinetic energy E was reconstructed which characterised the totality of

the fluctuations around the time-mean. This was used to make comparisons between the

model variants considered in the study. Firstly, modifications were made to the Standard-

k − ε model in order to allow for anisotropy in the Reynolds Stress tensor. As a result,

the predictions for E were found to be a better match with experiments, as were results

for the time-mean velocity. As a knock-on effect, the recirculation length prediction was

more accurate. Secondly, production of the modelled turbulent kinetic energy k was

suppressed at the stagnation point upstream of the cylinder, leading to a lower k further

downstream in the recirculation region. As a result of this modification, total fluctuating

kinetic energy E predictions were better still, entailing a further improvement in mean

velocity predictions. However, this is not the whole story, as ultimately it is the viscosity

that damps out the fluctuations, which is also dependant on the turbulent dissipation rate

ε. As described above (Section 5), the turbulent viscosity is calculated as a function of k

and ε in both the k− ε and the EBRSM model, with a slightly different formulation. As

illustrated in Figure 84, the turbulent viscosity resultant from these two formulations is

very different. In these images, the ratio between the turbulent viscosity and the molecular

viscosity, µt/µ is presented. From this, two relevant conclusions may be drawn; the k− ε

predicts a higher turbulent viscosity and the turbulent viscosity is large compared to the

molecular one. Peak values of the turbulent viscosity ratio as predicted by the k − ε are

very roughly twice as large as those of the EBRSM . It is this high turbulent viscosity

which is responsible for damping out the velocity fluctuations more in the k− ε case, and
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(a) KE

(b) EBRSM

Figure 84: Turbulent Viscosity Ratio µt/µ

which ultimately brings the k − ε mean velocity predictions closer to the experimental

results than those of the EBRSM .
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8 Conclusions

8.1 Summary of Work Carried Out

This project has provided a detailed study of single-phase flow within a thin, wide rect-

angular channel, in the vicinity of a cubic blockage which spanned the smaller of the two

dimensions. To the knowledge of the present author this geometry has not been studied

within the scientific literature. Such a case is of interest in the context of using CFD for

partially blocked ducts, for example when reinforcement struts might be used.

Several similar configurations had been studied where similar physics are manifest,

for example the strong separation and unsteady vortex shedding around long, square

cylinders and the highly 3D, unsteady flow around a wall-attached cube. The first of

these is characterised by a large degree of unsteadiness, in which 3D effects are present

but less dominant. The second is characterised by large changes in three dimensions, with

unsteady physics that are significant but are less dominant.

In the scientific literature, various modelling strategies have been employed to deal

with the challenges presented by such configurations, to varying degrees of success. A

rationale has been followed that success in these related cases is likely to lead to success

in the current case. Conversely, failure to represent accurately the physics in those relevant

cases was considered good reason to ignore a given model, as similar physical conditions

were likely to be encountered. In addition to this, various models were scrutinised for

their ability to predict flow within an unblocked channel. Testing the various models

within an unblocked channel highlighted an issue with the Menter-SST-k − Ω model;

when combined with certain wall-treatments it gave pressure drop predictions that were

significantly different to all other model/wall-treatment combinations, it was discarded

on this basis. Various URANS models were tested for their ability to predict secondary

corner flows, but these were found to have little effect on the solution throughout most

of the channel, their effects remaining confined to the corner regions. As a result, the

considered list of models was greatly narrowed down.

Following on from this, variants of two of the most popular modelling approaches

have been considered in more detail; the two-layer k − ε model [64] and the elliptic-

blending Reynolds Stress model, or EBRSM [38]. These models were applied using a
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leading commercial CFD code, Star-CCM+, with care taken to understand the details of

the modelling process that was used. The effects of boundary conditions, mesh spacing,

timesteps and the number of inner iterations were all controlled to ensure that the final

results were a fair representation of the capabilities of models. Hence, useful comparisons

could be drawn with experiments and DNS.

The experimental setup used was designed from scratch, in the light of similar designs

in scientific literature. Fluctuating pressure was recorded at the cube side, in order to

provide time-resolved data that could be used to characterise the unsteady physics. Laser

PIV data was captured in a two-dimensional plane directly behind the cube encompassing

the mean recirculation region, where organised unsteadiness in the velocity was at its

highest. This provided detail of the instantaneous spatial structure and allowed mean

velocities to be constructed. Experiments were run at three separate Reynolds numbers,

ReD = 5600, ReD = 10400 and ReD = 15600. In addition to this, a DNS simulation was

run with the open-source code Incompact3d at the lowest Reynolds number, ReD = 5, 600.

This enabled the capture of data in the cube vicinity, although run-time was insufficient

at the time of writing to make many firm conclusions based on mean statistics.

8.2 Findings

To begin with, it was not known how strong organised periodic shedding would be in

the current setup. Although it was considered quite likely that some shedding would

occur, the degree to which it would be suppressed by shear due to the channel walls at

y/D = ±0.5 was not entirely clear. Firstly, URANS simulations predicted that strong pe-

riodic shedding would be present. This was confirmed to be the case early on in the exper-

imental process; a periodic component was present in the pressure fluctuations. Further

to this, dye flow visualisation demonstrated clearly that vortex shedding was occurring,

in a fashion which resembled the classical Von-Karmann vortex shedding. This shedding

was roughly periodic, and occurred at about the same frequency as the observed pressure

fluctuations, establishing their presence beyond doubt. What is more, this shedding oc-

curred at a rate that was similar to that found in literature for flow around long square

cylinders; comparisons were based on the Strouhal number and this matched reasonably

well at all three flow rates. However, there was a large amount of pressure fluctuation at
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frequencies other than the shedding frequency which complicated the picture.

The difference between the URANS pressure predictions and the experimental ones

was large, giving reason to question the accuracy of the pressure measurements. A lengthy

data treatment process was followed to isolate the effects of periodic shedding from the

other fluctuations in the pressure data. This process necessarily involved some arbitrary

choices, for example the filtering parameters employed. However, the appearance of or-

ganised shedding in the dye-flow visualisation, and the fact that it occurred at a frequency

close to that seen in the pressure measurements gave credence to choices made during the

data-treatment process. Possible explanations for the additional fluctuations that were

measured included uncontrolled pressure fluctuations in the circuit and blockage of pres-

sure transmission to the transducer; neither of these could be ruled out and both may

have contributed to the discrepancies.

The pressure signal was used as a reference for phase, defining the large-scale shedding

motion; imprecision in the definition of phase may therefore have contributed to a failure

to produce plausible phase-averaged velocity results. Phase-blurring may only be reduced

by separating the data into a high number of phase-bins, and convergence of an ensemble

average for each individual phase requires a high number of samples; these two constraints

are at odds with each other. A far greater number of PIV snapshots would have perhaps

allowed reasonable accurate phase-averaged velocity results to be generated despite the

difficulties experienced with the pressure phase-reference. It was not possible to determine

whether the difficulty in generating phase-averaged velocity results was mostly due to

difficulties experienced with the pressure recording or to the limited number of snapshots.

A higher number of snapshots may at least have made this clear.

It was possible to confirm using the DNS data that a periodic flapping motion was

present. Precise control of the inlet and outlet boundary conditions did not eliminate this

behaviour, it remained clearly visible by simple inspection of successive instantaneous

velocity snapshots. This confirmed that the phenomenon was not merely an artefact of

some other effect in the experimental setup. DNS data was insufficient to improve the

phase-averaging analysis over that of the experiments; the number of shedding cycles that

were simulated made phase-averaging impossible. Mean values were not fully converged,

so comparisons made were necessarily imprecise. However, the DNS simulation was still

useful as a tool by which quantitative information could be extracted in regions where
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the flow was largely steady. In these regions, enough data was generated to draw some

conclusions regarding the relative performance of the URANS models.

One of the key aspects of the turbulence modelling that was called into question dur-

ing this study was the applicability to flows with strong, organised, unsteady behaviour.

All the validation cases presented during the development of the models in question were

based on flows that were largely steady, for which the RANS modelling framework was

appropriate. The coefficients used in these models have been tuned towards accurate rep-

resentation of mean flow structure in steady cases. Validation of them involved testing the

ability of the boundary layer predictions to adapt to local turbulence conditions, the abil-

ity of the models to reproduce corner vortices that are purely turbulent in origin, and the

ability of the models to predict recirculating flows with sharp geometry changes. These

situations did not require the simulations to adjust to large scale, time-dependent changes.

Although this seems like a natural approach within the RANS modelling framework that

has been used, it does not allow for the large variety of flows within which strong, or-

ganised fluctuations are present in addition to small-scale turbulence and a steady mean.

Therefore, perhaps different tuning of the models could improve their predictions of such

flows without changing their basic formulation. If this were the case, such flows could be

simulated effectively without turning to higher cost approaches such as LES. The most

notable failures found in the literature were in the case of shedding around a long cylinder;

mean velocities in the recirculation region were not very well matched by any URANS

model for which results were presented. It is likely that this inability to deal with highly

unsteady flow was also the cause of much of the disagreement between the URANS models

and reference data in the current study.

In addition to this, some of the details of the model implementation in Star-CCM+

are not made clear in the user manual, nor is the justification for some choices. For

example, many of the original papers cited regarding the origins of the models applied

them in two-dimensional flow. In the case of the EBRSM model, certain changes made

were designed to increase numerical robustness and to speed up convergence, and possible

effects on accuracy were not discussed in detail.

Nonetheless, the time-averaged velocity results from the experiments, DNS and URANS

were in reasonable agreement at ReD = 5600. For example, the DNS and experiments

predicted a recirculation length that was within agreement to within 4%; this small dis-

177



crepancy could be explained by a combination of experimental error and insufficient DNS

data. The EBRSM predicted a recirculation length of ∼ 10% less than this and the k−ε

prediction was ∼ 6% higher. Mean velocity DNS results upstream and to the side of the

cube did not prove that either of the two URANS models was better; they showed better

agreement in different places. Overall, across all three ReD, the main spatial features of

the flow were arguably better represented by the EBRSM model, and the size of the

recirculation zone was better predicted by the k − ε model. As a result, it can not be

concluded that either of the two models was superior.

8.3 Suggestions for Further Work

This study has illustrated a limitation in the applicability of URANS models to a par-

ticular set of unsteady flows. Performance in an intuitively similar case, flow around a

wall-attached cube, does not seem to have been a good predictor of performance in the

current case. The issues discussed in the literature when applying the models to flows

around a long cylinder seem to be present, and to have been consequential in the current

study. The validation of Unsteady RANS models for flows where organised, large scale

fluctuations make up a significant part of the flow physics is clearly an area where more

work is required, particularly for the EBRSM model used.

Perhaps the most useful extension that could be made to the current study would

be the collection of more DNS data, which was made impossible by time and resource

constraints. This could have been carried out in a smaller domain, if equivalence with the

very wide, thin channel of the experiments was considered unimportant. The collection of

statistically converged means, and also higher order statistics could provide a very useful

point of reference for the validation of the URANS models. In addition to this, with a

sufficient number of shedding cycles, phase-averaged results could be produced. Finally,

additional DNS data at a higher Reynolds number would also be very useful for model

validation, although this would require much more computational resources.

Improvements to the experimental study could be made with the collection of pressure

data in different locations. Perhaps a better reference point could have been found where

the signal was more clean. Alternatively, multiple taps could provide a better means to

define the shedding period by characterising the pressure change across more of the cube
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surface, shedding of the boundary layer as a whole may have been more clearly defined in

this manner. In addition to this, information could be gleaned from such an experiment

regarding pressure distributions across the cube surface, and the correlation between the

individual signals.

Further to this, the PIV experiments would be greatly improved by collecting more

snapshots from which to form phase-averaged velocity fields. Perhaps a higher number

of snapshots would be sufficient to form the phase-averages without improvements to

the pressure measurement. Certainly, in tandem with an improved means of defining

phase, this would yield useful information for validation of the URANS models; their

ability to predict the large scale unsteady components of the physics could be scrutinised.

Alternatively, with a suitably high frame-rate, phase-angles could be inferred directly

from the PIV velocity data. However, this would necessitate the storage and processing

of a great deal of data, so it may not be the most practical route.

Finally, with better reference data and a clearer knowledge of the modelling details,

it would be useful to compare a broader range of models. For example, there are many

variants within the k − ε and RSM families which could be tested to see if any among

them are better suited to the current case without modification. It is not known why the

k−Ω models tested gave pressure drop predictions that were inconsistent when combined

with certain wall-treatments. This issue could have also been investigated, and it would be

useful to know if there were any implementation problems which could be addressed. The

uncertainty regarding implementation of the turbulence models would be best reduced

by using code that could be easily accessed and modified, so that the fine details of

the modelling could be more explicitly known. For this purpose, an open source code

such as OpenFOAM would be ideal. This would also provide the possibility of making

modifications beyond changing coefficients, to better tailor the models towards unsteady

flow prediction.
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