

Abstract

Tools and theory to improve data analysis

by

Garrett Grolemund

This thesis proposes a scientific model to explain the data analysis

process. I argue that data analysis is primarily a procedure to build un-

derstanding and as such, it dovetails with the cognitive processes of the

human mind. Data analysis tasks closely resemble the cognitive process

known as sensemaking. I demonstrate how data analysis is a sensemaking

task adapted to use quantitative data. This identification highlights a uni-

versal structure within data analysis activities and provides a foundation

for a theory of data analysis. The model identifies two competing chal-

lenges within data analysis: the need to make sense of information that

we cannot know and the need to make sense of information that we can-

not attend to. Classical statistics provides solutions to the first challenge,

but has little to say about the second. However, managing attention is

the primary obstacle when analyzing big data. I introduce three tools

for managing attention during data analysis. Each tool is built upon a

different method for managing attention. ggsubplot creates embedded

plots, which transform data into a format that can be easily processed

by the human mind. lubridate helps users automate sensemaking out-

side of the mind by improving the way computers handle date-time data.

Visual Inference Tools develop expertise in young statisticians that

can later be used to efficiently direct attention. The insights of this thesis

are especially helpful for consultants, applied statisticians, and teachers

of data analysis.

Acknowledgements

First and foremost, I’d like to thank my thesis advisor, Hadley Wick-

ham. I may not have pursued this important area of research if not for

Hadley’s encouragement, advice, and example of success pioneering simi-

lar topics. He has been an indispensable source of wisdom and support,

and has invested unceasingly in my skills as a researcher and a teacher.

Hadley’s many accomplishments would seem even more remarkable if peo-

ple knew how much time he freely lavishes on novice students like myself.

I’d also like to thank the faculty and students of Rice University’s

Department of Statistics. The faculty have made statistics a real and

exciting wonderland to be explored. I feel privileged to have attended

so many thought provoking lectures and to have done so in the company

of so many friendly and talented students. Together the students and

faculty of Rice have provided me a world class education. I’d especially

like to thank Jaime Ramos, Stephanie Hicks, David Kahle, Eric Chi, and

Terrance Savitsky for their support and their enthusiasm for discussing

the ideas contained in this dissertation.

Finally, I’d like to thank my partner, Kristin Kitchen. Kristin took

care of me while I took care of problem sets and journal articles. Without

her, I would not today be so fed, healthy, and sane. Kristin, you have

made the past five years a pleasure that I would repeat with you again

and again.

Dedicated to my parents, Eric and Bonnie Grolemund

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

2 A Cognitive Interpretation of Data Analysis 7

2.1 Introduction . 8

2.2 A theory of data analysis . 9

2.3 The role of cognition in data analysis 13

2.4 Making sense of measured data . 21

2.5 A conceptual model of data analysis 26

2.6 Implications for data analysis practice 32

2.7 Conclusion . 39

3 Visualizing complex data with embedded plots 43

3.1 Introduction . 44

3.2 Case Study: Analyzing complex data 48

3.3 Benefits of embedded plots . 52

3.4 Implementing embedded plots with the grammar of graphics 59

3.5 Conclusion . 73

4 Dates and times made easy with lubridate 76

4.1 Introduction . 76

4.2 Motivation . 78

vii

4.3 Parsing date-times . 81

4.4 Manipulating date-times . 82

4.5 Arithmetic with date-times . 85

4.6 Rounding dates . 95

4.7 Time zones . 96

4.8 Daylight savings time . 98

4.9 Case study 1 . 99

4.10 Case study 2 . 102

4.11 Conclusion . 108

5 How and why to teach statistical inference with simulations in R 110

5.1 Introduction . 111

5.2 Background . 113

5.3 Why teach with visual simulations 115

5.4 Why program visual simulations in R 124

5.5 How to implement visual simulations in R 127

5.6 How to use simulations in the classroom 137

5.7 Conclusion . 144

6 Conclusion 147

6.1 Original contributions . 150

6.2 Future Work . 152

6.3 Final thoughts . 155

References 156

List of Figures

2.1 A simplified summary of the sensemaking process. Schemas are com-

pared to observed information. If any discrepancies (i.e, insights) are

noticed, the schema is updated or the information is disregarded as

untrustworthy. 16

2.2 Exploratory and confirmatory data analysis both follow the sensemak-

ing process. Exploratory analysis begins with a received data set. A

confirmatory analysis begins with a received schema (often a hypoth-

esis or model). 18

2.3 Data analysis parallels sensemaking. Analysts deduce a precise hy-

pothesis (model) from the schema, which they compare to the data or

a transformation of the data. Analysts must attempt to distinguish dis-

crepancies between schema and data from differences that result from

variance and bias. Analysts must also match each accepted model back

to a schema to provide interpretation in real world concepts. 27

2.4 The seven flights examined by NASA and Morton Thoikol managers

(above). The 24 flights for which information was available (below).

Recreated from Presidential Commission (1986) (p. 146). 38

ix

3.1 Three examples of graphs that use embedded subplots. A. (upper left)

A subcycle plot of CO2 measurements taken on Mauna Lau, Hawaii

between 1959 and 1990. Recreated from Cleveland (1994), page 187.

Observations are grouped by month. B. (upper right) A glyphmap

of temperature fluctuations in the western hemisphere over a six year

period. Each glyph is a polar chart with r = temperature and θ = date

these charts are organized on a cartesian plane with x = longitude and

y = latitude. C. (lower left) A binned plot of the diamonds data set

from the ggplot2 software package. Subplots are used to show patterns

in diamond colors without overplotting. When this data is presented

in its raw form, the accumulation of points hides patterns in the data

(lower right). 45

3.2 A. (upper left) Relative rates of casualties by area in Afghanistan be-

tween 2004 and 2010. Raw data can not be visualized due to over-

plotting. B. (upper right) A heat map shows casualty counts, but not

relative rates by group. C. (lower left) Embedded bar charts reveal

that there have been more civilian than combatant casualties around

Kabul, the capital of Afghanistan. Marginal bar charts reveal simi-

lar information as a heat map, but also display rates by group. D.

(lower right) Conditional bar charts make regional rates the more ob-

vious; they show that inordinate civilian casualties is not unique to the

capital city. 50

3.3 Casualty frequencies between 2004 and 2010 by region. The embed-

ded graphics show that the heaviest fighting has been confined to the

southern and eastern regions of Afghanistan. The most casualties

have occurred around Kandahar. Many regions seem peaceful since

2008. However, casualties have increased recently throughout south-

east Afghanistan. 52

3.4 Users can control the amount of summarization that occurs in an em-

bedded plot. When scatterplots are used for subplots, no summariza-

tion occurs (left). Line graphs provide partial summarization (center).

Heat maps provide complete summarization, within each bin data is

reduced to a single number (right). This may not always be desirable. 53

x

3.5 Cleveland’s subcycle plot can be decomposed into twelve subplots ar-

ranged as a scatterplot. The subplots behave as a rectangle geom with

an internal drawing aesthetic. 62

3.6 Every individual geom is a self contained plot when paired with a set

of axes. Such plots may be not be very interesting, as is the case with

point geoms. 63

3.7 ply aes offers a new strategy for overplotting. Groups of geoms are

combined into single geoms that display summary information. This

approach reveals that mean(ozone) has a different linear relationship

with temperature in the southern hemisphere than it does in the north. 67

3.8 The postion of a subplot is often related to which points the subplot

shows. Position = merge and geom subplot2d provide two ways to

avoid overlapping subplots without disrupting this relationship. . . . 69

3.9 Reference objects allow comparison across subplots and can be more

easily read at small scales than coordinate axes. In ggsubplot, users

can add one of three types of reference objects to subplots by adding

ref = ref box(), ref = ref hline(), or ref = ref vline() to geom-

subplot and geom subplot2d calls. 70

4.1 Home games and away games appear to occur in clusters. 103

4.2 More games occur on Tuesdays than any other day of the week. . . . 104

4.3 The graph on the left displays seconds on the x axis. The graph on

the right uses a more intuitive division with minutes. 106

4.4 Wait times between shot attempts rarely lasted more than 30 seconds. 107

4.5 The lead changed between the Lakers and Celtics numerous times dur-

ing the game. 108

5.1 Statistical inference simulations are often organized around three fields:

a field that displays the population data (top), a field that displays the

sample data (middle), and a field that displays the sample statistic

data (bottom). 129

5.2 The three field format can be used to illustrate inference related con-

cepts such as the Central Limit Theorem (left), confidence intervals

(middle), and the variance of regression lines regression lines (right) . 129

xi

5.3 The user can interact with VIT through the GUI provided in the panel

on the left. This panel is managed by the “gui environment” described

in our software blueprint. The panel on the right provides a canvas to

animate the simulation created by VIT. This panel is managed by the

“canvas environment.” . 131

5.4 A general inference simulation tool can be built in R by organizing

information into a GUI environment that manages the user interface

and a canvas environment that displays the visual simulation. The

canvas only needs to handle five actions, the details of these can be

supplied at run time. To extend the program, a user only needs to

supply additional methods for these five tasks. 136

5.5 Previous sample means remain visible as “ghosts” in the middle field.

These transparent blue bars are distinguishible from the current sample

mean, which is larger and solid. Transparency also helps students see

where multiple sample means have accumulated. 141

6.1 A cognitive view of data analysis can help organize a statistics curricu-

lum. Data analysis uses sensemaking to develop mental models that

accurately described observed data. Analysts can either simplify data

in a way that allows mental sensemaking to occur (left hand side). Or

they can transform schemas into hypotheses and attempt automated

sensemaking, with a statistical or computerized technique. Statistical

methods can be grouped by how they facilitate this process. 154

List of Tables

4.1 lubridate provides a simple way to parse a date into R, extract the

month value and change it to February. 79

4.2 lubridate easily displays a date one day earlier and in the GMT time

zone. 79

4.3 lubridate provides a simple alternative for many date and time related

operations. Table adapted from Grothendieck and Petzoldt (2004). . 80

4.4 Parse function names are based on the order that years, months, and

days appear within the dates to be parsed. 82

4.5 Each date-time element can be extracted with its own accessor function. 84

4.6 Adding two date-time objects will create the above type of object. . . 95

Chapter 1

Introduction

This thesis proposes a new way to look at data analysis: data analysis is a cognitive

task shaped by the structure of the human mind. I examine support for this view,

discuss how this view can be used to improve the practice of data analysis, and

introduce three new data analysis tools that are informed by a cognitive view of data

analysis. The insights of this thesis are especially helpful for consultants, applied

statisticians, and teachers of data analysis.

Data analysis is the investigatory process used to extract knowledge, information,

and insights about reality by examining data. Although I submit this thesis as partial

requirement for fulfilling a PhD in Statistics, data analysis is not synonymous with

statistics. The act of data analysis begins before a statistical technique is chosen and

continues after statistical calculations have yielded results. Yet data analysis is not

entirely separate from statistics either. Analyzing data relies on statistical techniques.

Data analysis depends on both the results of statistical methods and on the theory

that lets these results be interpreted, such as probability theory and statistical infer-

ence. Statistics, in turn, depends on data analysis. Statistical methods are meant

to analyze data. The needs of data analysis determine which statistical techniques

are used in practice and which statistical theories are developed in academia. Data

2

analysis has been called applied statistics and statistical engineering. I refrain from

using these terms for the simple reason that data analysis also relies on techniques

from other fields, such as computer science and philosophy. I also believe that data

analysis relies heavily on the field of cognitive science, although this connection has

largely escaped notice.

This thesis examines the connection between data analysis and cognitive science.

I contend that data analysis is a cognitive task, known elsewhere as sensemaking.

I marshall evidence to support this view and discuss how a cognitive interpretation

can be used to improve the practice of data analysis, which is also the practice of

statistics. The implications of this view also reach beyond practice. They extend to

how statistics is taught and to how data analysis tools are devised. This is a new

approach to data analysis. Data analysis has not been studied as a cognitive task,

and much of the cognitive science research that underpins this dissertation has only

been conducted in the last decade.

This thesis is organized into four self-contained articles, which are in various stages

of publication.

Chapter 2, A cognitive interpretation of data analysis, proposes that data analysis

is guided by the mind’s attempts to encode quantitative data into mental represen-

tations of knowledge. I evaluate this proposition with three lines of argument. First,

I assume as a “first principle” that to create understanding for a human audience,

data analysis must interact with the processes that create understanding in the hu-

man mind. I argue from this principle that data analysis is a cognitive task, known

as sensemaking, that has been adapted to quantitative data. Second, I compare the

adapted sensemaking task to descriptions of data analysis that have been published

by expert data analysts. The sensemaking model aligns with these descriptions and

explains why the descriptions take the specific form that they do. Third, I demon-

3

strate that the sensemaking model can usefully critique failures in data analysis that

are not explained by statistical theory. These failures have a cognitive origin.

Chapter 2 proposes a theory based model of data analysis and discusses short-

comings in the previous theories and conceptions of data analysis. The article has

been accepted for publication in International Statistical Review and will appear in

early 2013 along with discussion of the article by noted statisticians.

The insights of Chapter 2 present data analysis in a new light: data analysis is

a fairly simple task made complicated by two constraints. One is epistemological,

one is cognitive. Epistemologically, we can not know all of the information relevant

to an analysis. Cognitively, we can not attend to all of the information that we do

have at the same time. Classical statistics has long recognized the first constraint.

Statisticians have developed many tools, like Probability theory, that help circumvent

the limits of what we can know. Chapter 2 discusses how epistemological constraints

affect the data analysis process.

In contrast, the cognitive constraint has gone unrecognized and under-appreciated

by data analysts. Data analysis attempts to find and understand the relationships

between data points. At the mental level, the human mind can not recognize rela-

tionships that involve the interaction of many points until it simultaneously considers

each point involved (Sweller, 2010). However, studies suggest that the average per-

son can only hold about four pieces of new information, such as data points, in their

attention1 at once (Cowan, 2000). The implications are unambiguous: to find com-

plex relationships in data, data analysts need to invoke strategies for managing their

limited attentional resources. These strategies will gain increasing importance as the

profession of statistics embraces big data, the area of analysis where attentional limits

1
Within the introduction, I use the word attention to also refer to the related idea of working

memory capacity. I do this because attention is more easily understood by a general audience. This

follows the example of Cowan (2000). I discuss the limits of attention and the working memory in

more detail in Chapters 2, 3, and 5.

4

are the most strained.

Cognitive scientists have identified a number of mechanisms that the mind uses to

manage attention and learn complex material. These mechanisms have become the

basis for education practices that help students master difficult content.1 I contend

that these mechanisms can form a basis for data analysis tools that improve an

analyst’s ability to discover insights in large, complex data. I support this contention

and further verify the cognitive model of data analysis by introducing three new tools

that improve the practice of data analysis, Chapters 3–5. Each tool builds upon a

separate mechanism for managing attention during data analysis. These mechanisms

include preprocessing data to aid mental processing, avoiding mental processing by

delegating sensemaking tasks to computers, and building expertise that can more

efficiently direct attention management.

Chapter 3, Visualizing complex data with embedded plots, demonstrates how atten-

tion can be more efficiently utilized by preprocessing and transforming information.

The chapter introduces embedded plots, a class of data visualizations, which orga-

nize a collection of graphs into a larger graphic. This arrangement allows users to

visualize multi-dimensional relationships in 2D graphs. Embedded plots preprocess

large amounts of information in a way that can easily be attended to by the human

mind. They reduce the cognitive load associated with reading a plot by relying on

visualization, isolation, and automation.

From a practical perspective, embedded plots provide many benefits. They offer

new ways to avoid overplotting, to control the amount of information lost when sum-

marizing data, and to visualize interactions. Chapter 3 also refines our understanding

of the grammar of graphics by showing that graphs are hierarchical, or recursive, in

nature. The grammar is built around the concept of a geom, a visual element used

1
See Mayer (2009) and Sweller et al. (2011) for overviews.

5

to represent data. Embedded plots reveal that every geom is a graph and every

graph can be a geom. The chapter also demonstrates new ways of understanding and

utilizing other parts of the grammar, such as stats and position adjustments. Visual-

izing complex data with embedded plots is built upon the ggsubplot package, which

creates embedded subplots in R. ggsubplot was written by Garrett Grolemund and

will be made available from http://cran.r-project.org. The article Visualizing

complex data with embedded plots has been submitted for publication to the Journal

of Computational and Graphical Statistics.

Chapter 4, Dates and times made easy with lubridate, provides a way to help data

analysts externalize cognition when working with large data. External cognition is

introduced in Chapter 2 and provides a way to circumvent attention constraints by

having computers process information for the mind. However, computer manipula-

tions often break down with date-time data. Date-times follow idiosyncratic rules and

must be treated differently than other quantities. Yet date-times come in a variety

of formats, which means computers cannot easily recognize them. Human analysts

must often semi-manually parse date-times into a computer program. When comput-

ers manipulate dates, the results are often untrustworthy due to capricious date-time

rules such as leap years and daylight savings time, which requires further user inspec-

tion. As a result date-times create an information processing bottleneck that reduces

the benefits of using a computer to help with sensemaking.

Chapter 4 introduces a software package, lubridate, and a set of mental models

that make computing with date-times easier. lubridate simplifies a variety of date-

time tasks, such as parsing dates and creates a series of commands that allow users to

specify how dates should be manipulated. These commands are associated with pre-

cise date-time concepts that let users and computers share common expectations for

how date-time rules should be handled. lubridate was written by Garrett Grolemund

http://cran.r-project.org

6

and Hadley Wickham and is available from http://cran.r-project.org. Dates and

times made easy with lubridate was published in 2011 by the Journal of Statistical

Software (Grolemund and Wickham, 2011).

Chapter 5 addresses building expertise, which is a third way to manage attention.

Experts are able to focus their attention on pieces of information that are more likely

to be suggestive, important, and helpful for understanding. Chapter 5, How and why

to teach statistical inference with simulations in R, introduces a software program

built by Garrett Grolemund, Visual Inference Tools (VIT), that can be used to

teach statistical inference. The chapter reviews cognitive science literature to argue

that visual simulations can improve student understanding of statistical inference. It

evaluates R as a language for building such tools and provides a software design that

can be used to make a general purpose simulation tool in R. How and why to teach

statistical inference with simulations in R concludes by providing four principles to

guide the presentation of instructional simulations.

Chapter 5 is part of a larger research program being conducted by the Government

of New Zealand and a team of researchers partly based out of the University of Auck-

land. I developed the infrastructure of VIT as a tool to be used in this program. VIT

is now being maintained and extended by researchers at the University of Auckland

and is being tested within New Zealand classrooms for incorporation into the New

Zealand K-13 mathematics curriculum. How and why to teach statistical inference

with simulations in R will be adapted to form the basis of a paper that describes

the results of these tests. It will be co-authored by Garrett Grolemund, Chris Wild,

Maxine Pfannkuch, and Ross Parsonage.

http://cran.r-project.org

Chapter 2

A Cognitive Interpretation of Data Analysis

This chapter will appear in the International Statistical Review in 2013 as ‘A cogni-

tive interpretation of data analysis’ by Garrett Grolemund and Hadley Wickham. The

article will be accompanied by discussion about the article from invited statisticians.

Abstract — This paper proposes a scientific model to explain the data analysis

process. We argue that data analysis is primarily a procedure to build understand-

ing and as such, it dovetails with the cognitive processes of the human mind. Data

analysis tasks closely resemble the cognitive process known as sensemaking. We

demonstrate how data analysis is a sensemaking task adapted to use quantitative

data. This identification highlights a universal structure within data analysis activi-

ties and provides a foundation for a theory of data analysis. The competing tensions

of cognitive compatibility and scientific rigor create a series of problems that char-

acterize the data analysis process. These problems form a useful organizing model

for the data analysis task while allowing methods to remain flexible and situation

dependent. The insights of this model are especially helpful for consultants, applied

statisticians, and teachers of data analysis.

8

2.1 Introduction

This paper proposes a scientific model to explain the data analysis process, which

attempts to create understanding from data. Data analysis tasks closely resemble

the cognitive process known as sensemaking. We demonstrate how data analysis is

a sensemaking task adapted to use quantitative data. This identification highlights

a universal structure within data analysis activities and provides a foundation for a

theory of data analysis. The proposed view extends existing models of data analysis,

particularly those that describe data analysis as a sequential process (Tukey, 1962;

Tukey and Wilk, 1966; Box, 1976; Wild, 1994; Chatfield, 1995; Wild and Pfannkuch,

1999; Cook and Swayne, 2007). The paper follows the suggestion of Mallows and

Walley (1980) to build on insights from psychology and the examples of Lakoff and

Núñez (1997) and Lakoff and Núñez (2000), who documented the influence of cogni-

tive mechanisms on mathematics. The paper was motivated by the authors’ need to

find criteria on which to compare and optimize the usefulness of data analysis tools;

however, the paper’s discussion is relevant to all users of data analysis techniques,

such as consultants, applied statisticians, and teachers of data analysis.

The paper is organized as follows. Section 2.2 defines data analysis and explains

the shortcomings of the current treatment of data analysis in statistics. Section 2.3

examines the relationship between cognitive science and data analysis. It outlines

areas of cognitive science research that are relevant to the data analysis process,

such as mental representations of knowledge, the sensemaking process, and the use of

external cognitive tools to complete sensemaking tasks. Section 2.4 identifies how the

use of precise, measured data disrupts the sensemaking process. It then describes the

adaptations to general sensemaking that measured data require. Section 2.5 proposes

that data analysis is a sensemaking task adapted to the use of measured data. This

provides a theoretic model of data analysis that explains existing descriptions of the

9

data analysis process. In Section 2.6 we examine a prediction of this model: data

analysis inherits the known shortcomings of sensemaking. We examine two of these

shortcomings with case studies of well known data analyses. These shortcomings

include the tendency to retain false schemas and the inability of sensemaking to prove

its conclusions. We conclude by discussing the usefulness of the cognitive model of

data analysis as a guiding theory for data analysis.

2.2 A theory of data analysis

Data analysis is the investigative process used to extract knowledge, information, and

insights about reality by examining data. Common data analysis activities include

specifying a hypothesis, collecting data relevant to a problem, modelling data with

quantitative methods, and interpreting quantitative findings. This process relies on

statistics, a field with useful methods for specific data analysis tasks, but has an

applied focus; data analysts focus less on the properties of a method and more on

the connections between the data, the method, its results, and reality. Data analysis

is sometimes referred to as “applied statistics” (Mallows, 1998) or the “wider view”

of statistics (Wild, 1994), but we prefer the term data analysis because it does not

suggest that statistics is the only tool to be applied when analyzing data.

Data analysis is a widely used technique that is relevant to many fields. This rele-

vance has increased sharply in the past decades as data has become more ubiquitous,

more complex, and more voluminous. Large data sets, such as online customer review

ratings, social network connections, and mappings of the human genome, promise re-

warding insights but overwhelm past methods of analysis. The result is a “data

deluge” (Hey and Trefethen, 2003) where current data sets can far exceed scientists’

capacity to understand them. Despite this difficulty, the rewards of understanding

data are so promising that data analysis has been labelled the sexiest field of the next

10

decade (Varian, 2009).

Future advancements in data analysis will be welcomed by the scientific commu-

nity, but progress may be limited by the currently sparse theoretical foundations.

Little theory exists to explain the mechanisms of data analysis. By theory, we mean

a conceptual model that synthesizes relevant information, makes predictions, and

provides a framework for understanding data analysis. This definition is more prag-

matic than formal: a useful theory of data analysis would help analysts understand

what data analysis is, what its goals are, how it achieves these goals, and why it

fails when it falls short. It should go beyond description to explain how the different

parts of a data analysis, such as experimental design, visualization, hypothesis test-

ing, and computing relate to each other. Finally, a theory of data analysis should

allow analysts to predict the success or failure of possible data analysis methods.

It is hard to prove such a theory does not exist, but Unwin (2001) points out that

there are few texts and little theory to guide a data analysis. Similar concerns have

been expressed by Mallows and Walley (1980), Breiman (1985), Wild (1994), Huber

(1997), Velleman (1997), Mallows (1998), Wild and Pfannkuch (1999), Viertl (2002),

Mallows (2006), Cobb (2007), Huber (2011) and in the discussion of Breiman (2001).

Huber (1997) identifies one reason for the lack of data analysis theory: techniques

are developed by researchers who work with data in many different fields. Often

knowledge of the technique remains localized to that field. As a result, data analysis

ideas have been balkanized across the fields of statistics, computer science, economics,

psychology, chemistry, and other fields that proceed by collecting and interpreting

data. The subject matter of data analysis is also hard to generalize. The methods of

each analysis must be flexible enough to address the situation in which it is applied.

This malleability resists a top-down description and led Unwin (2001) to suggest a

bottom-up pattern language to stand in for data analysis theory.

11

A well defined theory of data analysis would provide many benefits. First, it would

facilitate the development of better techniques. In many fields, advancements accrue

through the extension and development of theories (Unwin, 2001). Advancements in

data analysis techniques may lead to many potential rewards. The areas of applica-

tions for data analysis have developed more in recent decades than they have during

any previous period in the history of statistics (Breiman, 2001). Despite this, many

statistics courses still teach methods typical of the first half of the 20th century, an era

characterized by smaller data sets and no computers (Cobb, 2007). The development

of theory could hasten the speed with which data fields adapt to emerging challenges.

A theory of data analysis may also curtail the development of bad techniques. Tech-

nology and large data sets do not guarantee useful results. Freedman (2009) argues

that “many new techniques constitute not progress but regress” because they rely on

technical sophistication instead of realistic assumptions. A better understanding of

data analysis will help ground future innovations to sound practice.

A theory of data analysis will also improve the education of future analysts. Statis-

tics curricula have been criticized for teaching data analysis techniques without teach-

ing how or why statisticians should use them (Velleman, 1997). This undermines

students’ attempts to learn. As Wild and Pfannkuch (1999) explain “the cornerstone

of teaching in any area is the development of a theoretical structure with which to

make sense of experience, to learn from it and to transfer insights to others.” The lack

of data analysis theory means that little structure exists with which to teach statisti-

cal thinking. As a result, some graduates from statistics programs have been poorly

trained for their profession; they know the technical details of statistical methods but

must undertake an on-the-job apprenticeship to learn how to apply them (Breiman,

1985; Mallows, 1998). The focus on technique also fails non-statisticians, who are

the primary consumers of introductory statistics courses. Without a grasp of sta-

12

tistical thinking, non-statisticians are less likely to recognize the need for a trained

statistician and therefore less likely to hire one (Wild, 1994).

A theory of data analysis may also benefit the field of statistics by providing

unity and direction. At the end of his 1997 assessment of statistics, Huber predicted

that statistics would dissolve as a field unless statisticians replaced their focus on

techniques with a focus on “meta-methods” and “meta-statistics” (Huber, 1997).

Three years later in 2000, a panel on data analysis called for statistics to evolve into

a data science organized by a general theory of data analysis (Viertl, 2002). These

conclusions echo Tukey’s argument that statistics should be “defined in terms of a

set of problems (as are most fields) rather than a set of tools, namely those problems

that pertain to data” (Friedman (1998) summarizing Tukey (1962)). A theory of data

analysis would offer a unifying theme for statistics and its applications. It would also

offer a common language that would promote collaboration by analysts in various

fields.

Finally, a theory of data analysis would improve data analysis practice. A the-

ory would aid practitioners because theoretical concerns guide practice (Gelman and

Shalizi, 2010). Theory also improves practice; people problem solve more successfully

when they “have suitably structured frameworks” to draw upon (Pea, 1987; Resnick,

1988).

Where should we look for such a theory? Many published papers involve a data

analysis. But as Mallows and Walley (1980), Cox (2001), and Mallows (2006) point

out, most studies do not provide a detailed description of the analysis involved. In-

stead, they focus on results and implications. We could narrow our focus to statistics

and computer science; both fields develop tools to analyze data. However, statistics

articles usually focus on the mathematical properties of individual techniques, while

computer science articles focus on algorithmic efficiency. As a result, little research

13

deals explicitly with the data analysis process. We propose an alternative source for

data analysis insights: cognitive science.

2.3 The role of cognition in data analysis

Cognitive science offers a way to understand data analysis at a theoretic level. Con-

cerns of cognitive science may seem far from the field of statistics, but they have

precedent in the early literature of exploratory data analysis. Tukey and Wilk (1966)

highlight the role of cognitive processes in their initial descriptions of EDA (emphasis

added): “The basic general intent of data analysis is simply stated: to seek through a

body of data for interesting relationships and information and to exhibit the results

in such a way as to make them recognizable to the data analyzer” (emphasis added).

And again, “...at all stages of data analysis the nature and detail of output, both

actual and potential, need to be matched to the capabilities of the people who use and

want it” (emphasis added.) Cognitive concerns also appear in recommendations for

improving data analysis. Tukey (1962) suggested that “those who try may even find

new [data analysis] techniques evolving ... from studies of the nature of ‘intuitive gen-

eralization.’” Mallows and Walley (1980) list psychology as one of four areas likely to

support a theory of data analysis.

Cognitive science also addresses a commonality of all data analyses. Data analyses

rely on the mind’s ability to learn, analyze, and understand. Each analysis attempts

to educate an observer about some aspect of reality. Usually, this requires data to be

manipulated and preprocessed, but the end result of these efforts must be a knowledge

product that can be interpreted by the human mind. An analysis cannot be useful

if it fails to provide this. Even “black box” analyses, which may rely on methods

that are incomprehensible to the analyst, must produce a result that the analyst can

assign meaning to. If they do not, they will not be useful. This last step of assigning

14

meaning is not a statistical or computational step, but a cognitive one. In this way,

each data analysis is part of a larger, cognitive task. The success of each data analysis

depends on its ability to interact with this cognitive process.

This alone is good reason for data analysts to learn about cognition. However,

cognitive processes also shed insights on the preprocessing stages of a data analysis;

mental processes closely parallel the preprocessing stages of data analyses. Moreover,

untrained analysts can and do “analyze” data with only their natural mental abilities.

The mind performs its own data analysis-like process to create detailed understand-

ings of reality from bits of sensory input. In this section, we examine these mental

processes. In Sections 2.4 and 2.5 we argue that data analysis is a specific extension

of a mental process known as sensemaking.

2.3.1 Schemas and sensemaking

Studies suggest that the average person can only hold two to six pieces of information

in their attention at once (Cowan, 2000). Yet people are able to use this finite power

to develop detailed understandings of reality, which is infinitely complex. The mind

builds this understanding in a process that is similar to many descriptions of data

analysis. The mind creates and manages internal cognitive structures that represent

aspects of external reality. These structures consists of mental models and their rela-

tionships (Rumelhart and Ortony, 1976; Carley and Palmquist, 1992; Jonassen and

Henning, 1996). Mental models have been studied under a number of different names.

Examples include frames (Goffman, 1974; Minsky, 1975; Rudolph, 2003; Smith et al.,

1986; Klein et al., 2003), scripts (Schank and Abelson, 1977), prototypes (Rosch and

Mervis, 1975; Rosch, 1977; Smith, 1978) and schemas (Bartlett, 1932; Neisser, 1976;

Piaget and Cook, 1952). A schema is a mental model that contains a breadth of

information about a specific type of object or concept. Schemas are organized into

15

semantic networks based on their relationships to other schemas (Wertheimer, 1938;

Rumelhart and Ortony, 1976). This arrangement helps the brain process its experi-

ences: instead of storing every sensory observation, the brain only needs to maintain

its schemas, which are sufficient summaries of all previous observations. Some “mem-

ories” may even be complete recreations built with a schema (Bartlett, 1932; Klein

et al., 2003). Once the brain associates an event with a schema, it can use the schema

to access unobserved information related to the event. The mind uses this informa-

tion to assign meaning to sensory inputs and predict the relationships between data

points (Klein et al., 2003). In this way, the mind uses schemas and semantic networks

to construct our perception of reality from limited sensory input (Neisser, 1967).

People maintain their schemas in a process known as sensemaking. Russell et al.

(1993); Klein et al. (2003); Pirolli and Card (2005) and Zhang (2010) have each pro-

posed a description of the sensemaking process. These models vary in their details,

but they all contain the same basic components, shown in Figure 2.1. Variations

of this basic model have been utilized by scientists in the fields of cognitive science

(Lundberg, 2000; Klein et al., 2003; Helsdingen and Van den Bosch, 2009); organi-

zational studies (Weick, 1995; Weick et al., 2005); computer science (Attfield and

Blandford, 2009; Russell et al., 1993); knowledge management (Dervin, 1998); intelli-

gence analysis (Pirolli and Card, 2005); InfoVis (Yi et al., 2008); and Visual Analytics

(Wu et al., 2010).

The sensemaking process revolves around noticing discrepancies between schemas

and reality. To understand an event, the brain selects a relevant schema. This

selection may be guided by context clues or a few initial observations that serve

as anchor points (Klein and Crandall, 1995). The brain then uses this schema to

scan the environment for relevant sensory inputs. The schema helps the brain build

information from the inputs by assigning meaning to them. This is similar to Moore’s

16

Schema Insights Information

compare

confirm, update,
or reject

accept or dismiss
as non-credible

scan environment for
relevant data

search for
a relevant schema

Figure 2.1: A simplified summary of the sensemaking process. Schemas are compared
to observed information. If any discrepancies (i.e, insights) are noticed, the schema
is updated or the information is disregarded as untrustworthy.

definition of data as numbers that have been given a context (Moore, 1990). As

new information is constructed, the brain tries to fit it into the schema. If a piece

of relevant information does not fit, the schema may be flawed. The sensemaking

literature calls these unique, non-fitting pieces of information insights (Pirolli and

Card, 2005). If new information contains no insights, the brain retains the schema as

it is. If insights are present, the brain either updates the schema to account for them,

dismisses the information as non-credible, or abandons the schema entirely. In the

last outcome, the insights and information would then guide the selection of a new

schema. This process repeats itself whenever further information becomes available.

Data analysis is a sensemaking task. It has the same goals as sensemaking: to

create reliable ideas of reality from observed data. It is performed by the same agents:

human beings equipped with the cognitive mechanisms of the human mind. It uses

the same methods. Experts in data analysis such as John Tukey and George Box have

offered descriptions of the data analysis process. These descriptions show that data

17

analysis proceeds like sensemaking by comparing theory to fact, searching for discrep-

ancies, and modifying theory accordingly. According to Box (1976), “matters of fact

can lead to a tentative theory. Deductions from this tentative theory may be found

to be discrepant with certain known or specially acquired facts. These discrepancies

can then induce a modified, or in some cases, a different, theory. Deductions made

from the modified theory now may or may not be in conflict with fact and so on.”

Tukey’s view of data analysis also stresses comparison, discrepancy, and iteration:

“Data analysis is a process of first summarizing [the data] according to the hypothe-

sized model [theory] and then exposing what remains [discrepancies], in a cogent way,

as a basis for judging the model or the precision of this summary, or both” (Tukey

and Wilk, 1966). Both Tukey and Box also emphasize the iterative nature of data

analysis and the importance of successive approximations of the truth.

Sensemaking also explains both exploratory data analysis and confirmatory data

analysis. Many researchers separate data analysis tasks into exploratory and con-

firmatory parts (for example, Mulaik (1985), Chatfield (1995)). As Mulaik (1985)

explains, “exploratory statistics are usually applied to observational data collected

without well-defined hypotheses for the purpose of generating hypotheses. Confirma-

tory statistics, on the other hand, are concerned with testing hypotheses.” In other

words, confirmatory analyses focus on a hypothesis (the schema) and seek to validate

the schema against data. Exploratory analyses focus on the data and seek to find

schemas that explain the data. Many sensemaking descriptions begin with a schema

and then proceed to collecting data as in a confirmatory analysis. However, sense-

making can also begin with data and then seek a plausible schema as in exploratory

analysis. Qu and Furnas (2008) demonstrates the data to schema direction to sense-

making. In pilot studies of information search tools, Qu and Furnas found that people

use sensemaking to develop schemas that explain available data. Early definitions of

18

sensemaking also reflect its bi-directional nature. For example, Russell et al. (1993)

define sensemaking as “a process of searching for a representation and encoding data

in that representation to answer task-specific questions.” To summarize, sensemaking

is an integrated, iterative process with multiple points of entry. Exploratory data

analysis follows a sensemaking loop that begins with data. Confirmatory data analy-

sis follows a sensemaking loop that begins with a schema (in the form of a hypothesis),

Figure 2.2.

Schema Insights Information

search for
a relevant schema

Exploratory Analysis

Schema Insights Information

Scan environment
for relevant data

Confirmatory Analysis

Figure 2.2: Exploratory and confirmatory data analysis both follow the sensemaking
process. Exploratory analysis begins with a received data set. A confirmatory analysis
begins with a received schema (often a hypothesis or model).

While the general structure of data analysis aligns with sensemaking, its results

differ. The results of unguided sensemaking are too unreliable to meet the goals

of science. Science requires objective results that can be recreated under consistent

conditions. Sensemaking creates subjective results that can vary from person to per-

son and from time to time. It is common experience that different people come

to different conclusions when presented with the same information. This subjec-

tivity occurs because people have and use different sets of schemas when analyzing

information. Unguided sensemaking also has other flaws that increase subjectivity.

19

Tversky and Kahneman (1974) showed that people express predictable biases when

they try to make sense of uncertain information. Tversky and Kahneman (1981)

showed that meaningless changes in the way information is presented can result in

complete changes in the conclusions people draw. These are only two of the most

well known biases in human thinking, many more exist. Fortunately, sensemaking

can be augmented in ways that reduce these biases and foster objective results. Data

analysis is shaped by these augmentations.

2.3.2 External tools of cognition

We can augment sensemaking with external methods of cognition. The human mind

has evolved to rely on external, artificial tools to aid thought (Donald, 1991). These

external tools allow us to perform cognitive feats that would not be possible otherwise.

For example, a child may use a paper and pencil to perform math that they could

not do in their head, or an adult may rely on a written list when grocery shopping

(Zhang, 2000). External cognition tools can also be used to reduce the subjectivity

of sensemaking. Data analysis relies on two external tools: data, which is an external

representation of knowledge; and logic, particularly mathematics, which is an external

system for processing information.

External representations of knowledge are information that is stored in the envi-

ronment. This information can be stored as physical symbols (e.g, written numbers),

as relations embedded in physical configurations (e.g, the beads of an abacus or

lines on a map), as systems of rules and constraints (e.g, the laws of algebra), or in

other ways (Zhang, 1997). External representations play an important role in many

cognitive tasks. They can extend a person’s working memory, permanently archive

large amounts of data, make abstract information directly accessible, suggest solu-

tions by reducing the number of options, and change the nature of a cognitive task

20

to something easier (Zhang, 2000). Well chosen external representations can even

provide access to knowledge and skills unavailable from internal representations. For

example, the invention of arabic numerals enabled the development of algebra, some-

thing that was not possible with roman numerals or purely internal representations

of counts. External representations of knowledge guide a sensemaker’s attention and

give schemas and observations a form that can be shared among sensemakers.

Data analysis relies heavily upon an external representation of knowledge: mea-

sured and recorded data. Data provides many benefits that reduce the subjectivity

of sensemaking. Recorded data allows large quantities of information to be stored

outside of the memory. Here it can be quickly and easily accessed to support cog-

nition. Recorded data can also be manipulated outside of the working memory (e.g.

with computers) and shared with other sensemakers. Data is usually collected in a

prescribed manner, which reduces the role that schemas play in attending to and

interpreting observations. Measurement also allows data to be defined with more

consistency and precision than the human senses can supply. Finally, precise mea-

surement facilitates the use of other external cognitive tools such as math and logic.

Systems of rules and constraints can also be external cognitive tools. These sys-

tems automate the extraction and transformation of knowledge. As a result, infor-

mation can be processed outside of the working memory. This allows more data to

be processed at once, more complex operations to be performed, and fewer errors to

occur during processing. Data analysis relies heavily on math and logic, which are

external systems of information processing. Logic and math reduce the subjectivity

of data analysis by mandating which conclusions can be drawn from which facts. As

Norman (1993) summarizes, “logic is reliable: provide the same information and it

will always reach the same conclusion.” This is not true of unguided sensemaking.

Logic also allows sensemakers to work with entire data sets instead of just the col-

21

lection of data points they can mentally attend to. As mentioned at the start of

this section, the working memory seems to only be able to hold two to six pieces of

information at once Cowan (2000). Although, the mind uses various strategies to

augment this ability (see for example, Sweller et al. (1998)), the average modern data

set exceeds the capacity limits of the working memory. Finally, math and logic allow

us to perform our reasoning externally, where we can examine it for errors and biases.

Data analysis can be distinguished from general sensemaking by its reliance on

measured data and math and logic. Data and logic reduce the subjectivity of sense-

making. The use of these external cognitive tools makes sensemaking more fit for

science, which prefers objective results. Unmodified, our internal knowledge build-

ing processes are too subjective to provide these results. Data, in particular, resists

the internal forces that create subjectivity. Data reduces the tendency of schemas

to screen out observations. Data expands our storage and processing powers. Data

can be manipulated and examined externally, which allows us to police our reasoning

during sensemaking. But using data introduces new problems: how do we compare

abstract schemas to specific, often quantitative, data? How do we identify discrepan-

cies between schema and data when data contains its own type of variation?

2.4 Making sense of measured data

The sensemaking process must be adapted to accommodate measured data. First,

schemas must be made precise to allow comparison against precisely measured data.

Schemas must be made quantitative to be easily compared against quantitative data.

Second, a test must be developed to identify discrepancies between schema and data

in the presence of variation. If data analysis is a sensemaking process, as we propose,

each instance of data analysis will exhibit these accommodations. We discuss these

accommodations below.

22

2.4.1 Abstract schema, quantified data

Sensemaking proceeds by identifying discrepancies between schemas and reality. These

two objects must have similar forms to allow accurate comparison. However, schemas

do not usually resemble measured data. A typical schema may be as simple as an

idea that can be expressed in a sentence or as well developed as what Kuhn (1962)

calls a paradigm, a world view that not only contains a theory, but also defines what

questions are acceptable, what assumptions are permissible, what phenomena de-

serve attention, and more. How should an analyst compare schemas against data?

The common solution is to deduce a prediction from a schema that can be tested

against the data. The predictions can be simple or complex, but they must take the

same precise or quantitative form as the data. A linear regression model of the form

Y = α+ βX + � is one example of a quantified prediction deduced from a schema. A

set of data simulated from Y = α + βX + � would be a further prediction from the

schema. The underlying schema includes additional non-quantitative information,

such as model assumptions, contextual information, and any other beliefs about the

subject matter, data sources, and their relationships. The direction of causal rela-

tionships and the assumption that there are no lurking variables are two examples of

information contained in a schema but not the quantitative hypothesis deduced from

the schema.

Data analysis proceeds by testing these quantitative predictions against data in the

usual sensemaking fashion. We should not confuse these predictions with the actual

underlying schema. They are only deductions that must be true if the schema is

true. The validation of a prediction does not validate the underlying schema because

the same prediction may also be associated with other competing schemas. This

ambiguity is most clear in exploratory data analyses. Exploratory analyses begin

with data and then attempt to fit a model to the data. Often more than one model

23

can be fit, which presents one layer of ambiguity. Then the analyst must grapple

with a second layer of ambiguity: which explanation of reality (i.e., schema) does the

fitted model support? If smoking is correlated with lung cancer, does this suggest that

smoking causes lung cancer (schema 1), that lung cancer causes smoking (schema 2),

or that a third variable causes both (schema 3)? Analysts can reduce ambiguity by

using multiple lines of argument, collecting more data, iterating between confirmatory

and exploratory analyses, and deducing and testing as many predictions as can be

had from each schema.

Transforming schemas is not the only way to facilitate comparison. Often it is

also useful to transform the data to resemble a schema or model. Schemas parallel

the way humans think, which rarely involves sets of measured numbers. More often a

schema will only describe a characteristic of the data, such as the mean, maximum, or

variance. In other occasions, a schema may focus on a variable that must be derived

from the data, such as a rate (count/time) or density (mass/volume). Mathematical

calculations can transform the data into the appropriate quantity prior to comparison.

Exploratory analysis can be made simpler by transforming data to resemble familiar

situations. For example, “curved” scatterplots can be unbent with a log transfor-

mation to resemble linear scatterplots. This aids schema search: humans have more

schemas to explain familiar situations than they do to explain unfamiliar ones. It

also facilitates comparison: humans are better at perceiving differences on a linear

scale than a curved one. Visualization is another way to transform data that allows

analysts to use their strongest perceptual abilities.

In summary, human cognitive processes are unaccustomed to sets of measured

data. To use such data, a sensemaker must transform his or her schemas to resemble

data. This can be done by deducing precise predictions from the schema (such as the

models commonly used by statisticians). Often it can be helpful to transform the data

24

as well. The need to navigate between schema and prediction/model characterizes all

data analyses and distinguishes data analyses from general sensemaking.

2.4.2 Omnipresent variation

Variation creates a second distinction between general sensemaking and data analy-

sis. Variation in quantitative data is an omnipresent and demonstrable reality (Wild

and Pfannkuch, 1999). In usual sensemaking tasks, this variation goes unnoticed.

Observers assign observations to general categories (Rosch and Mervis, 1975). Varia-

tion is only noticed when it is large enough to place an observation in an unexpected

category. Measurement, however, reveals even small variations. These variations dis-

rupt the sensemaking process. A model will appear discrepant with data if it does

not account for all of the sources of variation that affect the data. This is not a

failure of sensemaking. Afterall, a schema can not be a very accurate model of re-

ality if it does not account for variation that exists in the real world. However, it is

unlikely that any model used in data analysis will describe all of the relevant sources

of variation. Cognitive, computational, and financial constraints will intervene before

every associated variable can be identified and measured. Moreover, many sources

of variation will have little to do with the purpose of the analysis. To summarize,

the omnipresence of variation in quantitative data derails the sensemaking process.

Discrepancy ceases to be an informative signal; unobserved sources of variation will

create minute discrepancies between predictions and observations even if a schema

correctly describes the relationships between observed variables.

Data analysis proceeds by examining schemas and models that predict a pattern

of outcomes. This pattern can then be compared against the pattern of the data.

Models that predict a pattern do not need to be very complex. Probability theory

provides a concise, expressive, and mathematical toolbox for describing patterns. A

25

deterministic model can be transformed into a model that predicts a pattern by adding

a probability term. This term acts as a “catch all” that describes the combined effects

of all sources of variation that are not already explicitly accounted for in the model.

Comparing patterns changes the task of identifying discrepancies in an important

way. To accurately diagnose a discrepancy between two patterns, an analyst must

observe the entirety of both patterns, which is rarely an option. The entire patterns

may contain a large or even infinite number of points. Research budgets will inter-

vene before the observation can be completed. However, comparing subsets of two

patterns can be misleading; a subset of a pattern may look very different than the

overall pattern. The data analyst must decide whether or not an observed discrepancy

between sub-patterns implies a genuine difference between the entire patterns. This

introduces a new step into confirmatory analyses: the analyst must decide whether

observed differences between the hypothesis and data imply actual differences be-

tween the hypothesis and reality. In exploratory analyses, an analyst must decide

how closely to fit a model to the data. At what point does the model begin to fit the

sub-pattern of the observed data more closely than the implied pattern of the unob-

served data? These variance related judgements provide a second characterization of

data analysis.

These judgements become harder when data is contaminated with measurement

bias and sampling bias. Both types of bias obscure the true pattern of unobserved

reality, which invalidates the results of sensemaking. Bias can be minimized by en-

suring that the observed data accurately represent reality and that measurements are

made accurately. This may require identifying (but not measuring) all of the data

points contained in the pattern, which is sometimes referred to as the population of

interest, as well as identifying the relationships between unobserved points and the

observed points. These considerations make data collection a more salient part of

26

data analysis than information collection is in sensemaking. Obviously, data analysts

can not always control how their data is collected. However, data analysts should

always seek out and consider evidence of bias when making variance related judge-

ments. Avoiding and considering bias may be considered a third characteristic of

data analysis that distinguishes it from general sensemaking.

2.5 A conceptual model of data analysis

Data analysis combines sensemaking with two data related considerations: how can

we compare abstract schemas to precise data? And, how can discrepancy between

schema and data be distinguished from variance? These considerations combine with

the general sensemaking structure to create a conceptual model of the data analysis

process, see Figure 2.3. Data analyses proceed as a series of iterations through sub-

loops of this process. Individual analyses will vary by the paths they take and the

methods they use to achieve each step.

A generalized exploratory task proceeds as follows:

1. Fit a tentative model to available data

2. Identify differences between the model and data

3. Judge whether the differences suggest that the model is misfit, overfit, or un-

derfit (discrepancies)

4. Retain or refine the model as necessary

5. Select a plausible schema that interprets the model in the context of the research

A generalized confirmatory task proceeds in the opposite direction:

1. Select an appropriate schema to guide data collection.

27

Model
Difference

Data

transform

confirm, update,
or reject

accept or dismiss
as non-credible

collect data

fit model

Schema
Discrepancy

deduce precise
hypothesis

match to plausible
schema

transform

judge

compare

Figure 2.3: Data analysis parallels sensemaking. Analysts deduce a precise hypothesis
(model) from the schema, which they compare to the data or a transformation of the
data. Analysts must attempt to distinguish discrepancies between schema and data
from differences that result from variance and bias. Analysts must also match each
accepted model back to a schema to provide interpretation in real world concepts.

28

2. Deduce a precise hypothesis from the schema. Multiple hypotheses may be

developed to test multiple aspects of the schema.

3. Identify the set of data that would be relevant for testing the hypothesis

4. Collect a representative subset of the data.

5. Identify differences between data and hypothesis

6. Judge whether the discrepancies imply a meaningful difference between the

hypothesis and reality or result from random variation or faulty data

7. Confirm, update, or reject the hypothesized model (and its associated schema)

This model parallels the descriptions of data analysis offered by Chatfield (1995),

Wild and Pfannkuch (1999), MacKay and Oldford (2000), Cox (2007), and Huber

(2011) as well as the description of data analysis offered by Tukey and Wilk (1966),

and Box (1976) which we discussed before. The model also lends these descriptions

explanatory power: data analysis follows consistent stages because it is a sensemaking

process that has been adapted to accommodate data. We briefly discuss the alignment

of these descriptions with the cognitive model of data analysis below.

2.5.1 Chatfield (1995)

Chatfield (1995) divides an idealized statistical investigation into seven stages. As

with the proposed model, the methods used in each stage will vary from situation to

situation. The seven stages loosely follow our proposed model:

1. Understand the problem and clarify objectives (begin with a schema)

2. Collect data in an appropriate way (collect data)

3. Assess the structure and quality of the data, i.e, clean the data

29

4. Examine and describe the data (transform data into words, visuals, etc.)

5. Select and carryout appropriate statistical analyses

(a) Look at data (transform into visuals)

(b) Formulate a sensible model (make schema precise)

(c) Fit the model to the data (fit model)

(d) Check the fit of the model (identify discrepancies)

(e) Utilize the model and present conclusions

6. Compare findings with further information, such as new data or previous find-

ings (iterate)

7. Interpret and communicate the results

Many of Chatfield’s stages directly map to steps in the cognitive model (shown in

italics above). Other stages align with sub-loops of the cognitive model, such as step

3, which requires comparing the data to a schema of “clean” data and then updating

the data set. Chatfield’s final stage does not match the cognitive model. We agree

that communication is an important part of the data analyst’s job; however, it occurs

after sensemaking has finished. As such, it deals with a different set of cognitive

concerns and we refrain from examining it in this article.

2.5.2 Wild and Pfannkuch (1999)

Wild and Pfannkuch (1999) develop a model of the “thought processes involved in sta-

tistical problem solving.” This model has four dimensions, but the first dimension is a

description of the phases of a data analysis: problem, plan, data, analysis, conclusions

(PPDAC). These phases were developed by Mackay and Oldford and later published

30

in MacKay and Oldford (2000). The problem stage involves defining the problem

and understanding the context. In these respects, it resembles selecting an initial

schema. The plan and data stages involve collecting data relevant to the problem.

The analysis stage includes data exploration and both planned and unplanned anal-

yses. These activities search for relevant models and identify discrepancies between

the model and the data, when they exist. The final stage, conclusions, encapsulates

communicating and using the understanding developed by the analysis. Wild and

Pfannkuch (1999) develop connections between data analysis and cognition in other

ways as well. They conceptualize applied statistics as “part of the information gath-

ering and learning process.” Wild and Pfannkuch also argue that scientists utilize

statistical modeling because we are incapable of handling the enormous complexity

of real world systems, which include variation in innumerable components. Model-

ing provides data reduction, which allows understanding. Schemas play the same

role in sensemaking by distilling data and assigning meaning. Wild and Pfannkuch

further argue that statistical models become the basis of our mental models, where

understanding accumulates, an observation supported by the cognitive model of data

analysis.

2.5.3 Cox (2007)

Cox (2007) discusses the main phases of applied statistics with a focus on technical

considerations. Like Chatfield (1995) and Wild and Pfannkuch (1999), Cox divides

data analysis into general phases that parallel the sensemaking model: formulation of

objectives, design, measurement, analysis of data, and interpretation. The formula-

tion phase parallels selecting a schema. The design and measurement phases focus on

acquiring relevant data. The data is analyzed by searching for discrepancies with the

model. Cox’s interpretation phase focuses on parsing the results of analysis into new

31

understanding. Our model describes this in cognitive terms as matching the accepted

model to a schema.

2.5.4 Huber (2011)

Huber (2011) divides data analysis into the following activities.

1. Planning and conducting the data collection (collect data)

2. Inspection (transform data)

3. Error checking

4. Modification (transform data)

5. Comparison (identify discrepancies)

6. Modelling and model fitting (model fitting)

7. Simulation (make schema precise)

8. What if analyses

9. Interpretation (match model to a schema)

10. Presentation of conclusions

Most of these activities directly appear in the cognitive model of data analysis.

Other activities, such as error checking, play a general support role to the distinct

phases of data analysis that appear in the cognitive model. Like Chatfield (1995),

Huber also highlights the important role of communication, which is not covered by

the cognitive model. Huber parts with the cognitive model by asserting that “ordering

the [above] pieces is impossible.” However, Huber’s explanation of this agrees with

the cognitive model: “one naturally and repeatedly cycles between different actions.”

32

The model of data analysis proposed in this section synthesizes insights provided

by prominent descriptions of data analysis. The model explains why these descriptions

take the form that they do, and the model provides a framework for understanding

data analysis: data analysis is a sensemaking process adapted to measured data. The

cognitive model of data analysis also offers an immediate implication for the practice

of data analysis, which we discuss in the next section.

2.6 Implications for data analysis practice

The cognitive model of data analysis predicts a set of problems that may undermine

data analysis practice. The mind uses sensemaking to build knowledge of the world,

but the process has known flaws. If data analysis is built upon sensemaking as we

propose, it will inherit these flaws. Each flaw poses challenges for a data analyst. In

this section, we discuss two of these flaws and illustrate each with a case study of a

notable data analysis failure.

2.6.1 Data analysis is biased towards accepted schemas

The nature of cognition tends to undermine the sensemaking mechanism for detecting

faulty schema. People only attend to a small portion of the information in their

environment, and schemas direct where this attention is placed (Klein et al., 2003).

To understand an event, the brain selects a relevant schema. This selection may be

guided by context clues or a few initial observations that serve as anchor points (Klein

and Crandall, 1995). The brain then uses this schema to scan the environment for

additional relevant sensory inputs. The schema then helps the brain build information

from the inputs by assigning meaning to them. In other words, schemas determine

where attention will be placed and how observations will be interpreted (Klein et al.,

33

2003). Information that contradicts a schema is less likely to be noticed (Klein et al.,

2003), correctly interpreted (DeGroot, 1965), or recalled later (Woodworth, 1971;

Miller, 1962). As a result, the mind is prone to retain incorrect schemas. This

tendency has been well documented in educational research. Students are more likely

to misinterpret new information than update their misconceptions. For example,

when children are told that the world is round, they are more likely to picture a

pancake than a sphere (Vosniadou and Brewer, 1989). High school students are likely

to retain an Aristotelian worldview even after completing a year long curriculum in

Newtonian physics (Macabebe et al., 2010). Statisticians are not immune to this

schema inertia either. The “hot hand” effect in basketball (Gilovich et al., 1985)

and the Monty Hall problem (Tierney, 1991) are two well known examples where

students (and sometimes professors) have been unable to update their schemas despite

statistical training.

The mind tends to discredit observations before beliefs whenever it is easy to do

so. A direct experience that requires minimal interpretation is often necessary to

impugn an accepted schema. In the classroom, schema change can be initiated by

having the student examine their beliefs and then creating an experience that directly

contradicts the faulty schema (Bransford et al., 2000). In naturalistic settings, schema

change usually does not occur until experience violates expectation, creating a shock

or surprise (Klein et al., 2003).

The discovery of the hole in the ozone layer illustrates the inertia that incorrect

schemas can have in an analysis. In 1974, Molina and Rowland (1974) predicted

that industrial use of chlorofluorocarbons (CFCs) could deplete levels of atmospheric

ozone, which could have dangerous environmental effects. According to Jones (2008),

NASA’s Nimbus-7 satelite began to record seasonal drops in ozone concentrations over

Antarctica just two years later. These drops went unnoticed for eight years until the

34

British Antarctic Survey spotted the decrease in ozone through its own measurements

in 1984 (Farman et al., 1985). Why did analysis of the Nimbus-7 data fail to reveal

such a dramatic phenomenon for eight years?

The Nimbus-7 delay demonstrates the need to address low level schemas during

a data analysis. Analysts normally focus on quantifiable models, which are deduc-

tions from low level schemas. But it is the cognitive schema that will dictate where

analysts direct their attention and how they will explain their findings. These cogni-

tive schemas are particularly dangerous because they often persist in the presence of

contradictory information.

NASA programmed the Nimbus-7 to flag observations of low ozone as unreliable,

which accords with an initial belief that ozone values should fall in a known range.

When NASA scientists encountered these values, the flag made it easy to explain

away the data and preserve their schema. Moreover, the unreliability hypothesis was

easy to believe because the Nimbus-7 observations depended upon numerous mechan-

ical, electrical, and communication systems. In other words, the observations were

collected through a process too complex for the analysts to cognitively comprehend

or mentally check. This could explain why the data did not raise any alarm bells;

evidence suggests that observations that seem less certain than direct experience will

be ineffective for removing faulty schemas.

The BAS team had two advantages on the NASA team. First, the BAS team

did not receive a pre-emptive flag of unreliability with their low ozone measurements.

Second, the BAS team measured ozone in person in Antarctica and used much simpler

equipment than the NASA team. This imbued their observations with the jolt of

direct experience, which facilitates schema change. The lack of complexity in the

measurement process allowed the BAS team to assign the same confidence to the

measurements that they assign to their everyday sensory experiences.

35

Analysts can not always collect their data in person with simple tools. However,

analysts can guard against faulty schemas by addressing the mechanisms that al-

low them to persist: mis-attention and premature data rejection. Analysts should

consider whether or not they have sought out the type of data that would be likely

to disprove their basic beliefs should they be wrong. Analysts can further avoid

mis-attention by focusing on all plausible schemas. Tukey (1960) advocates for this

approach. According to Tukey, science examines “a bundle of alternative working

hypotheses.” Conclusion procedures reduce the bundle to only those hypotheses “re-

garded as still consistent with the observations.” Considering all plausible schemas

helps prevent the adoption of a faulty schema, which may then mis-direct an analyst’s

attention.

Once data has been collected, analysts should be circumspect about rejecting data.

Individuals are prone to reject data as erroneous when it violates their basic ideas

about what data should say. However, this prevents the analyst from discovering that

their basic ideas are wrong. Data cleaning is a useful and often necessary part of an

analysis, but analysts should be wary of using part of a schema under consideration

to filter their data. Instead, data points should only be rejected when a source of

error can be found in the data collection or generation mechanism.

Finally, we suspect that analysts can approximate the jolt of direct experience

by visualizing their data. NASA’s flagged ozone observations were highly structured.

They occurred in a temporal pattern (ozone dips low each Antarctic spring and then

recovers). They also occurred in the same geographical location in the Southern

Hemisphere. We speculate that had the NASA team noticed this by visualizing their

data, the pattern would have been as striking as direct experience and prompted a

schema change.

36

2.6.2 Data analysis does not prove its conclusions

Data analysis inherits a second flaw from sensemaking; it relies on an unsound logical

connection between premise and conclusion. As a result, data analysis does not prove

its conclusions with logical certainty, and hence, does not completely remove the

subjectivity of sensemaking. The reasoning an analyst uses to adopt a schema on the

basis of data is as follows:

If schema P is true, data should look like Q

The data looks like Q

Therefore schema P is true

This type of reasoning is not rare, nor is it useless. It is so common in science

that it has been given a name: abduction. Abduction was introduced and broadly

explored by Peirce (1932). It has been discussed more recently in a statistical context

by Rozeboom (1997). Abduction does not prove its conclusions unless there is a

one to one mapping between P and Q. More often, alternative schemas R, S, etc.

exist that also predict that the data should look like Q. If the data looks like Q, this

increases the likelihood that P is true, but it does not rule out the possibility that P

is false and R or S is instead true. Yet this is how the human mind functions when

sensemaking, and it is how data analysts must function as well.

Data analysts can improve the success of abduction with statistical techniques.

Many statistical techniques perform an optimized abduction within a constrained set

of models. For example, maximum likelihood estimation chooses the model of the

form P (X = x) ∼ f(x|θ) that is most likely to explain the data. However, maximum

likelihood does not guarantee that the true explanation is in the set of models of

the form P (X = x) ∼ f(x|θ) to begin with. Many statistical methods, such as the

method of moments, statistical learning methods, and bayesian estimation methods

are all also ways to guide abductive selection. Statistical methods provide a significant

37

advantage over unguided sensemaking. Humans are extremely prone to be biased

by emotionally salient information when reasoning about likelihoods (Tversky and

Kahneman, 1974). Statisticians frequently use models as tools without assuming the

models are true. This mitigates reliance on abduction. Nevertheless, the abductive

nature of data analysis requires caution and corroboration before data is used to make

weighty decisions.

The space shuttle Challenger accident demonstrates the need to strengthen ab-

ductive arguments with further analysis. NASA decided to launch the space shuttle

in 31◦F weather despite worries that the shuttle’s O-rings would leak at that tem-

perature. The O-rings failed, killing all aboard. Prior to launch, engineers from

NASA and Morton Thoikol, the manufacturer of the space shuttle, examined data

on the relationship between O-ring failure and temperature. They concluded that

no relationship existed. This analysis has been widely scrutinized and criticized (see

for example, Dalal et al. (1989), Tufte (1997), Presidential Commission on the Space

Shuttle Challenger Accident (1986), etc.). However, the data that NASA examined

could be construed to support the belief that temperature does not affect O-ring per-

formance. The seven data points that NASA examined could be seen as random cloud

that does not vary over temperature, Figure 2.4 (top). Alternatively, they could be

seen as a parabola that suggests increasing danger at extreme temperatures. This is

the nature of abduction, it does not rule out competing plausible explanations.

To strengthen its conclusions, NASA should have sought to corroborate its view

with a second line of evidence. NASA had access to 17 additional data points from

shuttle launches that it could have examined. These points would have cast doubt on

NASA’s conclusion; a trend between O-ring failure and temperature appears when

the additional data points are considered, Figure 2.4 (bottom).

38

Calculated Joint Temperature, Fo

N
um

be
r o

f I
nc

id
en

ts

0

1

2

3

0

1

2

3

●

● ● ● ●●

●

● ●
●
●

● ● ●
●

● ● ● ●
●

● ● ● ●

●

● ● ● ●●

●

55 60 65 70 75 80

M
issions w

ith O
−ring distress

All m
issions

Figure 2.4: The seven flights examined by NASA and Morton Thoikol managers
(above). The 24 flights for which information was available (below). Recreated from
Presidential Commission (1986) (p. 146).

Even more analysis, however, may have been needed to avert disaster. Lavine

(1991) points out that any attempt to predict performance at 31◦F from the data

would be an extrapolation since the observed data all occurred between 53◦F and

81◦F. In other words, multiple models could be fit to the existing data and each

would predict the performance at 31◦F differently. In fact, a careful statistical analysis

that considered the leverage of each available data point could potentially be seen as

evidence that 31◦F would increase the risk of O-ring erosion, but not by enough to

pose a severe danger (Lavine, 1991).

In summary, abduction even assisted by statistics could not differentiate between

an eventless launch and catastrophe based on the available data. Data analysis could

be used to support either argument, although the argument for danger would have ap-

peared stronger. To validate one of the arguments, NASA and Morton Thoikol would

have had to collect new data near 31◦F that could distinguish between competing

39

models. Such data was collected during the investigation of the Challenger disaster.

A controlled experiment of O-ring performance at different temperatures reported by

Presidential Commission on the Space Shuttle Challenger Accident (1986) (p. 61–62)

demonstrated conclusively that O-rings would not perform safely at 31◦F.

In general, analysts can avoid trouble by acknowledging the abductive nature of

data analysis. Researchers should view an analysis as an argument for, but not proof

of its conclusions. An analyst can strengthen this argument by judging the strengths

and weaknesses of the argument during the analysis and adjusting for them. An

analyst can also continue an analysis — often by collecting new data — until one

schema appears much more plausible than all others.

Controlled experiments, expertise, and corroboration can also be used to strengthen

the abductive step of data analysis. An experiment can be designed to limit the

amount of plausible schemas that can be abduced from, which increases the likeli-

hood of success. Subject matter expertise provides the analyst with more relevant

schemas to select from, which allows a better mental approximation of reality. Ex-

pertise also helps ensure that the analyst will know of a correct schema, which is a

prerequisite for selecting one during abduction. Expertise also broadens the amount

of previous information and data that the analyst can utilize when matching a schema.

Finally, an independent line of argument can corroborate the results of an abduction

if it comes to the same conclusion.

2.7 Conclusion

This paper identifies data analysis as an extension of the internal cognitive processes

that build knowledge. In particular, we propose that data analysis is a sensemaking

process that has been modified to use precisely measured data. This improves the

performance of sensemaking, but creates a new set of problems that exist in every

40

data analysis. Every data analysis must choose a way to express abstract concepts

precisely (often quantitatively). Every data analysis must also find a way to iden-

tify discrepancies between a schema and reality in the presence of variation. These

problems characterize data analyses and give them a recognizable pattern. Moreover,

data analysis inherits weaknesses from the sensemaking processes upon which it is

built. In this paper, we identify two such weaknesses: the unusual persistence of false

schemas and the unavoidable subjectivity of model and schema selection.

We began this paper by pointing to the need for a formal theory of data analysis.

Does the cognitive model of data analysis qualify as a formal theory of data analysis?

Perhaps not. Philosophers of science have offered multiple definitions of a scientific

theory. These range from the axiomatic to the semantic and usually require a degree

of mathematical precision that our conceptual model does not offer. However, the

cognitive model of data analysis meets our pragmatic view of a theory. It offers an

explanatory framework for data analysis that synthesizes available information and

makes predictions about data analysis tasks.

The cognitive model of data analysis may not change the way data analysis is

practiced by experienced statisticians. We believe that the prescription offered by the

model is very similar to current expert practices. The value of the model lies instead

in its portability. Current methods of statistical training have been criticized because

novices must acquire years of experience before they settle into expert data analysis

practices. In contrast, the cognitive model can be taught to novice statisticians to

guide data analysis practices from the get go. It is easy to understand that a data

analysis seeks to minimize discrepancies between theory and reality. It is easy to

accept that the mind goes about this in an innate way. It is also easy to see that

this task can be hindered by cognitive, logistical, and epistemological obstacles. The

details of data analysis emerge as these problems arise and are overcome.

41

The cognitive model also provides a way to unify the field of statistics, as advo-

cated by Huber (1997); Viertl (2002) and others. The model focuses on cognition, but

it does not ignore the contributions of statistics to data analysis. Instead it organizes

them. Statistical pursuits can be associated with the steps of data analysis that they

perform or support. Individual techniques of data analysis, such as design of experi-

ments, data visualization, etc., can be categorized and criticized by identifying which

problems they solve. This arrangement highlights how different areas of statistics

interact with each other. It also provides a global framework for students trying to

master the field of statistics.

The cognitive model also offers guidance for adapting data analysis to new con-

texts. Small sample statistical methods may become less applicable as the size and

nature of data sets change, but the general structure and challenges of data analysis

will remain. The cognitive model identifies these challenges: analysts will need meth-

ods that facilitate comparisons between data and schema and allow judgements of

dissimilarity in the presence of variation. Analysts will need ways to develop abstract

schemas into precise models that describe patterns of observation, and they will need

guidance for transforming the best fitting models into real world explanations.

Finally, a cognitive interpretation of data analysis also offers a way to improve

current data analyses. A cognitive view suggests that cognitive phenomena may

adversely affect data analysis – often in unnoticed ways. We examined two such

effects in Section 2.6. Other cognitive phenomena with other effects should also be

looked for. Each would provide new opportunities to improve data analysis. This

focus on the human analyst distinguishes the cognitive model of data analysis from

other models of science, which it may appear similar to. A focus on the human analyst

is necessary. When errors in analysis occur, they will do harm because they violate

Aristotelian logic or Sir Karl Popper’s principles of falsification. But the cause of these

42

errors will be ingrained human tendencies. To prevent such errors, data analysts must

understand and watch for these tendencies.

Chapter 3

Visualizing complex data with embedded plots

This chapter has been submitted for publication to the Journal of Computational and

Graphical Statistics as ‘Visualizing complex data with embedded plots’ by Garrett

Grolemund and Hadley Wickham

Abstract — We describe a class of graphs, embedded plots, that are particu-

larly useful for analyzing large and complex data sets. Embedded plots organize a

collection of graphs into a larger graphic. This arrangement allows more complex

relationships to be visualized with static graphs than would be otherwise possible.

Embedded plots provide additional axes, prevent overplotting, provide multiple lev-

els of summarization, and facilitate understanding. Complex data overwhelms the

human cognitive system, which prevents comprehension. Embedded plots prepro-

cess complex data into a form more suitable for the human cognitive system through

visualization, isolation, and automation. We illustrate the usefulness of embedded

plots with a case study, discuss the practical and cognitive advantages of embedded

plots, and demonstrate how to implement embedded plots as a general class within

visualization software, something currently unavailable.

44

3.1 Introduction

Analyzing large, complex data is difficult. Complex data strains the human cognitive

system, which can prevent comprehension. Visualizations can help, but it is difficult

to visualize more than two or three dimensions at once in a static graph. We present

a class of graphs, embedded plots, that are ideal for visualizing complex data.

Embedded plots can be generalized as graphics that embed subplots within a set

of axes. Figure 3.1 shows three graphs that represent this type of plot: William

Cleveland’s subcycle plots, glyphmaps, and the binned graphics that are emerging

from big data visualization efforts. When viewed on its own, each subplot is a self

contained plot (or would be if it contained the appropriate axis, labels, and legend).

The axes of the subplot do not have to be the same as the axes that the subplot is

positioned on. In fact, the subplot can use an entirely different coordinate system

than the higher level plot. For example, Figure 3.1.b. embeds polar graphs in a

cartesian coordinate system.

Embedded plots have a rich pedigree and a growing future. Subcycle plots were

devised by William Cleveland (Cleveland and Terpenning, 1982), one of the leading

innovators in computer based graphics. Glyphs and other plots have been embed-

ded in maps since Charles Minard (Minard, 1862). Such maps figure prominently in

Bertin’s Semiologie of Graphics (1983), a seminal work in the academic study of visu-

alization. Embedded maps comprise 21 pages of the text. More recently, glyphmaps

have been developed as a tool for tracking climate and climate change data (Wick-

ham et al., Submitted; Hobbs et al., 2010). The binned graphics of Figure 3.1.c are

a promising candidate for solving the problem of overplotting when visualizing big

data. Other types of embedded plots are widely used as well. Glyphs (Anderson,

1957), trees and castles (Kleiner and Hartigan, 1981), chernoff faces (Chernoff, 1973),

stardinates (Lanzenberger et al., 2003), icons (Pickett and Grinstein, 1988) and oth-

45

−2

0

2

J F M A M J J A S O N D
month

C
O

2 (
pp

m
)

Seasonal frequency components of Mauna Lau carbon
time series between 1959 and 1990, by month

55 60 65 70 75 80
Average
Temperature (F)

Surface temperature fluctuations 1995 − 2001

1000

2000

3000

4000

5000

0.4 0.6 0.8 1.0 1.2
carat

pr
ic

e

Total
count

500
1000
1500
2000

color
D
E
F
G
H
I
J

Diamonds, carat vs. price

1000

2000

3000

4000

5000

●●● ●●● ● ●●●●●●●●●●●●● ●●●●●● ●●●● ●● ●● ●● ●●●●●●● ●●●● ●● ● ●●● ●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●● ●● ●● ●●● ●●● ●●●● ●● ●●● ● ●● ●● ●●●●●●● ●● ●●● ●●●●●● ●● ●●● ●● ●●●●●●●●●●● ●●● ●●● ● ●●●● ●●●●●●●● ●● ●●●●● ●● ●●●● ●● ●●● ●● ●●●●● ●●●●● ●● ●●●●● ●● ●●●●●●●●● ● ●●●●●●●●● ● ●● ●●●●●● ●●●●●●●● ●●●●● ●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●● ● ●●●● ● ●● ● ●● ● ●●● ●● ●●●● ●●●● ●●●●●● ● ●● ●●●●● ●●●●●●●●●● ●●●●●●●● ●●●●● ●● ●●●●● ●● ●●●● ●●●●●● ●●●● ●● ●●● ●●●●●●● ●●●● ●● ● ●●●● ● ●● ● ●●●●● ●●● ●● ●●● ●● ●●●● ●●●●●●● ●●●●●●● ●●● ●●●●● ● ●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●● ●●●●●● ● ●● ●●●●●●● ● ● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●● ●●● ●●●● ●●●● ●●● ● ●●●●● ●●●●● ● ●● ●●●●● ●●●●●●●● ●● ●●●●●●● ● ●● ●● ●●●●● ●● ● ●●●●●●●● ● ●●●●●● ●●● ●●●●● ●●●●●●● ● ●●●●● ●●●●●●●●● ●●● ● ●●●●●●●● ●● ● ●● ●●●●● ●●●● ●●● ●●●●●● ●●●●● ●●● ●●●● ●●● ●●●● ●●● ●●●● ●●● ● ●●●●●●●●●●● ●●●●● ●● ●●● ●● ●●● ●●●●● ●●● ● ●●● ● ●●●●●● ●●● ●●●●● ●●● ● ●●●●●●● ● ●●●●●● ●●● ●●● ● ●●● ●●●● ●●●●●●● ●●●●● ●● ●●●●●●● ● ●●● ●●●●● ●●● ●●● ● ●●●●●● ●●● ● ● ●●●●●● ●● ●●● ●●●●●●● ●●●●●●● ●● ● ●●● ●●● ●●● ●● ●●● ●● ●● ●● ●●●● ●●● ●●● ●●●● ●●●●●●●●●●● ●● ● ●● ● ●● ● ●●● ●●● ●●● ●● ●●● ●●●● ●●●●● ●●●● ●●● ●●● ●●● ●●●●● ● ●●●●● ●● ●● ●●● ●● ● ●●●●●●●●●●●●● ●●● ●●●● ● ●●●●●●●●● ●●● ● ●●●● ●●●● ●●●● ● ● ●●●● ●●●●●●●●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ● ●●●●● ●●● ●● ●●● ●● ● ●● ●●● ●●●● ●●● ●●● ●●● ●●● ●●● ●● ●●●●●●●● ●● ●●●● ●●● ● ●●●●●● ●●● ●●●●● ●●●● ●●● ●● ●●●●●● ●●●●●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●● ●●● ●●●●●● ● ●● ●●●●●● ●● ●● ●●● ●● ●● ●●● ●●●●●● ●● ●●● ● ●●●●● ●● ●●●●●●●●●●● ●●●● ●●● ●●● ●●● ● ●●● ● ●●●● ●● ● ● ●●● ●●●● ●● ●●●●● ●● ●●●●●● ●● ●● ●●●●● ● ●●●● ●●● ●●●● ● ●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●●●●● ●● ●●●● ● ●●● ●●● ●●●● ●●●●●● ●●●● ●●●● ●●●●● ●●● ●●● ●●●● ●●● ●●● ●● ●●●●●● ● ●●● ●● ● ●●● ● ●●●● ●● ●● ●●●●● ●●●●● ● ●● ● ●●●●●●●●●● ●●●● ●●●● ●● ●●●●● ●● ●● ●● ●●●●● ●●●●● ●●●●●● ●●● ● ●●●● ●● ● ● ●● ●●●●●●●●● ●● ●●● ●●● ●●● ● ●●● ● ●● ●●●● ●●●●●● ●●●● ● ●●●●●●●●●● ●●●●●● ●●●●● ●● ●●●● ●●● ● ●●●● ● ●●●●●●●● ●● ●●●●●● ●●●●● ●● ●●● ●● ●●●●●●●●● ● ●● ●● ●●●●●● ●● ●●●● ●● ●● ●●●●●●● ● ●● ●● ● ●● ● ● ●●●●●● ●● ●●●●● ●● ●●● ● ●●●●●●● ●● ●● ●●● ●● ●● ●●● ●● ●●● ●●●●●● ●●●●● ● ●●●●●● ● ● ●●● ●● ●● ●●●●●● ●●●● ●●●● ●●● ●● ●●●● ●●● ●● ●●●●● ● ●●● ●●● ●●●●●● ●● ●● ●●● ●●●●●●●●● ●● ●● ●● ●● ● ●●●●● ● ●●●●●● ●● ●●●●● ● ●●● ●●● ●● ● ●●● ●● ●● ●● ● ●●●●● ● ●● ●● ● ● ●●●●●● ●●●● ●●● ● ●●●●●●●●● ●●● ●●●● ●●● ●● ●●● ●● ●●●●●● ●●●●● ●●●● ●●●●●● ●● ● ●●●●● ●● ●●● ● ●●●●● ●●●●● ●● ●● ●●● ● ●●●● ● ●●●●●● ●●●● ●●●● ●●● ●● ●●●● ●● ● ●●●● ●●●●● ●● ● ●● ●●● ●● ● ●●●● ●●●● ●●● ●● ●●●● ●● ●●●●●● ●● ●●●●● ●●●●● ●●●●●●●●●●●● ● ●●●●● ●●● ●●●●●● ●● ●●●● ●● ●● ●●● ●●● ●●●●●●●● ●●●● ●● ●●●●●●●●●● ●●●● ● ●●●●●● ●● ●●● ● ●●●●● ● ●●●●●●● ● ●●●●●●●●●● ●●● ● ●●● ● ●●● ● ●● ●● ●●●●●●● ●●● ●●● ●●● ●●●● ●●●●● ●● ●●●● ●● ●● ●●●●● ●● ●●●●●●● ●● ●● ● ●●●●●●●●●●● ● ●●●●●● ● ●● ●●●●●●●●● ● ●●●● ●●●● ●●● ●●●● ●●●● ●●● ● ●● ●●●● ●●●●● ●●● ● ●● ●●●● ●●●●●● ●●●● ●●●●●●● ●●●● ●●●●●●●●●● ●●●●●● ●● ●●● ● ●●●●●● ●●●●● ●●● ●● ●●● ●●●●●● ●●● ●●●● ● ●● ● ●● ●●●●●● ●● ●● ●●● ●●●● ●●● ● ●●●● ●●● ●● ●● ●● ●●●●●●● ●● ●●●●● ● ●●● ●●●● ●●●●●●●● ●●● ●●● ●● ●● ●●●●● ●● ● ●●● ●●●● ● ●●●●● ●● ●●●●●● ●● ●● ● ●●●●●●●● ●●●●● ●● ●●●●●●● ●●●●●●●●● ● ●● ●● ● ●●●●● ●●●● ●●● ●●●●●●●●● ●●●● ●●● ●●●● ● ● ●●●● ● ●●●● ●●●● ●● ●●●● ●● ●●● ●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●●●●● ● ●●●●●●●●●●●●●●●●●● ●● ● ●● ●● ●●●● ●●● ●● ●●● ●●● ●●●● ●●●●● ●●● ●● ● ● ●●● ●●●●●● ●●●●●●●●●●●●● ● ●● ●●●● ●● ●● ● ●● ● ●● ●●●●●● ●●●●●● ●● ●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●● ●● ●● ●●●●●● ●●● ●● ●●● ●●●●●●● ●●● ●● ●● ●●●●●●●●●●● ●●● ● ●● ●●●●● ●●●●● ●●● ●●●●●●●●●●●● ●●●●● ●●●● ●● ●●●●●●●●●● ●●●●● ●●● ● ●●●●●● ●● ●●● ●● ●● ●● ●●●● ●● ●●●●● ●●●●●●●● ●● ●●● ●●●●● ●● ●●●● ●● ●● ●●●●●● ● ●●●● ●● ●●●●● ●● ●● ●●●● ●● ●● ● ● ●●● ●●●●●●● ●●●●●● ●●●● ●●●●●●●● ●●●●●●●●● ●●● ●●●● ●●●●● ●●●● ●● ●● ●●●●● ●● ● ●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●● ● ●● ●●●●● ● ●●●●●●● ●● ●●● ●●●●●●●●● ● ●●●●●●●● ●●● ●●●●●●● ●●●●● ●●●●●● ● ●●●● ●●●● ●●●●●●● ●● ●● ●●● ●●●● ●●●●●●●●●●●● ●●● ● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●● ● ●●●●●● ●●●●●●●● ●●●●● ●●●●●● ●●●● ●● ● ● ●●●●●● ●●●●●●● ●●● ●● ●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ● ●●●●● ●● ●●●●●●●● ●● ● ● ●● ●●● ● ●●●●● ●●●● ●●●● ●●●● ●● ●●●●● ●●● ●●●● ●●●●●●●●●● ●●●● ●●● ●●●●●●●●● ●●●●● ●●●●●● ●● ●●●●● ●●●●●●● ● ●●●●●●●●●●● ● ●●● ● ●●●●●● ●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●● ●●● ●●● ●●● ●●●●●●●●● ●● ●●●●●●●● ● ●● ●●● ●●● ●● ●●●●●●●●●● ●●●● ●●● ●●●●● ●● ●●●●●●● ●● ●●●●●●● ●● ●● ● ● ●● ●●●●● ●●●● ●● ●●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●●● ● ●●●●●● ●● ●●●●●●● ●●● ●●●●●●●●●● ● ●●● ●●● ● ●●●●● ●●●●● ●●● ●● ●●●● ●● ● ● ●●● ●●●● ● ●●●● ●●●●● ●●● ● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●● ●●●●●●●●● ●●● ●●●● ●●● ●●●●●●● ●● ●●● ●●● ●●●●● ●●●● ●●● ●●●● ●● ●●● ●● ● ●●● ● ●●●● ●●●●● ● ●●●●●●●● ● ●●● ●●●●●●● ●● ●●●● ●● ●●● ●● ●●●●●●●● ●●● ● ●● ●●●● ●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●● ● ●● ●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●● ●●●● ●●●●●● ●●●● ●● ●●●● ●● ●●● ●●●● ●● ● ●● ●●● ●●●●● ●● ●●● ●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●● ● ● ●●●●● ● ●●● ●●● ●●●●● ●● ●●●● ●● ●● ●●● ●●●●●● ●●● ●●●● ●● ●●● ●●●●●●●●●●● ●●●● ● ●● ●●●●● ●●● ●●●●●●●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●●●●●●●● ●●●● ●●●● ●●●● ● ●●●●●●●● ●●● ● ●●●●● ●●●●●●● ●●●● ●●●●●●●●●● ●● ● ●●●●●●●●●●●●● ●● ●● ●●●●●●● ●● ●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●● ●●●●●● ●● ●●●● ● ●● ● ● ●●●●●● ●●● ●● ●●●● ●●● ●●●●●●● ●● ●● ●●●● ●●●●● ●●●●●●●●●●●●● ● ●●● ●● ●●● ●●●● ●●●●● ●●● ●●●● ●●●●●●●●●●●●● ●●● ●● ● ●●●●● ●●● ●● ●● ● ●● ●●●●●●●●●●●● ●●●● ●●●●●●● ●● ●●● ● ●●● ●●●●●● ●● ●●● ●●●● ●● ●●● ●● ●●●● ●● ●●●● ●●●● ●●●●●●● ● ●●● ●● ●●●●●●● ●● ●● ●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●●●●●●●● ●● ● ●●●●●●● ●● ●●● ●● ●●● ●● ●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●● ●●● ●●● ●●● ●●●●● ●●● ●●● ●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●● ●● ●●●●● ●● ●●●● ●● ●● ●●●● ●●●●●●●● ●●●●●●● ●●●● ●●● ●●●● ●●●● ● ●●●● ●●● ●● ●●●● ●●●● ●● ●●● ●● ●●● ●●●● ●●●●● ●● ●● ● ●●●● ● ●● ●●●● ● ●●● ●● ●●● ●●●●●● ●● ●●●● ●●● ● ●●●●● ●● ●●● ●● ● ●● ●●●●● ● ●●●●●● ●●●●●●●●●● ●●●● ●●●●●●● ● ●● ●●● ●●●●●●●●● ●● ●●●●●●●●●● ● ●● ●● ●● ●● ●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●● ● ●●● ●●●●●●●●●●● ●●● ●● ●● ●●●● ●● ●●●● ●●● ●● ●●● ●● ●●● ● ●●●● ●●●●●●●● ●● ● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●●● ●● ●●● ●●● ● ●●●● ●●● ●● ●●●●●● ● ●● ●● ●●●●●●●● ●●●●● ●●● ●●●●● ●● ●●●● ●●● ●●● ●● ●●● ●●●● ● ●●●●●●● ●●● ●● ● ●●●● ● ●●●● ●● ●●●● ●●●●● ●●●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●●● ●●●●● ●● ●●● ●●●● ●● ●● ●● ●●●● ●● ● ●● ●●●●●● ●●●●●●●●●●●●●● ●●● ● ●●●●● ●● ●●●●●●● ● ●● ●●●● ●●● ●●● ●●● ●● ●●● ●● ● ●●● ● ●●●● ●● ● ● ●●●●● ●● ●●●●●●● ●●●●● ●● ●●●● ●● ● ●●● ●●●●● ●● ●● ●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●● ●●●● ●●●● ● ●● ●●●● ●●● ● ●●● ●●●●●●● ● ●●●●●●● ●● ●●●●●●● ●● ●●● ● ●● ●●● ●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●● ●●●● ● ● ●●● ● ●●●● ●●●●●●● ●●●●●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●● ● ●●●●●●●●●●●● ●●●●●●●●● ● ●●●● ●●● ●●●●● ●●●●●● ●● ●●●● ●● ●● ● ●●●●●●●●● ●● ●●●● ●● ●● ●●●●●●●● ● ●● ● ●●●●●●●●●●●● ●●●●● ●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●● ●●●●● ●●●● ●●●●●●● ●●●●●● ● ●●● ●●● ●● ●●●●● ●●●●● ● ●●●● ●●● ●●●● ●● ●●●● ●● ●●●● ●●●●●●●● ●●●●● ●●● ●● ●● ● ●● ●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●● ●●●● ●●● ●●●● ●● ● ●●● ●●●●●● ●●●●●●●●●●●●●●● ●●● ● ●●● ● ●●● ●●● ● ●● ●●●●● ●●● ●●● ●●● ●● ●●●●●● ●●●●● ●● ●● ●●● ●●●● ● ●●● ●● ● ●●● ●● ●●●● ●● ●●● ● ●●●● ●● ●● ●●●●●●● ●● ●● ●●●●●●●●●●●●●●● ● ●●●●● ●● ●●●●● ●●●●● ●● ●●● ●● ●●● ●●●● ● ●●●●●●● ●●● ●● ●●● ●●●●● ●●●● ●● ● ●●● ●●●●●●● ●●● ●● ●● ●● ●● ●●● ● ●● ●●●● ●●● ●●● ● ●●●●●●●●●● ● ●●●●●●●●●●●●●● ●● ●● ●●●●●● ●● ● ●●●● ●●●●●● ●●●●● ● ●●● ●●● ●●●● ●●●●● ● ●●●●●●●●●●● ●●●●●●●●●●●● ●● ●● ●●● ●● ●● ●●●● ●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●● ● ●●●●●● ● ●●● ● ●●● ● ●●●●● ●●●●●● ● ●●● ●●●●●●●●●●●●●●● ● ● ●● ●●● ●●●●●●●●● ●●●●●● ●●● ● ●● ● ●●●●●● ●● ●● ● ●●● ●●●●●●●● ●● ●●●●● ●●●●● ●●● ● ●●●●●●● ●●●●● ●●●●● ●● ●●●● ●●●● ●● ●●●●●● ●●●●● ● ●● ● ●●●●●● ●●●●●●● ●● ●●●● ●● ●●● ●●● ●●●●●●●● ●●● ●● ●●●● ●● ●● ●●● ●●● ●●●●●●●●●●●● ●● ●●● ●●●● ●●● ●● ●● ●●● ●●●●●●●● ●● ●●●●●●●● ●● ●●● ●●●●●●● ●●● ●●● ●● ●●●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●● ● ●●● ● ●●●● ●●●●●●● ●●●● ● ●●●● ●●●●●●● ●●●● ●● ●●●●●●●● ●● ●● ●● ●●●●●●●●● ●● ●● ● ● ●●●●●● ●●●●●● ●● ●●●●●●●● ●●●●●● ●●●●●●●●● ●● ●●●● ●●● ●● ●● ●●● ●● ●●● ●●●●●● ●●●●● ●● ● ●●●● ●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●● ● ●●●●● ● ●●● ●●● ●●●●

●●●●●● ●●● ●● ●●●● ●●●● ●●●●● ●●●● ●● ●● ● ●● ●●●●●●●● ● ●●●● ●●●●●● ●●●●● ●●●●● ●●●● ●●●●●● ●● ●●● ●●●●●●●●●●●●● ●● ●●●●●●● ●●●● ●● ● ●●●●●●●●● ●●● ●●●● ●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●● ● ●● ● ●● ● ●●●●●● ●●●●●●●●●●●●● ●●●● ● ●● ●●●●●●●● ● ●●●● ● ●● ●●●●● ●● ●●●●●●●●●● ● ● ●●●● ●●●●●●●●●● ●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ● ●● ● ●●●●●●●●●● ●● ●●●●● ●●●● ●● ● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●● ● ●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●● ●● ●● ●●●● ●● ●●●●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●● ● ●●●●●●● ●●●●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●● ●●●●●●●●●●● ●● ●●●● ●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●● ●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●● ●●●●●●●●●● ●● ●● ● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●● ● ● ●●●●●●●●●● ●●●●●●●● ●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●● ●● ●●●● ●●●●● ● ●● ●●●●● ●●●● ●●●● ●●● ●●●●●●● ● ●●●● ● ●● ● ●● ●● ●●● ●●● ●● ●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●●●● ●●●●●●●●● ● ●●●●●●●● ●●● ●●●● ●●●●● ●●●● ●● ●●● ●●●●● ●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●● ●● ●●● ●● ● ●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●●●● ●● ●●●●●●●●●● ●● ●●●●●●● ●● ●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●● ●● ● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●● ●●● ●● ●●●●●● ●●●● ● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ● ●●● ●● ●●●●●●●● ●●●● ●●●●●●●●● ●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●● ●● ●●●● ●● ●● ●●● ●● ● ●● ●●●● ● ●●●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●●●●●●●●●●● ●●●● ● ●●● ●●●● ●● ● ●●● ●●●●● ●● ●●● ● ●●● ●●●●● ●● ● ●●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●● ● ●● ●● ●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ● ●●●●●●●●●● ●● ●●●● ●●●● ●●●●● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●● ● ●●●● ●●●●●● ●● ●●●●●●●● ●●●●● ●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●●● ●●●●●●● ●●●●●●● ● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●●●● ● ●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●● ● ●●●●●● ●●●● ● ●●●●●● ●●●●● ● ● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●●●●● ●● ●● ●●●●●● ●●●● ●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ● ●●●●●●●● ●●●● ●●●●● ●●●● ●●●●● ●●●●●●●●●● ●●●●●● ●● ●●● ●●●●● ●●●● ●●●● ●●●●●●●●●●●● ● ●●● ● ●●● ●●●● ●●●●●● ●● ●●● ● ●●●●●● ●●● ●●●●● ● ●●● ●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●● ●●●●● ●● ●●●● ●● ●●●●●● ●● ●● ●●●●●●●●●● ●●● ● ●● ●●●●● ●●●●● ●●● ●●●●●● ● ●● ●●●● ●●●●● ●●●●●●●●●●●● ● ●● ● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●● ●●●● ●●●● ● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●● ●● ●●●●●● ●●●●● ●●●● ●●●●●●●●●●● ● ●● ● ●● ● ●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●● ●● ●●● ● ●●●●● ●●●●●● ●●●● ●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●● ●● ●●●● ●●●●●●●●●●● ●●●●●●●● ●●● ●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●● ●● ●●●● ●●●●●●●● ● ● ●●●●● ●●● ●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●● ●●●● ● ●● ●●●●● ●●●●●●●●●● ● ●●●●●● ●●●● ●● ●●●●●●● ●●●●●●●●●●●●● ●●● ●● ●● ●●●●●●● ● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●● ●●● ●● ● ●●●●●●●●●● ●●●●●●●●●●● ●●●● ●● ●● ●● ●●●●●● ●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●● ●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●● ●●●●● ● ●●●●●●●●●● ● ●● ● ●● ●●●●●●●●●●●●● ●● ●● ●● ●●●●●●● ●●●●● ●●● ●● ●●● ●●● ●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●● ●●● ●●● ●●● ●●● ●●●● ●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ●●● ●●● ● ●●● ● ● ●●●● ●●●●●●●●●●●● ● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●● ● ●● ●●● ●● ●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ●●● ● ●● ● ●●●●●●●● ● ●●●●●● ●● ●● ●●● ●●● ●●●● ●●● ●●●●●●●●●●●●●● ●● ● ● ●●●●●●●●●● ●●●●●●● ●●● ●●● ●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●● ●●●●●●● ●●●● ●● ●● ●●● ● ●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●●● ●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●● ●●●●●●● ● ●●● ●● ●●●● ●●●●●●●●●●●●●●● ● ●●● ●●● ●● ●● ●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●● ●●● ● ●● ●●● ●●●●●●●●●●●●●● ●● ● ●● ●●● ●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●● ●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●● ● ●●●●●●● ● ●●● ● ●●●●●●●●● ●●●●●●● ●●●●●●● ●●● ●● ●●● ●●●●●●● ●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●● ●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●● ●●●● ● ●● ●●● ●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●● ●●●●●●● ●● ●●●● ●● ●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●●● ●●● ●●●● ● ●●●●●●●●● ●● ●●●●●● ● ●● ●●●● ●●● ●●●●●●●●●● ●●●●●●●●● ● ●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ●● ●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ● ●●●●●●●●●● ●● ●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●●● ●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●●● ●●●●●●●●●●● ● ●● ● ●●●●● ● ●●● ●●●●● ● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●● ●●●●● ● ●●● ● ●●●●● ●●●● ●● ●●● ●● ●●● ●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●● ●●● ●● ● ● ●●●●●● ●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●● ●● ●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ● ●●● ●●●●●●● ●●●●●● ●● ●●●●● ●●● ●●● ●●●●●●● ●●●● ●●● ●● ●● ●● ●●●●● ●●● ●●●●●●●●●●● ●● ● ●●● ●● ●● ●● ●●●●●●●● ●●● ●●●●●● ●● ● ●●●●●●● ●●●●● ●● ●●● ●●● ●● ●●● ●● ●● ●●●●●●● ●● ●●●● ●●●● ●● ●● ●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●● ● ●●● ●●●● ●●●●● ●●●●●●●●●●●●● ●●● ●●● ●●●●●●● ●●● ●●● ● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●● ● ●●●●●●●●●● ● ● ●●●● ●●●●●●●●●●●● ●●● ●●●● ● ●●●●●●●●●●●●●●●●● ●● ●●●● ● ●● ●●●●● ●● ●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●●● ●● ●● ● ●●●● ● ●●●● ●● ● ●● ●●● ●●●●●●● ●●●●●●●●● ●● ●●● ●●●●●● ●● ●●●●●●●● ●● ●●●●●●●●●● ●● ●● ●●●● ●●●●● ●●●● ●●●● ●● ●●● ●● ●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●● ● ●● ●●●●●● ●●● ●●● ●●●●●●●●● ● ●●●●● ●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●●●● ●●●● ● ●● ●●●●● ●●●●●● ●●●● ●●●● ● ●●●●●●●●● ●●●●●● ●●● ●●● ●●● ●● ●● ●●●● ●●● ●●●●● ●●●●●●●● ●●●● ●●●●●●●● ●● ● ●● ● ●●● ●● ●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●●● ●●●●●●● ●●●●● ●●●●●●● ●● ●●●●●● ●●●●●●●●● ● ●●●●●● ●●●●●● ● ●● ●●●●●● ●●● ●● ●●●●●● ● ●● ●●●●●●●●● ●●● ●●●●● ●●●●●● ● ●●●●●● ●●●●●●●●●●● ●●● ●●● ●● ●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●● ●●● ● ●●● ●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●● ●● ●●●● ●●●●●● ●●● ●●● ●●●● ● ●●● ●● ●●●●● ●●●●● ●●● ●● ●●●●●●●●●● ●●●● ●●●●●● ●●● ●●● ●●●●●●●● ●●●●●● ●●●● ●● ● ●●●●●●●●●●●●● ●●● ●●● ●●● ● ●●● ●● ●●● ●●●● ● ●●●●● ●●●●●● ●● ●●●●●●●●●●●●●● ● ●● ●●●● ●● ● ●●●● ● ●●●●●●●●●● ●●●●●●●●●●●●●●●●● ● ●●● ●● ● ●●●●●● ●●●● ●●●● ●●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●●●●● ●●● ●●●●●●● ●● ●●● ●●●●●● ●●●● ●● ●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●● ●● ●●●●●●● ●●●●● ● ●●●●●● ●●● ●●● ● ● ●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●● ●●● ● ●●●●●●● ●●●●●● ●●●● ●●●●●●●●●● ●●● ●●●●● ●●●●● ●●● ● ●●● ●●● ●● ●●● ●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●● ●● ●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●● ●●● ●● ● ●●●●●● ●● ● ●● ●●● ●●●●●● ● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●● ●● ●●● ●● ●● ●●●● ●●●● ●●● ●●●●● ●●● ● ●● ●●●●●●●●●●●●●●●●● ●●●●●●● ● ●●● ●● ●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●● ●●● ●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●● ● ●●●●●●● ● ●●●●● ●●●●●●● ●●●●●●●● ●●●●●●● ●●● ●●● ● ●● ●● ●●●●● ●●● ●● ●● ●●●●● ●●●● ●●●●●● ● ●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●● ●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●● ●●●● ●● ●●● ●●●●●●●●●● ● ●●● ●●● ●●●● ● ●● ●●●● ● ●

●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●● ●●● ● ●● ●●●● ●●●●●● ●●● ●● ●●●●●●●●●●●●● ●● ● ●● ● ●● ●●●●●●● ●●● ●● ●● ●●● ●●●●●● ●●●● ● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●● ●●● ● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●● ● ●●●●●●●●● ●●● ●●● ● ●● ●● ●● ●●●● ●● ●●● ●● ●● ●●●●● ●● ●●●●● ●● ●● ●●●● ●●●●●●●●●●●●● ● ●●●●●● ●●●● ●●●● ●●● ●●● ●●●●●● ●●●●●●●●● ●●●●● ●● ●●● ●●●●● ●●● ●●●●●●●●● ●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●● ●●●● ●● ●● ●●●●●●●●●●●●●●● ●●● ●●● ● ●●●● ●●● ●● ●●● ● ●● ●●●●●●●●●●●● ●●●●●●● ●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●● ●●● ●●●●●● ●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●● ●●●●●● ●● ●● ● ●● ●●● ●●● ●●●●●●●● ●●● ●●●●●●●●●●● ● ●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●● ●●●●●●●● ●●● ●●● ●● ●●●● ●● ●●● ●●● ●●● ●●● ●●●●●● ●●● ●● ●●●● ●● ●●●● ●●●●●● ●● ●●● ●●● ●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ●●●● ●●● ●●● ●●● ●● ●●●●● ●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●● ●● ● ● ●●● ●●● ●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●● ●●●●● ●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●● ●● ●●●●● ●●●●● ● ●●●●●●●● ●●●● ●● ●●●● ●●● ●● ●●●●●● ● ●● ●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●● ● ●● ●● ●●● ●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●● ●●●● ●●●●● ●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ● ●● ●●●●● ●● ●● ● ●●● ●● ●●●● ● ●●●● ●●●●●● ●●●●● ●● ● ●●●●●●●●●●●●●●●●●●● ●● ●● ●●● ●● ●●●●●●●● ●●●● ●●●● ●●●●●●● ● ●●●●●●●●●●● ●●●●●●●●●●● ●● ●●● ●● ●● ● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●● ●● ● ●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●● ●● ● ●●● ●● ●● ●● ●●● ●●●●●● ● ●●● ●● ●●● ●●●● ●●●●●● ● ●●●●●●● ●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●● ●●● ●●● ●● ●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●● ● ●●●● ●●●● ●●●●●●●●● ●● ●● ●●●●● ●● ●●● ● ●● ●● ●●●● ●●● ●● ●●●●●●●●●● ●●●● ● ●● ●●●● ●●●●●●●● ●●●●● ●● ●●●● ● ●●● ● ●●● ●●●●● ● ●● ●●●●● ●●●● ●●●●● ●● ●● ●●●●● ●●● ●●●● ●● ●● ●● ●●●●●●● ● ●●● ●●● ●● ●●●●● ● ●●●●● ●● ●●●●●●●●●●● ● ● ●● ●●●●● ●● ●● ● ●● ●●●●● ●● ●● ●● ●●● ● ●● ●●● ●●●●●●●●●●●●●●● ● ●●● ●● ●●● ●●●●●● ●●●●●●●●● ●●● ●● ●● ●● ●●●● ●●● ●●●●●● ●●● ●●● ● ●●●● ●●●● ●● ●● ● ●● ●●●●●●●●●●● ● ● ●●●●●●● ● ●● ●●●● ●●●●●●● ●●●●●●●● ● ●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●● ●●● ●● ●●● ●● ●● ●●●●● ●●● ●●● ●●●●●●● ●● ● ● ●●●● ●●● ●●●●● ●●● ●●●●●● ●●● ●● ●●● ●●●●● ● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●● ●●●●●● ●● ●●●●●●●●● ●● ●● ●●● ●●● ●● ●●●●●●●●●●●●●●●● ●●● ●●●●● ●●● ● ●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●● ●●● ●●●●●●●●●●●●●●● ●●●●● ● ●●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●●●● ●● ● ●●●●● ●●●● ●●●● ● ●●● ●● ●●● ● ●● ●●●●● ●● ●● ●● ● ●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●● ●● ● ●●●● ●●● ●● ●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●● ●●●●● ● ●● ●●●●●●●●●●●● ● ●●● ●● ●● ●● ●● ●● ●●●●● ●●●●●●●●●●●●●●● ●●●● ● ●● ●●●●●●● ●●●●●● ●● ● ●●●●●● ● ●●●● ● ●●● ● ●●● ●● ●●●●●●● ●●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●● ●●●● ●●●● ●●● ●●●●● ●●●●● ●● ●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ● ●●● ●●●●●●●●●●●●●●●●●● ●● ● ●● ●● ●●● ●●●● ●●●●●● ●● ●● ●●●●●●●●●●●● ●●●●●●● ●● ●●●● ●●● ●●●● ● ●●●●●●●●●●●●●● ●● ●● ●● ●●●● ●●● ●● ● ●● ●● ●● ●●● ● ●● ●●●● ●● ●●●● ●●●●●●●● ● ●●●●●● ●●●●●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●● ●●●●●●● ● ●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●● ●●● ● ●● ●●●● ● ●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●● ●● ● ●●●●● ●● ●● ●●● ●●● ●●●●●● ●● ●● ●●● ●● ● ●● ●●● ●●●●●●●●●●●●●● ●●● ●●●● ●● ● ●●● ● ●● ●●●●● ●● ● ●●● ●●●●●●●●●●●●●●● ●● ● ●● ●●●●●● ● ● ●●●●● ● ●● ●●●●● ●●● ●● ● ●● ●●● ●●●●● ● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ● ●● ●●● ●●●● ●● ●●● ●●●● ● ●●● ●●●●●●●● ●● ●●● ●●●●●●●●●● ●●● ●●● ●●● ●●●●●● ●● ●●●●●● ●●●●●● ●●● ●●●●●● ●●●●● ●● ●●● ●● ●●● ●●●● ● ●●●● ●● ●●● ● ●● ● ●●●●● ●●●●●● ●●●● ● ●●●●●●● ●●●● ●●●● ●●● ●● ●● ● ● ● ●●●●●●●●●●●●●●●●●● ●● ●●● ●● ●● ● ●●● ●●●● ●●● ●● ●● ●●●●● ●●● ●● ●●●● ● ●● ●●●● ●● ●●●●●●●●●● ●●●●● ● ●●●●●● ●●● ●●● ●●●● ●● ●●● ●●●● ● ●●● ●●● ●● ●●● ●●●● ● ● ●● ●● ● ●●●●●●●●●●● ●● ●●●●● ●● ●●●●● ●● ●●●● ● ●●● ●● ● ●●●●● ●●● ●●●●● ●●● ●●●● ●●●●●●● ● ●● ●● ●●●●●● ● ●●● ●● ●●●●●●● ●●●● ●●● ●● ● ●●●●●●● ●● ●● ● ● ●●●●● ●●●● ● ●● ●●●●● ●● ●●●●● ● ●● ●● ●●● ●●●●●●● ●●●●●●● ●●●● ●●● ● ●●●●● ●● ●●●●●●● ●●●● ●●●●●●● ● ●●● ●● ● ●●●●● ●●● ● ●● ● ●●●● ●●● ●●●● ● ●●● ● ●● ●●●● ●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●● ● ●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●●● ● ●●● ●●● ● ●●● ● ●● ●●●● ●●● ●● ● ●●●●● ●●● ● ●● ● ●●●●●●●● ●● ●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●● ● ●●●● ●●●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●● ●●● ●●● ●●●● ●●●●● ●●● ●● ●●● ●● ●●●●●●●● ●● ●●●● ●● ●● ●●●●● ● ●●●●●● ● ●● ●● ●●● ●● ●●●● ●●●●●●●● ●●● ●●●●●●●●●● ●●● ●● ●●●●●●●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●● ● ●●●●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●● ●●● ●● ● ● ●● ●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●● ●●●● ● ●●● ●●● ●●●●●●●●●●●● ●●●●●●● ●●●●● ●● ●●●●●●●●●●● ● ●●●●●●●●●●●● ●●●●●●●●● ●●● ●●● ●●●●●●● ●●●●●● ●●●●●●●● ●● ● ●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●● ●● ●●●● ● ●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ●●●●●● ●●●● ●●●●●●● ●●●●● ●●●●●●● ●● ●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●● ●● ●●●●● ●● ●● ●●●● ● ●●●● ●● ●● ●● ●●●●●●●●● ●● ●●●●● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●● ●● ● ●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ● ●●●●● ●●●●●●● ●● ●●● ●● ●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●● ●● ● ●●●●●●●●●●● ●● ● ●●●● ●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●●●●● ●●●● ●●●●● ●●● ●●●● ●● ●● ● ●●●●●●● ●●●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●●●●● ●●●●● ● ●●●●●● ●●●●●●●● ●●● ●●●●●●●● ●● ●● ●●●●● ●●●●● ●●●●●● ●●●●● ●●● ●●●● ● ●●● ●● ●● ●●● ●●●●●●●●● ●●●●● ●●● ● ●● ●●● ●●●●●●●●●●● ●●● ● ●●●●●●●●●●●● ●●● ●●●● ●●●● ●●●●●●●●● ●●● ●●●●● ●● ●●●●●● ● ●●● ●●●●●● ●●● ● ●● ● ●●●●● ●●●●● ●● ●● ●● ●●●● ●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ●● ●●●●● ● ●●●●●● ●● ●● ●●●● ●●●●●●● ●●●●●● ●● ●●● ●●●●● ●●● ●●●●●●●● ●● ●● ●●●●●●● ●● ●● ●●● ●●● ●●●●● ●●●●●●●●● ●● ●●●●●●● ● ●●● ●●● ●● ●●●● ● ●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●● ●●●●●●● ●●●● ●●● ●●● ●●● ●●●●●● ●●●●●●● ●●●● ●●●● ●●● ●●●●●● ●●● ● ●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●● ●● ●●●●●●●● ●● ●●●●●●● ●● ●●●●●●● ●●●●●● ●●●●●●●●● ● ●●●●●●● ●●●●●●●●●●●● ●● ●●●●● ● ●● ● ● ●●● ● ●●● ●●●●●●●●● ● ●●● ●●●●●●●●●●●●●● ●● ●● ●●●●●●●●● ●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●● ●●●●●●●●●● ●● ●● ●●●●●●●● ●●●●●●●●● ● ●●●●●●●●●●●●●● ●●● ●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●● ●● ●●● ●● ● ●●● ●● ●●●●●● ●● ●● ●●●● ●●● ●●●●●● ●● ●●●●●●●●●●● ●●●● ● ●● ●●●● ●● ●●●●●●●●●● ●● ●●●● ●● ● ●●●●●●●●●●● ●● ●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●● ●●● ●● ●●●●● ●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●● ●●●● ●● ●● ●●●●● ●●●●●●● ●●●●●● ●● ●●●●●● ●●●●● ●●●●●●●● ●●●●● ●● ●●●●● ● ●●●● ●●● ● ●●●●●● ●●● ●●●●● ● ●●●●●●●● ●●●●●● ●●● ●●●●●●● ●●●●● ● ●●●● ● ●●●● ●●●● ●●●●● ● ●● ●●●●●●● ●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●● ●● ●●●●●● ●● ●●●● ●●●●●● ●● ●●●●● ●● ●● ●●●●●●● ●●●● ●

0.4 0.6 0.8 1.0 1.2
carat

pr
ic

e

color
●

●

●

●

●

●

●

D
E
F
G
H
I
J

Diamonds, carat vs. price

Figure 3.1: Three examples of graphs that use embedded subplots. A. (upper left)
A subcycle plot of CO2 measurements taken on Mauna Lau, Hawaii between 1959
and 1990. Recreated from Cleveland (1994), page 187. Observations are grouped
by month. B. (upper right) A glyphmap of temperature fluctuations in the western
hemisphere over a six year period. Each glyph is a polar chart with r = temperature

and θ = date these charts are organized on a cartesian plane with x = longitude

and y = latitude. C. (lower left) A binned plot of the diamonds data set from the
ggplot2 software package. Subplots are used to show patterns in diamond colors
without overplotting. When this data is presented in its raw form, the accumulation
of points hides patterns in the data (lower right).

46

ers have been developed as types of subplots that can be compared to each other.

Scatterplot matrices (Chambers, 1983), trellises (Sarkar, 2008) and facets (Wilkinson

and Wills, 2005) are popular types of embedded graphics that arrange subplots into

a table. We generalise all of these graphs into a larger class of plots, embedded plots,

because they all share a two tier structure. The first tier is the overall graph or visual

itself, the second tier is the collection of subplots that appear within the graph.

The two tiered structure of embedded graphs makes them well suited for solving a

number of data analysis problems. The examples in Figure 3.1 illustrate three areas

where embedded graphics are particularly useful. First, embedded graphics make it

easy to visualize interaction effects. For example, Figure 3.1.a shows that the direc-

tion of long term change in CO2 levels at Mauna Lau observatory in Hawaii varies by

month in relation to seasonal patterns in CO2 concentrations. Embedded graphics

also provide an intuitive way to organize spatio-temporal data. Visualizing spatio-

temporal data usually requires four or more dimensions: two for spatial coordinates, a

third for the passage of time, and a fourth for the quantity of interest. The glyphmap

in Figure 3.1.b organizes these dimensions in a way that is easily interpreted and that

makes both spatial and temporal patterns obvious. Finally, embedded graphics solve

the problem of overplotting. Figure 3.1.c. represents almost 20,000 observations.

When this data is plotted as a colored scatterplot, the accumulation of points ob-

scures the underlying relationship between carat, color, and price. The use of binned

subplots makes the relationship visible again. Yet embedded plots provide more than

just practical advantages.

Embedded plots amplify the abilities of the human cognitive system by presenting

complex information in a way that is particularly easy to process. Complex data is

data that includes multiple simultaneous relationships between its elements. At the

cognitive level, complex data overwhelms the capacity of the working memory Sweller

47

(1994). Repeated studies have shown that it is difficult to comprehend, use, and teach

complex data.1 Moreover, success in understanding complex data depends heavily on

how the data is presented Mayer (2009). Embedded plots present data in a way that

exploits several known mechanisms for facilitating the processing of complex data.

As a result, embedded plots may allow viewers to comprehend information that they

would not grasp in other formats.

As useful as embedded plots are, it is difficult to make them. Currently, programs

that can make embedded plots focus on a specific type of subplot, such as glyphs

(Gribov et al., 2006) or scatterplot matrices (Sarkar, 2008). This limits the customiz-

ability and usefulness of embedded plots. We discuss the advantages of embedded

plots and describe how embedded plots can be implemented as a general class of

graphs in data analysis software.

The remainder of this paper proceeds as follows:

Section 3.2 begins with a case study that presents the usefulness of embedded

plots. We explore the Afghan War Diary data, made available by the WikiLeaks

organization. The data set is large and complex: 76,000+ observations organized by

location and time. The case study shows how embedded plots can be used in practice

to reveal patterns that can not be seen in single level graphs.

Section 3.3 examines why embedded plots are useful tools for finding and commu-

nicating information found in large data sets. At the practical level, embedded plots

have two advantages: they provide two extra axes and a high degree of customizabil-

ity. More importantly, however, embedded plots exploit several cognitive mechanisms

for attending to and processing information. This allows embedded plots to present

complex information without becoming muddled or indecipherable.

Section 5.5 discusses how generalized embedded plots can be implemented in data

1
See Sweller et al. (2011) for an overview.

48

analysis software. We present a very customizable implementation of embedded plots

that uses the layered grammar of graphics (Wickham, 2010) and the ggplot2 package

(Wickham, 2009) in R. Incorporating embedded plots into the grammar of graphics

yields a new insight about graphics: they have an inherently hierarchical structure.

Section 3.5 concludes by offereing general principles to guide the use of embedded

plots.

3.2 Case Study: Analyzing complex data

The Afghan War Diary data, made available by the WikiLeaks organization at http:

//www.wikileaks.org/wiki/Afghan_War_Diary,_2004-2010, is large, complex and

intriguing, because it provides insights into an ongoing military conflict. The data

set was collected by the US military and contains information about military events

that occurred in or around Afghanistan between 2004 and 2010. Among other vari-

ables, the data set records the number of injuries and deaths that resulted from each

event. These casualty statistics are collected for four groups: enemy forces (enemies),

coalition forces (friendly), Afghanistan police and security forces (host), and civil-

ians (civilians). The data set is large enough (76,000 observations) that overplotting

becomes a concern when visualizing the data. The data set is complex in that it

contains a spatio-temporal component: each observation is labelled by longitude, lat-

itude, and date. Our analysis will focus on two topics: the ratio of civilian casualties

to combatant casualties and the escalation (or de-escalation) of hostilities since 2004

as measured by total casualties. We will calculate total casualties based only on the

number of wounded and killed in each group. The Afghan War Diary does not have

complete information on the number of people captured or missing across all four

groups.

http://www.wikileaks.org/wiki/Afghan_War_Diary,_2004-2010
http://www.wikileaks.org/wiki/Afghan_War_Diary,_2004-2010

49

3.2.1 Civilian casualties

Operation Enduring Freedom, the US led military engagement in Afghanistan, has

received international criticism for the high number of civilian casualties associated

with the war. The Afghan War Diary seems to justify this criticism. Civilians com-

prise almost a quarter of all casualties recorded in the diary, and civilians have suffered

more casualties (12,871) than coalition (8,397) and Afghan (12,184) forces. Civilians

have nearly half as many casualties as enemy forces (24,233). We wish to see if these

ratios vary by location. Are civilian casualties noticeably high everywhere the war

has been fought, or just for certain locations, such as urban centers, where military

action occurs in close proximity to a large number of civilians?

The size of the Afghan War Diary makes it difficult to visualize this informa-

tion. When plotted as a point map, individual casualties obscure one another, a

phenomenon known as overplotting, Figure 3.2.a. A heat map avoids overplotting,

but can not show casualties by type, Figure 3.2.b. We only see that the majority of

casualties occur in the southern region of Afghanistan between Kabul and Kandahar.

To examine casualties by type, we would have to create four separate heat maps, each

with a different subset of the data. We turn to embedded plots for a simpler solution.

In Figure 3.2.c, we replace each tile in the heat map with a bar graph of casualties

by type. This embedded plot reveals similar information as the heat map, but it also

displays the ratio of casualties for each area. We can further adjust the embedded

plot to show the conditional distribution of casualties for each region, Figure 3.2.d.

This technique makes regional patterns more clear and would not make sense for a

heat map or contour plot.

The plots show that civilian casualties often surpass coalition and host casualties,

and sometimes enemy casualties. Near Kabul, civilian casualties seem to surpass all

other types of casualties put together. The visualizations suggests that alarmingly

50

Figure 3.2: A. (upper left) Relative rates of casualties by area in Afghanistan between
2004 and 2010. Raw data can not be visualized due to overplotting. B. (upper right)
A heat map shows casualty counts, but not relative rates by group. C. (lower left)
Embedded bar charts reveal that there have been more civilian than combatant ca-
sualties around Kabul, the capital of Afghanistan. Marginal bar charts reveal similar
information as a heat map, but also display rates by group. D. (lower right) Con-
ditional bar charts make regional rates the more obvious; they show that inordinate
civilian casualties is not unique to the capital city.

51

high civilian casualty rates occur throughout Afghnaistan and not just near popu-

lation centers like Kabul, although high civilian casualty rates also occur there as

well.

3.2.2 Frequency of hostilities

Operation Enduring Freedom has also been criticised for lasting longer than any

previous American war without showing signs of abatement. We would like to look

for signs of abatement in the total number of casualties by region. If the total number

of casualties in a region has decreased over time, this may suggest that the region has

become pacified, a sign of progress.

Events in the Afghan War Diary are labelled according to the region in which

they occurred: the capital, the north, the east, the west, or the south and unknown

locations, which mostly have lattitude and longitude positions in Pakistan. These

labels allow us to visualize how the war has progressed in different areas over time,

Figure 3.3.a. However, we can only see the change in time with this plot. Embedded

line plots allow us to see variation in space and time simultaneously, Figure 3.3.b.

We again plot the conditional distributions to better see the pattern in each region,

Figure 3.3.c. We can also use the background color of each subplot to display the

total number of casualties per region. This is the information we would normally lose

by looking at conditional distributions instead of marginal distributions. We see that

casualties peaked in most locations around 2007, but have been on the rise again in

the most recent years.

Although the embedded plot “increases” the complexity of Figure 3.3.a by adding

two new dimensions (latittude and longitude) and over 100 new lines, it actually

makes it easier to see the spatio-temporal relationship. The viewer no longer has to

expend mental energy thinking about which line in Figure 3.3.a corresponds to which

52

Figure 3.3: Casualty frequencies between 2004 and 2010 by region. The embedded
graphics show that the heaviest fighting has been confined to the southern and east-
ern regions of Afghanistan. The most casualties have occurred around Kandahar.
Many regions seem peaceful since 2008. However, casualties have increased recently
throughout southeast Afghanistan.

part of the country.

3.3 Benefits of embedded plots

Embedded subplots expand the power of static graphics. Adding a second tier of

information in the form of subplots creates practical advantages not available with

non-embedded plots. This second tier may at first seem counterproductive: embed-

ded subplots increase the complexity of the graph, which can obstruct comprehension.

However, embedded subplots present information in a way that minimizes the cog-

nitive load a viewer must expend to understand the graph. This makes embedded

subplots unusually comprehensible. Below, we review the practical advantages of em-

bedded subplots as well as the cognitive science findings that suggest that embedded

subplots can be simple and easy to understand.

53

3.3.1 Practical advantages of embedded subplots

Embedded graphics provide two advantages over non-embedded graphics: they allow

customizeable summarization and provide additional x and y axes. Each of these

advantages can be used in a variety of ways.

Common strategies for overplotting, such as heat maps and contour maps, sum-

marize data into a single number and then attempt to visualize that number. In

contrast, subplots summarize information into an image, which can carry more in-

formation than a lone number. For example, the bar charts in Figure 3.2.c display

multiple measurements in the same space as a heatmap tile, which only displays one.

By summarizing with an image, subplots allow users to choose between no summa-

rization, partial summarization and complete summarization, Figure 3.4. Distracting

data can be removed, but enough information can be retained to display complex

relationships.

●●●

●●●●●●●●●
●●●
●
●●●●●

●●●●
●●
●

●● ●
●

●
●●

●●●●●
●●

●
●

●
●

●●●●●
●●

●
●●

●

● ●●●●
●●
●●●
●

● ●
●
●

●●●
●

●●
●●

●
●

●●

●
●●

●●●
●●●●
●

●●

●
●●●

●●
●

● ●
●●●● ●●

●
●

●
●● ●●●

●●
●●

●●

●●
● ●

●●●●
●●

●
● ●●

●
●●

●

●●

●

●
●

●

●

●

●
●

●
●
● ●

●●

●
●
●●

●

●

●
●
●
●

●

●●●
●●●

●
●

●●

●

●

●
●●●●●

●

●●

●

●
●

●
●

●
●

●

●

●

●●

●●

●●
●●
●

● ●

●●

●

●●

●
●

●●
●●●

●●
●

●●

●

●

●
●●●

●

●

●
●
●●

●

●●●●
●

●

●●

●
●

●
●

●

●

●

●
●

●
●

●
●
●●

●

●●
●

●
●●

●

●●
●

●

● ●
●

●
●●●

●●

●

●●
●

●

●●
●●●

●

●

●

●

●
●●

●●
●

●

●

●

●●
●
●

●
● ●●

●●
●

●

●

●●
●

●

●

●

●

● ●●

●

●

●
●
●
●

●
●●● ●●

●

●●●
●

● ●
●●

●●●

●●

●

●
●

●

●

●●

●●●

●

●

●
●●
●
●

●

●
●●●

●

●

●●●

●
●
●
●

●●●

●

●

●

●●●

●

●

●
● ●
●

●

●

●
●
●●

●
●

●●
●●

●

●
●●●

●●

●
●

●●●

●
●

●

●●
●

●

●●

●●●

●

●

●●
●

●
●

●

●

●●●

●

●

●●●
●●

●

●

●●
●

●

●

●
●
●

●
●

●

●
●●
●

●

●

●
●
●
●

● ●

●●
●
●

●

●

●●●

●●

●
●
●●●

●

●

●

●
●

●

●

●●

●
●
●

●

●

●●●
●

●

● ●

●
●●

●

●

●
●

●
●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●●●

●●●●

●●
●

●●
●● ●

●
●
●●●●●
●
●●●
●●

●●●●●●●
●●

●
●●●●

●●
●●
● ●

●
●●

●
● ●
●●●
●
●
●●●
●● ●

●
●

●

●●●

●
●●

●

●
● ●●●

●●

●
●●
●
●●

●
●

●

● ●
●●
●

●●●
●

●●
●●

●

●

●●●
●
●●●●

●●

●
●
●●

●

●

●
●

●

●●

●
● ●

●

●● ●
●

● ●
●
●

●●

●

●
●

●

●

●

●
●

●
●
● ●

●●

●
●
●●

●

●

●
●
●
●

●

●●●
●●●

●
●

●●

●

●

●
●●●●●

●

●●

●

●
●

●
●

●
●

●

●

●

●●

●●

●●
●●
●

● ●

●●

●

● ●

●

●

●●●
●

●
●

●
●

●
●

●

● ●
●●

●

●
●

●●●
●

●

●●●●
●●

●
●

●●

●

●

●

●

●

●
●●

●

●
●
●●

●

●●

●●
●

●

●

●
●●●

●●

●

●

●●
●

●

●

●

●●
●

●

●●
●●●

●

●

●

●

●
●●

●●
●

●

●

●

●●
●
●

●
● ●●

●●
●

●

●

●●
●

●

●

●

●

● ●●

●

●

●
●
●
●

●
●●● ●●

●

●●●
●

● ●
●●

●●●

●●

●

●
●

●

●

●
●
●●●

●

●

●
●●●

●

●

●●
●●

●

●

●●●
●

●

●
●

●●●

●

●
●

●●●

●

●

●
● ●
●

●

●

●
●
●●

●●

●●●●

●

●●
●●

●●

●
●

●●●

●
●

●

●●
●

●

●●

●●●
●

●

●
●
●

●
●

●

●

●●●

●

●

●●●
● ●

●
●

●●●

●

●
●
●●●

●

●

●
●●

●

●

●

●
●●●

●
●

●●
●

●

●

●
●●●

●●

●
●
●●●

●

●

●

●
●

●

●

●●

●
●
●

●

●

●●●
●

●

● ●

●
●●

●

●

●
●

●
●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●
●

●●●
●
●●●
●

●
●

●●●●●
●●●

● ●●
●●●●

●●
●● ●

●● ●
●

●
●●●●●

●

●●
●
●●●

●●●
●●

●

●●●
●●

●●●
●●●

●●

●
●

●

●●

●

●

●
●
●
●●
●● ●

●

●
●●

●

●

●

●

●
● ● ●

●
●

●●●
●

●
●

● ●

●

●

●
●

●

●●●●

●

●●
●

●

●
●

●●
●●

●

●

●

●●

●●

●●

●

●
●

●●

●

●
●

●
●
●●●
●

●
●

●●

●●

●●

●●●●

●

●

●
●

●

●●

●
●
●●

●●
●●

●
●

●

●

●
●

●

● ●●●

●
●●●
●

●●

●

●
●

●

●

●
●●●

●
●

●● ●●
●

●
●

●

●●
●

●
●
●● ●●
●

●
●

●
●●
●
●●●●

●

●

●
●●●●
●
●
●●●
●

●
●

●
●

●

●

●

●
●●●●●

●
●●

●●

●●

●
●

●●
●

●
●●●

●
●
●●
●●
●

●●

●

●●●

●

●●
●●●

●

●
●

●

●
●

●
●
●●

●
●

●

●
●●
●

●
●

●
●
●●●

●

●

●●
●

●

●

●

●●
●

●

●

●
●
●
●
●

●●●● ●●

●

●●●●

●●

●
●

●●●

●●

●

●
●
●

●

●
●
●●●

●

●

●
●●●

●

●

●●
●●

●

●
●●●

● ●

●
●
●●●

●
●
●●

●
●

●

●

●
● ●
●

●

●

●
●●●

●
●

●●
●●

●

●●
●
●
●●

●
●

●●●

●
●

●

●●
●

●

●●

●●●

●

●

●

●
●●

●

●

●
●●●

●

●

●●●

●●

●

●

●●
●

●

●
●
●●●

●

●

●
●●

●

●

●

●

●●●

● ●

●●
●

●

●

●●
●●

●●

●

●
●●●

●

●

●

●
●

●
●

●●

●
●
●

●

●

●●
●
●

●

●

●

●●
●

●

●

●
●●

●●

●

●

●●
●

●

●

●●●●

●

●

●
●●

●

●

●
●

●●●

●

●

●
●
●

●

●

●

●●●

●●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●●●

●

●

●●
●

●

●

●

● ●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●●● ●

● ●

●●

●

●●
●●●

●●●●
●
●

●●
●

●●
●● ●●
●●
●●●●

●●
●●●●●
●

●●●
●●
●

●
●
● ●●

●
● ●●●

●
●●●
●●●
●

●

●●
●
●●

●
●

●
●●

●●

●
●
●

●
●

●●●●
●
●●●●●

●●●●●●

●
●
●●

●●

●
●●

● ●
●

●
●●●
●
●
●
●

●●●

●

●
●

●●
●

●●

●
● ●

●●●

●
●

●
●
●

●
●●●

●
●
●

●
●

●
●●

●
●
●●●

●
●

●●
●
●●

●●●●
●●

●
●

●●
●

●

●
●

●●● ●

●
●
●●
●●

●
●●●
●●

●

●
●
●
●

●●

●● ●●
●

●●

●

●
●

●

●●●
● ●●●

●●

●
●●

●
●
●
●●●●

●
●●●

●

●●
●●●
●

●●
●
●●
●

●
●

●●● ●
●

●●●
●●
●●

●●
●●

●

●
●
●●

●●

●
●●●
●

●
●

●

●
●●

●
●●
●●●●

●
●

●
●●

●
●

●●●
●

●

●
●●●

●
●
●●

●●●

●●

●●●●

●

●

●
● ●
●●

●
●●

●●

●●
●●
●●

●

●●
●●
●
●
●

● ●
●●

●
●

●

●●

●

●
●
●
●●●

●

●

●

●

●
●

●

●
●
●●●

●

●
●●●

●
●
●

●
●●●

●●

●
●
●
●

●
●

●
●●●

●

●
●

●
●●

●●

●●
●●

●

●●
●●

●●

●
●
●●●

●
●

●

●●
●

●

●●

●●●

●

●

●

●
●●

●

●

●
●●●

●

●

●●●

●●

●

●

●●
●

●

●
●
●●●

●

●

●
●●

●

●

●

●

●●●

●●

●●
●

●

●

●●
●●

●●

●

●
●●●

●

●

●

●
●

●

●

●●

●●●

●

●

●●●●

●

●

●

●
●●

●

●

●
●
●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

● ●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●●

●

●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●
●
●
●
●

● ●●●
●

●
●●●
●
●●●●

●●

●●●●●
●●
●

●●●●●
●●●●
●
●●●● ●●

●
●●●●●
●

●
●
● ●
●

●
●●●●

●
●●●
●●●

●
●

●
●
●
●●
●●
●●
●●

●

●●●
●●
●●●

●
●

●●●
●●

●●

●●●●●
●

●●●●
● ●

●●●
●●

●●
●
●●
●
●●●
●

●●

●
●
●
●
●
●

●●●
●
●
●
●

●

●●●
●
●●
●

●●
●

●
●

●●●

●●
●●●

●
●
●

●●●●

●
●●●●

●
●●

●●●●
●

●
●●
● ●●

●●●
●●
● ●

●● ●
●

●

●●
●●

●●
●●●

●●
●●

●

●
●●

●
●●
●●●●

●
●

●● ●

●
●
●
●
●
●●

●

●●●●
●●

●●
●●

●●

●●
●●
●

●

●●
●
●●

●●
●
●●
●●

●●
●●

●

●

●
●●
●
●
●
●
●●●

●
●
●

●
●
●

●
●
●
● ●●
●

●
●

●
● ●

● ●

●
●●
●

●

●

●●●
●

●●
●

●●
●

●●

●●
●●

●

●

●
● ●
●

●

●
●
●
●●

●●

●●
●●

●

●

●●●
●
●

●
●
●●●

●
●

●

●●●

●
●
●

●●●
●

●

●

●

●
●

●

●

●
●●

●
●

●
●●
●
●
●

●
●
●●●

●●

●
●●●

●

●

●●
●●

●

●
●

●
●●

●
●

● ●
●●

●

●●

●
●

●●

●
●

●●●

●
●

●

●●

●

●

●●

●
●●

●

●

●
●

●●

●

●

●

●
●●

●

●

●●

●
●
●

●

●
●●●

●

●
●●
●●

●

●

●
●●

●

●

●

●

●●●

●
●

●
●

●●

●

●●
●
●

●
●

●

●
●
●●

●
●

●

●

●

●

●

●
●

●●●

●

●

●● ●●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●
●●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●
● ●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●
●●

●

●
●

●●●

●

●

●●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●●
●●●●●

●●●●

●
●●

●●●●
●●
●●

●●●
●

●
●●●●●●●●
●●
●●●

●●●●●●
●●●
●●
●●●●●

●●●
●●
●●
●●●
●

●●●
●

●●● ●
●

●
●●●●●●

●● ●
●

●
●●●●●●

●
●●

● ●

●●
●
●●●●●

●
●
●●
●
●●●●●
●●

●●●

●●
●
●●

●

●●
●
●●

●●
●● ●

●
●●●
●

●●●
● ●

●●
●●●●

●
●●●

●
● ●●●●●●
●

●
●

● ●

●●

●●
● ●●
●●

●●
●

●

●●●●●
●●

●●
●
●●

●●●● ●●

●●●●
●
●

● ●
●

●●●
●

●
●●●●

●
●●●●●

●
●●●
●

● ●
●●●
●●

●

●●
●●

● ●
●●

●●●

●
●
●●

●

●

● ●●
●
●

●●

●
●●
●
●

●

●

●

●
●

●

●
●●●

●●● ●
●

●●
●

●

●●
●●

●

●
●

●
●●●

●
●
●●●

●●

●●●●

●

●

●

●●
●

●
●
●
●

●
●●

●
●
●●

●

●
●●●●●

●
●

●
●
●

●
● ●●●●

●
●

●

●●●

●
●●

●
●●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●●●

●●

●
●

● ●

●

●

●
●
●
●
●

●●

●

●

● ●●
●●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●
●

● ●

●

●

●
●

●

●●
●

●

● ●
●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●●

●

●●

●

●

●●

●

●

●

●

●● ●

●

●
●
●

●

● ●

●

●
● ●●

●

●

●
● ●

● ●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●

●●
●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●●
●
●●●●●●

●●●
●●
●
●●
●
●●●●●
●●
●●

●
●●●●
●●●●
●●
●●●

●●●●●●
●●●
●
●● ●●● ●

●●●
●●
● ●

●
●

●
●

●●●●

●●●●
●●

●●●●●
●

●●●
●
●
●●●●●
●●●●●
●
●●
●
●●●●

●
●
●

●●
●

●●●●●
●●●

●
●
●●

●
●
●●

●●
●
●●

●●
●● ●
●
●●●
●

●●●●
● ●
●●●●●

●

●
●●
●
● ●●●
●
●●

●
●●
●●

●●●
●

●●●●●

●●
●
●

●●●●●
●●

●●●
●●

●●
●

● ●●
●●

●
●●
●● ●

●
●●●
●

●●●●●

●
●●

●
●

●

●●
●●
● ●●
●●
●

●●
●

●

●●
●

●●●
●

●●●

●●

●
●

●

●●●●

●
●

●●
●●
●
●●
●●
●

●
●

●

●●
●

●

●●●
●
●●●
●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●
●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●●
●

●
●●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●●●

●●

●
●

● ●

●

●

●
●
●
●
●

●●

●

●

● ●●
●●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●●
●

●

●

●
● ●

●

●

●

●●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●
●●●●●●

●●●

●
●●

●●●●●●
●●●●●

●
●●●●●●●●●●●●
●
●

●●●●●●
●●●
●
●●●●●●
●●●●●
●●

●●●
●

●●●●

●●●
●●●

●●●●●
●

●●●

●
●●●●●

●●●●●
●●

●● ●●

●
●●●●● ●●
●

●●●●●
●●

●●●

●
●

●
●●●
●●●●

●

●●
●

●

●
●●

●●
●

●
●●●●●
●●●

●●
●

●●
●
●●

●●●●●●
●●●
●
●
●

● ●
●

●
●●
●●
●
●
●

●

●
●
●●●

●●
●●
●
●
●

●●
●

● ●●
●
●●
●●
●● ●
●

● ●●
●

●
●

●
●●●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●
●●
●

●

●
●
●

●

●●

●
●●

●
●
●

●

●

●
●●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●●●●
●
●

●
●

●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

● ●●●●

●
●

●

●

●

●

●

●●●

●
●
●●

●
●

●

●●

●●

●

●
●

●

●

●
●

●

●

●
●●●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●● ● ●●

●

●
●

●

●
●

●

●
●

● ●

●
●

●
●

●

●

●

●●

●
●

●

●

●●

●
●

●

●
●

● ●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●●●

●

●

●

● ● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●
●
●●●●

●
●
●●●

●●
●

●
●
●●● ●
●●●●●
●

●●●●●●●●●●●●
●●
●●●●●●

●●●●

●● ●
●●●

●●●●●

●●

●
●
●
●●

● ●
●

●●
●
●●●●●●●

●
●

●●
●
●
●●●●●●●

●●
●●
●
●

●
●●

●●●
●●
●

●●
●
●●●

●●
●●●

●
●

●● ●●●●
●●●●

●
●●

●● ●
●●●
●

●

●● ●
●●

●

●

●

●

●
●

●
●

● ●
●
●

●●●●●●●
●

●●
●

●
● ●

●

●●
●
●
●● ●

●
●●●

●

●
●●
●

●
●

● ●●

●
●

●

●

●

●

●
●● ●

●
●● ●

●
●
●●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●
●
●●●●

●

●
●
●

●●
● ●●●

●

●

●

●

● ●
●

● ● ●

●●
●

●

●

●

●

●

●

●
●

● ●

●

●●

●●●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

● ●

●

●
●

●●

●

●●

●

●

●
●

●

●●
●

●
●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●
●

●

● ●●●●
●

●

●●
●
●

●
●

●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
● ●

●

●

●

●

●
●

●
●

●

● ● ●

●

●

●

●

●

●●

●●
●

●

●
●

●
●

●●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●
●

●

●
●
●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

● ●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●●
●

●

●

●

●●

●

●

●

● ●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●●
●●●●

●
●●

●
●●●●●

●●●●
●●

●●●●●●●●●●●●●
●

●●●●●●
●●
●
●

●●●●●●
●

●●●●

●●
●

●●
●●
●●

●

●●
●
●●
●●●

●●●●

●

●●

●
●●
●

●●●
●
●

●
●●

●
●

●
●●

●●
●

●●●
●●
●
●●●

●
●

●
●●

●
●

●●
●

●●●
●●●●
●

●●
●● ●

●●
●●

●

●●
●●

●●

●

● ●

●

●●
● ●

●
●●●●

●
●

●●●●

●

●

●
●

●

●
●

●

●
●
●
●

●
●
●●●●

●

●

●

●
●
●●

●

●
●

●
●

●● ●
●

●

●
●

●●
●●
●●

●

● ●

●

●

●
●

●

●

●
●● ●

●●

●
●

● ●

●

●
●

●
●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●
●●

●

●

●
●

●

●
●●●

●

●●

●

●

●
●

●

●●

●
● ●
●●

●
●

●

●●
●

●

● ●
●
●
●

●
●

●●
● ●

●

●

●●●
●

●

●
●
●●
●

●
●
●●●●

●
●

●●●
●

●

●

●●●
●
●

●

●
●

●
●

●●●●
●

●

●

●
●●●

●●

●
●●●

●

●●

●

●
●
●

●

● ●●●●

●
●

●
●
●

●

●

●
●

●
●
●

●

●

●

●
●

● ●

●
●
●●●

●

●

●

● ●●

●

●
●●●●

●

●

●
●

●●

● ●●●

●
●

●

●
●●
●

●●

●●
●●●

●
●

●

●●

●

●

●

●
●●
●

●

●

●
●●
●

●

●

●
●●
●

●

●

●

●●

●

●

●

●●●●

●

●

●
●●●

●

●

●●●●

●

●

●
●

●●

●
●

●●
●

●

●

●

●
●●

●●

● ●
●●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●●
●

●

●

●

●●

●

●

●

● ●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●●●●

●●●

●
●●
●
●●●●●

●●●●●
●
● ●●●●●●●●●●

●●
●

●●●●●
●●●●●
●
●●

●●●
●●●●

●
●●
●●

●
●●
●●

●

●●
●
●
●●●●

●●
●
●

●●●

●
●●●●●●●

●●●
● ●

●●
●●

●
●
●

●●
●
●●
●●

● ●
●
●●

●●
●●

●
●●

●●●

●

●
●●●

●●●
● ●

●

● ●●

●

●
●

●

●●

●
●●

●

● ●●

●

●

●
●

●
●
●
●●

●●●
● ●

●

●●

●

●
●

●

●
●

●●

● ●
●●

●●

●

●

●●
●●

●
●
●

●
●

●

●

●

●
● ●

●

● ●

●●●

●
●
●

●
●

●

●
●

●

●

●●
●●●

●●

●●
●
●

●

●● ●●
●

●

●
●●●

●
●●
●●●

●

●
●

●●

●
●

●

●
●

●●●

●
●

●
●
●

●

●
●
●●
●●

●

●●●●

●●

●● ●●●

●●

●

●
●
●

●

●
●●
●
●

●
●

●
●●

●

●

●

●
●
●
●

●

●
●●●

● ●
●
●●●
●

●

●

●●
●
●

●
●
●
●●●

●

●

●
●
●
●

●
● ●●

●●

●

●●
●●

●●

●●
●●●

●●

●

●●
●

●

●●
●
●
●

●
●

●
●

●●
●

●

●
●●
●

●

●

●●●

●
●

●

●
●●●

●

●

●
●● ●

●

●

●●●●

●

●

●
●
●●

●
● ●●

●
●

●

●

●●
●

● ●

●●

●●●

●●

●

●●
●

●

●●

●●
●

●

●

●●
●
●

●

●

●
●●●

●

●

●
●●

●
●

●

●

●●
●

●

●

●
●●

●

●

●

●
●●●

●

●

●
●
●●

●
●

●●
●
●

●

●

●●

●
●
●

● ●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Surface temp vs. atmospheric temp Surface temp vs. atmospheric temp

Mean
temperature (F)

55
60
65
70
75
80

Mean temperature (F)

Figure 3.4: Users can control the amount of summarization that occurs in an embed-
ded plot. When scatterplots are used for subplots, no summarization occurs (left).
Line graphs provide partial summarization (center). Heat maps provide complete
summarization, within each bin data is reduced to a single number (right). This may
not always be desirable.

The choice of a subplot also allows the user to control effects of overplotting. For

example, Figure 3.1.c summarizes more than 20,000 data points. When this data is

viewed as a colored scatterplot, points occlude each other and underlying patterns

54

are hidden, Figure 3.1.d. The use of embedded subplots avoids overplotting and

shows a relationship between price, carat, and color: for any value of carat, better

colored diamonds occur more often in the higher price ranges than the low ones. The

embedded subplots in Figure 3.1.c would not suffer from overplotting even if the data

set was enlarged to 100,000, a million, or even a trillion points.

Embedded subplots also provide a second practical advantage: they supply an

additional set of axes to plot data on, the minor x and y axes of the subplots. These

two new dimensions allow complex relationships to be visualized. Four separate

variables can be assigned between the major x, major y, minor x, and minor y axes.

Additional variables can be included with colors, shapes, sizes, etc. The usefulness

of this approach is most easily seen with spatio-temporal data. Spatio-temporal data

usually requires at least four dimensions to be visualized: two dimensions for spatial

coordinates, a third dimension for time, and a fourth for the quantity of interest. Four

variables can quickly clutter a non-embedded plot, but an embedded plot can visualize

them with just the major and minor x and y axes. The extra axes can be used in a

similar way to visualize any high dimensional relationship, such as interaction effects

and conditional effects. The two level system of axes can also be used to organize

data first by groupwise characteristics, then by individual characteristics.

3.3.2 Cognitive advantages of embedded subplots

These practical advantages come at the expense of making a graph more complicated.

Embedded plots add an extra layer of information that a viewer must process before

comprehensions can occur. However, when used appropriately, embedded plots may

not be much more difficult to understand than non-embedded plots. Furthermore,

embedded plots may allow users to understand information that would be incompre-

hensible in other formats. This is because embedded plots organize information in a

55

way that lowers the cognitive load required to process the information.

Cognitive load is the mental energy required to convert information into knowl-

edge, understanding, and insights within the working memory. Cognitive science has

long known that the working memory has a fairly small processing capacity (Miller,

1956; Cowan, 2000). In 1988, John Sweller demonstrated that learning fails to oc-

cur when the cognitive load of a task exceeds the capacity available in the working

memory (Sweller, 1988). This insight, the basis of Cognitive Load Theory, has led

to a series of successful education principles that work by reducing the cognitive load

required during learning tasks (such as reading a graph).1

Cognitive load theory explains why it is easy to make a graph confusing by in-

cluding distracting information or multiple variables. Each variable increases the

cognitive load required to interpret the graph by adding new information that the

viewer must process. Current estimates suggest that the average person has trouble

processing more than four pieces of novel information at once (Cowan, 2000). Com-

plex data affects the working memory in the same way as a complicated graph. Each

relationship and interaction increases cognitive load and threatens to overwhelm the

working memory (Sweller, 1994). When this happens, comprehension will not oc-

cur. However, mechanisms exist that can decrease the cognitive load associated with

learning tasks. These mechanisms allow more information to be processed than would

otherwise be possible. Embedded plots automatically employ three such mechanisms:

visualization, isolation, and automation.

Visualization is an extremely powerful information processing tool. All graphics

rely on it, but embedded plots use it in a specific way to present information with

a decreased cognitive load. Mounting evidence suggests that thinking is a primarily

visual activity. The mind uses visual simulations to process verbal information, such

1
See Sweller (2003) for an extensive list of these principles and the supporting literature

56

as the orientation of words in a sentence (Stanfield and Zwaan, 2001) and the rela-

tionship between words (Zwaan and Yaxley, 2003). The mind also relies on visual

simulations to compare numbers (Moyer and Landauer, 1967; Dehaene, 1997), to per-

form approximate arithmetic (Dehaene et al., 1999; Walsh, 2003), and to make logical

deductions (Lakoff and Núñez, 2000). The human adaptation to vision is reflected in

our working memory system, which treats visual and verbal information differently

(Baddeley and Hitch, 1974). The working memory can only handle four novel objects,

whether verbal or visual. However, each piece of visual information can be an image

that contains multiple features. A study by Luck and Vogel (1997) demonstrated

that four visual objects that each contain four pieces of information can be processed

by the working memory as easily as four visual objects that each contain only one

piece of information. This ability gives the working memory a higher bandwidth for

visual information than for verbal information. If we compare one tile of a heat map

to one subplot, we see that embedded plots exploit this bandwidth more effectively

than other graphs. Both the tile and the subplot are a single visual object. The tile

has one feature (a color). The subplot has four (four bar lengths). Luck and Vogel

(1997)’s study suggests that the subplot should require little (if any) more cognitive

load to be processed by the working memory than the tile. The subplot, however,

conveys four times as much information.

Embedded plots also organize information in a way that further decreases cogni-

tive load. The working memory must expend considerable cognitive energy to process

new information, but almost no energy to recall and use previously acquired informa-

tion (Sweller, 2003). When the complexity of a data set exceeds the capacity of the

working memory, the mind can proceed by dividing the data set into small pieces and

processing each separately. This is akin to rote learning. It does not create full un-

derstanding; connections between the separate pieces go unnoticed and unexamined.

57

However, once each piece is processed, it becomes part of the long term memory where

it can be recalled at little to no cognitive cost. Further processing can then occur until

full understanding is attained. Sweller et al. (2011) call this the isolating elements

effect. The mind can build a deep understanding of highly interactive (i.e., complex)

data by iterating between processing small subsets of data and then recalling these

subsets from the LTM to compare against each other and new information.

Embedded plots usually display information that can not be understood without

an approach that isolates elements; these plots usually deal with at least four interact-

ing dimensions (major x, major y, minor x, minor y). Such data will always demand

a heavy cognitive load for comprehension. However, embedded plots make this load

manageable by dividing the data into isolated elements (subplots) and visualizing the

interactions between these elements (the overall graph). This arrangement allows the

mind to use its strongest information processing channel, visualization, to perform

the isolating elements processing algorithm. As a result, embedded plots are a partic-

ularly efficient way to present information that has four to six interacting dimensions

in a static graph.

Embedded plots also benefit from a third cognitive mechanism: automation. To

process new information, the mind uses a cognitive structure known as a schema.

The schema directs attention during information processing and identifies relation-

ships between data points and previous knowledge.1 When the mind frequently uses

a particular schema, it becomes automated (Schneider and Shiffrin, 1977; Shiffrin

and Schneider, 1977). When this happens, information related to the schema can

be processed with less and less conscious effort. Kotovsky and Simon (1985) demon-

strated that automated processing decreases cognitive load to such an extent that

information can be processed 16 times faster than with non-automated schemas. A

1
Literature on schemas are extensive. See Neisser (1976) Rumelhart (1980), etc. for highlights

58

common example of automated processing is reading written text. For young chil-

dren, reading is a laborious process that involves identifying letters, assigning sounds

to them, associating these sounds with words and then meanings. However, by the

time children become adults, these tasks are done unconsciously and reading proceeds

automatically. Reading graphs is a second example of automated processing.

Embedded plots rely on graph reading skills to convey information: each subplot

is a new graph. For analysts familiar with reading graphs, embedded plots allow

information to be processed automatically, which results in quicker processing and

reduced cognitive load. Embedded plots provide twice the opportunity for automation

when subplots are embedded in a map. Reading data off a map and associating it with

spatial coordinates is an activity commonly practiced by analysts and non-analysts

alike. Information may be automatically read off these graphs at both the plot level

and the subplot level. Embedded plots will not offer the benefits of automation to

everyone, though. Occasionally, we hear anecdotal reports of people who can not

easily read graphs. Until a person learns to read statistical graphs, conscious effort

will be required to interpret embedded plots, but this will be true for other types of

graphs as well.

In summary, embedded plots display more information than other static graphs,

but remain easily interpretable. They present information visually, with an intuitive

organization and a familiar presentation. As a result, they minimize the cognitive

load needed to comprehend and interpret graphs. This is an attractive feature: it

allows embedded plots to display complex relationships that would not otherwise

appear in static graphs. More fundamentally, embedded plots may allow users to

comprehend complex relationships that would remain incomprehensible in other for-

mats. Embedded plots are not a panacea for all big data situations: it is possible to

abuse embedded plots, as we describe in Section 3.5. Also embedded plots can not

59

effectively visualize relationships that involve more than six dimensions. However,

embedded plots provide a way to present one or two additional dimensions in a static

graphic; this creates increased opportunities for exploring and understanding large,

complex data.

3.4 Implementing embedded plots with the gram-

mar of graphics

Embedded graphs are useful, but difficult to make. Particular types of software

exist to make particular types of embedded plots. For example, interactive glyph

plots can be made with gaugain (Gribov et al., 2006). Facetted graphs can be

made with the ggplot2 (Wickham, 2009) and lattice (Sarkar, 2008) packages in

R. Scatterplot matrices can be created with the GGally package (Schloerke et al.,

2011) as well as with base R (R Development Core Team, 2010). However, these

programs do not allow users to customize which type of subplot to use in an embeded

plot. This customization is one of the chief advantages of embedded plots. Different

types of subplots reveal different types of relationships and provide different levels of

summarization. In this section, we describe how to create software that can produce

any type of embedded plot. Our implementation is built on the layered grammar of

graphics and reveals a conceptual insight about graphics: graphs are hierarchical, or

recursive, in structure. The implementation of embedded subplots described in this

section is available for the R programming language through ggsubplot. ggsubplot

is a software package written by the authors that implements embedded plots within

the grammar of graphics paradigm. ggsubplot is written in the R programming

language and extends the ggplot2 package. The ggsubplot package is available

from http://github.com/garrettgman/ggsubplot.

http://github.com/garrettgman/ggsubplot

60

Embedded plots can be easily implemented in software built on the layered gram-

mar of graphics, a conceptual framework for understanding and creating visual graph-

ics. The grammar was proposed by Wickham (2010) and builds on ideas from Wilkin-

son and Wills (2005) and Bertin (1983). The layered grammar organizes each graph

into a collection of visual elements and a set of rules that describe how the appearance

of these elements should be mapped to a data set. The grammar enables a deeper

understanding of how graphics function and relate to one another and allows more

concise, elegant programming. This approach to graphics has become widely popu-

lar: ggplot2, an implementation of the grammar of graphics in R, has been cited over

200 times in scholarly journals and supports an online community of 2500 members.

The grammar creates efficiencies and insights by replacing a descriptive taxonomy of

charts with a set of general rules that can be used to make almost any type of graphic.

The layered grammar of graphics centers around two concepts: geoms and map-

pings. A geom is a visual element in a graph whose appearance can vary in relation to

an underlying data set. For example, the points in a scatterplot are a type of geom.

Their locations (and sometimes their sizes and colors) reflect values in the underlying

data set. Other types of geoms include the bars in a bar chart, the lines in a line

chart, boxplots, et cetera. Each type of geom has its own visual characteristics (called

aesthetics). These visual aesthetics can be altered in meaningful ways to display the

values of an underlying data set. For example, the color of a point can be used to

display the gender of an observation in the data set. Two of the most important aes-

thetics are a geom’s position along the x axis and y axis. The grammar of graphics

calls the rules used to map aesthetics to variables in a data set mappings. Geoms and

mappings provide a useful framework for building generalized graphs.

Embedded graphics fit seamlessly with the grammar of graphics if we recognize

that a plot can be a geom (and that every geom is a plot). Embedded subplots share

61

the useful characteristics of a geom. They can visually represent data within a graph,

and they possess aesthetics that can be mapped to a data set’s values. Subplots

have two primary aesthetics: their position in the cartesian plane and their internal

drawing of a graph. This second aesthetic makes subplots appear more complicated

than other geoms, but they function in the same way.

Cleveland’s subcycle plot demonstrates the equivalence between subplots and ge-

oms, Figure 3.5. The plot visualizes atmosperic CO2 concentrations as measured at

the Mauna Loa Observatory in Hawaii from 1959 to 1990 (Cleveland, 1994). This

data was some of the earliest to suggest the presence of man made global climate

change. CO2 readings are organized by month along the x axis. Within each month,

CO2 readings are arranged by year. This gives the cycle plot its embedded structure.

Each group of readings from a particular month can be read as a stand alone plot

once the appropriate axes are added back in, see Figure 3.5.b. In the subcycle plot,

each subplot contains an x position, a y position, and a drawing of a line graph. If we

remove the internal drawings of the line graphs, as in Figure 3.5.c, what remains is a

scatterplot whose points are rectangular. This demonstrates that subplots are equiv-

alent to a rectangle geom, but contain a specialized aesthetic: the internal drawing

of a graph. This aestetic can be mapped to the underlying data set with a graph

specification.

It may seem exotic to equate a description of a graph with a mapping between a

visual feature and data, but this follows a basic tenet of the grammar of graphics: a

graph is an abstract mapping from data to visualization:

We can construct a graphic that can be applied to multiple datasets. Data

are what turns an abstract graphic into a concrete graphic. (Wickham,

2010)

In summary, a subplot is a type of geom with its own set of aesthetics. One of these

62

−2

0

2

J F M A M J J A S O N D
month

C
O

2 (
pp

m
)

Seasonal frequency components of Mauna Lau carbon
time series between 1959 and 1990, by month

0.5

1.0

1.5

2.0

M
month

C
O

2 (
pp

m
)

March Measurements
(1959 − 1990)

−2

0

2

J F M A M J J A S O N D
month

C
O

2 (
pp

m
)

Average seasonsal
component by month

Figure 3.5: Cleveland’s subcycle plot can be decomposed into twelve subplots ar-
ranged as a scatterplot. The subplots behave as a rectangle geom with an internal
drawing aesthetic.

63

aesthetics is an internal drawing of a graph. The appearance of this aesthetic is

controlled by a graph specification, which creates a mapping between the data and

the aesthetic. Note that the internal drawing of a subplot may or may not contain

axes, a grid, a legend, etc. just as a regular graph may or may not contain these

elements.

Although it may seem trivial, the equivalence between subplots and geoms oper-

ates in the opposite direction as well. Each geometric object is itself a type of subplot

when viewed in isolation. This is easy to see with boxplots and bar graphs, but for

many geoms the resulting subplot is so uninteresting that it may go unrecognized,

see Figure 3.6.

0.0

0.5

1.0

1.5

2.0

−1.0 −0.5 0.0 0.5 1.0

bar

10

15

20

25

30

35
●

−0.5 0.0 0.5

boxplot

−0.4

−0.2

0.0

0.2

0.4

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.4 −0.2 0.0 0.2 0.4

point

Figure 3.6: Every individual geom is a self contained plot when paired with a set of
axes. Such plots may be not be very interesting, as is the case with point geoms.

3.4.1 Advanced implementation

The grammar of graphics does more than describe the components of a graph, it

defines how these components can be combined to make useful images. Implementing

subplots as a geom requires specific considerations when combining subplots with the

technical details of the grammar of graphics. These details include stats, position

adjustments, and reference objects, such as coordinate axes. In this section, we

discuss these considerations and illustrate them with code from ggsubplot.

64

3.4.1.1 Geom

ggsubplot introduces two new geoms that draw embedded subplots. These geoms

will serve as examples for the technical considerations in the remainder of this section.

geom subplot uses a group aesthetic to assign data to subplots and then positions

each subplot based on a summary of its data points. geom subplot2d bins the surface

of a plot into a two dimensional grid and then represents each bin with a subplot.

The use of these geoms is demonstrated in the example code below, which was used

to create Figure 3.1.b and Figure 3.1.c.

Figure 1.b, a glyphmap

ggplot(nasa) + map_americas +

geom_subplot(aes(long, lat, group = id,

subplot = geom_star(aes(r = surftemp, angle = date, fill =

mean(surftemp)),

r.zero = FALSE, alpha = 0.75))) +

coord_map()

Figure 1.c, a binned plot

ggplot(ordinary.diamonds) +

geom_subplot2d(aes(carat, price,

subplot = geom_bar(aes(color, fill = color), position = "dodge")),

bins = c(10, 14), y_scale = free, height.adjust = 0.8,

width.adjust = 0.8, ref = ref_box(aes(color = length(color)))) +

scale_color_gradient("Total\ncount", low = "grey70", high = "black")

65

3.4.1.2 Stats

A stat is any function that summarizes a group of data values into a smaller set

of information. Stats and mappings form a two step processes whenever a single

geom is used to display multiple data points. First, the stat summarizes the data

points into summary level information. Then a mapping keys the aesthetics of the

geom to the summary level information. For example, a boxplot geom uses a stat

to calculate Tukey’s five number summary for a group of data points. Then the

numbers are used to determine the location of each part of the boxplot. Specific

geoms are usually associated with specific stats. Box plots always use a five number

summary, histograms always use a bin and count procedure. These patterns allow

users to largely ignore stats; software can automatically implement the correct stat

once a geom is chosen. When a user does decide to specify a stat, they are usually

constrained to choose from a prepackaged set of stat functions.

Embedded subplots also rely on stats, but subplots require more freedom in the

choice of stat than is offered in current implementations of the grammar of graphics.

Each subplot must map a group of data points to a single location on the x and y axes

of the large plot. The way a user chooses to do this is likely to change from graph

to graph. In Figure 3.1.a., the y position for each subplot is mapped to the mean

value of CO2 for the observations in the subplot. In Figure 3.1.b., both the x and y

positions of each subplot are mapped to the common longitude and lattitude of the

observations within the subplot. In Figure 3.1.c., the x and y positions are mapped

to the midpoint of the 2D bin that each group of observations has been assigned to.

This variety prevents the subplot from relying on a set of prepackaged stats. Instead,

users need the same freedom to create a stat as they have to create a mapping.

geom subplot provides this freedom by having the mapping directly serve as a

stat. If a mapping involves subsetting or a function that returns a single value (such

66

as a mean), it will perform its own summarizing. The user just needs to ensure that

the mapping is applied separately to each group used in the graph. Otherwise, the

mapping will be applied to the entire underlying data set at once and each geom

will be keyed to the same information, for example, the mean of the entire data

set. ggsubplot manages these requirements with the ply aes function. ply aes

takes a ggplot2 layer object and modifies it so that the layer’s mappings are applied

groupwise according to the layer’s group aesthetic. ply aes enforces summarization

by subsetting the output of each mapping to just its first value. A warning message is

given if the mapping would have otherwise returned multiple values. geom subplot

automatically uses ply aes.

This arrangement provides a new insight into the relationship between mappings

and stats. Mappings and stats perform the same function but are keyed to different

levels in the hierarchy of information: individual level and group level. This par-

allelism is made clear in embedded plots. When we consider any single subplot in

Cleveland’s subcycle plot (Figure 3.1.b), the mean concentration of CO2 is a group-

wise statistic, (i.e., a stat) that summarizes an entire group of data. When our

attention shifts to the higher level plot(Figure 3.1.c), the mean concentration of CO2

becomes an aesthetic mapping of the subplots.

ply aes can also be used with non-subplot layers. It behaves in the same way,

turning individual mappings into groupwise mappings (i.e, stat + mapping). This

technique replaces each group of geoms with a single geom that displays group level

information. Figure 3.7 shows how this technique can remarkably reduce overplotting

to reveal structure.

67

Figure 3.7: ply aes offers a new strategy for overplotting. Groups of geoms are
combined into single geoms that display summary information. This approach reveals
that mean(ozone) has a different linear relationship with temperature in the southern
hemisphere than it does in the north.

3.4.1.3 Position adjustments

Many embedded plots will require nontraditional choices for a position adjustment.

Each layer of a graphic contains a position adjustment that determines how to plot

graphical elements that interfere with one another. Wilkinson and Wills (2005) refers

to this concept as a collision modifier. Position adjustments are often implicitly set

to identity, which means that elements will be plotted on top of one another if they

overlap. Alternatively, overlapping elements can be adjusted to appear above each

other (stacking), next to each other (dodging), in random nearby locations (jittering)

or in other places. These solutions are inefficient for a large subset of embedded

graphs.

Embedded graphics such as Figure 3.1.b and 3.1.c use the position of the subplot

to signal which observations are included in the subplot. In Figure 3.1.b, every

observation with a certain longitude and latitude is mapped to the subplot positioned

68

at that longitude and latitude. In Figure 3.1.c, every observation that falls within

a 2D bin is mapped to the subplot positioned at that bin. Even Figure 3.1.a uses

position along the x axis to signal which observations are included in which line graph.

This arrangement does not appear in every embedded graphic, but it can be useful.

Traditional position adjustments such as stacking, dodging, and jittering disrupt this

relationship. We suggest a new position adjustment that preserves the relationship

between position and group membership: when two subplots overlap one another

they can be merged into a single subplot.

Programming a merge adjustment is more complicated than programming tradi-

tional position adjustments. The merge adjustment will affect stat values because it

alters group membership. Therefore, it must be computed early in the building pro-

cess for graphs. The merge adjustment also presents a second difficulty: how do we

define which subplots should be merged? ggsubplot combines each clique of overlap-

ping subplots into a single subplot positioned at the mean location of the clique. This

works well when graphs are relatively sparse, but can remove an undesirable amount

of visual real estate when graphs are dense, see Figure 3.8. Clustering methods may

provide a more useful approach to identifying graphs to be merged. Future versions of

ggsubplot will explore this approach, but the most useful ways of merging are likely

to arise from observing the actual application of embedded plots in data analysis.

As an alternative to merging, users who wish to avoid overlaps can grid the subplots

within a graph with geom subplot2d. This is not a position adjustment, but a way

of assigning the group aesthetic. However, gridding guarantees that membership will

be mapped to position without any overlaps.

69

Figure 3.8: The postion of a subplot is often related to which points the subplot
shows. Position = merge and geom subplot2d provide two ways to avoid overlapping
subplots without disrupting this relationship.

70

3.4.1.4 Reference objects

Reference objects are any object that is added to each subplot to provide a standard

of comparison across subplots. The axes of most graphs are one of the most commonly

used type of reference object. However, axes are difficult to read at the small scales

used in subplots. Boxes and lines can also allow comparison and scale better to the

smaller sizes of subplots. ggsubplot creates these objects with a reference parameter

in the subplot layer, see Figure 3.9.

0.5

1.0

1.5

2.0

M
month

C
O

2 (
pp

m
)

ref = ref_box()

0.5

1.0

1.5

2.0

M
month

C
O

2 (
pp

m
)

ref = ref_hline()

0.5

1.0

1.5

2.0

M
month

C
O

2 (
pp

m
)

ref = ref_vline()

Figure 3.9: Reference objects allow comparison across subplots and can be more
easily read at small scales than coordinate axes. In ggsubplot, users can add one
of three types of reference objects to subplots by adding ref = ref box(), ref =

ref hline(), or ref = ref vline() to geom subplot and geom subplot2d calls.

These reference objects allow viewers to judge the position of geoms inside the

subplot and to make comparisons against the position of geoms in other subplots. To

allow accurate comparisons, the dimensions of reference objects do not vary across

subplots. They are fixed to the dimensions of the subplot. However, other features of

the reference object can vary to provide additional information about a subplot. For

example, the fill, color, and transparency of a reference object can display group level

information about the data in a subplot. The ggsubplot reference parameter allows

users to set these aesthetics with the functions ref box, ref vline and ref hline,

see Figure 3.9. By default, ref box displays with a grey background and white

border. This matches the color scheme of ggplot2’s default background, while still

71

delineating the dimensions of the subplot. Reference objects provide a quick way to

compare across subplots. However, if users require a precise judgement they should

still plot the subplot in its own graph with a pair of axes.

3.4.2 Implications for the structure of graphics

Embedded plots demonstrate that graphics have a hierarchical, recursive structure.

Graphs summarize information into an image, and images can themselves be summa-

rized into a larger graph. This structure parallels a common pattern found in both

human thought and data analysis, and suggests that graphs obey universal rules of

data representation.

Many mental processes involve classifying, grouping, and aggregating. This is how

we make sense of sensory information, and it is how we build data into information.

At the cognitive level, the mind combines information in a number of ways. For

example chunking, which extends our attentional resources, and building schemas,

which assigns meaning to data. Even the sensory data that we collect is progressively

aggregated and summarized as it travels through the neural network of our brain.

These mental processes guide the data collection process. As a result, they shape

data that has been collected by, cleaned by, or manipulated by people. Measurements

often do not directly collect information of interest. This information is built by

grouping together similar observations and applying some aggregating function to

the data. For example, a researcher may observe a subject’s height, hair length,

body shape and clothing choices and then aggregate them into a conclusion about

the subject’s gender. This pattern of grouping and summarizing is also an important

strategy for dealing with variation, both random and systematic. The average of a

groups of observations is less affected by random variation than a single observation.

Data built this way often has a hierarchical structure. A set of observations can

72

be summarized in a table of counts. A set of counts can be summarized by a single

average. Averages from different populations can be compared against each other

and so on. Moreover, a hierarchical structure can be built from any multivariable

data set. A variable can be selected for sorting the data into groups. Groups can

be made from all observations that share the same value of a discrete variable or all

observations that fall into the same range of a categorical variable. Each group can

be summarized in a variety of ways with a variety of functions to provide a higher

level data set. Correlation betwen summary measures and grouping variables reveals

structure in the data and hints at possible causal relationships. This process underlies

the split-apply-combine strategy for data analysis that has been embedded into R as

the plyr package (Wickham, 2011).

Mathematical functions are one way to summarize a group of data points. Graph-

ics are another. Graphics organize data points into a meaningful summary that can

be processed by the mind. This summary is the visual image of the graph. A graph

resembles a cognitive schema because it puts various facts in relationship with one

another and suggests meaning. A graph resembles a chunk because it can be more eas-

ily attended to, remembered, and analyzed than its constituent components. Graphs

even have an efficiency advantage over mathematical functions at the cognitive level

because they provide visual input. Embedded plots show that just as numerical sum-

maries of data can themselves be summarized, graphical summaries of data points

can be organized into higher level graphs.

Implementing embedded plots suggests that components of the graphics of gram-

mar may originate from the universal, hierarchical structure of information. Aesthetic

mappings create mappings between individual data points and visual aesthetics. Stats

create mappings from group level information to visual aesthetics. They accomplish

this by aggregating and summarizing the individual data points within a group of

73

data. In otherwords, stats and aesthetics perform the same function but are keyed

to different levels in the hierarchy of a data set. This parallelism is made clear in

embedded plots. When we consider any single subplot in Cleveland’s subcycle plot,

the mean concentration of CO2 is a groupwise statistic, (i.e., a stat) that summarizes

an entire group of data. When our attention shifts to the higher level plot, the mean

concentration of CO2 becomes an aesthetic mapping of the subplots.

Graphics, data, and human modes of information processing all utilize hierarchical

structures of information. This universality suggests that a univeral language of data

representation may also exist. This idea is further attested to by the way each of

these domains groups data points and summarizes these groups to obtain higher level

data points. Identifying the rules of this universal language may make it easier to

teach and practice data visualization and data anaylsis.

3.5 Conclusion

Embedded plots are a powerful visualization tool for many data analysis tasks. Be-

cause embedded plots organize multiple dimensions of data into a static two dimen-

sional graph, they can provide insights not found in other types of graphics. Because

embedded plots present complex data in a cognitive friendly way, they facilitate un-

derstanding that could not occur otherwise. Despite presenting more complex data,

embedded plots are not much more complicated than other graphs. Embedded plots

are a particularly useful data analysis tool when exploring spatio-temporal data and

big data, which is subject to overplotting. Embedded plots also aid the exploration

of interaction effects and second order relationships.

Subplots function the same way as geoms in the layered grammar of graphics.

They provide a visual element whose appearance can be mapped to the values in an

underlying data set. Because of this, embedded plots are easily accomodated by the

74

layered grammar of graphics. This paper demonstrates how methods for embedded

plots can be programmed into software built on the layered grammar of graphics,

such as ggplot2.

Extending the grammar of graphics to account for embedded plots also reveals a

conceptual insight about graphics. Graphics have a hierarchical, or recursive, struc-

ture where plots can be organized into higher level plots. This ability to organize

individual data points by group according to group-level summaries is a potentially

useful feature of graphics that has not been well developed in statistical graphics.

However, it does parallel principles of infoVis that recommend “Overview first, filter,

zoom for details” (Shneiderman, 1996).

As useful as embedded plots can be, we do not recommend embedded plots for

every situation. Subplots increase the complexity of a visual. They make it easy

to create overwhelming, cluttered and uninterprettable graphs. We recommend the

following guidelines for the effective use of embedded plots.

1. Do not use embedded plots when a simpler graph will suffice.

2. Give subplots just the elements necessary to convey the main idea of a graphic.

Additional elements become distracting more quickly with embedded graphics

than with simpler graphics.

3. Use subplots to highlight structure and pattern, not small details like individual

values. Subplots are necessarily smaller than a full graph, which makes it harder

to accurately perceive details (in accordance with Weber’s law). Subplots are

fine for estimation and approximate arithmetic, which the mind seems to per-

form visually at the cognitive level anyways (Dehaene et al., 1999). But precise

calculations require clear labels and numerical values. If detailed inspection is

required, a subplot can and should be drawn by itself at full size.

75

These suggestions are meant to improve, and not prevent, the use of embedded

plots. Embedded plots require good judgement in their use, but this is true of all

graphs. Every graph should tell a clear story if it is to be useful, and embedded plots

will often tell a more clear story than a simple graph plagued by overploting or too

few dimensions. As the examples in Section 5.1 illustrate, embedded plots can be

powerfully useful in many contexts.

Chapter 4

Dates and times made easy with lubridate

This chapter is reprinted from ‘Dates and times made easy with lubridate’ by Garrett

Grolemund and Hadley Wickham, which appeared in The Journal of Statistical Soft-

ware in 2011 (Grolemund and Wickham, 2011)

Abstract — This paper presents the lubridate package for R (R Development

Core Team, 2010), which facilitates working with dates and times. Date-times create

various technical problems for the data analyst. The paper highlights these problems

and offers practical advice on how to solve them using lubridate. The paper also

introduces a conceptual framework for arithmetic with date-times in R.

4.1 Introduction

Date-time data can be frustrating to work with. Dates come in many different for-

mats, which makes recognizing and parsing them a challenge. Will our program

recognize the format that we have? If it does, we still face problems specific to

date-times. How can we easily extract components of the date-times, such as years,

months, or seconds? How can we switch between time zones, or compare times from

77

places that use daylight savings time (DST) with times from places that do not?

Date-times create even more complications when we try to do arithmetic with them.

Conventions such as leap years and DST make it unclear what we mean by “one

day from now” or “exactly two years away.” Even leap seconds can disrupt a seem-

ingly simple calculation. This complexity affects other tasks too, such as constructing

sensible tick marks for plotting date-time data.

While Base R (R Development Core Team, 2010) handles some of these prob-

lems, the syntax it uses can be confusing and difficult to remember. Moreover, the

correct R code often changes depending on the class of date-time object being used.

lubridate acknowledges these problems and makes it easier to work with date-time

data in R. It also provides tools for manipulating date-times in novel but useful ways.

lubridate will enhance a user’s experience for any analysis that includes date-time

data. Specifically, lubridate helps users:

• Identify and parse date-time data, see Section 4.3.

• Extract and modify components of a date-time, such as years, months, days,

hours, minutes, and seconds, see Section 4.4.

• Perform accurate calculations with date-times and timespans, see Sections 4.5

and 4.6.

• Handle time zones and daylight savings time, see Sections 4.7 and 4.8.

lubridate uses an intuitive user interface inspired by the date libraries of object-

oriented programming languages. lubridate methods are compatible with a wide-

range of common date-time and time series objects. These include character strings,

POSIXct, POSIXlt, Date, chron (James and Hornik, 2010), fCalendar (?), zoo

(Zeileis and Grothendieck, 2005), xts (Ryan and Ulrich, 2010), its (Portfolio

78

and Risk Advisory Group, Commerzbank Securities, 2009), tis (Hallman, 2010),

timeSeries (Wuertz and Chalabi, 2010), fts (Armstrong, 2009), and tseries

(Trapletti and Hornik, 2009) objects.

Note that lubridate overrides the + and - methods for POSIXt, Date, and

difftime objects in base R. This allows users to perform simple arithmetic on date-

time objects with the new timespan classes introduced by lubridate, but it does not

alter the way R implements addition and subtraction for non-lubridate objects.

lubridate introduces four new object classes based on the Java language Joda

Time project (Colebourne and O’Neill, 2010). Joda Time introduces a conceptual

model of the different ways to measure timespans. Section 4.5 describes this model

and explains how lubridate uses it to perform easy and accurate arithmetic with

dates in R.

This paper demonstrates the convenient tools provided in the lubridate pack-

age and ends with a case study, which uses lubridate in a real life example. This

paper describes lubridate 0.2, which can be downloaded from the Comprehensive

R Archive Network at http://CRAN.R-project.org/package=lubridate. Develop-

ment versions can be found at http://github.com/hadley/lubridate.

4.2 Motivation

To see how lubridate simplifies things, consider a common scenario. Given a char-

acter string, we would like to read it in as a date-time, extract the month, and change

it to February (i.e, 2). Table 4.1 shows two ways we could do this. On the left are the

base R methods we would use for these three tasks. On the right are the lubridate

methods.

Now we will go a step further. In Table 4.2, we move our date back in time by one

day and display our new date in the Greenwich Meridian time zone (GMT). Again,

http://CRAN.R-project.org/package=lubridate
http://github.com/hadley/lubridate

79

Base R method lubridate method

date <- as.POSIXct("01-01-2010", date <- dmy("01-01-2010")

format = "%d-%m-%Y", tz = "UTC")

as.numeric(format(date, "%m")) # or month(date)

as.POSIXlt(date)$month + 1

date <- as.POSIXct(format(date, month(date) <- 2

"%Y-2-%d"), tz = "UTC")

Table 4.1: lubridate provides a simple way to parse a date into R, extract the month
value and change it to February.

Base R method lubridate method

date <- seq(date, length = 2, date <- date - days(1)

by = "-1 day")[2]

as.POSIXct(format(as.POSIXct(date), with tz(date, "GMT")

tz = "UTC"), tz = "GMT")

Table 4.2: lubridate easily displays a date one day earlier and in the GMT time
zone.

base R methods are shown on the left, lubridate methods on the right.

lubridatemakes basic date-time manipulations much more straightforward. Plus,

the same lubridate methods work for most of the popular date-time object classes

(Date, POSIXt, chron, etc.), which isn’t always true for base R methods.

Table 4.3 provides a more complete comparison between lubridate methods and

base R methods. It shows how lubridate can simplify each of the common date-

time tasks presented in the article “Date and Time Classes in R” (Grothendieck and

Petzoldt, 2004). It also provides a useful summary of lubridate methods.

80

T
a
sk

l
u
b
r
i
d
a
t
e

D
a
t
e

P
O
S
I
X
c
t

n
ow

(s
y
st
em

ti
m
e
zo

n
e)

n
o
w
(
)

S
y
s
.
t
i
m
e
(
)

n
ow

(G
M
T
)

n
o
w
(
"
G
M
T
"
)

S
y
s
.
D
a
t
e
(
)

or
ig
in

o
r
i
g
i
n

s
t
r
u
c
t
u
r
e
(
0
,

c
l
a
s
s

=
"
D
a
t
e
"
)

s
t
r
u
c
t
u
r
e
(
0
,

c
l
a
s
s

=
c
(
"
P
O
S
I
X
t
"
,

"
P
O
S
I
X
c
t
"
)
)

x
d
ay

s
si
n
ce

or
ig
in

o
r
i
g
i
n

+
d
a
y
s
(
x
)

s
t
r
u
c
t
u
r
e
(
f
l
o
o
r
(
x
)
,

c
l
a
s
s

=
"
D
a
t
e
"
)

s
t
r
u
c
t
u
r
e
(
x
*
2
4
*
6
0
*
6
0
,

c
l
a
s
s
=
c
(
"
P
O
S
I
X
t
"
,
"
P
O
S
I
X
c
t
"
)
)

n
ex

t
d
ay

d
a
t
e

+
d
a
y
s
(
1
)

d
a
t
e

+
1

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
2
,

b
y

=
"
d
a
y
"
)
[
2
]

p
re
v
io
u
s
d
ay

d
a
t
e

-
d
a
y
s
(
1
)

d
a
t
e

-
1

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
2
,

b
y

=
"
-
1

d
a
y
"
)
[
2
]

D
S
T

a
n
d

ti
m

e
z
o
n
e
s

x
d
ay

s
si
n
ce

d
at
e

(d
ay

ex
ac

tl
y
24

h
ou

rs
)

d
a
t
e

+
d
d
a
y
s
(
x
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
2
,

b
y

=
p
a
s
t
e
(
x
,

"
d
a
y
"
)
)
[
2
]

(a
ll
ow

in
g
fo
r
D
S
T
)

d
a
t
e

+
d
a
y
s
(
x
)

d
a
t
e

+
f
l
o
o
r
(
x
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
2
,

b
y

=
p
a
s
t
e
(
x
,
"
D
S
T
d
a
y
"
)
)
[
2
]

d
is
p
la
y
d
at
e
in

n
ew

ti
m
e
zo

n
e

w
i
t
h
t
z
(
d
a
t
e
,

"
T
Z
"
)

a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
a
s
.
P
O
S
I
X
c
t
(
d
a
t
e
)
,

t
z

=
"
T
Z
"
)
,

t
z

=
"
T
Z
"
)

ke
ep

cl
o
ck

ti
m
e,

re
p
la
ce

ti
m
e
zo

n
e

f
o
r
c
e
t
z
(
d
a
t
e
,

t
z

=
"
T
Z
"
)

E
x
p
lo
ri
n
g

se
q
u
en

ce
d
a
t
e

+
c
(
0
:
9
)

*
d
a
y
s
(
1
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
1
0
,

b
y

=
"
d
a
y
"
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
1
0
,

b
y

=
"
D
S
T
d
a
y
"
)

ev
er
y
2n

d
w
ee
k

d
a
t
e

+
c
(
0
:
2
)

*
w
e
e
k
s
(
2
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
3
,

b
y

=
"
2

w
e
e
k
"
)

s
e
q
(
d
a
t
e
,

l
e
n
g
t
h

=
3
,

b
y

=
"
2

w
e
e
k
"

fi
rs
t
d
ay

of
m
on

th
f
l
o
o
r
d
a
t
e
(
d
a
t
e
,

"
m
o
n
t
h
"
)

a
s
.
D
a
t
e
(
f
o
r
m
a
t
(
d
a
t
e
,

"
%
Y
-
%
m
-
0
1
"
)
)

a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
a
t
e
,

"
%
Y
-
%
m
-
0
1
"
)
)

ro
u
n
d
to

n
ea

re
st

fi
rs
t
of

m
on

th
r
o
u
n
d
d
a
t
e
(
d
a
t
e
,
"
m
o
n
t
h
"
)

ex
tr
ac

t
y
ea

r
va

lu
e

y
e
a
r
(
d
a
t
e
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,
"
%
Y
"
)
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,

"
%
Y
"
)
)

ch
an

ge
ye

ar
va

lu
e

y
e
a
r
(
d
a
t
e
)

<
-

z
a
s
.
D
a
t
e
(
f
o
r
m
a
t
(
d
a
t
e
,

"
z
-
%
m
-
%
d
"
)
)

a
s
.
P
O
S
I
X
c
t
(
f
o
r
m
a
t
(
d
a
t
e
,

"
z
-
%
m
-
%
d
"
)
)

d
ay

of
w
ee
k

w
d
a
y
(
d
a
t
e
)

#
S
u
n

=
1

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,
"
%
w
"
)
)

#
S
u
n

=
0

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,

"
%
w
"
)
)

#
S
u
n

=
0

d
ay

of
ye

ar
y
d
a
y
(
d
a
t
e
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,

"
%
j
"
)
)

a
s
.
n
u
m
e
r
i
c
(
f
o
r
m
a
t
(
d
a
t
e
,

"
%
j
"
)
)

ex
p
re
ss

as
d
ec
im

al
of

ye
ar

d
e
c
i
m
a
l
d
a
t
e
(
d
a
t
e
)

P
a
rs
in

g
D
a
te

s
z
=

“1
97

0-
10

-1
5”

y
m
d
(
z
)

a
s
.
D
a
t
e
(
z
)

a
s
.
P
O
S
I
X
c
t
(
z
)

z
=

“1
0/

15
/1

97
0”

m
d
y
(
z
)

a
s
.
D
a
t
e
(
z
,

"
%
m
/
%
d
/
%
Y
"
)

a
s
.
P
O
S
I
X
c
t
(
s
t
r
p
t
i
m
e
(
z
,

"
%
m
/
%
d
/
%
Y
"
)
)

z
=

15
10

19
70

d
m
y
(
z
)

a
s
.
D
a
t
e
(
a
s
.
c
h
a
r
a
c
t
e
r
(
z
)
,

a
s
.
P
O
S
I
X
c
t
(
a
s
.
c
h
a
r
a
c
t
e
r
(
z
)
,
t
z

=
"
G
M
T
"
,

f
o
r
m
a
t

=
"
%
d
%
m
%
Y
"
)

f
o
r
m
a
t

=
"
%
d
%
m
%
Y
"
)

D
u
ra
ti
on

s
C
om

p
ar
is
on

D
u
ra

ti
o
n

l
u
b
r
i
d
a
t
e

b
a
se

R

1
se
co

n
d

s
e
c
o
n
d
s
(
1
)

a
s
.
d
i
f
f
t
i
m
e
(
1
,

u
n
i
t

=
"
s
e
c
s
"
)

5
d
ay

s,
3
h
ou

rs
an

d
-
1
m
in
u
te

n
e
w
d
u
r
a
t
i
o
n
(
d
a
y

=
5
,

a
s
.
d
i
f
f
t
i
m
e
(
6
0

*
2
4

*
5

+
6
0

*
3

-
1
,

u
n
i
t

=
"
m
i
n
s
"
)

h
o
u
r

=
3
,

m
i
n
u
t
e

=
-
1
)

#
T
i
m
e

d
i
f
f
e
r
e
n
c
e

o
f

7
3
7
9

m
i
n
s

1
m
on

th
m
o
n
t
h
s
(
1
)

1
y
ea

r
y
e
a
r
s
(
1
)

T
ab

le
4.
3:

l
u
b
r
i
d
a
t
e

p
ro
vi
d
es

a
si
m
p
le

al
te
rn
at
iv
e
fo
r
m
an

y
d
at
e
an

d
ti
m
e
re
la
te
d

op
er
at
io
n
s.

T
ab

le
ad

ap
te
d

fr
om

G
ro
th
en
d
ie
ck

an
d
P
et
zo
ld
t
(2
00
4)
.

81

4.3 Parsing date-times

We can read dates into R using the ymd() series of functions provided by lubridate.

These functions parse character strings into dates. The letters y, m, and d correspond

to the year, month, and day elements of a date-time. To read in a date, choose the

function name that matches the order of elements in your date-time object. For

example, in the following date the month element comes first, followed by the day

and then the year. So we would use the mdy() function:

R> mdy("12-01-2010")

[1] "2010-12-01 UTC"

The same character string can be parsed as January 12, 2001 by reversing the

month and day element with dmy().

R> dmy("12-01-2010")

[1] "2010-01-12 UTC"

The ydm() series of functions can also parse vectors of dates.

R> dmy(c("31.12.2010", "01.01.2011"))

[1] "2010-12-31 UTC" "2011-01-01 UTC"

These functions create a POSIXct date-time object that matches the date described

by the character string. The functions automatically recognize the separators com-

monly used to record dates. These include: “-”, “/”, “.”, and “” (i.e., no separator).

When a ymd() function is applied to a vector of dates, lubridate will assume that

all of the dates have the same order and the same separators. ymd() type functions

82

Order of elements in date-time Parse function

year, month, day ymd()

year, day, month ydm()

month, day, year mdy()

day, month, year dmy()

hour, minute hm()

hour, minute, second hms()

year, month, day, hour, minute, second ymd hms()

Table 4.4: Parse function names are based on the order that years, months, and days
appear within the dates to be parsed.

also exist for times recorded with hours, minutes, and seconds. Hour, minute, and

second measurements that are not accompanied by a date will be parsed as period

objects, which are a type of timespan object, see Section 4.5.4. These functions make

it simple to parse any date-time object that can be converted to a character string.

See Table 4.4 for a complete list of ymd() type parsing functions.

4.4 Manipulating date-times

Every date-time is a combination of different elements, each with its own value. For

example, most date-times include a year value, a month value, a day value and so on.

Together these elements specify the exact moment that the date-time refers to. We

can easily extract each element of a date-time with the accessor function that has its

name, as shown in Table 4.5. For example, if we save the current system time

R> date <- now()

[1] "2010-02-25 09:51:48 CST"

we can extract each of its elements. Note that this was the system time when this

example was written. now() will return a different date-time each time it is used.

83

R> year(date)

[1] 2010

R> minute(date)

[1] 51

For the month and weekday elements (wday), we can also specify whether we

want to extract the numerical value of the element, an abbreviation of the name of

the month or weekday, or the full name. For example,

R> month(date)

[1] 2

R> month(date, label = TRUE)

[1] Feb

R> month(date, label = TRUE, abbr = FALSE)

[1] February

R> wday(date, label = TRUE, abbr = FALSE)

[1] Thursday

We can also use any of the accessor functions to set the value of an element. This

would also change the moment that the date-time refers to. For example,

R> day(date) <- 5

[1] "2010-02-05 09:51:48 CST"

84

Date component Accessor

Year year()

Month month()

Week week()

Day of year yday()

Day of month mday()

Day of week wday()

Hour hour()

Minute minute()

Second second()

Time zone tz()

Table 4.5: Each date-time element can be extracted with its own accessor function.

changes our date to the fifth day of the month. We can also set the elements to

more complicated values, e.g.

R> dates <- ymd_hms("2010-01-01 01:00:00", "2010-01-01 01:30:00")

R> minute(dates) <- mean(minute(dates))

[1] "2010-01-01 01:15:00 UTC" "2010-01-01 01:15:00 UTC"

Note that if we set an element to a larger value than it supports, the difference

will roll over into the next higher element. For example,

R> day(date) <- 30

[1] "2010-03-02 09:51:48 CST"

Setting the date elements provides one easy way to find the last day of a month.

An even easier method is described in Section 4.6.

R> day(date) <- 1

R> month(date) <- month(date) + 1

R> day(date) <- day(date) - 1

85

[1] "2010-03-31 09:51:48 CDT"

Lubridate also provides an update method for date-times. This is useful if you

want to change multiple attributes at once or would like to create a modified copy

instead of transforming in place.

R> update(date, year = 2010, month = 1, day = 1)

[1] "2010-01-01 09:51:48 CST"

Finally, we can also change dates by adding or subtracting units of time from

them. For example, the methods below produce the same result.

R> hour(date) <- 12

[1] "2010-02-25 12:51:48 CST"

R> date <- date + hours(3)

[1] "2010-02-25 12:51:48 CST"

Notice that hours() (plural) is not the same function as hour() (singular).

hours() creates a new object that can be added or subtracted to a date-time. These

objects are discussed in the next section.

4.5 Arithmetic with date-times

Arithmetic with date-times is more complicated than arithmetic with numbers, but

it can be done accurately and easily with lubridate. What complicates arithmetic

with date-times? Clock times are periodically re-calibrated to reflect astronomical

conditions, such as the hour of daylight or the Earth’s tilt on its axis relative to the

86

sun. We know these re-calibrations as daylight savings time, leap years, and leap

seconds. Consider how one of these conventions might complicate a simple addition

task. If today were January 1st, 2010 and we wished to know what day it would be

one year from now, we could simply add 1 to the years element of our date.

January 1st, 2010 + 1 year = January 1st, 2011

Alternatively, we could add 365 to the days element of our date because a year is

equivalent to 365 days.

January 1st, 2010 + 365 days = January 1st, 2011

Troubles arise if we try the same for January 1st, 2012. 2012 is a leap year, which

means it has an extra day. Our two approaches above now give us different answers

because the length of a year has changed.

January 1st, 2012 + 1 year = January 1st, 2013

January 1st, 2012 + 365 days = December 31st, 2012

At different moments in time, the lengths of months, weeks, days, hours, and even

minutes will also vary. We can consider these to be relative units of time; their length

is relative to when they occur. In contrast, seconds always have a consistent length.

Hence, seconds are exact units of time.

Researchers may be interested in exact lengths, relative lengths, or both. For

example, the speed of a physical object is most precisely measured in exact lengths.

The opening bell of the stock market is more easily modeled with relative lengths.

87

lubridate allows arithmetic with both relative and exact units by introducing

four new time related objects. These are instants, intervals, durations, and periods.

These concepts are borrowed from the Joda Time project (Colebourne and O’Neill,

2010). Similar concepts for instants, periods, and durations also appear in the C++

library Boost.Date Time (Garland, 2011). lubridate provides helper functions, ob-

ject classes and methods for using all four concepts in the R language.

4.5.1 Instants

An instant is a specific moment in time, such as January 1st, 2012. We create an

instant each time we parse a date into R.

R> start_2012 <- ymd_hms("2012-01-01 12:00:00")

lubridate does not create a new class for instant objects. Instead, it recognizes

any date-time object that refers to a moment of time as an instant. We can test if

an object is an instant by using is.instant(). For example,

R> is.instant(364)

[1] FALSE

R> is.instant(start_2012)

[1] TRUE

We can also capture the current time as an instant with now(), and the current

day with today().

88

4.5.2 Intervals

Intervals, durations, and periods are all ways of recording timespans. Of these, in-

tervals are the most simple. An interval is a span of time that occurs between two

specific instants. The length of an interval is never ambiguous, because we know when

it occurs. Moreover, we can calculate the exact length of any unit of time that occurs

during it.lubridate introduces the interval object class for modelling intervals.

We can create interval objects by subtracting two instants or by using the

command new interval().

R> start_2011 <- ymd_hms("2011-01-01 12:00:00")

R> start_2010 <- ymd_hms("2010-01-01 12:00:00")

R> span <- start_2011 - start_2010

[1] 2010-01-01 12:00:00 -- 2011-01-01 12:00:00

We can access the start and end dates of an interval object with int start()

and int end(). Intervals always begin at the date-time that occurs first and end at

the date-time that occurs last. Hence, intervals always have a positive length.

R> int_start(span)

[1] "2010-01-01 12:00:00 UTC"

R> int_end(span)

[1] "2011-01-01 12:00:00 UTC"

Unfortunately, since intervals are anchored to their start and end dates, they are

not very useful for date-time calculations. It only makes sense to add an interval to

its start date or to subtract it from its end date.

89

R> start_2010 + span

[1] "2011-01-01 12:00:00 UTC"

Adding intervals to other date-times won’t produce an error message. Instead

lubridate will coerce the interval to a duration object, which is like an interval but

without the reference dates. See Section 4.5.3.

R> start_2011 + span

coercing interval to duration

[1] "2012-01-01 12:00:00 UTC"

In most cases this will return the intended result, but accuracy can be ensured by

first explicitly converting the interval to either a duration or a period, as described

in the next two sections.

We can convert any other type of timespan to an interval by pairing it to a start

date with as.interval(). For example:

R> as.interval(difftime(start_2011, start_2010), ymd("2010-03-05"))

[1] 2010-03-05 -- 2011-03-05

4.5.3 Durations

If we remove the start and end dates from an interval, we will have a generic time

span that we can add to any date. But how should we measure this length of time?

If we record the time span in seconds, it will have an exact length since seconds

always have the same length. We call such time spans durations. Alternatively, we

can record the time span in larger units, such as minutes or years. Since the length of

these units varies over time, the exact length of the time span will depend on when

90

it begins. These non-exact time spans are called periods and will be discussed in the

next section.

The length of a duration is invariant to leap years, leap seconds, and daylight

savings time because durations are measured in seconds. Hence, durations have con-

sistent lengths and can be easily compared to other durations. Durations are the

appropriate object to use when comparing time based attributes, such as speeds,

rates, and lifetimes. difftime objects from base R are one type of duration object.

lubridate provides a second type: duration class objects. These objects can be used

with other date-time objects without worrying about what units they are displayed

in. A duration object can be created with the function new duration():

R> new_duration(60)

[1] 60s

For large durations, it becomes inconvenient to describe the length in seconds.

For example, not many people would recognize 31557600 seconds as the length of a

standard year. For this reason, large duration objects are followed in parentheses by

an estimated length. Estimated units are created using the following relationships. A

minute is 60 seconds, an hour 3600 seconds, a day 86400, a week 604800, and a year

31557600 (365.25 days). Month units are not used because they are so variable. The

estimates are only provided for convenience; the underlying object is always recorded

as a fixed number of seconds.

duration objects can be easily created with the helper functions dyears(), dweeks(),

ddays(), dhours(), dminutes(), and dseconds(). The d in the title stands for du-

ration and distinguishes these objects from period objects, which are discussed in

Section 4.5.4. Each object creates a duration in seconds using the estimated relation-

ships given above. The argument of each function is the number of estimated units

we wish to include in the duration. For example,

91

R> dminutes(1)

[1] 60s

R> dseconds(60)

[1] 60s

R> dminutes(2)

[1] 120s

R> c(1:3) * dhours(1)

[1] 3600s (1h) 7200s (2h) 10800s (3h)

Durations can be added and subtracted to any instant object. For example,

R> start_2011 + dyears(1)

[1] "2012-01-01 12:00:00 UTC"

R> start_2012 <- ymd_hms("2012-01-01 12:00:00")

R> start_2012 + dyears(1)

[1] "2012-12-31 12:00:00 UTC"

Durations can also be added to or subtracted from intervals and other durations.

For example,

R> dweeks(1) + ddays(6) + dhours(2) + dminutes(1.5) + dseconds(3)

[1] 1130493s (13.08d)

We can also create durations from interval and period objects using as.-

duration().

R> as.duration(span)

[1] 31536000s (365d)

92

4.5.4 Periods

Periods record a time span in units larger than seconds, such as years, months, weeks,

days, hours, and minutes. For convenience, we can also create a period that only uses

seconds, but such a period would have the same properties as a duration. lubridate

introduces the period class to model periods. We construct period objects with the

helper functions years(), months(), weeks(), days(), hours(), minutes(), and

seconds().

R> months(3)

[1] 3 months

R> months(3) + days(2)

[1] 3 months and 2 days

These functions do not contain a “d” in their name, because they do not create

durations; they no longer have consistent lengths (as measured in seconds). For

example, months(2) always has the length of two months even though the length of

two months will change depending on when the period begins. For this reason, we

can not compute exactly how long a period will be in seconds until we know when it

occurs. However, we can still perform date-time calculations with periods. When we

add or subtract a period to an instant, the period becomes anchored to the instant.

The instant tells us when the period occurs, which allows us to calculate its exact

length in seconds.

As a result, we can use periods to accurately model clock times without knowing

when events such as leap seconds, leap days, and DST changes occur.

R> start_2012 + years(1)

93

[1] "2013-01-01 12:00:00 UTC"

vs.

R> start_2012 + dyears(1)

[1] "2012-12-31 12:00:00 UTC"

We can also convert other timespans to period objects with the function as.-

period().

R> as.period(span)

[1] 1 year

Periods can be added to instants, intervals, and other periods, but not to dura-

tions.

4.5.5 Division with timespans

We often wish to answer questions that involve dividing one timespan by another. For

example, “how many weeks are there between Halloween and Christmas?” or “how old

is a person born on September 1, 1976?” Objects of each timespan class—interval,

duration, and period—can be divided by objects of the others. The results of these

divisions varies depending on the nature of the timespans involved. Modulo operators

(i.e, %% and %/%) also work between timespan classes.

To illustrate this, we make an interval that lasts from Halloween until Christmas.

R> halloween <- ymd("2010-10-31")

R> christmas <- ymd("2010-12-25")

R> interval <- new_interval(halloween, christmas)

94

[1] 2010-10-31 -- 2010-12-25

Since durations are an exact measurement of a timespan, we can divide this in-

terval by a duration to get an exact answer.

R> interval / dweeks(1)

[1] 7.857143

Intervals are also exact measures of timespans. Although it is more work, we could

divide an interval by another interval to get an exact answer. This gives the same

answer as above because lubridate automatically coerces interval objects in the

denominator to duration objects.

R> interval / new_interval(halloween, halloween + weeks(1))

interval denominator coerced to duration

[1] 7.857143

Division is not possible with periods. Since periods have inconsistent lengths, we

can not express the remainder as a decimal. For example, if we were to divide our

interval by months, the remainder would be 24 days.

R> interval \%\% months(1)

[1] 24 days

Should we calculate 24 days as 24/30 = 0.8 months since November has 30 days?

Or should we calculate 24 days as 24/31 = 0.77 months since December has 31 days?

Both November and December are included in our numerator. If we want an exact

calculation, we should use a duration instead of a period.

95

Instant Interval Duration Period

Instant N/A instant instant instant
Interval instant interval1 interval interval
Duration instant interval duration period
Period instant interval period period

1
a duration if the intervals do not align

Table 4.6: Adding two date-time objects will create the above type of object.

If we attempt to divide by a period object, lubridate will return a warning

message and automatically perform integer division: it returns the integer value equal

to the number of whole periods that occur in the timespan. This is equivalent to the

%/% operator. As shown above, we can retrieve the remainder using the %% operator.

R> interval / months(1)

estimate only: convert periods to intervals for accuracy

[1] 1

R> interval \%/\% months(1)

[1] 1

In summary, arithmetic with date-times involves four types of objects: instants,

intervals, durations, and periods. lubridate creates new object classes for intervals,

durations, and periods. It recognizes that most common date-time classes, such as

POSIXt and Date, refer to instants. Table 4.6 describes which objects can be added

to each other and what type of object will result.

4.6 Rounding dates

Like numbers, date-times occur in order. This allows date-times to be rounded.

lubridate provides three methods that help perform this rounding: round date(),

96

floor date(), and ceiling date(). The first argument of each function is the date-

time or date-times to be rounded. The second argument is the unit to round to. For

example, we could round April 20, 2010 to the nearest day:

R> april20 <- ymd_hms("2010-04-20 11:33:29")

R> round_date(april20, "day")

[1] "2010-04-20 UTC"

or the nearest month.

R> round_date(april20, "month")

[1] "2010-05-01 UTC"

Notice that rounding a date-time to a unit sets the date to the start of that unit

(e.g, round date(april20, "day") sets the hours, minutes, and seconds information

to 00).

ceiling date() provides a second simple way to find the last day of a month.

Ceiling the date to the next month and then subtract a day.

R> ceiling_date(april20, "month") - days(1)

[1] "2010-04-30 UTC"

4.7 Time zones

Time zones give multiple names to the same instant. For example, “2010-03-26

11:53:24 CDT” and “2010-03-26 12:53:24 EDT” both describe the same instant. The

first shows how the instant is labeled in the United States’ central time zone (CDT).

The second shows how the same instant is labelled in the United States’ eastern time

97

zone (EDT). Time zones complicate date-time data but are useful for mapping clock

time to local daylight conditions. When working with instants, it is standard to give

the clock time as it appears in the Coordinated Universal time zone (UTC). This

saves calculations but can be annoying if your computer insists on translating times

to your current time zone. It may also be inconvenient to discuss clock times that

occur in a place unrelated to the data.

lubridate eases the frustration caused by time zones in two ways. We can change

the time zone in which an instant is displayed by using the function with tz(). This

changes how the clock time is displayed, but not the specific instant of time that is

referred to. For example,

R> date

[1] "2010-01-01 09:51:48 CST"

R> with_tz(date, "UTC")

[1] "2010-01-01 15:51:48 UTC"

force tz() does the opposite of with tz(): it changes the actual instant of time

saved in the object, while keeping the displayed clock time the same. The new time

zone value alerts us to this change. For example, the code below moves us to a new

instant that occurs 6 hours earlier.

R> date

[1] "2010-01-01 09:51:48 CST"

R> force_tz(date, "UTC")

[1] "2010-01-01 09:51:48 UTC"

98

with tz() and force tz() only work with time zones recognized by your com-

puter’s operating system. This list of time zones will vary between computers. See

the base R help page for Sys.timezone() for more information.

4.8 Daylight savings time

In many parts of the world, the official clock time springs forward by one hour in the

spring and falls back one hour in the fall. For example, in Chicago, Illinois a change

in daylight savings time occurred at 2:00 AM on March 14, 2010. The last instant to

occur before this change was 2010-03-14 01:59:59 CST.

R> dst_time <- ymd_hms("2010-03-14 01:59:59")

R> dst_time <- force_tz(dst_time, "America/Chicago")

[1] "2010-03-14 01:59:59 CST"

One second later, Chicago clock times read

R> dst_time + dseconds(1)

[1] "2010-03-14 03:00:00 CDT"

It seems that we gained an extra hour during that second, which is how daylight

savings time works. We can completely avoid the changes in clock time caused by

daylight savings times by working with periods instead of durations. For example,

R> dst_time + hours(2)

[1] "2010-03-14 03:59:59 CDT"

99

displays the clock time that usually occurs two hours after 1:59:59 AM. When

using periods, we do not have to track DST changes because they will not affect

our calculations. This will prevent errors when we are trying to model events that

depend on clock times, such as the opening and closing bells of the New York Stock

Exchange. Adding a duration would give us the actual clock time that appeared

exactly two hours later on March 14, 2010. This prevents changes in clock time from

interfering with exact measurements, such as the life times of a light bulb, but will

create surprises if clock times are important to our analysis.

R> dst_time + dhours(2)

[1] "2010-03-14 04:59:59 CDT"

If we ever inadvertently try to create an instant that occurs in the one hour

“gap” between 2010-03-14 01:59:59 CST and 2010-03-14 03:00:00 CDT, lubridate

will return NA since such times are not available.

We can also avoid the complications created by daylight savings time by keeping

our date-times in a time zone such as “UTC”, which does not adopt daylight savings

hours.

4.9 Case study 1

The next two sections will work through some techniques using lubridate. First, we

will use lubridate to calculate the dates of holidays. Then we will use lubridate

to explore an example data set (lakers).

4.9.1 Thanksgiving

Some holidays, such as Thanksgiving (U.S.) and Memorial Day (U.S.) do not occur on

fixed dates. Instead, they are celebrated according to a common rule. For example,

100

Thanksgiving is celebrated on the fourth Thursday of November. To calculate when

Thanksgiving will occur in 2010, we can start with the first day of 2010.

R> date <- ymd("2010-01-01")

[1] "2010-01-01 UTC"

We can then add 10 months to our date, or directly set the date to November.

R> month(date) <- 11

[1] "2010-11-01 UTC"

We check which day of the week November 1st is.

R> wday(date, label = TRUE, abbr = FALSE)

[1] Monday

This implies November 4th will be the first Thursday of November.

R> date <- date + days(3)

[1] "2010-11-04 UTC"

R> wday(date, label = TRUE, abbr = FALSE)

[1] Thursday

Next, we add three weeks to get to the fourth Thursday in November, which will

be Thanksgiving.

R> date + weeks(3)

[1] "2010-11-25 UTC"

101

4.9.2 Memorial Day

Memorial day also occurs according to a rule; it falls on the last Monday of May. To

calculate the date of Memorial day, we can again start with the first of the year.

R> date <- ymd("2010-01-01")

[1] "2010-01-01 UTC"

Next, we set the month to May.

R> month(date) <- 5

[1] "2010-05-01 UTC"

Now our holiday occurs in relation to the last day of the month instead of the

first. We find the last day of the month by rounding up to the next month and then

subtracting a day.

R> date <- ceiling_date(date, "month") - days(1)

[1] "2010-05-31 UTC"

We can then check which day of the week May 31st falls on. It happens to be a

Monday, so we are done. If May 31st had been another day of the week, we could’ve

subtracted an appropriate number of days to get to the last Monday of May.

R> wday(date, label = TRUE, abbr = FALSE)

[1] Monday

102

4.10 Case study 2

The lakers data set contains play by play statistics of every major league basketball

game played by the Los Angeles Lakers during the 2008-2009 season. This data is

from http://www.basketballgeek.com/downloads/ (Parker, 2010) and comes with

the lubridate package. We will explore the distribution of Lakers’ games throughout

the year as well as the distribution of plays within Lakers’ games. We choose to use

the ggplot2 (Wickham, 2009) package to create our graphs.

The lakers data set comes with a date variable which records the date of each

game. Using the str() command, we see that R recognizes the dates as integers.

R> str(lakers$date)

int [1:34624] 20081028 20081028 20081028 ...

Before we can work with them as dates, we must parse them into R as date-time

objects. The dates appear to be arranged with their year element first, followed by the

month element, and then the day element. Hence, we should use the ymd() parsing

function.

R> lakers$date <- ymd(lakers$date)

R> str(lakers$date)

POSIXct[1:34624], format: "2008-10-28" "2008-10-28" ...

R now recognizes the dates as POSIXct date-time objects. It will now treat them

as date-times in any functions that have POSIXct specific methods. For example, if

we plot the occurrences of home and away games throughout the season, our x axis

will display date-time information for the tick marks (Figure 4.1).

R> qplot(date, 0, data = lakers, colour = game_type)

http://www.basketballgeek.com/downloads/

103

Figure 4.1: Home games and away games appear to occur in clusters.

Figure 4.1 shows that games are played continuously throughout the season with

a few short breaks. The frequency of games seems lower at the start of the season

and games appear to be grouped into clusters of home games and away games. The

tick marks and breaks on the x axis are automatically generated by the lubridate

method pretty.dates().

Next we will examine how Lakers games are distributed throughout the week. We

use the wday() command to extract the day of the week of each date.

R> qplot(wday(date, label = TRUE, abbr = FALSE), data = lakers,

geom = "histogram")

The frequency of basketball games varies throughout the week (Figure 4.2). Sur-

prisingly, the highest number of games are played on Tuesdays.

Now we look at the games themselves. In particular, we look at the distribution

of plays throughout the game. The lakers data set lists the time that appeared on

the game clock for each play. These times begin at 12:00 at the beginning of each

period and then count down to 00:00, which marks the end of the period. The first

104

Figure 4.2: More games occur on Tuesdays than any other day of the week.

two digits refer to the number of minutes left in the period. The second two digits

refer to the number of seconds.

The times have not been parsed as date-time data to R. It would be difficult to

record the time data as a date-time object because the data is incomplete: a minutes

and seconds element are not sufficient to identify a unique instant of time. However,

we can store the minutes and seconds information as a period object, as defined in

Section 4.5.4, using the ms() parse function.

R> lakers$time <- ms(lakers$time)

Since periods have relative lengths, it is dangerous to compare them to each other.

So we should next convert our periods to durations, which have exact lengths.

R> lakers$time <- as.duration(lakers$time)

This allows us to directly compare different durations. It would also allow us to

determine exactly when each play occurred by adding the duration to the instant the

105

game began. (Unfortunately, the starting time for each game is not available in the

data set). However, we can still calculate when in each game each play occurred.

Each period of play is 12 minutes long and overtime—the 5th period—is 5 minutes

long. At the start of each period, the game clock begins counting down from 12:00.

So to calculate how much play time elapses before each play, we subtract the time

that appears on the game clock from a duration of 12, 24, 36, 48, or 53 minutes

(depending on the period of play). We now have a new duration that shows exactly

how far into the game each play occurred.

R> lakers$time <- dminutes(c(12, 24, 36, 48, 53)[lakers$period]) -

lakers$time

We can now plot the number of events over time within each game (Figure 4.3).

We can plot the time of each event as a duration, which will display the number of

seconds into the game each play occurred on the x axis,

R> qplot(time, data = lakers, geom = "histogram", binwidth = 60)

or we can take advantage of pretty.date() to make pretty tick marks by first

transforming each duration into a date-time. This helper function recognizes the most

intuitive binning and labeling of date-time data, which further enhances our graph.

To change durations into date-times we can just add them all to the same date-time.

It doesn’t matter which date we chose. Since the range of our data occurs entirely

within an hour, only the minutes information will display in the graph.

R> lakers$minutes <- ymd("2008-01-01") + lakers$time

R> qplot(minutes, data = lakers, geom = "histogram", binwidth = 60)

We see that the number of plays peaks within each of the four periods and then

plummets at the beginning of the next period, Figure 4.3. The most plays occur in

106

Figure 4.3: The graph on the left displays seconds on the x axis. The graph on the
right uses a more intuitive division with minutes.

the last minute of the game. Perhaps any shot is worth taking at this point or there’s

less of an incentive not to foul other players. Fewer plays occur in overtime, since not

all games go to overtime.

Now lets look more closely at just one basketball game: the game played against

the Boston Celtics on Christmas of 2008. We can quickly model the amounts of time

that occurred between each shot attempt.

R> game1 <- lakers[lakers$date == ymd("20081225"),]

R> attempts <- game1[game1$etype == "shot",]

The waiting times between shots will be the timespan that occurs between each

shot attempt. Since we have recorded the time of each shot attempt as a duration

(above), we can record the differences by subtracting the two durations. This auto-

matically creates a new duration whose length is equal to the difference between the

first two durations.

R> attempts$wait <- c(attempts$time[1], diff(attempts$time))

107

R> qplot(as.integer(wait), data = attempts, geom = "histogram", binwidth = 2)

Figure 4.4: Wait times between shot attempts rarely lasted more than 30 seconds.

Rarely did 30 seconds go by without at least one shot attempt, but on occasion

up to 50 seconds would pass without an attempt.

We can also examine changes in the score throughout the game. This reveals

that though the game was eventful, the Lakers maintained a lead for the most of the

game, Figure 4.5. Note: the necessary calculations are made simpler by the ddply()

function from the plyr package, which lubridate automatically loads.

R> game1_scores <- ddply(game1, "team", transform, score = cumsum(points))

R> game1_scores <- game1_scores[game1_scores$team != "OFF",]

R> qplot(ymd("2008-01-01") + time, score, data = game1_scores,

geom = "line", colour = team)

108

Figure 4.5: The lead changed between the Lakers and Celtics numerous times during
the game.

4.11 Conclusion

Date-times create technical difficulties that other types of data do not. They must

be specifically identified as date-time data, which can be difficult due to the over-

abundance of date-time classes. It can also be difficult to access and manipulate the

individual pieces of data contained within a date-time. Arithmetic with date-times is

often appropriate, but must follow different rules than arithmetic with ordinal num-

bers. Finally, date-related conventions such as daylight savings time and time zones

make it difficult to compare and recognize different moments of time.

Base R handles many of these difficulties, but not all. Moreover, base R’s date-

time methods can be complicated and confusing. lubridate makes it to easier to

work with date-time data in R. The package provides a set of standard methods for

most common date-time classes. These methods make it simple to parse, manipulate,

and perform calculations with date-time objects. By implementing the time concepts

pioneered by projects such as Joda Time and Boost.Date Time, lubridate helps

109

researchers perform precise calculations as well as model tricky time-related processes.

lubridate also makes it simple to switch between time zones and to use or ignore

daylight savings time.

Future work on the lubridate package will develop methods for handling partial

dates and for modeling recurrent events, such as stock market opening times, busi-

ness days, or street cleaning hours. In particular, we hope to create methods for R

that work with reoccurring temporal date patterns, which were introduced by Fowler

(1997) and have been implemented in Ruby by the runt project (Lipper, 2008).

Acknowledgements

We would like to thank the National Science Foundation. This work was supported

by the NSF VIGRE Grant, number DMS-0739420.

Chapter 5

How and why to teach statistical inference with

simulations in R

Abstract — This paper describes a software design that can be used to build a

visual simulation tool in R and presents guidelines on how to use this tool in the

classroom. Many researchers and educators have endorsed computer simulations as a

tool to teach statistical concepts. Yet teachers who wish to use simulations face two

hurdles: how to build a computer based simulation and how to use such a simulation

in the classroom effectively. We demonstrate how the universal pattern of inference

and the technical details of R can be used to create a highly efficient simulation tool,

and provide a blueprint for coding this tool. The blueprint creates a program that

can be customized to fit specific lesson plans and easily extended to visualize new

inference methods, which we demonstrate with Visual Inference Tools (VIT), a

program based on the blueprint. We conclude with a review of Cognitive Load Theory,

Multimedia Learning Theory and empirical studies on the use of simulations to teach

statistical inference. This review suggests four principles to guide the presentation of

visual simulations to teach statistical inference.

111

5.1 Introduction

Many researchers and educators have endorsed computer simulations as a tool to

teach statistical concepts.1 Yet teachers who wish to use simulations face two hurdles:

how to build a computer based simulation and how to use such a simulation in the

classroom effectively.

Empirical research shows that simulations yield mixed results. A number of stud-

ies find that students who learn with simulations performed better in a variety of ways

(Weir et al., 1990; Lane and Tang, 2000; Lane and Scott, 2000; Ziemer and Lane, 2000;

Wender and Muehlboeck, 2003). Yet some studies also observe disappointing results

with simulations. Experiments described in delMas et al. (1999); Lane and Peres

(2006) and Peres et al. (2010) all found that simulations did not provide the desired

results until they were paired with some type of guided instruction. Simulations alone

do not guarantee successful learning of statistical concepts; the success of a simulation

is moderated by how it is used within a lesson plan. This paper provides guidance on

how to create visual simulations for teaching statistics as well as guidance on how to

incorporate these simulations into lesson plans. Our recommendations are based both

on empirical studies of teaching statistics with simulations and on established theories

of learning. We focus on building simulations with the R programming language (R

Development Core Team, 2010). The R language has many useful benefits: it is freely

available, it is popular, and it comes with many already written statistical functions.

However, using R to build visual programs can be tricky, an issue we address.

This research takes place in the context of a larger research study sponsored by

the government of New Zealand. We describe this background in Section 5.2.

The remainder of this paper proceeds as follows.

Section 5.2 describes the New Zealand teaching initiative which motivates this

1
See Mills (2002) for a list of 48 articles about teaching statistics with simulations.

112

research. As part of this initiative, the author developed Visual Inference Tools (VIT).

VIT is a visual simulation program in R that can be easily expanded to simulate new

statistical concepts. We will use VIT as an example throughout the rest of the paper

to illustrate our ideas.

Section 5.3 presents the case for visual simulations as a teaching tool. The studies

mentioned above, research on visualization, and two theories of learning all suggest

that visual simulations can aid learning. We examine these theories and review the

arguments that support using visual simulations to teach.

Section 5.4 presents the case for building statistical simulations in R. R is a freely

available programming language with an open copyright. Unlike more popular lan-

guages, R comes with prewritten functions for many popular (and arcane) statistical

techniques. This makes R ideal for creating a general statistical simulation tool. Users

can rely on existing functionality to power their simulations. However, building visu-

als in R can be tricky. R is a functional programming language not directly suited to

GUI programming.

Section 5.5 provides a blueprint for making visual simulations in R. This blueprint

creates a visual GUI interface that teachers and students can use without knowing how

to program in R. Moreover, the blueprint provides a universal base for hosting simu-

lations of different statistical inference concepts. Users familiar with R programming

can easily create new simulations by combining this base with customized methods.

Section 5.6 concludes with recommendations on how to incorporate visual simu-

lations into lessons about statistical concepts. This section summarizes the relevant

findings of both the empirical studies presented in Section 5.1 and the theories of

learning presented in Section 5.3.

113

5.2 Background

The software and guidelines proposed in this paper have been created as part of a

broader research project on the staged instruction of statistical inference ideas over a

period of years. This project is conducted by New Zealand’s Teaching and Learning

Research Initiative (TLRI), a group of researchers partly based at the University of

Auckland’s Department of Statistics. Papers on this work that have already appeared

include Wild et al. (2010, 2011) and Arnold et al. (2011). The TLRI program is part

of an ongoing curriculum reform for K-13 mathematics for New Zealand schools.

The software and guidelines discussed here form one plank of this program and will

be incorporated into New Zealand’s secondary education curriculum. However, the

software and guidelines are also useful for any teacher who wishes to use simulation

in a lesson plan.

The resources in this article are specifically intended to improve the instruction

of statistical inference. Statistical inference is the process of drawing reliable conclu-

sions from data in the presence of variation. It is an important skill for engineers

and scientists, but students are failing to comprehend inference as it is traditionally

taught. Shaughnessy (2007) documents how students fail to retain the many neces-

sary concepts that motivate statistical inference, such as: sampling, variation, and

distributions. In a study by Pfannkuch (2006), both Grade 10 students and their

teachers misunderstood sampling variability and the differences between samples and

populations. Pratt et al. (2008) confirmed that this confusion is common across high

schools.

Chance et al. (2004) suggest that this lack of understanding is the result of cog-

nitive overload. Formal statistical inference is typically introduced in the last year of

high school, when it can be taught along with related mathematical skills. As a re-

sult, students are pressed to master multiple complex concepts all at once, something

114

few of them manage. An alternative method is to teach younger students informal

inference. Informal inference circumvents cognitive overload by teaching inference

over a longer period of time and without relying on mathematical techniques. The

approach lays solid conceptual foundations upon which to build more formal infer-

ence in the longer term (Wild et al., 2011). The positive results of this method have

been demonstrated by Makar and Rubin (2009), Arnold and Pfannkuch (2010), and

Pfannkuch (2010).

New Zealand decided to incorporate informal inference into its current curriculum

reform for K-13 mathematics. The challenge is now to devise specific lessons that

teach inference concepts in an informal manner. One idea is to use interactive or

animated visualizations to convey understanding about sampling variation. A pre-

liminary study conducted by Pfannkuch (2010) supports this approach. Pfannkuch

found that visualizations made with paper and pencil by the class could create un-

derstanding about sampling variation in an eleventh grade classroom. The staged

curriculum will next build upon the paper and pencil plots and connect them to spe-

cific inference concepts, such as distribution, sampling variation, and regression, with

visual simulation tools. These tools will need to be user friendly enough to be used

by every secondary school teacher in New Zealand, but rich enough to be customized

and extended to a variety of statistical concepts.

The author developed the Visual Inference Tools (VIT) computer program to meet

this need. VIT is a software package written in R that provides a simple and effective

way to teach statistical inference to beginning statistics students. VIT builds intu-

ition about inference by demonstrating inference concepts visually with interactive

animations. This approach allows teachers to build upon research that shows that

visual instruction can improve student performance. VIT contains methods for pre-

senting bootstrap, sampling, and confidence interval topics, but it is designed to be

115

extendable. A teacher proficient in R can easily add additional methods to the VIT

software to demonstrate additional concepts.

VIT is the basis for the software blueprint described in Section 5.5. A lesson plan

that uses VIT will also serve as an instructional example in Section 5.6. Readers who

do not wish to recreate the software design proposed in this paper, or who wish to

save time, can download VIT and customize it for their own needs as described in

Section 5.5. VIT is available for download at http://www.stat.auckland.ac.nz/

~wild/VIT/.

5.3 Why teach with visual simulations

Simulation programs like VIT can improve learning when they present information

visually. Visualizations are a natural way to think about concepts, especially math-

ematical ones. In fact, cognitive and neurological research shows that the mind uses

internal visualizations to think about mathematical concepts. Visualizations can

also prepackage information in a way which is easy to understand, which can fur-

ther accelerate learning. Finally, visual simulations can display the same results as

mathematical calculations, but they do not require students to understand math as

a prerequisite. In this section, we review the findings that support these assertions

and introduce two theories of learning that support the use of visualizations in the

classroom: Cognitive Load Theory and Multimedia Learning Theory. The review

demonstrates that visualizations have the potential to significantly increase student

learning.

http://www.stat.auckland.ac.nz/~wild/VIT/
http://www.stat.auckland.ac.nz/~wild/VIT/

116

5.3.1 Visual simulations and thinking

Visualization is a natural way for students to think about ideas. By teaching with vi-

sualizations, teachers can directly shape the way students think about new concepts.

Cognitive scientists suggest that humans think by mentally reliving perceptual expe-

riences(Davis, 1998; Barsalou, 1999; Reed, 2010). For example, when we think about

the word green, we mentally relive the experience of seeing the color green. Vision is

the primary way humans experience the world, and as a result, vision plays a large

role in the way we think. The role of vision in thinking can be seen in the way people

build associations between concepts. Paivio (1969) noticed that people build associ-

ations between words in two ways. They sometimes use the name of a word to think

of related words. Other times, they use an image of the concept connected with a

word to think of related concepts. Individual words vary in the number of verbal and

visual associations that they support. Paivio demonstrated that people remember

words better when the word has a large number of potential visual associations.

This insight led to the development of dual coding theory Paivio (1986, 2006).

Dual coding theory states the humans encode information into memory in two for-

mats, visually and verbally. Information that is encoded in both formats is more

likely to be remembered than information that is only encoded in one format. Dual

coding theory is supported by studies that show that a visual and a verbal task can

sometimes be performed at the same time by the mind, but two visual or two verbal

tasks will interfere with each other. For example, Brooks (1968) showed that it is

easy to simultaneously recall visual information and describe it verbally, but difficult

to recall verbal information and describe it verbally.

The visual/verbal duality of the mind has been well tested since Paivio proposed

dual coding theory. It is now incorporated into the most influential models of the

working memory (Baddeley and Hitch, 1974; Baddeley, 2000, 2001). The working

117

memory is the part of the mind that processes new information into knowledge that

can be stored in the long term memory. As such, it plays a central role in learn-

ing. The most influential model of the working memory was proposed by Baddeley

and Hitch (1974). Baddeley conceived of the working memory as two separate in-

formation processors: a visual-spatial sketchpad, which process visual information,

and a phonological loop, which processes verbal and non-visual information. The

working memory also contains a central executive, which coordinates the activity of

the two processors. In 2000, Baddeley slightly expanded the model to include a new

component which reflects the working memory’s role in integrating visual and verbal

information together to create knowledge.

The working memory may actually prefer to process information visually. Studies

suggest that the mind converts verbal information into visual information when it

is possible to do so. For example, Stanfield and Zwaan (2001) had students read a

sentence that implicitly described an object in a certain orientation, such as a pencil

laying flat or a pencil held up vertically. Students were then presented a picture

of an object and asked whether the object in the picture appeared in the sentence.

Students responded faster when the object appeared in the picture with the same

orientation that it had in the sentence. The results suggested that students were

mentally processing the sentence in a visual, not verbal format. Moreover, since the

response times were so small this appeared to be happening at an innate level, not

a conscious level. Zwaan and Yaxley (2003) used similar methods to determine that

students relied on mental imagery to determine how pairs of words are related.

Visualization is also a natural way for students to think about mathematical con-

cepts, such as statistics. The mind seems to use internal visualizations to reason about

numbers and quantities. For example, Moyer and Landauer (1967) found evidence

that the mind thinks about numbers with the help of a mental image of the num-

118

ber line. As a result, people compare numbers that appear farther apart on the line

faster than numbers that appear closer together. Surprisingly, Dehaene (1997) were

able to pinpoint the direction of the number line. Subjects consistently responded

faster when asked to associate high numbers with the right and low numbers with

the left. Neurologists have even identified a physical link between visualization and

math. Walsh (2003) compared fMRI, PET, EEG, and brain lesion studies to demon-

strate that the brain uses the same neural pathway to reason about space, time, and

quantity. This pathway is in the right inferior parietal cortex of the human brain.

Visualizing spatial information ignites this pathway, as does performing approximate

arithmetic (Dehaene et al., 1999). These studies suggest that the brain is hard wired

to process basic math in visual terms. Lakoff and Núñez (2000) argue that com-

plex mathematical operations depend on visual experiences as well. In their book,

Where mathematics comes from, they trace many elements of mathematical logic to

metaphors built on visual experiences. For example, the concept of set member-

ship is built upon a container metaphor that relies on a consistent visual experience.

We never see something that is simultaneously inside a container and outside of a

container.

In summary, visual simulations are a natural way to think about concepts, espe-

cially mathematical concepts. Using simulations may improve learning by engaging

directly with the visual ideas that directly underpin student’s conceptions of numer-

ical phenomena. By providing students with a visual metaphor and a visual image,

simulations may prevent students from developing incorrect internal imagery to as-

sociate with a new concept. Visual simulations can foster learning in other ways as

well.

119

5.3.2 Visual simulations and cognitive load

Visualizations can promote learning by managing cognitive resources during instruc-

tion. Cognitive science has shown that the mind’s ability to process new information

is surprisingly limited. Studies estimate that the working memory can only hold

from four (Cowan, 2000) to seven (Miller, 1956) pieces of novel information at once.

Moreover, novel information seems to fade within the working memory after about 20

seconds (Peterson and Peterson, 1959). These limits create an obstacle to learning.

Cognitive Load Theory (CLT) describes the effects of the limitation on learning and

how they can be lessened.

Cognitive load refers to work performed by the working memory. Every learning

task requires a certain amount of cognitive load. Students must identify information,

hold it within their working memory and process it into knowledge that can be stored

in the long term memory. Sweller (1988) demonstrated that learning fails to occur

when the cognitive load of a learning task exceeds the capacity of the working mem-

ory. Sweller showed that learning can be facilitated by identifying and minimizing

unnecessary sources of cognitive load. His Cognitive Load Theory divides load into

two components; extrinsic cognitive load and intrinsic cognitive load (Sweller et al.,

2011). Extrinsic load is created by the way information is presented. When infor-

mation is poorly presented, a student must search for the information to be learned,

which expends mental energy. Extrinsic cognitive load can also be caused by dis-

tractions during learning process or by pairing learning with unnecessary activities,

such as problem solving. Extrinsic cognitive load can be reduced by improving the

instructional design of a lesson. In contrast, intrinsic cognitive load is created by the

complexity of the material to be learned. Intrinsic load cannot be reduced, the work-

ing memory will always have to work harder to understand complex material than

simple material. However, intrinsic cognitive load can be managed with a variety of

120

strategies.

Mayer (2001)’s Multimedia Learning Theory (MLT) extends the idea of cognitive

load even further. According to Mayer, a student must first expend extrinsic cognitive

load acquiring information from the environment. Next, the student must expend

intrinsic cognitive load to hold the information within the working memory. At this

point, rote learning can occur; the student can memorize information, hold it in

the working memory, and recall it later. However, to deeply understand material, a

student must expend further cognitive load to build relationships between the new

information and previously acquired knowledge. This activity will allow the student to

apply the new information in new contexts, a phenomenon known as transfer. Mayer

calls this third type of cognitive load generative cognitive load. Under Mayer’s model

the three types of cognitive load are sequential and additive. If extrinsic cognitive load

surpasses the available capacity of the working memory, intrinsic processing and rote

learning can not occur. If the combination of extrinsic and intrinsic load surpasses

working memory resources, generative processing and deep understanding cannot

occur. Moreover, the working memory does not automatically expend resources on

generative load. A student must be interest and motivated in the material before

they will engage in generative processing.

Cognitive Load Theory and Multimedia Learning Theory have been corroborated

by many studies. Predictions based on these theories have been shown to improve

leaning outcomes in a variety of settings. Together, CLT and MLT propose a clear

guideline for instruction: information should be presented in an easily accessible

manner with as few distractions as possible. Visual simulations can provide this

manner. Simulations satisfy two principles tested by CLT and MLT research, the

modality principle and the multimedia principle. As we discuss these principles below,

we assume that visual simulations will be accompanied by an oral explanation given by

121

the instructor. Other practices can further strengthen the effectiveness of simulations,

which we discuss in Section 5.6.

Visual simulations can foster learning by allowing the instructor to present visual

and oral information at the same time. This creates a modality effect that has been

shown to increase learning. The modality principle states that students learn better

when material is presented as visual imagery accompanied by spoken words (Mayer,

2009). This arrangement both increases the capacity of the working memory and

decreases the extrinsic cognitive load of the material to be learned. Working memory

capacity is increased because the working memory can use both of its processors

(visual and phonological) to process the information. When information is presented

as just images or just words, the working memory is limited to a single processing

channel and less information can be analyzed. By using spoken words instead of

printed words, the lesson maximizes the gain. Spoken words can be analyzed in the

phonological loop of the working memory, but printed words must first be passed

through the visual-spatial sketchpad, which limits the amount of attention that can

be given to other images. Dual mode lessons further decrease cognitive load because

students can simultaneously attend to sights and sounds. As a result, the mind

does not have to expend cognitive load to temporarily store some information in the

working memory while other information is attended to.

The modality effect was first demonstrated by Mousavi et al. (1995). Mousavi et

al. hypothesized that if the working memory contained separate processors for visual

and phonological information, geometry students might learn better when diagrams

are accompanied by oral rather than written explanations. Their results showed that

students taught in the dual mode manner could solve subsequent problems more

quickly and accurately than students taught in the visual only mode. Since then,

multiple studies have recreated the modality effect in a variety of settings. The

122

modality principle has been shown to decrease cognitive load during instruction, im-

prove post-test performance (Kalyuga et al., 1999, 2000; Tindall-Ford et al., 1997),

improve student speed during problem solving (Jeung et al., 1997; Mousavi et al.,

1995), and improve retention and transfer (Mayer and Moreno, 1998; Moreno and

Mayer, 1999). While studying the modality effect, Mayer (2009) observed that dual

mode lessons increased student learning in 17 of 17 tests.

The modality effect appears to improve learning the most when students are new

to a subject and the material presented would otherwise be complex or difficult to

understand. Moreover, the modality effect can not be achieved by adding spoken

or visual information to material that can otherwise stand on its own. The visual

and spoken material must both provide essential (and different) pieces of informa-

tion related to the concept being taught. Adding new material to a lesson always

increases cognitive load. If the added material is redundant, learning would occur

better without it.

Visual simulations can also foster learning through the multimedia effect. The

multimedia principle states that students gain a deeper understanding by learning

through words and pictures than through either words or pictures alone (Mayer, 2009).

The multimedia principle extends the modality principle to predict that multi-mode

presentations will foster generative processing, which creates a deeper understanding

than rote learning. Words and pictures allow a student to form both a visual and a

verbal model of a concept. This encourages the student to integrate the two models in

their working memory, which is a type of generative processing. Integrating visual and

verbal models of a concept creates a deep understanding because visual and verbal

models contain different types of information. As a result, multimedia presentations

should improve a students ability to transfer newly learned material to new situations.

Mayer and his colleagues tested the multimedia effect in 11 tests spread across seven

123

studies (Mayer, 1989; Mayer and Gallini, 1990; Mayer and Anderson, 1991, 1992;

Moreno and Mayer, 1999, 2002). Each test compared a multimedia presentation to a

single media presentation. Studies examined computer presentations, paper lessons,

and games. A strong multimedia effect was observed in each test. Visual simulations

allow the multimedia effect to occur in the same way that they allow the modality

effect to occur; simulations enable the teacher to present both visual and verbal

material simultaneously.

5.3.3 Visual simulations and prior mathematical knowledge

Finally, visual simulations make it easier to learn inference because they are based

on visual experience, not math. As a result, students can learn about inference with-

out relying on prior mathematical knowledge, which may be limited. In traditional

statistics classes, inference behavior is explained through the use of mathematical

theorems, such as the Central Limit Theorem, or through the use of mathematical

models, such as the normal curve. A student cannot learn inference with this method

unless they first understand the math presented. While mathematical sophistry is

an important goal of statistical education, studies have shown that students perform

poorly with current methods of teaching inference through math Shaughnessy (2007).

Pfannkuch (2010) show that student performance can be increased by teaching in-

ference separate from math. Students are then able to develop an understanding of

inference behavior that can later support learning mathematical inference concepts.

This approach is the cornerstone of the New Zealand K-13 mathematics curriculum

reform.

This approach may also have the side effect of increasing the number of underrep-

resented minorities in the STEM career fields. In 2009, the the National Assessment

for Educational Progress (NAEP) measured the mathematics achievement gap be-

124

tween White and Black eighth graders to be 32 points and the gap between White

and Hispanic students to be 26 points (Aud et al., 2010). This gap places minority

students at a disadvantage when statistical inference is taught with traditional meth-

ods, which require mathematical mastery. Visual simulations create a level playing

field where poor performing math students can still build understanding with physical

and visual experiences.

In summary, visual simulations can provide many advantages to teaching statis-

tics. These advantages are predicted by a variety of research and theory. The pre-

dictions have been verified by the empirical studies listed in Section 5.1, which show

that simulations improve learning of inference cncepts. However, simulations require

advanced planning. Before a simulation can be used in a classroom, it must be built

in a computer programming language. In the next section, we discuss the benefits of

using R as this language.

5.4 Why program visual simulations in R

The features of the R programming language are uniquely suited to developing user

friendly, effective, and customizable statistical simulations. R is an open source soft-

ware language freely available at http://cran.r-project.org. R was developed at

the University of Auckland by Ross Ihaka and Robert Gentleman and borrows heavily

from the S programming language written by John Chambers. Since the introduction

of R in 1997, the language has become a staple in statistical computing and is now

widely used within universities and corporations such as Google, Pfizer, and the Bank

of America (Vance, 2009). The number of R users is estimated at over two million

(Revolution Analytics, 2012) and many online resources exist to help users program

in R. R has two pragmatic qualities that recommend it for educational simulations: it

is free and contains many pre-written statistical sub-routines. These features make R

http://cran.r-project.org

125

user friendly for both the programmer and end user of the simulations.

To be user friendly in the classroom, a simulation program must be easy to access

and easy to use. R can be downloaded to any computer connected to the internet. It

runs on all common operating systems including Macintosh, Windows, and Linux. R

programs do not need to be precompiled, and they are easy to disseminate because

R is free and has an open copyright. Although R is a command line language, it

can be used to create software that does not use a command line. This makes R

simulations useful in the classroom. The end user of an educational simulation will

be a teacher or student, who may not be familiar with command line programming. To

accommodate these users, simulations should have a graphical user interface (GUI).

Many computer languages can be used to build a GUI interface and R is no exception.

R contains software libraries specifically designed to create GUI tools, such as RGtk2,

qtbase, tcltk2, and gWidgets. The VIT program uses the RGtk2 library to create

a user interface like the one pictured in Figure 5.3.

R also provides visual tools that make effective simulations. The effectiveness of

a simulation can depend on the software it is built with. Both Cognitive Load The-

ory and Multimedia Learning Theory suggest that understanding can be stymied by

distractions that occur during learning. These distractions increase extrinsic load

and reduce the amount of working memory that can be directed to processing in-

formation. A software that provides primitive looking graphics or jumpy animations

calls attention to itself and may interfere with learning. R is known for its beauti-

ful graphics tools, such as the ggplot2 and lattice graphics packages. Moreover,

R gives programmers low-level control of visual elements through the grid package.

Animations in R are a source of continuing development. A number of software pack-

ages including cranvas and qtpaint are being developed to improve the animation

features of R, which should lead to future enhancements. In the meantime, packages

126

such as animation demonstrate that R already has sufficient animation capacity to

build seamless simulations.

R’s most useful feature for simulations, however, is that it allows programmers to

quickly modify simulations to demonstrate new concepts. R comes packaged with a

sophisticated random number generator and many user contributed statistical meth-

ods. Hundreds of sub-routines that implement both common and uncommon statis-

tical techniques have already been published for the R language. These subroutines

set R apart from web based languages like javascript and html. With R, users can

extend simulations to teach a variety of statistical concepts with a minimum amount

of additional programming. Programmers do not need to worry about programming

the statistical aspects of the new simulation because statistical methods have already

been written. Programmers can instead focus on the visual aspects of the simulation,

which can be recycled from simulation to simulation.

These benefits make R a useful platform for a general statistical simulation tool.

However, programmers will still have to deal with many nuances when program-

ming in R. R is functional programming language with a small set of object oriented

programming (OOP) features. Ideal simulations will use interactive GUI interfaces,

which must keep track of a large amount of information. Because R is a functional

language, this information must be passed from function to function. Moreover, user

input must be inserted into the information set at the appropriate places in the chain

of functions that underly the program. These requirements can quickly create an

overwhelming, chaotic, and bug prone simulation program. The next section presents

a blueprint for building simulations in R that avoids this outcome. The blueprint

creates a simple, elegant, and highly modular structure for a simulation program in

R.

127

5.5 How to implement visual simulations in R

R is a logical choice for building a general simulation tool due to R’s visual capabil-

ities, wide availability, and pre-written statistical libraries. However, programming

a general GUI simulation tool that can be used to study multiple inference topics is

a complex task. This task is made more intricate by the nature of R. R is a func-

tional programming language. It processes information by passing information into

functions and returning output. This approach is not well suited to interfaces like

GUIs that require large amounts of information to be stored together and manipu-

lated in sophisticated, interdependent ways. The information store must be passed

into a function, where it is copied, manipulated and returned as output that must be

collected for the next stage of processing. This approach consumes large amounts of

memory and creates intricately woven chains of functions that are difficult to under-

stand, interact with, and reuse for similar but slightly different tasks.

In this section, we describe a software design devised by the authors that avoids

these inefficiencies. The design relies on concepts of object oriented programming, as

well as the common patterns of statistical inference, to create a general GUI simulation

program that can be used to teach many different concepts related to statistical

inference. The design creates a simple, modular, and memory efficient program that

can easily be customized or extended to new teaching situations. This design blueprint

is the basis of the VIT package. We use VIT to illustrate the principles behind this

design; the figures in this section all come from screenshots of the VIT program.

However, this software blueprint can also be applied outside of VIT to make entirely

new simulation platforms. The blueprint is shaped by the interaction of two factors:

the common patterns of statistical inference and the technical details of R.

128

5.5.1 Patterns of statistical inference

Statistical inference revolves around five concepts that are related to each other in

fixed ways: a population of data, a sample of data drawn from that population, a

measurement of the population known as a parameter, a measurement of the sample

known as a statistic, and the distribution of that statistic over repeated sampling.

To understand inference, a student must understand these concepts and how they

are related to each other. This provides unity to simulations that teach statistical

inference. Because these simulations are visual, each concept must be represented

visually. Relationships between the concepts must be expressed with animation, with

one concept originating in its parent concept, or left implicit. The teacher can ex-

plain implicit relationships, or they can be hinted at with shared visual aesthetics,

such as color or shape. These common constraints have yielded a popular format for

inference simulations, seen in Figure 5.1. Simulations visualize three distributions: a

distribution of the population at the top of the screen, a distribution of the current

sample in the center of the screen, and a distribution of the sample statistic at the

bottom of the screen. In more sophisticated simulations, animations reinforce the re-

lationships between each distribution. Sample points drop down from the population

distribution and sample statistics drop down from the sampling distribution. As the

simulation runs, repeated samples are taken, repeated statistics are calculated, and

the statistics accumulate to reveal a distribution for the sample statistic. This format

is often used to illustrate the Central Limit Theorem when the sample statistic is the

mean. But it can also illustrate the behavior of a variety of statistical summaries,

including box plots, confidence intervals, and regression lines, Figure 5.2.

The format described above creates a universal method of simulating inference

concepts. This method can be applied to different types of data, different types of

sampling method, and different types of statistical summary. To create such a display,

129

Figure 5.1: Statistical inference simulations are often organized around three fields:
a field that displays the population data (top), a field that displays the sample data
(middle), and a field that displays the sample statistic data (bottom).

Figure 5.2: The three field format can be used to illustrate inference related concepts
such as the Central Limit Theorem (left), confidence intervals (middle), and the
variance of regression lines regression lines (right)

130

a simulation only has to perform five tasks:

1. draw a group of data

2. calculate a measurement

3. draw a measurement

4. animate sampling

5. animate collecting the sample statistic

The method used to draw a group of data can be reused to draw the population

distribution, the sample distribution, and the distribution of the sample statistic. The

method used to calculate a measurement can be reused to calculate the population

parameter and the sample statistic. The same is true for the method used to draw

a measurement. Some of these tasks can be subdivided to provide different behavior

for different distributions (e.g., sample statistics can be drawn with a different shape

than population parameters). However, these five tasks are sufficient to create a

complete inference simulation. They form a “pattern” that characterizes inference

simulations. The details of each task will change based on the concept that is being

visualized. For example, simulating the standard error bands of a regression line

requires different drawing methods than simulating the distribution of x̄, Figure 5.2.

However, the general sequence and goals of these tasks will remain constant across

all inference simulations. These tasks provide a way to create a simple simulation

program that can be extended to teach any inference related concept. The specifics

of how to implement such a program depend on the technical details of R.

131

5.5.2 Technical details of R

An interactive, GUI based simulation program must manage two levels of information.

First, the program must collect and store user input. To do this, the program must

create and maintain a GUI interface that makes it easy for the user to interact with the

program. The interface should respond visually to user actions and reflect the current

state of the program. Second, the program must manipulate a visual canvas that

displays simulation output. This canvas may be integrated into the GUI interface,

but it performs a specialized role and must manipulate its own store of information

to do so. A simulation program will also have to do some background processing of

information to connect these two levels. A screenshot of VIT reflects these two levels

of information, Figure 5.3. The panel on the left displays the current settings of the

simulation and collects user input. The window on the right displays the output of

the simulation on a canvas.

Figure 5.3: The user can interact with VIT through the GUI provided in the panel on
the left. This panel is managed by the “gui environment” described in our software
blueprint. The panel on the right provides a canvas to animate the simulation created
by VIT. This panel is managed by the “canvas environment.”

132

The input level of the simulation can be efficiently managed by creating a new

R environment dedicated to managing the simulation’s GUI interface and storing

user input. In R, environments are elemental reference frames used to store data

and functions. A dedicated “GUI environment” can become the basis of an object

oriented programming (OOP) approach to the simulation program, which provides a

number of advantages. As mentioned before, R is primarily a functional programming

language. Information is passed into functions and output is returned. In object

oriented programming, information structures (i.e, objects) replace functions as the

focus of the program. Information is stored in an object and functions are assigned

to specific objects. When a function is run, it causes a change in the object it is

assigned to. This change happens automatically, no output from the function needs

to be collected and saved. Object oriented programming allows simpler program

designs and can improve memory management, which creates faster programs. Our

design creates an object oriented program from a functional language by exploiting

R’s scoping rules.

In R, functions as well as data objects are assigned to an environment. Environ-

ments are then assigned to other environments, which creates a hierarchy of informa-

tion. When a function must use a data object, it first looks for the data object among

the objects that have been passed into the function as arguments. If any object is

not found there, the function next searches the environment to which the function is

assigned for the object.1 This “lexical scoping” rule lets us dispense with passing user

input into every function and collecting the results on the other side. Instead we can

create a new environment and save all GUI related information, including user input,

to that environment. Next, we assign each function that must work with the GUI to

1
Note: this is not the same as the environment in which the function is called. We recommend

that readers familiarize themselves with R Development Core Team (2012) to master the tricky

scoping rules of R.

133

the same environment. This arrangement essentially creates a an OOP object, the

environment, and a set of object specific methods, the functions. When a function is

called, it has free access to the data objects stored in the environment. These objects

do not need to be passed into the function as arguments. We can avoid the need to col-

lect output from the functions by having the functions directly manipulate objects in

the GUI environment. Functions can directly manipulate an object in a particular en-

vironment by calling the object within the function by the <environment>$<object>

naming convention. Here <environment> is the name given to the GUI environment

and <object> is the name of the object within the environment to be manipulated.

This concept can be demonstrated with the following trivial piece of R code.

e <- new.env()

e$x <- 1

e$x # 1

change_x <- function(y) e$x <- y

change_x(2)

e$x # 2

change x does not return any output, but directly manipulates the x object in the

e environment. The only constraint here is that the function must be able to find

<environment> using lexical scoping. Since <environment> will be the function’s

parent environment, this will never be a concern. <environment> will always be

the first place the function looks. This approach to object oriented programming

parallels that provided by the proto package, which develops simpler principles to

create an OOP class within R. However, this approach is simpler and dispenses with

all unnecessary complications. By managing the GUI interface with an environment,

we greatly simplify the interactive aspects of the simulation program. Next we must

address the simulation itself, including its visual output.

134

The output level of the simulation can be handled in a similar manner: it can be

managed as a new environment that stores its own data and functions. As before, the

functions should be written as methods that directly manipulate the objects in the

new environment. If this second environment, or “canvas environment” is assigned

to the GUI environment, the two objects will exist as a hierarchy, with the GUI

environment as the parent environment and the canvas environment as the child. This

arrangement will allow any function in the canvas environment to find and manipulate

both objects in the canvas environment and objects in the GUI environment through

lexical scoping.

The canvas environment has two tasks within the simulation program. It must

process the data provided by the user and it must display the visual output of the

simulation. Data processing includes such things as drawing random samples, calcu-

lating population parameters, and calculating sample statistics. These tasks should

be performed before the program displays any visual output to avoid delays in ani-

mation. Displaying output will involve graphing the distributions of the population,

sample, and sample statistic as well as animating the events of the simulation. In a

single purpose simulation tool, the processing and display tasks will be fairly straight-

forward. Every simulation will process and display data in the same way. However, a

general purpose simulation tool will require different types of processing and different

types of display based on the inference method being simulated. Different process-

ing and display methods will also be required whenever a teacher wishes to simulate

the same concept in a different way, for example, with or without segmenting (see

Section 5.6).

Writing a new processing and display engine for each simulation creates a large

program that is difficult to extend. The user must supply large amounts of code

for each new simulation. This arrangement also unnecessarily repeats large sections

135

of code. Creating visuals in R, such as the output of a simulation, requires a large

amount of boilerplate code. The program must create a canvas, create graphical

objects (grobs) to display in the canvas, create one or more reference systems within

the canvas to arrange grobs on, and perform other tasks as well. R users usually

rely on a graphics package such as ggplot2, lattice or the plot functionality of

base R to do this work for them. Since we are creating our own custom graphics,

we must do it ourselves and it is efficient to do as little as necessary and reuse code

wherever applicable. The same is true to a lesser extent for the processing phase of

the simulation.

Fortunately, the common patterns of simulating inference described in Section 5.5.1

provide a way to minimize boilerplate code while still allowing a large degree of cus-

tomizability. The canvas should rely on a set of generic functions that parallel the

common tasks of simulation (e.g., DRAW.DISTRIBUTION(), CALC.MEASURE(),

DRAW.MEASURE(), ANIMATE.SAMPLE(), and ANIMATE.STAT()). When the

program loads, these functions should be left empty, or preferably should return an

error message to alert the user that something has gone wrong. A library of possible

methods to replace each of these empty function names can be loaded with the pro-

gram. The GUI interface should be constructed so that appropriate methods from

the library are assigned to the empty function names above once a user selects the

type of simulation they wish to run. Care must be taken to ensure that this as-

signment occurs in the environment where the empty functions are stored (i.e, the

canvas environment). When the simulation code gets to the appropriate task, it will

automatically perform the details specified by the appropriate method. Ideally, the

methods library will be defined in the canvas environment so that method functions

will share the same lexical scoping path as the task functions that they replace.

Due to R’s lazy evaluation rules, new details can be assigned to the empty function

136

names every time the user requests a new type of simulation. The program will

automatically use these new details the next time it performs one of the generic

tasks. There’s no need to close and reopen the canvas.

Empty functions Methods library

GUI environment

Canvas
environment

load function

DRAW.DISTRIBUTION
CALC.MEASURE
DRAW.MEASURE
ANIMATE.STAT
ANIMATE.SAMPLE

Figure 5.4: A general inference simulation tool can be built in R by organizing in-
formation into a GUI environment that manages the user interface and a canvas
environment that displays the visual simulation. The canvas only needs to handle
five actions, the details of these can be supplied at run time. To extend the program,
a user only needs to supply additional methods for these five tasks.

The design described above, shown in Figure 5.4, allows a programmer to extend

the simulation program to new applications in two steps. First, the programmer must

add a small set of methods that will govern the new simulation to the methods library.

Second, the programmer must amend the GUI’s load function to include the option of

loading the new type of simulation. We do not anticipate that a student or a teacher

unfamiliar with R will be able to do this. The methods that must be added to the

methods library need to manipulate visual objects and create animations, something

that can only be done efficiently in R code. As a result, simulation tool will need a

knowledgeable programmer to maintain it and extend it to new lessons. However, the

137

proposed design makes the programmer’s job as simple as possible. The programmer

must supply five methods. One of these, CALC.MEASURE(), can rely on pre-existing

R functions. Many of the remaining methods can be recycled from already written

simulations. Most statistical inference methods can be visualized in similar ways. For

example, most simulations will draw either a 1D or 2D display for each distribution.

Hence, only two separate methods for DRAW.DISTRIBUTION() are needed to cover

most possible simulations: a method for drawing a distribution on one dimension, and

a method for drawing a distribution on two dimensions. Programmers can recycle

these methods if they already exist in the methods library.

The design described above creates a versatile “simulation engine” that can be

combined with many outside features. For example, the VIT package also displays

the raw data as a numerical list beside the popular tripartite simulation design. Users

can also add extra features within the context of the simulation engine. Draw and

animate methods can be written to highlight certain points, or vary the appearance

or movement of points. These extra features can be chosen to support different ways

of presenting the simulation in the classroom. This flexibility is important because

the way a simulation is presented can directly affect its success as a learning tool. In

the next section, we provide guidance that can be used to customize simulations and

implement them within a lesson plan.

5.6 How to use simulations in the classroom

Simulations are a useful tool for helping students learn statistical inference. However,

adding a simulation to a lesson plan does not guarantee that students will learn. A

number of researchers have found that simulations occasionally produce disappoint-

ing results when used to teach statistical concepts. delMas et al. (1999) found that

simulations of sampling distributions did not automatically improve student under-

138

standing of sampling concepts. Lane and Peres (2006) and Peres et al. (2010) both

describe an undergraduate course at Rice University that introduced simulations of

statistical inference. Although students rated the classes with simulations as “excel-

lent”, they failed to retain the material taught by the simulations. To ensure that

learning occurs, simulations should be carefully structured lesson plans. In this sec-

tion, we discuss ways to maximize student learning with simulations. We examine

the empirical findings listed above and review relevant implications of the theories of

learning discussed in Section 5.3.

Unstructured simulations may make students passive, which can prevent learning.

delMas et al. (1999) hypothesized that students could fail to learn from simulations

because simulations foster passive learning. In passive learning, students may find

the lesson too easy and do not actively think about the material in a simulation.

As a result, they are less likely to remember it later. In the parlance of Multimedia

Learning Theory, the student is not motivated to perform generative processing of the

material, and hence only superficial learning occurs. The passive learning hypothesis

is consistent with many studies that suggest that learning occurs when students are

required to actively seek out and discover knowledge, an approach known as con-

structivist learning.1 To test their hypothesis, delMas et al. repeated their study

under active learning conditions. delMas et al. first gave students a pretest about

the concepts to be learned. They then prevented passive learning by asking the stu-

dents to use the simulations to evaluate their own answers on the pretest, a form

of active learning. These students showed a significant improvement over those who

just watched the simulation passively. Lane and Peres (2006) simplified this active

learning approach into a technique that can be easily combined with any simulation:

teachers can prevent passive learning by asking students to anticipate the results of

1
See for example Bruner (1961) and Hermann (1969)

139

a simulation before watching the simulation, an approach known as the “query-first”

method. A study of the query-first method showed that instructors regard the method

favorably and 86% of students found the method to be “somewhat helpful” or “very

helpful” (Peres et al., 2010).

The theories of learning introduced in Section 5.3 suggest additional ways to struc-

ture the use of simulations. Both Cognitive Load Theory and Multimedia Learning

Theory have implications that affect the way simulations should be presented in the

classroom: simulations should be presented as a sequence of small, self-contained

segments; pieces of related information should be visible (or audible) at the same

time; and redundant information should be excluded from the simulation. Unlike the

query-first method, these suggestions have not been specifically studied in the context

of teaching statistical inference with simulations. However, they have been studied

and verified in a range of similar educational settings.

Multimedia Learning Theory suggests that animations, like a simulation, are most

effective when they are presented as a series of short animated segments. Inference

simulations involve a series of sequential steps. When multiple steps are presented

in a continuous animation, a student may fail to understand a step before the ani-

mation moves on. As a result the student will not be able to completely learn the

relationships between the steps. In the statistical context, a student will not be able

to understand how a sample statistic relates to a population parameter if he does

not first perceive how samples are drawn from a population. Mayer (2009) suggests

that segmenting the animation into short, self-contained steps can avoid this type of

misunderstanding. When the animation pauses after each segment, a student has a

chance to fully process the information within the segment before considering the next

part of the animation. Segmented animations have been shown to improve learning

over continuous animations in a variety of subjects including meteorology (Mayer and

140

Chandler, 2001), physics (Mayer et al., 2003), earth sciences (Mautone and Mayer,

2007), and chemistry (Lee et al., 2006). Gains in learning are increased even further

when the student can control when the next animation begins after a segment ends.

The segmentation principle implies that when simulations are introduced in the

classroom, they should be shown one step at a time. In the population-sample-

statistic paradigm of statistical inference, two natural segments appear: drawing the

sample from the population, and calculating a sample statistics from the sample. Each

can be taught with its own segment. Segmenting can also be used to demonstrate the

accumulation of sample statistics into a distribution. The distribution can be built

as a sequence of segments that show drawing a single sample and calculating a single

sample statistic to add to the distribution. As student understanding increases, the

need to segment the simulations will decrease. Isolating a segment from the rest of

the animation should no longer improve learning once a student understands what

the segment shows.

Cognitive Load Theory suggests a second way to structure simulations. Sweller

et al. (2011) proposes that animations can create a “tranisient information effect” that

hinders learning: students are unlikely to understand relationships that require them

to remember information from early in the simulation to make sense of information

that occurs later in the simulation. First, students may not realize that they need to

memorize early information and thus not be able to recall the early information at the

appropriate time. Second, if students do memorize early information, the mental task

of storing the information in the working memory decreases the amount of cognitive

load that can be spent on learning and understanding. Sweller’s theory is supported

by findings that animations with transient information increase the amount of work

performed by the working memory (Ainsworth and VanLabeke, 2004). This “transient

information effect” can be avoided by presenting all related information at the same

141

time. Students can then process information without having to memorize part of it.

The transient information effect applies to both visual and oral information.

To avoid the transient information effect, teachers should provide any necessary

explanations about a simulation while the simulation appears, not beforehand or

afterwards. When important visual information appears in a simulation, it should

remain visible until it is no longer needed. Many inference concepts rely on comparing

the results of two or more samplings. The transient information effect implies that

the visual results from each sample should be simultaneously visible to allow com-

parisons. VIT illustrates one way to accomplish this. Important information from

previous samples remains visible as a “ghost” that can be compared to later samples,

Figure 5.5.

Figure 5.5: Previous sample means remain visible as “ghosts” in the middle field.
These transparent blue bars are distinguishible from the current sample mean, which
is larger and solid. Transparency also helps students see where multiple sample means
have accumulated.

Cognitive Load Theory also suggests that redundant information can hinder learn-

ing. Students will spend unnecessary cognitive load attending to redundant informa-

142

tion, which decreases the load they can use to process necessary information Chandler

and Sweller (1991). For example, when Chandler and Sweller (1991) added explana-

tory text to a self-explanatory diagram, student comprehension decreased. The re-

dundancy effect can be used as a guide for designing the appearance of a simulation

and for choosing narration to accompany a simulation. Teachers should only pro-

vide narration that explains components of the simulation that are not already self

evident.

What material is redundant and what material is essential changes over time.

Students need to hear information the first time they watch a simulation that they

no longer need to hear once they become familiar with a simulation or the concepts

it illustrates. This change in redundancy is sometimes called the expertise reversal

effect. As students gain expertise, information that previously facilitated learning

begins to become redundant, distracting, and an obstacle to learning. This can

be avoided by providing less structure to learning as students build their abilities.

In a simulation based lesson plan, a teacher can promote continuous learning by

introducing new simulation formats and new statistical concepts with short segmented

animations accompanied by ample explanations. As students begin to understand

common patterns, the teacher can reduce explanations and can shift attention to

the relationships between patterns. This method of instruction is called “guidance

fading” in cognitive science research and has been shown to reduce the expertise

reversal effect in many studies.1

The VIT program demonstrates one way to create guidance fading with a sim-

ulation. It offers teachers the option of simulating just sampling or simulating the

combination of sampling and calculating a sampling statistic. The program also al-

lows teachers to simulate just one sample, five samples, or 1000 samples. When VIT

1
See for example Renkl and Atkinson (2003) for an overview.

143

simulates 1000 samples, it automatically ignores the animations that connects pop-

ulations, samples, and statistics. VIT instead focuses on the growth of the statistic

distribution over time. Instruction can begin by just simulating sampling. Once stu-

dents understand sampling, the calculation of sample statistics can be simulated. At

this point, teachers can skip over explaining the sampling step and instead focus on

the sample statistic. Once students comprehend all of the details of a single iteration

of the simulation process, the teacher can increase the number of iterations shown

at once. The teacher can now show five samplings before pausing the simulation or

explaining the sub-steps of each sampling. Instead, the teacher can help students

see that repeated simulation creates variability in the sample statistic. Once stu-

dents understand this, the teacher can further increase the number of simulations

and demonstrate that the distribution of the statistic attains a stable shape over the

long run. As the teacher moves on to each new step, he no longer needs to explain

the information that was previously required to understand the last step. That in-

formation has become redundant, replaced by the student’s own understanding. The

redundant information can be phased out to avoid distracting the student from new

learning.

To summarize, the success of a simulation can be enhanced by structuring the

presentation of the simulation. Current research suggests that the following four

guidelines will improve student learning of statistical inference with simulations. The

first guideline has been specifically proven to improve student learning of statistical

inference. The other guidelines are likely to improve learning of inference because

they have improved learning in other domains with a simulation or animation.

1. Ask students to predict the outcome of s simulation before running the simula-

tion.

2. Present the simulation in short, self contained segments until students under-

144

stand each piece.

3. Present all related information simultaneously. Provide oral explanation during

the parts of the simulation that require it. Have visual information remain

visible if it will be needed later.

4. As students begin to understand elements of the simulation, fade out expla-

nations and shift students’ focus to the relationships between the elements.

This can be used both to teach the simulation format as well as the underlying

inference material.

5.7 Conclusion

Simulations provide an opportunity to improve the way students learn statistical

inference. They present information visually in a format that the human mind is well

suited to consume. They align with insights from both Cognitive Load Theory and

Multimedia Learning Theory. Empirical studies show that simulations specifically

improve student learning of statistical inference. Moreover, other research suggests

that current methods of teaching statistical inference disappoint. Simulations provide

a timely way to improve the way we teach inference.

However, simulations are difficult to construct and can be misused. R provides a

way to build a general simulation tool that can illustrate many different applications

of statistical inference. It is free, it is open source, and most methods of statistical

inference are already programmed into R. A general simulation tool that can be easily

extended to new concepts can be written with a modicum of upfront programming.

The program should be divided into two environments and organized around five

generic functions. New simulations can be created by simply supplying new details

to each of the generic functions. Details from previous simulations can be frequently

145

recycled to make new simulations. We introduce the VIT program as a generic

simulation tool based on this blueprint.

A general simulation tool presents an educational advantage. Once students un-

derstand how the simulation program works in one context, they will more quickly

understand how it works in a second context, and then a third, and so on. The

tool will become less and less of a distraction from the material it illustrates. Studies

suggest that the success of simulation tools can also be increased in four ways. Teach-

ers should pair simulations with query-first methods of instruction. Teachers should

initially divide simulations into short, self contained segments. Teachers should or-

ganize simulations and lessons so that related material is presented simultaneously.

And, teachers should phase out explanations as student understanding increases and

shift focus to relationships between concepts.

All of these principles have been tested in educational settings, but only the first

principle has been tested specifically with statistical inference simulations. Simula-

tions that illustrate statistical inference have a common structure and visualize reoc-

curring patterns of relationships between populations, samples, and statistics. Future

work should examine empirically how this structure can best support the principles of

segmenting, simultaneous presentation, and guidance fading. We believe that statis-

tical simulations can further foster learning by developing ways of using ghost images

to retain important information and presenting simulations as an orderly sequence

of segments of growing lengths. In this manner, teachers can lead student attention

from the nature of the simulation program, to the nature of sampling, to the idea of

statistic and parameters, then to the concept of sampling variability, and finally to the

realization that sample statistics attain a stable distribution over repeated sampling.

146

Acknowledgements

We would like to thank the National Science Foundation. This work was supported

by the NSF EAPSI Grant, number 1107709.

Chapter 6

Conclusion

The preceding chapters propose and describe a new way to look at data analysis.

Data analysis is a cognitive task, known elsewhere as sensemaking. During data anal-

ysis, an analyst constructs knowledge about reality by comparing his or her schemas

against quantitative data. When a schema does not agree with trusted data, the

analyst either updates the schema or replaces it entirely. This is an innate task;

humans perform sensemaking all the time by comparing schemas against everyday

observations. However, quantitative data does not resemble everyday observations.

It is precisely measured, which reveals variations that would otherwise go unnoticed.

These variations undermine the sensemaking process, and statistical methods must

be used to guarantee sensible results. This interpretation of data analysis explains

how manipulating data into models can create understanding, and it aligns closely

with prominent descriptions of data analysis in the statistical literature.

As a cognitive process, data analysis is vulnerable to the same weaknesses as other

cognitive processes. One weakness is an over reliance on initial schemas. If an analyst

begins with a faulty schema, he is less likely to notice that the schema is wrong and

then replace it with a correct schema. Even scientists who are trained to be objective,

such as NASA climatologists, are unlikely to notice when this bias occurs. A second

148

weakness is that data analysis can not logically verify its results. Like sensemaking,

its generative methods are built around abductive, not deductive logic. Finally, as a

cognitive process, data analysis relies heavily on the abilities of the mind, which are

limited.

The actual process of data analysis is simple and familiar. It revolves around

predicting, comparing, rejecting, and guessing. Readers may recognize the pattern

of data analysis in the Scientific Method, in Karl Popper’s theories of falsification, in

the Hegelian Dialectic, or in many other places. This thesis even suggests a reason for

these similarities: all of the above are knowledge building methods that ultimately

must interact with a human’s mental sensemaking process. In practice, however, the

simple data analysis task is made complicated by two things the human mind cannot

do. The human mind can not observe all of the information relevant to an analysis,

and the human mind cannot simultaneously attend to all of the information that it

can observe.

This first shortcoming has been studied by philosophers, scientists and statisti-

cians. As a result many tools, such as probability theory and statistical inference,

exist to address it. While an analyst cannot prophesize about unseen information,

they can often make the best predictions possible and quantify exactly how good

those predictions are.

The second shortcoming, the inability to attend to many pieces of information

at once, has been studied by cognitive scientists, psychologists, and educators. The

nature and boundaries of this limitation have been tested and explored. However,

data analysts remain unaware that this limitation exists and affects data analyses.

Unless our limited attentional resources are well managed, this limitation will reduce

our ability to discover complex relationships in a data set. There are ways to manage

attentional resources to promote understanding and discovery. These techniques of

149

attention management can be used to create data analysis tools. This dissertation

demonstrates three tools that improve data analysis by invoking three strategies to

manage attention.

Embedded plots are a class of graphs that preprocess large, complex data sets into

a format that the human mind can readily attend to and explore. Humans are visual

thinkers and our working memory can perform feats with visual information that it

cannot perform with other types of information. Embedded plots bolster this power

by also presenting information in a way that can be explored iteratively, with subparts

presented in isolation as well as in a group. At the lowest level, this exploration is

further facilitated by relying on the viewers automated expertise at reading graphs.

lubridate is a software program that helps analysts process information exter-

nally and, thus, avoid the attentional limitations of the working memory. Computers

are a widely used tool that can expand an analysts’ mental resources, but it is dif-

ficult to use computers with date-time data. Date-time data comes in a variety of

forms and follows idiosyncratic, sometimes illogical, rules. As a result date time data

requires a series of judgements that cannot be easily automated. lubridate makes

it easier to automate these judgements, which restores the power of computers for

processing date-time data outside of the human mind.

Visual Inference Tools (VIT) is a software package that helps develop exper-

tise in statistical inference. Expertise allows analysts to focus their attention effi-

ciently and productively. Introductory statistics classes attempt to build expertise in

future generations of data analysts, but there is evidence that students fail to learn

the material presented in these classes. Simulations offer a proven way to increase

student retention and understanding of inference concepts. Well trained students can

later devote more attention to the data they are analyzing and less attention to the

methods they are using to analyze it.

150

6.1 Original contributions

The specific contributions of this thesis may be summarized as follows. This thesis:

1. Identifies and explains what data analysis is: a mental process adapted to the

use of quantitative data and constrained by the analyst’s inability to mentally

process more than a small amount of data at once.

(a) The dissertation also provides three lines of support to corroborate this

model: argumentation from first principles, testing the structure of data

analysis predicted by this model against established descriptions of data

analysis, and demonstrating that the model can be used to identify and

explain previously unnoticed influences on data analysis.

2. Lends explanatory power to existing descriptions of the data analysis process

by linking them to a well studied body of research and theory, cognitive science.

3. Identifies two obstacles to effective analysis that originate in the cognitive nature

of data analysis. The first of these is the tendency of the mind to preserve

existing schemas in the presence of contradicting information. The second is

the inherently abductive nature of sensemaking. This basis in abduction is

inherited by data analysis, but goes under-recognized. The thesis illustrates

each of these obstacles with a prominent case study.

4. Identifies and defines a class of graphs well suited to exploring complex data,

embedded plots. The dissertation demonstrates the usefulness of embedded

plots with a case study.

5. Expands the current understanding of the grammar of graphics by demonstrat-

ing that graphs are hierarchical, or recursive, in nature. Graphs can be geoms,

151

and geoms can be graphs. The dissertation also provides methods for extending

the concepts of stats and position adjustments.

6. The proposed thesis also applies the above general insights to provide a series

of specific contributions to the scientific community. These include:

(a) lubridate, a software package that enables automated sensemaking meth-

ods to be applied to date-time data, which typically resists mathematical

manipulation. lubridate also popularizes a model of time spans that

requires users to develop more precise schemas for thinking about time

information. This precision fosters more accurate data analysis results.

(b) Visual Inference Tools (VIT), a software package that provides a method

for creating interactive animations that visualize aspects of statistical sam-

pling. VIT provides an alternative way to teach statistical inference, which

is poorly understood by introductory statistics students as it is tradition-

ally taught. VIT allows teachers to improve their instruction by applying

findings from cognitive load theory and multimedia learning theory to their

instruction. VIT is part of a larger research agenda which is examining

whether programs like VIT can be used to teach statistical inference to

younger students. This would have the secondary benefits of creating a

more data literate society, attracting more students to the profession of

statistics, and better advertising the usefulness of statistics to future em-

ployers of statisticians. This last goal is based on the hypothesis that many

employers fail to recognize the value of a trained statistician because they

did not adequately understand statistics as it was presented in the single

introductory class they were required to attend. This model of teaching

inference to younger students through visualization has been adopted by

New Zealand for its K-13 curriculum. VIT is currently being used to pilot

152

test visualization based methods for use in this curriculum.

(c) ggsubplot, a software package that facilitates the exploration of large

and complex data. ggsubplot illustrates how cognitive mechanisms can

be directly applied to make useful exploratory data analysis tools. It al-

lows R users to explore complex data with the use of embedded plots, a

visualization technique that relies on the visual-spatial sketchpad of the

working memory, the isolated elements effect of cognitive load theory, and

automated schemas.

6.2 Future Work

This dissertation is directed at a perceived weakness in the literature of statistics.

Few studies have examined data analysis as a process. As a result, statisticians have

descriptions of data analysis and many tools to use during an analysis, but little

theory to guide the data analysis process. My dissertation proposes a foundation for

such a theory: data analysis is a cognitive process based on sensemaking. I have

corroborated this hypothesis with a number of lines of argument and demonstration.

The next step is to test this theory in an experimental setting. Much has been learned

about other cognitive tasks, such as learning, through empirical study. However, data

analysis has largely escaped experimental scrutiny.

One reason for this may be that experimental study is not a common way for

statisticians to examine the way they use statistics. Statisticians often work with

scientists to collect and analyze experimental data. However, this research is usually

directed by the scientists and applied to other fields than statistics. The type of

studies likely to best test a theory of data analysis and to identify better practices of

analysis are those commonly conducted by psychologists and educational researchers.

As a result, the experimental study of data analysis would likely require, or at least

153

benefit from, an interdisciplinary effort.

This dissertation provides a theory of data analysis that can be tested immediately,

as well as a means of testing it. My model of data analysis predicts that the three

tools presented in this dissertation can improve the success of data analysis. An

initial test of the model would be to prove whether this is in fact true. For the case

of Visual Inference Tools, such studies are already underway.

The work presented in this dissertation also supports a second line of future work.

The cognitive model of data analysis can be used to improve how statistics is taught

to data analysts. Statistical methods are designed to analyze data, and different

methods facilitate this process in different ways. The cognitive model of data anal-

ysis can scaffold student learning by organizing statistical techniques according to

their purpose. A curriculum organized around this model may help students under-

stand how different techniques relate to each other and may promote a “big picture”

understanding of data analysis.

An organizing model of statistics emerges when we combine the sensemaking task

of data analysis with a consideration of how we attempt to make sense of complex

data, see Figure 6.1. We can not attend to every point of data in most data sets at

once. As a result, we must attempt sensemaking with one of two strategies. First,

we can attempt to mentally consider the entire data set by preprocessing it with

visualizations or summaries, the left hand side of Figure 6.1. Although we cannot

attend to the data itself, we can attend to the visualizations or summaries. This

approach lets us perform sensemaking internally, which may provide benefits that

foster discovery and understanding. Second, we can attempt to automate sensemaking

and perform it outside of our mind, the right hand side of Figure 6.1. Many statistical

algorithms do this by checking for discrepancies between data and a model. But before

we can pursue this approach, we must choose a schema to test against the data and

154

transform the schema into some type of externally manipulatable, quantitative form.

This approach allows us to use the data set as it is. The statistical power of this

approach is high because we do not have to discard information by summarizing

the data. A thorough data analysis should try a multitude of approaches, including

techniques that combine methods from the right and left hand sides of Figure 6.1.

Statistical methods can be organized based on the role they play in this process, and

statistics curriculums can be built around this organization.

Reality

Data

Description

Hypothesis

Schema

Understanding

Automated Sensemaking

Mental Sensemaking

ExternalizeSi
m

pl
ify

Observed Theorized

Methods that
transform an idea

into numerical form

• Simulation
• assigning probability

distributions
• stochastic processes
• model based prediction

Methods that automate
sensemaking

• hypothesis testing
• statistical learning
• point estimation

Methods that
reduce data

• Visualization
• PCA, PFA, MDS
• descriptive statistics

Methods that
observe reality

• experimental design
• survey design

Figure 6.1: A cognitive view of data analysis can help organize a statistics curriculum.
Data analysis uses sensemaking to develop mental models that accurately described
observed data. Analysts can either simplify data in a way that allows mental sense-
making to occur (left hand side). Or they can transform schemas into hypotheses
and attempt automated sensemaking, with a statistical or computerized technique.
Statistical methods can be grouped by how they facilitate this process.

155

6.3 Final thoughts

This dissertation introduces the idea of purposefully managing cognitive resources

during a data analysis. The importance of managing these resources will likely in-

crease over the next few decades. Statistics has moved from examining small data

problems to examining big data problems. In the small data context, attentional con-

straints are minimized and knowledge constraints are maximized. But in recent years,

the situation has reversed. The large size of data sets gives stable averages and small

p-values. But this size also strains our ability to attend to the data we possess. Some-

times even computers cannot manage to process and store the large datasets that are

now available; even machines have a finite attention span. The connections that this

thesis develops between data analysis and cognitive science can provide a foundation

for developing statistical tools that purposefully manage cognitive limitations.

References

Ainsworth, S. and VanLabeke, N. (2004), “Multiple forms of dynamic representation,”
Learning and Instruction, 14, 241–255. 5.6

Anderson, E. (1957), “A semigraphical method for the analysis of complex problems,”
Proceedings of the National Academy of Sciences of the United States of America,
43, 923. 3.1

Armstrong, W. (2009), fts: R Interface to tslib (A Time Series Library in C++),
r package version 0.7.6. 4.1

Arnold, P., Education, C., Pfannkuch, M., Wild, C., Regan, M., and Budgett, S.
(2011), “Enhancing Students Inferential Reasoning: From Hands-On To Movies,”
Journal of Statistics Education, 19. 5.2

Arnold, P. and Pfannkuch, M. (2010), “Enhancing students inferential reasoning:
From hands on to movie snapshots,” in Data and context in statistics education:
Towards an evidence-based society. Proceedings of the Eighth International Confer-
ence on Teaching Statistics, Ljubljana, Slovenia, July, Voorburg, The Netherlands:
International Statistical Institute. 5.2

Attfield, S. and Blandford, A. (2009), “Improving the Cost Structure of Sensemaking
Tasks: Analysing User Concepts to Inform Information System Design,” Human-
Computer Interaction–INTERACT 2009, 532–545. 2.3.1

Aud, S., Hussar, W., Planty, M., Snyder, T., Bianco, K., Fox, M., Frohlich, L.,
Kemp, J., and Drake, L. (2010), The condition of education 2010, Washington,
DC: National Center for Education Statistics, Institute of Educational Sciences,
U.S. Department of Education, NCES 2010-028 ed. 5.3.3

Baddeley, A. (2000), “The episodic buffer: a new component of working memory?”
Trends in cognitive sciences, 4, 417–423. 5.3.1

— (2001), “Is working memory still working?” American Psychologist, 56, 851–864.
5.3.1

157

Baddeley, A. and Hitch, G. (1974), “Working memory,” The psychology of learning
and motivation, 8, 47–89. 3.3.2, 5.3.1

Barsalou, L. (1999), “Perceptual symbol systems,” Behavioral and brain sciences, 22,
577–660. 5.3.1

Bartlett, F. (1932), “Remembering: A study in experimental and social psychology.”
. 2.3.1

Bertin, J. (1983), Semiology of graphics, Madison, WI: University of Wisconsin Press.
3.4

Box, G. (1976), “Science and statistics,” Journal of the American Statistical Associ-
ation, 71, 791–799. 2.1, 2.3.1, 2.5

Bransford, J., Brown, A., and Cocking, R. (2000), How people learn: Brain, mind,
experience, and school, Washington, DC: National Academies Press. 2.6.1

Breiman, L. (1985), “Nail finders, edifices, and oz,” in Berkeley Conference in Honor
of Jerzy Neyman and Jack Kiefer, eds. Le Cam, L. and Olshen, R., Hayward, CA:
Institute of Mathematical Sciences, pp. 201–214. 2.2

— (2001), “Statistical modeling: The two Cultures (with comments and a rejoinder
by the author),” Statistical Science, 16, 199–231. 2.2

Brooks, L. (1968), “Spatial and verbal components of the act of recall.” Canadian
Journal of Psychology/Revue canadienne de psychologie, 22, 349. 5.3.1

Bruner, J. (1961), “The act of discovery.” Harvard educational review. 1

Carley, K. and Palmquist, M. (1992), “Extracting, representing, and analyzing mental
models,” Social Forces, 70, 601–636. 2.3.1

Chambers, J. (1983), Graphical methods for data analysis, New York, NY: Chapman
and Hall. 3.1

Chance, B., Mas, R., and Garfield, J. (2004), “Reasoning about Sampling Distri-
butions,” The challenge of developing statistical literacy, reasoning and thinking,
295–323. 5.2

Chandler, P. and Sweller, J. (1991), “Cognitive load theory and the format of instruc-
tion.” Cognition and Instruction, 8, 293–332. 5.6

Chatfield, C. (1995), Problem solving: a statistician’s guide, Chapman and Hall. 2.1,
2.3.1, 2.5, 2.5.1, 2.5.3, 2.5.4

Chernoff, H. (1973), “The use of faces to represent points in k-dimensional space
graphically,” Journal of the American Statistical Association, 361–368. 3.1

158

Cleveland, W. (1994), Elements of graphing data, Summit, New Jersey: Hobart Press.
(document), 3.1, 3.4

Cleveland, W. and Terpenning, I. (1982), “Graphical methods for seasonal adjust-
ment,” Journal of the American Statistical Association, 52–62. 3.1

Cobb, G. (2007), “The introductory statistics course: A ptolemaic curriculum?”
Technology Innovations in Statistics Education, 1. 2.2

Colebourne, S. and O’Neill, B. (2010), “Joda-Time – Java Date and Time API,”
Release 1.6.2. 4.1, 4.5

Cook, D. and Swayne, D. (2007), Interactive and dynamic graphics for data analysis
with R and GGobi, Springer Publishing Company, Incorporated. 2.1

Cowan, N. (2000), “The magical number 4 in short-term memory: A reconsideration
of mental storage capacity,” Behavioral and brain sciences, 24, 87–114. 1, 1, 2.3.1,
2.3.2, 3.3.2, 5.3.2

Cox, D. (2001), “Comment on Statistical Modeling: The Two Cultures (with com-
ments and a rejoinder by the author),” Statistical Science, 16, 199–231. 2.2

— (2007), “Applied statistics: A review,” The Annals of Applied Statistics, 1, 1–16.
2.5, 2.5.3

Dalal, S., Fowlkes, E., and Hoadley, B. (1989), “Risk analysis of the space shuttle:
Pre-Challenger prediction of failure,” Journal of the American Statistical Associa-
tion, 945–957. 2.6.2

Davis, R. (1998), “What is intelligence? Why?” AI Magazine, 19, 91–110. 5.3.1

DeGroot, A. (1965), “Thought and mind in chess,” The Hague: Mouton. 2.6.1

Dehaene, S. (1997), The number sense: How the mind creates mathematics, Oxford
University Press. 3.3.2, 5.3.1

Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., and Tsivkin, S. (1999), “Sources
of mathematical thinking: Behavioral and brain-imaging evidence,” Science, 284,
970–974. 3.3.2, 3, 5.3.1

delMas, R., Garfield, J., and Chance, B. (1999), “A model of classroom research in
action: Developing simulation activities to improve students statistical reasoning,”
Journal of Statistics Education, 7. 5.1, 5.6

Dervin, B. (1998), “Sense-making theory and practice: an overview of user interests
in knowledge seeking and use,” Journal of Knowledge Management, 2, 36–46. 2.3.1

Donald, M. (1991), Origins of the modern mind: Three stages in the evolution of
culture and cognition, Harvard Univ Pr. 2.3.2

159

Farman, J., Gardiner, B., and Shanklin, J. (1985), “Large losses of total ozone in
Antarctica reveal ClOx/NOx interaction,” Nature, 315, 207–201. 2.6.1

Fowler, M. (1997), “Recurring Events for Calendars,” Tech. rep. 4.11

Freedman, D. (2009), Statistical Models and Causal Inference: A Dialogue with the
Social Sciences, Cambridge University Press. 2.2

Friedman, J. (1998), “Data mining and statistics: what’s the connection?” Computing
Science and Statistics: Proceedings of the 29th Symposium on the Interface. 2.2

Garland, J. (2011), “Boost.Date Time – C++ library,” Release 1.46.1. 4.5

Gelman, A. and Shalizi, C. (2010), “Philosophy and the practice of Bayesian statis-
tics,” Arxiv preprint arXiv:1006.3868. 2.2

Gilovich, T., Vallone, R., and Tversky, A. (1985), “The hot hand in basketball: On
the misperception of random sequences,” Cognitive Psychology, 17, 295–314. 2.6.1

Goffman, E. (1974), Frame analysis: An essay on the organization of experience.,
Harvard University Press. 2.3.1

Gribov, A., Unwin, A., and Hoffman, H. (2006), “About Glyphs and Small Multiples:
Gauguin and the Expo,” Statistical Computing and Graphics Newsletter, 17, 14–17.
3.1, 3.4

Grolemund, G. and Wickham, H. (2011), “Dates and Times Made Easy with lubri-
date,” Journal of Statistical Software, 40, 1–25. 1, 4

Grothendieck, G. and Petzoldt, T. (2004), “Date and time classes in R,” R News, 4,
32. (document), 4.2, 4.3

Hallman, J. (2010), tis: Time Indexes and Time Indexed Series, r package version
1.12. 4.1

Helsdingen, A. and Van den Bosch, K. (2009), “Learning to make sense,” in Cognitive
Systems with Interactive Sensors conference. 2.3.1

Hermann, G. (1969), “Learning by discovery: A critical review of studies,” The Jour-
nal of Experimental Educational, 58–72. 1

Hey, T. and Trefethen, A. (2003), “The Data Deluge: An e-Science Perspective,” ,
809–824. 2.2

Hobbs, J., Wickham, H., Hofmann, H., and Cook, D. (2010), “Glaciers melt as moun-
tains warm: A graphical case study,” Computational Statistics, 25, 569–586. 3.1

Huber, P. (1997), Speculations on the Path of Statistics, Princeton University Press.
2.2, 2.7

160

— (2011), Data analysis what can be learned from the past 50 years, Hoboken, New
Jersey: John Wiley & Sons, Inc. 2.2, 2.5, 2.5.4

James, D. and Hornik, K. (2010), chron: Chronological Objects which Can Handle
Dates and Times, r package version 2.3-35. S original by David James, R port by
Kurt Hornik. 4.1

Jeung, H., Chandler, P., and Sweller, J. (1997), “The role of visual indicators in dual
sensory mode instruction,” Educational Psychology, 17, 329–345. 5.3.2

Jonassen, D. and Henning, P. (1996), “Mental models: Knowledge in the head and
knowledge in the world,” in Proceedings of the 1996 international conference on
Learning sciences, International Society of the Learning Sciences, pp. 433–438.
2.3.1

Jones, A. (2008), “The Antarctic ozone hole,” Physics Education, 43, 358. 2.6.1

Kalyuga, S., Chandler, P., and Sweller, J. (1999), “Managing split-attention and
redundancy in multimedia instruction,” Applied Cognitive Psychology, 13, 351–371.
5.3.2

— (2000), “Incorporating learner experience into the design of multimedia instruc-
tion.” Journal of Educational Psychology, 92, 126. 5.3.2

Klein, G. and Crandall, B. (1995), “The role of mental simulation in problem solv-
ing and decision making,” Local applications of the ecological approach to human-
machine systems, 2, 324–358. 2.3.1, 2.6.1

Klein, G., Phillips, J., Rall, E., and Peluso, D. (2003), “A Data Frame Theory of
Sense Making”,” in Expertise out of context: proceedings of the sixth International
Conference on Naturalistic Decision Making, pp. 113–155. 2.3.1, 2.6.1

Kleiner, B. and Hartigan, J. (1981), “Representing points in many dimensions by
trees and castles,” Journal of the American Statistical Association, 260–269. 3.1

Kotovsky, J. and Simon, H. (1985), “Why are some problems hard? Evidence from
Tower of Hanoi,” Cognitive Psychology, 17, 248–294. 3.3.2

Kuhn, T. S. (1962), The Structure of Scientific Revolutions, Chicago, IL: University
of Chicago Press. 2.4.1

Lakoff, G. and Núñez, R. (1997), “The metaphorical structure of mathematics:
Sketching out cognitive foundations for a mind-based mathematics,” Mathemat-
ical reasoning: Analogies, metaphors, and images, 21–89. 2.1

— (2000), Where mathematics comes from: How the embodied mind brings mathe-
matics into being, Basic Books. 2.1, 3.3.2, 5.3.1

161

Lane, D. and Peres, S. (2006), “Interactive simulations in the teaching of statistics:
Promise and pitfalls,” in 7th International Conference on the Teaching of Statistics.
5.1, 5.6

Lane, D. and Scott, D. (2000), “Simulations, case studies, and an online text: A
web-based resource for teaching statistics,” Metrika, 51, 67–90. 5.1

Lane, D. and Tang, Z. (2000), “Effectiveness of simulation training on transfer of
statistical concepts,” Journal of Educational Computing Research, 22, 383–396. 5.1

Lanzenberger, M., Miksch, S., and Pohl, M. (2003), “The Stardinates-Visualizing
highly structured data,” in Proceedings of the Seventh International Conference on
Information Visualization, IEEE, pp. 47–52. 3.1

Lavine, M. (1991), “Problems in extrapolation illustrated with space shuttle O-ring
data,” Journal of the American Statistical Association. 2.6.2

Lee, H., Plass, J., and Homer, B. (2006), “Optimizing cognitive load for learning from
computer-based science simulations.” Journal of Educational Psychology, 98, 902.
5.6

Lipper, M. (2008), “runt – Ruby Temporal Expressions,” Release 0.7.0. 4.11

Luck, S. and Vogel, E. (1997), “The capacity of visual working memory for features
and conjunctions,” Nature, 390, 279–280. 3.3.2

Lundberg, C. (2000), “Made sense and remembered sense: Sensemaking through
abduction,” Journal of Economic Psychology, 21, 691–709. 2.3.1

Macabebe, E., Culaba, I., and Maquiling, J. (2010), “Pre-conceptions of Newton’s
Laws of Motion of Students in Introductory Physics,” in AIP Conference Proceed-
ings, vol. 1263, p. 106. 2.6.1

MacKay, R. and Oldford, R. (2000), “Scientific method, statistical method and the
speed of light,” Statistical Science, 15, 254–278. 2.5, 2.5.2

Makar, K. and Rubin, A. (2009), “A framework for thinking about informal statistical
inference,” Statistics Education Research Journal, 8, 82–105. 5.2

Mallows, C. (1998), “The Zeroth Problem,” The American Statistician, 52, 1–9. 2.2

— (2006), “Tukey’s Paper after 40 years (with discussion),” Technometrics, 48, 319–
325. 2.2

Mallows, C. and Walley, P. (1980), “A theory of data analysis?” Proceedings of the
business and economics section, American Statistical Association. 2.1, 2.2, 2.3

Mautone, P. and Mayer, R. (2007), “Cognitive aids for guiding graph comprehension.”
Journal of Educational Psychology, 99, 640. 5.6

162

Mayer, R. (1989), “Systematic thinking fostered by illustrations in scientific text.”
Journal of Educational Psychology, 81, 240. 5.3.2

— (2001), Multimedia learning, New York, NY: Cambridge University Press, 1st ed.
5.3.2

— (2009), Multimedia learning, New York, NY: Cambridge University Press, 2nd ed.
1, 3.1, 5.3.2, 5.6

Mayer, R. and Anderson, R. (1991), “Animations need narrations: An experimental
test of a dual-coding hypothesis.” Journal of Educational Psychology, 83, 484. 5.3.2

— (1992), “The instructive animation: Helping students build connections between
words and pictures in multimedia learning.” Journal of Educational Psychology, 84,
444. 5.3.2

Mayer, R. and Chandler, P. (2001), “When learning is just a click away: Does simple
user interaction foster deeper understanding of multimedia messages?” Journal of
Educational Psychology, 93, 390. 5.6

Mayer, R., Dow, G., and Mayer, S. (2003), “Multimedia learning in an interactive self-
explaining environment: What works in the design of agent-based microworlds?”
Journal of Educational Psychology, 95, 806. 5.6

Mayer, R. and Gallini, J. (1990), “When is an illustration worth ten thousand words?”
Journal of Educational Psychology, 82, 715. 5.3.2

Mayer, R. and Moreno, R. (1998), “A split-attention effect in multimedia learning:
Evidence for dual processing systems in working memory.” Journal of Educational
Psychology, 90, 312. 5.3.2

Miller, G. (1956), “The magical number seven, plus or minus two: Some limits on
our capacity for processing information.” Psychological Review, 63, 81. 3.3.2, 5.3.2

— (1962), “Some psychological studies of grammar.” American Psychologist, 17, 748.
2.6.1

Mills, J. (2002), “Using computer simulation methods to teach statistics: A review
of the literature,” Journal of Statistics Education, 10, 1–20. 1

Minard, C. (1862), Des Tableaux graphiques et des cartes figuratives, par M. Mi-
nard,..., Paris, France: impr. de Thunot. 3.1

Minsky, M. (1975), “A framework for the representation of knowledge,” The psychol-
ogy of computer vision, 211–277. 2.3.1

Molina, M. and Rowland, F. (1974), “Stratospheric sink for chlorofluoromethanes,”
Nature, 249, 810–812. 2.6.1

163

Moore, D. (1990), “Uncertainty,” On the shoulders of giants: New approaches to
numeracy, 95–137. 2.3.1

Moreno, R. and Mayer, R. (1999), “Cognitive principles of multimedia learning: The
role of modality and contiguity.” Journal of Educational Psychology, 91, 358. 5.3.2

— (2002), “Learning science in virtual reality multimedia environments: Role of
methods and media.” Journal of Educational Psychology, 94, 598. 5.3.2

Mousavi, S., Low, R., and Sweller, J. (1995), “Reducing cognitive load by mixing
auditory and visual presentation modes.” Journal of Educational Psychology, 87,
319. 5.3.2

Moyer, R. and Landauer, T. (1967), “Time required for judgements of numerical
inequality,” Nature. 3.3.2, 5.3.1

Mulaik, S. (1985), “Exploratory statistics and empiricism,” Philosophy of Science,
52, 410–430. 2.3.1

Neisser, U. (1967), Cognitive psychology, Appleton-Century-Crofts New York. 2.3.1

— (1976), Cognition and reality: Principles and implications of cognitive psychology.,
WH Freeman/Times Books/Henry Holt & Co. 2.3.1, 1

Norman, D. (1993), Things that make us smart: Defending human attributes in the
age of the machine, no. 842, Basic Books. 2.3.2

Paivio, A. (1969), “Mental imagery in associative learning and memory.” Psycholog-
ical Review, 76, 241. 5.3.1

— (1986), Mental representations: A dual coding approach, Oxford, England: Oxford
University Press, USA. 5.3.1

— (2006), Mind and its evolution: A dual coding theoretical approach., Lawrence
Erlbaum Associates Publishers. 5.3.1

Parker, R. (2010), “Basketball Geek: Advancing our understanding of the game of
basketball,” . 4.10

Pea, R. (1987), “Cognitive technologies for mathematics education,” Cognitive Sci-
ence and Mathematics Education, 89–122. 2.2

Peirce, C. (1932), Collected papers of Charles Sanders Peirce, vol. 1, Belknap Press.
2.6.2

Peres, S., Lane, D., and Griggs, K. (2010), “Using simulations for active learning: The
query-first method in practice,” in 8th International Conference on the Teaching
of Statistics. 5.1, 5.6

164

Peterson, L. and Peterson, M. (1959), “Short-term retention of individual verbal
items.” Journal of experimental psychology, 58, 193. 5.3.2

Pfannkuch, M. (2006), “Comparing box plot distributions: A teacher’s reasoning.”
Statistics Education Research Journal, 5, 27–45. 5.2

— (2010), “Inferential reasoning: learning to “make a call” in practice,” in Proc. 8th
Int. Conf. Teaching Statistics. 5.2, 5.3.3

Piaget, J. and Cook, M. (1952), “The origins of intelligence in children.” . 2.3.1

Pickett, R. and Grinstein, G. (1988), “Iconographic displays for visualizing multidi-
mensional data,” in Proc. IEEE Conf. on Systems, Man and Cybernetics, IEEE
Press, Piscataway, NJ, vol. 514, p. 519. 3.1

Pirolli, P. and Card, S. (2005), “The Sensemaking Process and Leverage Points for
Analyst Technology as Identified Through Cognitive Task Analysis,” . 2.3.1, 2.3.1

Portfolio and Risk Advisory Group, Commerzbank Securities (2009), its: Irregular
Time Series, r package version 1.1.8. 4.1

Pratt, D., Johnston-Wilder, P., Ainley, J., and Mason, J. (2008), “Local and global
thinking in statistical inference,” Statistics Education Research Journal, 7, 107–129.
5.2

Presidential Commission on the Space Shuttle Challenger Accident (1986), Report
of the Presidential Commission on the Space Shuttle Challenger Accident (pbk).,
vol. 1, Washington, DC: Presidential Commission on the Space Shuttle Challenger
Accident. 2.6.2, 2.6.2

Qu, Y. and Furnas, G. (2008), “Model-driven formative evaluation of exploratory
search: A study under a sensemaking framework,” Information Processing & Man-
agement, 44, 534–555. 2.3.1

R Development Core Team (2010), R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria. 3.4, 4, 4.1,
5.1

— (2012), Writing R extensions, http://cran.r-project.org/doc/manuals/

R-exts.pdf, version 2.15.1 ed. 1

Reed, S. (2010), Thinking visually, New York, NY: Psychology Press. 5.3.1

Renkl, A. and Atkinson, R. (2003), “Structuring the transition from example study
to problem solving in cognitive skill acquisition: A cognitive load perspective,”
Educational Psychologist, 38. 1

http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-exts.pdf

165

Resnick, L. (1988), “Treating Mathematics as an Ill-Structured Discipline,” Educa-
tional Resources Information Center. 2.2

Revolution Analytics (2012), “What is open source R?” . 5.4

Rosch, E. (1977), “Classification of real-world objects: Origins and representations in
cognition,” in Thinking: Reading in cognitive science, eds. Johnson-Laird, P. and
Watson, P., Cambridge University Press, pp. 212–222. 2.3.1

Rosch, E. and Mervis, C. (1975), “Family resemblances: Studies in the internal struc-
ture of categories,” Cognitive Psychology, 7, 573–605. 2.3.1, 2.4.2

Rozeboom, W. (1997), “Good science is abductive, not hypothetico-deductive,” in
What if there were no significance tests?, eds. Harlow, L., Mulaik, S., and Steiger,
J., Lawrence Erlbaum Associates, pp. 335–392. 2.6.2

Rudolph, J. (2003), “Into the big muddy and out again: Error persistence
and crisis management in the operating room,” Unpublished doctoral dis-
sertation, Boston College, Chestnut Hill, Mass., at http://escholarship. bc.
edu/dissertations/AAI3103269. 2.3.1

Rumelhart, D. (1980), “Schemata: The building blocks of cognition,” in Theoretical
issues in reading comprehension: Perspectives from cognitive psychology, linguis-
tics, artificial intelligence, and education, eds. Spiro, R. J., Bruce, B. C., and
Brewer, W. F., Lawrence Erlbaum Associates. 1

Rumelhart, D. and Ortony, A. (1976), The representation of knowledge in memory,
Center for Human Information Processing, Dept. of Psychology, University of Cal-
ifornia, San Diego. 2.3.1

Russell, D., Stefik, M., Pirolli, P., and Card, S. (1993), “The cost structure of sense-
making,” in CHI ’93: Proceedings of the INTERACT ’93 and CHI ’93 conference
on Human factors in computing systems, New York, NY, USA: ACM, pp. 269–276.
2.3.1, 2.3.1

Ryan, J. and Ulrich, J. (2010), xts: Extensible Time Series, r package version 0.7-1.
4.1

Sarkar, D. (2008), Lattice: multivariate data visualization with R, Springer Verlag.
3.1, 3.4

Schank, R. and Abelson, R. (1977), “Scripts, Plans, Goals, and Understanding:: An
Inquiry into Human Knowledge Structures,” . 2.3.1

Schloerke, B., Crowley, J., Cook, D., Hofmann, H., andWickham, H. (2011), “GGally:
Extension to ggplot2,” http://cran.r-project.org. 3.4

166

Schneider, W. and Shiffrin, R. (1977), “Controlled and automatic human information
processing: I. Detection, search, and attention.” Psychological Review, 84, 1. 3.3.2

Shaughnessy, J. (2007), “Research on statistics and learning,” Second handbook of
research on mathematics teaching and learning: A project of the National Council
of Teachers of Mathematics, 957. 5.2, 5.3.3

Shiffrin, R. and Schneider, W. (1977), “Controlled and automatic human information
processing: II. Perceptual learning, automatic attending and a general theory,”
Psychological review, 84, 127. 3.3.2

Shneiderman, B. (1996), “The eyes have it: A task by data type taxonomy for infor-
mation visualizations,” in Visual Languages, 1996. Proceedings., IEEE Symposium
on, IEEE, pp. 336–343. 3.5

Smith, E. (1978), “Theories of semantic memory,” Handbook of learning and cognitive
processes, 6, 1–56. 2.3.1

Smith, P., Giffin, W., Rockwell, T., and Thomas, M. (1986), “Modeling fault diagnosis
as the activation and use of a frame system,” Human Factors: The Journal of the
Human Factors and Ergonomics Society, 28, 703–716. 2.3.1

Stanfield, R. and Zwaan, R. (2001), “The effect of implied orientation derived from
verbal context on picture recognition,” Psychological Science, 12, 153–156. 3.3.2,
5.3.1

Sweller, J. (1988), “Cognitive load during problem solving: Effects on learning,”
Cognitive science, 12, 257–285. 3.3.2, 5.3.2

— (1994), “Cognitive load theory, learning difficulty, and instructional design,” Learn-
ing and instruction, 4, 295–312. 3.1, 3.3.2

— (2003), “Evolution of human cognitive architecture,” Psychology of Learning and
Motivation, 43, 215–266. 1, 3.3.2

— (2010), “Element interactivity and intrinsic, extraneous, and germane cognitive
load,” Educational Psychology Review, 22, 123–138. 1

Sweller, J., Ayers, P., and Kalyuga, S. (2011), Cognitive load theory, New York, NY:
Springer. 1, 1, 3.3.2, 5.3.2, 5.6

Sweller, J., van Merrienboer, J., and Paas, F. (1998), “Cognitive Architecture and
Instructional Design,” Educational Psychology Review, 10, 251–296. 2.3.2

Tierney, J. (1991), “Behind Monty Hall’s doors: Puzzle, debate and answer,” New
York Times, 140, 20. 2.6.1

167

Tindall-Ford, S., Chandler, P., and Sweller, J. (1997), “When two sensory modes are
better than one.” Journal of Experimental Psychology: Applied, 3, 257. 5.3.2

Trapletti, A. and Hornik, K. (2009), tseries: Time Series Analysis and Computa-
tional Finance, r package version 0.10-22. 4.1

Tufte, E. (1997), Visual explanations: Images and quantities, evidence and narrative,
Graphics Press, 1st ed. 2.6.2

Tukey, J. (1960), “Conclusions vs decisions,” Technometrics, 2, 423–433. 2.6.1

— (1962), “The Future of Data Analysis,” The Annals of Mathematical Statistics,
33, 1–67. 2.1, 2.2, 2.3

Tukey, J. and Wilk, M. (1966), “Data analysis and statistics: An expository
overview,” in Proceedings of the November 7-10, 1966, Fall Joint Computer Con-
ference, ACM, pp. 695–709. 2.1, 2.3, 2.3.1, 2.5

Tversky, A. and Kahneman, D. (1974), “Judgement under uncertainty,” Science, 185,
1124–1131. 2.3.1, 2.6.2

— (1981), “The framing of decisions and the psychology of choice,” Science, 211,
453–458. 2.3.1

Unwin, A. (2001), “Patterns of Data Analysis?” Journal of the Korean Statistical
Society, 30, 219–230. 2.2

Vance, A. (2009), “Data analysts captivated by R’s power,” New York Times, 6. 5.4

Varian, H. (2009), “Hal Varian on how the web challenges managers,” McKinsey
Quarterly, 1. 2.2

Velleman, P. (1997), The philosophical past and the digital future of data analysis,
Princeton University Press. 2.2

Viertl, R. (2002), “On the future of data analysis,” Austrian Journal of Statistics,
31, 241–244. 2.2, 2.7

Vosniadou, S. and Brewer, W. (1989), The concept of the earth’s shape: A study of
conceptual change in childhood, University of Illinois at Urbana-Champaign Center
for the Study of Reading. 2.6.1

Walsh, V. (2003), “A theory of magnitude: Common cortical metrics of time, space
and quantity,” Trends in Cognitive Sciences, 7, 483–488. 3.3.2, 5.3.1

Weick, K. (1995), Sensemaking in organizations (Foundations for organizational sci-
ence), Sage Publications, Inc. 2.3.1

168

Weick, K., Sutcliffe, K., and Obstfeld, D. (2005), “Organizing and the Process of
Sensemaking,” Organization Science, 16, 409–421. 2.3.1

Weir, C., McManus, I., and Kiely, B. (1990), “Evaluation of the teaching of statistical
concepts by interactive experience with Monte Carlo simulations,” British Journal
of Educational Psychology, 61, 240–247. 5.1

Wender, K. and Muehlboeck, J. (2003), “Animated diagrams in teaching statistics,”
Behavior Research Methods, 35, 255–258. 5.1

Wertheimer, M. (1938), “Laws of organization in perceptual forms,” A source book of
Gestalt psychology, 71–88. 2.3.1

Wickham, H. (2009), ggplot2: Elegant graphics for data analysis, Springer New
York. 3.1, 3.4, 4.10

— (2010), “A layered grammar of graphics,” Journal of Computational and Graphical
Statistics, 19, 3–28. 3.1, 3.4, 3.4

— (2011), “The split-apply-combine strategy for data analysis,” Journal of Statistical
Software, 40, 1–29. 3.4.2

Wickham, H., Hofmann, H., Wickham, C., and Cook, D. (Submitted), “Glyph-maps
for Visually Exploring Temporal Patterns in Climate Data and Models,” Environ-
metrics. 3.1

Wild, C. (1994), “Embracing the “Wider View” of Statistics,” The American Statis-
tician, 48, 163–171. 2.1, 2.2

Wild, C. and Pfannkuch, M. (1999), “Statistical thinking in empirical enquiry,” Inter-
national Statistical Review/Revue Internationale de Statistique, 67, 223–248. 2.1,
2.2, 2.4.2, 2.5, 2.5.2, 2.5.3

Wild, C., Pfannkuch, M., Regan, M., and Horton, N. (2011), “Towards more acces-
sible conceptions of statistical inference,” Journal of the Royal Statistical Society:
Series A (Statistics in Society), 174, 247–295. 5.2

Wild, C., Pfannkuch, M., and Regan, M.and Horton, N. (2010), “Inferential reason-
ing: Learning to “make a call” in theory,” in 8th International Conference on the
Teaching of Statistics. 5.2

Wilkinson, L. and Wills, G. (2005), The grammar of graphics, Springer Verlag. 3.1,
3.4, 3.4.1.3

Woodworth, R. (1971), Experimental psychology., Holt, Rinehart and Winston. 2.6.1

Wu, A., Zhang, X., and Cai, G. (2010), “An interactive sensemaking framework for
mobile visual analytics,” in Proceedings of the 3rd International Symposium on
Visual Information Communication, ACM, p. 22. 2.3.1

169

Wuertz, D. and Chalabi, Y. (2010), timeSeries: Rmetrics - Financial Time Series
Objects, r package version 2110.87. 4.1

Yi, J., Kang, Y., Stasko, J., and Jacko, J. (2008), “Understanding and characterizing
insights: how do people gain insights using information visualization?” in BELIV
’08: Proceedings of the 2008 conference on BEyond time and errors: novel evaLu-
ation methods for Information Visualization, New York, NY, USA: ACM, pp. 1–6.
2.3.1

Zeileis, A. and Grothendieck, G. (2005), “zoo: S3 Infrastructure for Regular and
Irregular Time Series,” Journal of Statistical Software, 14, 1–27. 4.1

Zhang, J. (1997), “The nature of external representations in problem solving,” Cog-
nitive science, 21, 179–217. 2.3.2

— (2000), “External representations in complex information processing tasks,” En-
cyclopedia of library and information science, 68, 164–180. 2.3.2

Zhang, P. (2010), “Sensemaking: Conceptual changes, cognitive mechanisms, and
structural representations. A qualitative user study,” Unpublished doctoral disser-
tation, University of Maryland, at http://drum.lib.umd.edu/handle/1903/10371.
2.3.1

Ziemer, H. and Lane, D. (2000), “Evaluating the Efficacy of the Rice University Vir-
tual Statistics Lab,” Poster presented at the 22nd Annual Meeting of the National
Institute on the Teaching of Psychology, St. Petersburg Beach, FL. 5.1

Zwaan, R. and Yaxley, R. (2003), “Spatial iconicity affects semantic relatedness judg-
ments,” Psychonomic Bulletin & Review, 10, 954–958. 3.3.2, 5.3.1

	Abstract
	Acknowledgements
	1 Introduction
	2 A Cognitive Interpretation of Data Analysis
	2.1 Introduction
	2.2 A theory of data analysis
	2.3 The role of cognition in data analysis
	2.4 Making sense of measured data
	2.5 A conceptual model of data analysis
	2.6 Implications for data analysis practice
	2.7 Conclusion

	3 Visualizing complex data with embedded plots
	3.1 Introduction
	3.2 Case Study: Analyzing complex data
	3.3 Benefits of embedded plots
	3.4 Implementing embedded plots with the grammar of graphics
	3.5 Conclusion

	4 Dates and times made easy with lubridate
	4.1 Introduction
	4.2 Motivation
	4.3 Parsing date-times
	4.4 Manipulating date-times
	4.5 Arithmetic with date-times
	4.6 Rounding dates
	4.7 Time zones
	4.8 Daylight savings time
	4.9 Case study 1
	4.10 Case study 2
	4.11 Conclusion

	5 How and why to teach statistical inference with simulations in R
	5.1 Introduction
	5.2 Background
	5.3 Why teach with visual simulations
	5.4 Why program visual simulations in R
	5.5 How to implement visual simulations in R
	5.6 How to use simulations in the classroom
	5.7 Conclusion

	6 Conclusion
	6.1 Original contributions
	6.2 Future Work
	6.3 Final thoughts

	References

