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Seismic Reliability Assessment of Aging Highway 
Bridge Networks with Field Instrumentation 
Data and Correlated Failures. I: Methodology 

Jayadipta Ghosh,a) Keivan Rokneddin,a) Jamie E. Padgett,a) and Leonardo 
Dueñas–Osorio a) 

The state-of-the-practice in seismic network reliability assessment of highway 

bridges often ignores bridge failure correlations imposed by factors such as the 

network topology, construction methods, and present-day condition of bridges, 

amongst others. Additionally, aging bridge seismic fragilities are typically 

determined using historical estimates of deterioration parameters. This research 

presents a methodology to estimate bridge fragilities using spatially interpolated and 

updated deterioration parameters from limited instrumented bridges in the network, 

while incorporating the impacts of overlooked correlation factors in bridge fragility 

estimates. Simulated samples of correlated bridge failures are used in an enhanced 

Monte Carlo method to assess bridge network reliability, and the impact of different 

correlation structures on the network reliability is discussed. The presented 

methodology aims to provide more realistic estimates of seismic reliability of aging 

transportation networks and potentially helps network stakeholders to more 

accurately identify critical bridges for maintenance and retrofit prioritization. 

INTRODUCTION 

Highway bridges are critical for the reliability of transportation networks and yet are rapidly 

deteriorating with more than one in four bridges declared as structurally deficient or functionally 

obsolete (ASCE 2009). Furthermore, many of these aging bridges are located in regions 

characterized by medium to high seismicity, spurring recent studies on the impact of aging and 

deterioration on seismic vulnerability (Choe et al. 2008, 2009; Ghosh and Padgett 2010, 2012). 

However, most of the recent seismic vulnerability estimates that account for aging rely upon 

historical evidence of deterioration parameters available in region-specific databases or on 
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limited laboratory test data. Such estimates may lead to potential under- or overestimation of 

bridge fragilities because most environmental degradation mechanisms such as corrosion 

deterioration are not static processes, but influenced by changes in the atmosphere, such as 

temperature and moisture content, amongst others (Stewart 2004; Moncmanová 2007). Recent 

advances in monitoring and sensor technology have enabled field instrumentation of bridges to 

estimate in-situ deterioration parameters. While several researchers have demonstrated the 

importance of updating service load reliability using field instrumented data (Marsh and 

Frangopol 2008; Strauss et al. 2008; Stewart and Suo 2009), such emphasis is limited in seismic 

reliability predictions of highway bridges coupled with aging effects. Only recently, Huang et al. 

(2009) has highlighted the potential to incorporate nondestructive testing data from bridge 

monitoring to compute fragility estimates of reinforced concrete bridge columns. Nevertheless, 

field measurement of bridges is an expensive and labor intensive task, which makes it 

impractical to obtain sensor measurements of every bridge in an aging transportation network. 

Spatial interpolation techniques may address this issue by approximating deterioration 

parameters at non-instrumented bridge locations from nearby instrumented bridges in the 

network. While these spatial interpolation techniques have been used to predict deterioration 

parameters across a single bridge (Gassman and Tawhed 2004), such applications are lacking 

with respect to predictions across a portfolio of highway bridges distributed over a region. The 

interpolated or instrumented deterioration parameters can then be used to assess individual aging 

bridge fragilities across the network after updating the historical deterioration parameters using 

Bayesian methodologies. While updating the deterioration parameters improve upon the state-of-

the-art methods to assess individual bridge fragilities and subsequently provide a more accurate 

estimate of the bridge network reliability, such estimates may be further enhanced by considering 

correlations among bridge failures.  

The prevalent practice in seismic reliability studies of bridge networks assumes independent 

failures among bridges. However, recent research has shown that correlated failures stemming 

from correlations in seismic intensities result in significant changes in both network reliability 

and seismic loss estimates (Wesson and Perkins 2001; Kiremidjian et al. 2007; Kang et al. 2008; 

Jayaram and Baker 2009; Bocchini and Frangopol 2011). The failure correlations from seismic 

intensity are triggered by factors such as the geographical proximity of the bridges in a 

transportation network. Intensity correlations affect the bridge failure probabilities by an error 



term in computing the intensity measure at bridge locations throughout the network, as in 

Equation 1: 

 ( ) ln( )ln( )  imim f ε= +arg   (1) 

in which im is the intensity measure at the site of network bridges, arg is a vector representing 

the arguments of the attenuation relationship (such as the earthquake magnitude, distance to the 

seismogenic rupture area, and subsurface conditions), and εln(im) is a normally distributed error 

term with zero mean. Producing sets of network consistent intensities for a probabilistic Seismic 

Hazard Analysis (PSHA) involves quantifying this error term, a task that is explored elsewhere 

(Wesson and Perkins 2001; Jayaram and Baker 2009; Wesson et al. 2009). 

Unlike intensity correlations, the impact of bridge failure correlations originating from 

correlated bridge structural capacities has not received much attention. The structural 

vulnerabilities of bridges may be correlated due to factors such as the structural conditions of the 

bridges, similar construction detailing, traffic flows, fatigue, and proximity to deteriorating 

environments, amongst others (Kiremidjian et al. 2007). The impact of such sources on 

correlated seismic response of structures is not always known, nor have all potential sources of 

correlations been identified 

This research focuses on quantifying the impact of correlations that stem from bridge 

structural capacities under joint seismic and aging threats. Since the influence of intensity 

correlations has been presented elsewhere (e.g. Jayaram and Baker, 2010), this study considers a 

single seismic scenario analysis for which the error term in Equation 1 can be set to zero 

(Wesson et al. 2009). The reason is that a single seismic scenario analysis does not involve the 

inter-event error, while the intra-event error is set to zero since the mean intensity measure value 

will be used in the analysis. Moreover, some of the factors affecting the structural vulnerability 

of bridges (such as the effects of the corrosive agents) are directly modeled in bridge fragility 

models. This study, therefore, is concerned with the contributing factors to the correlation 

structure among bridge failures which are not integrated into bridge fragility models, and are 

referred to as “extra correlations” in this article.  

The proposed Bridge Reliability Assessment in Networks (BRAN) methodology improves 

upon the state-of-the-art in two ways: 1) by evaluating seismic fragilities for aging highway 

bridges in a network after Bayesian updating of spatially interpolated/measured deterioration 



parameters; and 2) by estimating the network reliability considering correlated bridge failures. 

This integrated methodology is summarized in Table 1, and is explained and exemplified 

throughout the two parts of this paper. Individual bridge failure probabilities are determined in 

Stage A by a parameterized fragility formulation approach after considering the updated 

statistical distributions of the deterioration parameters, while bridge network reliability is 

assessed in Stage B by incorporating the extra correlations among individual bridge failure 

probabilities. While the presented methodology is generally applicable to evaluate the bridge 

network reliability with correlated bridge failures, the companion Application paper proposes 

methods to determine the correlation values when direct estimates are not available. For this 

purpose, the aggregated effects of several available information sources on the level of 

correlations among bridge failures are examined and combined to form a correlation structure. 

The following section explains spatial interpolation using Kriging and subsequent Bayesian 

updating of field measurable bridge deterioration parameters (Stages A.i and A.ii). This 

discussion leads to the development of parameterized fragility formulations to express the 

seismic vulnerability of aging bridges as a function of the seismic intensity and critical bridge 

parameters (Stage A.iii). Prior to Stage B, the impact of extra correlations on the reliability of 

bridge networks is discussed through closed-form network reliability calculations to emphasize 

their potential significance in network reliability evaluations. Stages B.i and B.ii detail the 

simulation of correlated bridge failures, utilizing their parameterized fragility functions and the 

estimated extra correlation values. The modified Markov Chain Monte Carlo (MCMC) 

simulation method is then introduced in Stage B.iii to estimate the reliability of bridge networks 

based on the simulated correlated bridge failures. The final section provides a summary of the 

BRAN methodology and offers conclusions. 

 
Table 1: The BRAN methodology to assess network reliability including aging bridge instrumentation 
data and correlated bridge failures 

A Seismic fragility evaluation of aging bridges 

i 
Perform spatial interpolation to estimate deterioration parameters at non-instrumented bridge 

locations 

ii Use Bayesian updating of historical aging parameters to determine posterior estimates 

iii Determine seismic fragilities of aging bridges 

B Correlated highway network reliability assessment 

i Set up the correlation matrix among bridge failures 



ii Generate correlated binary failure realizations for bridge network Monte Carlo simulations 

iii Estimate network reliability by the modified Markov Chain Monte Carlo simulation method  

 

SPATIAL INTERPOLATION AND BAYESIAN UPDATING OF DETERIORATION 

PARAMETERS IN BRIDGE NETWORKS (STAGES A.i AND A.ii) 

Environmentally dependent deterioration parameters or degrading agents such as chloride 

concentration, diffusion coefficient, corrosion rate, etc., are strongly correlated across bridges 

located within close proximity. Consequently, spatial interpolation techniques can be employed 

to assess deterioration parameters for non-instrumented highway bridges from sensor monitoring 

data of a limited number of instrumented bridges. In the absence of instrumentation, aging bridge 

reliabilities are often computed using historical estimates of the degrading agents available in 

region-specific databases (Enright and Frangopol 1998; Ghosh and Padgett 2010) or from limited 

laboratory test data (Choe et al. 2008, 2009). Hence, the field measured and interpolated 

deterioration parameters can be used to statistically update available probability distributions of 

aging parameters and make better predictions of seismic bridge fragilities. The following 

sections elaborate further on the spatial interpolation and statistical updating techniques of 

deterioration parameters. 

SPATIAL INTERPOLATION OF DETERIORATION PARAMETERS 

While several interpolation procedures are available in spatial data analysis, this study 

employs Kriging (Krige 1951), a widely popular method in the field of geostatistics. Although 

several strategies such as polynomial fittings, trend surface analysis, etc. exist for spatial 

interpolation, Kriging has several clear advantages over these methods. First, Kriging 

incorporates the correlation structure among observations while making predictions at 

unobserved locations. Second, while methods such as trend surface analysis can be significantly 

affected by the location of data points and produce extreme fluctuations in predicted estimates in 

sparse areas, Kriging predictions are more stable over sparsely sampled regions (Mackaness and 

Beard 1993). However, user discretion is recommended with respect to using Kriging for spatial 

interpolation when localized effects or other discontinuities are present in the spatial process. 

Under such circumstances, the Kriging procedure is known to perform poorly and use of 

alternative spatial interpolation techniques, such as Bayesian Partition Modeling is 



recommended. It is assumed in this study that sudden discontinuities are non-existent for 

deterioration parameters distributed across a region and hence the Kriging procedure is adopted. 

The Kriging method belongs to the family of linear least squares estimation algorithms and helps 

to determine the magnitude of influence of neighboring observations when predicting values at 

unobserved locations (Trauth et al. 2010). Although different Kriging methods exist, the popular 

ordinary point Kriging method is adopted in this study owing to its simplicity while retaining the 

key advantages of the Kriging procedure (Mount et al. 2008; Trauth et al. 2010). While details of 

this method can be found elsewhere (Cressie 1993; Olea 1999), the main steps involved in this 

procedure are provided in the context of inferring deterioration parameters across a bridge 

network. 

Step 1:  Construct an experimental variogram (called semivariance) which provides an estimate 

of the squared difference between instrumented values of deterioration parameters relative to 

their separation distances of the respective monitored bridge locations as follows: 

 ( ) ( )2
0.5 l l hh z z += −γ   (2) 

where γ(h) is the semivariance,  zl and zl+h are the instrumented deterioration parameter values at 

bridge location l and another location  separated by distance h (also called ‘lag interval’) from l.  

Step 2:  Derive a variogram estimator, γE(h), which summarizes the central tendency of 

observations at different instrumented bridge locations. The form of the variogram estimator is 

typically given by: 
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where N(h) is the number of pairs within the lag interval h. Next, a parametric curve called the 

variogram model is fitted to approximate the variogram estimator with the most appropriate 

mathematical representation. Due to theoretical constraints, only functions satisfying certain 

mathematical characteristics can be used as variogram models. The most prevalently used 

variogram models include the spherical model, exponential model, and linear models (Trauth et 

al. 2010). Following the goodness of fit test results corresponding to these traditionally adopted 

variogram models, the exponential model with nugget effect is employed in this study. The form 

of this exponential variogram model is given as: 
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where, ng is the nugget, s is the sill and a is the range. In the variogram model, ng 
is the intercept 

of the variogram and represents the sub-grid scale variations, s equals the total variance of the 

data set representing the value of the semivariance as lag h goes to infinity, and a controls the 

degree of correlation between the data points (Cressie 1993; Myers 1997; Reimann 2008). 

Step 3:  Use the exponential variogram model γexp to spatially interpolate deterioration 

parameters through Kriging which uses a weighted average of neighboring point observations to 

estimate values at unobserved locations. The weighting points λi’s required for the interpolations 

are computed as: 
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where γexp(li,lj) represents the exponential variogram estimate between the points li and lj, l
* is the 

non-instrumented bridge location where the interpolation estimates of deterioration parameters 

are desired, t is the total number of instrumented bridge locations and µ is the Lagrange 

multiplier used to minimize the Kriging error and satisfy the unbiasedness condition 
1

n

i
i

λ
=
 =1. 

Computation of λi’s is followed by estimation of the deterioration parameter zl* at location l*
 

from Equation 6. It is noted that zl* denotes the mean of the Kriging estimate for deterioration 

parameter at the interpolated non-instrumented bridge location.  

 ( )
1

* 1

t

l

l t

l

z

z

z

λ λ
 
 

=  
 
 

   (6) 

 Although not considered in this study, the uncertainty associated with this interpolated 

estimate can also be quantified using Kriging variance.  The variability about the mean estimate 

is captured to a certain extent in this study by repeating the Kriging procedure for many samples 

from the parent distribution of the deterioration parameters at the instrumented bridge locations. 

While this is demonstrated in the Application paper, it is acknowledged herein that in a strict 



sense the Kriging variance should also be incorporated within the proposed framework. 

Repeating the above steps for all non-instrumented bridge locations l*, the Kriging methodology 

helps to determine interpolated estimates of deterioration parameters across the network using 

the data from a subset of instrumented bridges. Field measured/interpolated aging parameter 

estimates are used next to update the historical estimates of deterioration parameters.  

STATISTICAL UPDATING OF DETERIORATION PARAMETERS  

Statistical procedures such as the Bayesian updating method have emerged in infrastructure 

engineering as a powerful tool to rationally combine the information available on deterioration 

parameters from historical databases and new inspection data from field measurements (Enright 

and Frangopol 1999; Congdon 2006; Straub and Kiureghian 2010). This updating technique 

preserves previously available information and systematically incorporates new field 

measurements of deterioration parameters. The general Bayesian updating procedure is presented 

in Equation 7: 
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where p(φ|κ) is the updated posterior distribution of the deterioration parameter based on 

historical data and new inspection results, p(φ) is the prior distribution of the deterioration 

parameter ϕ Φ∈  based on historical records from region specific databases (for instance, Federal 

Highway Administration reports), and q(κ|φ) is the likelihood function in which κ Κ∈ is a 

random variable representing new deterioration parameter from field instrumentation data or 

spatial interpolation. The posterior updated probability density functions are then used to 

determine the extent of structural deterioration of bridge components corresponding to each 

bridge in the network. Such deterioration affected structural parameters inform the upcoming 

parameterized fragility formulations of aging highway bridges. 

PARAMETERIZED SEISMIC FRAGILITY FORMULATION FOR AGING BRIDGES 

(STAGE A.iii) 

The vulnerability of highway bridges under seismic shaking can be conveyed through 

seismic fragility curves. These conditional probabilistic statements were traditionally developed 



to predict the probability of meeting or exceeding a particular damage state of a bridge 

component or system given the intensity of ground motions (im), as shown in Equation 8:  

 [ | ]Fragility P Demand Capacity im= >  (8) 

A major disadvantage of such single-parameter fragility curves lies in their inability to assess 

the impact of any deteriorating bridge component on bridge performance during earthquakes, or 

to incorporate new information on deterioration parameters without the need for costly re-

analysis. Hence, these single-parameter fragility curves can only be used to represent seismic 

vulnerability of a non-deteriorating bridge or a bridge with an assumed level of deterioration 

using historical estimates.  

Many researchers have demonstrated the importance of considering deterioration of critical 

bridge components such as reinforced concrete (RC) columns and bridge bearings for deriving 

aging bridge seismic fragility curves (Choe et al. 2009; Ghosh and Padgett 2010; Alipour et al. 

2010; Rokneddin et al. 2011). Additionally, Nielson (2005) identified critical bridge structural 

modeling parameters for a variety of bridge types within the Central and Southeastern U.S. 

bridges inventory. Hence, the bridge fragility models derived in Stage A.iii are conditioned on 

deterioration affected structural parameters as well as the critical structural modeling parameters 

identified by Nielson (2005). Consequently, Equation 8 is modified to represent bridge fragility 

as: 

 1 2[ | , , , , ]mFragility P Demand Capacity im x x x= > …  (9) 

where x = x1,x2,…,xm, is the set of m critical parameters affecting the seismic performance of the 

deteriorating bridge components and includes: i) critical modeling parameters, and ii) parameters 

affected by deterioration mechanisms. Note that only field measurable parameters (using sensor 

devices or other practical techniques) are chosen to condition and update the fragility estimates 

herein. Other parameters which are critical but not field measurable are also considered in the 

fragility analysis, but treated as time-invariant random variables to propagate their uncertainty 

when deriving the fragility models. 

The deterioration affected structural parameters and forms of degradation corresponding to 

materially different bridge types are shown in Table 2. The deterioration mechanisms associated 

with each form of degradation are discussed in further details in Ghosh and Padgett (2010, 



2012). The following subsections elaborate on the approach to construct the new parameterized 

fragility estimates using the set of conditioned parameters x. 

Table 2: Deterioration affected structural parameters and forms of degradation corresponding to different 
bridge types 

Bridge Component 
Deterioration Affected 
Structural Parameter 

Form of Degradation 

Reinforced concrete (RC) columns 

(common to both steel and concrete 
bridges) 

Longitudinal and 
transverse reinforcement 

Cross sectional area loss of steel 
due to corrosion 

Concrete cover 
Loss of cover/spalling due to 

expansive forces from the 
accumulation of rust products 

Elastomeric bridge bearings 

(particular to concrete bridges) 

Elastomeric bearing pad 
Increase in shear modulus due 

to aging and temperature effects 

Bearing dowel bars 
Loss of shear strength due to 

corrosion deterioration 

Steel bridge bearings 

(particular to steel bridges) 

Bearing anchor bolts 

Cross sectional area loss of steel 
due to corrosion affecting the 
ultimate lateral strength of the 

bearings 

Coefficient of friction 
Increase in bearing friction due 

to accumulation of rust 
products. 

Expansion bearing keeper 
plate 

Reduction of keeper plate 
thickness due to corrosion. 

 

PHASE 1: DEVELOP SURROGATE DEMAND MODELS FOR COMPONENT 

RESPONSES USING RESPONSE SURFACE METHODOLOGY 

The computational demands of complex three dimensional finite element simulations of 

bridge models subjected to seismic shaking can be prohibitive for probabilistic analysis across a 

full parameter space. Hence, in order to reduce this computational burden, surrogate models or 

metamodels can be formulated to provide an analytically sound relationship between the 

predicted values (such as, column curvature ductility, bearing deformation, etc.) and the 

predictor variables (such as, earthquake intensity, reinforcing steel area, bearing pad shear 

modulus, etc.)  (Simpson et al. 2001). For the case at hand, the response yk corresponding to the 

kth bridge component (k = 1,2,…,K where K is the total number of bridge components) constitute 



the predicted values, while the predictors are the ground motion intensity (im) and the vector x. 

Let this joint set of im and x be represented by ψ such that ψ = {im, x}. If the true (but unknown) 

relationship between the predictors and the predicted variable can be represented as: 

 ( )f=ky ψ  (10) 

then, the function g(ψ) is said to statistically approximate this ‘complex and implicit’ 

(Towashiraporn 2004) relationship  f(ψ ) as: 

 ( )g= +ky ψ ε  (11) 

where ε is the total error resulting from lack-of-fit and is assumed to be a zero mean normal 

random variable.  

Traditionally, development of surrogate models/metamodels from computer simulations 

primarily consists of three main steps as outlined in Simpson et al. (2001) and summarized here: 

i. Choose an efficient experimental design strategy to generate a sequence of experiments 

(finite element simulations) to be performed. Each experimental design run in the 

sequence is expressed in terms of the factors (predictor variables) set at specified levels. 

For instance, if the entire sequence of experiments is represented by the matrix X, then, an 

experimental design run will correspond to a row of X  

ii. Conduct the three dimensional finite element analysis simulations of bridge models to 

obtain the data (yk) for component responses (such as column curvature ductility, bearing 

deformation etc.) corresponding to each experimental design run.  

iii. Choose a functional form of the surrogate model g(ψ) and fitting the surrogate model g(ψ)  

to the observed data obtained in step ii.  

Pertaining to the experimental design strategy, each of the critical bridge parameters (xi for i 

=1,2,…,m) is analyzed at five different levels to gain in-depth understanding of the influence of 

the interaction between parameter levels that may be experienced throughout a bridge’s lifetime 

on its seismic response. To overcome the curse of dimensionality, a special class of computer 

aided experimental design called D-Optimal design (Kiefer and Wolfowitz 1959) is adopted 

which is particularly useful when classical/‘non-optimal’ design strategies such as fractional 

factorial design, central composite design etc. are impractical (step i of surrogate model 



development). The most significant advantage of the D-Optimal design lies in its ability to 

maximize the amount of information generated in a limited number of runs besides being more 

efficient than classical design strategies in exploring the entire sample space of different 

parameter combinations (Kazmer 2009). This design methodology typically generates 

experimental designs using numerical optimization techniques and an iterative search algorithm 

that seeks to minimize the variance of parameter estimates (or maximize the determinant D = 

XTX, with X being the design matrix of model terms reflecting the sequence of experiments) 

(Goos and Jones 2011).  In this paper, the computer aided D-Optimal design is generated using 

the row-exchange algorithm in MATLAB (The MathWorks 2004) After generating the 

experimental design matrix X, nonlinear dynamic analyses of three dimensional bridge models 

are conducted by pairing each experimental design run (each row of X) with a ground motion 

from the synthetic ground motion suites developed by Wen and Wu (2001) and Rix and 

Fernandez (2004) for the Central and Southeastern US. In this study, the ground motions are 

treated as an uncontrollable factor and their uncertainty is propagated throughout the 

experimental design matrix by using a total of 96 different ground motions with multiple 

replications throughout the analysis. Future studies by the authors will further enhance the 

propagation of ground motion uncertainty in the experimental design by using subset ensemble 

of ground motions per experimental design run. The process of generating the experimental 

design matrix with each row paired with an earthquake record is then followed by nonlinear 

dynamic time history analysis of finite element bridge models. This corresponds to step ii in the 

framework for developing the seismic demand metamodel. The present study employs the finite 

element package OpenSees for bridge modeling and nonlinear time history analyses (Mazzoni et 

al. 2009) using the suggestions in Nielson and DesRoches (2007) and Ghosh and Padgett (2010, 

2011). The response of the kth bridge component due to seismic shaking, such as the peak 

bearing deformation or column curvature ductility demand, constitutes the vector yk in Equation 

11.  

In step iii, the results obtained in the previous step are used to fit a model between each of the 

dependent predicted variables yk and the predictors ψ = {im, x} using the polynomial response 

surface model (Box and Wilson 1951). These surrogate models have been used in studies 

pertaining to the reliability of structural systems and are recognized for their ability to provide 

good approximation of complex finite element simulation results (Bucher and Bourgund 1990; 



Rajashekhar and Ellingwood 1993; Guan and Melchers 2001; Towashiraporn 2004). The 

polynomial response surface metamodel uses a multivariate function of the predictor variables to 

fit the predicted values using a least squares regression approach (Simpson et al. 2001).  Simply 

put, the response surface equation is a polynomial regression approximation to the data set and 

the coefficients obtained during the model fitting process along with im and xi (i =1,2,…,m ) 

constitute the functional form of g(ψ). In this research, the multilinear regression model 

involving a constant term, linear terms and interaction terms is adopted as the response surface 

metamodel (Equation 12). A preliminary study conducted by the authors revealed that inclusion 

of quadratic terms in the adopted second order predictive model did not increase the goodness of 

fit estimates significantly. Hence the model is restricted to interaction terms only to make it as 

simple as possible. Bridge reliability estimates using this metamodel are compared with state-of-

the-art fragility development procedures in the companion Application paper.  
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where β0 is the constant coefficient, βim, β1,…, βm are the linear coefficients, and βim,1, βim,2,…, βm-

1,m are the interaction coefficients. Consequently, regression statistics parameters such as the 

adjusted R2 and the mean squared error (ε in Equation 11), are estimated after fitting the 

multilinear response surface metamodel.  

PHASE 2: USE THE SURROGATE DEMAND MODELS TO DEVELOP BRIDGE 

FRAGILITIES VIA LOGISTIC REGRESSION 

In this phase, the surrogate demand models are used to develop fragility estimates. It should 

also be noted that the seismic demands of the different component are correlated and such 

component correlations are considered while drawing component demand samples. The 

component demand correlations are calculated by computing the pairwise correlations of the 

seismic response of bridge structural components obtained from the finite element simulations of 

bridge models (Nielson and DesRoches 2007; Ghosh and Padgett 2010). These component 

correlations aid in the construction of the covariance matrix which is used to establish the joint 

multivariate normal distribution of component demands. The individual bridge component 

demands are then sampled from this multivariate normal distribution to derive aging bridge 

fragility curves. Fragility estimates represent the probability of the demand exceeding the 



capacity of components or systems given a set of conditioned parameters as evident from 

Equation 9. Fragility curves are generated in this study via logistic regression using the Monte 

Carlo simulation approach. In this approach, a large number of demand samples (Nlogistic) are first 

generated using the surrogate demand model yk for different combinations of elements in ψ  for 

each of the K bridge components after considering component demand correlations. Then, Nlogistic 

component capacity estimates are generated from their distributions corresponding to a specific 

damage state. In this study, the component capacity distributions are adopted from Nielson and 

DesRoches (2007), and the damage state chosen is the extensive damage state which results in 

closure of the bridge for at least a week following a seismic event (Padgett and DesRoches 

2007).  After simulating component demand and capacity estimates, a binary vector of 0’s 

(survival) and 1’s (failures) is simulated, corresponding to whether the demand d exceeds the 

capacity c or not. Mathematically, the ith element of this binary vector bink corresponding to the 

kth bridge component can be populated as: 
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This vector of binary elements is used to develop component level fragility curves through 

the logistic regression method which has emerged as a popular tool in the past decade for 

constructing multi-dimensional fragility surfaces particularly for vector valued earthquake 

intensity measures (Baker and Cornell 2005; Koutsourelakis 2010). In this study, the concept of 

logistic regression for fragility modeling is extended to include the ground motion intensity 

measure and the critical and field measurable bridge parameters. In this case, bink 
represents the 

dependent binary variable and let the probability that bink,i = 1 given a set of parameter 

combinations of im, x1,x2,…,xm for the ith
  Monte Carlo trial be represented by pk. Then, 

according to the logistic regression formulation the following equation can be derived for the kth 

bridge component as: 
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where θk,0,θk,m and θk,,j’s (j = 1,2,…m) are the logistic regression coefficients corresponding to 

the kth
 bridge component. The above equation in turn leads to the expression for pk as: 
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Recognizing that bink,i = 1 is a statement equivalent to Demand>Capacity, it should be noted 

that the above equation is equivalent to Equation 9 for the fragility estimate at the component 

level.  

The system level fragility estimate is obtained using the series system approximation 

following Nielson and DesRoches (2007) such that failure of one or more of the bridge 

components represents system level failure and can be represented as: 

     

 [ ]
1

   
K

th

k

P System Failure P k Component Failure
=

 =  
 
   (16) 

where K was defined earlier as the total number of bridge components. This system level model 

enables the construction of a vector of binary elements (survival/failure) for the bridge system 

from the binary vector of each of the individual components. For instance, the binary vectors 

from each of the K bridge components can be arranged in matrix form as: 

 1 2 KBIN bin bin bin

 
 =  
  

   


   
 (17) 

Following the series system assumption, the ith element of the binary vector of the system 

(binsys) will equal 1 (representing failure) if at least one elements in the ith row of the matrix BIN 

equals 1. However, if all the elements in the ith row are 0 (representing survival), then the ith 

element of vector binsys is also 0. Establishing vector binsys is followed by fitting a logistic 

regression model at bridge system level as:  
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where θsys,0,θsys,m and θsys,j’s are the logistic regression coefficients at the system level. The 

logistic regression model fitted to binary survival-failure vector at the system level helps to 

assess the system probability of failure conditioned on the ground motion intensity im and the 

parameter vector x. The impact of each of the conditioned parameters in the above equation can 



be assessed by considering ‘slices’ of the multi-dimensional fragility model. Additionally, uni-

dimensional bridge system seismic fragility curves conditioned only on im can be determined 

after integrating over the entire domain of the historically estimated or Bayesian updated 

probability density functions corresponding to each parameter in x (Equation 19). The elements 

within the parameter vector x are carefully chosen in this study such that they are statistically 

independent of each other (demonstrated in the Application paper). This assumption permits the 

multi-dimensional integration over the parameter specific distributions without the need to 

construct the joint distribution. 
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Bridge failure probabilities are evaluated as point estimates of individual aging bridge 

fragility curves for corresponding seismic intensity levels, and are employed to estimate the 

network level reliability, that constitutes Stage B of the BRAN methodology. 

IMPACT OF EXTRA CORRELATIONS ON NETWORK RELIABILITY 

ASSESSMENTS 

The reliability assessment of bridge networks integrates the evaluated bridge failure probabilities 

from Stage A with estimated correlations stemming from the extra correlation sources. While the 

subsequent sections elaborate on the steps in Stage B for network reliability evaluation, this 

section demonstrates the positive or negative impacts of accounting for extra correlations on 

network reliability estimates prior to implementing a quantitative network reliability assessment 

by Monte Carlo simulations. 

Although other many failure criteria are available in the literature, the adopted network 

failure definition in this study is the failure to retain connectivity between a predefined set of 

origin and destination (O-D) nodes in the network, also known as connectivity reliability. The 

destinations nodes are typically the densely populated, critically important parts of the bridge 

network which benefit from relief operations and emergency assistance, or require access. The 

origin nodes can be supply points or the designated regions in the network where resources 

deploy from. Retaining connectivity among origin and destination nodes in a seismic event is the 



minimum necessary condition to fulfill the objectives of a transportation network, as discussed in 

the literature (Chen et al. 2002; Rokneddin et al. 2011). This section demonstrates that the 

connectivity reliability of bridge networks depends on the bridge failure probabilities, the 

correlation structure among failures, and the topology of the network which defines the paths 

from the origin to the destination. 

To illustrate the correlation effects, first consider a network consisting of merely two nodes 

where both nodes must survive for the network to remain functional. The network probability of 

failure may be written as: 

 1 2 1 2 1 2P(F F ) P(F ) P(F ) P(F F )fP = = + −    (20) 

where Fi denotes the failure event of Node i. A positive correlation between the two failure 

events has a favorable effect on network reliability as it results in an increase in 1 2P(F F ) , and 

therefore, reduces the network failure probability. A negative correlation, on the other hand, 

increases the vulnerability of the network. Before expanding the problem, consider the following 

two equalities on two given events A and B:  

 P(A B) P(A B) 1 P(A B)= = −     (21) 

 P(A B) P(A B) 1 P(A B)= = −     (22) 

The derivation of Equations 21 and 22 is straightforward, and may be carried out by a Venn 

diagram. It is readily inferred that a positive correlation among Events A and B increases the 

probability of their joint event which in turn induces an increase in the L.H.S. of Equation 21 and 

a decrease in the L.H.S. of Equation 22 by the same amount. Now, let’s consider the network 

presented in Figure 1. The network failure probability may be expressed by mutually exclusive 

collectively exhaustive events as in Equation 31: 

 1 4 1 4 2 3P(F F ) P(F F ) P(F F )fP = +     (23) 

Equation 23 may be derived by a recursive decomposition algorithm, similar to that presented in 

Liu and Li (2012). Based on Equations 21-23, the network reliability in Figure 1 is favorably 

affected by a positive correlation between Events F1 and F4, and a negative correlation between 

F2 and F3. The first term in the R.H.S. decreases and the increase in 1 4P(F F )  is weighted by 



2 3P(F F ) (which decreases itself); inducing an overall reduction in Pf. Accordingly, the worst 

correlation scenario for the example network happens when negative correlations exist between 

F1 and F4 besides positively correlated F2 and F3 events. 

 

Figure 1. Example network topology 

These arguments may be expanded to more complicated networks.  The network connectivity 

reliability is favorably affected by negative correlations among nodes on a cut-set (e.g. Nodes 2 

and 3 in Figure 1) as well as positive correlations among nodes on a chain which include the 

origin and destination nodes. In small networks where full network decomposition can be carried 

out to identify all cut-sets and shortest paths in the network, the impact of correlations on the 

network reliability may be qualitatively assessed by examining correlations among nodes on cut-

sets or chains. In actual bridge networks with hundreds or thousands of nodes, a full 

decomposition may not be practical, but simulations-based methods can quantify the impact of 

correlations, as presented in a case study in the companion Application paper. For quantitative 

assessments, realizations of bridge failures consistent with their correlation values are simulated 

and used in Monte Carlo simulations. This process is discussed in Stages B.i and B.ii of the 

BRAN methodology which is elaborated on in the following section. 

GENERATING REALIZATIONS OF CORRELATED BRIDGE FAILURES (STAGES 

B.i AND B.ii) 

The extra correlations are represented by a correlation matrix among bridge failure probabilities 

whose entries present the correlation ratios. The bridge failure probabilities and the correlation 

matrix combine to into a probability matrix describing joint bridge failure probabilities, which is 

in turn used to generate realizations of correlated bridge failures for Monte Carlo simulations to 

evaluate the network connectivity reliability. 



The extra correlations must ideally be estimated from sufficient number of detailed post-

earthquake reconnaissance reports that offer correlations among bridge failures based on 

similarities in factors such as maintenance and retrofit schedule, construction methods, and 

traffic loads. However, unlike correlations among seismic intensities for probabilistic seismic 

hazard analysis, extra correlations are often overlooked in the literature of transportation network 

reliability, and data-driven estimates are not currently available due to lack of sufficient reliable 

data. Therefore, and without the loss of generality, this study exploits three sources of 

information to estimate extra correlations in the form of bridge condition ratings, the functional 

level of roads in the network, and the topological information from the layout of the network. 

The companion Application paper explains how the three sources represent the factors affecting 

the structural vulnerability of bridges. The rest of this section assumes that an estimated 

correlation matrix is already formed.  

 Generating realizations of correlated bridge failures is equivalent to simulating samples from 

an n-dimensional (n being the number of bridges in the network) binary random variable as the 

state of each bridge is a binary random variable with values 0 for survival and 1 for failure. The 

expected value of the n-dimensional binary random variable, therefore, is also the vector of 

marginal probabilities (bridge failure probabilities from Stage A) while its covariance matrix can 

be established from the correlation matrix (R). Among the different established methods in the 

literature to simulate samples from binary random variables (e.g. Emrich and Piedmonte 1991; 

Park et al. 1996; Lunn and Davies 1998), this research adopts an algorithm based on the general 

Dichotomized Gaussian Method (DGM). The DGM is preferred over the other methods for its 

general applicability, especially when negative correlations exist.  

The DGM procedure forms an associated n-dimensional normal random variable from the 

binary random variable. The covariance matrix (S) of the associated normal random variable is 

derived from the marginal probabilities and the correlation matrix for the binary random variable 

(R). To generate samples from the original binary random variable, simulated samples from the 

normal random variable are dichotomized based on their signs. The details of DGM may be 

found in Emrich and Piedmonte (1991) and Bocchini and Frangopol (2011). 

Prior to applying DGM or any method of choice to simulate samples from the multi-

dimensional binary random variable, correlation matrix R must be compatible with the marginal 



probabilities. However, the assumed correlation ratios among bridge failure probabilities often 

do not strictly comply with the requirements originating from bridge failure probabilities 

themselves. The compatibility conditions arise from basic rules of probabilities and limit the 

range of admissible values for the correlation ratio between pairs of marginal probabilities. 

Equations 24-25 state the necessary compatibility conditions among probabilities of failure: 

 ( ) ( )max 0, 1 min , , i j ij i jP P P P P i j+ − ≤ ≤ ≠  (24) 

 1, i j k ij ik jkP P P P P P i j k+ + − − − ≤ ≠ ≠  (25) 

   

where Pi is bridge i’s probability of failure, and Pij is the joint probability of failure between 

bridges i and j. In order to check for compatibility conditions, the probability matrix n n×P  may be 

established from the marginal probabilities and correlation matrix R in which the diagonal 

entries are the marginal probabilities and off-diagonal entries are the joint probabilities computed 

from Equation 26: 

 ( )1  (1 )ij i j ij i i j jP PP R P P P P= + − −  (26) 

where Rij is the correlation ratio between the failure probabilities of bridges i and j. Equation 26 

is derived from the definition of the correlation ratio between two binary random variables where 

the expected values are Pi and Pj and the variances are (1 )i iP P−  and (1 )j jP P− , respectively. 

If the joint probabilities in the probability matrix do not satisfy the necessary compatibility 

conditions (Equations 24-25), they need to be modified accordingly to be within the admissible 

range, which is a range of values that comply with the compatibility conditions. Equation 26 may 

then be used to back calculate the admissible ranges for the correlation ratios when solved for Rij. 

The incompatibility of estimated correlation values with the admissible range has been reported 

in the literature, for example in Bocchini and Frangopol (2011). 

The compatibility modification is performed by mapping the elements of the correlation 

matrix into their respective admissible range. Two auxiliary matrices, Rmin and Rmax, store the 

minimum and maximum allowable correlation ratios, respectively, for all the elements of the 

correlation matrix. The modification, therefore, involves linearly mapping the correlation ratios 

Rij from their original range to ( ) ( )min max[ , , , ]R i j R i j . The modified correlation matrix  is 



constructed by Equation 27 and is ready to be used in simulating samples from the multi-

dimensional binary random variable: 

 ( ) ( ) ( )max min
0 min
' ( min . )

max min

−= + −
−

1
R R

R R R R
R R

  (27)  

where min(R) and max(R) are the overall minimum and maximum correlation ratios in the 

correlation matrix, respectively, and n n×1  denotes a matrix of ones. The zero subscript in '
0R  

indicates that the modified correlation matrix is mapped from the originally estimated correlation 

matrix. To investigate the sensitivity of network reliability estimates to the correlation values, the 

elements of the original correlation matrix are shifted towards either min(R) or max(R), resulting 

in more negative or positive correlation levels, respectively. Since Equation 27 represents a 

linear mapping, any shift towards the boundaries in the original correlation ratio range results in 

a proportional shift in the modified correlation matrix towards Rmin or Rmax, as: 
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+ − ∈ −
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R R R
  (28) 

where '
λR is the shifted modified correlation matrix and λ is the level of overall deviations from 

the original correlation estimates.  

Although modifying the correlation matrix to satisfy the compatibility conditions is 

necessary for its applicability, such modifications may result in considerable deviations from the 

originally estimated values. The difference in correlation matrix 2-norm before and after the 

compatibility adjustments offers a metric to measure the level of modifications. Equation 29 

introduces the error metric based on matrix 2-norm: 

 
'

min maxmax( , ) 
E

−=
− −


 



R R

R R R R
  (29) 

where E denotes the normalized change in the 2-norm of the correlation matrix, and 'R  is the 

modified correlation matrix, either from the original correlation estimates or the shifted values 

(Equation 27 or 28, respectively). 

The admissible range for Pij (and consequently Rij) can be very tight for extreme probabilities 

of failure. In particular, the difference between Pij and Pi Pj becomes negligible in extreme cases 



and therefore, the binary random variables representing bridges i and j can be treated as 

independent random variables. Appendix A provides a proof for the rationality of this 

assumption when the failure probabilities are either very large or very small. Independent 

treatment of extreme failure probabilities reduces the dimensionality of the binary random 

variable since the correlated samples only need to be generated for correlated bridge failures. In 

addition to enhancing the computational efficiency, the reduction of dimensionality prevents the 

numerical errors produced by the narrow admissible ranges in establishing matrix S in DGM. In 

real bridge networks with large number of bridges, such size reduction may vastly improve the 

applicability of DGM in terms of the computation time. Finally, matrix S must be checked for 

positive-definiteness before it can be used in DGM to simulate correlated bridge failures. 

Table 3 illustrates the steps to simulate correlated bridge failures. Extreme failure 

probabilities are considered as values larger than 0.95 or smaller than 0.05. The open source 

statistical package Bindata (Leisch et al. 1998) in statistical analysis software R (R Development 

Core Team 2010) is used to simulate samples of correlated binary failures after forming matrix 

S. The result is NMC records of realized failures (0 for survival, 1 for failure) for n bridges in the 

network (a data-frame of NMC rows and n columns) which are directly applicable for Monte 

Carlo simulations. 

Table 3: Generating realizations of correlated bridge failures for Monte Carlo simulations 

1 START 

2 Input 

3 Bridge failure probabilities (Pi, i = 1, 2, …, n) from Stage A 

4 The originally estimated correlation matrix R 

5 If ( ),   0.05    ( 0.95)i ii P or P∃ < > →  Treat bridge i as independent 

6 Compute the admissible range for the elements of d d×P  from Equations 24-25, where d is the 

number of correlated bridges 

7 Determine the admissible range for the elements of the correlation matrix from Equation 26 

8 Modify the elements of correlation matrix for compatibility with the admissible range 

9 Establish the modified correlation matrix ′R , and compute the normalized change in the 2-
norm from Equation 29 

10 
Set up S, the covariance matrix for the associated d-dimensional normal random variable, from 

′R and the bridge failure probabilities (Bindata package), and check for its positive-
definiteness. 

11 Simulate NMC samples from the d-dimensional binary random variable (Bindata package) 



12 Independently simulate NMC binary samples for (n – d) independent bridges 

13 END 
 

NETWORK LEVEL RELIABILITY ASSESSMENT (STAGE B.iii) 

The data-frame of correlated bridge failure samples from Stage B.ii are used to evaluate the 

network reliability by Monte Carlo simulations. This study evaluates the connectivity reliability 

of the aging bridge network subjected to seismic loading by the Markov Chain Monte Carlo 

simulation approach (MCMC). The MCMC system reliability method is described in detail in 

Ross (2007), Ching and Hsu (2007), and Rokneddin et al. (2011), although for independent 

failures. The bridge network is modeled as a graph where each bridge is a node and the 

connecting highway segments represent the connecting links. MCMC models the network 

connectivity reliability by assuming a Markov Chain with transition probability matrix T in 

which each entry Tij is the probability that a random walker can move from node i to node j in 

one step: 

 

1
max 0,1 ,      nodes  and  are directly connected

0,        ,       and  not directly connected, or 0

j

ij i j

i

w
i j

T k b

i j i j k

  
× −   =   

 = =

 (30) 

where ki is the out-degree of node i, bj denotes the reliability (one minus probability of failure) of 

node j, and wj is a simulated sample from a uniform distribution in [0, 1]. For each Monte Carlo 

simulation, connectivity is retained if the random walker has non-zero probability to reach the 

destination from the origin. The network connectivity reliability is then computed by dividing the 

number of simulations in which the network remains connected over the total number of 

simulations.  

The original MCMC algorithm requires modification in order to accommodate correlated 

binary samples simulated by the DGM. The modified algorithm is summarized in Table 4. In 

particular, simulating wj in Equation 30 is modified to comply with the correlated failures: 

 
[ ,1],  bridge  fails

[0, ],  bridge  survives

j j

j
j j

u b j
w

u b j

∈=  ∈
 (31) 



where uj is a uniform random variable. This modification ensures Tij = 0 if bridge j fails 

according to the correlated binary samples generated by DGM. 

Network connectivity reliability, as described in this section, applies to bridges with binary 

states (failure and survival), and therefore, bridges in extensive damage state and beyond are 

considered out of service, as described in Stage A.iii. However, multi-state bridges (partially 

functional) can be considered with other types of network reliability analysis, for example, if the 

network limit state is defined based on the overall travel time throughout the network instead of 

connectivity between (O-D) pairs. Examples of network reliability analysis with multi-state 

bridges exist in the literature, e.g. in Lee and Kiremidjian (2007). 

The network probability of failure (Pf in Table 4) represents the outcome of applying the 

BRAN methodology and helps the stakeholders of the transportation system to assess risks to the 

functionality of the network in the event of a strong ground motion. The network reliability 

method with correlated failures also enables ranking the criticality of bridges for preventive 

measures and disaster relief (Rokneddin et al., 2011). Assessing such criticalities enables owners 

to make more informed decisions in allocating funds for necessary maintenance and seismic 

retrofitting actions.  

Table 4: Algorithm for MCMC network reliability method with correlated bridge failures 

1 START 

2 Generate NMC correlated bridge failures by DGM 

3 0r =  

4 for k = 1:NMC 

5 Set up the transition matrix T from Equations 30-31 

6 Create matrix V = (I – T)-1 

7 Compute OD OD
OD

DD

V
f

V

δ−=  

8 If 0 1ODf r r≠ → = +  

9 End 

10 f
MC

rP N=  

11 END 
I stands for the identity matrix, O and D are the origin and destination nodes in the network reliability objective, and 
δij denotes the Kronecker Delta function assuming the value of 1 if i = j and zero otherwise. VOD and VDD in Line 7 
are elements of matrix V (Line 6). 



CONCLUSIONS 

This paper proposes a two-stage bridge reliability assessment in networks (BRAN) methodology 

to allow the incorporation of data available from field instrumentation of bridges and different 

sources affecting simultaneous bridge failures in assessing the seismic reliability of aging bridge 

networks. In Stage A, the seismic fragilities of aging bridges within a bridge network are 

evaluated using parameterized fragility models and field instrumentation data. Since it is 

impractical to instrument every bridge in the network, Kriging, a spatial interpolation procedure, 

is implemented to determine the values of aging parameters at non-instrumented bridge locations 

from a limited number of instrumented bridges. The updated posterior estimates of the 

deterioration parameters are obtained by Bayesian updating of historical estimates of 

deterioration parameters with the interpolated values. The updated values are then used to 

determine bridge specific failure probabilities through the parameterized fragility models. 

However, factors such as the structural conditions of bridges, type of the roads they carry, traffic, 

and topological implications of the bridge network impose extra correlations among the failure 

probabilities that are often impractical to include in the analytical bridge modeling, particularly 

on a structure-by-structure basis. Nevertheless, the impact of extra correlations on network 

reliability estimates may be significant, depending on specific correlation ratio signs and the 

topology of the network. Therefore, extra correlations are included in Stage B, which estimates 

the connectivity reliability of the bridge network between critical origin and destination nodes. 

This paper shows that the favorable or adverse impact of accounting for the extra correlations on 

network reliability may be predicted by studying cut-sets and paths from the origin to the 

destination, even without a simulation based network reliability assessment. The more realistic 

network reliability estimates achieved by enhanced fragility evaluations of aging bridges and by 

considering extra correlations may also influence the prioritization of bridges for maintenance 

and seismic retrofitting. 

A practical approach based on the general Dichotomized Gaussian Method (DGM) is used in 

Stage B to simulate correlated bridge failures, which become the input for the modified Markov 

Chain Monte Carlo (MCMC) reliability method to assess network-level performance. Regardless 

of the approach to evaluate pair-wise correlations among bridge failure probabilities, the 

established correlation matrix needs modifications to comply with the necessary conditions 



which impose an admissible range for the correlation ratios based on bridge failure probabilities. 

Accordingly, the elements of the correlation matrix are modified to comply with their respective 

admissible ranges. Such modifications may result in considerable deviations from the originally 

estimated correlation values, especially in large networks.  

The companion Application paper demonstrates the BRAN methodology applied to an 

existing large aging transportation network in the state of South Carolina, USA, consisting of 

structurally different bridge types with varying aging mechanisms. The fragility estimates 

corresponding to each of these bridges are evaluated for a scenario earthquake, and the 

construction of the correlation matrix from available data sources is discussed. The network 

reliability is assessed for a range of correlation values -including the values established from the 

available data sources- to study the impact of extra correlations. The correlated network 

reliability estimates are also compared to the same network without accounting for to highlight 

the impact of extra correlations. 
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APPENDIX A 

This section provides a proof to support the independence assumption among bridge failure 

probabilities when those values are very large or very small. The level of dependencies is 

evaluated by the difference between the joint failure probability Pij and the product of marginal 

probabilities PiPj. The proof applies to random variables that follow a Bernoulli distribution, as 

is the case here. Three cases are examined among bridges with extreme failure probabilities: 

Case 1) Pi → 0 and Pj → 0 

Assume Pi = Pj = ε and ε → 0. From Equation 26: 

( ) ( )1  1ij i j ij i i j jP PP R P P P P− = − − ( )( )2
1ijR ε ε= − ( )1 0     0ijR asε ε ε= − → →

  



Case 2) Pi → 1 and Pj → 0 

Assume Pi = 1 – ε and Pj = ε  where ε → 0. Similar to Case 1: 

( ) ( ) ( )( ) ( )2
1  1 1 1 0     0ij i j ij i i j j ij ijP PP R P P P P R R asε ε ε ε ε− = − − = − = − → →  

Case 3) Pi → 1 and Pj → 1 

Assume Pi = Pj = 1 – ε  where ε → 0. Similarly: 

( ) ( ) ( )( ) ( )2
1  1 1 1 0     0ij i j ij i i j j ij ijP PP R P P P P R R asε ε ε ε ε− = − − = − = − → →  

Q.E.D. 
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