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Abstract

Objectives: The three centers in this study have different policies regarding cerebral perfusion 

pressure (CPP) targets and use of vasopressors in traumatic brain injury (TBI) patients. The aim 

was to determine if the different policies affected the estimation of CPP which optimizes the 

strength of cerebral autoregulation, termed CPPopt.

Design: Retrospective analysis of prospectively collected data.

Setting: Three neurocritical care units at university hospitals in Cambridge, UK, Groningen, the 

Netherlands, and Uppsala, Sweden.

Patients: A total of 104 TBI patients were included: 35 each from Cambridge and Groningen, 

and 34 from Uppsala.

Interventions: None.

Measurements and Main Results: In Groningen the CPP target was ≥50 and <70 mmHg, in 

Uppsala ≥60, and in Cambridge ≥60 or preferably ≥70. Despite protocol differences median CPP

for each center was above 70 mmHg. CPPopt was calculated as previously published and 

implemented in the ICM+ software by the Cambridge group, now replicated in the Odin software

in Uppsala. Periods with CPP above and below CPPopt were analyzed, as were absolute 

difference between CPP and CPPopt and percentage of monitoring time with a valid CPPopt. 

Uppsala had the highest CPP/CPPopt difference. Uppsala patients were older than the other 

centers, and age is positively correlated with CPP/CPPopt difference. CPPopt was significantly 

lower in Groningen than in Cambridge. There were no significant differences in percentage of 

monitoring time with valid CPPopt.  Summary CPPopt curves were generated for the combined 

patient data for each center. These summary curves could be generated for Groningen and 

Cambridge, but not Uppsala. The older age of the Uppsala patient cohort may explain the 
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absence of a summary curve.

Conclusions: Differences in CPPopt calculation were found between centers due to 

demographics (age) and treatment (CPP targets).  These factors should be considered in the 

design of trials to determine the efficacy of autoregulation guided treatment.

Keywords: Cerebral Perfusion Pressure, Optimal Cerebral Perfusion Pressure, Traumatic Brain 

Injury, Intracranial Pressure, Blood Pressure, Cerebral Blood Flow, Treatment Protocols
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The management of cerebral perfusion pressure (CPP) in traumatic brain injury (TBI) patients 

varies in different neurosurgical centers due to inconclusive and conflicting evidence regarding 

the effects of pharmacologically adjusting CPP.  In 1996 [1] and again in 2000 [2] the Brain 

Trauma Foundation (BTF) suggested maintaining CPP over 70 mmHg as a treatment “option”, 

which was their weakest recommendation level.  In 2007 [3] the BTF revised the recommended 

CPP range to 50 to 70 mmHg, so that the previous lower-limit became an upper-limit.  This 

change was motivated primarily by concerns about the possible negative systemic effects of 

vasopressors [4].  Recently, in 2016 [5], the recommendation was again changed to either 60 or 

70 mmHg as a lower-limit depending on the individual patient.  Because this change was based 

on a single-center study from Cambridge [6], the BTF added the caveat that the specific TBI 

treatment protocol at that site may have influenced the results. This is a significant point, since a 

study involving two centers (Edinburgh and Uppsala) with different CPP treatment strategies 

found that the differences led to radically different relationships between CPP levels and 

functional outcome [7].  In the center practicing aggressive CPP management, CPP below 70 

mmHg was strongly associated with poor outcome, but in the other center lower CPP (50 – 60 

mmHg) was associated with good outcome.  Both the 2007 and 2016 editions of the BTF 

Guidelines emphasized the importance of considering a patient’s autoregulation status in 

determining the appropriate individual CPP level, but did not specify a method.  

A promising approach is to optimize CPP (CPPopt) [8 - 11] individually and 

continuously based on the pressure reactivity index (PRx).  PRx is computed as the correlation of

the slow waves of mean arterial pressure (MAP) and intracranial pressure (ICP), and is well 

validated as an index of cerebrovascular pressure reactivity in severe TBI patients [12 - 14].  As 

such it is a good surrogate for the general health, responsiveness and functional integrity of the 
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cerebral vessels.  Since PRx and CPPopt are computed using only the ICP and MAP waveforms, 

they can be made available continuously as part of routine monitoring. In retrospective TBI 

studies divergence from CPPopt has been found to be associated with unfavorable outcome [8, 

9].

The aim of this observational study was to determine the effects of treatment differences 

on the estimation of CPPopt in three academic neurosurgical centers with differing CPP 

treatment protocols, and to determine the extent to which the protocols are adhered to in clinical 

practice.  

Materials and Methods

Patient Material

A total of 104 TBI patients admitted to our neurosurgical units between May 1, 2012 and April 

31, 2015 were included: 35 each from Cambridge and Groningen, and 34 from Uppsala. The 

only requirement was at least 6 hours of continuous computerized ICP and MAP data collected 

during the first four days of intensive care. Admission and outcome characteristics for the three 

cohorts are summarized in table 1, (rows 1 – 4). Clinical status on admission was assessed using 

the Glasgow Coma Scale (GCS), and outcome at 6 months using the Glasgow Outcome Scale 

(GOS) by outpatient or telephone interview. Computerized Tomography (CT) scans were used to

classify injuries as focal or diffuse.

Physiological Monitoring

ICP was monitored in Cambridge using an intraparenchymal sensor (Codman Microsensor™).  

In Groningen an intraventricular sensor system with optional CSF drainage (Raumedic 

Neurovent™) was used in all patients.  In Uppsala either an EVD system (Smith Medical Hanni-
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Set™ pressure transducer) or the Codman was used.  Twenty Uppsala patients were monitored 

using an intraparenchymal sensor, 6 with an EVD, and 8 with both.

Physiological data were acquired using the Intensive Care Monitoring (ICM+®) software 

[15] in Cambridge and Groningen, and the Odin Software [7] in Uppsala.  All parameters 

reported were calculated within the first four days of monitoring in intensive care. All patients 

had more than 7 hours of CPP data during this period, with a median duration of CPP monitoring

of 85 hours and interquartile range (IQR) of 68 to 93 hours.

CPP was measured similarly in the three centers.  Blood pressure was zeroed at the level 

of the right atrium. If possible the head was elevated at an angle of 30° in Uppsala, and 30 – 45° 

in Cambridge and Groningen. CPPopt was calculated according to the algorithm described by 

Aries et al. [9].  

Local Treatment Protocol Differences

Cambridge [16] and Uppsala [17] have published their protocols. All three centers tried to keep 

ICP < 20 mmHg. Cambridge aimed to maintain CPP ≥ 60 or preferably ≥ 70, Groningen’s goal 

was to keep CPP between 50 and 70, and Uppsala CPP ≥ 60, or ≥ 50 mmHg in the case of 

thiopental treatment.  CPPopt curves were available in Cambridge on bedside computers, but 

there were no specific CPPopt guidelines.

Cambridge and Groningen used vasopressors (mainly norepinephrine) and fluids to 

control MAP and CPP. Uppsala largely avoided the use of vasopressors, and when used it was to

treat MAP. Unlike Uppsala and Groningen, Cambridge added neuromuscular blocking agents 

(atracurium) as part of the first-tier treatment for intracranial hypertension.
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In Cambridge and Groningen sedation and analgesia was based on the use of opiates 

(fentanyl or morphine), propofol (maximum 4 mg/kg/hr) and midazolam. In Uppsala propofol 

was used for sedation (Propolipid®, Fresenius Kabi AB, Uppsala, Sweden) in the range of 0-4 mg/kg/h, 

and morphine (Morfin, Meda AB, Solna, Sweden) was administered as needed for analgesia.

Cerebral spinal fluid (CSF) drainage was rarely used in Cambridge, and not at all in the 

patients included in this study.  Both Groningen and Uppsala used it fairly frequently: 

intermittently early, and possibly continuous drainage later. 

Cambridge never used thiopental, and used decompressive craniectomies relatively 

frequently.  Groningen and Uppsala used decompression less often than Cambridge, and 

sometimes used thiopental coma.  

Statistical Analysis

Adherence to local CPP protocols was evaluated by computing the percentage of recorded CPP 

values that were within the range specified by the protocol. 

We calculated the percentage of monitoring time for CPP for which a valid CPPopt curve

could be computed. CPPopt curves were considered valid if they met the requirements defined 

by Aries et al. [9].  The mean absolute deviation of CPP from CPPopt was calculated, separately 

for periods above and below CPPopt and for the total duration. The percentage of CPP values 

more than 5 mmHg above and below CPPopt were calculated.

To summarize the relationship between CPP and PRx one-hour averages of CPP and PRx

were calculated for all patients and combined into summary CPPopt curves for each center.
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Correlations are Spearman’s R.  Groups were compared using the Mann Whitney U Test. 

Paired comparisons were evaluated with the Wilcoxon signed rank test. The threshold for 

statistical significance was 0.05.

Ethical Permission

The local ethical committees in Cambridge, Uppsala and Groningen granted permission for this 

study.

Results

Admission and Outcome Data

Uppsala patients tended to be older than in Cambridge or Groningen (table 1, row1).  Otherwise 

the only significant difference was that no Groningen patients had focal injuries, compared to 10 

Cambridge and 12 Uppsala patients.  This was due to a policy in Groningen not to insert ICP 

monitors in patients with focal injuries, since they would be monitored via follow-up CT scans.  

Physiological parameters

Summaries of patient physiology are shown in table 1, rows 5 - 15.  ICP was well controlled in 

all centers. Cambridge had higher MAP values than Groningen or Uppsala. CPP was lowest in 

Groningen.  The variability of MAP and of CPP was greatest in Uppsala. PRx was significantly 

lower in Groningen than in Cambridge or Uppsala.

Adherence to local CPP protocols

The percentage of monitoring time with CPP within specified ranges was computed for each 

patient in the study and shown as median/IQR over the patients in table 1, rows 5 – 8. Cambridge

adhered to their target of CPP ≥ 60 mmHg 98% (96 – 99%) of the recorded monitoring time, and
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to their preferred target of CPP ≥ 70 86% (73 – 91%) of the time. Groningen adhered to CPP 

between 50 and 70 mmHg 36% (29 – 55%) of the time. Uppsala adhered to CPP ≥ 60 mmHg 

97% (93 – 99%) of monitoring time.  

Last-Tier treatment

In Cambridge 7 of the 35 patients had secondary decompressions, as did three of the 35 

Groningen patients and two of the 34 Uppsala patients.  Two Groningen patients and one 

Uppsala patient had thiopental treatment with continuous EEG monitoring.

CPPopt metrics

CPPopt was significantly lower for the Groningen patients than Cambridge patients (p < 0.001, 

table 2, row 1).  The mean absolute CPP/CPPopt difference was greater in Uppsala than in 

Cambridge (p = .002) or Groningen (p = .003, table 2, row 2).  There were no significant 

differences between centers in the percentage of CPP monitoring time with a valid CPPopt (table

2, row 8).

The absolute deviation of actual CPP from CPPopt was greatest in Uppsala (p ≤ .001, 

table 2, row 2). There were no significant differences between the percentages of monitoring 

time high-side (> CPPopt) vs low-side (< CPPopt) with CPP/CPPopt difference greater than ± 5 

mmHg, either within-center or between centers (table 2, rows 3 and 5). The magnitude of the 

high-side deviation in Uppsala was greater than low-side (p = 0.03, table 2, rows 4 and 6), and 

also greater than high-side deviation in the other two centers (table 2, row 4). There were no 

between-center differences in low-side deviation (table 2, row 6).

The patients with focal injuries had a median CPPopt of 76 (73 – 82), and the diffuse 

group median 76 (71 – 79).
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Summary CPPopt graphs

U-shaped curves with valid CPPopt values were obtained for Groningen (figure 1-A) and 

Cambridge (1-B), but not for Uppsala (1-C). 

Summary CPPopt curves were also generated for the younger (< 30 years) cohorts, and 

older (≥ 50 years) cohorts in each center (Supplemental figure 1). Valid curves were obtained for

all cases except for the older patients in Cambridge (2-E) and Uppsala (2-F).

CPPopt Curves were computed for the focal and diffuse injury patient groups.  These 

showed similar patterns with a CPPopt of 79 for the focal group, and 80 for diffuse.

Admission status, physiology and outcome

Significant correlation results are given in table 3.  The only parameter we studied that was 

significantly correlated with outcome (GOS) was admission GCS (R = .263).

Patient physiology and CPPopt

Mean four-day CPPopt was highly correlated with CPP (Table 3, row 12: R = .812). Correlations

of CPP and CPPopt over time were also computed for each patient, with the median correlation 

being 0.366 (0.187 – 0.537). CPP variability (mean absolute deviation from a 4-hour moving 

average) was highly correlated with the absolute difference between CPP and CPPopt (R = 

0.781).  CPP variability was in turn highly correlated with MAP variability (R = .868), which 

was correlated with patient age (R = 0.295).  Older age was also associated with higher CPP, 

higher PRx, and greater deviation of actual CPP from optimal CPP, especially on the high side.
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Discussion

Adherence to local CPP protocols

The results presented in table 1 rows 5 – 9 show good adherence to the lower CPP thresholds.  In

contrast the upper limit of 70 mmHg in the Groningen was exceeded 63% of the time in the 

median case. This is probably explained by the sudden change in the 2007 BTF Guidelines, 

where the previous lower limit of 70 became an upper limit. Groningen follows these Guidelines.

It appears that clinicians in Groningen treated the lower threshold of 50 as a hard limit, but the 

upper threshold as more of a suggestion.  The percentage of monitoring time over 70 was 

significantly lower in Groningen than in Cambridge (p < .001) or Uppsala (p = .007), so it 

appears that the upper threshold did have an effect.

Between-center variation in CPPopt

CPPopt was probably lower in Groningen because CPP was lower (table 1, row 13), and CPPopt 

is correlated with actual CPP (table 3).  CPPopt tends to follow CPP to an extent because the 

algorithm for estimating optimal CPP does not currently extrapolate beyond the available data. 

The greater difference between CPP and CPPopt in Uppsala (table 2, row 2) is probably 

due to the older patient cohort (table 1, row 1). Age is positively correlated with the absolute 

difference between CPP and CPPopt (table 3, row 6).  This is because older age is associated 

with increased MAP variability (table 3, row 5), which is the primary driver of CPP variability 

(table 3, row 9),  which is in turn associated with greater deviation from CPPopt (table 3, row 

11). 

Aging is known to be associated with systemic hypertension and increased blood pressure

variability, probably caused by stiffening of the arteries [18, 19].  Our results suggest that in the 
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older patients these factors led to less stable CPP and greater divergence from optimal CPP, 

especially on the high side.  

Our results show very little difference between the diffuse and focal injury patient groups

in the computation of CPPopt, so the absence of focal injuries in the Groningen cohort does not 

seem to have influenced our results. 

Summary CPP optimization curves

While Groningen and Cambridge have U-shaped summary curves consistent with previous 

results, Uppsala shows little variation in PRx relative to CPP, and CPPopt could not be identified

(figure 1). We believe that this anomaly is related to the older age of the Uppsala cohort.

In the younger patients (Supplemental figure 1 A-C) the results are remarkably 

consistent, with all three centers showing a CPPopt of about 80 mmHg. In the older patient group

(Supplemental figure 1 D-F), Cambridge and Uppsala show similar patterns with a flat, narrow 

range of PRx, mostly between 0.0 and 0.1, with little dependence on CPP, while Groningen has a

clear U-shaped curve. The results for Cambridge and Uppsala suggest that changes in CPP may 

have less effect on ICP and cerebral hemodynamics in older patients.  This could be explained by

the generally stiffer cerebral arteries of older patients, that are less able to constrict and dilate in 

response to changes in pressure. In any case, it is evident from Supplemental figures 1-C and -F 

that the absence of CPPopt in the Uppsala summary (figure 1-C) is due to the preponderance of 

older patients. Uppsala has 21 patients in the older cohort and only 4 in the younger.

Clinical Implications

The only effect of CPP treatment on the computation or interpretation of CPPopt identified in 

this study was that, since CPPopt is limited to the range of observed CPP values, the effect of 
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treatment on CPP tends to have a similar effect on CPPopt. Nevertheless the three centers had 

similar median estimates of optimal CPP, ranging from 73 to 79 mmHg (table 2, row 1). The 

small magnitude of these differences is a promising sign for the clinical utility and validity of the

CPPopt methodology.

Another clinical consideration is the effect of patient age.  Older patients tend to have 

greater divergence from CPPopt, but in many older patients the CPPopt curve flattens out, so this

divergence has little effect on PRx (Supplemental figure 1 e, f). As discussed above this is 

probably due to arterial stiffness, which is more prevalent in older patients.

Confounding effects of age and severity of injury

We found no correlations with outcome of age, PRx or deviation of CPP from CPPopt, possibly 

because in these patients age was correlated with GCS on admission (R = 0.269, p = 0.006), so 

that older age was associated with less severe injury.  Since older age was also associated with 

higher (worse) PRx (table 3, row 4) and with larger deviation from CPPopt (table 3, row 6), the 

association of older age with less severe injury may have confounded the expected correlations 

with outcome.

Limitations of this Study

The major limitation of this retrospective study was the lack of detailed, quantitative data 

regarding therapy and therapy intensity.

Conclusions

Important heterogeneity regarding CPPopt was found between centers. This may be attributed to 

different management protocols, especially different CPP targets, and different demographic 
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factors (like age). These factors should be considered when a multicenter randomized study of 

optimal CPP versus fixed CPP limits trial is conducted. 
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Table 1: Inter-center comparisons shown as median and IQR of the patient distribution: P-values < .05 are given in
the last three columns, e.g. between Cambridge and Groningen in the C-G column. GCS = admission Glasgow 
Coma Score; GOS = 6 month Glasgow Outcome Score. Rows 5-8 show percentage of monitoring time CPP was in 
specified ranges. Physiological parameters (rows 9-15) are averaged over the first four days of monitoring. MAD = 
mean absolute deviation from a 4-hour moving average.

Row Parameter Cambridge Groningen Uppsala C-G C-U G-U
1 Age 49 (29 – 56) 42 (28 – 55) 53 (42 – 67) .015 .012
2 Sex 27 m, 7 f 26 m, 9 f 30 m, 4 f
3 GCS 7 (3 – 10) 6 (4 – 8) 7 (7 – 8)
4 GOS 3 (3 – 4) 4 (3 – 5) 3 (3 – 5)
5 CPP ≥ 50 100% (99 – 100) 99% (98 – 100) 100% (99 – 100) .021
6 CPP 50 - 

70
13% (8 – 26) 36% (29 – 55) 28% (21 – 37) <.00

1
.004 .007

7 CPP ≥ 60 98% (96 – 99) 93% (85 – 96) 97% (93 – 99) <.00
1

.005

8 CPP ≥ 70 86% (73 – 91) 63% (42 – 70) 72% (62 – 80) <.00
1

.003 .007

9 MAP 92 (86 – 97) 85 (82 – 88) 87 (84 – 91) <.00
1

.024

10 MAP MAD 5.4 (4.5 – 6.4) 5.0 (4.2 – 6.0) 6.5 (5.8 – 7.7) .004 <.001
11 ICP 13 (11 – 16) 14 (10 – 17) 12 (9 – 14) .046
12 ICP MAD 1.8 (13 – 2.3) 1.5 (1.0 – 2.0) 1.7 (1.6 – 1.9) .026 .030
13 CPP 78 (74 – 84) 72 (69 – 74) 76 (73 – 79) <.00

1
<.001

14 CPP MAD 2.0 (1.7 – 2.3) 1.9 (1.6 – 2.3) 2.4 (2.2 – 2.8) .005 <.001
15 PRx 0.02 (-0.04 –

0.18)
-0.09 (-0.23 –

0.11)
0.08 (-0.03 –

0.13)
.016 .013
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Table 2: Optimal CPP statistics: averages of minute by minute data average over the first four days. (1) 
CPPopt. (2) The absolute difference between CPP and CPPopt.  (3) The percent of monitoring time with 
CPP > CPPopt + 5 mmHg. (4) The absolute difference between CPP and CPPopt when CPP > CPPopt. 
(5) The percent of monitoring time with CPP < CPPopt – 5 mmHg. (6) The absolute difference between 
CPP and CPPopt when CPP < CPPopt. (7) Percent of monitoring time with absolute difference between 
CPP and CPPopt is < 5 mmHg.  (8) Percent of CPP monitoring with valid CPPopt calculated. All 
parameters shown as median/IQR over the  patients in the study. The last three columns are as described 
in table 1.

Row Parameter Cambridge Groningen Uppsala C-G C-U G-U
1 CPPopt 79 (73 –

81)
73 (70 –

76)
75 (71 –

82)
<.00

1
2 CPPopt Mean Abs Diff 9 (7 – 10) 9 (8 – 11) 11 (10 –

13)
.002 .003

3 CPP > CPPopt + 5 (%) 33 (22 –
42)

26 (21 –
36)

30 (24 –
43)

4 CPP > CPPopt Abs Diff 8 (7 – 11) 9 (8 – 11) 11 (9 – 13) <.00
1

.001

5 CPP < CPPopt - 5 (%) 31 (19 –
39)

34 (27 –
39)

33 (26 –
50)

6 CPP < CPPopt Abs Diff 9 (7 – 11) 9 (8 – 11) 10 (8 – 12)
7 CPPopt Abs Diff < 5 (%) 36 (31 –

43)
37 (30 –

42)
30 (24 –

38)
8 CPPopt Percent Valid 54 (47 –

72)
60 (42 –

70)
63 (52 –

69)
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Table 3: Significant correlation results (Spearman’s R). CPPopt Abs Diff is the absolute difference between CPP 
and CPPopt averaged over the first four days of monitoring.  CPPopt Abs Diff (>) is the same, but limited to the 
cases where CPP was higher than CPPopt.

Ro
w

Correlation Factors R 95% Conf. R2 P

1 GCS GOS 0.263 0.071 – 0.436 0.069 0.008
2 Age GCS 0.269 0.080 – 0.440 0.069 0.006
3 Age CPP 0.314 0.129 – 0.477 0.100 0.001
4 Age PRx 0.309 0.124 – 0.474 0.100 0.001
5 Age MAP MAD 0.295 0.108 – 0.461 0.087 0.002
6 Age CPPopt Abs Diff 0.216 0.024 – 0.392 0.047 0.028
7 Age CPPopt Abs Diff (>) 0.240 0.050 – 0.414 0.058 0.014
8 Age CPPopt 0.291 0.104 – 0.458 0.085 0.003
9 MAP MAD CPP MAD 0.858 0.797 – 0.902 0.736 < 0.001
10 ICP MAD CPP MAD 0.416 0.243 – 0.563 0.173 < 0.001
11 CPP MAD CPPopt - CPP Diff 0.781 0.693 – 0.847 0.610 < 0.001
12 CPP CPPopt 0.812 0.735 – 0.869 0.660 < 0.001
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Figure 1: Summary optimization curves for the three centers. CPP/PRx paired values were 

computed by averaging one hour values over the first four days of monitoring.  Then the CPPopt 

algorithm was run on the combined values for all patients in each center. CPPopt was not found 

in the case of the Uppsala cohort.
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Supplemental Figure 1: The summary optimization curves for all patients in each center under 

the age of 30 (A-C), and 50 years and older (D-F). (A) Groningen, Young (N = 10). (B) 

Cambridge, Young (N = 10). (C) Uppsala, Young (N = 4), (D) Groningen, Old (N = 14). (E) 

Cambridge, Old (N = 15). (F) Uppsala, Old (N = 21). 
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