

ABSTRACT

Physical Implementation of Synchronous

Duty-Cycling MAC Protocols:

Experiences and Evaluation

by

Wei-Cheng Xiao

Energy consumption and network latency are important issues in wireless sensor

networks. The mechanism duty cycling is generally used in wireless sensor networks

for avoiding energy consumption due to idle listening. Duty cycling, however, also

introduces additional latency in communication among sensors. Some protocols have

been proposed to work in wireless sensor networks with duty cycling, such as S-MAC

and DW-MAC. Those protocols also tried to make efficient channel utilization and

to mitigate the chance of packet collision and the network latency increase resulting

from collision. DW-MAC was also designed to tolerate bursty and high traffic loads

without increasing energy consumption, by spreading packet transmission and node

wakeup times during a cycle.

Some performance comparison between S-MAC and DW-MAC has been done in

previous work; however, this comparison was performed in the ns-2 simulator only.

In the real world, there are further issues not considered or discussed in the simula-

tion, and some of those issues contribute significant influences to the MAC protocol

performance. In this work, I implemented both S-MAC and DW-MAC physically on

MICAz sensor motes and compared their performance through experiments. Through

iii

my implementation, experiments, and performance evaluation, hardware properties

and issues that were not addressed in the previous work are presented, and their

impacts on the performance are shown and discussed. I also simulated S-MAC and

DW-MAC on ns-2 to give a mutual validation of the experimental results and my

interpretation of the results. The experiences of physical implementations presented

in this work can contribute new information and insights for helping in future MAC

protocol design and implementation in wireless sensor networks.

Acknowledgments

First, I would like to show my sincere gratitude to my advisor, David Johnson. His

guidance and support plays an extremely important role during my study in Rice

University. I really benefited a lot from the long hours of discussions and invaluable

suggestions about the work in this thesis. Without his help, it would be impossible for

me to accomplish this thesis. I also want to thank the other two committee members,

Edward Knightly and T. S. Eugene Ng, for their insightful comments and suggestions

to my work.

I want to thank Yanjun Sun for his sharing of the experiences of programming

in TinyOS. I also want to show my thankfulness to Chaoran Yang, Lei Tang, and

Keyvan Amiri, for their help during my preparation of thesis defense. I also appreciate

the encouragement from all my friends and colleagues at Rice University.

I would like to thank my wife, Xiaorui Chen, for her unconditional support and

company during my hard times. I also want to thank Yimin Ge, Jia-Sheng Peng,

Po-Hsiang Chang, and other friends for their comfort, encouragement, and prayers.

Last but not the least, I sincerely thank God for His unchanging love and grace and

give praise to Him.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations viii

List of Tables x

1 Introduction 1

1.1 Wireless Sensor Networks . 1

1.2 Duty Cycling . 1

1.3 Other Energy-Related Issues . 3

1.4 Timing . 4

1.5 Motivation and Contribution . 4

1.6 Thesis Organization . 8

2 Synchronous Duty-Cycling MAC Protocols Studied 9

2.1 S-MAC . 9

2.1.1 Scheduling and Time Synchronization 9

2.1.2 Contention and Collision Avoidance 10

2.1.3 Adaptive Listening . 12

2.2 DW-MAC . 13

2.2.1 Scheduling: On-Demand Wakeup and Proportional Mapping . 13

2.2.2 Optimized Multihop Forwarding 16

3 Physical Implementation Issues 18

3.1 Enhanced Proportional Mapping in DW-MAC 18

vi

3.2 Timing Inaccuracy . 21

3.2.1 Impact on DW-MAC . 22

3.2.2 Time Synchronization . 25

3.2.3 Guard Time . 27

3.2.4 Proof of Lower Bounds for the Guard Time and Receiving

Timeout . 28

3.3 Packet Timestamping . 30

4 Performance Evaluation Methodology 33

4.1 Physical Implementation . 33

4.2 Simulation . 37

5 Experimental Results 40

5.1 Overall Performance Analysis . 40

5.1.1 End-to-End Latency . 40

5.1.2 Packet Delivery Ratio . 43

5.1.3 Energy Consumption . 45

5.2 Detailed Performance Analysis . 46

5.2.1 Per-Hop Latency . 46

5.2.2 Fairness . 52

6 Simulation Results 60

6.1 S-MAC and DW-MAC Comparison 60

6.2 Comparison with Original DW-MAC Simulation Results 63

7 Related Work 70

8 Conclusions and Future Work 76

vii

Bibliography 78

Illustrations

2.1 Unicast data transmission in DW-MAC 14

2.2 Optimized multihop forwarding for unicast traffic in DW-MAC 16

3.1 Enhanced proportional mapping for DW-MAC 20

3.2 Impacts of time difference among nodes on DW-MAC 23

3.3 The design of the guard time in DW-MAC 27

4.1 Crossbow MICAz mote . 33

4.2 Network topology used in the performance evaluation 35

5.1 End-to-end latency comparison . 41

5.2 Packet delivery ratio comparison . 44

5.3 Energy consumption comparison . 45

5.4 Per-hop latency comparison . 47

5.5 Detailed per-hop latency comparison 49

5.6 The number of adaptive listening happens at each hop 55

5.7 Timeline of inter-packet interval = 2.5 seconds in S-MAC 56

5.8 Timeline of inter-packet interval = 5 seconds in S-MAC 57

5.9 Timeline of inter-packet interval = 10 seconds in S-MAC 58

5.10 Timeline of inter-packet interval = 20 seconds in S-MAC 59

6.1 End-to-end latency comparison (simulation) 61

ix

6.2 Packet delivery ratio comparison (simulation) 62

6.3 Energy consumption comparison (simulation) 63

6.4 Per-hop latency comparison (simulation) 64

6.5 Detailed per-hop latency comparison (simulation) 65

6.6 The number of adaptive listening happens at each hop (simulation) . 66

6.7 End-to-end latencies from original DW-MAC and S-MAC simulation

code . 67

6.8 Packet delivery ratio from original DW-MAC and S-MAC simulation

code . 68

Tables

3.1 Symbols used in the proof . 29

4.1 CC2420 hardware properties . 34

4.2 Network parameters used in the performance evaluation 36

4.3 Physical layer parameters used in ns-2 evaluation 37

1

Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless sensor networks bring environment monitoring into a new field. The signif-

icance of the role of wireless sensor networks is increasing. Wireless sensor networks

can be deployed in areas where it is difficult for human beings to reach, such as in

the ocean, disaster areas, or small places, for environment monitoring or data col-

lection. A wireless sensor network may consist of numerous nodes distributed in the

environment. Message delivery in the network is realized via wireless multi-hop com-

munication among the nodes. In addition to the processor, memory components, and

radio, each sensor node is equipped with one or more sensors for environment sensing.

1.2 Duty Cycling

Due to the size, cost, and in many cases remote or inaccessible locations, the power

supply of sensor nodes is usually limited with most sensor nodes being powered by

batteries. Since it may be difficult to replace the batteries, achieving long battery

life is important. Among the hardware components on a node, the radio consumes a

significant portion of energy, and idle listening is the largest source of energy wasting.

Idle listening is a state that the radio is listening to the channel but not transmitting

or receiving any packets. Thus, duty cycling has been introduced into wireless sensor

networks to help the nodes save energy. With duty cycling, a node turns its radio

2

on and off periodically. When the radio is on, the node can send or receive packets

with other node, whereas the node would sleep to save energy when the radio is off.

A typical value of duty cycle, i.e., the percentage of time the radio of a node is on,

ranges from 1 to 10%.

Duty cycling in wireless sensor networks can be classified into two categories:

synchronous and asynchronous. In asynchronous duty-cycling networks, nodes may

wake up and go to sleep at different times with different schedules. Examples of

asynchronous duty-cycling MAC protocols include RI-MAC [17], WiseMAC [10],

PW-MAC [19], and EM-MAC [18]. A node may turn off its radio after finishing

a packet transmission and does not have to follow other nodes’ schedules, i.e., go

to sleep with others at the same time. Also, whereas nodes running a synchronous

duty-cycling MAC protocol must wake up at the beginning of the Data period and

typically remain awake for all or most of the Data period, nodes running an asyn-

chronous duty-cycling protocol are often able to go to sleep right after transmitting

a packet. However, it is also possible that a receiving node wakes up earlier than

the intended sender and consumes energy when waiting. In order to minimize this

kind of energy wasting, an asynchronous duty cycling MAC protocol needs to develop

energy-efficient node scheduling methods.

Unlike the asynchronous design, in synchronous duty-cycling MAC protocols, all

the nodes start cycles at the same time with the same duty cycle setting. Exam-

ples of synchronous duty-cycling MAC protocols include S-MAC [22], DW-MAC [16],

RMAC [9], and T-MAC [20]. The advantage of synchronous duty cycling is that

a node can easily meet other nodes’ schedules and communicate with them, which

simplifies the design of the MAC protocol as all nodes are awake at the same time.

The synchronous design also avoids a node from idle listening when waiting for an-

3

other node to wake up, helping to increase energy efficiency. On the other hand,

timing synchronization across the network creates a design challenge. Some previ-

ous work [16, 9] is designed upon the assumption that time is already synchronized,

while some other work [14, 13] focuses particularly on fine-grained time synchroniza-

tion instead of building a complete MAC protocol. This thesis focuses on physical

implementation of synchronous MAC protocols.

1.3 Other Energy-Related Issues

Another source of energy wasting comes from packet collisions. Collision of a packet

not only results in time and energy wasting on failing to deliver that packet, it also

causes the MAC layer to retransmit the packet, which increases the network latency

and energy consumption too. In duty-cycling networks, failing to get a packet deliv-

ered usually means the node has to wait until the next cycle to make another attempt.

S-MAC uses collision avoidance mechanisms similar to the RTS/CTS design in the

IEEE 802.11 MAC protocol [11]. This design greatly helps prevent collisions on data

packets and acknowledgements, but it also brings another problem. To avoid collision,

a node that overhears a control packet, i.e., RTS or CTS, from other nodes, will defer

its own control packet transmission to the next cycle. If there is high contention for

the network, a node may overhear others’ control packets quite often, further increas-

ing the latency. In contrast, DW-MAC chooses a different mechanism for channel

usage that results in a shorter network latency. A scheduling packet, SCH, replaces

the roles of RTS and CTS in S-MAC. An SCH is used for reserving a time period

in the cycle, and theoretically, it is guaranteed that once a time period is reserved,

no collision for the data packet will happen. In multi-hop forwarding, an SCH can

play both the roles of a time reservation control packet and a confirmation reply.

4

Compared with S-MAC, which needs two control packets, RTS and CTS, for channel

reservation in each hop, DW-MAC saves nearly half of the control packet overhead.

Through this scheduling mechanism, DW-MAC has more efficient channel usage and

lower latencies and energy consumption than does S-MAC.

1.4 Timing

Accurate timing is important in duty-cycling wireless sensor networks, especially for

synchronous MAC protocols. Many synchronous duty-cycling MAC protocols are

designed under the assumption of accurate timing. Timing inaccuracy may cause

a node to wake up too late or go to sleep too early and miss a packet targeted

to it. This has similar effects to collision. Compared with S-MAC, timing is even

more critical in DW-MAC. DW-MAC uses a technique called proportional mapping,

described in Section 2.2.1, to reserve time periods for data transmission. The design

of proportional mapping guarantees that no collision would occur on data packets and

their acknowledgments. If there is a time difference between one node and others,

i.e., the node does not start a cycle at the same time as others, the node may reserve

a time period that is interleaved with others’ periods, and then collision on data

packets could occur. Even a small time difference can result in great confusion about

the reserved time. Details about this issue will be described in later sections.

1.5 Motivation and Contribution

In the previous work published by Sun et al. [16], DW-MAC was proposed, and per-

formance comparison between DW-MAC and the other two MAC protocols, S-MAC

and RMAC, was also conducted. Their performance evaluation, however, was only

done in the ns-2 simulator. In this thesis, I implement DW-MAC on the Crossbow

5

MICAz motes [2] using TinyOS [4], which is an open-source operating system for

sensor motes, and port the official S-MAC codes [3] to the same platform. I choose

to implement DW-MAC because of its timing critical nature. During the implemen-

tation, many timing-related problems are revealed, and I believe the experiences of

discovering and solving those problems are important for future protocol implemen-

tation and design. I also conduct both real-world experiments and simulation in the

work to provide analysis of the behaviors of both MAC protocols and giving mu-

tual demonstration of the correctness of performance evaluation results. This thesis

also presents some realistic and important issues that are not addressed in the pre-

vious work but exist on physical sensor networks. The following paragraphs briefly

summarize those issues and my solutions and implementation to them.

First, a perfect clock is assumed in the simulation; that is, the clock always ticks

at the same rate. On a real sensor node, however, there is clock drift, which means

the clock rate could change over time. As the CPU of a sensor node is usually cheaper

and simpler than that of modern desktop or laptop computers, clock drift is more

a problem. In addition to the clock drift on one node, the clock rates between two

nodes could also be slightly different. Both the clock drift and clock rate difference

could lead to timing inaccuracy among nodes, which may cause significant impact to

the operation and correctness of MAC protocols. Therefore, a time synchronization

mechanism is required for periodically rectifying timing of each node in the network

and minimizing the impact of timing inaccuracy. While time is assumed to be syn-

chronized across the whole network in the simulation, we need to figure out a way to

handle the timing well when building a physical sensor network in the read world. In

this work, a simple time synchronization mechanism is implemented. Through this

implementation, time is synchronized across the whole network every other cycle so

6

that time differences among nodes are tolerable. The impacts of timing inaccuracy

of DW-MAC are also analyzed mathematically, because DW-MAC is more sensitive

to timing correctness. To meet the timing requirements and correctness of operation

in DW-MAC, I add the concept guard time, which is a small period of time whose

length is computed from the analysis. Combining the guard time with periodic time

synchronization, no collision could occur on data packets and acknowledgements in

DW-MAC. Details of the problems and solutions will be described in later chapters.

The second issue relates to the packet timestamping. In many cases, MAC pro-

tocols need to know the time at which a packet is sent or received. That timing

information can be obtained from the timestamp in a packet. Whereas it is relatively

easy for a simulator to timestamp a packet, a physical sensor node needs to detect a

start frame delimiter (SFD) when a packet comes to its network interface and write

a timestamp to that packet. This timestamp writing must be done very quickly since

the packet transmission is in progress and should not be interrupted. When a packet

arrives, if the node is so busy that there is not enough time to timestamp the packet,

timestamping could fail. To deal with the timestamp problem, in this work, the

statistics of packet processing time in the network physical layer is computed and

kept every time a successful timestamping occurs. The physical-layer packet process-

ing time can be obtained from the difference between the time the MAC layer sees a

packet and the timestamp on the packet. The statistics can be used to estimate the

processing time of packets whose timestamping failed and to infer the time packets

are sent or received.

Third, most CPU overheads, such as instruction execution, packet processing,

and timer handling, are not considered in the simulation and the DW-MAC protocol

design. Ignoring these CPU overheads not only affects the correctness of latency com-

7

putation, it also results in improper network parameter settings and protocol designs.

For example, due to the slow CPU speed, a sensor node may take much longer than

SIFS on packet processing after receiving a packet. This affects the setting of the

timeout value, the maximum length of time a node waits for an acknowledgement

after sending a control and data packet. A long packet processing time also makes

it possible that a node may hear another packet after getting a packet and before

replying with the corresponding acknowledgement, which may degrade the channel

efficiency or break the collision-free property of proportional mapping in DW-MAC.

Considering this problem, in this work, I made a small modification to the propor-

tional mapping in the original DW-MAC design for unicast data transmission so that

it can still run correctly under such slow hardware and keep the same level of channel

efficiency. Details will be discussed in Section 3.1.

Finally, in the work of Sun et al. [16], performance evaluation results only showed

statistics at the level of end-to-end performance. Neither per-flow nor per-hop perfor-

mance or behavior analysis was presented in their work. Detailed analysis would help

in understanding how MAC protocols react to the environment and why some proto-

cols outperform others in some metrics. In this work, in addition to the end-to-end

level, the performance evaluation results are also shown and discussed in the per-hop

and per-flow levels. The detailed results disclose drawbacks in the design of S-MAC,

including the unfairness of flow competition and the channel inefficiency caused by

the conservative collision avoidance mechanism of S-MAC. Through this thesis, the

experiences of physical implementation and evaluation of S-MAC and DW-MAC con-

tribute new information and insights for helping in future MAC protocol design and

implementation in wireless sensor networks.

8

1.6 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, I present the overall design

of S-MAC and DW-MAC. Both S-MAC and DW-MAC divide a cycle into three parts

– the Sync, Data, and Sleep periods. They both leverage control packets to prevent

collision on data packets and acknowledgements. However, the mechanisms their

control packets are used for network resource reservation are quite different, which

leads to different channel efficiency and other performance differences. I describe the

similarity and differences of them in detail and illustrate how those two protocols

work.

The details of this work are shown in Chapters 3 through 6. Chapter 3 discusses

the problems mentioned in Section 1.5 and my solutions to those problems. I also

describe the challenges I experienced in the implementation and experiments and

the ways I addressed those challenges. Chapter 4 describes the network environment

and settings in the performance evaluation of S-MAC and DW-MAC. The settings

include parameters, network topologies, properties of the testbed, and traffic patterns.

Performance evaluation results of the experiments and simulation are illustrated and

discussed in Chapters 5 and 6, respectively. The end-to-end, per-hop, and per-flow

level results are shown and analyzed in those chapters so that the detailed behavior

and characteristics of S-MAC and DW-MAC can be shown.

Chapter 7 discusses some related work, including synchronous and asynchronous

duty-cycling MAC protocols for wireless sensor networks. Brief descriptions and ad-

vantages and disadvantages of those protocols are given in the chapter. I also outline

some previous work of MAC protocol implementation and show the relation and dif-

ferences between this thesis and their work. Some time synchronization techniques

are also introduced. Finally, this thesis concludes in Chapter 8.

9

Chapter 2

Synchronous Duty-Cycling MAC Protocols

Studied

In this thesis, I chose to implement and evaluate two synchronous duty-cycling MAC

protocols, S-MAC and DW-MAC. Both MAC protocols divide a cycle into three

parts – the Sync, Data, and Sleep periods. Every node in the network stays awake in

the Sync and Data periods for packet transmission. In the Sync period, nodes may

send or receive time synchronization packets to coordinate their active and sleeping

schedules. A node that has data packets to send may send control packets first in the

Data period to compete with other nodes for channel usage. If a node does not have

any data packets to send or receive, it will turn off its radio and go to sleep during

the Sleep period to save energy. In S-MAC and DW-MAC, the total length of the

Sync and Data periods divided by the length of a cycle is the duty cycle. The detailed

design of S-MAC and DW-MAC is described in the following sections.

2.1 S-MAC

2.1.1 Scheduling and Time Synchronization

In S-MAC, a node chooses and maintains its schedule as follows. Initially, a node

keeps listening for a short period of time. If the node does not hear any scheduling

packet, i.e., Sync packet, it will start its own schedule, follow the schedule, and

announce it with Sync packets. In contrast, if some Sync packet announced by others

10

is received first, the node will follow the schedule it hears and synchronize its time

with the neighbor that announced the Sync packet. When a node receives a schedule

that is different from the schedule it is following, the node will check if it is the only

node that follows this schedule. If so, then the node will change to the new schedule

it received. Otherwise, the node will adopt both schedules and keep awake in the

Sync and Data periods of both schedules. This time synchronization and scheduling

mechanism enables S-MAC to correctly act as a synchronous duty-cycling protocol

in a large network, while it also brings more complexity for nodes that have to follow

various schedules.

2.1.2 Contention and Collision Avoidance

Since nodes with the same schedule wake up at the same time, they have to contend

for the medium when trying to send packets to their neighbors. Among contention

protocols, S-MAC follows the collision avoidance mechanisms similar to what IEEE

802.11 does, including physical and virtual carrier sense and the RTS/CTS exchange

for hidden nodes.

In the Data period, a node A that wants to send a data packet to a neighbor node

B will first send an RTS to B . This RTS is used for requesting the medium. After

receiving an RTS packet, node B will wait for a SIFS time and reply with a CTS

packet back to node A, informing A that the channel is clear and that the data packet

can be sent. Node A will send its data packet SIFS time after it successfully receives

the CTS reply from node B, and if this is a unicast transmission, node B will reply

with an ACK SIFS time after receiving the data packet. If the RTS/CTS exchange

fails; that is, either one of the control packets RTS or CTS is lost during transmission

or cannot be correctly decoded by the node, the node will try again later in the Data

11

period during the following cycle.

There is a duration field in RTS and CTS. This duration tells other nodes how

long the RTS/CTS/DATA/ACK transmission sequence will last, which also means

the length of time for which the medium will be busy. Upon receiving an RTS or

CTS packet, if the RTS or CTS is not destined to it, a node checks the value in the

duration field, sets the network allocation vector (NAV) to the maximum of current

value and the duration, and sets a timer for the NAV. Before starting an RTS/CTS

exchange, a node first checks its NAV. If the NAV is nonzero, the node regards the

medium as busy and keeps silent until the NAV timer expires. This is called virtual

carrier sensing, which is done at the link layer. RTS and CTS control packets help

prevent collision on data packets and acknowledgements by reserving the medium for

a period of time for their transmission. Therefore, in order to help avoid collisions

of RTS or CTS, a node uses overhearing. Overhearing means that a node receives

a message that is not destined to itself. Before starting an RTS/CTS exchange, if a

node overhears an RTS or CTS packet, that means some other nodes have already

started their transaction. In this case, the node should set its NAV timer and defer

the RTS transmission until the timer expires. If a node overhears a CTS packet before

sending or receiving its CTS packet, the node should turn off its radio so that it will

not interfere with others’ data packets and acknowledgement transmission.

Another form of carrier sensing is performed at the physical layer, called physical

carrier sensing. On a MICAz node running TinyOS, the node makes a clear channel

assessment (CCA) before sending a message. In a CCA, the node keeps sensing for

carriers in the environment for a short and fixed period of time. After the CCA, if

the medium is determined to be clear, i.e., both physical and virtual carrier sensing

indicate the channel is clear, the node will start its packet transmission. In order to

12

decrease the chance that control packets are sent from different nodes at the same

time and collide with each other, each node does a random backoff within a contention

window before the CCA. In contention-based networks, multiple nodes may want to

transmit in a Data period, and these mechanisms prevent collision on data packets

and acknowledgements.

When the Sleep period begins, if a node has no data packets to send or receive

in the current cycle, the node turns off its radio and go to sleep to save energy until

the next cycle begins; otherwise, the node will finish its transaction and then go to

sleep. A node may also go to sleep earlier than the end of the Data period due to

overhearing a CTS packet. Through all the collision avoidance mechanisms above,

S-MAC effectively reduces energy wasting due to idle listening and collision.

2.1.3 Adaptive Listening

Adaptive listening is a technique that S-MAC uses to decrease network latency in

multihop unicast transmission. In the original S-MAC design [21], a packet can

travel at most one hop in a cycle. If the path length of a flow is long, it will take

a long network latency for the packet to be delivered to the destination. Adaptive

listening turns S-MAC into a more active mode to shorten the end-to-end latency.

For example, assume that node A wants to send a data packet to some destination

node in the network via nodes B and C in sequence, i.e., B is the next hop of A,

and C is the next hop of B in this case. First A sends an RTS to B to request a

transaction. After B receives the RTS, B waits for SIFS time and replies with a CTS

back to A. At the same time, C also receives this CTS because C is also in the

transmission range of B . Before node C goes to sleep due to overhearing the CTS, it

can check the duration field in the CTS and learn about when the transaction, i.e., the

13

RTS/CTS/DATA/ACK packet sequence, ends. With adaptive listening enabled, C

will assume that it might be the next hop of B and wake up again after the transaction

between A and B finishes. At that time, with the help of cross-layer cooperation,

B can know which node is the next hop, so it can adaptively start a new RTS/CTS

exchange to forward the data packet to C . An RTS/CTS exchange between B and C

is still required so that collision avoidance can be ensured. The advantage of adaptive

listening is that the network latency can decrease up to 50%. However, there is a

drawback of wasted energy. Every node that overhears the CTS from B makes the

same assumption that it might be the next hop, and all of these nodes will wake up

after A and B finish their transaction. Only one of B ’s neighbor is the next hop, and

others are just wasting their energy by waking up then and turning their radio on.

In Chapter 5 and 6, I will analyze the impact of adaptive listening in detail.

2.2 DW-MAC

Similar to the design of S-MAC, the first period of a cycle in DW-MAC is the Sync

period, the period of time nodes exchange their time synchronization packets. In

the original DW-MAC work [16], however, a separate time synchronization protocol

is assumed to exist and be used to synchronize clocks in the sensor nodes, and no

synchronization mechanism is either simulated or implemented in that work.

2.2.1 Scheduling: On-Demand Wakeup and Proportional Mapping

In DW-MAC, nodes acquire the medium via control packets during the Data period,

but the way the control packets are used for medium reservation is quite different

from that in S-MAC. First, DW-MAC replaces the RTS/CTS control packets in

S-MAC with a special packet called a scheduling frame (SCH), which plays roles for

14

��
���

�

S

A

S

S S

ADATA

DATA

Sync Data Sleep

A

B

����� ���	� ��
���

�

��

� ��

: packet transmission

: packet reception

: radio on

: SCH

: ACK

S

A

Figure 2.1 : Unicast data transmission in DW-MAC

channel competition and scheduling simultaneously. In addition, instead of sending

and receiving a data packet right after this control packet, DW-MAC chooses to

wake up nodes on demand in the Sleep period for data packet and acknowledgement

transmission. Figure 2.1 shows how SCH is used for medium reservation and how

on-demand wakeup works. In the Data period, node A with pending data packets

first does a random backoff and physical carrier sense, the same as is done in S-MAC.

If the channel is considered free, then node A sends an SCH to the next hop B for data

transmission scheduling. At the same time, A records the value TS, the transmission

duration of the SCH, and TD
1 , length of time between the start of the Data period

and the time the SCH was sent. With knowledge of the data rate and the size of an

SCH, as node B receives the SCH, B can calculate the values TD
1 and TS as well.

Upon receiving the SCH, if this is unicast traffic, node B waits for SIFS time and

then replies with another SCH as confirmation back to node A at time TD
2 after the

beginning of the Data period. Similarly, node A can determine the value TD
2 after

receiving the SCH from B . After a successful SCH exchange, both node A and B

schedule a time in the Sleep period, and they will wake up at that time to finish

15

their data packet transmission. This time begins at T S
1 and extends to T S

2 after the

beginning of the Sleep period, which is calculated based on proportional mapping :

TD
1

TS
1
=

TD
2

TS
2
= TData

TSleep
.

With proportional mapping, node A and B can uniquely determine the data trans-

mission time without having any timing information in the SCH. The time between

T S
1 and T S

2 also determines the maximum data and ACK transmission time.

DW-MAC relies on physical carrier sense and random backoff to reduce the chance

of collision on SCHs. In the Data period, each node in the network that has pending

data packets can freely send its SCH and contend for the medium any time the node

find the channel is clear after its random backoff. This is different from the collision

avoidance mechanism in S-MAC, especially in the case of control packets overhearing.

While in S-MAC a node that overhears a CTS packet has to turn off its radio and

go to sleep, in DW-MAC, the node can defer its SCH transmission until it senses the

channel is free and send the SCH later in the same Data period. Theoretically, the

proportional mapping mechanism guarantees that the data and ACK transmission

in the mapped time period in the Sleep period is collision free if the corresponding

SCH exchange in the Data period was successful. The proof is presented in the

DW-MAC paper [16]. With the help of the proportional mapping and on-demand

wakeup mechanisms, DW-MAC allows more nodes to deliver their data packets in a

cycle than does S-MAC. Furthermore, in the Sleep period, because nodes only wake

up at the necessary time, i.e., the mapped times, energy efficiency is not degraded in

DW-MAC.

16

S

A

S

S S

ADATA

DATA

Sync Data Sleep

A

B

AS S DATAC

S ADATA

: packet transmission

: packet reception

: radio on

: SCH

: ACK

S

A

Figure 2.2 : Optimized multihop forwarding for unicast traffic in DW-MAC

2.2.2 Optimized Multihop Forwarding

In addition to the sender and receiver addresses and some other required fields, an

SCH also includes the network-layer destination address. With the help of this field

and cross-layer cooperation, a node receiving an SCH can learn at the link layer which

node is the next hop. This design enables a data packet to go multiple hops within

a cycle. Figure 2.2 shows an example of this. In the Data period, as node B replies

with an SCH to node A after receiving A’s SCH, the SCH B sends not only acts as

a confirmation SCH for node A, it also plays the role of a scheduling request for B ’s

next hop, node C . Because of the network destination address in the SCH, B can

identify from A’s SCH which node is the next hop and send another SCH to the next

hop. After receiving the SCH transmitted by B, only the correct next-hop node, node

C, will reply with a confirmation SCH back to B SIFS after receiving the SCH from

B . Following this way, in the best case, only n+ 1 SCHs are required for scheduling

a data packet to go n hops in a cycle. Those n SCHs are mapped to n independent

time periods in the Sleep period among the n hops, so the collision-free property is

maintained. This is called optimized multihop forwarding. Compared with S-MAC,

optimized multihop forwarding allows DW-MAC to deliver a data packet through

17

multiple hops within a cycle, whereas a packet can travel at most two hops in a cycle

in S-MAC, even with adaptive listening enabled. This optimization greatly shortens

network latencies in DW-MAC. Also, in S-MAC, at least 2n control packets are

required for a data packet to go n hops, whereas in DW-MAC, only n+ 1 SCHs are

needed in the best case, which may save nearly half of the control packet overhead.

Furthermore, although adaptive listening enables S-MAC to deliver a packet through

two hops in a cycle, it also causes all the nodes that overhear the CTS packet to wake

up. In contrast, in DW-MAC, only the correct next hop will wake up on demand in

the Sleep period to receive (and forward) the data packet, further reducing energy

waste.

18

Chapter 3

Physical Implementation Issues

As a part of the work in this thesis, I implemented DW-MAC under the UPMA

framework [12, 5] in TinyOS 2.1.0 on a network of Crossbow MICAz sensor motes.

All of the code is written in the nesC language, an extension to the C programming

language. For consistency and fairness in the performance comparison, I also ported

the official S-MAC code [3] from TinyOS version 1.x on Mica2 motes to TinyOS 2.1.0

on MICAz motes. The physical implementation of both protocols brings new issues

and problems that were ignored in the simulated environment in previous work [16].

In the following sections, I will discuss those problems and present my solutions to

them.

3.1 Enhanced Proportional Mapping in DW-MAC

In the original DW-MAC design for unicast transmission [16], after a node receives an

SCH request, the node waits for SIFS time and then replies with a confirmation SCH.

Based on my implementation experiences, however, it is nearly impossible to follow

this rule. According to the definition of SIFS, which is the time the transmitting radio

needs to switch back to receiving mode and be able to decode incoming packets, the

value of SIFS is very short on the sensor hardware such as MICAz motes. In contrast,

the CPU on a MICAz mote is relatively slow so that it takes longer than SIFS time

for the CPU to process an incoming or outgoing packet. The packet processing time

19

is so long that a node may receive two or more SCH requests from different senders

before the node replies with any confirmation SCH. The node may then have two

different policies to deal with this situation. The first policy is ignoring the second

and later incoming SCH requests and just replying to the first SCH request. Although

the original DW-MAC proportional mapping still works under this policy, the policy

itself may cause many SCH requests be dropped in the Data period, and nodes that

fail to get a successful SCH exchange have to try again, increasing overheads and

network latency. The alternative policy is queuing all the incoming SCH requests

and replying to them one by one when the node is not busy. This policy, however,

may cause mapped time slots in the Sleep period to overlap with each other and

break the collision-free property of proportional mapping. In order not to degrade

the channel efficiency, I chose the second policy in this work and adapted the original

proportional mapping mechanism to work correctly on the hardware with such a slow

CPU.

As shown in Figure 2.1 of Section 2.2.1, the original proportional mapping maps

a time period between the beginnings of an SCH request and that of its confirmation

SCH in the Data period to the Sleep period. Instead, in my enhanced version of

proportional mapping, a scheduled time period in the Sleep period is mapped from

the small period of time when an SCH request is being transmitted on the air. The

enhanced version of proportional mapping is similar to that in the original DW-MAC

design for broadcast transmission. Figure 3.1(a) illustrates the design of the enhanced

proportional mapping. Similar to the original version, after the successful SCH ex-

change, both nodes A and B wake up T S
1 after the beginning of the Sleep period.

The length of the mapped time in the Sleep period, however, becomes TM , where

TD
1

TS
1
= TS

TM
= TData

TSleep
.

20

��
�

��
�

Sync Data Sleep

A

B

����� ���	� ��
���

��
�

S

S S

S ADATA

ADATA

: packet transmission

: packet reception

: radio on

: SCH

: ACK

S

A

(a) Basic design

S

S ADATA

Sync Data Sleep

A

B

C S

S

S

S

S

S

ADATA

: packet transmission

: packet reception

: radio on

: SCH

: ACK

S

A

ADATA

ADATA

(b) An example of receiving two SCH requests before any reply

Figure 3.1 : Enhanced proportional mapping for DW-MAC

With this modification, a node that receives an SCH request simply has to reply to it

before the end of the Data period and before the sender’s SCH timeout, which provides

more flexibility in time scheduling. An example is shown in Figure 3.1(b). This

modification not only keeps the channel and energy efficiency and the collision-free

property of proportional mapping, it also makes DW-MAC compatible with various

hardware characteristics. The proof of the collision-free property for the enhanced

proportional mapping is similar to that provided in the original DW-MAC paper [16].

Any proportional mapping mentioned in the remainder of this thesis refers to this

enhanced version.

21

3.2 Timing Inaccuracy

Accurate timing is important to the correct operation of synchronous duty-cycling

MAC protocols such as DW-MAC. However, in sensor nodes, there are two reasons

for inaccurate timing: clock drift and hardware interrupt disabling.

Clock drift is a phenomena where a clock does not run at exactly the correct speed

compared with other clocks or the same clock itself at different times. Clock drift

exists in virtually all clocks in the world, including modern computers and sensor

nodes. In sensor nodes, due to the relative low cost and simple design compared

with desktop or laptop computers, clock drift is often more severe. Based on my

observation on the MICAz motes, the clock drift could be around 20 µs per second.

This is a significant amount. For unattended sensors, this magnitude of clock drift

may cause 72 ms time difference among nodes after an hour. In the performance

evaluation in this thesis, however, the lengths of the Sync and Data periods are 55.2

ms and 89 ms, respectively. A 72 ms time difference could lead the nodes into great

confusion about the periods in a cycle.

The other cause of timing inaccuracy comes from hardware interrupt disabling.

TinyOS maintains its clock time using a periodic interrupt from the hardware. If

the hardware interrupt is temporarily disabled anytime when a mote is running, the

periodic interrupt from clock ticks may be delayed, influencing the correctness of

the clock time. One thing that may cause the hardware interrupt to be temporarily

disabled is logging to the flash storage on the mote. As the mote starts to write logs

to the flash, hardware interrupts are disabled until the writing finishes. Logging itself,

however, is almost inevitable, especially in experiments for performance analysis, since

every node in the network has to record some information about the packets sent and

received.

22

Solving either problem above directly from the hardware or operating system level

is not easy. Instead of solving them directly, I choose to minimize the time difference

among nodes from the view of cycles; that is, the goal is making the nodes start their

cycles almost at the same wall clock time, regardless of what their clock times on the

motes are. Before describing the solutions, I discuss the impacts of time differences

on DW-MAC.

3.2.1 Impact on DW-MAC

In synchronous duty-cycling MAC protocols, time differences cause nodes not to start

their cycles at the same time. Whereas in S-MAC where a small time difference among

the nodes does not result in significant impacts to the correctness of protocol opera-

tion, DW-MAC may suffer much more significantly from a small time difference. The

reason why DW-MAC is so sensitive to the timing is that DW-MAC uses on-demand

wakeup and proportional mapping when scheduling data packet transmissions. As-

sume the ratio of the length of the Sleep period to the length of the Data period is

r:

r = TData

TSleep
.

Through proportional mapping, any time in the Data period will be mapped to a

period r times longer in the Sleep period. If there is a small time difference δ between

two nodes, that difference δ in the Data period will also be amplified into an rδ

schedule difference in the Sleep period; that is, one node may wake up rδ later than the

other node. With the rδ schedule difference, the collision-free property of proportional

mapping in DW-MAC is no longer guaranteed, and packets may be lost due to late

wakeup, late transmission, or collision. Figure 3.2 shows these cases of packet loss.

23

Sync Data Sleep

δ δ δ

T

T+δ

data

wake up

too late!

AAAA

BBBB

rT

r(T+δ)

g

s

: SCH transmission : SCH reception : radio on g : guard time

(a) Late wakeup

Sync Data Sleep

δ δ δ

T

T-δ

data

TX packet

too late!AAAA

BBBB

rT

r(T-δ) k

g

: SCH transmission : SCH reception : radio on g : guard time

(b) Late transmission

Sync Data Sleep

δ δ δ

T1

dataAAAA

CCCC

g

BBBB

rT1

T2 rT2
datag

collision !

: SCH transmission : SCH reception : radio on g : guard time

(c) Collision

Figure 3.2 : Impacts of time difference among nodes on DW-MAC

24

In Figure 3.2(a), node A has a packet to be sent to node B, and A first sends

an SCH to B in the Data period. After the successful SCH exchange, both A and

B schedule a time in the Sleep period to wake up for data packet delivery; however,

the time periods they have scheduled are not the same. Due to the time difference δ

between A and B, A thinks the SCH is sent at time T after the beginning of the Data

period, but from B ’s view, the SCH is sent at time T + δ. According to proportional

mapping, A wakes up at time rT after the beginning of the Sleep period based on

its view, whereas B wakes up at time r(T + δ) from B ’s view. In fact, B wakes up

(r − 1)δ later than A does. At the time B wakes up, A has finished its data packet

sending. Node B does not receive the data packet, and node A does not get an ACK

from B.

Another case is similar, but in this case node B wakes up too early so that A

wakes up after B reaches its receiving timeout and goes to sleep. This case is shown

in Figure 3.2(b). In this case and the previous case, the data transmission fails, which

also leads to retransmission in the next cycle and latency increase and energy waste.

In the last case, data packets collide with each other. Figure 3.2(c) shows an

example of this case. Time is perfectly synchronized between nodes B and C, but A

starts its cycle δ later than B and C do. Both nodes A and B have data packets to

send to node C in the same cycle, and in this example they each send an SCH to C at

time T after the Data period starts based on their views of time. If time is perfectly

synchronized between A and B, then their SCHs should collide with each other. In

this example, however, δ is larger than the time needed for an SCH exchange, and

the SCH exchange between A and C is completely separated from that between B

and C. Since both SCH exchanges are successful, A and B wake up at time rT after

the beginning of the Sleep period and send their data packets. In this case, δ is less

25

than the time needed for data packet transmission, and collision occurs at C. Both A

and B fail to get their data packets delivered, and they have to try again in the next

cycle.

To solve these problems, the time difference δ should be kept as small as possi-

ble, which leads to the requirement of periodic time synchronization. In real-world

hardware, however, it is very difficult to perfectly synchronize the time even for only

two nodes. There is always an error, and the error would create nonzero probability

of such packet loss. To address this problem, I add a guard time into the DW-MAC

design. Adding the guard time allows DW-MAC to function correctly in spite of such

imperfect time synchronization. Applying the two mechanisms of periodic time syn-

chronization and use of a guard time together brings back the theoretical collision-free

property of proportional mapping in DW-MAC. Details of these two mechanisms are

described in Sections 3.2.2 and 3.2.3, respectively.

3.2.2 Time Synchronization

The previous section described the importance of time synchronization in DW-MAC.

However, time synchronization is required for all duty-cycling MAC protocols, in-

cluding S-MAC. A simple time synchronization mechanism is adopted in this work,

for both S-MAC and DW-MAC, for globally synchronizing nodes in a small network.

In the experiments, a global synchronizer was placed in the middle of the network.

The radio transceiver of the synchronizer is adjusted to a higher transmit power so

that all the nodes in the network can hear messages from the synchronizer. The

synchronizer broadcasts consecutive Sync packets until the end of the Sync period.

Each Sync packet contains a field that records the duration between the time the

Sync packet is sent out and the beginning of next Data period. With the duration

26

field and knowledge of the radio transmission rate, each node that receives any Sync

packet can calculate the time to the beginning of next Data period. For each node

in the network, as long as one Sync packet is received in the current Sync period,

the node can start its next Data period simultaneously with other nodes, although

different nodes may have different absolute clock times in themselves.

The synchronizer must put a correct value in the duration field for every Sync

packet. In TinyOS, this can be done only at the moment that the first byte of a

Sync packet is just to be sent over the air, since the packet processing time in the

hardware cannot be accurately predicted. When encapsulating an outgoing packet at

the physical layer, the hardware adds a byte, called the start frame delimiter (SFD),

between the preamble and the packet body. The SFD denotes the beginning of a

packet. Upon seeing the SFD when sending or receiving a packet, the hardware

generates an interrupt to the operating system, here TinyOS, and tells the operating

system that the SFD has been processed. In the interrupt handler, the correct value

in the duration field of a Sync packet can be obtained by computing the difference

between the time the interrupt happens and the beginning of next Data period.

In this work, each node running S-MAC or DW-MAC is assumed to know the

length of each period in a cycle. Even if a node fails to receive any Sync packet in

a certain cycle, clock drift would not drive the node too far away from the correct

schedule in a short period of time. The node can still follow others’ schedule since the

last time it was synchronized. Therefore, the global synchronizer does not have to

broadcast Sync packets in every cycle. To reduce synchronization overheads and keep

the schedule synchronized on each node, time synchronization is set to be performed

every other cycle in the experiments in this thesis.

Through this mechanism, time can be coarsely synchronized, but not perfectly.

27

Sync Data Sleep

δ δ δ

T1

dataAAAA

CCCC

g

BBBB

rT1

T2 rT2

: SCH transmission : SCH reception : radio on

g : guard time

datag

data

: ACK transmission : ACK reception

data

Figure 3.3 : The design of the guard time in DW-MAC

This is due to the limitation of the timer granularity in the hardware. All the time-

related operations in the hardware rely on the timer. Crossbow MICAz motes provide

three different levels of timing precision: millisecond, 28.8 kHz, and microsecond,

where the millisecond and 28.8 kHz timers are more accurate and stable than the

microsecond timer. In this work, both the former two timers are used in the im-

plementation for different purposes and different timing requirements. For example,

DW-MAC uses the 28.8 kHz timer for time synchronization, since DW-MAC is more

sensitive to time difference among nodes.

3.2.3 Guard Time

Time synchronization itself is not enough for satisfying the collision-free property in

the Sleep period in DW-MAC, i.e., the time difference δ mentioned in Section 3.2.1 is

still nonzero. Therefore, additional mechanisms are required as well for guaranteeing

28

successful data transmission in the Sleep period. In this work, I add a guard time into

the DW-MAC design. Guard time is a small period of time allocated in the front of a

mapped time period in the Sleep period if the time period is scheduled for sending a

data packet. Figure 3.3 depicts the design of the guard time. A node that schedules

the sending of a data packet wakes up at the beginning of the mapped time period.

Instead of sending the packet immediately, the node waits for the guard time first

and then sends the packet. On the other hand, the intended receiver wakes up at the

scheduled time and keeps listening to the channel for a while. If the receiver does not

receive any packet after timeout happens, the receiver will give up and go to sleep.

The cases of packet loss or collision mentioned in Section 3.2.1 can be completely

avoided if the length of the guard time g is greater than or equal to (r− 1)∆ and the

receiving timeout value is greater than or equal to 2(r−1)∆. The symbols are defined

in Table 3.1. The proof of these claims is provided in Section 3.2.4. Additionally,

the size of a data packet needs to be limited. Based on my experiment settings in

Tables 4.1 and 4.2, the data packet size should be smaller than 150 bytes so that the

collision-free property can still hold. This restriction, however, does not cause any

problem on the MICAz motes because the maximum packet size the motes support

is 128 bytes.

3.2.4 Proof of Lower Bounds for the Guard Time and Receiving Timeout

The proof is divided into three cases. The first case is to prevent late wakeup, which

is depicted in Figure 3.2(a). To prevent late wakeup, the following condition must be

satisfied:

r(T +∆) < rT + g +∆ ⇒ (r − 1)∆ ≤ g (3.1)

29

∆ Maximum time difference between any two nodes

s Duration of SCH transmission

g Length of the guard time

d Duration of data packet and ACK transmission

k Timeout value for waiting a data packet

r The sleep-to-data ratio TData

TSleep

Table 3.1 : Symbols used in the proof

The value g + d must be less than or equal to rs, which is the length of the mapped

time period. Consider the boundary condition and assume that g + d = rs.

In the second case, as shown in Figure 3.2(b), node A has to transmit the data

packet after node B wakes up and before B ’s timeout occurs so that node B can

receive the whole packet from A. Thus, the following condition must hold:

∆ + r(T −∆) < rT + g < ∆+ r(T −∆) + k

⇒ g < k − (r − 1)∆.
(3.2)

Figure 3.2(c) illustrates the last case. To avoid collision, the packet transmission

duration between nodes A and B should not overlap. Additionally, between A and

B, the node that sends its SCH request first (based on node C ’s view) must send its

data packet first as well. If A sends its SCH request prior to B :

∆ + T1 + s ≤ T2 (3.3)

∆ + rT1 + rs ≤ rT2 + g. (3.4)

30

Equation 3.3 derives

r∆+ rT1 + rs ≤ rT2

⇒ (∆ + rT1 + rs) + (r − 1)∆ ≤ rT2 ≤ rT2 + g,

which implies Equation 3.4. In the other case, B sends its SCH request prior to A:

∆ + T1 ≥ T2 + s (3.5)

∆ + rT1 + g ≥ rT2 + rs. (3.6)

Equation 3.5 derives

r∆+ rT1 ≥ rT2 + rs

⇒ ∆+ rT1 + (r − 1)∆ ≥ rT2 + rs,

and Equation 3.6 holds if

g ≥ (r − 1)∆. (3.7)

To meet all the conditions in Equations 3.1, 3.2, and 3.7, the values of the guard

time g and receiving timeout k must satisfy g ≥ (r − 1)∆

k ≥ 2(r − 1)∆.

�

3.3 Packet Timestamping

Packet timestamping is a feature of TinyOS that stamps the clock time on the header

of a packet when an incoming or outgoing packet is processed by the hardware. This

timestamp, for example, helps a MAC protocol knows the actual time a packet was

sent or received by the hardware. The time information is sometimes very important

31

to MAC protocols. In S-MAC with adaptive listening enabled, for example, a node

that overhears a CTS packet needs to know when to wake up adaptively to receive

the corresponding data packet. A node that receives a Sync packet in the Sync period

also has to know the clock time the packet was received so that the node can correctly

predict when the next Data period begins. This timestamp is even more important

to DW-MAC because of the proportional mapping and on-demand wakeup features

of DW-MAC. If the sender and the receiver do not agree on the same timing of SCH

transmission, then they may wakeup at different times in the Sleep period and fail to

get the data packet delivered, even if their clock times are perfectly synchronized.

In TinyOS, timestamping is done in the interrupt handler when a start frame

delimiter is detected. The timestamping, however, has to be done very quickly since

the packet transmission is in progress. In addition, the interrupt handler is preempt-

able; that is, another interrupt may occur before the current interrupt processing

finishes. When the node is very busy, there might not be enough time to timestamp

a packet, and the timestamp field in the packet previously set to a special constant,

which denotes an invalid packet timestamp in TinyOS, is not overwritten. In this

case, timestamping fails, and what the link layer sees would be the invalid packet

timestamp.

Designing a solution for making timestamping always successful could be very

difficult or even impossible. Instead, in this work, I choose a preliminary but simpler

way to mitigate the impact of invalid packet timestamps by estimating the delay

between the time SFD is processed by the hardware and the time link layer receives

the packet. This estimation is done statistically based on the historical experiences of

processing delay by the node. When an incoming packet arrives at the link layer, if its

timestamp is valid, the link layer calculates the processing delay and incorporates the

32

value into its records. Additionally, the link layer also computes the mean delay in

the historical records and keeps updating the mean value as new records are included.

When an incoming packet with invalid timestamp is received, the link layer uses the

mean value as the estimate of the processing delay of the packet. Combined with

the current clock time at which the link layer receives the packet, the estimated SFD

time is calculated.

For outgoing packets, a similar statistical estimation method is used. Upon fin-

ishing a packet transmission, the hardware generates another interrupt to tell the

upper layer the transmission is done. The link layer computes the processing delay

based on the time the interrupt happens and the packet timestamp on the copy of the

transmitted packet, if the timestamp is valid. On the other hand, if the timestamping

fails, the link layer refers to the historical statistics to estimate the processing delay.

33

Chapter 4

Performance Evaluation Methodology

The purpose of my implementation of both S-MAC and DW-MAC was not only to

show their differences on performance metrics but also to examine their detailed be-

havior and analyze how they respond to various network environments. This chapter

describes the environment and methodology of the experiments and simulation, hard-

ware properties, network topologies, traffic settings, and other network parameters

used. Additionally, experiences of my implementation and experiments are also dis-

cussed. The performance results of the experiments and simulation will be covered

in the following two chapters.

4.1 Physical Implementation

My implementation was done on Crossbow MICAz motes, such as depicted in Fig-

ure 4.1. A MICAz mote has an Atmel ATmega128L 8-bit microcontroller with 7.37

MHz clock, 128k bytes program flash memory, 4k bytes RAM, and 512k bytes mea-

Figure 4.1 : Crossbow MICAz mote

34

Bandwidth 250 kbps

Max. packet size 128 bytes

Voltage 3.3 V

TX current 8.5− 17.4 mA, 8 levels

RX current 18.8 mA

Idle mode current (radio on) 18.8 mA

Idle mode current (radio off) 0.426 mA

Table 4.1 : CC2420 hardware properties

surement flash memory. The mote is powered by two AA batteries. MICAz motes

also provide three different hardware clocks, which generate interrupts at millisecond,

28.8 kHz, and microsecond levels, respectively. Each MICAz mote is equipped with a

6 cm long antenna. The radio chip on MICAz motes is CC2420, which uses a 2.4 GHz

IEEE 802.15.4-compliant RF transceiver. The modulation technique CC2420 uses is

digital direct sequence spread spectrum (DSSS). Detailed properties of the CC2420

radio are listed in Table 4.1.

The experiments were done in a network composed of nine sensor nodes and one

global synchronizer in an indoor environment with walls, server racks, chairs, and

other obstacles. All the nine nodes were placed on the floor, and the synchronizer

was put on a chair about half meter high. The nine nodes were configured with the

lowest transmission power, which is -25 dBm, whereas the transmission power of the

synchronizer was set to -10 dBm.

As shown in Figure 4.2, the nine nodes form a cross topology. The synchronizer is

35

0

1

2

3

4

8 7 6 5

S

45cm

Figure 4.2 : Network topology used in the performance evaluation

located at nearly the center of the network and configured with higher transmission

power so that every sensor node can hear Sync packets from the synchronizer. During

an experiment, the synchronizer broadcasts Sync packets to the whole network in the

Sync period every other cycle. The inter-node distance between any two consecutive

nodes on a line of the cross is 45 cm. This distance guarantees that a node can almost

always hear from its neighbor and decode messages if no collision or interference exists.

There are two unicast flows in the network. Those two flows fall on the two lines

of the cross, respectively. Packets on one flow are generated by node 0 and go down

to node 4. On the other flow, node 5 is the source, and node 8 is the destination.

Static routing is used. Packets on each flow travel node-by-node from the sources to

the destinations. The two flows intersect at node 3. During a round of an experiment,

both nodes 0 and 5 generate data packets at the application layer simultaneously and

periodically. There are totally 10 packets generated in each flow in each experiment.

Simultaneous packet generation on the two flows increases the network contention,

which helps analyze how S-MAC and DW-MAC respond to harsh network situations.

36

Data packet size 40 bytes TSync 55.2 ms

SCH size 14 bytes TData 89 ms

Size of RTS/CTS/ACK 10 bytes TSleep 2739.8 ms

Min. contention window size 8 TCycle 2884 ms

Max. contention window size 64 Duty cycle 5%

SCH/CTS timeout 25 ms Sleep-data ratio (r) 30.78

ACK timeout 10 ms Control packet retry limit 7

Guard time 1.06 ms Data packet retry limit 5

Table 4.2 : Network parameters used in the performance evaluation

There are four different inter-packet intervals, 2.5, 5, 10, and 20 seconds, in the

experiments. The purpose of varying packet intervals is to compare the performance

of S-MAC and DW-MAC under different traffic loads. In each experiment, the sources

wait for 20 seconds before generating the first packet, and the experiment lasts for

240 seconds. Other network settings are listed in Table 4.2.

The settings of TSync and duty cycle are consistent with those used in the DW-MAC

paper [16]. The length of the Data period, TData, is calculated by summing up the

maximum required time for random backoff and RTS/CTS transaction in S-MAC.

Although it might be a little unfair to DW-MAC because an SCH is a little larger

than an RTS or CTS in size, DW-MAC is not favored in any way, and DW-MAC still

outperforms S-MAC based on the evaluation results.

The minimum and maximum contention window sizes are also defined in Table 4.2.

In each experiment, after a node sends an RTS or SCH request, if the node does not

37

Propagation model TwoRayGround

Antenna model Omnidirectional antenna

Capture threshold 8.0

Carrier sense threshold 1.29528e-10 W

Reception threshold 2.29591e-10 W

Transmission power 3.1623e-6 W

Radio frequency 2.4385 GHz

System loss factor 1.0

Table 4.3 : Physical layer parameters used in ns-2 evaluation

get a CTS or SCH reply after timeout occurs, the node will double its contention

window size; otherwise, the contention window size will be cut half. The initial

contention window size is set to the minimum.

4.2 Simulation

I also evaluated S-MAC and DW-MAC using the ns-2 simulator version 2.29, and most

of the network settings are the same as those in the experiments. In order to simulate

the radio behavior of MICAz motes, parameters at the simulated physical layer are

set based on what were seen in the experiments. Table 4.3 lists those parameters. The

experiment results show that nodes 0 and 4 can sometimes hear and decode packets

from further hops than other nodes do. Similarly, packets sent by nodes 0 and 4

can also be delivered to further distances. I believe this is because the experiment

environment is not free space, and constructive multi-path reflection might happen

38

at those two nodes. Considering this, I set the transmission power and reception

threshold of those two nodes to different values, 4.7608e-6 W and 1.52503e-10 W,

respectively. Since radio behavior in the real world is much more complicated than

that in the simulator, such parameter adjusting is reasonable and makes the simulated

radio behavior closer to the real hardware.

Beside the radio parameter settings, there are some aspects that are not perfectly

simulated. First, the transmission range of the simulated radio is a perfect circle, and

there are no obstacles in the simulated environment. In the simulation, as the receiv-

ing signal strength is above the reception threshold, the receiver can always decode

incoming packets successfully if there is no collision. On the other hand, if the signal

strength is below the threshold, the packets can be heard but cannot pass the CRC

check. If the signal strength is even lower, i.e., lower than the carrier sense threshold,

none of the packets can be heard. In addition, unlike the real physical implementation

environment, there is no variable or random component to the relationship between

signal strength and distance in the simulation model; that is, with a given setting of

transmission power and distance, the receiving signal strength is deterministic.

Second, the computation overhead is not fully simulated. For example, the exact

time needed for packet processing is not predictable on the motes. After receiving a

request or a data packet, a node has to analyze the packet it received and prepare for a

reply and then send the reply back to the sender of the request or data packet. During

this packet processing, other events might occur, either internally or externally, that

could influence the processing time of the packet. Although the range of the packet

processing time can be learned from the experimental results, it is difficult to know

its distribution. In the simulation, the processing time is randomized between the

observed minimum and maximum packet processing time in the experiments. Similar

39

things happen when a node is turning its radio on or off, for which the exact duration

is also not predictable. The minimum duration of radio state transition observed

in the experiment is applied in the simulation. Beside the differences between the

simulation and experiments described above, packet timestamping is always successful

in the simulation, because time is “paused” when the simulator is processing an event.

40

Chapter 5

Experimental Results

This chapter presents the experimental results of S-MAC and DW-MAC with the four

inter-packet intervals as described in the previous chapter. For each pair of protocol

and inter-packet interval setting, the experiment is run 10 times, and the average

results are presented. Performance metrics I measure include end-to-end latency,

per-hop latency, energy consumption, and packet delivery ratio. I also explore the

reasons that cause latencies at each hop, including analyzing how adaptive listening

works under various network conditions.

5.1 Overall Performance Analysis

5.1.1 End-to-End Latency

Figure 5.1 shows the end-to-end latency of packets under different inter-packet inter-

vals. In both MAC protocols, the end-to-end latency decreases as the inter-packet

interval increases. When the inter-packet interval is small, the traffic is bursty, and

the chances of collision and contention on the control packets, i.e., SCH, RTS, and

CTS, is high. This contention and collision causes latencies on the data packets. In

this situation, additionally, the rate at which packets are generated is faster than

the rate packets are drained from the nodes. Thus, many packets are queued in the

middle of the network, waiting to be forwarded to the next hop. As inter-packet in-

terval increases, network loads are distributed over time, and the chance of contention

41

Inter−packet interval (s)

La
te

nc
y

(s
)

2.5 5.0 10.0 20.0

10
20

30
40

50
DW−MAC
S−MAC

Figure 5.1 : End-to-end latency comparison

decreases. In these experiments, DW-MAC always outperforms S-MAC in terms of

end-to-end latency. The influence of network loads on the latency is much smaller in

DW-MAC than in S-MAC. The heights of the error bars also show that DW-MAC is

more stable in performance than is S-MAC. In the case of 2.5 s inter-packet interval,

the average end-to-end latency of DW-MAC is around 8.4 seconds, which is longer

than the packet interval. Queuing itself contributes a significant part to the latency,

as does contention. Not only packets on different flows create contention, but packets

on the same flow also compete with each other for the network channel. With longer

inter-packet intervals, the latency of DW-MAC is less than the packet interval, and

thus almost every packet can be delivered to the destination before the next packet

is generated. Thus, inter-packet interference on the same flow rarely exists. This is

42

why DW-MAC keeps an almost flat curve of end-to-end latency when the inter-packet

interval is above 5 seconds.

On the other hand, S-MAC has larger end-to-end latency than the inter-packet

interval when the inter-packet interval is less than 20 seconds. The reason why S-MAC

has much longer latencies is that S-MAC suffers from much more contention, and

it takes longer for each packet to get to its destination. In S-MAC, when a node

overhears a CTS packet before sending any RTS or CTS packet, or when the node

overhears an RTS packet before sending its own RTS packet, the node has to defer the

RTS or CTS transmission or cancel its current RTS/CTS transaction. Because of this

collision avoidance mechanism and how the length of the Data period is decided, the

node has to wait until the next cycle and must then compete with other nodes again.

In the experimental network (Figure 4.2), nodes have chances to hear packets from

two to three hops away. If many nodes in the network try to start their RTS/CTS

transaction in the same Data period, it is very likely for a node to overhear RTS

or CTS packets. Finally, only a small portion of nodes can finish their RTS/CTS

transactions and forward the data packets in a cycle, and other nodes have to make

another attempt in the next cycle. Packets spend most of the time on queuing, so the

end-to-end latency is linearly and inversely proportional to the inter-packet interval

when the interval is between 2.5 and 10 seconds.

One reason why DW-MAC can drain packets off from the network so fast is its

optimized multihop forwarding. While adaptive listening in S-MAC enables a packet

to travel at most two hops in a cycle, optimized multihop forwarding in DW-MAC

does not have this limitation. Without packet loss or collision, in a cycle, an SCH in

DW-MAC can go any number of hops and reserve time periods for the nodes to which

the SCH has traveled. The maximum number of hops an SCH can go in a cycle is

43

limited only by the length of the Data period, since SCHs cannot be sent outside the

Data period. Based on my experimental results, many SCHs can travel three hops

in a cycle. The difference of the collision avoidance mechanisms between S-MAC

and DW-MAC is another important factor that differentiates their performance. In

DW-MAC, if a node detects a busy channel or overhears an SCH from another node

before sending its own SCH, the node simply remains silent for a short time and

then does a clear channel assessment and tries again. As long as there is still enough

time, the node can finish the SCH transmission in the current Data period, even if

it is deferred for a little while. Additionally, a node is allowed to send multiple SCH

requests or confirmations at different times in a Data period to reserve multiple time

periods to forward multiple data packets in the same Sleep period. In contrast, a

node running S-MAC probably has to defer its control packet transmission to the

next cycle after overhearing control packets from other node, and for a node, at most

one successful RTS/CTS transaction may occur in the Data period. Due to all the

reasons above, packets in DW-MAC spend less time in queuing and also less time on

traveling in the network. Therefore, the overall network latency of DW-MAC is much

shorter than that of S-MAC.

5.1.2 Packet Delivery Ratio

The packet delivery ratios of both protocols are shown in Figure 5.2. DW-MAC

maintains 100% packet delivery ratio (PDR) across all packet intervals. S-MAC

always has a PDR higher than 95%, but it is still worse than that of DW-MAC under

bursty traffic and higher network loads. As described in Section 5.1.1, nodes running

S-MAC spend longer time on competing with each other for the channel in the Data

period, but in each round only a small portion of the nodes win and get a successful

44

Inter−packet interval (s)

P
ac

ke
t l

os
s

ra
te

2.5 5.0 10.0 20.0

0.
00

0.
05

0.
10

0.
15

0.
20

DW−MAC
S−MAC

Figure 5.2 : Packet delivery ratio comparison

RTS/CTS exchange. Since many nodes are trying to send their control packets in the

data Period, the more attempts a node makes on the control packet transmission, the

higher chance the control packets are lost such as by colliding with each other. In the

experiments, the control packet retry limit is 7 in both protocols (Table 4.2); that is,

for each data packet, a node has 6 chances to fail to get a CTS reply after sending the

RTS. If the node still misses the CTS reply after the seventh RTS transmission, the

node would give up and discard the corresponding data packet. This is the reason

why S-MAC has some data packets lost and does not reach 100% PDR.

45

Inter−packet interval (s)

E
ne

rg
y

co
ns

um
pt

io
n

2.5 5.0 10.0 20.0

0.
05

0.
07

0.
09

DW−MAC
S−MAC

Figure 5.3 : Energy consumption comparison

5.1.3 Energy Consumption

Figure 5.3 shows the energy consumption of S-MAC and DW-MAC. The energy

consumption is evaluated as the average proportion of time a node has its radio on to

the total experiment time, i.e., 240 seconds. Both DW-MAC and S-MAC have energy

consumption greater than 5%, which is the duty cycle. In DW-MAC, all nodes must

stay awake in the Sync and Data periods even if there is no control or Sync packet

to send or receive. With on-demand wakeup, nodes that have scheduled data packet

transactions may turn on their radio for a little while in the Sleep period, so energy

consumption is higher than the value of duty cycle. On the other hand, some nodes

running S-MAC may turn off their radio before the end of the Data period due to

CTS overhearing. Because of adaptive listening, those nodes and the intended senders

46

have to wake up later in the Sleep period to start another RTS/CTS/DATA/ACK

transmission sequence. However, not all nodes that overhear CTS packets are the

correct next-hop nodes, and those nodes are just wasting energy turning on their radio,

which is quite different from the on-demand wakeup in DW-MAC. In S-MAC, the

energy consumed or wasted due to adaptive listening is higher than the energy saved

from CTS overhearing and early sleeping. Therefore, the overall energy consumption

of S-MAC is a little higher than that of DW-MAC.

There is no significant difference in energy consumption between the different

inter-packet interval rates for both MAC protocols. This is because energy consump-

tion is related only to the amount of time a node’s radio is on, not to when the radio

is on, which affects the results of network latency. Moreover, the total number of

data packets in a round of the experiment is identical (10) across all the inter-packet

interval settings. Therefore, beside the Data period, the total amount of time nodes

spend or waste in the Sleep period for expected data sending and receiving is almost

the same, no matter how long the inter-packet interval is. This is why both energy

consumption curves in Figure 5.3 are almost flat.

5.2 Detailed Performance Analysis

5.2.1 Per-Hop Latency

In the previous section, I showed the overall performance of DW-MAC and S-MAC at

the end-to-end level. In this section, I detail the performance analysis at the per-hop

level with separate inter-packet interval settings. Figure 5.4 shows average per-hop

latencies of both protocols under different packet intervals, and Figure 5.5 explains

various kinds of events that contribute latencies to each hop in the network. A hop

47

Hop index

La
te

nc
y

(s
)

1 2 3 4

0
10

20
30

40 DW−MAC
S−MAC

(a) Inter-packet interval = 2.5 seconds

Hop index

La
te

nc
y

(s
)

1 2 3 4

0
10

20
30

40 DW−MAC
S−MAC

(b) Inter-packet interval = 5 seconds

Hop index

La
te

nc
y

(s
)

1 2 3 4

0
10

20
30

40 DW−MAC
S−MAC

(c) Inter-packet interval = 10 seconds

Hop index

La
te

nc
y

(s
)

1 2 3 4

0
10

20
30

40 DW−MAC
S−MAC

(d) Inter-packet interval = 20 seconds

Figure 5.4 : Per-hop latency comparison

latency is defined as the duration between the time a node first receives a data packet

and the time its next hop node first receives that data packet. Hop index i denotes

the link between the ith node and the (i + 1)th node on each flow. The y-axis of

Figure 5.5 is the number of times each kind of event occurs.

All four curves for DW-MAC in Figure 5.4 have a similar pattern. Although they

are nearly flat, the average latencies at the first hop are a little larger than those at the

48

other hops. In the case of 2.5 s inter-packet interval, queuing is the most significant

factor that causes higher latency at the first hop, shown in Figure 5.5(a). For the

other cases, the time at which new packets are generated at the source nodes mostly

falls in the Sleep period. This means those packets cannot be sent from the sources

until the next cycle, which creates a significant portion of latencies at the first hop.

Once the packets enter the network, the optimized multihop forwarding of DW-MAC

helps them travel multiple hops in the same cycle, so the latencies at the following

hops are smaller.

As shown in Figure 5.5, other factors like control packet loss, data or ACK loss,

and insufficient time for SCH forwarding (denoted “No time for SCH”) also cause

latencies. In DW-MAC, control packet loss comes from collisions on SCHs. The

intersection node (node 3) of the flows is the busiest point in the network. Under

high traffic loads, i.e., short inter-packet intervals, the chance of SCH collision is also

higher. Theoretically, proportional mapping and on-demand wakeup in DW-MAC

guarantee no data or ACK loss in the Sleep period. In the implementation on real

hardware, however, there might still be data packets or ACKs loss. The major reason

is unsuccessful timestamping on SCHs. As mentioned in Section 3.3, if a node is very

busy and does not have enough time to timestamp a packet, the timestamp of that

packet will be invalid. Although I use statistical methods to estimate the sending

or receiving time of packets with invalid timestamps, the estimation is not perfect.

An incorrect estimation could cause two mapped time period in the Sleep period to

interleave with each other, which may result in data or ACK collision. Besides, there

are still small chances that data packets or acknowledgments cannot be correctly

decoded by the receiver due to interference from background noise or other reasons.

A node that wants to send or forward an SCH may not have enough time near

49

1 2 3 4

DW−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

1 2 3 4

S−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
20

40
60

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

(a) Inter-packet interval = 2.5 seconds

1 2 3 4

DW−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

1 2 3 4

S−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
10

20
30

40

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

(b) Inter-packet interval = 5 seconds

1 2 3 4

DW−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

1 2 3 4

S−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

(c) Inter-packet interval = 10 seconds

1 2 3 4

DW−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

1 2 3 4

S−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

(d) Inter-packet interval = 20 seconds

Figure 5.5 : Detailed per-hop latency comparison

50

the end of the Data period. By estimating the transmission and processing delays of

an SCH, the node may decide to defer the SCH forwarding to the next cycle due to

lack of time. This is denoted “No time for SCH” in the figure, and this kind of event

occurs in DW-MAC only. In the experiments, this kind of event happens mostly at

the last hop. This is because when an SCH goes to the fourth node of the flow (node

3), there might not be enough time for it to go to the next hop (node 4 or 8), and then

the fourth node has to buffer this SCH and send it in next cycles after getting the

corresponding data packet. Besides, under high traffic loads (Figure 5.5(a)), source

nodes may also have insufficient time to send SCHs. The reason is that DW-MAC

allows a node to send as many SCHs as it can in a Data period. Each time before

an SCH is generated, a data packet is removed from the head of the queue. Under

high traffic loads, a node could have multiple data packets queued in the memory and

send multiple SCHs to make multiple reservations in the Sleep period. If the source

node has sent a few SCHs in current Data period but does not have enough time to

send the newly generated SCH, the SCH has to be sent in a later cycle. The delay

on the SCH is classified as “No time for SCH”, not queuing delay. For any of the

reasons mentioned above, a node running DW-MAC may have to defer its SCH or

data packet transmission to the next cycle or a time later in current cycle, and that

creates latencies.

As expected, per-hop latencies in S-MAC are larger than those in DW-MAC,

especially under high traffic loads. In the cases of 2.5 s and 5 s inter-packet intervals,

there are two peaks in the curves at the first and the third hops. Similar to DW-MAC,

latencies at the first hop come from packet queuing (Figure 5.5). With adaptive

listening enabled, packets are likely to travel two hops in a cycle. In this situation,

the packets do not have to wait for a cycle time at the second hop. However, they

51

have to wait and queue at the third node on the path, which results in another peak

at the third hop in the curves. Queuing contributes the most to latencies when the

inter-packet intervals are 2.5 and 5 seconds. In the case of 5 s inter-packet interval,

packets are queued for longer time at the third hop than at the first hop. This is

because the third hop is near the intersection of the two flows, and contention is more

severe there. In contrast, due to the relative lower traffic loads, the queuing delay at

the first hop is not as high as in the case of 2.5 s inter-packet interval.

As the inter-packet interval increases, other factors take the place of queuing and

dominate the latencies. The major factor among these is the collision avoidance

mechanism. Although collision avoidance protects data packets and ACKs from col-

lision, it also forces a node that overhears RTS or CTS packets from others to defer

or cancel its own RTS or CTS transmission, which brings latencies. An interesting

result is that the pattern of the number of collision avoidance events in the case of 20

s inter-packet interval is quite different to the other three cases. In the 20 s case, the

second hop has the most collision avoidance events, while in other packet intervals,

it turns out to be the third hop. The key point is the behavioral difference at the

second nodes, i.e., nodes 1 and 6, on the two paths. In the case of 20 s inter-packet

interval, the time a data packet travels in the network is less than the inter-packet

interval (Figure 5.1), and at most one data packet is traveling on each path at any

time. Additionally, nodes 1 and 6 cannot hear each other in the experiment environ-

ment, but node 7 is in the transmission range of node 1, and node 2 can hear node

6. After nodes 0 and 5 send an RTS to nodes 1 and 6, respectively, in the same Data

period, both nodes 1 and 6 will reply with CTS packets and both nodes 0 and 5 will

receive the CTS packets successfully. No collision avoidance happens so far. After

that, however, at most one of nodes 1 and 6 can win the channel competition and

52

successfully performs adaptive listening and forward the data packet to the next hop.

The other node will defer its RTS/CTS transaction due to RTS or CTS overhearing,

which results in a collision avoidance event at the second hop in Figure 5.5(d). In

contrast, the winner node will do the next RTS/CTS transaction at the third hop

in the next cycle. Because the loser node has failed an RTS/CTS transaction, its

contention window will be doubled, which further decreases their chance of winning

channel competition in the next cycle. The winner node keeps forwarding its data

packet to the destination, and after that, the loser node also delivers the data packet

to the destination after a while. As a result, the number of collision avoidance events

at the second hop is larger than that at the third hop.

Figure 5.6 demonstrates this effect. When the inter-packet interval is less than

or equal to 10 seconds, the chance that packets are successfully forwarded at the

second and fourth hops by adaptive listening is over 60%. As the inter-packet interval

increases, more often the second hop nodes have the RTS or CTS collided with other

nodes after waking up adaptively, which causes the adaptive listening to be shifted

to the third hop. In the case of 20 s inter-packet interval, almost half of the packets

have their adaptive listening shifted, which means adaptive listening interleaves with

each other at different hops on different paths.

5.2.2 Fairness

Figures 5.7 through 5.10 show detailed data packet transmission and reception time-

lines for an example run of the experiment using S-MAC. In the timeline of a node,

each vertical segment denotes a starting point of a new cycle. The numbers below

each timeline graph show the indices of cycles after the first packet transmission in

the network. Each cycle between two consecutive vertical segments can be divided

53

into two parts: the top-left part and the bottom-right part. A block at the top-left

part represents an event that originates in the Data period, whereas a block at the

bottom-right part represents an event that comes from adaptive listening. In partic-

ular, these graphs show where and when adaptive listening happens. The timeline of

node 3, which is the node at the intersection, is shown twice in each figure so that

it is easier to see the behavior of the node on both flows. In the cases of 2.5 s to

10 s inter-packet intervals, the packet transmission finishes before the fortieth cycle

arrives, due to their shorter inter-packet intervals compared with the 20 s case.

Another interesting thing that is shown in these graphs is the unfairness between

the flows in S-MAC. The unfairness comes from the design of the contention window

and random backoff mechanism before RTS transmission. As mentioned in Section 2,

in both S-MAC and DW-MAC, before a node sends an RTS or SCH request, the

node first does a random backoff within the contention window. If the node does not

get a CTS or SCH reply after a timeout occurs, the node will double its contention

window size. In DW-MAC, this is fine because the node that loses in the channel

competition can try again later in the same Data period after other nodes finish their

SCH exchanges. Therefore, the unfairness does not happen in DW-MAC. In S-MAC,

however, the design of the contention window and random backoff mechanism may

cause the losers difficult in getting back the channel. This is because each node has

only one chance to try the RTS/CTS transaction in the Data period, and winners

have smaller contention window sizes and are more likely to start their RTS/CTS

transaction earlier. If the network is very busy, losers can only wait until winners

finish their traffic, as shown in Figures 5.7 and 5.8. That also explains why S-MAC

has larger error bars in the case of 2.5 s and 5 s inter-packet intervals in the end-to-

end latency graph (Figure 5.1). On the other hand, unfairness does not exist in the

54

case of 20 s inter-packet interval. The nodes on each flow can deliver a data packet

to the destination before the next packet is generated at the source, and the packet

transmission on the two flows interleaves with each other. Therefore, the differences

of end-to-end latencies between the two flows are relatively small.

55

1 2 3 4

Hop index

pk

t

0
2

4
6

8
10

AL success
AL failed

(a) Inter-packet interval = 2.5 seconds

1 2 3 4

Hop index

pk

t

0
2

4
6

8
10

AL success
AL failed

(b) Inter-packet interval = 5 seconds

1 2 3 4

Hop index

pk

t

0
2

4
6

8
10

AL success
AL failed

(c) Inter-packet interval = 10 seconds

1 2 3 4

Hop index

pk

t

0
2

4
6

8
10

AL success
AL failed

(d) Inter-packet interval = 20 seconds

Figure 5.6 : The number of adaptive listening happens at each hop

56

node 0

0
10

20
30

40
50

60

node 1

0
10

20
30

40
50

60

node 2

0
10

20
30

40
50

60

node 3

0
10

20
30

40
50

60

node 4

0
10

20
30

40
50

60

node 5

0
10

20
30

40
50

60

node 6

0
10

20
30

40
50

60

node 7

0
10

20
30

40
50

60

node 3

0
10

20
30

40
50

60

node 8

0
10

20
30

40
50

60

da
ta

 p
ac

ke
t s

en
t

da
ta

 p
ac

ke
t r

ec
ei

ve
d

pa
ck

et
 lo

st
co

lli
si

on
 a

vo
id

an
ce

da
ta

 p
ac

ke
t o

n
th

e
ot

he
r

flo
w

F
ig
u
re

5.
7
:
T
im

el
in
e
of

in
te
r-
p
ac
ke
t
in
te
rv
al

=
2.
5
se
co
n
d
s
in

S
-M

A
C

57

node 0

0
10

20
30

40
50

60

node 1

0
10

20
30

40
50

60

node 2

0
10

20
30

40
50

60

node 3

0
10

20
30

40
50

60

node 4

0
10

20
30

40
50

60

node 5

0
10

20
30

40
50

60

node 6

0
10

20
30

40
50

60

node 7

0
10

20
30

40
50

60

node 3

0
10

20
30

40
50

60

node 8

0
10

20
30

40
50

60

da
ta

 p
ac

ke
t s

en
t

da
ta

 p
ac

ke
t r

ec
ei

ve
d

pa
ck

et
 lo

st
co

lli
si

on
 a

vo
id

an
ce

da
ta

 p
ac

ke
t o

n
th

e
ot

he
r

flo
w

F
ig
u
re

5.
8
:
T
im

el
in
e
of

in
te
r-
p
ac
ke
t
in
te
rv
al

=
5
se
co
n
d
s
in

S
-M

A
C

58

node 0

0
10

20
30

40
50

60

node 1

0
10

20
30

40
50

60

node 2

0
10

20
30

40
50

60

node 3

0
10

20
30

40
50

60

node 4

0
10

20
30

40
50

60

node 5

0
10

20
30

40
50

60

node 6

0
10

20
30

40
50

60

node 7

0
10

20
30

40
50

60

node 3

0
10

20
30

40
50

60

node 8

0
10

20
30

40
50

60

da
ta

 p
ac

ke
t s

en
t

da
ta

 p
ac

ke
t r

ec
ei

ve
d

pa
ck

et
 lo

st
co

lli
si

on
 a

vo
id

an
ce

da
ta

 p
ac

ke
t o

n
th

e
ot

he
r

flo
w

F
ig
u
re

5.
9
:
T
im

el
in
e
of

in
te
r-
p
ac
ke
t
in
te
rv
al

=
10

se
co
n
d
s
in

S
-M

A
C

59

node 0

0
10

20
30

40
50

60

node 1

0
10

20
30

40
50

60

node 2

0
10

20
30

40
50

60

node 3

0
10

20
30

40
50

60

node 4

0
10

20
30

40
50

60

node 5

0
10

20
30

40
50

60

node 6

0
10

20
30

40
50

60

node 7

0
10

20
30

40
50

60

node 3

0
10

20
30

40
50

60

node 8

0
10

20
30

40
50

60

da
ta

 p
ac

ke
t s

en
t

da
ta

 p
ac

ke
t r

ec
ei

ve
d

pa
ck

et
 lo

st
co

lli
si

on
 a

vo
id

an
ce

da
ta

 p
ac

ke
t o

n
th

e
ot

he
r

flo
w

F
ig
u
re

5.
10

:
T
im

el
in
e
of

in
te
r-
p
ac
ke
t
in
te
rv
al

=
20

se
co
n
d
s
in

S
-M

A
C

60

Chapter 6

Simulation Results

6.1 S-MAC and DW-MAC Comparison

This chapter presents the simulation results of S-MAC and DW-MAC. For each pair

of protocol and inter-packet interval setting, the simulation is run 100 times. The

simulation results are similar to the results presented in Chapter 5 for the experiments

using the physical implementation on MICAz motes. Figures 6.1 through 6.3 show the

results of various performance metrics at the end-to-end level, and Figures 6.4 through

6.6 show detailed results at the per-hop level. The results of packet delivery ratio are

quite similar between the simulation and the experiments, which means the simulated

environment is close to the experiment environment. The energy consumption and

end-to-end latency of DW-MAC in the simulation is a little lower than that in the

experiment. This is because the simulation does not include the packet timestamping

issues mentioned in Section 3.3. While invalid packet timestamps may cause collision

in the Sleep period, as described in Chapter 5, packet timestamping can be considered

perfect in the simulation. Without the collision on data packets or acknowledgements,

a packet can be delivered to the destination in less time and fewer trials, which saves

energy and decrease network latencies. The differences of the number of data or ACK

collision events are also shown in Figures 5.5 and 6.5.

S-MAC has similar end-to-end latencies and energy consumption between the

simulation and experiments; however, the curves of per-hop latencies are not as close.

61

Inter−packet interval (s)

La
te

nc
y

(s
)

2.5 5.0 10.0 20.0

10
20

30
40

50 DW−MAC
S−MAC

Figure 6.1 : End-to-end latency comparison (simulation)

As shown in Figures 5.4 and 6.4, average latencies at the first hop are higher whereas

those at the third hop are lower in the simulation. This difference is most pronounced

in the cases of 2.5 s and 5 s inter-packet intervals. In the case of 10 s inter-packet

interval, similar things also happen at the first hop. This is because the behavior

of the simulated radio is not exactly the same as the real radio behavior. In the

simulation, more packets on one of the two flows are blocked at the first hop than in

the experiments before the other flow delivers its packets to the destination, because

the other flow wins the channel competition at the second hop when the first packets

are sent by the sources. Once the flow wins at the beginning, packets on that flow

are forwarded to the center of the network earlier than on the losing flow. The

RTS/CTS transaction the winning flow performs in the center of the network is

62

Inter−packet interval (s)

1−
P

D
R

2.5 5.0 10.0 20.0

0.
00

0.
05

0.
10

0.
15

0.
20

DW−MAC
S−MAC

Figure 6.2 : Packet delivery ratio comparison (simulation)

overheard by the second hop on the losing flow, and the losing flow has to defer its

RTS/CTS transaction based on the collision avoidance mechanism. Under high traffic

loads, new packets keep being injected to the network on the winning flow, and the

overhearing keeps occurring on the losing flow. Therefore, it is very difficult for the

losing flow to get a chance to forward packets to the center of the network until the

winning flow finishes all its packet transmissions. In the experiments, because the

radio behavior is more dynamic, sometimes the losing flow does not overhear packets

from the winning flow, and then the losing flow gets chances to forward its packets.

This is the reason why more packets are blocked at the first hop in the simulation than

in the experiments. Since more packets are blocked at the first hop, fewer packets

stay in the middle of the network, so the number of packets queued at the third hop

63

Inter−packet interval (s)

E
ne

rg
y

co
ns

um
pt

io
n

2.5 5.0 10.0 20.0

0.
05

0.
07

0.
09

DW−MAC
S−MAC

Figure 6.3 : Energy consumption comparison (simulation)

is smaller. This phenomena is also visible in the queuing delay differences between

Figures 5.5 and 6.5.

Other minor differences in detailed per-hop latency (shown in Figures 5.5 and

6.5) can also be related to the difference of the simulated radio and the real radio. In

spite of those miner differences, the simulation results fit the results in the experiments

quite well, which serves to help validate the simulation and experimental results.

6.2 Comparison with Original DW-MAC Simulation Results

Both S-MAC and DW-MAC were also simulated in ns-2 in the previous DW-MAC

work [16]. To compare the simulation results in this thesis with those in the previous

work, I obtained the simulation code of the original DW-MAC work and ran it on

64

Hop index

La
te

nc
y

(s
)

1 2 3 4

0
10

20
30

40 DW−MAC
S−MAC

(a) Inter-packet interval = 2.5 seconds

Hop index

La
te

nc
y

(s
)

1 2 3 4

0
10

20
30

40 DW−MAC
S−MAC

(b) Inter-packet interval = 5 seconds

Hop index

La
te

nc
y

(s
)

1 2 3 4

0
10

20
30

40 DW−MAC
S−MAC

(c) Inter-packet interval = 10 seconds

Hop index

La
te

nc
y

(s
)

1 2 3 4

0
10

20
30

40 DW−MAC
S−MAC

(d) Inter-packet interval = 20 seconds

Figure 6.4 : Per-hop latency comparison (simulation)

the network topology (Figure 4.2) used in this thesis. Since the original simulation

code was specifically designed for simulating the Crossbow Mica2 [1] motes, I kept

some hardware-related settings unchanged in the original code, such as the maximum

bandwidth of the radio (20 kbps) and the timeout value of SCH and CTS packets (14

ms). Other network parameters (Tables 4.2 and 4.3) and traffic settings used in this

thesis were applied to this original code.

65

1 2 3 4

DW−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

1 2 3 4

S−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
20

40
60

80

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

(a) Inter-packet interval = 2.5 seconds

1 2 3 4

DW−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

1 2 3 4

S−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
10

20
30

40
50

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

(b) Inter-packet interval = 5 seconds

1 2 3 4

DW−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

1 2 3 4

S−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

(c) Inter-packet interval = 10 seconds

1 2 3 4

DW−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

1 2 3 4

S−MAC

Hop index

(#
 p

kt
)

x
(#

 c
yc

le
)

0
2

4
6

8
10

Queuing
No time for SCH
Data/ACK loss
Ctrl pkt loss
Collision avoidance

(d) Inter-packet interval = 20 seconds

Figure 6.5 : Detailed per-hop latency comparison (simulation)

66

1 2 3 4

Hop index

pk

t

0
2

4
6

8
10

AL success
AL failed

(a) Inter-packet interval = 2.5 seconds

1 2 3 4

Hop index

pk

t

0
2

4
6

8
10

AL success
AL failed

(b) Inter-packet interval = 5 seconds

1 2 3 4

Hop index

pk

t

0
2

4
6

8
10

AL success
AL failed

(c) Inter-packet interval = 10 seconds

1 2 3 4

Hop index

pk

t

0
2

4
6

8
10

AL success
AL failed

(d) Inter-packet interval = 20 seconds

Figure 6.6 : The number of adaptive listening happens at each hop (simulation)

67

Inter−packet interval (s)

La
te

nc
y

(s
)

2.5 5.0 10.0 20.0

10
20

30
40

50
60

70
DW−MAC
S−MAC

Figure 6.7 : End-to-end latencies from original DW-MAC and S-MAC simulation

code

Figure 6.7 shows the results of end-to-end latency in the original simulations.

Although DW-MAC still outperforms S-MAC in terms of end-to-end latency, both

MAC protocols have larger end-to-end latencies under all inter-packet interval set-

tings, compared with the simulation results in Figure 6.1. The differences are even

more pronounced under smaller inter-packet intervals. When the inter-packet inter-

val is 2.5 seconds, the difference in end-to-end latencies for DW-MAC is around 25

seconds, and for S-MAC, the difference is around 15 seconds. One reason for the

larger end-to-end latencies in original simulations is the low radio bandwidth. The

low bandwidth not only increases the packet transmission time, it also decreases the

number of hops DW-MAC can deliver SCHs in a single cycle, which increases the

68

Inter−packet interval (s)

1
−

 P
D

R

2.5 5.0 10.0 20.0

0.
00

0.
05

0.
10

0.
15

0.
20

DW−MAC
S−MAC

Figure 6.8 : Packet delivery ratio from original DW-MAC and S-MAC simulation

code

amount of time data packets stay in the network. Another important reason for the

larger end-to-end latencies is that the original simulation code uses simpler radio

and network topology settings. In the original simulation, a node is assumed unable

to hear from two hops or further distance away, whereas my simulation code can

be applied to a more complex and difficult network environment, closer to the real

network in the experiments presented in Chapter 4. The limits of this design cause

the original simulation code to be sometimes unable to maintain correct states in

the nodes and to handle incoming or outgoing control packets properly, resulting in

unnecessary control packet discarding. This reflects higher packet loss rates on both

MAC protocols, as shown in Figure 6.8, compared with the results in my simulations

69

(Figure 6.2). As a conclusion, my version of the simulation simulates the sensor net-

work in a more realistic way than the original version, which is also demonstrated

through the experimental results in Chapter 5.

70

Chapter 7

Related Work

Many duty-cycling MAC protocols have been proposed for wireless sensor networks.

Some of them were synchronous duty-cycling protocols while others were asynchronous

in their design. The nature of synchronous duty-cycling protocols makes all nodes stay

awake at the same time, and nodes can easily broadcast messages to their neighbors

or forward packets to multiple hops away within a short period of time. S-MAC [22]

was one of the original synchronous duty-cycling MAC protocols in wireless sensor

networks. Many MAC protocols were developed based on the design of S-MAC.

RMAC [9] divides a cycle into the Sync, Data, and Sleep periods, as with S-MAC.

Instead of using the RTS/CTS collision avoidance mechanism, however, RMAC in-

troduced another control packet, called PION, to reduce latency in multihop packet

forwarding. Similar to the SCH design in DW-MAC, nodes send and forward PION

frames in the Data period to inform downstream nodes about upcoming data packet

transmission. Nodes that receive a PION frame will wake up accordingly in the

Sleep period for receiving and forwarding data packets. In RMAC, the time a node

wakes up in the Sleep period is calculated based on the duration information in the

PION frame, whereas DW-MAC does not require any timing information in the SCH.

Another difference between RMAC and DW-MAC is that RMAC does not use the

proportional mapping mechanism. Data transmission always starts at the beginning

of the Sleep period, which may cause collision between two hidden nodes that have

succeeded in their scheduling through PION frames in the Data period. PRMAC [8]

71

and BulkMAC [7] were later proposed to enhance the performance of RMAC by allow-

ing multiple data packets to be delivered in one cycle via one PION frame. However,

none of them solved the problem of data packet collision in RMAC. Additionally,

RMAC, PRMAC, and BulkMAC evaluated their performance via simulation only.

No physical implementation was done in their work. In this thesis, I have imple-

mented DW-MAC, which solves the problem of data packet collision in RMAC. I

also evaluate the performance of DW-MAC through both simulation and real-world

experiments.

T-MAC [20] inherits the RTS/CTS collision avoidance mechanism in S-MAC.

Unlike S-MAC, T-MAC has a flexible length of the Data period, and the length is

adaptively determined by the network loads. A node running T-MAC may shorten its

Data period and sleep earlier if no traffic is around the node. Under high traffic, the

node can also extend its Data period to accommodate more RTS/CTS transactions.

With the flexible Data period design, T-MAC can preserve more energy. However,

T-MAC otherwise has the same shortcomings as S-MAC. For example, T-MAC can

only deliver a packet at most two hops away in a cycle. Nodes that are not the

intended next hop but overhear CTS packets may still remain awake, which increases

energy consumption. Dam et al. [20] implemented T-MAC on the EYES hardware

for energy consumption testing. They mentioned the clock drift problem, and they

used the Sync messages to correct time differences among nodes, similar to what

I did in this thesis. However, beside the time correction, no other implementation

issues were mentioned or discussed in their paper. On the other hand, in this thesis, I

mainly focus on the implementation issues in sensor networks, including the problems

of packet timestamping, slow CPU speed, and imperfect timing, and I also provide

solutions to those problems.

72

Unlike synchronous duty-cycling MAC protocols, nodes running asynchronous

duty-cycling MAC protocols may not start their cycles simultaneously, and thus

multihop time synchronization is not required. An asynchronous duty-cycling MAC

protocol is either sender-initiated or receiver-initiated. Examples of sender-initiated

protocols are B-MAC [15], X-MAC [6], and WiseMAC [10]. In those protocols, be-

fore transmitting data packets, the sender sends one or more preambles to inform the

receiver about the upcoming data packet. The preambles may occupy the wireless

medium for a long time before the data packets are delivered. Under heavy traffic

loads, the protocols may become less energy efficient. Receiver-initiated protocols,

such as RI-MAC [17], PW-MAC [19], and EM-MAC [18], do not have this problem.

In RI-MAC, each receiving node periodically wakes up and broadcast a beacon. Any

node that receives the beacon and has data packets to send to that node can transmit

the data packet after receiving the beacon. This design avoids long preambles at the

sender side and thus decreases traffic loads in the wireless medium. PW-MAC en-

hanced the energy efficiency of RI-MAC by minimizing the time a sender spends on

idle listening and waiting, through predictive wakeup. In PW-MAC, each receiving

node has a pseudo-random schedule and wakes up and goes to sleep based on that

schedule. A node that wants to communicate with a receiving node learns of the

schedule of the receiving node and wakes up a bit earlier than the receiving node.

EM-MAC further increases wireless channel utilization via multi-channel support.

Different sender and receiver pairs may choose different channels for their data deliv-

ery. The multi-channel design also makes EM-MAC more resilient to problems such

as ZigBee jamming attacks or Wi-Fi interference.

RI-MAC, PW-MAC, and EM-MAC were all implemented on TinyOS on MICAz

motes. Both PW-MAC and EM-MAC pointed out the problem of clock drift and

73

proposed solutions. PW-MAC introduced an on-demand prediction error correction

mechanism to correct timing errors when the error between two nodes is larger than

a threshold. A sender does advanced wakeup to avoid missing the beacon from the

receiver. The sender also includes in its data packet a request to the receiver for

updating their wakeup schedule after detecting that the timing error is large than a

threshold. On the other hand, EM-MAC used the exponential chase algorithm to re-

rendezvous a sender and a receiver. After the sender misses the receiver’s schedule, the

sender keeps doubling its wakeup advance time to “chase” the receiver until getting

the receiver’s beacon. Although both timing correction mechanisms in PW-MAC and

EM-MAC are energy efficient, they are only suitable for asynchronous duty-cycling

protocols. For synchronous duty-cycling protocols such as DW-MAC with critical

accurate timing requirements, time has to be frequently synchronized and the timing

error has to be very small. Regarding the timing requirement of DW-MAC, I designed

the guard time mechanism to complete the insufficiency of the time synchronization

mechanism. Although the RI-MAC paper described the concepts of its protocol

design on TinyOS, no other implementation problems were mentioned or discussed

in the paper. In contrast, this thesis points out the problems existing in protocol

implementation from various aspects of views and provides solutions to them, which

helps future MAC protocol design and implementation.

Network time synchronization is an important part in the implementation of syn-

chronous duty-cycling MAC protocols. Much work has been proposed for synchro-

nizing time over wireless sensor networks. The Intel Research Lab [14] designed a

power-efficient Delay Measurement Time Synchronization (DMTS) technique appli-

cable for both single-hop and multi-hop wireless sensor networks. In DMTS, a leader

is chosen among the nodes, and the leader broadcasts its local clock value to other

74

nodes. For single-hop synchronization, all the nodes that hear the broadcast message

estimate the propagation delay from the leader and synchronize their time with the

leader. The scenario can be extended to a multi-hop version by relaying a broad-

cast message to downstream nodes along a broadcast tree. Similar to this thesis,

DMTS is implemented on TinyOS, and the synchronization accuracy is one clock

tick. Although the time synchronization mechanism used in this thesis is similar to

the single-hop version of DMTS, the time value the synchronizer broadcasts is not its

local clock time but the duration to the beginning of the Data period. Therefore, all

nodes can start their cycles simultaneously and still keep their own local clock time,

which simplifies delay measurement inside each node itself. In addition, considering

that the uncertainty of channel quality may cause Sync packet loss, the synchronizer

consecutively broadcasts many Sync packets to the network in the Sync period to

increase the chance that each node can receive at least one Sync packet in the cycle.

Maróti et al. [13] proposed the Flooding Time Synchronization Protocol (FTSP),

which is also a broadcast-based synchronization protocol. The basic concept of FTSP

is quite similar to that of DMTS. FTSP further used linear regression to predict the

clock drift rate between two nodes and extrapolate a correct clock value after the last

run of time synchronization. This mechanism avoided the need for frequent broad-

casting for time synchronization, however, it was tested on the Mica2 motes only.

For other existing hardware or future new motes, linear regression may not be able

to fit the clock drift rate well. In addition, clock rates can also be influenced by the

environment. Different environments may lead to different extents of clock drift. It

becomes a tradeoff between time accuracy and synchronization overhead. Further-

more, it is effectively impossible to perfectly synchronize time over the network. As

long as there is an error, the problem in DW-MAC mentioned in Section 3.2.1 still

75

exists. Since the design of guard time can solve such problem, to simplify the imple-

mentation complexity, it is acceptable and sufficient in this thesis to synchronize the

time via Sync packet broadcast every other cycle.

76

Chapter 8

Conclusions and Future Work

In this thesis, I have revealed the problems that were not addressed in the previous

DW-MAC paper, where only simulation is conducted in performance evaluation. I

have proposed my solutions to those problems and implemented both DW-MAC and

S-MAC on the Crossbow MICAz motes. I refined the design of proportional mapping

in DW-MAC so that it can still work in the hardware with slower CPUs without

degrading the channel efficiency. Considering the nature of clock drift and clock rate

differences among sensor nodes, I used a simple time synchronization mechanism to

periodically synchronize the time in the network. In addition, I analyzed the impacts

of timing inaccuracy on DW-MAC mathematically and introduced the concept of

guard time. With the guard time allocated to the front of a mapped time period in

the Sleep period, the collision-free property of proportional mapping in DW-MAC

is retained even if time inaccuracy exists among sensor nodes. I also discussed the

problem of packet timestamping in the real-world implementation. With statistical

analysis of historical records, the processing delay of packets with invalid timestamps

could be roughly estimated. In addition to the problems and experiences in physical

implementation described, I also evaluated the performance of both DW-MAC and

S-MAC through the experiments and simulation in ns-2. I evaluated the performance

not only at the end-to-end level but also at the per-hop level to reveal the detailed

behavior of both MAC protocols. The fairness of channel competition between the

two flows was also analyzed and discussed.

77

In the current implementation, DW-MAC only supports one data packet trans-

mission in one mapped time period in the Sleep period. With small duty cycle values,

i.e., less than 1%, this restriction may limit the channel efficiency and increase net-

work latencies. In the future, DW-MAC could be enhanced to support variable SCH

length and multiple data packet transmissions in a mapped time period, further de-

creasing the network latency. The implementation of the MAC protocols could also

be extended with broadcasting support.

78

Bibliography

[1] Crossbow MICA2 datasheet.

http://bullseye.xbow.com:81/Products/Product pdf files/Wireless pdf/MICA2

Datasheet.pdf.

[2] Crossbow MICAz datasheet.

http://www.openautomation.net/uploadsproductos/micaz datasheet.pdf.

[3] S-MAC source codes for TinyOS 1.x.

http://www.isi.edu/ilense/software/smac/download.html.

[4] TinyOS website. http://www.tinyos.net.

[5] UPMA Package: Unified Power Management Architecture for Wireless Sensor

Networks.

http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x-contrib/wustl.

[6] M. Buettner, G.V. Yee, E. Anderson, and R. Han. X-MAC: a short preamble

MAC protocol for duty-cycled wireless sensor networks. In Proceedings of the 4th

international conference on Embedded networked sensor systems, pages 307–320.

ACM, 2006.

[7] T. Canli, M. Hefeida, and A. Khokhar. BulkMAC: a cross-layer based MAC

protocol for wireless sensor networks. In Proceedings of the 6th International

Wireless Communications and Mobile Computing Conference, pages 442–446.

79

ACM, 2010.

[8] T. Canli and A. Khokhar. PRMAC: Pipelined routing enhanced mac protocol for

wireless sensor networks. In Communications, 2009. ICC’09. IEEE International

Conference on, pages 1–5. IEEE, 2009.

[9] S. Du, A.K. Saha, and D.B. Johnson. RMAC: A routing-enhanced duty-cycle

MAC protocol for wireless sensor networks. In INFOCOM 2007. 26th IEEE In-

ternational Conference on Computer Communications. IEEE, pages 1478–1486.

Ieee, 2007.

[10] A. El-Hoiydi and J.D. Decotignie. WiseMAC: an ultra low power MAC protocol

for the downlink of infrastructure wireless sensor networks. In Computers and

Communications, 2004. Proceedings. ISCC 2004. Ninth International Symposium

on, volume 1, pages 244–251. Ieee, 2004.

[11] IEEE 802.11 Working Group and others. Wireless LAN medium access control

(MAC) and physical layer (PHY) specifications. 1997.

[12] K. Klues, G. Hackmann, O. Chipara, and C. Lu. A component-based archi-

tecture for power-efficient media access control in wireless sensor networks. In

Proceedings of the 5th international conference on Embedded networked sensor

systems, pages 59–72. ACM, 2007.

[13] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi. The flooding time synchroniza-

tion protocol. In Proceedings of the 2nd international conference on Embedded

networked sensor systems, pages 39–49. ACM, 2004.

[14] S. Ping. Delay measurement time synchronization for wireless sensor networks.

Intel Research Berkeley Lab, 2003.

80

[15] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless

sensor networks. In Proceedings of the 2nd international conference on Embedded

networked sensor systems, pages 95–107. ACM, 2004.

[16] Y. Sun, S. Du, O. Gurewitz, and D.B. Johnson. DW-MAC: a low latency, energy

efficient demand-wakeup MAC protocol for wireless sensor networks. In Proceed-

ings of the 9th ACM international symposium on Mobile ad hoc networking and

computing, pages 53–62. ACM, 2008.

[17] Y. Sun, O. Gurewitz, and D.B. Johnson. RI-MAC: a receiver-initiated asyn-

chronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor

networks. In Proceedings of the 6th ACM conference on Embedded network sensor

systems, pages 1–14. ACM, 2008.

[18] L. Tang, Y. Sun, O. Gurewitz, and D.B. Johnson. EM-MAC: A Dynamic Multi-

channel Energy-Efficient MAC Protocol for Wireless Sensor Networks. In Proc.

of the 12th ACM Int. Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc11). ACM, 2011.

[19] L. Tang, Y. Sun, O. Gurewitz, and D.B. Johnson. PW-MAC: An energy-efficient

predictive-wakeup MAC protocol for wireless sensor networks. In INFOCOM,

2011 Proceedings IEEE, pages 1305–1313. IEEE, 2011.

[20] T. Van Dam and K. Langendoen. An adaptive energy-efficient MAC protocol

for wireless sensor networks. In Proceedings of the 1st international conference

on Embedded networked sensor systems, pages 171–180. ACM, 2003.

[21] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wire-

less sensor networks. In INFOCOM 2002. Twenty-First Annual Joint Conference

81

of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol-

ume 3, pages 1567–1576. IEEE, 2002.

[22] W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordinated

adaptive sleeping for wireless sensor networks. Networking, IEEE/ACM Trans-

actions on, 12(3):493–506, 2004.

