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ABSTRACT

Mating causes dramatic changes of female physiology, behaviour, and immunity in many

insects, often inducing oogenesis, oviposition, and refractoriness to further mating. Females from

the Anopheles gambiae species complex typically mate only once in their lifetime during which

they receive sperm and seminal fluid proteins as well as a mating plug that contains the steroid

hormone 20E. This hormone, also induced by bloodfeeding, plays a major role in activating

vitellogenesis for egg production. In this thesis, I present data showing that the mating status of

an Anopheles coluzzii female influences her midgut bacterial load and bacterial composition.

Furthermore, I show that her susceptibility to Plasmodium falciparum infection is also enhanced

upon mating especially when infection intensity is high. I find that mating status has a major

impact on the midgut transcriptome, but only under sugar-fed conditions; once females have

bloodfed, the transcriptional changes that are still observable as induced by mating are masked.

To determine whether increased susceptibility to parasites could be driven by the additional 20E

that mated females receive from males, I mimicked mating by injecting 20E into virgin females,

finding that these females have significantly increased infection intensity compared to controls. I

carried out further RNAseq to examine whether the genes that change upon 20E injection in the

midgut are similar to those that change upon mating. I find that 11% of the genes upregulated by

20E are in common with genes upregulated by mating. Together, these findings suggest that

male Anopheles mosquitoes might contribute to malaria transmission by influencing female

midgut bacterial loads and by potentially increasing P. falciparum susceptibility in females.



6

TABLE OF CONTENTS

LIST OF FIGURES 9

LIST OF TABLES 13

LIST OF APPENDICES 15

ABBREVIATIONS 16

CHAPTER 1

Introduction 19

Malaria: Historical and current perspective 19

P. falciparum life cycle 20

Antimalarial strategies and challenges 22

(i) Parasite resistance to antimalarial drugs 23

(ii) Vaccine Development 24

(iii) Vector control strategies 26

Anopheles background and current perspective 28

Anopheles lifecycle 30

Anopheles and P. falciparum transmission : 34

Anopheles and Microbiota 36

CHAPTER 2

Aim of the thesis 39

CHAPTER 3

The impact of mating on bacterial abundance and composition in the 42

midgut of female An. coluzzii mosquitoes

Introduction 42

Materials and Methods 45

Mosquito rearing 46

Collecting and separation of Ngousso pupae 46

Ngousso mating 46



7

Ngousso treatement with antibiotics 46

Ngousso blood feeding on P. falciparum-infected blood 47

Molecular Biology Methods 47

RNA Extraction 47

cDNA production 49

qPCR 49

Assessing bloodmeal volumes 50

Kraken analysis 51

16S Sequencing by MiSeq 51

DNA Extraction 51

PCR amplification 52

MiSeq sequencing 52

Results 53

Discussion 61

CHAPTER 4

Transcriptomic responses in the midgut in response to mating 65

Introduction 65

Materials and Methods 68

Mosquito preparation 68

P. falciparum infection (Membrane Feeding Assay) 68

Molecular Biology Method 69

RNAExtraction 69

RNA Sequencing 69

Results 71

Discussion 83

CHAPTER 5

The impact of mating on P. falciparum infection 87

Introduction 87

Materials and Methods 89



8

Mosquitoes 89

Mosquito rearing 89

Ngousso treatment with antibiotics 90

Double stranded RNA (dsRNA) 90

Double stranded RNA (dsRNA) Injection 91

Assessing Knock Down Effect of dsRNA via PCR 91

20-Hydroxyecdysone Injection 92

Plasmodium falciparum

P. falciparum Gametocyte Culture 92

P. falciparum Infection (Membrane Feeding Assay) 93

Assessing P. falciparum Infection 93

Assessing Mating Status via light microscopy or Y-PCR 94

Results 95

Discussion 106

CHAPTER 6

The impact of 20-hydroxyecdysone injection on the female midgut

transcriptome 110

Introduction 110

Materials and Method 112

Mosquito preparation 112

20-Hydroxyecdysone Injection 112

P. falciparum Infection (Membrane Feeding Assay) 112

Molecular Biology Method 113

RNA Extraction 113

RNA Sequencing 113

Results 116

Discussion 129

CONCLUSIONS 132

REFERENCES 135

APPENDICES 147



9

LIST OF FIGURES

Chapter 1
Figure 1.1     World map summarising the endemic malaria distribution in 2015.

Figure 1.2 P.  falciparum life cycle in the human.

Figure 1.3     Three areas of malaria vaccine development: the pre-erythrocytic stage, the

erythrocyte stage transmission blocking vaccines.

Figure 1.4     Global distribution of the dominant vector species of malaria in each region in the

world.

Figure 1.5     Life cycle schematic of An. gambiae which includes eggs, larvae, pupae and

adult.

Figure 1.6     Anatomy of reproductive tracts of male and female Anopheles.

Figure 1.7 P. falciparum life cycle in the Anopheles mosquito.

Chapter 3
Figure 3.1     Overview of midguts RNA used for qPCR, RNASeq and Kraken analysis and

DNA extracted from the same sample used for MiSeq.

Figure 3.2     Weight and hemoglobinometry using Drabkin reagent to assess the volume of

blood taken by virgin and mated females.

Figure 3.3     qPCR quantification of midgut bacterial 16S rRNA abundance in normal sugar

fed and blood fed mosquitoes without antibiotics in their sugar meal and with antibiotics in their

sugar meal.



10

Figure 3.4     Relative bacterial loads estimation by qPCR for Klebsiella, Pantoea, Serratia,

Elizabethkingia and Asaia in untreated [None] and antibiotics treated [Antibiotics] virgin and

mated midguts.

Figure 3.5     Relative overall and specific bacterial loads as estimated by Kraken analysis for

Klebsiella, Pantoea, Serratia, Flavobacteriaceae and Acetobacteraceae on virgin and mated

midguts.

Figure 3.6      Some other bacterial abundance in midguts obtained using the Kraken analysis

including Rhodococcus, Achromobacter, Streptococcus, Serratia, Klebsiella and ‘Others’.

Figure 3.7     Bacteria composition in midguts obtained using Kraken analysis and 16S MiSeq

sequencing.

Figure 3.8 Rhodococcus bacterial loads obtained from Kraken analysis and 16S Miseq

sequencing.

Chapter 4
Figure 4.1     Description of 47 samples of midguts used for RNASeq analyses in this chapter.

Figure 4.2     Principle Components Analyses on global RNAseq patterns for mated and virgin

female midguts fed only on sugar and on P. falciparum infective blood, and either untreated or

treated antibiotics.

Figure 4.3     Estimates of bacterial abundance from the Kraken analysis on RNAseq data from

single midguts from experiments [I] and [K].

Chapter 5
Figure 5.1     Overall P. falciparum infection intensity in virgin and mated female midguts from

the lowest to highest infection prevalence.



11

Figure 5.2     Experiments with oocysts count median of less than 10.

Figure 5.3     Experiments with oocysts count median of more than 10.

Figure 5.4 P. falciparum infection intensity between virgin and mated females in three

independent experiments without and with antibiotics.

Figure 5.5     Impact on infection intensity of knocking down three different genes (dsVg,

dsPGRPS3 and dsPM) using dsRNA injection in three different P. falciparum infection

experiments: [D], [E] and [I].

Figure 5.6     Each dot represents the oocyst count in a single midgut from 4 different P.

falciparum infectious feeds where females were either virgin or mated, and either injected in the

thorax with the control 10% EtOH carrier or with the hormone 20E in 10% EtOH.

Chapter 6
Figure 6.1     Overview of  46 samples of midguts used for RNASeq analysis in this chapter.

Figure 6.2     Principle Components Analyses on RNAseq patterns for  virgin females injected

with 20E and control female midguts fed only on sugar and untreated with antibiotics.

Figure 6.3     Principle Components Analyses on RNAseq patterns for  and untreated with

antibiotics virgin females injected with 20E, control females, uninjected mated females and

virgin females midguts fed on sugar and blood.

Figure 6.4     Venn Diagram on genes that were up-regulated and down-regulated by mating

status and 20E injection in sugar fed midgut.

Figure 6.5     Venn Diagram on genes common genes up-regulated by mating and 20E in

midgut and LRT (Gabrieli et al. 2014)



12

Figure 6.6     Overall Kraken analysis on total bacteria on 20E and control injected, uninjected

midguts virgin and mated.

Figure 6.7     Overall Kraken analysis on bacterial loads of some bacteria species in both

sugarfed and bloodfed 20E and control injected midguts and uninjected virgin and mated female

midguts.

Figure 6.8     Bacterial composition over total percentage in midguts obtained using the Kraken

analysis in both sugarfed and bloodfed 20E and control injected midguts and uninjected virgin

and mated female midguts.



13

LIST OF TABLES
Chapter 3

Table 3.1      List of some known bacterial species which will be discussed in this chapter and

later chapters and studies on interaction with Plasmodium parasites in order to develop

paratransgenesis for combatting malaria.

Chapter 4
Table 4.1      Functional enrichment analysis on molecular function of differentially expressed

genes (padj<0.05) which were up regulated in response to mating in sugar fed midguts.

Table 4.2      Functional enrichment analysis on genes that were downregulated upon mating

(padj<0.05) in sugar fed female midguts.

Table 4.3      List of significant genes upregulated by mating found in common between sugar

fed (experiment [I]) and blood fed (experiment [K]) (padj<0.05)

Table 4.4      List of significant genes upregulated by mating found from a multi factor analysis

on untreated sugar fed, blood fed experiment[I] and blood fed experiment [K] midguts

(padj<0.05)

Table 4.5      Functional enrichment analysis on  upregulated genes (padj<0.05) in response to

blood feeding in single midguts.

Table 4.6      Functional enrichment analysis on genes that were significantly down regulated

upon blood feeding in female midguts (padj<0.05)

Table 4.7      Functional enrichment analysis on genes that were significantly upregulated upon

antibiotic treatment in female midguts (padj<0.05)



14

Table 4.8      Functional enrichment analysis on differentially expressed genes (padj<0.05)

down regulated in response to antibiotic treatment in single blood fed midguts.

Chapter 5

Table 5.1 P. falciparum infection prevalence statistical analyses using Chi Square of

untreated and antibiotics treated experiments. Median of oocysts count from each experiment

were used to separate the experiments (* = p < 0.05).

Table 5.2      Knockdown efficiency of dsVg, dsPGRPS3 and dsPM on midgut and carcass.

Table 5.3      Impact of knocking down using dsRNA injection of three different genes (dsVg,

dsPGRPS3 and dsPM) in three independent P. falciparum infection experiments.

Table 5.4 P. falciparum infection prevalence in virgin Ngousso injected with 20E and

control; 10%EtOH from four different P. falciparum-infection experiments.

Chapter 6

Table 6.1      Functional enrichment analysis on genes  that were significantly (a) upregulated

and (b) downregulated upon 20E injection in sugar fed virgin midguts.

Table 6.2      Functional enrichment analysis on 53 genes found to be significantly upregulated

in response to 20E injection (20E vs control) and mating status (mated vs virgin)  in sugar fed

midgut samples.

Table 6.3      Functional enrichment analysis on 23 genes found to be significantly

downregulated in response to 20E injection (20E vs control) and mating status (mated vs virgin)

in sugar fed midgut samples.



15

LIST OF APPENDICES
APPENDIX S1        Summary of approximate number of female and male mosquitoes used for

bacteria abundance and P. falciparum infection experiment.

APPENDIX S2        Information on the P. falciparum infection from all successful P.

falciparum infection feeds.

APPENDIX S3        List of bacteria primer sequences used in qPCR analysis for bacterial load

assessment, Y-PCR, dsRNA production and qPCR to quantify knockdown efficiency.

APPENDIX S4  Bacterial loads from some family, Micrococcaceae, Propionibacteriaceae,

Rhodobacteraceae and Staphylococcaceae obtained from experiment [K] and [I] analysed in

Kraken analysis. Each dot represents one midgut sample.

APPENDIX S5        List of functional enrichment analysis upon mating and 20E injection on

sugar fed An. coluzzii midgut transcriptome. (biological process [BP], cellular compartment [CC]

and molecular function [MF]).



16

ABBREVIATIONS
16S 16S ribosomal RNA (or 16S rRNA)
20E 20-hydroxyecdysone

A
ACT             Artemisinin-Combination-Therapy
An. Anopheles
AMP            Antimicrobial peptide

B
BP                Blood pressure

C
cDNA          Complementary DNA
CHIKV        Chikungunya virus
CQ               Chloroquine

D
DBH            Dibenzoylhydrazine
DNA            Deoxyribonucleic acid
dsRNA         Double stranded RNA

E
EcR              Ecdysone receptor
EtOH           Ethanol

G
G6PD           Glucose-6-phosphate deficiency

H
HISAT             Hierarchical Indexing for Spliced Alignment of Transcripts
HPX             Heme peroxidase

I
ITN              Insecticide-treated mosquito nets
IRS               Indoor residual spraying

J
JH                 Juvenile hormone



17

L
Lp                 Lipophorin

M
MAG            Male accessory gland
MISO           Mating-Induced Stimulator of Oogenesis
mRNA         Messenger RNA

N
NGS             Next-generation sequencing

O
ONNV           O’Nyong Nyong virus

P
P. Plasmodium
PBS              Phosphate buffer saline
PCA             Principal Component Analysis
PCR             Polymerase Chain Reaction
Pf Plasmodium falciparum
PFA              Paraformaldehyde
PGRPS Peptidoglycan recognition protein (short)
pH                Potential of hydrogen
PM               Peritrophic Matrix

Q
qPCR           quantitative PCR

R
RNA            Ribonucleic acid
RNAi           RNA interference
RNASeq      RNA sequencing
ROS            Reactive oxygen species
rpm               Revolutions per minute
RPMI           Roswell Park Memorial Institute medium

S
S7Uni           S7 ribosomal protein
SP                 sulfadoxine-pyrimethamine
ss               sensu stricto



18

T
TEM             Transmission Electron Microscope

U
USP              Ultraspiracle protein

V
Vg                Vitellogenin

W
WHO           World Health Organization

Y
YPP              Yolk protein precursor



19

CHAPTER 1

Introduction

Malaria: Historical and current perspective

Malaria acquired its name from its association with inhaling “bad air” from low-lying swamps

and marshes (Hempelmann & Krafts, 2013). In fact, malaria was associated with swamps and

wetlands because as these bodies of water filled up, mosquitoes increased in numbers. Malaria is

a mosquito-transmitted parasitic disease, which still kills more than 400,000 people and infects

more than 200 million people worldwide yearly with 90% of the cases in Africa (Figure 1.1;

(WHO, 2016)).  In  areas  where malaria  is  endemic,  this  disease is  the one of  the most  common

causes of death among infants and children. Malaria in pregnant women causes severe symptoms

with higher rates of miscarriage, intrauterine demise, premature delivery, low-birth-weight

neonates, and neonatal death (Schantz-Dunn & Nour, 2009).

It was not until 1880 that Charles Louis Alphonse Laveran identified the parasites that cause

malaria. Later on in 1886, Camillo Golgi further studied malaria parasites and found merozoites

released from ruptured infected red blood cells. There are more than 100 Plasmodium species in

the world that are able to infect animals. So far only 5 Plasmodium species have been reported to

be able to infect humans. Among these five species, P. falciparum is responsible for the highest

mortality especially in sub-Saharan Africa (Gething et al., 2016). Another two Plasmodium

species; P. vivax and P. ovale are usually found in Southeast Asia and South America (Collins &

Jeffery, 2005; Cruz et al., 2013; Feng et al., 2015; Gonzalez-Ceron et al., 2013) with P. ovale

causing fewer cases and less mortality similar to another species, P. malariae (Mendis et al.,

2001). Just ten years ago, P. knowlesi was found to be able to infect human despite it being a

zoonotic species (Singh & Daneshvar, 2013). However, P. knowlesi is not able to transmit

between humans so transmission from primate to human is likely how transmission occurs

(Singh & Daneshvar, 2013).



20

Figure 1.1 Figure taken from the Centers for Disease Control website
(https://www.cdc.gov/malaria/) shows the world map summarising the endemic malaria
distribution in 2015.

P. falciparum life cycle

Plasmodium parasites require two hosts to complete their lifecycle: a vertebrate host, in which

the parasite replicates asexually, and a mosquito host in which the parasite replicates sexually

and is able to be transmitted to a new vertebrate host. Figure 1.2 summarizes the P. falciparum

stages in the human body. When a mosquito bites a human for her blood meal, P. falciparum

parasites of a life-stage called sporozoites will enter the human body. These sporozoites will

migrate to the liver where they will infect the Kupffer cells lining the liver before egressing into

the hepatocytes (Sinden & Smith, 1982; Verhave et al., 1980). In the hepatocytes, several rounds

of multiplication will form thousands of copies of a stage called merozoites during this pre-

erythrocytic stage also known as the exo-erythrocytic cycle. The infected liver cells will burst

and release thousands of merozoites that will enter the bloodstream and infect red blood cells. In

infected red blood cells, each parasite will initially form a ring-shaped morphology, followed by

a trophozoite stage, and then a schizont stage before the infected red blood cell ruptures and
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releases as many as 36 merozoites, each of which are able to infect another red blood cell. This

erythrocytic cycle of P. falciparum takes  48  hours  to  complete.  And  it  is  this  part  of  the  life

cycle, as well as the defense mechanisms of the host’s immune system (Miller et al., 2002)

causes symptoms such as headaches, fever, and anemia (Bartoloni & Zammarchi, 2012). At its

worst, P. falciparum can cause neurological complications by blocking small blood vessels in the

brain, leading to swelling and damage to the brain, and cerebral malaria (Idro et al., 2010).

Figure 1.2 P. falciparum life cycle in the human. Figure  taken  from  Center  for  Disease
Control  website  (https://www.cdc.gov/malaria/about/biology/index.html) shows sporozoites
released from the mosquito bite travel to the liver and proliferate there to produce thousands of
merozoites. The infected liver cells rupture and release merozoites into the circulation and start
the erythrocytic asexual life cycle. The life cycle in the red blood cells consist of P. falciparum
parasites at ring, trophozoite and schizont stages and the cycle continues whilst some
trophozoites will mature into gametocytes.
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A subset of the asexually replicating parasites are able to commit into sexual forms, known as

the male and female gametocytes (Bruce et al., 1990). Gametocytes take around 7-10 days to

develop (Gardiner & Trenholme, 2015). They are able to avoid the host immune system by

avoiding being present in peripheral blood except at mature stage (stage V gametocytes)

(Gardiner & Trenholme, 2015). Higher levels of younger gametocytes were found in the bone

marrow (44.9%) in comparison to the gut (12.4%), the brain (4.8%) and other organs of the

infected host (Gardiner & Trenholme, 2015). These female and male gametocytes are terminally

differentiated in the host, and will circulate for at least several weeks (Day et al., 1998; Eichner’

et al., 2001) waiting to be taken up in the bloodmeal of a mosquito. P. falciparum gametocyte

development morphology is easily distinguished by the stages, (stage I-V) using Giemsa stained

blood films, and the differences between male and female gametocytes are clear at the mature

stage V gametocyte. Gametocyte morphology is different depending on the Plasmodium species.

The triggers that parasites detect or employ to either remain in the asexual cycle or to head down

the irreversible sexual path towards gametocytes remain poorly understood. Gametocytes may

have been programmed in the previous schizont cycle in which it is thought that all resulting

merozoites are sexually committed, perhaps even to the same sex (Bruce et al., 1990; Carter &

Miller, 1979; Inselburg, 1983). But what causes this subset of parasites to commit is unclear; in-

vitro studies suggest that factors such as high parasitemia, lack of nutrients in the medium, or

antimalarial drug in the culture can induce commitment (Buckling et al., 1999; Carter & Miller,

1979; Dyer & Day, 2003; Williams, 1999). Determining the factors that influence sexual

commitment and sex ratio are important and active areas of research due to the potential to target

these factors to reduce transmission.

Antimalarial strategies and challenges

Malaria cases and mortality were reduced by 37% and 60% respectively between year 2000 and

2015 (Bhatt et al., 2015). Currently, ongoing research for combating malaria involves developing

antimalarial drugs, vaccine development, and vector control. Due to the complex life cycle of the

parasite, research in all three areas continues to be very active and it is likely that all methods of
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malaria control will be needed in order to eradicate the disease. Below I briefly summarise the

current state of each area of malaria control area and the challenges faced.

(i) Parasite resistance to antimalarial drugs

Quinine, a chemical compound of the cinchona tree bark, was the first antimalarial used starting

in 1800 and it was used until World War II (Meshnick & Dobson, 2001). Quinine was

predominantly used until the synthetic antimalarial chloroquine (CQ) was introduced and then

this was used widely from the 1930s to the 1970s. CQ was cheap and easy to obtain, however P.

falciparum resistance to CQ was first reported in the late 1950s in Southeast Asia followed by

India and Africa in the 1970s, resulting in millions of deaths (Sehgal et al., 1973; Trape, 2001).

In 1950s, primaquine was introduced, and it remains the only antimalarial that targets both

asexual and sexual stages. It also has the ability to prevent relapse in P. vivax (Vale et al., 2009).

However, this drug has been reported to have a side effect of hemolysis in people with glucose-

6-phosphate deficiency (G6PD) (Alving et al., 1960; Watson et al., 2017). In 1960, P. vivax was

reported to be resistant to primaquine making it a less favoured antimalarial (Arnold et al., 1961;

Baird & Hoffman, 2004). Sulfadoxine and pyrimethamine (SP) were then used as a combination

drug to replace CQ. These two compounds work better together than alone (Laing, 1970).

However, in the late 1970s, resistance towards SP was reported in South East Asia and this

spread to sub-Saharan Africa (Verdrager, 1986). Mefloquine was introduced for uncomplicated

malaria caused by P. falciparum in the early 1980s. However, after 6 years, resistance towards

mefloquine appeared in Thailand, Cambodia, Vietnam and in India in 1996 (reviewed in (Bharati

& Ganguly, 2013) possibly driven by mutation of Pfmdr1 (P. falciparum multidrug resistance

protein) (Price et al., 1999). Although it was reported that mefloquine is efficient against

chloroquine-resistant P. vivax and P. falciparum in Papua, Indonesia (Maguire et al., 2006), there

were no other reports supporting this in other malaria-affected areas. Artemisinin Combination

Therapies, or ACTs, are currently the frontline treatments against uncomplicated P. falciparum

malaria (WHO, 2016). Although these treatments are working well in many parts of the world,

P. falciparum resistance against ACTs has been reported in five countries of the Greater Mekong

Subregion: Cambodia, Laos, Myanmar, Thailand and Vietnam (Imwong et al., 2015; Myint et

al., 2017; Noedl et al., 2008; Thanh et al., 2017). Looking back at the history of drug resistance,



24

resistance towards antimalarial drugs typically emerges from Greater Mekong Subregion and

then spreads worldwide (Bharati & Ganguly, 2013; Cui et al., 2012). This is alarming because if

the trend continues, resistance towards ACTs might spread worldwide.

More generally, it is likely that this battle will never be won with our current arsenal of drugs,

and we will continue to need new drug development. Parasite numbers in an infected human host

are enormous, easily in the billions. It is possible that every potential mutation exists in the

context of a single infection (Hamilton et al., 2017), and thus we should expect that resistance to

drugs will evolve eventually. This is one benefit that transmission blocking drugs and vaccines

may have; because the numbers of parasites that are targeted at the sexual stage are many fewer

(more on this below), resistance may arise more slowly.

(ii) Vaccine Development

The efforts to develop a vaccine against the malaria parasite have been ongoing for decades

(Arama & Troye-Blomberg, 2014). Three types of potential vaccines are under development

(Figure 1.3). Pre-erythrocytic vaccines target the parasite before it enters the red blood cell

stages. Blood-stage malaria vaccines aim to stop parasites from replicating asexually in the blood

stage. Transmission blocking vaccines aim to block malaria transmission by targeting either the

sexual stages of the parasite, or critical factors in the mosquito that support transmission.
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Figure 1.3 Figure taken from (Arama & Troye-Blomberg, 2014) summarises three areas of
malaria vaccine development: targeting the pre-erythrocytic stage which involves liver stage
vaccine development to prevent malaria in the human host; targeting the erythrocyte stage to
block the invasion of erythrocytes by merozoites; or the transmission blocking vaccines that
target antigens on gametes, zygotes and ookinetes to prevent parasite development in the
mosquito midgut.

All three of these areas of vaccine development are active and although there are indications of

success (Arama & Troye-Blomberg, 2014), to date there has never been a successful vaccine

deployed against a eukaryotic parasite. Two of the reasons are the complicated genetics which

involves genetic polymorphism of P. falciparum (Farooq et al., 2012) and complex life cycle of

P. falciparum parasite which involves multiple hosts make it hard to identify ideal P. falciparum

antigens (Crompton et al., 2010).

Currently, Mosquirix or better known as RTS,S/AS01 is the most advanced malaria vaccine

candidate, and it is now in phase 3 evaluation in Africa (WHO, 2016). RTS,S/AS01 consists of

hepatitis B surface antigen virus-like particles, incorporating a portion of the P. falciparum

derived circumsporozoite protein and a liposome-based adjuvant. This vaccine has the highest

protection against parasites with a genotype that matches the circumsporozoite protein allele on
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which the vaccine is based (Neafsey et al., 2015). RTS,S/AS01 has been approved by the

European Medicines Agency for active immunization of children aged 6 weeks to 17 months

against malaria (RTS,S Clinical Trials Partnership, 2015). Although this vaccine provides some

protection in the first year after vaccination, the efficacy is reduced subsequently in the following

years and is close to zero in the fourth year and beyond of vaccination (Olotu et al., 2016). This

might be because the vaccine targets malaria sporozoites but does not induce clinical immunity

against the P. falciparum asexual stages (Bejon et al., 2011; Campo et al., 2015). However, this

vaccine clinical trial is now being brought to the Southeast Asian regions, to see the impact of

the vaccine on the Great Mekong Subregion area which has high antimalarial drug resistance but

fewer malaria cases (Gosling & von Seidlein, 2016).

(iii) Vector control strategies

As the threat of antimalarial drug resistance grows and vaccine development still has a poor

record of success, there is continued pressure to sustain the efficacy of existing vector control

methods and to develop alternative methods.

To date, the major intervention strategies aimed at the vector are indoor residual spraying (IRS)

of insecticides and long-lasting insecticide treated nets (LLINs) (Rivero et al. 2010; World

Health Organization, 2011). It is estimated that these two factors contributed far more

substantially to the reduction in malaria that has been observed in the last 15 years than drugs

have (Bhatt et al., 2015). These methods both rely in part on the continued susceptibility of

mosquitoes to the insecticides we use to kill them. Four classes of insecticides that have been

approved and are currently used in the control of malaria carrying mosquitoes by WHO are the

organochlorines, organophosphates, carbamates and pyrethroids. IRS involves spraying

insecticides which are able to remain on the surface of the internal walls and ceilings in the

house. The spraying is usually done before malaria transmission season with the aim of killing

the vector before the parasites are able to complete their asexual cycle in the vector which is

approximately 14 days from the first bite of infected person carrying P. falciparum gametocytes.

LLINs insecticide (pyrethroid, typically) treatment lasts for about three years. It acts by killing

mosquitoes that come in contact to the nets. Because mosquitoes usually bite between dusk and

dawn, sleeping under these LLINs helps to protect people and reduce malaria transmission
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(Kawada et al., 2014). Not surprisingly, given the dire consequences for mosquitoes

encountering these control measures, insecticide resistance has evolved to all four classes of

insecticide currently in use (Karaa, 2012).

In 2010, increased resistance to at least one class of insecticide has been reported from 60

countries and to two or more insecticides from 49 countries (World Health Organization, 2015).

The increase of resistance could be partially averted by monitoring and reporting on the

resistance in local mosquito vectors (World Health Organization, 2014). Resistance to

pyrethroids, the only class currently used in LLINs, is the most commonly reported (Ranson et

al., 2011). The rapid rise in resistance is due to extensive and repeated use of these products

(Sparks & Nauen, 2015). Apart from this, climate change also has an impact on variation of

malaria incidence by increasing mosquito survival (Reiter, 2001). The development of Anopheles

larvae and adult, the female biting preferences and pathogen development rate are dependent on

temperature (Afrane et al., 2012). When the temperature increases, the increased geographic

range of mosquitoes could also promote the faster spread of drug resistance (Artzy-Randrup et

al., 2010; Soko et al., 2015).

In spite of these ongoing challenges, the vector control strategy is the most promising approach

in combating malaria transmission. Beyond the use of insecticides, other methods of vector

control include the development of paratransgenesis (Mancini et al., 2016; Villegas & Pimenta,

2014; Wilke & Marrelli, 2015) that aims to use bacteria to block malaria transmission, and the

development of transgenic mosquitoes to reduce or replace the population (Knols et al., 2007). A

deep understanding of Anopheles biology is critical to the further development of vector control

strategies. In my research, I have focused specifically on understanding the intersection of

Anopheles reproductive biology and malaria transmission. This research is potentially relevant

for novel vector control approaches by manipulating the reproductive biology of both female and

male Anopheles.
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Anopheles background and current perspective

Mosquitoes belong to the Culicidae family, which contains three subfamilies: Toxorhynchitinae,

Anophelinae and Culicinae. There are thousands of mosquito species but among these, those in

the genera Anopheles, Aedes and Culex transmit the majority of dangerous diseases in humans.

These species need to blood feed to reproduce which increases their ability to transmit disease.

Aedes mosquitoes are able to transmit the viruses and parasites that cause yellow fever, dengue

fever, and lymphatic filariasis. Culex mosquitoes transmit diseases such as encephalitis and

filariasis. As for now, the only arbovirus that is transmitted by Anopheles is the O’Nyong Nyong

virus (ONNV), a virus closely related to Chikungunya virus (CHIKV) (Saxton-Shaw et al.,

2013), which causes a severe joint pain (Brault et al., 2004; Waldock et al., 2012).

However, it is only Anopheles mosquitoes that are responsible for human malaria transmission.

There are over 420 Anopheles species in the world but only 50 are thought to be major vectors

for human malaria (Figure 1.4) (Sinka et al., 2012). An. gambiae and An. coluzzii are the most

prominent  malaria  vectors,  together  causing  the  most  lethality,  with An. funestus and An.

arabiensis also proficient malaria vectors of P. falciparum in sub-Saharan Africa (Coetzee et al.,

2013). In Figure 1.4, An. gambiae actually represents both An. gambiae and its closely related

sister species, An. coluzzii. This species was formerly known as An. gambiae M form (Coetzee et

al., 2013) and is restricted to West and Central Africa compared to An. gambiae (formerly known

as  the  S  form)  which  exists  across  the  entire  range  of An. gambiae ss (Crawford & Lazzaro,

2010).
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Figure 1.4 This map, taken from (Sinka et al., 2012), illustrates the global distribution of the
dominant vector species of malaria in each region.

An. coluzzii dominates disturbed habitats and shows the ability to adapt to new breeding sites

created by urbanization while An. gambiae is less competitive (della Torre et al., 2005; Simard et

al., 2009). The ability to adapt suggests An. coluzzii will have the advantage to breed throughout

the year which could lead to year round malaria transmission (Caputo et al., 2011). In Senegal

Africa, it was reported that susceptibility of P. falciparum infection prevalence is higher in An.

gambiae compared to An.coluzzii (Ndiath  et  al.,  2011).  However, An. coluzzii has higher

prevalence in Cameroon (Boissière et al., 2013). In Burkina Faso, it was reported that the

susceptibility of An. gambiae and An. coluzzii to P. falciparum is equal (Gnémé et al., 2013).

More work is necessary to further compare the roles in malaria transmission across the major

vectors in Africa.
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Anopheles lifecycle

Anopheles mosquitoes breed by laying eggs in still and clean water. One female An. gambiae is

able to produce around 50 eggs in a single lay (Sumba et al., 2004). These eggs typically hatch in

the next 48 hours to produce L1 larvae. Anopheles larvae have four stages to complete. These

stages differ in sizes and number of thoracic segments (Savignac & Maire, 1981). After about 10

days, the larvae form pupae. At the pupal stage, one can differentiate each sex by looking at the

terminal segments of the pupae under a dissecting microscope. These three stages (egg, larva,

pupa) are the aquatic stages of Anopheles. Typically 24 hours after pupation, the adults will

eclose from the pupae. The optimal temperature for Anopheles is 27 to 33°C. Temperature also

plays an important role for larval development and impacts the final adult size (Beck-Johnson et

al., 2013; Christiansen-Jucht et al., 2015). Adult Anopheles of both sexes feed on nectar but only

female Anopheles feed on animal blood, and both mating and bloodfeeding are essential for

fertile egg production in this genus (Figure 1.5).

It is essential for mosquitoes to blood feed in order to provision their eggs. This egg provisioning

is regulated by a variety of different hormones. In general, upon blood feeding, the fat body in

the mosquito will synthesize and secrete ovary ecdysteroidogenic hormone (OEH). OEH

stimulates the ovaries to secrete ecdysone which will hydroxylate to 20-hydroxyecdysone (20E)

in the female fat body (Hagedorn et al., 1975; Swevers et al., 1995). 20E will next activate yolk

precursor proteins (YPP) by binding to the ecdysone receptor (EcR) / ultraspiracle (USP) dimer.

Upon activation, both Vitellogenin (Vg) and Lipophorin (Lp) are secreted into the hemolymph

and incorporated into growing oocytes that will mature within 2-3 days (Hagedorn et al., 1975;

Swevers et al., 1995).

In Anopheles as well as other insects, 20E is also important to complete metamorphosis.

Metamorphosis in insects is regulated by Juvenile Hormone and (20E) hormone that work

antagonistically (Bai et al., 2010; Royer et al., 2002; Wu et al., 2006; Zhou & Riddiford, 2002).
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Figure 1.5 Life cycle schematic of An. gambiae which includes eggs, larvae, pupae and
adult. Figure was taken and edited from http://www.biographix.cz/portfolio/schemes-
models/life-cycle-of-the-mosquito-anopheles-gambiae/

Upon blood feeding, the transcriptional profile of An. gambiae midguts changes abruptly and

likely influences blood digestion, egg production, and the response to oxidative stress (Dana et

al., 2005). An important structure secreted by the midgut epithelial cells upon taking in a blood

meal is the type I peritrophic matrix (PM). The PM is a layer containing chitin, proteoglycans

and proteins that surrounds the blood bolus in the midgut and separates it from the midgut

epithelium cells (Freyvogel & Jaquet, 1965; Shen & Jacobs-Lorena, 1998; Tellam et al., 1999).

The PM is important in blood digestion and protection against toxic products and parasites in

mosquitoes (Huber et al., 1991; Pascoa et al., 2002).

In order to develop and lay fertile eggs, Anopheles females must have both taken a bloodmeal

and mated. The order of whether they mate first or take a bloodmeal first appears to be flexible

(Charlwood et al., 2003; Gabrieli et al., 2014). Anopheles typically  mate  in  a  swarm  at  dusk
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(Charlwood et al., 2003; Charlwood & Jones, 1979). In short, the females will enter the swarm

which consists mainly of the males, form mating couples and leave the swarm in copula. While

males may mate multiply, females are monandrous, mating only once and storing sperm for life

in an organ known as the spermatheca. Female monogamy in Anopheles is induced by male

accessory gland proteins (Shutt et al., 2010). However, the evolutionary pressures that have

resulted in female monandry are poorly understood.

In An. gambiae, during mating, along with sperm, the male transfers 20E hormone and a

gelatinous mating plug which consists of seminal fluid proteins that is digested over the

following 24 hours inside the female atrium (Giglioli & Mason, 1966; Pondeville et al., 2008;

Rogers et al., 2009) (Figure 1.6). Females that do not receive the mating plug fail to store sperm

and thus do not become inseminated (Rogers et al., 2009). The formation of the mating plug is

mediated by a male accessory gland (MAG) specific transglutaminase (TGase) exclusively found

in Anopheline mosquitoes (Rogers et al., 2009). The male derived 20E induces oviposition and

refracts the females from further mating. Heme peroxidase-15 (HPX-15) is expressed in the

spermatheca to ensure sperm stability. HPX-15 expression is regulated by the male-derived 20E

hormone (Shaw et al., 2014). There is a high correlation of gene expression between uninjected

mated females and 20E-injected virgin females in the atrium and spermatheca tissue which

suggest that 20E could mimic the transcriptional impact of mating (Gabrieli et al., 2014) and that

20E is thus ultimately responsible for many of the changes that females experience post-mating.
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Figure 1.6 Anatomy of reproductive tracts of male and female Anopheles. Male Anopheles
(left) transfer sperm together with a mating plug during copulation. Sperm are stored in the
spermatheca whilst the mating plug is dissolved within 24 hours in the female atrium.

In many insects, mating has a huge impact on female physiology, behaviour, and immunity

(McGraw et al., 2004; Ram & Wolfner, 2007). For example, induction of oogenesis, oviposition,

and refractoriness to further mating are common results of mating (Klowden & Russell, 2004;

Rogers  et  al.,  2008;  Uchida  et  al.,  2003).  In Drosophila melanogaster, mated females are

immunosuppressed compared to virgin females: they have lower antimicrobial peptide (AMP)

gene expression as compared to virgins and this correlates with higher systemic bacterial loads

(Short & Lazzaro, 2010). These effects are due to the seminal fluid components transferred by

the male that alter female D. melanogaster humoral immune system activity. This response is

dependent on the presence of female germline cells such that females with ablated ovaries do not

have immunosuppression upon mating (Short et al., 2012). Both reproduction and immune
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responses require high energy usage and demanding physiologically. When the reproduction

increases, immunity reduces and the same is found when immune response is higher,

reproductive output decreases. These findings suggest that there may be a tradeoff between

reproduction and immunity (Schwenke et al., 2016).

Similar to other insects, female Anopheles undergo behavioural changes after mating, such as

induction of egg laying and refractoriness to further insemination (Gabrieli et al., 2014; Klowden

& Russell, 2004; Rogers et al., 2008, 2009; Tripet et al., 2001). They also undergo major

physiological changes. Transmission Electron Microscope experiments of the atrial cells of a

virgin female show smooth endoplasmic reticulum and storage vacuoles populating the apical

cytoplasm, mitochondria alongside the smooth endoplasmic reticulum and abundant rough

endoplasmic reticulum at the basal pole. However after mating, the structure changes where the

apical surface contains electron-dense vacuoles with collapsed smooth endoplasmic reticulum

membranes. Atrial cells of mated females that have direct contact with the mating plug show

endosomes and lysosomes occurring densely at the apical pole and the basal labyrinth is

expended and the basal lamina is distinct (Rogers et al., 2008). Mated female atrial cells are

permanently altered in ways that suggest these cells function to support the uptake of male

material transferred during copulation (Rogers et al., 2008). Comparison of post mating gene

expression between whole virgin and mated An. gambiae females suggested that mating causes

permanent changes in gene expression although immune genes do not appear to be regulated by

mating like they are in Drosophila (Rogers et al., 2008; Short & Lazzaro, 2013).

Anopheles and P. falciparum transmission : P. falciparum sexual life cycle in Anopheles

midgut

After a female Anopheline bites an infected human, the sexual stage male and female gametes

emerge from the red blood cells inside the gut of the mosquito. The male gametocyte undergoes

3 rapid DNA replications during a process called exflagellation to form 8 motile haploid

microgametes. These motile microgametes (male) will search the bloodmeal to find a

macrogamete (female) and then fertilization will occur, forming a diploid zygote that develops
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over the next 24 hours into a motile ookinete. This occurs inside the bloodmeal as it is being

digested, and once mature, the ookinete must penetrate the Anopheles PM that has fully formed

during this time. After penetrating the PM, the ookinete must also pass through the midgut

epithelium, comprising a single layer of cells, before it exits into the basal lamina where it then

matures over the next 7-10 days into an oocyst containing thousands of haploid sporozoites.

When the oocyst bursts around 16 days post blood feed, these sporozoites migrate around the

mosquito body and some enter the salivary gland where they are then poised to infect any

humans the mosquito bites after this stage (Figure 1.7).

Figure 1.7 P. falciparum life cycle in the Anopheles mosquito. Figure taken from Center for
Disease Control website (https://www.cdc.gov/dpdx/malaria/index.html).
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Anopheles and microbiota

The microbiota comprise the resident bacteria that live in an Anopheles mosquito midgut.

Although there are no known obligate bacterial species in Anopheles, there is a great diversity of

bacteria that are likely to enhance mosquito fitness by their contribution to digestion of plant-

derived polymers from nectar, digestion of lipid and protein from the blood meal for nutrient

absorption, and/or their contribution to pathogen protection (Douglas, 2009; Engel & Moran,

2013; Gaio et al., 2011; Minard et al., 2013). An. gambiae and An. coluzzii harbor similar

bacterial communities during the larval stage, and the species composition of microbiota reduces

when they are adults (Gimonneau et al., 2014). Four prominent bacterial classes,

Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria and Actinobacteria, are

commonly found in newly emerged An. gambiae and An. coluzzii midguts, ovaries and salivary

glands (Gimonneau et al., 2014). These observations suggest that these bacteria may represent

An. gambiae and An. coluzzii symbionts (thought not obligate) that are environmentally and/or

transstadially transmitted.

The bloodmeal, which is critical both for malaria transmission and mosquito reproduction, has a

massive impact on mosquito midgut bacterial proliferation. Twenty four hours upon blood

feeding, the microbiota in An. gambiae midguts dramatically increased by 100 times compared

to unfed midguts (Dong et al., 2009; Meister et al., 2009). The  resident  microbiota  play  a  key

role in digestion as well as immune regulation (Gaio et al., 2011; Rodgers et al., 2017) and thus

there are multiple potential direct and indirect interactions in the midgut between the mosquito,

the midgut bacteria, and the malaria parasites. Microbiota can have a negative impact on

mosquito susceptibility to P. falciparum (Dong et al., 2009), potentially due to competition for

nutrients (Hentschel et al., 2003; Ivanov & Littman, 2011; Reid et al., 2001), through

mechanisms that involve oxidative stress that kill the parasites (Cirimotich et al., 2011; Luckhart

et al., 1998; Ngwa et al., 2013), or by inducing immune responses that trigger activation of the

antibacterial pathway (Dennison et al., 2015; Stathopoulos et al., 2014; Tchioffo et al., 2013).

Removing bacteria through antibiotic treatment from the midgut increases parasite infection

suggesting that the microbiota can reduce P. falciparum infection (Dong et al., 2009; Gendrin et

al., 2015; Rodgers et al., 2017). Some of the bacterial species found in Anopheles are of interest
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in malaria research such as Serratia (Dong et al., 2009), Pantoea (Straif et al., 1998), Klebsiella

(Gonzalez-Ceron et al., 2003; Pumpuni et al., 1993; Harutyunova et al., 2013), Elizabethkingia

(Rani et al., 2009) and Asaia (Capone et al., 2013).

Studies in Drosophila suggest that mating has an impact in increasing microbiota in the whole

female (Short et al., 2012). It is not known if this is the case in Anopheles. It is important to

understand if the mating status of Anopheles influences bacterial loads and bacterial diversity in

the midgut because the midgut is also an important place for Plasmodium parasites to complete

their sexual stage to ensure successful transmission. Microbiota research is widely studied with

respect to mosquito borne diseases because of the potential for bacteria to influence disease

transmission. One bacterial species that has received much attention in studies concerning

mosquito transmitted disease is Wolbachia. This bacteria was shown to be able to reduce vector

competence in Aedes towards dengue and Zika virus (Dutra et al., 2016; McMeniman et al.,

2009). In Anopheles however, there have been inconsistent impacts of Wolbachia on malaria

parasites (Hughes et al., 2014). Recently, Wolbachia was reported to be able to infect An.

coluzzii and manipulate reproduction by reducing the time for egg laying (Shaw et al., 2016).

Furthermore, there is a negative correlation between the presence of Plasmodium parasites and

Wolbachia infection (Shaw et al., 2016). However, the presence of Wolbachia does not induce

cytoplasmic incompatibility nor distort the sex ratio like it can in Aedes and Culex which

suggests a different response in An. coluzzii compared to other mosquito species that are able to

transmit diseases (Shaw et al., 2016).

Understanding the impact of a female’s mating status on her bacterial abundance and diversity

might aid in efforts to tackle the spread of mosquito borne diseases. Also relevant is whether the

mating status of Anopheles has an impact on malaria transmission. Looking at the transcriptome

of the midgut in response to mating, blood feeding, and antibiotic treatment will aid in

understanding these factors might influence transmission. Although the 20E hormone that males

transfer during mating has been shown to increase egg production and stop the female from

further insemination (Gabrieli et al., 2014), the male transfer of 20E in all of the major human

malaria vector species raises the question of the hormone’s role, and thus the role of mating, in

increasing malaria transmission (Mitchell et al., 2015). Furthermore, it is not known if 20E has a
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direct impact on the midgut of Anopheles, thus it is important to understand the transcriptome of

the midgut of female Anopheles experiencing 20E hormone independent of mating.
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CHAPTER 2

Aim of the thesis

Around 663 million malaria cases have been prevented from 2000-2015 due to malaria control

interventions. Of these, it is estimated that 69% were averted due to the use of insecticide-treated

mosquito nets (ITNs) (UI: 63–73%), 21% due to artemisinin based combination therapy (ACT)

(UI: 17–29%), and 10% due to indoor residual spraying (IRS) (UI: 6–14%) (Bhatt et al., 2015).

These numbers clearly show that targeting vectors has the greatest impact on reducing malaria

transmission. However, insecticide resistance now exists against all four classes of insecticides

and it is on the rise in many wild populations (Bhatt et al., 2015). New methods of vector control

are sorely needed to maintain the gains achieved in reducing malaria transmission.

My thesis aims to explore several facets of mosquito biology that are critical to malaria

transmission. Female mosquitoes depend on bloodmeals to develop their eggs. These bloodmeals

are where the mosquitoes acquire the pathogens and parasites that they can transmit. The

bloodmeals also have a large impact on the microbiota present in the midgut. Mating is known in

many insects to influence facets of female physiology and behaviour, so the overall aim of my

thesis is to examine whether mosquito mating status influences the abundance and diversity of

microbiota and susceptibility to human malaria parasites. I also explore the transcriptional

patterns that distinguish virgins from mated females under a variety of circumstances, including

whether they are sugar fed or blood fed or with or without microbiota.

Given the complexity of the bacterial composition in the Anopheles midgut, I first investigated

whether mating status affects bacterial abundance and composition in the midgut of female An.

coluzzii. From this thesis, bacterial abundance is higher in the midgut of mated females than

virgin females. Bacterial composition is altered due to both mating and antibiotic treatment.

Secondly, I am to investigate the impact of mating status, blood feeding, and antibiotic treatment

on An. coluzzii female midgut transcriptomes. The RNASeq analysis shows that the

transcriptome of the An. coluzzii sugar fed female midguts show many genes are regulated by

mating. However this impact is less apparent once females are bloodfed. Many genes were
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significantly differentially expressed in response to antibiotic treatment on the An. coluzzii

female P. falciparum fed midgut transcriptome which is consistent with bacteria having an

important role in midgut dynamics.

Next, I test whether the mating status of An. coluzzii females influence their susceptibility to P.

falciparum. From my experiment, independent of bacteria, mating frequently has an impact on

mosquito susceptibility to P. falciparum especially when P. falciparum infection levels are high.

To further explore the impact of mating status on P. falciparum susceptibility, I specifically

mimic the male transfer of 20E by injecting it into virgins to test the impact of 20E on An.

coluzzii susceptibility to P. falciparum. 20E injection in virgins results in an increased P.

falciparum infection intensity. However, the same result is not seen when 20E injection is

administered to mated females, suggesting 20E acts once, perhaps to remodel the gut and prepare

it for digestion and egg provisioning.

Finally, I investigate if the impact of 20E-injection on virgin An. coluzzii female midgut

transcriptomes resemble the mated females midgut transcriptome, as is true for the lower

reproductive tract. The impact of 20E injection on the virgin’s midgut transcriptome shares 11%

of the differentially expressed genes observed between mated and virgin females. This amount of

overlap suggests that 20E injection does not fully mimic the mated females midgut

transcriptome, but that 20E might underlie some of the changes observed.
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CHAPTER 3
The impact of mating on bacterial abundance and composition in

the midgut of female An. coluzzii mosquitoes

Introduction

While  there  are  no  known obligate  bacteria  in Anopheles, diverse species of bacteria live and

multiply in the midgut of mosquitoes, enhancing mosquito fitness by contributing to the

digestion of plant-derived polymers from nectar, the digestion of lipids and proteins from the

blood meal, or by protecting them from pathogens (Douglas, 2009; Engel & Moran, 2013; Gaio

et al., 2011; Minard et al., 2013). Adult mosquitoes likely acquire microbiota in their midgut

from environmental exposure (Gimonneau et al., 2014). Adult female Anopheles mosquitoes

require a bloodmeal to develop their eggs, and these bloodmeals also have a dramatic impact on

the resident microbiota: twenty four hours upon blood feeding, the microbiota in An. gambiae

midguts increases by 100 times compared to unfed midguts (Dong et al., 2009). If the female has

taken up sexual stage P. falciparum parasites in her meal, many parasites will be ookinetes at this

24 hour time point post bloodmeal, penetrating the midgut epithelium.

The resident microbiota play a key role in digestion as well as immune regulation (Gaio et al.,

2011) and thus there are multiple potential direct and indirect interactions between the mosquito,

the midgut, and the malaria parasites. Microbiota can have a negative impact on mosquito

susceptibility to P. falciparum (Dong et al., 2009), potentially due to competition for nutrients

(Hentschel et al., 2003; Ivanov & Littman, 2011; Reid et al., 2001) through mechanisms that

involve oxidative stress that kills parasites (Cirimotich et al., 2011; Luckhart et al., 1998; Ngwa

et al., 2013) or by inducing immune responses that trigger activation of the antibacterial pathway

(Dennison et al., 2015; Stathopoulos et al., 2014; Tchioffo et al., 2013).

Studies on mosquito bacterial diversity are of interest because of the potential role of bacteria in

developing paratransgenesis to control the vector (Gendrin et al., 2015; Minard et al., 2013;

Wilke & Marrelli, 2015). Paratransgenesis utilizes the symbiont to deliver anti-Plasmodial
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transgenes that eliminate the parasite (Wilke & Marrelli, 2015). Several species of bacteria are

under consideration for their utility in paratransgenesis (Bahia et al., 2014). Table 3.1

summarizes the bacteria found in Anopheles and some studies of these bacteria and Plasmodium

infection. For example, Serratia bacteria are dominant in some disease vector species, such as

Anopheles,  tsetse  fly,  sandflies  and Aedes (Azambuja et al., 2005; Bando et al., 2013; Dong et

al., 2009; Geiger et al., 2010; Gusmão et al., 2010). Serratia marcescens strain HB3 interrupts

ookinete invasion in An. stephensi midguts  (Bahia et  al.,  2014;  Bando et  al.,  2013)  and is  also

able to block P. vivax sporogonic development in An. albimanus (Gonzalez-Ceron et al., 2003).

Recently, a particular Serratia bacterium strain  (AS1)  which  was  isolated  from Anopheles

ovaries was engineered to carry anti-Plasmodium effector proteins. This genetically engineered

bacterium is able to spread rapidly in the midgut and inhibit P. falciparum development (S.

Wang et al., 2017) Serratia and Pantoea are the most common species identified from field

caught An. gambiae (Straif et al., 1998). Another example is a Pantoea agglomerans strain that

has been engineered to secrete antimalarial proteins in the mosquito midgut that suppress P.

falciparum and P. berghei development (Wang et al., 2012).

Furthermore, Asaia bacteria are resident not only in the midgut, but also in the salivary glands

and reproductive organs of An. gambiae which makes it a potentially promising bacterial species

to be used in vector control strategy given that parasites must also invade the salivary gland to

infect the next person, and that the presence of these bacteria in the reproductive tissues might

enhance vertical transmission (Capone et al., 2013; Damiani et al., 2010; Mancini et al., 2016).

Studies in An. stephensi showed that Asaia bacteria replication remains the same whether or not

the mosquitoes were given P. berghei blood meal (Damiani et al., 2010). This suggests that the

immune response upon parasite invasion does not interfere with Asaia replication (Capone et al.,

2013). Another interesting bacterial species is Elizabethkingia from the Flavobacteriaceae

family, which is dominant in Anopheles from South East Asia (Rani et al., 2009) and possesses

anti-Plasmodial activity (Ngwa et al., 2013). Klebsiella is another bacteria found in midgut of

Anopheles (Harutyunova et al., 2013) but there are no studies examining the impact of Klebsiella

on P. falciparum. All together, while there are no obligate species of bacteria present in

Anopheles mosquitoes, there are many that are commonly found, and many of these have

potential consequences on mosquito susceptibility to parasites.
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Table 3.1 List of some known bacterial species which will be discussed in this chapter and
later chapters and studies on interaction with Plasmodium parasites in order to develop
paratransgenesis for combatting malaria.

One possible problem with studying the microbiota of lab mosquitoes is the potential difference

in species composition or diversity compared to wild mosquitoes. There are significant

differences between field-collected and laboratory reared mosquitoes where there will be some

loss in bacterial species over time with the controlled environment and food in laboratory-reared

mosquitoes (Boissière et al., 2012; Wang et al., 2011). However, most frequent bacterial genera

are present in laboratory-reared and field-collected adult Anopheles midgut which suggests that

the bacterial diversity is still preserved in the laboratories colonies (Gendrin & Christophides,

2013; Wang et al., 2011).

In addition to blood feeding, which influences the microbiota of the female, females must also

mate to successfully reproduce. In insects, mating induces physiological and behavioural

changes in females such as an increase in egg production, food intake, and refractoriness to

additional matings (Herndon & Wolfner, 1995; Rogers et al., 2009; Rolff & Siva-Jothy, 1999;
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Tsukamoto et al., 2014). Mating can also expose females to bacterial, viral, fungal and sexual

transmitted diseases (STDs) (Knell & Webberley, 2004; Miest & Bloch-Qazi, 2008; Nalepa &

Weir, 2007). In Drosophila, mated females have reduced resistance to bacterial infection relative

to  virgin  females  (Short  &  Lazzaro,  2010).  This  was  shown  to  be  driven  by  the  seminal  fluid

proteins transferred by the males during mating which results in the suppression of antimicrobial

peptide (AMP) gene expression (Short et al., 2012). In An. gambiae, mating induces

refractoriness to further copulation and increases egg production and oviposition (Klowden &

Russell, 2004; Rogers et al., 2008, 2009; Tripet et al., 2003). However, one important difference

between Anopheles and Drosophila is that Anopheles requires a blood meal to produce eggs

which will increase the bacteria abundance in the gut. Therefore, discerning whether mating also

influences the microbiota abundance or diversity in the gut is the aim of the work presented in

this chapter. First, I examine whether mating has an impact on bacterial abundance in sugar fed

and blood fed female midguts. Secondly, I investigate whether mating changes the diversity of

microbiota in An. coluzzii female midguts upon mating. This work is of general interest because

of the known relationship between the microbiota and the outcome of Plasmodium infection.

Furthermore, this work is important for later chapters in which I explore the impact of mating on

transmission because it is important to understand whether microbiota are influenced by mating

as well, and thus could indirectly explain outcomes of Plasmodium infection.

Materials and Methods

There are some similarities of the sample preparation in every chapter in this thesis. Minor

changes such as number of mosquitoes, age of P. falciparum gametocyte culture and other

related metadata are summarized in Appendix S1 and Appendix S2.
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Mosquitoes

Mosquito rearing

The Ngousso strain of An. coluzzii, which originates from Cameroon was reared under standard

conditions (26°C-28°C, 65%-80% relative humidity, 12hr:12hr light/darkness photoperiod).

Eggs were floated in a pan filled with deionized water and once larvae hatched, around 1200

larvae were reared in a 32L plastic pan (66cm x 45cm x 17cm). The larvae were fed on one mL

of ground fish food each day and 2 pieces of cat food on Friday evening for the weekend. When

the adults emerged, they were maintained on 10% autoclaved fructose solution.

Collecting and separation of Ngousso pupae

Adult mosquitoes were separated by sex as pupae and placed in separate cages in dishes filled

with deionized water. Cages were inspected when adults emerged and any of the wrong sexed

adults were removed. Some females were introduced to the males via aspirator after emergence

and remaining females were retained in the original cage and labelled as virgin. The aspirator

was cleaned with 70% ethanol prior to use.

Ngousso mating

Mating assays were performed to determine the percentage of females mating over the course of

one night. The spermatheca of females housed overnight with males were dissected the following

morning and viewed under light microscope and 80% were found to have mated. After that, we

use a single overnight mating method in all of our experiments. Mated females and males were

separated after they were left overnight by putting the cage on ice.

Ngousso treatment with antibiotics

Female  Ngousso  mosquitoes  were  separated  into  two  sets  from  eclosion.  Set  one  is  fed  on

normal sugar whilst the second set of mosquitoes were maintained with antibiotic-containing

sugar solution (25ȝg/mL gentamycin, 10ȝg/mL penicillin and 10 unit/mL streptomycin) to

remove most of the bacteria from their midgut. Introducing antibiotics in the sugar meal has been

reported not to interfere with the mosquitos’ longevity as it does if antibiotics were added into

blood meal. This might be due to microbiota expansion upon blood feeding (Dennison et al.,
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2016). Both untreated and antibiotic treated sets of mated females and virgin females were

placed in four different cups and left overnight before blood feeding.

Ngousso blood feeding on P. falciparum-infected blood

Information on preparing P. falciparum infected blood will be discussed in Chapter 5 Materials

and Methods. Cotton was removed 3 hours before blood feeding. Each cup contained Ngousso

females with different treatments: mated untreated, mated treated with antibiotics, virgin

untreated, and virgin treated with antibiotics. They were left to blood feed on P. falciparum-

infected blood for 5-10 minutes using the membrane feeding assay. Blood was then removed,

and new sugar-soaked cotton was placed on each cup and the cups were kept in an incubator at

26°C and 80% humidity.

24 hours after blood feeding, mosquitoes were killed with 70% ethanol and washed thrice with

1x PBS. The mosquitoes were kept in 1x PBS on ice. Each mosquito’s midgut was dissected on a

glass slide on a drop of 1x PBS and put in a homogenizer tube on dry ice.

Molecular Biology Methods

RNA Extraction

Total RNA from female Ngousso midguts was extracted using TRIzol (Life Technologies) and

chloroform (Sigma). For sugar fed midguts, five midguts were pooled together whilst for blood

fed midguts, each midgut was prepared individually. Figure 3.1 summarizes the samples used in

this chapter (Chapter 3) and in the RNASeq experiment (orange box) discussed in Chapter 4.

Each sample was homogenised using the Precellys 24 homogenizer at maximum speed,

6,800rpm for 30 seconds and let to rest for 5 minutes at room temperature (RT). Samples were

then centrifuged at 13,200 rpm for 15 minutes at 4°C. The aqueous phase was collected into a

tube that was filled with 250ȝL isopropanol (Sigma) and 1ȝg glycogen (Sigma) to precipitate the

RNA. The pellet was kept to extract DNA using the back extraction buffer (described below).

Samples were centrifuged at 13,200rpm for 15 minutes at 4°C followed by washing using 70%

ethanol (Sigma) and concentrated using the DNA concentrator for 10 minutes. 10ȝL molecular
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biology grade water was added to each tube and was placed on a heat block (37°C) for 15

minutes. Total RNA was measured using Nanodrop.

Figure 3.1 Six midguts from each treatment and mating status were dissected from 24 hours
post P. falciparum-infected blood fed mosquitoes. This experiment [K] had 100% P. falciparum
infection prevalence. RNA was extracted from each midgut and used in qPCR in this chapter as
well as for RNASeq in Chapter 4 (total = 24 samples). The Kraken analysis, derived from the
RNASeq datasets, provides information on the microbiota load and composition. Whilst
extracting RNA, DNA from each sample was also extracted using the back extraction buffer.
From these DNA extractions, PCR to amplify the 16S genes from the microbiota was carried out,
and sequenced, and these were also used to analyse microbiota loads and composition.
(M=mated, V=virgin, B=blood fed, N=untreated, A=antibiotic, x=experiment [K] with 100% P.
falciparum infection)
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cDNA production

An equal amount of RNA (100ng) from each sample was used for cDNA synthesis. cDNA

preparation was done using the Takara reverse transcription kit (RR037B), according to the

manufacturer’s instructions (37°C for 15 minutes, 85°C for 5 seconds followed by a 4°C hold).

Reverse transcription reactions were performed in 10ȝL volumes by using 0.5ȝL of Oligo dT

Primer (50ȝM), 0.5ȝL of Random hexamer (100ȝM), 2ȝL of 5x PrimeScript Buffer, 0.5ȝL

PrimeScript RT Enzyme Mix (100ȝM), 100ng/ȝL RNA (all reagents from Takara). Reactions

were done using Veriti 96 well Thermal Cycler.

qPCR

Using the Primer3 software, I also designed a primer pair for for an Anopheles reference gene,

the ribosomal protein (S7 Universal – S7Uni) that amplifies an exon that is conserved across all

Anopheles in order to be able to use this primer in further species of mosquitoes if desired. All

primer pairs are listed in Appendix S3.

Quantification of genes of interest were performed using duplicate 10ȝL reactions prepared

using 2ȝL of 30-fold diluted cDNA, 5ȝL SYBR Premix Ex Taq (2x), 0.04ȝL ROX Reference

Dye (50x), 0.2ȝL forward primer (10ȝM), 0.2ȝL reverse primer (10ȝM), 2.6ȝL molecular grade

water (all reagents from Takara). The 7500 Fast Real-Time PCR System machine and 7500

Software v2.0.6 were used with conditions of 30 seconds at 95°C,  followed  by  40  cycles  of  3

seconds at 95°C, and 30 seconds at 60°C.

Primer efficiency values were generated to check the primer quality by creating standard curves

from serial dilution of the primers. S7Uni was used for normalization of the cDNA template and

to calculate threshold values. The threshold values were calculated by multiplying S7Uni

efficiency and S7Uni Ct value divided by the respective bacterial primer efficiency estimate

multiplied by its Ct value.

The ratio derived from the Ct values of each bacterial species of interest compared to the S7Uni

estimate of total mosquito RNA was plotted using ggplot2 to generate a boxplot graph of mated

versus virgin bacterial load. Linear mixed-effects models using the packages Eigen and S4
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(lme4) were used to perform the ANOVA in R to assess the significance of differences between

treatments.

Primers used to examine patterns of bacterial proliferation included a generic 16S primer, which

amplifies all bacteria, but also specific primers that amplify Klebsiella, Pantoea, and Serratia

which belong in the family of Enterobacteriaceae. These three bacterial species have been

reported to be dominant in An. gambiae field and lab-reared colonies (Gendrin et al., 2015).

Additionally, Elizabethkingia and Asaia primers which belongs in the Flavobacteriaceae and

Acetobacteriaceae family respectively were also used.

Assessing bloodmeal volumes

In order to assess whether mated and virgin females take in different blood volumes, two

experiments were performed, one which weighed females after their bloodmeal and another

which used the Drabkin reagent to assess the amount of hemoglobin in each female’s gut

(hemoglobinometry) (Briegel et al., 1979). Ngousso mosquitoes were fed using the membrane

feeder on 1mL washed red blood cells (x3) mixed with 1mL A+ serum. After 10 minutes of

feeding, unfed females were removed on ice. Twenty females were separated and placed in a

new cup on dry ice. They were then weighed individually and their mating status was scored by

spermathecal dissection as described above. Remaining females were kept in a container in an

incubator for 24 hours at 26°C and 80% humidity, similar to the condition with mosquitoes fed

with P. falciparum-infected blood. These females were then weighed and mating status was

assessed. This resulted in weights and Drabkin assessments of bloodmeal size for mated and

virgin females both immediately after a bloodmeal, and 24 hours later to examine whether

females may digest at different rates depending on their mating status. The Drabkin reagent

(Sigma D5941) was prepared by mixing one vial of Drabkin reagent to 1L of water. Each

mosquito abdomen was added to 0.5mL of Drabkin and mixed well, 200ȝL of mixture was

pipetted into a 96-well plate and examined together with standard curve using normal blood;

0.5ȝL, 1.0ȝL, 2.0ȝL and 4ȝL. Controls of unfed mosquito abdomens with Drabkin and also

Drabkin reagent alone were also included. Plates were read at 540nm and the standard curve was

used to convert the OD value to blood volume in ȝL.
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Kraken analysis

The Kraken results presented in this chapter were generated using RNASeq data on the midgut

samples described in Figure 3.1. The RNAseq analyses on the midguts themselves will be

discussed in Chapter 4. Kraken is a software package that assigns taxonomic labels to short DNA

sequences and is commonly used for microbiome detection (Wood & Salzberg, 2014; Zhang et

al., 2015). In this case, Kraken was used to identify contaminant reads of prokaryote or virus

from an RNASeq dataset I generated on mosquito midguts. Kraken classifies 100 base pair reads

at  a  rate  of  over  4.1  million  reads  per  minute (Wood & Salzberg, 2014). Kraken identifies

bacterial species by matching k-mers to a database of bacterial k-mers. The database used in my

Kraken analysis consists of all genomes from Bacteria RefSeq, Virus RefSeq, Plasmid RefSeq

and Mouse and Human v38 reference genomes. I used read counts for each bacterial species as

estimated by Kraken normalized by total read counts achieved in the sample to quantify the

relative bacterial loads overall and for several specific groups of bacteria. These analyses were

carried out on all 24 individual midgut samples depicted in Figure 3.1.

16S Sequencing by MiSeq

Illumina MiSeq sequencing of 16S rRNA gene amplicons was also applied to investigate the

microbial community structure and composition regardless of whether there was a reference

genome available for mapping (which Kraken depends on). Methods for preparing midgut DNA

for MiSeq analysis are explained below.

DNA Extraction

A Back Extraction Buffer protocol obtained from Thermo Fisher website

(www.thermofisher.com), which consists of 4M guanidine thiocyanate (Sigma), 50mM sodium

citrate (Sigma) and 1M Tris pH8 (Sigma), was added to the pellet from the first round of

centrifugation of midguts with TRIzol (Life Technologies) and chloroform (Sigma) during RNA

extraction. Samples were centrifuged at 13,200rpm, 4°C for  15  mins.  The  aqueous  layer  was

collected into new tube which contains isopropanol and left to rest at RT for 5 minutes before

centrifugation at 13,200rpm, 4°C for 15 mins. Isopropanol was then removed and 400ȝL of 70%

ethanol was added to the pellet of the samples. Samples were vortexed and centrifuged at
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13,200rpm, 4°C for 10 mins. The washing step was repeated three times. DNA was used for the

MiSeq experiment.

PCR amplification

Each DNA sample was subjected to a 16S amplification by PCR using bespoke MiSeq primers.

The forward primer for each sample is the same, whilst the reverse primer is different for each

sample and contains a unique Golay barcode. The PCR reaction kit from New England Biolabs

(NEB) consists of 5x Q5 buffer, 10mM dNTP, 10mM forward primer, 10mM reverse primer,

DNA template, Q5 Taq and NF water with total reaction volume of 25ȝL. Amplification was

done by 98°C for 2 minutes, 20 cycles of 30 seconds at 98°C, 30 seconds at 50°C, 1 ½ minutes at

72°C and 72°C for 5 minutes. 2ȝl of each PCR product were run on a 1% agarose gel to check

the quality where expected band should be approximately 350bp. All four PCR products from

each sample were pooled in a new 1.5ml tube. DNA was quantified using picogreen.

One hundred ȝL of the equimolar mix was run on 1% agarose gel and the appropriate-sized band

was cut and placed into a 1.5mL tube. Membrane binding solution (10ȝL)  was added per 10mg

of gel slice and vortexed. Tubes were placed in a water bath at 60°C to dissolve the gel slice.

700ȝL of dissolved gel mixture were pipetted into a SV Minicolumn and centrifuged at

13,200rpm for one minute. Supernatant was discarded and the SV Minicolumn was reinserted

into the collection tube. These steps were repeated until no dissolved gel mixture remained.

700ȝL of membrane wash solution containing ethanol was added and centrifuged at 13,200rpm

for 1 minute. The supernatant was discarded and the SV Minicolumn was reinserted into the

collection tube and 500ȝL membrane wash solution was added. Tubes were centrifuged at

13,200rpm for 1 minute and supernatant was discarded. The SV Minicolumn was transferred to a

1.5mL tube and 100ȝL of nuclease-free water was added directly onto the membrane in SV

Minicolumn and left for a minute. The tubes were centrifuged at 13,200rpm for one minute and

half of the DNA collected was sent for MiSeq sequencing.

MiSeq sequencing

16S sequencing (MiSeq) was done using a protocol developed in the Lawley lab at the Wellcome

Trust Sanger Institute and analysed using the software package Mothur (Schloss et al., 2009).
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The process starts at “make.contigs” step. The paired fastq files from sequencing were used as

input.

Results

One source of variation could be differences in the volume of blood taken by the mosquitoes for

example if mating status influences bloodmeal volume. Indeed there is evidence in Drosophila

that females eat more after mating (Barnes et al., 2008). In order to be certain that the trend was

not driven by differences in the size of a bloodmeal being different between virgin and mated

females, I tested whether they took different volumes of blood using two different measures.

From three independent experiments, mated and virgin females appear to take equal bloodmeal

sizes and digest at similar rates, comparatively (Figure 3.2a and Figure 3.2b). Mosquitoes are

difficult to weigh accurately using our scale because they are so light, so I repeated another set of

experiments to assess the correlation between weight and the Drabkin method. The Drabkin

method is a hemoglobin-based estimation of the blood meal taken by each mosquito (Chagas et

al., 2014). Results from weighing and the Drabkin method are highly correlated (Correlation Test

: R2 = 0.67), suggesting weight accurately represents bloodmeal size, and either method can be

used to quantify the blood meal size taken in the future.
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(a) Weight   (b) Hemoglobinometry

Figure 3.2      Virgin and mated female Ngousso appear to take similar volumes of blood when
feeding. Each dot represents a measurement from an individual midgut. Boxplots indicate the
median and 25-75 percentiles. (a) Weight of naive blood fed virgin and mated Ngousso at 0hr
and 24hr post blood feed. (b) Hemoglobinometry using Drabkin reagent to assess the volume
taken by virgin and mated females.

Effect of mating on mosquito midgut microbiota abundance

I first examined whether mating status influences bacterial abundance in the midgut under sugar

fed conditions. Using similarly sized females, whose mating status was confirmed by visual

inspection of the spermatheca, bacterial abundance in mated and virgin pools of five midguts as

estimated by qPCR on 16S is not statistically significantly different, but strongly trends towards

mated females showing higher bacterial loads than virgin females (ANOVA : n=12, p=0.06;

Figure 3.3a). Female Ngousso that were given antibiotics in the sugar solution from eclosion

onwards have almost all of the bacteria removed from their midgut. Sugar fed midgut samples

used for the 16S qPCR experiment are a pool of five midguts, which might underlie the high

levels of variation. For example, if a single midgut in the pool of 5 had a very high bacterial load,
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this could skew the whole pool. For later work on blood fed guts, I moved to analysing single

guts.

  (a)    Sugar Fed   (b)               Blood Fed

Figure 3.3      qPCR quantification of midgut bacterial 16S rRNA abundance in (a) normal sugar
fed mosquitoes without antibiotics in their sugar meal and with antibiotics in their sugar meal.
Each dot represents a pool of 5 midguts (p = 0.06). Boxplots indicate the median and 25-75
percentiles.(b) 24 hours post blood fed mosquitoes midgut given normal sugar or an antibiotics
cocktail in the sugar meal since eclosion. Each dot represents a single midgut. Boxplots indicate
the median and 25-75 percentiles. (** = p-value <0.005)

I next examined whether mating status has an impact on bacterial proliferation in blood fed

mosquitoes because bacteria proliferate massively upon a blood meal and microbiota are known

to have both direct and indirect impacts on malaria susceptibility (Dong et al., 2009). Upon blood

feeding, individual mated female midguts contain a significantly higher bacterial load than

individual virgin female midguts (ANOVA : n=12, p = 0.002; Figure 3.3b). When females were

given antibiotics in their sugar meal, no difference in bacterial abundance due to mating status in

the blood fed midguts was observed as most bacteria were removed. Blood feeding causes a

massive increase in overall levels of bacteria. The impact of mating status on bacterial

proliferation in individual blood fed females strongly suggests that males may transfer something

that leads to higher levels of bacteria in the female gut, especially upon bloodfeeding.
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Next, I carried out qPCR to examine several specific bacterial species in mated and virgin

Ngousso midguts. I found that mated females have higher Klebsiella (ANOVA : n=12, p = 0.05),

Pantoea (ANOVA : n=12, p = 0.05), Serratia (ANOVA : n=12, p = 0.02) and Asaia (ANOVA :

n=12, p = 0.002) compared to virgin females (Figure 3.4). In spite of much lower overall levels

of bacteria in antibiotic treated females, similar trend was also observed, with an increase in

Klebsiella (ANOVA : n=12, p = 0.05) and Serratia (ANOVA : n=12, p = 0.03) in response to

mating status and a trend towards higher Pantoea levels in mated females (p = 0.08).

Figure 3.4       Relative bacterial loads as estimated by qPCR for Klebsiella, Pantoea, Serratia,
Elizabethkingia and Asaia on  virgin  and  mated  midguts.  Each  dot  represents  RNA  extracted
from single midgut from P. falciparum-infection experiment [K] with 100% prevalence. “None”
refers to untreated mosquitoes while “Antibiotics” refers to mosquitoes treated with
Pen/Strep/Gent. Boxplots indicate the median and 25-75 percentiles. (** = p-value <0.005, * =
p-value <0.05)
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Altogether, the qPCR based analysis on 16S rRNA strongly suggests that mated females have

higher midgut bacterial loads than virgin females, especially when bloodfed. To confirm this

finding and explore whether mating influences bacterial composition, I further analysed the

patterns using Kraken to evaluate bacterial reads in the RNAseq data from these same samples.

Because the samples are the same, I expected the estimates of the bacterial loads to be similar for

both qPCR on 16S and Kraken. The estimated bacterial loads from the Kraken analysis shows

mated females have more bacteria than virgin females (p = 0.04; Figure 3.5a). Antibiotic-treated

females show lower bacterial levels compared to untreated females, which is what should be

observed and has been reported previously (Demaio et al., 1996; Vaughan et al., 1994). No

significant differences were found between antibiotic-treated mated and treated virgin females,

though given most bacteria are likely eliminated, this is expected.

(a) Overall bacteria (b)  Specific bacteria

Figure 3.5      Kraken analysis of (a) overall bacteria (b) specific bacterial loads as estimated by
Kraken report for Klebsiella, Pantoea, Serratia, Flavobacteriaceae (taxonomic family of
Elizabethkingia) and Acetobacteraceae (taxonomic family for Asaia)  on  virgin  and  mated
midguts. Each dot represents RNA extracted from single midgut from P. falciparum-infection
experiment [K] with 100% prevalence. “None” refers to untreated mosquitoes while
“Antibiotics” refers to mosquitoes treated with Pen/Strep/Gent. Boxplots indicate the median and
25-75 percentiles. (* = p-value <0.05).
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Klebsiella, Pantoea and Serratia (taxonomic family of Enterobacteriaceae) were all detected in

the Kraken analysis, but Elizabethkingia and Asaia were not. Therefore, I examined one

taxonomic level higher for both Elizabethkingia and Asaia. For Elizabethkingia, this is the

family Flavobacteriaceae and for Asaia,  this  is  the  family Acetobacteraceae. While mated

females tend to have higher levels of each of these bacterial species, it is only Flavobacteriaceae

that is significantly higher using the results from the Kraken analysis. In antibiotic treated

midguts, there is no difference between mated and virgin female bacterial abundance for any of

the bacterial groups (Figure 3.5b). Overall, mated untreated midguts contain much more bacteria

than virgin untreated, mated treated and virgin treated (Figure 3.6) which correlates with total

bacteria found from Kraken analysis (Figure 3.5a).

Figure 3.6  Some bacterial groups including Rhodococcus, Achromobacter, Streptococcus,
Yersinia, Serratia, Pantoea, Klebsiella and ‘Others’ which represents mixtures of other bacteria
with lower abundance. This graph was generated from the read counts of each specific bacteria
from Kraken report.
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Overview of microbial community diversity

The analyses presented above investigated the impact of mating on bacterial abundance as

estimated by two separate measures, qPCR and Kraken. These analyses show that mated females

that have not been treated with antibiotics have a greater abundance of microbiota in their

midguts than virgin females.

In addition to investigating bacterial abundance, Kraken and 16S sequencing also enable the

investigation of bacterial species composition, whereas qPCR requires specific primers targeting

each species of interest. Therefore, I also examined the composition of the midgut microbiota

using two methods: the Kraken based method that used RNA, and the MiSeq based method in

which I sequenced the the 16S amplicon from the DNA of each sample.

At 24 hours post P. falciparum infectious blood feed, using 16S sequencing, some bacterial reads

were found in the negative control, and after subtracting these because they might be from

contamination, Klebsiella, Pantoea and Serratia bacteria data were no longer found in this

analysis. Therefore, these three bacteria were not added in Figure 3.7b. Quantification was done

using the number of reads for each group normalized against the total library size.

(a)                                                                         (b)

Figure 3.7       Bacterial composition in midguts obtained using the Kraken analysis and 16S
MiSeq. (a) the Kraken analysis analysis shows the bacterial composition of some bacterial
groups including Rhodococcus, Achromobacter, Streptococcus, Yersinia, Serratia, Pantoea,
Klebsiella and ‘Others’ which represents mixtures of other bacteria with lower abundance. (b)
16S MiSeq sequencing analysis summarizing the bacterial composition of Rhodococcus,
Achromobacter, Streptococcus, Yersinia, Elizabethkingia and Asaia.
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Both analyses also indicate that the species composition is distinct in mated guts with a higher

relative abundance of Rhodococcus (Figure 3.7 a and b) and a specific presence of

Elizabethkingia (Figure 3.7b). In both the Kraken (Figure 3.7a) and the 16S MiSeq analysis

(Figure 3.7b), mated females untreated with antibiotics have more bacteria and show a specific

expansion of the Rhodococcus group and relatively less of Yersinia and Achromobacter bacterial

group. However, in both Kraken and 16S MiSeq analysis, no significant differences were found

for Rhodococcus bacteria (Kraken: p-value = 0.25 and 16S MiSeq p-value = 0.08) although the

composition seems tremendous in mated untreated females (Figure 3.7). This could be driven by

3 out of 6 mated samples which have high level of Rhodococcus (Figure 3.8). Raw data for

Kraken report and MiSeq could be found online :

Farah-MiSeq&Kraken raw data

https://docs.google.com/spreadsheets/d/1yQ8_Ziz89Ab-

djwoC2eTrwpzeyhiXZ0CaG6Tz7C1sFY/edit?usp=sharing

(a)    Kraken analysis    (b)   16S Sequencing

Figure 3.8 Rhodococcus bacterial loads obtained from (a) Kraken and (b) 16S MiSeq
analysis. Each dot represents one midgut sample. Boxplots indicate the median and 25-75
percentiles.
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Discussion

While it is well established that blood feeding increases bacterial proliferation, from the

experiments that I carried out here, it is also clear that mating has an impact on bacterial

abundance in the midgut. Mating did not induce immune response genes in whole female An.

gambiae (Rogers et al., 2008). However, mating changes the female An. gambiae atrium

ultrastructure (Rogers et al., 2008) which leads us to hypothesize that perhaps mating also

induces changes in the Anopheles midgut. From this chapter, mated females show a trend to have

more bacteria than virgin females in sugar fed midguts. Upon blood feeding, the difference

between mated and virgin bacterial loads is significant. This result was shown by qPCR, which is

perhaps the most reliable of the measures, and also found in the Kraken analysis. Antibiotic

treatment removed the majority of the bacteria from midguts and differences of bacterial

abundance between mated and virgin female midguts are no longer seen.

Looking at specific bacterial species abundance by qPCR, mated females have more of

Enterobacteriaceae family bacteria (Klebsiella, Pantoea and Serratia) and Asaia

(Acetobacteraceae class), whereas the Flavobacteriaceae family (Elizabethkingia) shows no

significant difference. The overall pattern of these bacterial groups is similar with the Kraken

analysis although it is only significant for the Flavobacteriaceae family. Although the signal is

weaker, the similarity suggests that Kraken analysis is reliable for further investigating the

composition of many bacteria in the sample, whereas we need specific primers to detect other

bacteria using qPCR.

I also used the MiSeq sequencing of the 16S amplicon from each sample’s DNA to evaluate the

bacterial species compositions of these samples. These two analyses, Kraken and 16S MiSeq,

give some insight into the impact of both antibiotics and mating on midgut bacterial

composition. Elizabethkingia in the Flavobacteriaceae family whilst Rhodococcus in

Nocardiaceae family. In my experiment, examining midguts fed on P. falciparum infected

blood, overall levels of bacteria are significantly higher in mated females. When I explored

specific groups of bacteria, I found that the composition of Flavobacteriaceae (namely

Elizabethkingia), Enterobacteriaceae (Klebsiella, Pantoea and Serratia) and Nocardiaceae, a
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family not tested using qPCR but which contains a bacterial species, Rhodococcus, found to be

abundant in mated females. Family trend is more in mated female midguts than virgin female

midguts. Other than that, Yersinia which belongs to Yersiniaceae family composition is more in

untreated virgin female midguts than mated female midguts.

Enterobacteriaceae and Flavobacteriaceae were reported to dominate the An. gambiae adult

midgut (Wang et al., 2011). The abundance of Enterobacteriaceae family is higher in P.

falciparum-infected mosquitoes midguts than uninfected females (Boissière et al., 2012).

Nocardiaceae family bacteria are found in An. coluzzii and An. funestus mosquitoes (Lindh et al.,

2005). Although the composition of Nocardiaceae was shown to be very high among mated

females, the result was not significant and was potentially driven by several females with

exceptionally high levels rather than by a consistent impact of mating. However, given the

possibility of different infection per midgut, it is possible that Nocardiaceae may have an impact

on parasites and further analysis of Nocardiaceae and P. falciparum infected mosquitoes could

potentially aid in understanding if this bacteria has a direct impact in assisting the infection.

Antibiotics added in the sugar meal reduce bacterial abundance. Nocardiaceae were found to be

removed from the midgut bacterial composition upon antibiotic treatment. The increase of P.

falciparum infection in regards to removal of some bacteria suggests that these bacteria might

have a direct interaction or competition with P. falciparum which might reduce the possibility of

P. falciparum to mature in the midgut. One way to test the impact on P. falciparum development

is by introducing specific bacteria in the Anopheles by injection or food intake, and feeding these

Anopheles on P. falciparum infected blood. Assessments could be done such as survival assay

and immune system activity of the vector, bacterial load assay and phenotypic analysis of P.

falciparum infection.

Yersiniaceae family bacteria was found composition is higher in virgin females. It is one of the

newly described bacteria found in Anopheles microbiota (Ngo et al., 2016), and in fleas,

Yersiniaceae release a toxin in order to survive in the flea midgut (Hinnebusch et al., 2002). One

of the important components of the immune response of Anopheline mosquitoes to limit



63

Plasmodium development is by synthesis of nitric oxide metabolites (Peterson et al., 2007) or

inducing the antimicrobial pathway (Dennison et al., 2015). Whether or not Yersiniaceae has an

impact on Anopheles fitness or releasing nitric oxide that could impair Plasmodium development

remains unknown and will be interesting to explore given findings I report in Chapter 5.

Comparing these three methods, qPCR is the most reliable method in detecting bacteria as it is

using the RNA extracted and primer specifically targeting the bacteria. Both Kraken and 16S

MiSeq analyses are exploratory methods that I used to investigate bacterial composition beyond

the five specific bacterial species that I ran qPCR on. Perhaps in the future some changes could

be made in preparation of samples in order to maximize the potential of using these three

methods simultaneously, such as running dual-RNASeq by keeping some rRNA for Kraken

analysis and potentially do RNASeq analysis on the bacteria sequence as well. For the MiSeq

experiment, perhaps by reducing the possibility of contamination in negative control would help

in getting a much more solid data.

Overall, the results suggest that mating status does not only increase the overall bacterial

abundance in sugar fed and blood fed midguts, it is also able to increase certain bacteria species

in the midgut. Furthermore, mated females also have different bacterial composition compared to

virgin females, such as Enterobacteriaceae, Acetobacteraceae and Nocardiaceae family.

Differences in bacterial abundance and composition in response to mating suggests that there is

something that was transferred by males to the females and induced the response of microbiota

in the mated females midgut.

The abundance of natural microbiota in the midgut increases dramatically upon a blood meal

(Kumar et al., 2010; Pumpuni et al., 1996; Wang et al., 2011). This bacterial growth after a

bloodmeal is reported to trigger an immune response via the Immune-deficiency (Imd) pathway,

which causes synthesis of antimicrobial peptides and other immune effectors (Meister et al.,

2009). In Drosophila, it has been reported that mating increased bacterial loads in females (Short

& Lazzaro, 2010). This was supported by the reduction of AMP in mated females, which

corresponds to higher bacterial loads in mated females. This phenomenon was shown to be

driven by seminal fluid proteins transferred through mating (Short et al., 2012).
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In Drosophila, the female midgut is dramatically remodelled via hormonal signals to enhance

egg production (Reiff et al., 2015). The midgut cell number increases resulting in bigger midgut

after mating. This effect is caused by JH which also involved in lipid metabolism, preparing the

mated female for the increased nutritional demand required for egg production (Reiff et al.,

2015). It could be hypothesized that mating might also increases the number of cells in

Anopheles females midgut. An expansion of the midgut size in mated females could facilitate the

proliferation of bacteria in the midgut in Anopheles. A bigger midgut and more midgut cells

could also mean that greater P. falciparum infection is possible. Further studies on midgut

structure and gut cell number upon mating is required to test these hypotheses.

Using bacteria to help control malaria parasites inside of mosquitoes will benefit from a deeper

understanding of the factors that influence both bacterial proliferation and diversity as well as

parasite development. If the bacterial load is higher and the parasite infection is low, it may be

caused by the immune response from either host or bacteria itself. For example Esp_Z from

Enterobacter prevents Plasmodium development, and this is mediated by reactive oxygen

species (ROS) which was produced by the bacteria (Cirimotich et al., 2010). Serratia is able to

reduce Plasmodium loads in An. stephensi (Bando et al., 2013). Recently, Serratia bacteria was

successfully used in developing paratransgenesis to deliver anti-Plasmodial components in the

An. gambiae midgut (Wang et al., 2017). Another possible interaction is that bacteria could have

a positive impact on parasite development as might be the case with Rhodococcus here.

Targeting these bacterial species could potentially reduce transmission. One of the promising

bacteria in paratransgenesis development is Asaia. From my data, Asaia too seem to be

influenced by mating status of the vector and could potentially be a vector in delivering anti-

malarials into the midguts of Anophelines because of its stability and ability to transmit via

vertical or horizontal transmission route (Capone et al., 2013; Favia et al., 2007).

Microbiota may prove as effective agents for manipulating vector competence of malaria

parasites and other important human pathogens (Chouaia et al., 2010; Cirimotich et al., 2011;

Favia et al., 2007; Rani et al., 2009). But as I have shown here, mating status has a significant

impact on bacterial abundance and composition and therefore mating status of the vector should

be taken into consideration when developing microbiota based vector control strategies.
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CHAPTER 4
Transcriptomic responses in the midgut in response to mating

Introduction

Mating changes the behaviour and physiology of female insects such as inducing oogenesis and

refractory to further insemination. In Drosophila, immune gene expression is activated as a result

of mating (Lawniczak & Begun, 2004; McGraw et al., 2008). However, immune genes were not

found to be differentially expressed upon mating in Anopheles (Rogers et al., 2008). Whilst there

is evidence of a mating impact on inducing transcriptional changes in the LRT, head, and

carcass, mating also induced some genes expressed primarily or exclusively in the gut (Rogers et

al., 2008). Mating induces permanent changes to the atrial structure (Rogers et al., 2008) and

long lasting transcriptional responses in whole females (Rogers et al., 2008) and blood feeding

induces transcriptomic and metabolomic responses in An. gambiae female midguts (Champion et

al., 2017; Rodgers et al., 2017).

Mosquito guts are critical for nutrient absorption. Nectar from plants is a common food for male

and female mosquitoes. Ingestion of nectar or sugar is important for other metabolic needs and to

increase longevity and fecundity of the mosquitoes (Souza-Neto et al., 2007). Sugar is composed

of various hexoses such as glucose, fructose, and sucrose. The nectar, once eaten, is stored in a

sac-like crop which is connected to the gut. In the midgut, secreted alpha glucosidase enzymes

digest the sugar (Souza-Neto et al., 2007). It is known that insects utilize microorganisms to

break down plant derived food (Douglas, 2009), however it has not been shown before in

Anopheles if microbiota aids in digestion of sugar. Glucose absorbed from the gut is converted

by the fat body to trehalose that is secreted into the hemolymph and to glycogen that is stored.

This will then provide the mosquitoes with energy to fly (Handel, 1984).

Additionally, in Anopheles females, the midgut serves as the host for many different type of

microbiota. Upon ingesting the P. falciparum gametocytes, it could also be the tissue that is
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needed for the parasites to complete their sexual cycle. Female Anopheles needs to take in blood

which is the source of protein and lipid to produce eggs. Blood digestion is directed to the

posterior end of the midgut which is capable of expansion (Handel, 1984). Heme is released

upon hemoglobin digestion and protein derived from blood is broken down to obtain amino acids

that are transformed by the fat body into other products, mainly vitellogenin which is important

for egg provisioning (Handel, 1984). The blood digestion turns the midgut into an oxidative

environment where heme can induce oxidative stress by generating hydroxyl radicals

(Sadrzadeh, et al., 1984). This oxidative environment imposes pressure on mosquito fecundity

and other physiological traits (Champion & Xu, 2017). Bacteria in the midgut contribute in the

process of blood digestion in mosquitoes (Gaio et al., 2011; Minard et al., 2013).

The insect gut is an important endocrine tissue that modulates the secretion of peptides that can

influence reproductive physiology, similar to the gut-brain of the vertebrates (ŽitĖan et al.,

1993). In Drosophila, mating  has  been  shown  to  restructure  the  female  midgut  which  is

important for their reproduction (Reiff et al., 2015). This leaves an open question as to whether

the sugarfed or bloodfed gut has a transcriptional response to mating? It could be hypothesized

that in Anopheles, mating could induced some transcriptional changes in the midgut to ensure

successful reproduction. Additionally, given that mating influences the microbiota as I have

shown in Chapter 3, it is also important to understand what transcriptomic changes might result

in the gut upon mating and bloodfeeding that are independent of the microbiota. This raises

another question if mating status of An. coluzzii females induce transcriptional changes in the

midgut which might facilitate Plasmodium infection?

To further investigate the differences that might be present specifically in the midgut depending

on mating status, blood feeding, and antibiotic treatment, I carried out RNASeq on a variety of

midgut samples (summarized in Figure 4.1). These include 12 sugar fed midguts (pools of 7

midguts) and 12 single guts from an experiment that resulted in 80% P. falciparum infection

prevalence. Furthermore, I also examined 24 single guts (12 untreated and 12 treated with

antibiotics) from the experiment in which 100% P. falciparum infection prevalence was

achieved. These latter samples were used previously in the experiments in Chapter 3, where I

showed that mated females had higher bacterial loads than virgin females (Chapter 3 Figure 3.1).
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Figure 4.1     Description of 47 samples of midguts used for RNASeq analyses in this chapter.
Midguts were dissected at 24 hours post P. falciparum-infected bloodfeed. RNA was extracted
from each midgut and used in the RNASeq experiments presented in this chapter. (P=pooled of 7
midguts, M=mated, V=virgin, B=blood fed, S=sugar fed, N=untreated, A=antibiotics treated,
x=experiment with 100% P. falciparum infection prevalence, experiment [K] from a later
chapter). Experiment with 80% P. falciparum infection prevalence will be referred to as
experiment [I]. The greyed out samples will be discussed in a later chapter.
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Materials and Method

Mosquito preparation

Ngousso rearing, collection and separation of Ngousso pupae and Ngousso adult mating were

performed as described in earlier chapters. See Appendix S1 and Appendix S2 for more

information.

P. falciparum Infection (Membrane Feeding Assay)

Cotton was removed from mosquito cages six hours before blood feeding. 15 and 18 day old P.

falciparum gametocyte cultures were pooled and spun down at 38°C, 2000rpm, for 5 minutes.

Supernatant was removed and 1mL serum was added into the tube and topped up with fresh

washed O+ blood to obtain a haematocrit of 45%. The mixture was always kept on a heat block

(38°C) during the process to avoid inducing activation. The mixture was then added to a glass

membrane feeder using a blunt syringe. Each cup of mosquitoes fed for 7 minutes and sugar-

soaked cotton was placed on each cup after feeding was completed. Cups were kept in a secure

container in an incubator at 26°C and 80% humidity. 24 hours after feeding, unfed females were

removed. Some females were put aside for midgut dissection and scoring mating status, and

leftover fed females were retained to assess infection rates at day 10 post blood-fed (Chapter 5).

Sugar-soaked cotton was changed every two days with normal sugar for all mosquitoes.

In this chapter, two sets of samples from two different experiments were prepared. The first set

was from experiment [I], with two groups of virgin and mated females. One group was given P.

falciparum-infected blood meal and another group was not given a blood meal (referred to as

sugarfed). Another set was from experiment [K], with two groups of virgin and mated females

prepared. One group was given antibiotics in their sugar meal since eclosion and another group

was not given antibiotics. These were all fed on P. falciparum-infected blood. 50 sugar fed and

50 bloodfed females from each of 24 samples from experiment [I] (virgin and mated) and from

24 samples from experiment [K] (virgin, mated, virgin treated with antibiotics, mated treated

with antibiotics) were kept for 24 hours after the bloodmeal. Twenty-four hours post bloodfeed,

midguts were dissected and 6 replicate pools of 7 midguts from each sugarfed treatment were
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pooled together, whereas blood fed midguts were collected individually, also in 6 replicates.

These samples are described in Figure 4.1.

Molecular Biology Method

RNA Extraction

Total RNA was extracted using TRIzol (Life Technologies) and chloroform (Sigma). Each

biological condition was represented by six replicates each for single midgut for all blood fed

mosquitoes and 7 pooled midguts of sugar fed mosquitoes. The midguts were homogenised using

Precellys 24 homogenizer at maximum speed, 6,800rpm for 30 seconds and let to rest for 5

minutes at room temperature. Samples were then centrifuged at 13,200 rpm for 15 minutes at

4°C. The aqueous phase was collected into a tube that was filled with 250ȝL isopropanol and

�ȝg glycogen to precipitate the RNA. Samples were centrifuged at 13,200rpm for 15 minutes at

4°C followed by washing using 70% ethanol (Sigma) and concentrated using the DNA

concentrator for 10 minutes. 10ȝL molecular biology grade water was added in each tube and

was placed on a heat block (37°C) for 15 minutes. Total RNA was measured using the

Nanodrop.

RNA Sequencing
Subsets of mosquitoes as described above were kept aside specifically for RNA sequencing

(RNASeq; Figure 4.1). The details are summarized in Appendix S1 and Appendix S2. At 24

hours post blood fed, mosquito guts were dissected in RNAlater. Individual guts were placed in

PCR tubes on dry ice as described above and RNA extraction was carried out as described

above, on single or pooled guts depending on the experiment. These samples were assessed for

RNA quality and quantity using the Agilent Bioanalyzer. Briefly, RNA samples were denatured

by incubating at 70°C for 2 minutes and then placed on ice. 9ȝL of gel-dye mix was pipetted into

bottom of nanochip. 1ȝL of samples, 1ȝL of RNA 6000 Nano Marker and 1ȝL of RNA 6000

Ladder were pipetted in assigned well, vortex and run using Eukaryote Total RNA Nano Series

II programme. Total RNA was diluted to concentration of 500ng in 50ȝL and was sent to the

Wellcome Trust Sanger Institute for RNA library preparation and sequencing.
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The kit used for library prep was Illumina TruSeq Stranded mRNA Library Prep Kit. mRNA was

purified from total RNA using an oligo dT magnetic bead pull-down. A random-primed cDNA

library was synthesized. During second strand synthesis dUTP was incorporated in place of

dTTP. The incorporation of dUTP quenches the second strand during amplification because the

polymerase does not incorporate past this nucleotide resulting in a strand specific library. Ends

were repaired with a combination of fill-in reactions and exonuclease activity to produce blunt

ends. A-tailing was performed, whereby an "A" base was added to the blunt ends. Illumina

paired-end sequencing adapters containing unique index sequences, allowing samples to be

pooled, were ligated. The libraries then went through 10 cycles of PCR amplification using

KAPA Hifi Hot Start Polymerase rather than the kit-supplied Illumina PCR Polymerase due to

better performance (especially with AT rich DNA). Libraries were quantified and pooled based

on a post-PCR Agilent Bioanalyzer. Sequencing was done on the HiSeq v4, 75bp paired end

reads, and the data was analysed using Illumina RTA software version 1.18.61. Automatic and

manual quality control (QC) was performed and then the data was archived in iRODS as CRAM

files. Data mapping to reference genome was done using TopHat2 (v.2.0.9) (Kim et al., 2013)

which makes use of the aligner Bowtie2 (v.2.1.0) (Langmead & Salzberg, 2012), to the An.

gambiae PEST genome (AgamP4) obtained from VectorBase.

Data received were run and mapped to reference genome of An. gambiae which was obtained

from VectorBase.  HTSeq (v.0.6.1)  (Anders  et  al.,  2015)  was used to  count  transcripts  for  each

gene. Differentially expressed genes were determined using DESeq2 (v.1.8.2) (Anders et al.,

2015; Love, et al., 2014) in R (v.3.2.5) (R Core Team 2014). Functional interpretation of each

gene set was performed by doing Gene Ontology analysis using web server, TopGO (Alexa &

Rahnenführer, 2009; Alexa et al., 2006). The top 10 functional analysis of biological process

(BP) were extracted. Other significant gene ontology results (molecular function and cellular

compartment) can be found in Appendix S5.
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Results
For sugar fed mosquito midguts it is challenging to get enough RNA from a single midgut for

RNA-sequencing. Therefore, 7 midguts from mated female An. coluzzii and 7 midguts from

virgin female An. coluzzii were pooled into 6 virgin and 6 mated sugarfed gut pools. From the

PCA plot, one of the replicates of mated females was an outlier and this sample was removed.

There is a clear impact of mating on sugarfed midgut transcriptomes as shown in the Principal

Component Analysis (PCA) plot (Figure 4.2a). Using DESeq2, 479 genes were reported to be

significantly differentially expressed (padj <0.05) between virgin and mated female sugarfed

midguts. 312 genes were upregulated and 167 genes were downregulated upon mating. The

genes that were upregulated by mating are involved in diverse processes including glucose

import, hexose transmembrane transport, flavonoid biosynthetic and glucuronidation processes,

defence towards bacteria, innate immune response, transmembrane transport, peptide and

insecticide catabolic processes and response to DDT (Table 4.1). Genes that were downregulated

upon mating are mostly involved in translational process (Table 4.2). List of significantly

differentially expressed genes can be found online:

Farah-RNASeq gene list

https://docs.google.com/spreadsheets/d/1EXtON0oqwrKjiuz_lT2Th6PMh2H0etmn-

BJ3cJiAENg/edit?usp=sharing
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    (a)      Sugarfed                                                       (b)  Bloodfed

Figure 4.2     Principal Components Analyses on global RNAseq patterns for (a) mated [M] and
virgin [V] female midguts fed only on sugar [S] and untreated with antibiotics [N] with each dot
comprising data from a pool [P_] of 7 midguts, and (b) single midguts of mated and virgin
females that were bloodfed [B] on P. falciparum infective blood, and either untreated [N] or
treated [A] with antibiotics. Most samples came from an experiment that achieved 80%
prevalence after P. falciparum infection (experiment [I]), but samples labeled with an [x] were
from an experiment with 100% P. falciparum infection prevalence (experiment [K]).
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Table 4.1      Functional enrichment analysis of differentially expressed genes (padj<0.05) that
were upregulated in response to mating in sugar fed midguts.

Table 4.2      Functional enrichment analysis on genes that were downregulated upon mating
(padj<0.05) in sugar fed female midguts.
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Next I looked at the impact of mating on the midgut transcriptomes of females fed on a P.

falciparum infected blood meal. Single midguts all untreated with antibiotics with 80% overall

P. falciparum infection prevalence (n=12 midguts, 6 biological replicates of the two treatments,

experiment  [I]).  These females  are  from the same batch as  the sugar  fed females,  reared in  the

same way, and housed together until the time of infectious blood feeding, which led to an 80% P.

falciparum infection prevalence overall. The single midguts I examined using RNA-seq were at

24 hours post feed and included 6 virgin and 6 mated female midguts. However, in contrast to

the sugarfed guts from the same experiment, there is no clear separation of mated and virgin

females on the PCA plot (Figure 4.2b). Only 6 genes were found to be significantly differentially

expressed in blood fed midguts comparing mating status. The signal that was found from mating

in sugar fed as shown before is gone with only one gene remaining found in both sugar fed and

blood fed, AGAP005498, a phospholipid scramblase 2 involved in apoptotic cell removal.

I have also another set of untreated single midguts that had 100% P. falciparum infection

prevalence (n=12 midguts, 6 biological replicates of the two treatments, experiment [K]). These

blood fed samples are from a different timing than the sugar fed samples. From these samples,

I’ve found 33 genes that were significantly differentially expressed between mated and virgin

female midguts. However, none of these genes are common with the 6 genes found to be

differentially regulated by mating in the midgut in the previous RNAseq analysis. However,

there are 7 genes that are significantly differentially expressed genes in both bloodfed from

experiment [K] and sugarfed midguts (Table 4.3). Two of these genes (AGAP011052 and

AGAP012852), predicted to be involved in oxidoreductase activity, were downregulated upon

mating in sugar fed, but upregulated in mated female midguts upon bloodfeeding. This suggests

that upon blood feeding, the massive microbiota abundance increase could have induced ROS

rich environment which resulted in higher oxidoreductase in mated female midgut.
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Table 4.3 List of 7 significant genes upregulated by mating found in common between sugar
fed (experiment [I]) and blood fed (experiment [K]) (padj<0.05).

I ran a multi factor analysis on all the midguts that were not treated with antibiotics, controlling

for the impact of blood or sugar feeding as an additional factor (24 single midguts fed with P.

falciparum infected blood, 12 pools of 7 sugar fed midguts). I found 14 genes significantly

differentially expressed between mated and virgin midguts when all three experiments were

included (Table 4.4).
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Table 4.4 List of significant genes upregulated by mating found from a multi factor analysis
on untreated sugar fed, blood fed experiment[I] and blood fed experiment [K] midguts
(padj<0.05)

I next analysed differences between sugar fed and blood fed midguts. From this comparison,

5814 genes are significantly differentially expressed between sugar fed and blood fed midguts.

3091 genes were upregulated upon blood feeding and most of the genes are involved in different

activities such as threonine endopeptidase, heterodimerization, ubiquinone, cytochrome-c,

structural constituent of ribosome, SNAP receptor, apoptosis, TBP-class protein binding and

proteosome activating ATPase activity (Table 4.5). Whilst the remaining genes were

downregulated upon blood feeding which are involved mainly in activities involving in processes

involving ATP (energy) and protein binding activity (Table 4.6).
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Table 4.5     Functional enrichment analysis on upregulated genes (padj<0.05) in response to
blood feeding.
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Table 4.6      Functional enrichment analysis on genes that were significantly downregulated
upon blood feeding in female midguts (padj<0.05)

There is no overlap among the differentially expressed genes I detected between virgin and

mated bloodfed females from feed [K] and feed [I]. Factors that contribute to this lack of overlap

include different P. falciparum parasite infection success rates and infection intensity levels and

potentially different bacterial abundances and compositions as these experiments were carried

out months apart. To test this, I compared the bacterial abundance from both experiments [I] and

[K] without looking at the mating status. Total bacterial loads are estimated as slightly higher by

Kraken analysis in experiment [K] although this is not significant (Figure 4.3a). Looking at other

bacterial species, Experiment [I] has more Pantoea (ANOVA: n=12, p = 0.001) and Serratia (

ANOVA: n=12, p = 0.02) whilst Klebsiella and Flavobacteriaceae had similar abundances in

both experiments and Acetobacteraceae is significantly more in experiment [K] (ANOVA: n=12,
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p = 0.02) (Figure 4.3b). This suggests that there might be some other bacterial species that are

higher in experiment [K] that might have an impact on the midgut transcriptome and infection

phenotype. I found that  bacteria from Rhodobacteraceae (ANOVA: n=12, p = 0.01),

Propionibacteriaceae (ANOVA: n=12, p = 0.02), Staphylococcaceae (ANOVA: n=12, p = 0.01),

and Micrococcaceae (ANOVA: n=12, p = 0.06) are significantly higher in experiment [K] than

experiment [I] (Appendix S4).

(a) All bacteria (b)  Specific bacteria

Figure 4.3 Estimates of bacterial abundance from the Kraken analysis on RNAseq data from
single midguts from experiments that resulted in 80% P. falciparum infection prevalence
(experiment[I]) and 100% P. falciparum infection prevalence (experiment[K]). Analyses were
done on (a) total bacteria (b) specific bacterial species, Klebsiella, Pantoea, Serratia and
bacterial family Flavobacteriaceae and Acetobacteraceae. Each dot represents one midgut.
Boxplots indicate the median and 25-75 percentiles.
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To further explore whether the microbiota might contribute to the signature of mating on the

midgut, I carried out RNAseq on 6 virgin and 6 mated single guts post bloodfeed from females

that were treated all through adulthood with antibiotics (single midguts treated with antibiotics

that had 100% P. falciparum infection prevalence (n=12 single guts in total, 6 biological

replicates of each of the 2 treatments, mated and virgin). These females were reared and given

the same infected blood that led to 100% P. falciparum infection prevalence. Only one gene was

significantly differentially expressed in response to mating in antibiotic treated midguts. This

gene is AGAP009784 which is involved in protein kinase activity.

To understand if the antibiotic treatment has an impact on the midgut transcriptome at 24 hours

post blood feed, I repeated the analysis comparing antibiotic treated midguts and untreated

midguts from the same batch (n=24 single guts in total which consists of 6 mated and 6 untreated

virgin female guts, 6 mated and 6 virgin female guts which were given antibiotics Pen/Strep/Gen

in their sugar meal). In the RNASeq analysis, I’ve added mating status as an additional factor

(multi factor analysis) to be counted for as mating has some impact on the transcriptome with

antibiotic treatment as the main factor for the analysis. From this analysis, there are 1507 genes

significantly differentially expressed (padj <0.05), 574 of which were upregulated upon

antibiotic treatment, indicating that these genes have higher expression in midguts with less

bacteria. The genes are mainly involved in RNA processing activity (Table 4.7). Of the 933

genes that were significantly downregulated upon antibiotic treatment, the majority of these are

involved in multiple activities such as protein binding, serine/threonine kinase, protein tyrosine

phosphatase, histone-lysine N-methyltransferase, zinc ion and amide binding, transcription

factor, transcription regulatory region sequence, modified amino acid binding and chromatin

binding. This suggests upon antibiotic treatment, with lesser bacterial abundance, midgut cells

could focus the function in breaking down blood meal. Another function that was regulated is the

binding activity to modulate transcription and protein kinase activities (Table 4.8).
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Table 4.7      Functional enrichment analysis on genes that were significantly upregulated upon
antibiotic treatment in female midguts (padj<0.05)
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Table 4.8      Functional enrichment analysis on differentially expressed genes (padj<0.05)
down regulated in response to antibiotic treatment in single blood fed midguts.
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Discussion

Mating has been shown in other organisms to influence female gut physiology (McGraw et al.,

2008; Reiff et al., 2015), however this has not been explored in much detail in Anopheles. It is

particularly relevant for Anopheles and other blood feeding mosquitoes that transmit disease. If

mating influences the outcome of infections by the pathogen/parasite, it is of medical relevance

and reducing mating opportunities by, for example, targeting males could be a potential control

strategy that impacts more than just fertilization rates. Previous work examining whole carcasses

of mated females using microarrays shows that mating induced changes and these changes are

long lasting (Rogers et al., 2008b). This is expected as An. gambiae females mate only once and

they may need to maintain these transcriptional changes for successful reproduction. However,

these previously observed differences are mainly in the lower reproductive tract of An. gambiae.

In this chapter, my RNASeq analysis shows that mating induces many transcriptional changes in

the sugar fed female An. coluzzii midgut. Many of the functional categories that are

overrepresented by genes that were upregulated by mating reflect an impact on digestion and the

immune response (Table 4.1). In Chapter 3, I have shown that mated females have higher

bacterial loads compared to virgin females sugar fed midguts. The digestion of nectar is usually

performed by the enzymes available in the midguts (Souza-Neto et al., 2007). Higher digestion

activity in the midguts of mated females suggests that mated females might channel their efforts

towards digesting the nectar for energy more than virgin females. This might be due to the fact

that they are already mated and thus poised to lay eggs as soon as they receive a bloodmeal.

Although it is unknown in An. coluzzii, another possibility is that the microbiota might be able to

help speed the digestion in the mated female midgut. In Ae. aegypti, microbiota was reported

helped to digest blood meal (Gaio et al., 2011) and gut clearance has been reported to affect

blood digestion by less hematin excretion by An. stephensi (Sharma et al., 2013). All together,

these newly discovered patterns suggest that a male transfers something to the female that

increases her midgut microbiota loads, and shifts her digestive and immune gene regulation

perhaps to improve digestion and cope with higher bacterial loads.
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However, upon blood feeding, the strong transcriptional signal observed upon mating in the

sugarfed samples is absent, and the weak signal that remains is inconsistent between

experiments. This finding suggests that mating might have increased the expression of certain

genes in order to facilitate blood digestion. No genes are differentially expressed between mated

and virgin midguts consistently across the two RNA sequencing experiments I carried out on

bloodfed females (80% and 100% P. falciparum prevalence), and in general very few genes

remain regulated by mating after a bloodmeal.  These different midgut transcriptomic responses

to mating in the two experiments could be driven by different microbiota in the midguts. Indeed,

using Kraken to identify bacterial loads and composition, it is clear that that experiment [K]

shows a trend of higher bacterial abundance than experiment [I] and also the two experiments

have different bacterial species composition  (Figure 4.3).

From the comprehensive multifactor analysis I carried out in which I analysed all samples

together from both experiments, there are 14 genes that are significantly differentially expressed

in response to mating. These genes are mainly involved in oxidoreductase activity, binding

activity, activity involving energy, antimicrobial activity, apoptotic cell removal and some genes

are with unknown function. This finding suggests that mated females might respond more

intensely to produce energy and digest blood for egg provisioning than virgin females. This

activity might be mediated by the microbiota in the midgut.

Both sugar fed and blood fed (experiment [I]) mosquitoes were reared the same way and midguts

were dissected at the same time, which is at 24 hours post blood feed. At this time, all of the

mated females (both sugar fed and blood fed) are at 3 days post mating. Although there were not

many genes that were differentially expressed between bloodfed mated and virgin female

midguts, the RNASeq analysis on the sugar fed midguts show that there is a major impact of

mating on the midgut transcriptome. Previously, the impact of mating on the whole female

transcriptome at 2 hours, 6 hours and 24 hours post mating revealed that the most genes are

differentially regulated at 24 hours post mating (Rogers et al., 2008). From my data, it shows that

at 4 days post mating, there is a huge difference between mated and virgin female midgut, many

more genes differentially regulated just in the gut than were detected in the whole mosquito at 24

hours post mating (479 genes vs 141 genes from (Rogers et al., 2008)) which suggests the
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possibility that overtime, the number of changes at the transcriptomic level due to mating might

increase. One hypothesis is that perhaps with this impact of mating in the midgut prior to blood

feeding in the midgut, there might be changes in such as way as to better support microbiota and

facilitate P. falciparum development. Among the 141 genes from (Rogers et al., 2008), 41 genes

were upregulated and 96 genes were downregulated at 24 hours post mating. 7 genes from these

41 genes were found to be in common with genes that were upregulated upon mating in the

midgut. These genes are mainly involved in proteolysis activity and protein transport. None of

these genes were reported to be expressed in the midgut upon mating before (Rogers et al., 2008)

perhaps because the qPCR was only done on the top 20 genes.

Many genes that were upregulated upon blood feeding in the midguts are involved in activities

which involves breaking down blood component. This corresponds with the higher bacterial

loads upon blood feeding (Dong et al., 2009; Gendrin & Christophides, 2013). In Aedes

mosquitoes, the microbiota aid in  digestion of the blood in the midgut (Gaio et al., 2011). The

blood digestion turns the midgut into an oxidative environment where heme can induce oxidative

stress by generating hydroxyl radicals (Sadrzadeh et al., 1984). This oxidative environment

imposes pressure on mosquito fecundity and other physiological traits (Champion & Xu, 2017).

The impact of antibiotics on the midgut transcriptome was examined previously. In this

experiment, RNASeq was carried out on pools of 20 midguts at 0hr (sugar fed), and then 5 hr,

24hr and 72 hr post naive bloodfeed. They found the highest number of differentially expressed

genes at 0hr and 72 hours. However, at these two time points, microbiota exhibits the least

abundance as compared to 24 hours post blood feed (Rodgers et al., 2017). From my analysis,

removing microbiota from the midgut by antibiotics has a huge impact on the transcriptome of

the midgut at 24 hours post P. falciparum infected blood fed. Most of the genes in the midgut

were downregulated upon antibiotic treatment. The genes that were upregulated upon antibiotic

treatment (microbiota absent) are mainly involved in activities involving RNA such as RNA

secondary structure unwinding, rRNA processing, maturation of LSU-rRNA, rRNA methylation

and protein functions such as protein folding, cellular protein complex assembly and protein -

chromophore linkage. This suggests that when the microbiota is absent, the midgut focuses more

in RNA processing and translational processes. The genes that were downregulated upon
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antibiotic treatment (microbiota present) are mainly involved in catalysis activity. This is almost

the same as the upregulation impact upon blood feeding, when microbiota loads increase

tremendously. Studies using Ae. aegypti showed that reduction of bacteria affected red blood cell

lysis which subsequently retarded protein digestion and affected oocyte maturation (Gaio et al.,

2011).

In Chapter 3, I found that mated females typically have more microbiota than virgin females in

sugar fed and blood fed females. In this chapter, my RNASeq analysis shows that mating has an

impact on the midgut transcriptome in sugar fed females. Most of the responses are towards

digestion of the blood and immune protection towards bacteria (Table 4.1). When the females

have their blood meal, the impact of mating on the midgut transcriptome seems to disappear, and

I found very few genes that are differentially expressed due to mating even when I performed a

multifactor analysis using all the data. However, upon removing bacteria by using antibiotics, the

impact of mating on the midgut transcriptome is no longer seen, perhaps overwhelmed by the

massive gene expression changes that occur due to blood feeding, but these changes that were

observed in sugarfed guts would still be there at the time of bloodfeeding and may have had an

impact even prior to bloodfeeding. This is consistent with the phenotypic differences observed

suggesting that mated females frequently have different microbiota and parasite infection levels

than virgin females, even though they don’t seem to have major gene expression changes at the

24 hour post bloodfeeding time point.

Overall, my RNASeq findings suggest that mating has an impact on sugar fed midgut

transcriptome. Microbiota in the midgut play a big role especially upon blood feeding by

channeling most of the function in the midgut in breaking down the blood for nutrient absorption

and to provision eggs. These results create a platform for us to proceed with the hypothesis that

the huge impact on the transcriptome from mating is probably microbiota dependent.

Furthermore, it could also be hypothesized that microbiota loads in the female midguts might be

contributing to the impact of mating status on susceptibility to malaria transmission by mediating

the immune response of the vector towards P. falciparum infection.
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CHAPTER 5

The impact of mating on P. falciparum infection

Introduction

Similar to other insects, female Anopheles undergo behavioural changes after mating, such as

induction of egg laying in blood fed females and refractoriness to further insemination (Gabrieli

et al., 2014; Klowden & Russell, 2004; Rogers et al., 2008, 2009; Tripet et al., 2003). They also

undergo major physiological changes. Transmission Electron Microscope (TEM) experiments

show mated female atrial cells are permanently altered as compared to virgin cells in ways that

suggest these cells function to support the uptake of male material transferred during copulation

(Rogers et al., 2009). Mating also influences gene regulation in Anopheles females, although

immune genes do not appear to be regulated by mating like they do in Drosophila (Rogers et al.,

2008; Short & Lazzaro, 2010). Comparison of post mating gene expression between whole

virgin and mated An. gambiae females suggests that mating causes permanent changes in gene

expression (Rogers et al., 2009).

In female mosquitoes, lipid and proteins derived from blood feeding and sperm from mating are

crucial for a successful egg production. 20E hormone is involved in stimulating egg production.

In An. gambiae, the 20E titre in females is influenced by two major factors: blood feeding and

mating (Bai et al., 2010; Hagedorn et al., 1975; Pondeville et al., 2008). 20E is synthesized by

the ovaries after a bloodmeal, and these levels are highest at 18 and 24 hours post blood

feed(Pondeville et al., 2008). Blood feeding stimulates the ovary to secrete ecdysone which will

next be hydroxylated to 20E by the fat body where it binds to the  ecdysone receptor (EcR),

which forms a dimer with USP and activates yolk protein precursors (YPP) such as Vg and

lipophorin (Lp) (Hagedorn et al., 1975; Raikhel et al., 1999; Swevers et al., 1995). Both Vg and

Lp are lipid transporters involved in egg production.



88

In addition to blood feeding, mating also increases the titre of 20E in females. In An. gambiae,

the male accessory gland (MAG) produces a high titre of 20E that it is transferred to the females

during mating. The 20E hormone will be replenished in the MAG within a few hours of mating

(Pondeville et al., 2008). The 20E derived from males interacts with female protein known as

Mating-Induced Stimulator of Oogenesis (MISO) in the atrium to regulate oogenesis and

influence lipid accumulation in oocytes (Baldini et al., 2013). Apart from oogenesis, 20E also

has a function in preserving the sperm in spermatheca by inducing HPX-15 to make sure that the

sperm remain functional as females typically only mate once in their life (Shaw et al., 2014).

A microarray analysis of the atrium and spermathecae of An. gambiae females injected with

2.5µg 20E in An. gambiae at 24 hours post injection showed that 20E injection results in gene

expression patterns in the atrium and spermatheca that are very similar to gene expression

patterns seen in these tissues 24 hours post mating (Gabrieli et al., 2014). The induction of egg

laying and refractoriness to further mating that occurs after mating are primarily driven by this

hormone and not by the sperm (Gabrieli et al., 2014; Thailayil et al., 2011).

20E is transferred to the female together with sperm and seminal fluid proteins in the form of a

mating plug during copulation (Pondeville et al., 2008). There is variability in the mating plug

phenotypes of Anopheles species across the world. Major malaria vector species such as An.

gambiae, An. arabiensis, An. funestus and An. stephensi have a solid and fully coagulated plug.

An. farauti, An. dirus and An. sinensis which are the east and southeast Asian species and An.

atroparvus, the European species, have a less coagulated, amorphous plug phenotype (Mitchell

et al., 2015). An. albimanus, which is the major malaria vector in South America, does not have a

mating plug and females from this species are able to mate multiply (Mitchell et al., 2015).

Intriguingly, this geographic region has fewer malaria cases compared to areas where malaria

vectors have a solid and structured mating plug, leading the authors to speculate that the mating

plug may have an impact on transmission rates (Mitchell et al., 2015). Furthermore, ancestral

reconstruction using maximum parsimony of mating plug phenotype and 20E titre shows a high

correlation between the solid and fully coagulated plug and a high titre of 20E produced in the

MAG in all four major malaria vector species; An. gambiae, An. arabiensis, An. stephensi, and
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An. funestus (Mitchell et al., 2015) which suggests that 20E in particular might play a critical

role in malaria transmission.

In Chapter 3, I have shown that female mating status impacts the abundance and composition of

the microbiota in the midgut of An. coluzzii mosquitoes. Work by others has shown that the

microbiota can influence the outcome of infection with the malaria parasite, P. falciparum

(Gendrin & Christophides, 2013). Together, these findings led us to examine whether mating

status influences the susceptibility of Anopheles to P. falciparum, and if so, whether this is

dependent on bacteria. Furthermore, 3 genes which were significantly differentially expressed

from my RNASeq analysis from experiment [K] in Chapter 4 were chosen for dsRNA based

knock down to evaluate whether they had an impact on P. falciparum infection. Finally, I also

ask whether 20E in particular influences the outcome of parasite infection in female mosquitoes.

Materials and Methods
Detailed information on number of mosquitoes and P. falciparum-infection feeds information

can be found in Appendix 4.

Mosquitoes

Mosquito rearing

The Ngousso strain of An. coluzzii, which originates from Cameroon was reared under standard

conditions (26°C-28°C, 65%-80% relative humidity, 12 h:12 h light/Darkness photoperiod).

Eggs were floated in a pan filled with deionized water and once larvae hatched, around 1200

larvae were reared in a 32L plastic pan (66cm x 45cm x 17cm). The larvae were fed on one mL

of ground fish food each day and 2 pieces of cat food on Friday evening for the weekend. When

the adults emerged, they were maintained on 10% autoclaved fructose solution.

Adult mosquitoes were separated by sex as pupae and placed in separate cages in dishes filled

with deionized water. Cages were inspected when adults emerged and any of the wrong sexed
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adults were removed. A subset of females were introduced to the males via aspirator three days

after emergence and remaining females were retained in the original cage and labelled as virgin.

The aspirator was cleaned with 70% ethanol prior to use. One day after females were introduced

to the males, the males were removed from the cage and these females were known as mated

females. This status was always later confirmed by visual inspection of the spermatheca upon

dissection, or molecular detection of the presence of Y bearing sperm in the spermatheca

(Krzywinski, Nusskern, Kern, & Besansky, 2004), and any females not found to have mated

were discounted.

Ngousso treatment with antibiotics

Female Ngousso mosquitoes were separated into two sets in three separate P. falciparum

infection experiments [H],[J],[K]. Set one is fed on normal sugar whilst the second set of

mosquitoes was maintained with antibiotic-containing sugar solution (25ȝg/mL gentamycin,

10ȝg/mL penicillin and 10 unit/mL streptomycin) to remove most of the bacteria from their

midguts. For each of the sets, females were split into two further groups, virgin and mated

females (mixed with males overnight). Mated females and virgin females were collected as

described previously.

Double stranded RNA (dsRNA)

Three genes significantly regulated by mating in the midgut from Chapter 4 (Vg, PGRPS3 and

PM) were amplified by PCR using 25ȝL of High Fidelity Phusion master mix (NEB M0531S),

2.5 ȝL of 10ȝM forward and reverse primer, respectively, and genomic DNA template in a 50uL

reaction volume. The list of primers is available in Appendix S3.  Reactions were done using the

Veriti 96 well Thermal Cycler with conditions of 98°C for 2 mins, followed by 30 cycles of 30

seconds at 98°C, 30 seconds at 60°C, 1 ½ minutes at 72°C and 72°C for 5 minutes. PCR

products were run on 1% agarose gel (120V, 20 minutes) to confirm that the right product was

amplified and also to look at the band intensity. Qiagen Qiaquick PCR Purification kit (Qiagen

23104) was used to purify the PCR product. Following the manufacturer's protocol, buffer PB

was added at 5 times volume of PCR product followed by 10ȝL of sodium acetate. The mixture

was mixed well and loaded into a column. The column was spun for 60 seconds and the solution

collected in the collection tube was removed. 750ȝL of PE buffer was next added and spun down
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for 30 seconds twice to remove the solution completely. Using a new 1.5mL eppendorf tube,

50ȝL of  RNase-free  water  was  added  into  the  column and  spun  for  a  minute  to  wash  out  the

DNA into the new collection tube. The DNA concentration was checked using Nanodrop.

HiScribe T7 High Yield RNA Synthesis Kit (E2040S) was used to synthesize dsRNA. Using the

manufacturer’s protocol for a 20ȝL reaction, 2ȝL T7 RNA Polymerase was added and mixed

into NTP buffer mix and 1ȝg DNA and incubated overnight at 37°C. Using RNeasy Plus Mini

Kit (74134), 80ȝL RNase free water was added and mixed well into 20ȝL of dsRNA to dilute,

followed by 350ȝL RLT buffer, 250ȝL ethanol and transferred into RNeasy mini column. The

columns were spun down at 8000g for 15 seconds and the collection tubes were replaced. 50ȝL

of  RPE  buffer  were  next  added  and  spun  for  15  seconds  at  8000g  and  flow  through  was

discarded. This step was repeated again before changing the collection tube. Columns were spun

at a full speed for 1 minute to remove ethanol traces. RNA was collected in a new RNAse free

eppendorf tube eluted in 30ȝL of RNase free water. The concentration of dsRNAs were checked

by Nanodrop.

Double stranded RNA (dsRNA) Injection

A set of females (mixed mating status) were injected with 3ȝg/ȝL of dsRNA at the thorax.

Assessing Knock Down Effect of dsRNA via PCR

A set of females (mixed mating status) were injected with 3ȝg/ȝL of each dsRNA, 3 days before

blood feeding. They were blood fed, either by naive blood or P. falciparum infected blood, and

dissected at 24 hours post blood feed. RNA were extracted from each sample as mentioned in

RNA extraction methods and qPCR were performed on each sample with their respective gene

primer. The list of primers sequences is available on Appendix S3. The knock down efficiency

was calculated by below formula =
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20-Hydroxyecdysone Injection

A set of virgin females and mated females were injected in the thorax with 2.5µg 20-

hydroxyecdysone (H5142 Sigma) diluted in 10% ethanol at the thorax to mimic mating in virgins

(Baldini et al., 2013) and to see the impact on mated females. Another set of virgins and mated

females were injected with 10% ethanol as controls. These injections were performed either 2 or

3 days before blood feeding, typically early in the morning the day after males were introduced

to some females overnight to have mated female set. Furthermore, after injection, the mosquitoes

were given some time to recover so that they will blood feed well.

Plasmodium falciparum
P. falciparum Gametocyte Culture

P. falciparum strain NF54 was cultured in complete RPMI 1640 (Invitrogen) supplemented with

10% human serum (mixed pooled serum from more than 4 individuals), sodium bicarbonate

(Sigma), hypoxanthine (Sigma) and D-glucose (Sigma). To induce P. falciparum gametocytes,

cultures were set up to 0.75% - 1% parasitemia at 6% hematocrit in complete RPMI 1640

medium. NHS Blood and Transplant (NHSBT) non-clinical use O+ blood was used after

washing three times with incomplete medium (RPMI 1640 without serum). Culture medium was

changed everyday and gassed for 15 seconds with 1% oxygen, 3% carbon dioxide and 96%

nitrogen. P. falciparum gametocytes matured from day 14 to 18. P. falciparum morphology and

stages on day 7 and day 14 were monitored under the microscope by Giemsa staining. In short,

�ȝL of P. falciparum-infected red blood cells were thin-smeared on a glass slide and fixed with

methanol. Slides were stained with 20% Giemsa for 20 minutes, rinsed with water and dried

before being assessed under 100x oil magnification light microscope. An exflagellation assay

was performed on day 14 and 17 to assess male gametocyte maturity. For these assays, 50ȝL of

culture was placed on a glass slide and covered with a glass coverslip. Following 20 minutes of

incubation at room temperature, the numbers of exflagellation centers were counted at

magnification of 10x. Exflagellation is a process when the temperature drops and pH increases

which induce the male gametes to undergo three times DNA replication and form eight highly

motile flagellated microgametes. These microgametes will then fuse with female gametes to
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form zygotes in the vector’s gut. Only parasite cultures that showed exflagellation were used for

feeds.

P. falciparum Infection (Membrane Feeding Assay)

Virgin and mated female Ngousso mosquitoes were prepared as described above. Cotton was

removed six hours before blood feeding. 14 or 15 and 17 or 18 day old P. falciparum gametocyte

cultures were pooled and spun down at 38°C, 2000rpm, for 5 minutes. Supernatant was removed

and 1mL serum was added into the tube and topped up with fresh washed O+ blood to obtain a

haematocrit of 45%. The mixture was always kept on a heat block (38°C) during the process to

avoid inducing activation. The mixture was then added to a glass membrane feeder using a blunt

syringe. Each cup of mosquitoes fed for 7 minutes and new sugar-soaked cotton was placed on

each cup after feeding was completed. Cups were kept in a secure container in an incubator at

26°C and 80% humidity. 24 hours after feeding, unfed females were removed. Some females

were put aside for midgut dissection and scoring mating status, and leftover fed females were

retained to assess infection rates at day 10 post blood-fed. Sugar-soaked cotton was changed

every two days with normal sugar for all mosquitoes.

Assessing P. falciparum Infection

Two assessments of P. falciparum infection were performed: infection intensity, which is the

number of oocysts in each midgut and infection prevalence, which scores whether the mosquito

is infected or not.

At day 10 post blood feed, mosquitoes were killed using 70% ethanol and they were rinsed with

1X PBS and dissected in 0.5% mercurochrome (Sigma) diluted in water with 1ȝL Hoescht added

(1ȝg/ml). The guts were fixed in 4% Paraformaldehyde (PFA) for 30 minutes, then dipped in 1X

PBS, and then left in another container of 1X PBS for 30 more minutes. Fixed and stained guts

were mounted in Vectashield (Mounting Medium for fluorescence Vector Lab) and kept at 4oC

until viewed. For each gut, the number of oocysts was counted under the microscope and

recorded. Within R, the library ‘ExactRankTests’ was used to perform Wilcoxon rank statistical

tests to assess whether there were significant differences in infection levels due to mating status,
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antibiotic treatment, dsRNA injection, and 20E injection treatment. Chi Square tests were used to

assess the impact of these treatments on infection prevalence.

Assessing Mating Status via light microscopy or Y-PCR

Mating status for each female was assessed. Dissected spermathecae were either visually

examined using light microscopy or using the Y-PCR method to confirm mating status on each

spermatheca.  50µL lysis  buffer  (1M Tris  HCl,  1M KCl,  Proteinase  K,  Tween  20)  were  added

into the PCR strips which contain spermatheca. PCR tubes were placed in the thermocycler

(65oC for 1 hour, 95oC for 10 minutes followed by a 4oC hold). PCR was then performed using

OneTaq 2 x master mix (Qiagen), 23S forward and reverse primer which is the Y-chromosome

specific PCR markers (Krzywinski et al. 2004, 2005), the primer sequences can be found in

Appendix S3. and DNA template in the condition of (94oC for 3 minutes, 94oC for 20 seconds

60oC for 30 seconds 72oC for one minute for 35 cycles followed by 72oC for 10 minutes and 4oC

hold). PCR products were then run on 3% agarose gel at 110V and viewed using Imagelab 4.0.1

software.
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Results

To understand if mating status has an impact on female mosquito susceptibility to P. falciparum,

I carried out a total of 11 successful P. falciparum infection experiments (14 additional feeds

were carried out that did not lead to any infection). The infection intensity between experiments

varies and is very difficult to control. Some infection feeds have low oocyst counts (0-10/gut),

while in other experiments, the oocyst counts are relatively high (>20/gut). Every P. falciparum

infection experiment is represented by a letter, and these letters are in order of increasing

prevalence with infection [A] having the lowest infection prevalence to infection [K] which had

100% infection prevalence. Generally, by looking at the graphs, the trend suggests that mated

females have higher infection intensity compared to virgin females. However, only 6 feeds out of

11 feeds show significant differences (in bold) that mated females have higher infection intensity

than virgin females; Wilcoxon Rank Test: A (p = 0.09), B (p = 0.05), C (p = 0.99), D (p = 0.04),

E (p = 0.05), F (p = 0.2), G (p = 0.85), H (p = 0.0002), I (p = 0.003), J (p = 0.004), K (p = 0.06)

(Figure 5.1).

The phenotype of infection intensity (oocysts per gut) is correlated with the phenotype of

prevalence (did the mosquito get infected or not) where higher oocyst counts per gut are

typically associated with higher overall prevalence (Figure 5.1). Therefore I also examined

whether infection intensity still shows a relationship with mating status after all uninfected

females are removed. Three experiments retain a significant association of mating status with

infection intensity; ; Wilcoxon Rank Test: A (p = 0.12), B (p = 0.02), C (p = 1), D (p = 0.07), E

(p = 0.41), F (p = 0.35), G (p = 0.96), H (p = 0.01), I (p = 0.92), J (p = 0.012), K (p = NA).
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Figure 5.1      Overall P. falciparum infection intensity in virgin and mated female midguts from
the lowest to highest infection prevalence. Each dot represents number of oocysts per single
midgut dissected on day 10 post blood feed. Note the difference in scale between the upper
panel, which had lower typical infection outcomes, and the lower panel which had very high
infection intensities. Boxplots indicate the median and 25-75 percentiles.
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What is even more striking is that all females that took in a P. falciparum-infected blood meal

but did not become infected were virgins leading to a very significant impact of mating status on

prevalence (Table 5.1). Among untreated females, mated females have a higher prevalence of P.

falciparum infection compared to virgin females in three experiments. Experiments [B], [H] and

[J] showed significantly different infection intensity and infection prevalence (Figure 5.1, Table

5.1) whilst Experiments [D], [E] and [I] only have a significant impact of mating on infection

intensity (not prevalence) (Figure 5.1). In three of the experiments, mating status is impacting

infection intensity, and another three experiments is impacting prevalence (Table 5.1) which

suggests that mating can frequently affect P. falciparum susceptibility.

Table 5.1 P. falciparum infection prevalence statistical analyses using Chi Square test on
untreated and antibiotic treated experiment. (* = p < 0.05). The rightmost column is the median
of oocysts count from each experiment that was used to separate the experiments.
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Infection with the NF54 strain of P. falciparum generally results in a higher infection intensity

than is found in the field. One interesting observation is that in experiment [H] and [J], all of the

uninfected females are virgins (Table 5.1). To understand if the outcomes depend on infection

intensity, the P. falciparum infection feeds were grouped into experiments with median oocyst

counts of less than 10 per gut (Experiments [A-H]; Figure 5.2; Table 5.1), and experiments with

median oocyst counts of more than 10 per gut (Experiments [I-K]; Figure 5.3; Table 5.1). When

infection intensity is low, there are no significant differences found between mated and virgin

female Ngousso (p = 0.11) (Figure 5.2). Even when the uninfecteds (oocysts with zero counts)

were removed, no significant difference between mated and virgin females was seen. However in

high P. falciparum-infection intensity experiments with oocysts count median of more than 11,

mated females having significantly higher infection intensity compared to virgin females

(Wilcoxon Rank Test: p = 9.24e-08; Figure 5.3). This is true even when the uninfected midgut

counts were removed (Wilcoxon Rank Test: p = 7.78e-08).

Figure 5.2      Evaluation of the impact of mating status on infection intensity among
experiments that lead to low infection intensities shows, i.e.,  median oocyst count < 10, shows
no consistent impact of mating status on infection level.
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Figure 5.3      Evaluation of the impact of mating status on infection intensity among
experiments that lead to high infection intensities shows, i.e.,  median oocyst count of more than
11, shows a dramatic impact of mating status on infection level. Each dot represents oocysts
count in a single midgut. Boxplots indicate the median and 25-75 percentiles. (*** = p<0.0005).

Because bacteria can have a negative impact on P. falciparum infection susceptibility (Boissière

et al., 2012; Dong et al., 2009), I ran three independent experiments comparing P. falciparum

infection in females given normal sugar compared to females that were given antibiotics in their

sugar meal. This facilitates investigating the impact of mating status on susceptibility to P.

falciparum independent of bacteria.

These three experiments, [H], [J], and [K], on untreated females were shown earlier (Figure 5.1)

but now I am also showing the results on the antibiotic treated virgin and mated females that

were fed on the same infectious blood. Looking at all three experiments together, I found that
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mated females are dramatically and significantly more susceptible to P. falciparum than virgins

and this is independent of the presence of the microbiota because the same result is found in

antibiotic treated females (Figure 5.4). As reported before in Figure 5.1, Figure 5.4 shows mated

females have significantly higher oocyst intensity compared to virgin females in two out of three

untreated P. falciparum infection experiments; Wilcoxon Rank Test: H (p = 0.001), J (p = 0.004)

and K (p = 0.06). A similar pattern was observed in females given antibiotics in their sugar meal

where the infection intensity is significantly higher in mated females compared to virgin females

in two out of three independent experiments; Wilcoxon Rank Test: H (p = 0.12), J (p = 0.05) K

(p = 0.0001) (Figure 5.4 right panel). This suggests that when infection intensity is high, mated

females are more susceptible than virgin females both in the presence and absence of microbiota.

Differences in P. falciparum infection intensity in mated and virgin female Ngousso was seen to

be driven predominantly by the uninfected midguts. This pattern is slightly different in antibiotic

treated females, but the same trend that mated females are more likely to become infected is

observed and is independent of the microbiota.



101

Figure 5.4 P. falciparum infection intensity between virgin and mated females in three
independent experiments without (“None”) and with (“Antibiotics”) antibiotics. Each dot
represents the number of oocysts found in an individual midgut. Boxplots indicate the median
and 25-75 percentiles. (Statistics * = p<0.05, ** = p<0.005, *** = p<0.0005).
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The “x” samples for which I have RNASeq data, discussed in Chapter 4, were from Experiment

[K] which resulted in 100% prevalence. To follow up on the most differentially expressed genes

between mated and virgin female midguts in that experiment, I selected the three most

differentially expressed genes for functional genetic analysis. These 3 genes, Vitellogenin (Vg

also known as AGAP004203), short peptidoglycan protein 3 (PGRPS3, also known as

AGAP006342) and a peritrophin (referred to hereafter as PM, also known as AGAP006796)

were each found to be higher in mated female midguts. Using dsRNA injection in 3 different

experiments [D, E and I ], I knocked these genes down. However, dsVg knock down was only

found in the carcass and not in the midgut. For dsPGRPS3, There is no consistency in the knock

down effect in either midgut or carcass. dsPM knock down is found in both midgut and carcass

in almost all the samples (Table 5.2).

Table 5.2 dsRNA knock down efficiency on midgut and carcass. Each mosquitoes were
injected 3 days before blood feeding, blood fed, and dissected 24 hours post blood fed. Trial 1
and 2 were fed on naive blood with Trial 2 using double concentration of the dsRNA (6ȝg/ȝL).
Whilst some females from Experiment [D] and [E] were sacrificed to assess the knock down
efficiency. Knockdown efficiency is represented by percentage value. No kd = no knock down
effect were observed.



103

dsRNA was injected into females, many of which were expected to be mated because the

females were left with males for two nights. None of these three genes had a consistent impact

on the outcome of infection when knocked down in mated females although dsVg showed a

significant difference in experiment [D], increasing infection intensity and prevalence when

knocked down (Figure 5.5 and Table 5.3). This is opposite to what would have been expected

given that Vg expression was determined to be higher in mated female guts in Experiment [K],

and given mated females were more susceptible, knocking down this gene should have resulted

in females having lower infection levels or rates. However, experiment [D] was carried out at a

different time than experiment [K] and thus these females may have had different microbiota. If

Vg is responding in part to the specific  microbiota, which is possible given that Vg was not

detected as differentially expressed in the repeated RNA seq experiment, then it may also result

in different outcomes of infection when removed, depending on the microbes present.

Figure 5.5 Impact on infection intensity of knocking down three different genes (dsVg,
dsPGRPS3 and dsPM) using dsRNA injection in three different P. falciparum infection
experiments: [D], [E] and [I]. Boxplots indicate the median and 25-75 percentiles.
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Table 5.3 Impact of knocking down using dsRNA injection of three different genes (dsVg,
dsPGRPS3 and dsPM) in three independent P. falciparum infection experiments: [D], [E] and [I]
infection prevalence.

Mated females tend to have higher infection intensity compared to virgin females especially

when the intensity is high. This observation is independent of microbiota in the midgut. This

suggests that some other molecules are able to influence the increase in P. falciparum infection

intensity. The hormone 20E is transferred in the mating plug to the female during mating

(Pondeville et al., 2008) and it is related to the vector competency (Mitchell et al., 2015).

Therefore, I next tested the hypothesis that 20E might influence the outcome of infection.

20E injection impact on P. falciparum infection

Virgin females injected with 20E to mimic mating have significantly higher infection intensity

compared to virgin females injected with 10% EtOH as a control across 4 independent P.

falciparum experiment (Figure 5.6). Two of these experiments [A] and [G] also showed a

significant impact of 20E injection increasing prevalence (Wilcoxon Rank Test: A: p = 0.02, D:

p = 0.09, G: p = 0.005, I: p = 0.5; Table 5.4). This suggests that 20E injection on virgin Ngousso

increases the infection intensity. Mated females injected with 20E show no differences in

infection intensity compared to mated females injected with 10%EtOH, suggesting that 20E may

only be able to act once to increase susceptibility (Figure 5.6).
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Figure 5.6 Each dot represents the oocyst count in a single midgut from 4 different P.
falciparum infectious feeds where females were either virgin or mated, and either injected in the
thorax with the control 10% EtOH carrier or with the hormone 20E in 10% EtOH. Boxplots
indicate the median and 25-75 percentiles.
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Table 5.4 P. falciparum infection prevalence in virgin Ngousso injected with 20E and
control; 10%EtOH from four different P. falciparum-infection experiments. Infection experiment
was not repeated for mated females in experiment [I].  (* = p < 0.05, ** = p <0.005)

Discussion

To explore the impact of mating status on parasite development, I fed laboratory reared

mosquitoes via a membrane feeder on lab cultured P. falciparum NF54 gametocytes and

evaluated their infection rates and oocyst counts across 11 independent experiments. Because

the development of malaria parasites in Anopheles mosquitoes is also influenced by the

microbiota present in the midguts of exposed females (Dong et al., 2009; Gendrin &

Christophides, 2013), it is possible that mosquito mating status could influence malaria

transmission via the impact on the microbiota. Indeed, in Chapter 3, I have shown that mating

increases the midgut bacterial load and alters the bacterial composition so the possibility that

mating influences the outcome of parasite infection via an impact on the microbiota is very

realistic. It is also possible that the mating status of females could have an impact on parasite

development independent of the impact on microbiota. My work in this chapter supports the idea

that mating status influences the outcome of infection and that this is dependent to some extent

on the intensity of the infection but potentially also the microbiota that are present.
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The number of oocysts found in wild type female Anopheles mosquitoes caught in the field is

usually low, around 1-10 oocysts per midgut (Muirhead-Thomson, 1954). Among my replicate

feeds, I have experiments that resulted in infection intensities more typical of a natural infection

and also several experiments that resulted in high infection intensities (>10 oocysts/gut). In

general, mated females tend to show increased susceptibility to parasites compared to virgin

females, but this is more consistently significant when the infection levels are high. The power to

detect differences is increased when more individuals are infected or when they are infected

more heavily, so this could be partly responsible for the difference. On the other hand, in the

laboratory environment females do not have difficulties in finding food or mates as they might in

a natural environment. Likewise, the colony mosquitoes are kept in a healthy state. This

reduction of stress might enable mosquitoes to handle infections differently than they would

under natural conditions. It is possible for example that the infection levels that are observed

more typically in nature would result in different outcomes of infection between more stressed

virgin and mated females. This remains to be tested.

It is also possible that the microbiota differ considerably between experiments and that this

influences the outcome of infection and the impact of mating status. My attempts to understand

this more conclusively suggest that the microbiota are likely contributing but also that, at least at

high infection levels which is when I happened to test the impact of removing the microbiota,

that these do not play a critical role. At high infection intensities, removing the microbes leads to

the same result as when they are present, which is that mated females have significantly higher

levels of infection. However, at lower infection intensities, when the outcomes are more variable,

it may be that microbiota underlie this variation which was shown in Chapter 4.

To explore the impact of some of the genes that I detected as dramatically differentially

expressed in Chapter 4, I generated dsRNA constructs to target these genes via RNA interference

(RNAi). In three independent experiments (experiment [D], [E] and [I]), I did not detect an

impact of gene knockdown on either infection intensity or infection prevalence (Figure 5.5 and

Table 5.3). These three experiments were shown to have significantly higher infection intensity

in mated females than virgins (Figure 5.1). However, their overall infection prevalences (40%,

48% and 80%, respectively), were lower than the experiment in which the differential expression
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was originally identified. Perhaps if the dsRNA was injected in a highly infectious P. falciparum

intensity and 100% infection prevalence experiment, we could possibly see the phenotypic

differences driven by knocking down the genes. Alternatively, perhaps the microbiota were

different between these experiments, and the genes that I targeted via dsRNA were responding

more directly to the microbiota than to the mating status per se. Another possible reason is the

knockdown efficiency. The knockdown efficiency shows that the knock down of these genes is

not necessarily in the midgut. I injected dsRNA on mosquitoes and fed them on P. falciparum

blood. For Trial 1, I fed them on naive blood, and in trial 2 I injected twice as much dsRNA as

usual (6ȝg/ȝL) to get the knockdown in the midgut, but this still did not improve the knock down

efficiency, so I didn’t pursue further knockdown experiments.

To further investigate what the male might be transferring that could increase susceptibility to

parasites among mated females, I injected 20E into both virgins and mated females and I show

that 20E injection makes virgin females more susceptible to P. falciparum infection, and indeed

brings them to a level of infection seen in mated females. However, enhanced susceptibility to P.

falciparum was not found among already mated females that were then injected with additional

20E (Figure 5.6). These latter experimental females received 20E from mating, from blood

feeding, and also from the injection of 20E yet did not show increased susceptibility compared to

control injected mated females. This suggests that the additional amount of 20E does not make

the female more or less susceptible to infection. Therefore I hypothesize that 20E transferred by

males during mating acts to change the female mosquito midgut in ways that frequently make it

more susceptible to parasite infection. Not much is known about 20E and Anopheles. However, it

is possible that each male’s ability to produce 20E and transfer to the female during mating is

different. Perhaps in lower infection intensity experiments, the mated female received lower

amounts of 20E from the male. This remains to be tested.

Another hypothesis is that perhaps 20E injection, which mimics mating, could remodel the

midgut of the female adult as it does the atrium (Rogers et al., 2008). In Drosophila, mating has

been shown to increase the size of the midgut which is modulated by JH. The genes which are

involved in lipid metabolism were increased upon mating which then increases the egg

production. These findings suggest that mating increases reproductive success in Drosophila
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(Reiff et al., 2015).  However, the impact of mating on other tissues in Anopheles especially the

midgut is poorly understood. Perhaps upon mating, the 20E titre increases which then remodels

the gut and prepares it for diverting resources to egg production. The midgut could then have

more midgut cells potentially allowing more parasites to reside in the midgut and causing higher

infection intensity. Otherwise, upon remodeling the gut for nutrient absorption for egg

development, the parasites could benefit from a reduced immune response resulting from most

resources shifting towards egg provisioning. If true, this could also result in a higher parasite

count.

In Drosophila, starvation and 20E injection increase the titre of 20E which is able to induce

apoptosis of ovarian follicles when nutrition is too low for oocyte development (Soller et al.,

1999; Terashima et al., 2005). Perhaps in Anopheles, mated females (which have 20E induced

upon blood feeding and mating) can maximize their fitness by investing in egg production rather

than in clearing infection. This  lower investment in immunity could result in higher infection

intensities. However, when females receive or produce more 20E than needed, it could induce

apoptosis in the ovary which now will direct the resources in immune defence rather than egg

production. This is one hypothesis for why no differences in P. falciparum infection were

observed between mated females injected with 20E and mated females injected with control.

Mimicking mating to disrupt the vector population could be an effective vector control strategy

because of female monandry: if virgin females “think” they have been mated, this would

effectively sterilize the population. Recently (Childs et al., 2016) the use of a 20E agonist

Dibenzoylhydrazine (DBH) in the lab was able to block P. falciparum infection, prevent

insemination, reduce egg laying and female lifespan. DBH mimics the action of 20E by

competitively binding to the ecdysteroid receptor and enhancing ecdysteroid activity (Dhadialla

et al., 1998). Whether DBH binding to ecdysteroid receptor is permanent or temporal is not

known. Furthermore, DBH impact on egg laying is opposite of mating impact which would be an

increase in egg production. This might increase the urge of females to take in blood again and

possibly be able to remate if DBH effect is temporal. These events will increase 20E titre in the

mosquitoes. Caution is urged as 20E injection shown to increase the infection intensity, there

might be an impact of 20E activating pathway which would enhance malaria transmission.
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CHAPTER 6

The impact of 20-hydroxyecdysone injection on the female midgut
transcriptome

Introduction

Hormones such as 20-hydroxyecdysone (20E) and juvenile hormone (JH)  play an important role

in coordinating development, growth, reproduction and aging in insects (Hagedorn et al., 1975;

Li et al., 2000; Shapiro & Hagedorn, 1982). In adult An. gambiae, 20E is produced in the ovary

and secreted to the fat body to function (Pondeville et al., 2008). Blood feeding has an impact on

ecdysteroid levels in females: upon blood feeding, ovarian follicle cells release ecdysteroids into

the hemolymph which are hydroxylated into 20E, an important hormone for oogenesis

(Pondeville et al., 2008). Virgin females are able to perform oogenesis if they have a bloodmeal

but they will not typically lay their eggs until they mate (Gabrieli et al., 2014; Klowden &

Russell, 2004).

Microarray data on whole sugar fed females showed at 2, 6 and 24 hours post mating, in total

141 genes were regulated (Rogers et al., 2008). 20E injection has been shown to mimic mating

(Baldini et al., 2013). Injection of 20E on virgin Anopheles shows similarity between the LRT

with mated females(Gabrieli et al., 2014) refracts females from further inseminations (Gabrieli et

al., 2014). Some of the genes that were upregulated in the LRT are genes that involved in

cytoskeleton or musculature-associated genes which may trigger remodelling of the atrium and

makes the mated female tissue refractory from further insemination by males (Gabrieli et al.,

2014). Furthermore, it also increases egg laying upon blood feeding and thus mimics the impact

of mating (Gabrieli et al., 2014). To further investigate whether 20E injection mimics mating at a

transcriptional level in the lower reproductive tract (LRT), a previous study identified 628 genes

that were regulated upon mating in the LRT and upon 20E injection in virgins,  459 out of these

628 genes were also found to be regulated in the (LRT) (Gabrieli et al., 2014). This suggests that

much of the transcriptional change that occur upon mating may be driven by 20E in particular,
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and this is consistent with the phenotypic changes of induced egg laying and increased

refractoriness to remating being driven by this hormone.

The use of 20E agonists as a vector control strategy has been proposed: females exposed to the

20E agonist will behave as if mated, so although they will blood feed and lay eggs, those eggs

will be unfertilised because the females would not have mated. I showed in Chapter 5 that 20E

injection in virgin An. coluzzii increases P. falciparum infection intensity compared to control-

injected virgins. Given this result, I next wanted to examine how 20E may be influencing the gut

environment where infection with parasites occurs. The impact of mating or 20E has been

reported on whole mosquitoes (Rogers et al., 2008) and in the LRT of An. gambiae (Baldini et

al., 2013) but never on the midgut tissue. Very little is known about the transcriptome in the

midgut upon mating or 20E injection, and an examination of transcriptional changes in this tissue

might help reveal the underlying cause of the frequently observed increase in susceptibility to P.

falciparum infection among mated females and among 20E injected virgin females. One

hypothesis is that 20E injection might have transformed the midgut transcriptome to be more

similar to mated females’ midguts, as has been observed for the LRT (Gabrieli et al., 2014). To

further investigate impact of mating and 20E injection on the midgut transcriptome, I carried out

RNASeq on 20E injected and control injected virgin Ngousso midguts, both sugar fed and blood

fed with P. falciparum infectious blood (experiment [I]). Alongside, I also examined mated and

virgin female midgut transcriptomes in order to understand if the impact of 20E resembles the

impact of mating.
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Materials and Method

Mosquito preparation

Ngousso rearing, collection and separation of Ngousso pupae and Ngousso adult mating were

performed as described in earlier chapters. See Appendix S1 and Appendix S2 for more

information. Two groups of virgin and mated females were prepared. One group is without

injection and another group is injected.

20-Hydroxyecdysone Injection

Experimental females were injected with 2.5µg 20-hydroxyecdysone (H5142 Sigma) diluted in

10% ethanol in the thorax (as described in (Baldini et al., 2013)) and control females  were

injected with 10% ethanol, the carrier used for 20E.

P. falciparum Infection (Membrane Feeding Assay)

Cotton was removed from mosquito cages six hours before blood feeding. 15 and 18 day old P.

falciparum gametocyte cultures were pooled and spun down at 38°C, 2000rpm, for 5 minutes.

Supernatant was removed and 1mL serum was added into the tube and topped up with fresh

washed O+ blood to obtain a haematocrit of 45%. The mixture was always kept on a heat block

(38°C) during the process to avoid inducing activation. The mixture was then added to a glass

membrane feeder using a blunt syringe. Each cup of mosquitoes fed for 7 minutes and sugar-

soaked cotton was placed on each cup after feeding was completed. Cups were kept in a secure

container in an incubator at 26°C and 80% humidity. 24 hours after feeding, unfed females were

removed. Some females were put aside for midgut dissection and scoring mating status, and

leftover fed females were retained to assess infection rates at day 10 post blood-fed (Chapter 5).

Sugar-soaked cotton was changed every two days with normal sugar for all mosquitoes.

50 sugar fed and 50 bloodfed females from each of 4 treatments (virgin, mated, virgin injected

with 20E, and virgin injected with 10%EtOH) were kept for 24 hours after the bloodmeal.

Twenty-four hours post bloodfeed, midguts were dissected and 6 replicate pools of 7 midguts
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from each sugarfed treatment were pooled together, whereas blood fed midguts were collected

individually, also in 6 replicates. These samples are described in  Figure 6.1.

Molecular Biology Method

RNA Extraction

Total RNA was extracted using TRIzol (Life Technologies) and chloroform (Sigma). Each

biological condition was represented by six replicates each for single midgut for all blood fed

mosquitoes and 7 pooled midguts of sugar fed mosquitoes. The midguts were homogenised using

Precellys 24 homogenizer at maximum speed, 6,800rpm for 30 seconds and let to rest for 5

minutes at room temperature. Samples were then centrifuged at 13,200 rpm for 15 minutes at

4°C. The aqueous phase was collected into a tube that was filled with 250ȝL isopropanol and

�ȝg glycogen to precipitate the RNA. Samples were centrifuged at 13,200rpm for 15 minutes at

4°C followed by washing using 70% ethanol (Sigma) and concentrated using the DNA

concentrator for 10 minutes. 10ȝL molecular biology grade water was added in each tube and

was placed on a heat block (37°C) for 15 minutes. Total RNA was measured using the

Nanodrop.

RNA Sequencing
Subsets of mosquitoes as described above were kept aside specifically for RNA sequencing

(RNASeq; Figure 6.1). The details are summarized in Appendix S1 and Appendix S2. At 24

hours post blood fed, mosquito guts were dissected in RNAlater. Individual guts were placed in

PCR tubes on dry ice as described above and RNA extraction was carried out as described

above, on single or pooled guts depending on the experiment. These samples were assessed for

RNA quality and quantity using the Agilent Bioanalyzer. Briefly, RNA samples were denatured

by incubating at 70°C for 2 minutes and then placed on ice. 9ȝL of gel-dye mix was pipetted into

bottom of nanochip. 1ȝL of samples, 1ȝL of RNA 6000 Nano Marker and 1ȝL of RNA 6000

Ladder were pipetted in assigned well, vortex and run using Eukaryote Total RNA Nano Series

II programme. Total RNA was diluted to concentration of 500ng in 50ȝL and was sent to the

Wellcome Trust Sanger Institute for RNA library preparation and sequencing.
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The kit used for library prep was Illumina TruSeq Stranded mRNA Library Prep Kit. mRNA was

purified from total RNA using an oligo dT magnetic bead pull-down. A random-primed cDNA

library was synthesized. During second strand synthesis dUTP was incorporated in place of

dTTP. The incorporation of dUTP quenches the second strand during amplification because the

polymerase does not incorporate past this nucleotide resulting in a strand specific library. Ends

were repaired with a combination of fill-in reactions and exonuclease activity to produce blunt

ends. A-tailing was performed, whereby an "A" base was added to the blunt ends. Illumina

paired-end sequencing adapters containing unique index sequences, allowing samples to be

pooled, were ligated. The libraries then went through 10 cycles of PCR amplification using

KAPA Hifi Hot Start Polymerase rather than the kit-supplied Illumina PCR Polymerase due to

better performance (especially with AT rich DNA). Libraries were quantified and pooled based

on a post-PCR Agilent Bioanalyzer. Sequencing was done on the HiSeq v4, 75bp paired end

reads, and the data was analysed using Illumina RTA software version 1.18.61. Automatic and

manual quality control (QC) was performed and then the data was archived in iRODS as CRAM

files. Data mapping to reference genome was done using TopHat2 (v.2.0.9) (Kim et al., 2013)

which makes use of the aligner Bowtie2 (v.2.1.0) (Langmead & Salzberg, 2012), to the An.

gambiae PEST genome (AgamP4) obtained from VectorBase.

Data received were run and mapped to reference genome of An. gambiae which was obtained

from VectorBase.  HTSeq (v.0.6.1)  (Anders  et  al.,  2015)  was used to  count  transcripts  for  each

gene. Differentially expressed genes were determined using DESeq2 (v.1.8.2) (Anders et al.,

2015; Love et al., 2014) in R (v.3.2.5) (R Core Team 2014). Functional interpretation of each

gene set was performed by doing Gene Ontology analysis using web server, TopGO (Alexa &

Rahnenführer, 2009; Alexa et al., 2006). Functional analysis of 3 biological process, 3 cellular

compartment and 3 molecular function were reported in this chapter. The top 10 significant

functional analysis for each biological process, cellular compartment and molecular function

were extracted and available in Appendix S5.
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Figure 6.1     Overview of  46 samples of midguts used for RNASeq analysis in this chapter.
Midguts were dissected at 24 hours post blood feed from experiment [I] (80% P. falciparum
infection prevalence). RNA was extracted from each midgut and used for RNASeq experiment in
this chapter. (P= pooled of 7 midguts, M= mated, V= virgin, B= blood fed, S= sugar fed, N=
untreated, Ecd= ecdysone/20E injected, Ctrl= control, 10%EtOH injected). The greyed out
samples were already discussed in chapter 4 and are not referred to in this chapter.
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Results

The PCA on sugar fed samples showed a clear separation between 20E injected virgin midguts

(n=6 pools of 7 midguts) vs control injected virgin midguts (n=6 pools of 7 midguts) (Figure

6.2a). Around 1076 genes were found to be significantly differentially expressed (padj < 0.05)

between these treatments. There are 445 genes were upregulated upon 20E injection and the rest

were down regulated compared to the control Among these, 79 genes overlap with the genes

which were significantly differentially expressed due to mating in sugar fed Ngousso midgut

which was discussed in Chapter 4. In general, 20E injection induced activity involving ATP

hydrolysis coupled protein transport, process that modulated the frequency, rate or extent of

retrograde vesicle-mediated transport from golgi to endoplasmic reticulum and ATP synthesis

coupled proton transport activity (Table 6.1a). Whilst genes that were down regulated upon 20E

injection are mainly involved in protein phosphorylation activity, regulation of transcription

process and transmembrane receptor protein tyrosine kinase activity (Table 6.1b). These findings

suggest that there is an impact of 20E injection as compared to 10% EtOH in the midgut. The top

10 most significant functional categories for  biological process (BP), cellular compartment (CC)

and molecular function (MF) of both upregulated and downregulated genes in response to 20E

injection in the midgut can be found in Appendix S5.
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Table 6.1      Functional enrichment analysis on genes  that were significantly (a) upregulated
and (b) downregulated upon 20E injection in sugar fed virgin midguts.
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Similar to the PCA on blood fed midguts shown in Chapter 4, the PCA on bloodfed virgin

samples injected with 20E or ethanol do not show as clear a separation as compared to the sugar

fed samples (Figure 6.2b). Only nine genes are detected as differentially expressed between

bloodfed female Ngousso virgins that were injected with 20E (n=6 single midguts) or injected

with 10%EtOH (n=6 single midguts).

(a)  Sugar fed     (b) Blood fed

Figure 6.2     Principal Components Analyses on RNAseq data for  virgin females injected with
(a) 20E [Ecd] and control [Ctrl] female midguts fed only on sugar [S] and untreated with
antibiotics [N] with each dot comprising data from a pool [P_] of 7 midguts, and (b) single
midguts virgin females that were injected with 20E and 10%EtOH, bloodfed [B] on P.
falciparum infective blood, and untreated [N] with antibiotics. These samples came from
experiment [I] that achieved 80% prevalence after P. falciparum infection.
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Two genes were found to be differentially expressed in both sugar and bloodfed guts, including

AGAP007567, a membrane bound O-acyl transferase which is an enzyme involved in lipid

biosynthesis, phospholipid remodelling and protein/peptide acylation. The other gene,

AGAP001321, has no known or predicted function.

In Chapter 5, 20E injection into virgin females resulted in a significant increase in P. falciparum

infection intensity. I hypothesized the 20E injection could have transformed the midgut to mimic

a mated female midgut, and thus enhanced susceptibility. In comparing the similarity of virgin

and mated sugarfed guts to virgin 20E and virgin ethanol injected guts (Figure 6.3a), while it is

clear virgin sugar fed guts are distinct from mated sugarfed guts, and 20E injected guts are

distinct from ethanol injected guts, the overlap between the 20E injected samples is not with the

mated guts, as predicted, but with the virgin guts. This result suggests that 20E injected

transcriptome in the midgut might not mimic the impact on the mated midgut.

(a) Sugar fed (b) Blood fed

Figure 6.3     Principal Component Analyses on RNAseq data for virgin females injected with
(a) 20E [Ecd], control [Ctrl] females, uninjected mated females and virgin females  midguts fed
only on sugar [S] and untreated with antibiotics [N] with each dot comprising data from a pool
[P_] of 7 midguts. (b) single midguts virgin females that were injected with 20E and 10%EtOH,
uninjected mated females and virgin females bloodfed [B] on P. falciparum infective blood, and
untreated [N] with antibiotics. These samples came from experiment [I] that achieved 80%
prevalence after P. falciparum infection.
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To further explore this, I compared the significantly differentially expressed genes detected in

the 20E and 10% EtOH experiment with those detected as differentially expressed due to mating

in sugarfed guts as described in Chapter 4. Of the 445 genes upregulated by 20E, and 312 genes

upregulated by mating, 53 genes were found in both analyses (Figure 6.4). Functional

enrichment analysis of the common genes upregulated by 20E injection and mating shows that

these genes are mainly involved in biosynthetic process, tRNA aminoacylation for protein

translation and peptide catabolic process. The majority of the genes are predicted to function in

the cytoplasm, some in the endoplasmic reticulum membrane and rough endoplasmic reticulum.

The top 3 molecular functions are metalloaminopeptidase activity, aminoacyl-tRNA ligase

activity, and peptide binding (Table 6.2). This suggests that, perhaps the common function

between 20E and mating are in synthesizing some biological compound, producing protein and

breaking down peptides in order to facilitate egg production or perhaps remodelling the midgut.
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Figure 6.4 Venn Diagram on genes that were up-regulated (up) and down-regulated (down)
by mating status (Mating) and 20E injection (20E) in sugar fed midgut.
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Table 6.2      Functional enrichment analysis on 53 genes found to be significantly upregulated
in response to 20E injection (20E vs control) and mating status (mated vs virgin) in sugar fed
midgut samples according to (a) biological process [BP], (b) cellular compartment [CC] and (c)
molecular function [MF].

Surprisingly, although the PCA plot showed that 20E and virgin cluster are close to each other,

there are no genes which were found to overlap between genes upregulated by 20E injection and

genes upregulated in virgin as compared to mated. However, among 731 genes downregulated

by 20E injection and 167 genes downregulated by mating, there were 23 genes overlapping

between these analyses (Figure 6.4). Functional enrichment analysis on the genes significantly

downregulated by 20E injection and mating are involved in biological processes such as

digestion, phosphatidylglycerol metabolism and negative regulation of ribosomal large subunit

export from nucleus. These overlapping genes are mainly functional in preribosome, a small
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subunit precursor, in the nucleolus and cytoplasmic exosome. The top 3 molecular functions are

3’-5’-exoribonuclease activity, prenyltransferase activity and protein kinase binding (Table 6.3).

This  finding suggests that the function of commonly found genes between virgin and control are

involved in breaking down nectar compound in the midgut. One hypothesis could be that these

genes are involved in maintaining the homeostasis in the midgut.

Table 6.3 Functional enrichment analysis on 23 genes found to be significantly
downregulated in response to 20E injection (20E vs control) and mating status (mated vs virgin)
in sugar fed midgut samples according to (a) biological process [BP], (b) cellular compartment
[CC] and (c) molecular function [MF].
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In sugar fed 20E injected midguts, 53 genes were found to be in common with mating impact.

Whilst in the LRT, 435 upregulated genes upon 20E injection are in common with mating impact

(Gabrieli et al., 2014). Venn Diagram shows only 3 genes overlap between the midgut and LRT

mating regulated genes: AGAP008265, AGAP001874 and AGAP007088 which are involved in

protein translation, signal transduction and protein folding. This finding suggests that the

remaining 50 genes might be specifically expressed in the midgut.

Figure 6.5 Overlap of genes which were up regulated and commonly found between 20E
injection and mating in the midgut (yellow), from my RNASeq experiment and in the LRT
which consist of atrium and spermathecae (A&S). The gene list for common genes between 20E
and mating in LRT is from Gabrieli et al. 2014.
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Microbiota has been shown to have an impact on P. falciparum susceptibility (Bahia et al., 2014;

Dong et al., 2009; Gendrin & Christophides, 2013). As previously described in Chapter 3,

mating status has an impact in increasing bacterial loads in the gut which was confirmed by

qPCR and Kraken analysis. Since the RNAseq data contains information on the abundance and

composition of bacteria present in these midguts. Therefore, I used the Kraken analysis to

explore whether 20E injected midguts resembled mated midguts in bacterial abundance and/or

composition. In sugar fed females, 20E injected midguts actually have significantly lower

bacterial loads than control injected midguts (ANOVA : n=12, p = 2.727 e-05, Figure 6.6a, left

panel). This is the opposite of what would be expected based on patterns in sugarfed virgin and

mated midguts, which shows a significantly higher bacterial load in mated midguts as previously

described (Figure 6.6b, left panel). Upon blood feeding, bacterial loads are significantly higher in

20E injected compared to control injected midguts, consistent with what has been observed in

bloodfed midguts (ANOVA : n=12, p = 0.05, Figure 6.6a, right panel). It is unclear why the

overall bacterial levels don’t appear much higher in bloodfed midguts than sugar fed midguts,

but this may be in part driven by improved detection of bacteria in the sugar fed samples due to

the fact that 7 midguts were pooled together. Bacterial levels in the sugar fed midguts of normal

mated and virgin females are, as reported before (using qPCR data on different samples)

borderline significantly higher in mated than virgin midguts (ANOVA : n=12, p = 0.08, Figure

6.6b left panel). However, upon blood feeding, the bacterial loads seems to be similar between

mated and virgin midguts (Figure 6.6b right panel) and this is very different than what was

previously observed in Experiment [K] and reported in Chapter 3. Perhaps different bacteria

were present in the midguts of these mosquitoes. I used Kraken to examine this question.
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(a)  20E injection impact                                         (b) Mating Impact

Figure 6.6     Overall Kraken analysis on total bacteria on (a) 20E and control injected and (b)
virgin and mated uninjected midguts. Each dot in the sugar fed column represents RNA extracted
from a pool of 7 midguts. Each dot in the blood fed column represents RNA extracted from
single midgut from a P. falciparum-infection experiment with 80% prevalence. Boxplots indicate
the median and 25-75 percentiles. (*** = p-value < 0.005, * = p-value <0.05)

First,   I  looked at  the specific  bacterial  loads that  I  have qPCR data  on from separate  samples

discussed in Chapter 3. Very few bacteria showed different abundances depending on 20E

injection or  mating status.  Among sugar  fed midguts,  only Acetobacteraceae was significantly

higher in 20E (ANOVA : n=12, p = 0.005; Figure 6.7a), and only Flavobacteriaceae was

significantly higher in mated midguts (ANOVA : n=12, p = 0.04; Figure 6.7b). This is consistent

with what was observed in Chapter 3 (Figure 3.5) where Flavobacteriaceae was significantly

different between mated and virgin and although for Acetobacteraceae the difference is not

significant, but the trend shows to be higher in mated female. These suggests this two groups of

bacteria may frequently be increased in mated females. Flavobacteriaceae is not found in any of

the injected midguts, 20E and control in both sugar and blood fed midguts. Among bloodfed

midguts, only Klebsiella was responsive to mating and 20E injection, but it was responsive in

opposite directions, being significantly higher in 20E injected as compared to control injected

guts, but significantly lower in mated as compared to virgin guts (ANOVA : n=24, p = 0.04; p =

0.01; Figure 6.7 a & b).
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(a) 20E injection impact      (b) Mating impact

Figure 6.7 Overall Kraken analysis on (a) bacterial loads of Klebsiella, Pantoea and Serratia
on 20E and control injected midguts. (b) bacterial loads on Klebsiella, Pantoea, Serratia and
Flavobacteriaceae on uninjected mated and virgin midguts. Each dot in the sugar fed column
represents RNA extracted from pool of 7 midguts. Each dot in blood fed column represents RNA
extracted from single midgut from a P. falciparum-infection experiment [I] with 80%
prevalence. Boxplots indicate the median and 25-75 percentiles. (* = p-value <0.05).

I also used Kraken to look at relative abundances of the bacteria detected in the RNAseq data. As

seen in Chapter 3, Yersinia is found in both sugar and bloodfed virgins, but not in injected

females (Figure 6.8). In sugar fed female midguts, Klebsiella is dominant, especially among

mated females. Whereas in 20E and control injected midguts, Serratia and Klebsiella are

dominant (Figure 6.8a). Upon blood feeding, all four treatment show Serratia bacterial

abundance seems to be dominant. In blood fed injected 20E and control midguts, some other

bacteria compositions were spotted, unlike in sugar fed samples, such as Achromobacter,

Streptococcus, Pantoea (Figure 6.7b). This suggests that these bacteria proliferate more upon

blood feeding.
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(a) Sugarfed (b) Bloodfed

Figure 6.8 Bacterial composition over total percentage in midguts obtained using the Kraken
analysis which shows the bacterial composition load of some bacterial groups including
Achromobacter, Streptococcus, Yersinia, Serratia, Pantoea and Klebsiella in virgin and mated
(uninjected) and 20E and control injected Ngousso midguts (a) sugar fed (b) given P. falciparum
infectious blood (experiment [I]). All of these midguts are from the same batch of mosquitoes.
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Discussion

My RNASeq analysis on sugar fed females shows that 20E injection has an impact on the midgut

transcriptome of injected virgin females. My 20E injection was done 2 or 3 days prior to feeding

on P. falciparum blood. This is because the injected females would take some time to recover

before  they  are  able  to  blood  feed  properly.  Furthermore,  the  injection  was  done  early  in  the

morning to mimic mated females timing (that were given males the night before would have

mated). Dissections were done 24 hours post blood feed, which will be 3 or 4 days post injection.

20E injection was reported previously to mimic the impact of  mating on the  female An.

gambiae LRT transcriptome using microarray method (Gabrieli et al., 2014). The virgin females

were injected at 3 days old and dissected at 1 day post injection. The genes that were upregulated

upon 20E injection are involved in remodelling the atrium which prevent the female from further

insemination (Gabrieli et al., 2014).

However, although 20E injection mimics mating in the LRT of the females (Gabrieli et al.,

2014), the pattern is not as clear for the midgut. Only 53 genes out of 445 genes which were

upregulated by 20E injection are common with mating. From these 53 genes, 3 genes were also

found to be upregulated in the LRT as reported by Gabrieli et al. 2014. This finding suggests that

the remaining 50 genes might be specifically activated in the midgut upon 20E injection.

Although the biological process is poorly understood, the midgut function or contribution upon

20E and mating to reproduction remains an interesting area to be tested.

The impact of male-derived 20E might also be influenced by the microbiota in the midgut. The

kraken analysis in this chapter was done using samples which were fed on P. falciparum infected

blood that resulted in 80% infection prevalence (Figure 6.1). In sugar fed midguts, control

injected females had significantly higher bacterial loads compared to 20E injected midguts. This

could be due to the immune response being activated upon 20E injection which could have

reduced the bacterial abundance (Upton et al., 2015). In the silkworm Bombyx mori, 20E

injection into larvae induced changes in the number of cultivable bacteria, DNA synthesis, and

gene expression in the insect midgut, all of which were similar to the changes that occurred

during the larva-to-larva molting stage (Yang et al., 2016). Additionally, the increased 20E titer
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in the hemolymph likely induced the noted physiological changes within the midgut (Yang et al.,

2016). Perhaps 20E injection reduced the bacterial loads, similar to using antibiotics in clearing

bacteria abundance in the midguts. This could possibly lead to an increase in P. falciparum

susceptibility as found in Chapter 5.

In some cases, detection of P. falciparum  RNA by qPCR in the same sample used for RNASeq

would allow the identification of single midgut that might have been infected and responsible for

variance in the data (Figure 6.2b). However, there is no leftover RNA to be used to answer this

question hence this is one of the limitation of the study. Upon blood feeding, the bacterial loads

in 20E injected females increases and are significantly higher than found in control injected

blood fed females. 20E injection followed by blood feeding could have activated oogenesis in

the female. Bacteria has been shown to proliferate massively upon blood feeding. This result

suggests that perhaps 20E injection has an impact in a trade off with immunity where it could

have channeled their energy in producing eggs which resulted in higher bacterial loads.

Microbiota loads of mated and virgin midguts from this (experiment [I] with 80% P. falciparum

infection prevalence) are clearly different compared to microbiota loads from experiment K

(100% P. falciparum infection prevalence). In experiment [K] (discussed in Chapter 3, Figure

3.3b), the mated midguts clearly have much higher bacterial loads than virgin midguts. This

impact was confirmed using qPCR, Kraken analysis and MiSeq. Unfortunately, I did not

examine sugarfed virgin and mated females in that experiment. There are some similarity

between experiment [I] and [K] where the trend of these bacteria are higher in mated female

midguts; Pantoea, Serratia and Acetobacteraceae whilst Klebsiella is higher in virgin. This

suggests that there might be some other bacterial species that could have driven the result

observed in the samples from experiment [I] which could have an impact on the infection

prevalence as well.

Overall, 20E injection on virgin female has an impact on the midgut transcriptome. Although the

impact does not entirely mimic mating, 20E injection which remodelled the female atrium

(Gabrieli et al., 2014) could have an impact on the midgut which needs further exploration.

Furthermore, 20E injection is able to alter the bacterial abundance and composition suggests that
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it  might  be  involved  in  a  trade  off  with  immunity  which  might  also  affect  the  female

susceptibility of P. falciparum.
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CONCLUSIONS

In mosquitoes, a mating plug is found exclusively in some Anopheles species (Baldini et al.,

2012; Mitchell et al., 2015). The exclusivity of the mating plug in Anopheles suggest the

importance of it in reproduction and also the probability of its function in P. falciparum

infection. Transfer of sperm and mating plug which contains 20E hormone from males to

females ultimately influence the female immunity response. The response of An. coluzzii on the

existence of natural microbiota in the midgut together with the P. falciparum is poorly studied

thus the link between reproduction system of An. coluzzii and P. falciparum susceptibility is an

interesting area to be looked at. By studying the mating status impact on infection, we were able

to identify the possibility of male involvement in P. falciparum infection.

Microbiota in the midgut has been an important area of study in malaria vector control. Bacteria

are usually ingested when the mosquitoes feed. In my thesis, I have shown that mating  increases

bacterial abundance in the midgut in sugar fed and 24 hours post infectious blood feed. Blood

feeding increases the bacterial abundance in the midgut of An. coluzzii. Antibiotic treatment

consists of penicillin, streptomycin, and gentamicin given in the sugar solution since eclosion

and this removes the majority of bacteria in An. coluzzii females midguts. Mating too has an

impact in altering some bacterial composition whereby some bacteria were found to be higher in

mated females compared to virgin females. This suggests that mating is a factor that should be

taken into consideration in developing paratransgenesis in combating malaria.

RNASeq analysis on sugar fed midguts showed that mating has an impact in altering the

transcriptome of midguts. However, upon blood feeding, mating impact on the transcriptome

seems lesser. This could be due to the timing of sampling which is at 24 hours post blood feed.

At this time, microbiota massively proliferate and this could have increased a lot more gene

expression in virgin females midgut which covers the impact of mating. Furthermore, upon

blood feeding, there is no common genes found to be significantly differentially expressed

between two different experiments, experiment with 80% and 100% P. falciparum infection

prevalence. Apart from that, these two experiment contains different level of bacteria as well.
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Besides mating, blood feeding and antibiotics treatment has an impact in changing the midgut

transcriptome as well.

Next, I looked at the impact of mating status on P. falciparum susceptibility. Mating has an

impact in increasing P. falciparum infection intensity especially in higher intensity P. falciparum

infection. This impact of mating on P. falciparum is believed to be independent of microbiota as

the same trend is found in antibiotic treated females. However, at lower P. falciparum intensity,

this impact is not significant although the trend is there. This might be due to the inability to

quantify the impact when the oocysts counts are low. Although in the wild, normally the oocysts

counts are 0-10 oocysts, the laboratory P. falciparum infection is in a controlled condition where

the females would not have a stressful condition to find mating partner and find food. This

experiment suggests that mating has an impact in increasing P. falciparum.

One of the hypothesis of this observation is due to the unique mating system of Anopheles. The

females are usually monandrous and they receive not only sperm, but also mating plug and

seminal fluid proteins which consists of 20E hormone. Mating plug and 20E hormone have been

correlated with the vectorial capacity which got me to test if 20E might have increased Pf

susceptibility. 20E injection on virgin An. coluzzii does increases P. falciparum infection

intensity as compared to virgins injected with control, 10%EtOH which is the solution to dilute

20E. However, it is not the case in mated An. coluzzii.

20E injection has been reported to mimic mated female in increasing egg laying, refracting the

females from further copulation and microarray on LRT of 20E injection shows similarity with

mated females LRT. This next suggests that perhaps 20E injection could also mimic the midgut

of  mated  female.  20E  injection  on  virgin An. coluzzii changes the midgut transcriptome

compared to the control virgin. From PCA plot of RNASeq, 20E injection in virgin An. coluzzii

showed that 20E does not cluster near mated females. However, from RNASeq analysis, 11%

from the genes which were upregulated by 20E injection in virgin An. coluzzii are in common

with the genes which were upregulated by mating. In sugar fed samples, 20E injected females

have lower bacteria than control injected female midguts. This event appear to be similar to the
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impact of using antibiotic to clear bacteria from the midguts, which will increase P. falciparum

infection.

Future works/ directions:

1) Metagenomic studies on midgut microbiota comparing mated and virgin could enhance

the knowledge of interaction between mating, bacteria and P. falciparum infection.

2) Functional genetic experiment by knocking down some genes in the midgut followed by

blood feeding on infectious P. falciparum could give an idea on the importance of certain

genes in the midgut for parasite survival.

3) Very little is know about male derived-20E pathway. Perhaps the pathway between 20E

activated by blood feeding and mating are slightly different which suggests the

importance of 20E from blood feeding and mating, separately.

4) Mating could remodel the gut, and it could be driven by the hormone transferred by the

male. Studies on the midgut structure and cell composition in the presence/absence of

hormone would give an insight on the hypothesis.



135

REFERENCES

Afrane, Y. A., Githeko, A. K., & Yan, G. (2012). The ecology of Anopheles mosquitoes under climate
change: case studies from the effects of deforestation in East African highlands. Annals of the New
York Academy of Sciences, 1249, 204–210.

Alexa, A., & Rahnenführer, J. (2009). Gene set enrichment analysis with topGO. Available. Retrieved
from https://www.bioconductor.org/packages/devel/bioc/vignettes/topGO/inst/doc/topGO.pdf

Alexa, A., Rahnenführer, J., & Lengauer, T. (2006). Improved scoring of functional groups from gene
expression data by decorrelating GO graph structure. Bioinformatics , 22(13), 1600–1607.

Alving, A. S., Johnson, C. F., Tarlov, A. R., Brewer, G. J., Kellermeyer, R. W., & Carson, P. E. (1960).
Mitigation of the haemolytic effect of primaquine and enhancement of its action against
exoerythrocytic forms of the Chesson strain of Plasmodium vivax by intermittent regimens of drug
administration: a preliminary report. Bulletin of the World Health Organization, 22, 621–631.

Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-throughput
sequencing data. Bioinformatics , 31(2), 166–169.

Arama, C., & Troye-Blomberg, M. (2014). The path of malaria vaccine development: challenges and
perspectives. Journal of Internal Medicine, 275(5), 456–466.

Arnold, J., Alving, A. S., & Clayman, C. B. (1961). Induced primaquine resistance in vivax malaria.
Transactions of the Royal Society of Tropical Medicine and Hygiene, 55, 345–350.

Artzy-Randrup, Y., Alonso, D., & Pascual, M. (2010). Transmission intensity and drug resistance in
malaria population dynamics: implications for climate change. PloS One, 5(10), e13588.

Azambuja, P., Garcia, E. S., & Ratcliffe, N. A. (2005). Gut microbiota and parasite transmission by insect
vectors. Trends in Parasitology, 21(12), 568–572.

Bahia, A. C., Dong, Y., Blumberg, B. J., Mlambo, G., Tripathi, A., BenMarzouk-Hidalgo, O. J., Ramesh,
C. & Dimopoulos, G. (2014). Exploring Anopheles gut bacteria for Plasmodium blocking activity.
Environmental Microbiology, 16(9), 2980–2994.

Bai, H., Gelman, D. B., & Palli, S. R. (2010). Mode of action of methoprene in affecting female
reproduction in the African malaria mosquito, Anopheles gambiae. Pest Management Science,
66(9), 936–943.

Baird, J. K., & Hoffman, S. L. (2004). Primaquine therapy for malaria. Clinical Infectious Diseases: An
Official Publication of the Infectious Diseases Society of America, 39(9), 1336–1345.

Baldini, F., Gabrieli, P., Rogers, D. W., & Catteruccia, F. (2012). Function and composition of male
accessory gland secretions in Anopheles gambiae: a comparison with other insect vectors of
infectious diseases. Pathogens and Global Health, 106(2), 82–93.

Baldini, F., Gabrieli, P., South, A., Valim, C., Mancini, F., & Catteruccia, F. (2013). The interaction
between a sexually transferred steroid hormone and a female protein regulates oogenesis in the
malaria mosquito Anopheles gambiae. PLoS Biology, 11(10), e1001695.

Bando, H., Okado, K., Guelbeogo, W. M., Badolo, A., Aonuma, H., Nelson, B., Fukumoto, S.,Xuan, X.,
Sagnon, N. & Kanuka, H. (2013). Intra-specific diversity of Serratia marcescens in Anopheles
mosquito midgut defines Plasmodium transmission capacity. Scientific Reports, 3, 1641.

Barnes, A. I., Wigby, S., Boone, J. M., Partridge, L., & Chapman, T. (2008). Feeding, fecundity and
lifespan in female Drosophila melanogaster. Proceedings. Biological Sciences / The Royal Society,
275(1643), 1675–1683.

Bartoloni, A., & Zammarchi, L. (2012). Clinical aspects of uncomplicated and severe malaria.
Mediterranean Journal of Hematology and Infectious Diseases, 4(1), e2012026.

Beck-Johnson, L. M., Nelson, W. A., Paaijmans, K. P., Read, A. F., Thomas, M. B., & Bjørnstad, O. N.
(2013). The effect of temperature on Anopheles mosquito population dynamics and the potential for
malaria transmission. PloS One, 8(11), e79276.

Bejon, P., Cook, J., Bergmann-Leitner, E., Olotu, A., Lusingu, J., Mwacharo, J., Vekemans, J. &
Drakeley, C. J. (2011). Effect of the pre-erythrocytic candidate malaria vaccine RTS,S/AS01E on



136

blood stage immunity in young children. The Journal of Infectious Diseases, 204(1), 9–18.
Bharati, K., & Ganguly, N. K. (2013). Tackling the malaria problem in the South-East Asia Region: need

for a change in policy? The Indian Journal of Medical Research, 137(1), 36–47.
Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K.E., Moyes, C.L.,

Henry, A., Eckhoff, P.A., Wenger, E.A., Briet, O., Penny, M.A., Smith, T.A., Bennett,A., Yukich,
J., Eisele, T.P., Griffin, J.T., Fergus, C.A., Lynch, M., Lindgren, F., Cohen, J.M., Murray, C.L.J.,
Smith, D.L., Hay, S.I., Cibulskis, R.E. & Gething, P. W. (2015). The effect of malaria control on
Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526(7572), 207–211.

Boissière, A., Gimonneau, G., Tchioffo, M. T., Abate, L., Bayibeki, A., Awono-Ambéné, P. H., Nsango,
S.E. & Morlais, I. (2013). Application of a qPCR assay in the investigation of susceptibility to
malaria infection of the M and S molecular forms of An. gambiae s.s. in Cameroon. PloS One, 8(1),
e54820.

Boissière, A., Tchioffo, M. T., Bachar, D., Abate, L., Marie, A., Nsango, S. E. & Morlais, I. (2012).
Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with
Plasmodium falciparum Infection. PLoS Pathogens, 8(5), e1002742.

Brault, A. C., Foy, B. D., Myles, K. M., Kelly, C. L. H., Higgs, S., Weaver, S. C., Olson, K.E., Miller,
B.R., & Powers, A. M. (2004). Infection patterns of o’nyong nyong virus in the malaria-transmitting
mosquito, Anopheles gambiae. Insect Molecular Biology, 13(6), 625–635.

Briegel, H., Lea, A. O., & Klowden, M. J. (1979). Hemoglobinometry as a Method for Measuring Blood
Meal Sizes of Mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 15(3), 235–238.

Bruce, M. C., Alano, P., Duthie, S., & Carter, R. (1990). Commitment of the malaria parasite Plasmodium
falciparum to sexual and asexual development. Parasitology, 100 Pt 2, 191–200.

Buckling, A., Ranford-Cartwright, L. C., Miles, A., & Read, A. F. (1999). Chloroquine increases
Plasmodium falciparum gametocytogenesis in vitro. Parasitology, 118 ( Pt 4), 339–346.

Campo, J. J., Aponte, J. J., Skinner, J., Nakajima, R., Molina, D. M., Liang, L.,Scarlal, J. & Dobaño, C.
(2015). RTS,S vaccination is associated with serologic evidence of decreased exposure to
Plasmodium falciparum liver- and blood-stage parasites. Molecular & Cellular Proteomics: MCP,
14(3), 519–531.

Capone, A., Ricci, I., Damiani, C., Mosca, M., Rossi, P., Scuppa, P., Crotti, E., Epis, S., Angeletti, M.,
Valzano, M., Sacchi, L., Bandi, C., Daffonchio, D., Mandrioli, M. & Favia, G. (2013). Interactions
between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications
in malaria symbiotic control. Parasites & Vectors, 6(1), 182.

Caputo, B., Santolamazza, F., Vicente, J. L., Nwakanma, D. C., Jawara, M., Palsson, K., Jaenson,T.,
White, B.J., Mancini, E., Petrarca, V., Conway, D.J., Besansky, N.J., Pinto, J. & della Torre, A.
(2011). The “far-west” of Anopheles gambiae molecular forms. PloS One, 6(2), e16415.

Carter, R., & Miller, L. H. (1979). Evidence for environmental modulation of gametocytogenesis in
Plasmodium falciparum in continuous culture. Bulletin of the World Health Organization, 57 Suppl
1, 37–52.

Chagas, A. C., Ramirez, J. L., Jasinskiene, N., James, A. A., Ribeiro, J. M. C., Marinotti, O., & Calvo, E.
(2014). Collagen-binding protein, Aegyptin, regulates probing time and blood feeding success in the
dengue vector mosquito, Aedes aegypti. Proceedings of the National Academy of Sciences of the
United States of America, 111(19), 6946–6951.

Champion, C. J., Kukutla, P., Glennon, E. K. K., Wang, B., Luckhart, S., & Xu, J. (2017). Anopheles
gambiae: Metabolomic Profiles in Sugar-Fed, Blood-Fed, and Plasmodium falciparum-Infected
Midgut. Dataset Papers in Science, 2017. https://doi.org/10.1155/2017/8091749

Champion, C. J., & Xu, J. (2017). The impact of metagenomic interplay on the mosquito redox
homeostasis. Free Radical Biology & Medicine, 105, 79–85.

Charlwood, J. D., & Jones, M. D. R. (1979). Mating behaviour in the mosquito, Anopheles gambiae
s.1.save. Physiological Entomology, 4(2), 111–120.

Charlwood, J. D., Pinto, J., Sousa, C. A., Ferreira, C., Petrarca, V., & do E Rosario, V. (2003). “A mate or
a meal”--Pre-gravid behaviour of female Anopheles gambiae from the islands of São Tomé and



137

Príncipe, West Africa. Malaria Journal, 2(1), 9.
Childs, L. M., Cai, F. Y., Kakani, E. G., Mitchell, S. N., Paton, D., Gabrieli, P., Caroline, O.B. &

Catteruccia, F. (2016). Disrupting Mosquito Reproduction and Parasite Development for Malaria
Control. PLoS Pathogens, 12(12), e1006060.

Chouaia, B., Rossi, P., Montagna, M., Ricci, I., Crotti, E., Damiani, C., Epis, S., Faye, I., Sagnon, N.,
Alma, A., Favia, G., Daffonchio, D. & Bandi, C. (2010). Molecular evidence for multiple infections
as revealed by typing of Asaia bacterial symbionts of four mosquito species. Applied and
Environmental Microbiology, 76(22), 7444–7450.

Christiansen-Jucht, C. D., Parham, P. E., Saddler, A., Koella, J. C., & Basáñez, M.-G. (2015). Larval and
adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s.
Parasites & Vectors, 8, 456.

Cirimotich, C. M., Dong, Y., Clayton, A. M., Sandiford, S. L., Souza-Neto, J. A., Mulenga, M., &
Dimopoulos, G. (2011). Natural Microbe-Mediated Refractoriness to Plasmodium Infection in
Anopheles gambiae. Science, 332(6031), 855–858.

Cirimotich, C. M., Dong, Y., Garver, L. S., Sim, S., & Dimopoulos, G. (2010). Mosquito immune
defenses against Plasmodium infection. Developmental and Comparative Immunology, 34(4), 387–
395.

Coetzee, M., Hunt, R. H., Wilkerson, R., Della Torre, A., Coulibaly, M. B., & Besansky, N. J. (2013).
Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex.
Zootaxa, 3619, 246–274.

Collins, W. E., & Jeffery, G. M. (2005). Plasmodium ovale: parasite and disease. Clinical Microbiology
Reviews, 18(3), 570–581.

Crawford, J. E., & Lazzaro, B. P. (2010). The demographic histories of the M and S molecular forms of
Anopheles gambiae s.s. Molecular Biology and Evolution, 27(8), 1739–1744.

Crompton, P. D., Pierce, S. K., & Miller, L. H. (2010). Advances and challenges in malaria vaccine
development. The Journal of Clinical Investigation, 120(12), 4168–4178.

Cruz, L. R., Spangenberg, T., Lacerda, M. V. G., & Wells, T. N. C. (2013). Malaria in South America: a
drug discovery perspective. Malaria Journal, 12, 168.

Cui, L., Yan, G., Sattabongkot, J., Cao, Y., Chen, B., Chen, X., Fan, Q., Fang, Q., Jongwutiwes, S.,
Parker, D., Sirichaisinthop, J., Kyaw, M.P., Su, X.Z., Yang, H., Yang, Z., Wang, B., Xu, J., Zheng,
B., Zhong, D., & Zhou, G. (2012). Malaria in the Greater Mekong Subregion: heterogeneity and
complexity. Acta Tropica, 121(3), 227–239.

Damiani, C., Ricci, I., Crotti, E., Rossi, P., Rizzi, A., Scuppa, P., Capone, A., Ulissi, U., Epis, S., Genchi,
M., Sagnon, N. Faye, I., Kang, A., Chouaia, B., Whitehorn, C., Moussa, G.W., Mandrioli, M.,
Esposito, F., Sacchi, L., Bandi, C., Daffonchio, D. & Favia, G. (2010). Mosquito-bacteria symbiosis:
the case of Anopheles gambiae and Asaia. Microbial Ecology, 60(3), 644–654.

Dana, A. N., Hong, Y. S., Kern, M. K., Hillenmeyer, M. E., Harker, B. W., Lobo, N. F., Hogan, J.R.,
Romans, P. & Collins, F. H. (2005). Gene expression patterns associated with blood-feeding in the
malaria mosquito Anopheles gambiae. BMC Genomics, 6, 5.

Day, K. P., Hayward, R. E., & Dyer, M. (1998). The biology of Plasmodium falciparum transmission
stages. Parasitology, 116 Suppl, S95–109.

della Torre, A., Tu, Z., & Petrarca, V. (2005). On the distribution and genetic differentiation of Anopheles
gambiae s.s. molecular forms. Insect Biochemistry and Molecular Biology, 35(7), 755–769.

Demaio, J., Pumpuni, C. B., Kent, M., & Beier, J. C. (1996). The midgut bacterial flora of wild Aedes
triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. The American Journal of
Tropical Medicine and Hygiene, 54(2), 219–223.

Dennison, N. J., BenMarzouk-Hidalgo, O. J., & Dimopoulos, G. (2015). MicroRNA-regulation of
Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota.
Developmental and Comparative Immunology, 49(1), 170–178.

Dennison, N. J., Saraiva, R. G., Cirimotich, C. M., Mlambo, G., Mongodin, E. F., & Dimopoulos, G.
(2016). Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal



138

interactions that impact vector competence. Malaria Journal, 15(1), 425.
Dhadialla, T. S., Carlson, G. R., & Le, D. P. (1998). New insecticides with ecdysteroidal and juvenile

hormone activity. Annual Review of Entomology, 43, 545–569.
Dong, Y., Manfredini, F., & Dimopoulos, G. (2009). Implication of the mosquito midgut microbiota in

the defense against malaria parasites. PLoS Pathogens, 5(5), e1000423.
Douglas, A. E. (2009). The microbial dimension in insect nutritional ecology. Functional Ecology, 23(1),

38–47.
Dutra, H. L. C., Rocha, M. N., Dias, F. B. S., Mansur, S. B., Caragata, E. P., & Moreira, L. A. (2016).

Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes.
Cell Host & Microbe, 19(6), 771–774.

Dyer, M., & Day, K. P. (2003). Regulation of the rate of asexual growth and commitment to sexual
development by diffusible factors from in vitro cultures of Plasmodium falciparum. The American
Journal of Tropical Medicine and Hygiene, 68(4), 403–409.

Eichner’, M., Diebneti, H. H., Molineaux, L., Col Iins, W. E., & Jeffery’ and, G. M. (2001). Genesis,
sequestration and survival of Plasmodium falciparum gametocytes: parameter estimates from fitting
a model to malaria therapy data. Transactions of the Royal Society of Tropical Medicine and
Hygiene, 95, 497–501.

Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function.
FEMS Microbiology Reviews, 37(5), 699–735.

Farooq, U., Dubey, M. L., Shrivastava, S. K., & Mahajan, R. C. (2012). Genetic polymorphism in
Plasmodium falciparum: differentiation of parasite isolates of high & low virulence by RAPD. The
Indian Journal of Medical Research, 136(2), 292–295.

Favia, G., Ricci, I., Damiani, C., Raddadi, N., Crotti, E., Marzorati, M., Rizzi, A., Urso, R., Brusetti, L.,
Borin, S., Mora, D., Scuppa, P., Pasqualini, L., Clementi, E., Genchi, M., Corona, S., Negri, I.,
Grandi, G., Alma, A., Kramer, L., Esposito, F., Bandi, C., Sacchi, L., & Daffonchio, D. (2007).
Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito
vector. Proceedings of the National Academy of Sciences, 104(21), 9047–9051.

Feng, J., Xiao, H., Zhang, L., Yan, H., Feng, X., Fang, W., & Xia, Z. (2015). The Plasmodium vivax in
China: decreased in local cases but increased imported cases from Southeast Asia and Africa.
Scientific Reports, 5, 8847.

Freyvogel, T. A., & Jaquet, C. (1965). The Prerequisites for the Formation of a Peritrophic membrane in
Culicida females. Acta Tropica, 22, 148–154.

Gabrieli, P., Kakani, E. G., Mitchell, S. N., Mameli, E., Want, E. J., Mariezcurrena Anton, A., Serrao, A.,
Baldini, F. & Catteruccia, F. (2014). Sexual transfer of the steroid hormone 20E induces the
postmating switch in Anopheles gambiae. Proceedings of the National Academy of Sciences of the
United States of America, 111(46), 16353–16358.

Gaio, A. de O., Gusmão, D. S., Santos, A. V., Berbert-Molina, M. A., Pimenta, P. F. P., & Lemos, F. J. A.
(2011). Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti
(diptera: culicidae) (L.). Parasites & Vectors, 4(1), 105.

Gardiner, D. L., & Trenholme, K. R. (2015). Plasmodium falciparum gametocytes: playing hide and seek.
Annals of Translational Medicine, 3(4), 45.

Geiger, A., Fardeau, M.-L., Falsen, E., Ollivier, B., & Cuny, G. (2010). Serratia glossinae sp. nov.,
isolated from the midgut of the tsetse fly Glossina palpalis gambiensis. International Journal of
Systematic and Evolutionary Microbiology, 60(Pt 6), 1261–1265.

Gendrin, M., & Christophides, G. (2013). The Anopheles Mosquito Microbiota and Their Impact on
Pathogen Transmission. In S. Manguin (Ed.), Anopheles mosquitoes - New insights into malaria
vectors. InTech.

Gendrin, M., Rodgers, F. H., Yerbanga, R. S., Ouédraogo, J. B., Basáñez, M.-G., Cohuet, A., &
Christophides, G. K. (2015). Antibiotics in ingested human blood affect the mosquito microbiota
and capacity to transmit malaria. Nature Communications, 6, 5921.

Gething, P. W., Casey, D. C., Weiss, D. J., Bisanzio, D., Bhatt, S., Cameron, E., Battle, K.E., Dalrymple,



139

U., Rozier, J., Rao, P.C., Kutz, M.J., Barber, R.M., Huynh, C., Shackelford, K.A., Coates, M.M.,
Nguyen, G., Fraser, M.S., Kulikoff, R., Wang, H., Naghavi, M., Smith, D.L., Murray, C.J., Hay, S.I.
& Lim, S. S. (2016). Mapping Plasmodium falciparum Mortality in Africa between 1990 and 2015.
The New England Journal of Medicine, 375(25), 2435–2445.

Giglioli, M. E. C., & Mason, G. F. (1966). The mating plug in anopheline mosquitoes. Proceedings of the
Royal Entomological Society of London. Series A, General Entomology, 41(7-9), 123–129.

Gimonneau, G., Tchioffo, M. T., Abate, L., Boissière, A., Awono-Ambéné, P. H., Nsango, S. E.,
Christen, R. & Morlais, I. (2014). Composition of Anopheles coluzzii and Anopheles gambiae
microbiota from larval to adult stages. Infection, Genetics and Evolution: Journal of Molecular
Epidemiology and Evolutionary Genetics in Infectious Diseases, 28, 715–724.

Gnémé, A., Guelbéogo, W. M., Riehle, M. M., Sanou, A., Traoré, A., Zongo, S., Eiglmeier, K., Kabre,
G.B., Sagnon, N. & Vernick, K. D. (2013). Equivalent susceptibility of Anopheles gambiae M and S
molecular forms and Anopheles arabiensis to Plasmodium falciparum infection in Burkina Faso.
Malaria Journal, 12(1), 204.

Gonzalez-Ceron, L., Mu, J., Santillán, F., Joy, D., Sandoval, M. A., Camas, G., Xinzhuan, S., Choy, E.V.
& Torreblanca, R. (2013). Molecular and epidemiological characterization of Plasmodium vivax
recurrent infections in southern Mexico. Parasites & Vectors, 6, 109.

Gonzalez-Ceron, L., Santillan, F., Rodriguez, M. H., Mendez, D., & Hernandez-Avila, J. E. (2003).
Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic
development. Journal of Medical Entomology, 40(3), 371–374.

Gosling, R., & von Seidlein, L. (2016). The Future of the RTS,S/AS01 Malaria Vaccine: An Alternative
Development Plan. PLoS Medicine, 13(4), e1001994.

Gusmão, D. S., Santos, A. V., Marini, D. C., Bacci, M., Jr, Berbert-Molina, M. A., & Lemos, F. J. A.
(2010). Culture-dependent and culture-independent characterization of microorganisms associated
with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut.
Acta Tropica, 115(3), 275–281.

Hagedorn, H. H., O’Connor, J. D., Fuchs, M. S., Sage, B., Schlaeger, D. A., & Bohm, M. K. (1975). The
ovary as a source of alpha-ecdysone in an adult mosquito. Proceedings of the National Academy of
Sciences of the United States of America, 72(8), 3255–3259.

Hamilton, W. L., Claessens, A., Otto, T. D., Kekre, M., Fairhurst, R. M., Rayner, J. C., & Kwiatkowski,
D. (2017). Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids
Research, 45(4), 1889–1901.

Handel, E. V. (1984). Metabolism of nutrients in adult mosquito. Mosquito News. Retrieved from
http://www.biodiversitylibrary.org/content/part/JAMCA/MN_V44_N4_P573-579.pdf

Harutyunova, K. Ⱥ., Harutyunova, M. Ⱥ., Pepoyan, A. Z., & Grigoryan, A. G. (2013). Characterization of
Enterobacteriaceae Isolates from Anopheles Mosquitoes in Armenia. Biochemistry, 113(1), 74–79.

Hempelmann, E., & Krafts, K. (2013). Bad air, amulets and mosquitoes: 2,000 years of changing
perspectives on malaria. Malaria Journal, 12, 232.

Hentschel, U., Dobrindt, U., & Steinert, M. (2003). Commensal bacteria make a difference. Trends in
Microbiology, 11(4), 148–150.

Herndon, L. A., & Wolfner, M. F. (1995). A Drosophila seminal fluid protein, Acp26Aa, stimulates egg
laying in females for 1 day after mating. Proceedings of the National Academy of Sciences of the
United States of America, 92(22), 10114–10118.

Hinnebusch, B. J., Rudolph, A. E., Cherepanov, P., Dixon, J. E., Schwan, T. G., & Forsberg, A. (2002).
Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science,
296(5568), 733–735.

Huber, M., Cabib, E., & Miller, L. H. (1991). Malaria parasite chitinase and penetration of the mosquito
peritrophic membrane. Proceedings of the National Academy of Sciences of the United States of
America, 88(7), 2807–2810.

Hughes, G. L., Rivero, A., & Rasgon, J. L. (2014). Wolbachia can enhance Plasmodium infection in
mosquitoes: implications for malaria control? PLoS Pathogens, 10(9), e1004182.



140

Idro, R., Marsh, K., John, C. C., & Newton, C. R. J. (2010). Cerebral malaria: mechanisms of brain injury
and strategies for improved neurocognitive outcome. Pediatric Research, 68(4), 267–274.

Imwong, M., Jindakhad, T., Kunasol, C., Sutawong, K., Vejakama, P., & Dondorp, A. M. (2015). An
outbreak of artemisinin resistant falciparum malaria in Eastern Thailand. Scientific Reports, 5,
17412.

Inselburg, J. (1983). Gametocyte formation by the progeny of single Plasmodium falciparum schizonts.
The Journal of Parasitology, 69(3), 584–591.

Ivanov, I. I., & Littman, D. R. (2011). Modulation of immune homeostasis by commensal bacteria.
Current Opinion in Microbiology, 14(1), 106–114.

Karaa, S. U. (2012). Insecticides - Advances in Integrated Pest Management. InTech. Retrieved from
http://cdn.intechopen.com/pdfs/25687/InTech-Insecticide_resistance.pdf

Kawada, H., Ohashi, K., Dida, G. O., Sonye, G., Njenga, S. M., Mwandawiro, C., & Minakawa, N.
(2014). Insecticidal and repellent activities of pyrethroids to the three major pyrethroid-resistant
malaria vectors in western Kenya. Parasites & Vectors, 7, 208.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate
alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome
Biology, 14(4), R36.

Klowden, M. J., & Russell, R. C. (2004). Mating affects egg maturation in Anopheles gambiae Giles
(Diptera: Culicidae). Journal of Vector Ecology: Journal of the Society for Vector Ecology, 29(1),
135–139.

Knell, R. J., & Webberley, K. M. (2004). Sexually transmitted diseases of insects: distribution, evolution,
ecology and host behaviour. Biological Reviews of the Cambridge Philosophical Society, 79(3),
557–581.

Knols, B. G. J., Bossin, H. C., Mukabana, W. R., & Robinson, A. S. (2007). Transgenic Mosquitoes and
the Fight against Malaria: Managing Technology Push in a Turbulent GMO World. American
Society of Tropical Medicine and Hygiene.

Krzywinski, J., Nusskern, D. R., Kern, M. K., & Besansky, N. J. (2004). Isolation and characterization of
Y chromosome sequences from the African malaria mosquito Anopheles gambiae. Genetics, 166(3),
1291–1302.

Kumar, S., Molina-Cruz, A., Gupta, L., Rodrigues, J., & Barillas-Mury, C. (2010). A peroxidase/dual
oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science, 327(5973),
1644–1648.

Laing, A. B. (1970). Malaria suppression with fortnightly doses of pyrimethamine with sulfadoxine in the
Gambia. Bulletin of the World Health Organization, 43(4), 513–520.

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods,
9(4), 357–359.

Lawniczak, M. K. N., & Begun, D. J. (2004). A genome-wide analysis of courting and mating responses
in Drosophila melanogaster females. Genome / National Research Council Canada = Genome /
Conseil National de Recherches Canada, 47(5), 900–910.

Li, C., Kapitskaya, M. Z., Zhu, J., Miura, K., Segraves, W., & Raikhel, A. S. (2000). Conserved
molecular mechanism for the stage specificity of the mosquito vitellogenic response to ecdysone.
Developmental Biology, 224(1), 96–110.

Lindh, J. M., Terenius, O., & Faye, I. (2005). 16S rRNA gene-based identification of midgut bacteria
from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species
related to known insect symbionts. Applied and Environmental Microbiology, 71(11), 7217–7223.

Love, M. I., Huber, W., & Anders, S. (2014, November 17). Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. bioRxiv. https://doi.org/10.1101/002832

Luckhart, S., Vodovotz, Y., Cui, L., & Rosenberg, R. (1998). The mosquito Anopheles stephensi limits
malaria parasite development with inducible synthesis of nitric oxide. Proceedings of the National
Academy of Sciences of the United States of America, 95(10), 5700–5705.

Maguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J., & Baird, J. K. (2006). Mefloquine is



141

highly efficacious against chloroquine-resistant Plasmodium vivax malaria and Plasmodium
falciparum malaria in Papua, Indonesia. Clinical Infectious Diseases: An Official Publication of the
Infectious Diseases Society of America, 42(8), 1067–1072.

Mancini, M. V., Spaccapelo, R., Damiani, C., Accoti, A., Tallarita, M., Petraglia, E., Rossi, R., Cappelli,
A., Capone, A., Peruzzi, G., Valzano, M., Picciolini, M., Dabate, A., Facchinelli, L., Ricci, I. &
Favia, G. (2016). Paratransgenesis to control malaria vectors: a semi-field pilot study. Parasites &
Vectors, 9, 140.

McGraw, L. A., Clark, A. G., & Wolfner, M. F. (2008). Post-mating gene expression profiles of female
Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics,
179(3), 1395–1408.

McGraw, L. A., Gibson, G., Clark, A. G., & Wolfner, M. F. (2004). Genes regulated by mating, sperm, or
seminal proteins in mated female Drosophila melanogaster. Current Biology: CB, 14(16), 1509–
1514.

McMeniman, C. J., Lane, R. V., Cass, B. N., Fong, A. W. C., Sidhu, M., Wang, Y.-F., & O’Neill, S. L.
(2009). Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes
aegypti. Science, 323(5910), 141–144.

Meister, S., Agianian, B., Turlure, F., Relógio, A., Morlais, I., Kafatos, F. C., & Christophides, G. K.
(2009). Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with
malaria parasites. PLoS Pathogens, 5(8), e1000542.

Mendis, K., Sina, B. J., Marchesini, P., & Carter, R. (2001). The neglected burden of Plasmodium vivax
malaria. The American Journal of Tropical Medicine and Hygiene, 64(1-2 Suppl), 97–106.

Meshnick, S. R., & Dobson, M. J. (2001). Antimalarial Chemotherapy - Mechanisms of Action,
Resistance, and New Directions in Drug Discovery. In P. J. Rosenthal (Ed.), The History of
Antimalarial Drugs. (pp. 15–25). Humana Press Totowa, New Jersey.

Miest, T. S., & Bloch-Qazi, M. (2008). Sick of mating: sexual transmission of a pathogenic bacterium in
Drosophila melanogaster. Fly, 2(4), 215–219.

Miller, L. H., Baruch, D. I., Marsh, K., & Doumbo, O. K. (2002). The pathogenic basis of malaria.
Nature, 415(6872), 673–679.

Minard, G., Mavingui, P., & Moro, C. V. (2013). Diversity and function of bacterial microbiota in the
mosquito holobiont. Parasites & Vectors, 6, 146.

Mitchell, S. N., Kakani, E. G., South, A., Howell, P. I., Waterhouse, R. M., & Catteruccia, F. (2015).
Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline
mosquitoes. Science, 347(6225), 985–988.

Muirhead-Thomson, R. C. (1954). Factors determining the true reservoir of infection of Plasmodium
falciparum and Wuchereria bancrofti in a West African village. Transactions of the Royal Society of
Tropical Medicine and Hygiene, 48(3), 208–225.

Myint, M. K., Rasmussen, C., Thi, A., Bustos, D., Ringwald, P., & Lin, K. (2017). Therapeutic efficacy
and artemisinin resistance in northern Myanmar: evidence from in vivo and molecular marker
studies. Malaria Journal, 16(1), 143.

Nalepa, C. A., & Weir, A. (2007/3). Infection of Harmonia axyridis (Coleoptera: Coccinellidae) by
Hesperomyces virescens (Ascomycetes: Laboulbeniales): Role of mating status and aggregation
behavior. Journal of Invertebrate Pathology, 94(3), 196–203.

Ndiath, M. O., Cohuet, A., Gaye, A., Konate, L., Mazenot, C., Faye, O., Boudin, C., Sokhna, C. & Trape,
J.-F. (2011). Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S
of Anopheles gambiae and Anopheles arabiensis. Malaria Journal, 10, 269.

Neafsey, D. E., Juraska, M., Bedford, T., Benkeser, D., Valim, C., Griggs, A., … Wirth, D. F. (2015).
Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. The New England
Journal of Medicine, 373(21), 2025–2037.

Ngo, C. T., Romano-Bertrand, S., Manguin, S., & Jumas-Bilak, E. (2016). Diversity of the Bacterial
Microbiota of Anopheles Mosquitoes from Binh Phuoc Province, Vietnam. Frontiers in
Microbiology, 7, 2095.



142

Ngwa, C. J., Glöckner, V., Abdelmohsen, U. R., Scheuermayer, M., Fischer, R., Hentschel, U., & Pradel,
G. (2013). 16S rRNA gene-based identification of Elizabethkingia meningoseptica
(Flavobacteriales: Flavobacteriaceae) as a dominant midgut bacterium of the Asian malaria vector
Anopheles stephensi (Dipteria: Culicidae) with antimicrobial activities. Journal of Medical
Entomology, 50(2), 404–414.

Noedl, H., Se, Y., Schaecher, K., Smith, B. L., Socheat, D., Fukuda, M. M., & Artemisinin Resistance in
Cambodia 1 (ARC1) Study Consortium. (2008). Evidence of artemisinin-resistant malaria in
western Cambodia. The New England Journal of Medicine, 359(24), 2619–2620.

Olotu, A., Fegan, G., Wambua, J., Nyangweso, G., Leach, A., Lievens, M., Kaslow, D.C., Njuguna, P.,
Marsh, K. & Bejon, P. (2016). Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among Young
African Children. The New England Journal of Medicine, 374(26), 2519–2529.

Pascoa, V., Oliveira, P. L., Dansa-Petretski, M., Silva, J. R., Alvarenga, P. H., Jacobs-Lorena, M., &
Lemos, F. J. A. (2002). Aedes aegypti peritrophic matrix and its interaction with heme during blood
digestion. Insect Biochemistry and Molecular Biology, 32(5), 517–523.

Peterson, T. M. L., Gow, A. J., & Luckhart, S. (2007). Nitric oxide metabolites induced in Anopheles
stephensi control malaria parasite infection. Free Radical Biology & Medicine, 42(1), 132–142.

Pondeville, E., Maria, A., Jacques, J.-C., Bourgouin, C., & Dauphin-Villemant, C. (2008). Anopheles
gambiae males produce and transfer the vitellogenic steroid hormone 20-hydroxyecdysone to
females during mating. Proceedings of the National Academy of Sciences of the United States of
America, 105(50), 19631–19636.

Price, R. N., Cassar, C., Brockman, A., Duraisingh, M., van Vugt, M., White, N. J., Nosten, F. & Krishna,
S. (1999). The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium
falciparum from the western border of Thailand. Antimicrobial Agents and Chemotherapy, 43(12),
2943–2949.

Pumpuni, C. B., Beier, M. S., Nataro, J. P., Guers, L. D., & Davis, J. R. (1993). Plasmodium falciparum:
inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria.
Experimental Parasitology, 77(2), 195–199.

Pumpuni, C. B., Demaio, J., Kent, M., Davis, J. R., & Beier, J. C. (1996). Bacterial population dynamics
in three anopheline species: the impact on Plasmodium sporogonic development. The American
Journal of Tropical Medicine and Hygiene, 54(2), 214–218.

Raikhel, A. S., Miura, K., & Segraves, W. A. (1999). Nuclear Receptors in Mosquito Vitellogenesis.
American Zoology. 39: 722-735.

Ram, K. R., & Wolfner, M. F. (2007). Seminal influences: Drosophila Acps and the molecular interplay
between males and females during reproduction. Integrative and Comparative Biology. Retrieved
from http://icb.oxfordjournals.org/content/47/3/427.short

Rani, A., Sharma, A., Rajagopal, R., Adak, T., & Bhatnagar, R. K. (2009). Bacterial diversity analysis of
larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-
reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiology, 9, 96.

Ranson, H., N’guessan, R., Lines, J., Moiroux, N., Nkuni, Z., & Corbel, V. (2011). Pyrethroid resistance
in African anopheline mosquitoes: what are the implications for malaria control? Trends in
Parasitology, 27(2), 91–98.

Reid, G., Howard, J., & Gan, B. S. (2001). Can bacterial interference prevent infection? Trends in
Microbiology, 9(9), 424–428.

Reiff, T., Jacobson, J., Cognigni, P., Antonello, Z., Ballesta, E., Tan, K. J., Yew, J.Y., Dominguez, M. &
Miguel-Aliaga, I. (2015). Endocrine remodelling of the adult intestine sustains reproduction in
Drosophila. eLife, 4, e06930.

Reiter, P. (2001). Climate change and mosquito-borne disease. Environmental Health Perspectives, 109
Suppl 1, 141–161.

Rivero, A., Vézilier, J., Weill, M., Read, A. F., & Gandon, S. (2010). Insecticide control of vector-borne
diseases: when is insecticide resistance a problem? PLoS Pathogens, 6(8), e1001000.

Rodgers, F. H., Gendrin, M., Wyer, C. A. S., & Christophides, G. K. (2017). Microbiota-induced



143

peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector
mosquitoes. PLoS Pathogens, 13(5), e1006391.

Rogers, D. W., Baldini, F., Battaglia, F., Panico, M., Dell, A., Morris, H. R., & Catteruccia, F. (2009).
Transglutaminase-mediated semen coagulation controls sperm storage in the malaria mosquito.
PLoS Biology, 7(12), e1000272.

Rogers, D. W., Whitten, M. M. A., Thailayil, J., Soichot, J., Levashina, E. A., & Catteruccia, F. (2008a).
Molecular and cellular components of the mating machinery in Anopheles gambiae females.
Proceedings of the National Academy of Sciences of the United States of America, 105(49), 19390–
19395.

Rolff, J., & Siva-Jothy, M. T. (1999). Copulation corrupts immunity: A mechanism for a cost of mating in
insects. Proceedings of the National Academy of Sciences of the United States of America, 15, 227.

Royer, V., Fraichard, S., & Bouhin, H. (2002). A novel putative insect chitinase with multiple catalytic
domains: hormonal regulation during metamorphosis. Biochemical Journal, 366(Pt 3), 921–928.

RTS,S Clinical Trials Partnership. (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine with or
without a booster dose in infants and children in Africa: final results of a phase 3, individually
randomised, controlled trial. The Lancet, 386(9988), 31–45.

Sadrzadeh, S. M., Graf, E., Panter, S. S., Hallaway, P. E., & Eaton, J. W. (1984). Hemoglobin. A biologic
fenton reagent. The Journal of Biological Chemistry, 259(23), 14354–14356.

Savignac, R., & Maire, A. (1981). A Simple Character for Recognizing second and third instar larvae of
five Canadian mosquito genera (Dipter : Culicidae). The Canadian Entomologist, 113(1), 13–20.

Saxton-Shaw, K. D., Ledermann, J. P., Borland, E. M., Stovall, J. L., Mossel, E. C., Singh, A. J., Wilusz,
J. & Powers, A. M. (2013). O’nyong nyong virus molecular determinants of unique vector
specificity reside in non-structural protein 3. PLoS Neglected Tropical Diseases, 7(1), e1931.

Schantz-Dunn, J., & Nour, N. M. (2009). Malaria and pregnancy: a global health perspective. Reviews in
Obstetrics and Gynecology, 2(3), 186–192.

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R.A.,
Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J. &
Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported
software for describing and comparing microbial communities. Applied and Environmental
Microbiology, 75(23), 7537–7541.

Sehgal, P. N., Sharma, M., Sharma, S. L., Gogai, S., & Others. (1973). Resistance to chloroquine in
falciparum malaria in Assam State, India. The Journal of Communicable Diseases, 5(4), 175–180.

Shapiro, J. P., & Hagedorn, H. H. (1982). Juvenile hormone and the development of ovarian
responsiveness to a brain hormone in the mosquito, Aedes aegypti. General and Comparative
Endocrinology, 46(2), 176–183.

Sharma, A., Dhayal, D., Singh, O. P., Adak, T., & Bhatnagar, R. K. (2013). Gut microbes influence
fitness and malaria transmission potential of Asian malaria vector Anopheles stephensi. Acta
Tropica, 128(1), 41–47.

Shaw, W. R., Marcenac, P., Childs, L. M., Buckee, C. O., Baldini, F., Sawadogo, S. P., Dabire, R.K.,
Diabate, A. & Catteruccia, F. (2016). Wolbachia infections in natural Anopheles populations affect
egg laying and negatively correlate with Plasmodium development. Nature Communications, 7,
11772.

Shaw, W. R., Teodori, E., Mitchell, S. N., Baldini, F., Gabrieli, P., Rogers, D. W., & Catteruccia, F.
(2014). Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility
in Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of
America, 111(16), 5854–5859.

Shen, Z., & Jacobs-Lorena, M. (1998). Cloning, expression and characterization. The Journal of
Biological Chemistry 273 (28): 17665–70.

Short, S. M., & Lazzaro, B. P. (2010). Female and male genetic contributions to post-mating immune
defence in female Drosophila melanogaster. Proceedings. Biological Sciences / The Royal Society,
277(1700), 3649–3657.



144

Short, S. M., & Lazzaro, B. P. (2013). Reproductive Status Alters Transcriptomic Response to Infection
in Female Drosophila melanogaster. G3: Genes|Genomes|Genetics, 3(5), 827–840.

Short, S. M., Wolfner, M. F., & Lazzaro, B. P. (2012). Female Drosophila melanogaster suffer reduced
defense against infection due to seminal fluid components. Journal of Insect Physiology, 58(9),
1192–1201.

Shutt, B., Stables, L., Aboagye-Antwi, F., Moran, J., & Tripet, F. (2010). Male accessory gland proteins
induce female monogamy in anopheline mosquitoes. Medical and Veterinary Entomology, 24(1),
91–94.

Simard, F., Ayala, D., Kamdem, G. C., Pombi, M., Etouna, J., Ose, K., Fotsing, J., Fontenille, D.,
Besansky, N.J. & Costantini, C. (2009). Ecological niche partitioning between Anopheles gambiae
molecular forms in Cameroon: the ecological side of speciation. BMC Ecology, 9, 17.

Sinden, R. E., & Smith, J. E. (1982). The role of the Kupffer cell in the infection of rodents by
sporozoites of Plasmodium: uptake of sporozoites by perfused liver and the establishment of
infection in vivo. Acta Tropica, 39(1), 11–27.

Singh, B., & Daneshvar, C. (2013). Human infections and detection of Plasmodium knowlesi. Clinical
Microbiology Reviews, 26(2), 165–184.

Sinka, M. E., Bangs, M. J., Manguin, S., Rubio-Palis, Y., Chareonviriyaphap, T., Coetzee, M., … Hay, S.
I. (2012). A global map of dominant malaria vectors. Parasites & Vectors, 5, 69.

Soko, W., Chimbari, M. J., & Mukaratirwa, S. (2015). Insecticide resistance in malaria-transmitting
mosquitoes in Zimbabwe: a review. Infectious Diseases of Poverty, 4, 46.

Soller, M., Bownes, M., & Kubli, E. (1999). Control of oocyte maturation in sexually mature Drosophila
females. Developmental Biology, 208(2), 337–351.

Souza-Neto, J. A., Machado, F. P., Lima, J. B., Valle, D., & Ribolla, P. E. M. (2007). Sugar digestion in
mosquitoes: Identification and characterization of three midgut Į-glucosidases of the neo-tropical
malaria vector Anopheles aquasalis (Diptera: Culicidae). Comparative Biochemistry and
Physiology. Part A, Molecular & Integrative Physiology, 147(4), 993–1000.

Sparks, T. C., & Nauen, R. (2015). IRAC: Mode of action classification and insecticide resistance
management. Pesticide Biochemistry and Physiology, 121, 122–128.

Stathopoulos, S., Neafsey, D. E., Lawniczak, M. K. N., Muskavitch, M. A. T., & Christophides, G. K.
(2014). Genetic Dissection of Anopheles gambiae Gut Epithelial Responses to Serratia marcescens.
PLoS Pathogens, 10(3), e1003897.

Straif, S. C., Mbogo, C. N., Toure, A. M., Walker, E. D., Kaufman, M., Toure, Y. T., & Beier, J. C.
(1998). Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya
and Mali. Journal of Medical Entomology, 35(3), 222–226.

Sumba, L. A., Okoth, K., Deng, A. L., Githure, J., Knols, B. G., Beier, J. C., & Hassanali, A. (2004).
Daily oviposition patterns of the African malaria mosquito Anopheles gambiae Giles (Diptera:
Culicidae) on different types of aqueous substrates. Journal of Circadian Rhythms, 2(1), 6.

Swevers, L., Drevet, J. R., Lunke, M. D., & Iatrou, K. (1995). The silkmoth homolog of the Drosophila
ecdysone receptor (BI Isoform): Cloning and analysis of expression during follicular cell
differentiation. Insect Biochemistry and Molecular Biology, 25(7), 857–866.

Tchioffo, M. T., Boissière, A., Churcher, T. S., Abate, L., Gimonneau, G., Nsango, S. E., Parfait, H.A.,
Christen, R., Berry, A. & Morlais, I. (2013). Modulation of Malaria Infection in Anopheles gambiae
Mosquitoes Exposed to Natural Midgut Bacteria. PloS One, 8(12), e81663.

Tellam, R. L., Wijffels, G., & Willadsen, P. (1999). Peritrophic matrix proteins. Insect Biochemistry and
Molecular Biology, 29(2), 87–101.

Terashima, J., Takaki, K., Sakurai, S., & Bownes, M. (2005). Nutritional status affects 20-
hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster. The
Journal of Endocrinology, 187(1), 69–79.

Thailayil, J., Magnusson, K., Godfray, H. C. J., Crisanti, A., & Catteruccia, F. (2011). Spermless males
elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae.
Proceedings of the National Academy of Sciences, 108(33), 13677–13681.



145

Thanh, N. V., Thuy-Nhien, N., Tuyen, N. T. K., Tong, N. T., Nha-Ca, N. T., Dong, L. T., … Hien, T. T.
(2017). Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-
piperaquine in the south of Vietnam. Malaria Journal, 16(1), 27.

Trape, J.-F. (2001). The Public Health Impact of Chloroquine Resistance in Africa. American Society of
Tropical Medicine and Hygiene.

Tripet, F., Touré, Y. T., Dolo, G., & Lanzaro, G. C. (2003). Frequency of multiple inseminations in field-
collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. The American
Journal of Tropical Medicine and Hygiene, 68(1), 1–5.

Tripet, F., Touré, Y. T., Taylor, C. E., Norris, D. E., Dolo, G., & Lanzaro, G. C. (2001). DNA analysis of
transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles
gambiae. Molecular Ecology, 10(7), 1725–1732.

Tsukamoto, Y., Kataoka, H., Nagasawa, H., & Nagata, S. (2014). Mating changes the female dietary
preference in the two-spotted cricket, Gryllus bimaculatus. Frontiers in Physiology, 5, 95.

Uchida, K., Moribayashi, A., Matsuoka, H., & Oda, T. (2003). Effects of mating on oogenesis induced by
amino acid infusion, amino acid feeding, or blood feeding in the mosquito Anopheles stephensi
(Diptera: Culicidae). Journal of Medical Entomology, 40(4), 441–446.

Upton, L. M., Povelones, M., & Christophides, G. K. (2015). Anopheles gambiae blood feeding initiates
an anticipatory defense response to Plasmodium berghei. Journal of Innate Immunity, 7(1), 74–86.

Vale, N., Moreira, R., & Gomes, P. (2009). Primaquine revisited six decades after its discovery.
European Journal of Medicinal Chemistry, 44(3), 937–953.

Vaughan, J. A., Noden, B. H., & Beier, J. C. (1994). Prior blood feeding effects on susceptibility of
Anopheles gambiae (Diptera: Culicidae) to infection with cultured Plasmodium falciparum
(Haemosporida: Plasmodiidae). Journal of Medical Entomology, 31(3), 445–449.

Verdrager, J. (1986). Epidemiology of the emergence and spread of drug-resistant falciparum malaria in
South-East Asia and Australasia. The Journal of Tropical Medicine and Hygiene, 89(6), 277–289.

Verhave, J. P., Meuwissen, J. H., & Golenser, J. (1980). The dual role of macrophages in the sporozoite-
induced malaria infection. A hypothesis. International Journal of Nuclear Medicine and Biology,
7(2), 149–156.

Villegas, L. M., & Pimenta, P. F. P. (2014). Metagenomics, paratransgenesis and the Anopheles
microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a
meta-analysis of reported taxa. Memorias Do Instituto Oswaldo Cruz, 109(5), 672–684.

Waldock, J., Olson, K. E., & Christophides, G. K. (2012). Anopheles gambiae antiviral immune response
to systemic O’nyong-nyong infection. PLoS Neglected Tropical Diseases, 6(3), e1565.

Wang, S., Dos-Santos, A. L. A., Huang, W., Liu, K. C., Oshaghi, M. A., Wei, G., Agre, P. & Jacobs-
Lorena, M. (2017). Driving mosquito refractoriness to Plasmodium falciparum with engineered
symbiotic bacteria. Science, 357(6358), 1399–1402.

Wang, S., Ghosh, A. K., Bongio, N., Stebbings, K. A., Lampe, D. J., & Jacobs-Lorena, M. (2012).
Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proceedings of the
National Academy of Sciences, 109(31), 12734–12739.

Wang, Y., Gilbreath, T. M., 3rd, Kukutla, P., Yan, G., & Xu, J. (2011). Dynamic gut microbiome across
life history of the malaria mosquito Anopheles gambiae in Kenya. PloS One, 6(9), e24767.

Watson, J., Taylor, W. R., Menard, D., Kheng, S., & White, N. J. (2017). Modelling primaquine-induced
haemolysis in G6PD deficiency. eLife, 6. https://doi.org/10.7554/eLife.23061

World Health Organization. (2016). World Malaria Report 2016. Retrieved from
http://apps.who.int/iris/bitstream/10665/252038/1/9789241511711-eng.pdf?ua=1

Wilke, A. B. B., & Marrelli, M. T. (2015). Paratransgenesis: a promising new strategy for mosquito
vector control. Parasites & Vectors, 8, 342.

Williams, J. L. (1999). Stimulation of Plasmodium falciparum gametocytogenesis by conditioned
medium from parasite cultures. The American Journal of Tropical Medicine and Hygiene, 60(1), 7–
13.

Wood, D. E., & Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence classification using exact



146

alignments. Genome Biology, 15(3), R46.
World Health Organization. (2011). World Malaria Report 2011. Retrieved from

http://www.who.int/malaria/world_malaria_report_2011/9789241564403_eng.pdf
World Health Organization. (2014). World Malaria Report 2014. Retrieved from

http://www.who.int/malaria/publications/world_malaria_report_2014/wmr-2014-no-profiles.pdf
World Health Organization. (2015). World Malaria Report 2015. Retrieved from

http://apps.who.int/iris/bitstream/10665/200018/1/9789241565158_eng.pdf?ua=1
Wu, Y., Parthasarathy, R., Bai, H., & Palli, S. R. (2006). Mechanisms of midgut remodeling: juvenile

hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action.
Mechanisms of Development, 123(7), 530–547.

Yang, B., Huang, W., Zhang, J., Xu, Q., Zhu, S., Zhang, Q., Beerntsen, B.T., Song, H. & Ling, E. (2016).
Analysis of gene expression in the midgut of Bombyx mori during the larval molting stage. BMC
Genomics, 17(1), 866.

Zhang, C., Cleveland, K., Schnoll-Sussman, F., McClure, B., Bigg, M., Thakkar, P., Schultz, N., Shah,
M.A. & Betel, D. (2015). Identification of low abundance microbiome in clinical samples using
whole genome sequencing. Genome Biology, 16, 265.

Zhou, X., & Riddiford, L. M. (2002). Broad specifies pupal development and mediates the “Status
Quo”action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca.
Development . Retrieved from http://dev.biologists.org/content/129/9/2259.short

ŽitĖan, D., Šauman, I., & Sehnal, F. (1993). Peptidergic innervation and endocrine cells of insect midgut.
Archives of Insect Biochemistry and Physiology, 22(1-2), 113–132.



APPENDICES

Chapter Number of
males per

experiment

Number of
females per
experiment

Mating
status

Sample Samples obtained

BF/SF Treatment
(sugar)

Injection P.
falciparum
infection

qPCR P.
falciparum

oocyst

RNASeq MiSeq

Ch. 3 30 60 M P5 SF Ab+/Ab- No No Yes No No No

Ch. 3 200 400 M & Y S BF Ab+/Ab- No Yes Yes No No Yes

Ch. 4 - 3 x 5
infected

M & Y P5 BF Ab+/Ab- No Yes No No Yes No

Ch. 4 - 12 infected M & Y S BF Ab+/Ab- No Yes No No Yes No

Ch. 5 300 500 M & Y S BF Ab+/Ab- Yes Yes No Yes No No

Ch. 6 300 500 M P7 SF Ab- Yes No No No Yes No

Ch. 6 - 24 infected M S BF Ab- Yes Yes No No Yes No
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M – light microscope P  – pool of 5 midguts          BF – blood fed         A+ – antibiotic treated

Y – Y-PCR                        S – single midgut              SF – sugar fed          A- – untreated

APPENDIX S1      Summary of approximate number of female and male mosquitoes used for bacteria abundance and P.
falciparum infection experiment. Females were fed with naïve whole blood or with P. falciparum infected blood depending on
experiment (BF), whilst some midguts were collected from unfed females and labeled as sugar fed (SF). Mating status of females were
confirmed by light microscope (M) and Y-PCR (Y) for some experiment. Samples obtained were processed as individual midgut (S)
or/and pooled of 5 or 7 midguts (P5/P7). Females were further brought to downstream work after feeding either for bacteria work
(qPCR of 16S) or P. falciparum infection work (RNASeq and oocysts count).
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Prevalence Feed 2 Feed 3 Feed 4 Feed 8 Feed 16 Feed 21 Feed 22 Feed 23 Feed 24 Feed 28 Feed 30

Virgin 30% 73% 100% 36% 50% 37% 19% 16% 55% 41% 78%

Mated 100% 100% 100% 40% 43% 51% 40% 17% 57% 54% 88%

Overall 59% 86% 100% 38% 48% 44% 29% 17% 56% 47% 80%

Gametocytaemia Low Low Low Low High High High High Low Low High

Order
(prevalence)

H J K C F D B A G E I

Treatment Ab Ab Ab - - 20E - 20E 20E - 20E

Age of
mosquitoes

Status

Day0 Pupae Pupae Pupae Pupae Pupae Pupae Pupae Pupae Pupae Pupae Pupae

Day1 Adult Adult Adult Adult Adult Adult Adult Adult Adult Adult Adult

Day2 - Mate - - Mate - - Mate Mate Mate Mate

Day3 Mate - Mate Mate - Mate Mate - - - 20E
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Day4 - - - - - 20E - 20E 20E - -

Day5 Pf
Feed (d17,d14)

- - Pf Feed
(d17,d14)

Pf Feed
(d18,d15)

- - 20E - - -

Day6 - Pf Feed
(d17,d14)

Pf Feed
(d17,d14)

- - Pf Feed
(d18,d15)

Pf Feed
(d18,d15)

Pf Feed
(d18,d15)

Pf Feed
(d18,d15)

Pf Feed
(d18,d15)

Pf Feed
(d18,d15)

APPENDIX S2     Information on the P. falciparum infection from all successful P. falciparum infection feeds. Total of 11 feeds
with 3 additional experiments with antibiotic added in their sugar meal to look at the impact of mating upon removal of bacteria. Four
experiments injecting 20E or 10%EtOH on virgin female Ngousso thorax were carried out to look at the impact of 20E on P.
falciparum infection. P. falciparum feeds were a mixture of gametocyte either day 17 and day 14 (d17, d14) or day 18 and day 15
(d18, d15) to make sure the proportion of males and females are similar. Infection prevalence were calculated by dividing number of
affected females over total number of infected and uninfected females times with 100. Mated females were confirmed by scoring the
sperms in the spermathecae using light microscopy. Mating sourcing shows the way the females were mixed after some females were
introduced to the males (mated females).



Primer Sequence Species/
Gene

Usage

S23 (F)
S23 (R)

CAAAACGACAGCAGTTCC
TAAACCAAGTCCGTCGCT
(Ref : Krzywinski et al. 2004; Krzywinski et al.
2005)

Y-chromosome Y-PCR

S7Uni_F
S7Uni_F

CCAACAAGCAGAAGAGACCG
CCAGGATGGCATCGTACAC

Anopheles
(universal)

qPCR
bacterial
load
(S7 Uni)

16S_F
16S_R

TCCTACGGGAGGCAGCAGT
GGACTACCAGGGTATCTAATCCTGTT

16S qPCR
bacterial
load
(overall
bacteria)

As_16S_F
As_16S_R

GTGCCGATCTCTAAAAGCCGTCTCA
TTCGCTCACCGGCTTCGGGT

Asaia qPCR
bacterial
load
(Asaia)

Em_16S_F
Em_16S_R

TAAGGTTGAAGTGGCTGGAATAA
GTCCATCAGCGTCAGTTAAGACT

Elizabethkingia qPCR
bacterial
load
(Elizabeth
kingia)

Kp_16S_F
Kp_16S_R

CGTGCTACAATGGCATATACAAAGAGAAG
AGCATTCTGATCTACGATTACTAGCGATTC

Klebsiella qPCR
bacterial
load
(Klebsiell
a)

Pa_16S_F
Pa_16S_R

GTTAATAACCTTGCCGATTGACGTTAC
GGGATTTCACATCTGACTTAACAGAC

Pantoea qPCR
bacterial
load
(Pantoea)

Sm_16S_F
Sm_16S_R

ACGTTCATCAATTGACGTTACTCGCA
AACCGCCTGCGTGCGCTTTA

Serratia qPCR
bacterial
load
(Serratia)
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AGAP0042
03:F2T7
AGAP0042
03:R2T7

taatacgactcactatagggGACGAGAAGGAGCGT
taatacgactcactatagggGACGAATTTGTTCGA
(Ref : Rono et al. 2010)

Vitellogenin
gene

T7 –
dsRNA
(dsVg)

AGAP0063
42F2T7
AGAP0063
42R2T7

taatacgactcactatagggGTGGGTCGTGATGCA
taatacgactcactatagggCCAGTTTCGGATCTC

PGRPS3 gene T7 –
dsRNA
(dsPGRPS
3)

AGAP0067
96FT7
AGAP0067
96RT7

taatacgactcactatagggACGGAACGGTACGTCTT
AGC
taatacgactcactatagggTGGCTGCAGATCAGGAA
CTT

Peritrophin gene T7 –
dsRNA
(dsPM)

AGAP0042
03:F2qPCR
AGAP0042
03:R2qPCR

CCGACTACGACCAGGACTTC
CTTCCGCGTAGTCAGACGAA
(Ref : Baldini et al. 2013)

Vitellogenin
gene

qPCR- kd
efficiency
(Vg)

AGAP0063
42F2qPCR
AGAP0063
42R2qPCR

CAACTTCCTGGTCGGTGAGA
GACACACCACAGCTGATCAG

PGRPS3 gene qPCR- kd
efficiency
(PGRPS3)

AGAP0067
96FqPCR
AGAP0067
96RqPCR

TGCTTTTGGTGGGTTCAGTG
ATAGTCACACAGCTTCCGGG

Peritrophin gene qPCR- kd
efficiency
(PM)

APPENDIX S3     List of bacteria primer sequences used in qPCR analysis for Y-PCR,
bacterial load assessment, dsRNA production and qPCR analysis for dsRNA efficiency.
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APPENDIX S4 Bacterial loads from some family, Micrococcaceae, Propionibacteriaceae,
Rhodobacteraceae and Staphylococcaceae obtained from experiment [K] and [I] analysed in
Kraken analysis. Each dot represents one midgut sample.
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Functional enrichment analysis on genes that were significantly upregulated by mating

a.

 (b)
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 (c)
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Functional enrichment analysis on genes that were significantly downregulated by mating
in sugar fed midguts

(a)

 (b)
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 (c)
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Functional enrichment analysis on genes that were significantly upregulated by 20E
injection in sugar fed midguts

(a)

 (b)
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 (c)
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Functional enrichment analysis on genes that were significantly downregulated by 20E
injection in sugar fed midguts

(a)

 (b)
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(c)

APPENDIX S5     List of functional enrichment analysis upon mating and 20E injection on
sugar fed An. coluzzii midgut transcriptome. (a) biological process (BP), (b) cellular
compartment (CC) and (c) molecular function (MF).


