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Abstract

Rainforests are among the most charismatic as well as the most endangered ecosys-

tems of the world. However, although the effects of climate change on tropical for-

ests resilience is a focus of intense research, the conditions for their equally

impressive temperate counterparts remain poorly understood, and it remains unclear

whether tropical and temperate rainforests have fundamental similarities or not.

Here we use new global data from high precision laser altimetry equipment on

satellites to reveal for the first time that across climate zones ‘giant forests’ are a

distinct and universal phenomenon, reflected in a separate mode of canopy height

(~40 m) worldwide. Occurrence of these giant forests (cutoff height > 25 m) is neg-

atively correlated with variability in rainfall and temperature. We also demonstrate

that their distribution is sharply limited to situations with a mean annual precipita-

tion above a threshold of 1,500 mm that is surprisingly universal across tropical and

temperate climates. The total area with such precipitation levels is projected to

increase by ~4 million km2 globally. Our results thus imply that strategic manage-

ment could in principle facilitate the expansion of giant forests, securing critically

endangered biodiversity as well as carbon storage in selected regions.
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1 | INTRODUCTION

Tropical and temperate rainforest provide important ecosystem ser-

vices to humanity (Millennium Ecosystem Assessment, 2005). Provi-

sioning (e.g., wood) and regulating (e.g., climate) services can more

easily be quantified than cultural and spiritual services. Yet, it could

be argued that the latter are equally important to humanity because

our choices and attitudes are strongly influenced by nonrational dri-

vers, as demonstrated for instance by the work of Nobel laureates

Kahneman and Thaler (Kahneman, 2011). While spiritual ecosystem

services are hard to measure, the gigantic trees of tropical and tem-

perate rainforests clearly have a profound effect on human
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perception of nature. This is illustrated vividly by a quote from Dar-

win who, in the midst of the Brazilian forest, wrote “It is not possible

to give an adequate idea of the higher feelings of wonder, admira-

tion, and devotion which fill and elevate the mind.” (Darwin, 1958).

Similarly, John Steinbeck noted that in the temperate rainforest “The

redwoods, once seen, leave a mark or create a vision that stays with

you always. . .. From them comes silence and awe” (Steinbeck, 1962).

Here we address the question whether these iconic forests are

simply part of a continuum of forest types or rather a real class apart

when it comes to their height resulting in a distinct mode in the fre-

quency distribution of canopy height on a global scale. We also ask

if it is possible to define the critical conditions for such giants to

thrive. Until recently these questions were surprisingly hard to

address, as systematic global measurement of canopy height was

beyond our reach. This has changed with the availability of high pre-

cision laser altimetry equipment on satellites. We can now assess

height distribution on a scale of 0.5° grid cells. In each grid cell,

there is a large set of measurements based on laser beams sampling

areas with a diameter of ~50–150 m. After correcting for topogra-

phy, these measurements provide an estimate of the distribution of

vegetation height (Los et al., 2012; Rosette, North, & Su�arez, 2008).

Here we explore this fascinating new source of information to assess

for the first time whether giant forests are a distinct phenomenon

and to determine the critical climatic conditions for their persistence.

2 | MATERIALS AND METHODS

Rather than studying the height distribution of individual trees

within forests, we focus on the highest parts of the canopies. We

did this by determining the 90th percentile of vegetation height

within each 0.5° grid cell (a conservative measure for the maximum

canopy height). We excluded human-dominated lands from analysis.

The global vegetation height product (downloaded from https://

www.researchgate.net/publication/265641148_GLAS_height) was

derived from the Geoscience Laser Altimeter System (GLAS) aboard

the Ice, Cloud and land Elevation Satellite (ICESat) (Los et al., 2012).

GLAS collected laser altimeter data intermittently between 20 Febru-

ary 2003 and 11 October 2009. Measurement campaigns were car-

ried out one to three times a year and lasted from about a week to

longer than a month. The GLAS along-track sampling rate was

around 172 m and footprints sizes varied between about 149 m to

51 m in diameter (major axis). Overall a few percent of the total land

cover is covered by the measurements. Filters to identify spurious

data were developed for a desert site; spurious data include data

affected by clouds, atmosphere, or steep terrain (Los et al., 2012).

Vegetation height was estimated from the elevation of the first

return and the last two Gaussians using the elevation of the Gaus-

sian with the largest amplitude (Los et al., 2012). Based on the

desert analysis, a minor adjustment was applied to the heights from

the model by Rosette et al. (2008). The filtered and adjusted heights

were subsequently tested on aircraft vegetation height data from

ten sites across the globe (Canada, the Netherlands, Sweden, United

Kingdom, Peru, Germany, and Australia). These sites differed in

relief, vegetation density, tree age, and tree height. The filter

improved the correspondence between aircraft and satellite esti-

mated vegetation height, the correlation coefficient increased from

0.33 to 0.76, and the root means square error decreased by a factor

3 to about 4.5–6 m. More stringent filtering (difference aggressive

filter and weaker filter) increased the 90th percentile in tropical for-

est by 0–3 m, whereas in mountainous regions outside the tropics

height decreased by 0–4 m. No differences were found in height

estimates across GLAS laser campaigns (Los et al., 2012). Finally, a

histogram of heights from 0 to 70 m in 0.5 m intervals were aggre-

gated in each 0.5 9 0.5° grid cell (within each cell, the numbers of

effective LiDAR footprints are 1,444 � 1,297 and 4,247 � 2,968 for

the filtered and unfiltered data, respectively), and the 90th percentile

highest heights were used in our analysis. This provides direct esti-

mates of vegetation heights that do not involve climatic variables or

vegetation cover, thus allowing for correlative inference of these

variables with height.

Before analyses, we excluded human-used, water, and bare areas

using the Globcover dataset during 2004–2006 by European Space

agency (Defourny et al., 2006)(downloaded from http://due.esrin.e

sa.int/page_globcover.php). This remote-sensing product based on

the MERIS instrument aboard ENVISAT provides information on 22

categories of global land cover at 300 m resolution. Tree cover data

were extracted from the MODIS Vegetation Continuous Field (VCF)

Collection 5 dataset for the year 2001 (downloaded from http://

www.landcover.org/data/vcf/). The MODIS VCF product estimates

percent tree cover at a spatial resolution of 250 m. The mean annual

precipitation (MAP) data at 1 km resolution were downloaded from

the WorldClim website (Hijmans, Cameron, Parra, Jones, & Jarvis,

2005)(http://worldclim.org/). The mean annual water balance (WB)

data from the GNV 183 dataset at 0.5° resolution (http://geonet

work.grid.unep.ch/) were used to estimate net precipitation. The WB

estimates were based on monthly averages of climate data during

1920–1980 (Tateishi & Ahn, 1996). To check the precipitation condi-

tion on which giant forests are dependent, we computed the stabil-

ity landscape directly from the data (Livina, Kwasniok, & Lenton,

2010). We estimated the equilibrium values by determining the local

minima and maxima of the probability density function numerically

(Figure 1b); we also plotted the percentage of giant forest cells (i.e.,

cells with canopy taller than 25 m) within a window of 200 mm

MAP moving along the MAP gradient at a step of 20 mm (Fig-

ure 1c). We further investigated the distribution of giant forests by

climatic regions (i.e., tropics vs. nontropics) using the FAO map of

thermal climate zones of the world (http://gaez.fao.org/). Before anal-

yses, all datasets were resampled to a consistent spatial resolution of

0.5 9 0.5°.

To test if our results are dependent of precipitation data used,

and if the use of filter in the height product can have major influ-

ences, we repeated our analyses using the mean annual precipitation

data during 1950–2000 from the Climate Research Unit (CRU, Har-

ris, Jones, Osborn, & Lister, 2014, downloaded from http://www.cru.

uea.ac.uk/data) and the raw (unfiltered) height data. In addition, to
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F IGURE 1 The maximum canopy height of the world’s forests as a function of mean annual precipitation. (a) Frequency distributions of
canopy height for different ranges of precipitation illustrating that a distinct mode with a height of ~40 m arises for precipitation >1,500 mm/
year. (b) Maxima (filled dots) in the probability density (the blue-yellow-red scale represents a point density gradient from low to high) of
canopy heights illustrate the distinct character of giant forest, and minima (open dots) illustrate that a canopy height of ~25 m is relatively
rare. (c) The percentage of 0.5° grid cells that has giant forest (canopy height > 25 m) rises steeply from an annual precipitation of 1,500 mm
onwards (see materials and methods in Supporting information)
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assess if forest harvest could be responsible for the observed pat-

tern, we repeated our analyses excluding areas with significant

recent forest loss. Using Landsat images, Hansen et al. (Hansen

et al., 2013) compiled a global forest loss data during 2000–2013 at

a fine resolution of 30 m. We aggregated this dataset to 0.5-degree

grid cells and excluded the cells with forest loss >0.5% of the grid

cell area.

3 | RESULTS AND DISCUSSION

As a first step, we examine the frequency distributions of the maxi-

mum canopy height at different rainfall levels worldwide (Figure 1).

Rather than a gradual increase of tree height with precipitation

(Klein, Randin, & K€orner, 2015), our analysis reveals a marked dis-

continuity in canopy height distributions around a mean annual pre-

cipitation of ~1,500 mm. Below this critical precipitation, maximum

canopy height peaks around a mode of 10–20 m. Although beyond a

precipitation of 1,500 mm/year an alternative mode of tall forests

arises with a maximum canopy height of ~40 m. Obviously, individ-

ual trees can be much taller than the ~40 m mode (Koch, Stillet, Jen-

nings, & Davis, 2004). However, rather than looking at individual

giants we focus here on the distinct tall mode that emerges from

the global data. As individual giant trees are typically found within

the tall canopies we detect, we will loosely refer to our tall mode

(>25 m) as ‘giant forests’ hereafter. A map of the global distribution

of such giant forests (Figure 2) confirms that they are typical of the

global hotspots of high rainfall.

The idea that the giant forest is a qualitatively distinct phe-

nomenon is supported by a marked discontinuity in the relationship

between tree cover and tallness (Figure 3). Canopy height increases

almost linearly with tree cover, but there is an abrupt break in this

pattern at a cover of about 60%. Beyond that point, we find the

giant forest with a tree cover of ~80% and a canopy height of

~40 m. Between the giant forest and the other forests of the world,

there is a paucity in the sense that there are few forests with a

cover around 60% and a canopy height around 25 m. To probe

robustness of our findings against potential confounding effects of

data preprocessing, we also repeated our analysis using a different

precipitation database and unfiltered data on canopy height (Figures

S1 and S2 respectively).

Our results first of all raise the question what might explain the

bimodality, or—phrased otherwise—the paucity of intermediate

sized trees. As shown in a recent study (Van Nes et al., 2016; Xu

et al., 2016) for the tropics, the discontinuity in canopy height corre-

sponds to the sharp distinction between forests and savannas as

alternative stable states (Hirota, Holmgren, Van Nes, & Scheffer,

2011; Staver, Archibald, & Levin, 2011). However, the giant forest

also occurs in temperate climates, and patterns turn out to be sur-

prisingly universal across climate zones. Both in tropical and in tem-

perate climates, giant forest represents a distinct mode in canopy

height distributions, and in both climate zones, canopies taller than

25 m require an annual precipitation beyond 1,500 mm (Figure 4).

One possible explanation for bimodality of ecosystem states is

bimodality of environmental conditions (Scheffer & Carpenter, 2003).

This possibility cannot be entirely excluded as we do not have infor-

mation about all environmental factors. However, the two modes

cannot be explained from a bimodality of rainfall as mean annual

precipitation is rather continuously distributed (Figure 4 panels a and

b). Another possibility would be that the paucity of canopies of

intermediate height would be due to a systematic global pattern in

harvest. However, this seems unlikely. Although we cannot exclude

a possible role of historical harvest patterns, we excluded human-

used lands, and also checked that the results are robust when only

considering pixels without signs of recent forest loss (Figure S3).

Floristic observations support the idea that giant forests are a

class apart. This is perhaps clearest in the tropics where savannas

have a taxonomically distinct set of tree species that are fire adapted

F IGURE 2 Global distribution of giant forests (canopy > 25 m) in relation to mean annual precipitation

4 | SCHEFFER ET AL.



and smaller than forest species (Hoffmann & Franco, 2003). In tem-

perate regions, the distinction may seem less obvious. However, the

distribution of giant forests we detect in temperate regions corre-

sponds largely (but not completely) to the distribution of so-called

temperate rainforests classified on the basis of floristic and structural

characteristics observed on the ground (Alaback, 1991; Dellasala,

2011). One could think that a particular set of species is responsible

for shaping the giant forests. However, the reverse may be true too.

Indeed, as G. Evelyn Hutchinson framed it, the ‘evolutionary play’

takes place in an ‘ecological theater’. Only under special conditions

can such tall trees evolve. On a similar somewhat philosophical level,

tallness can be viewed as reflecting a tragedy of the commons

resulting from a prisoners dilemma (Falster & Westoby, 2003). Trees

must grow at least as tall as their neighbors to reach the light. What-

ever the precise interplay of evolutionary and ecological mechanisms

may be, the remotely sensed patterns we reveal are consistent with

the idea (Alaback, 1991; Dellasala, 2011; Hoffmann, Orthen, & Var-

gas Do Nascimento, 2003) that in temperate as well as tropical cli-

mate zones giant forests are a distinct phenomenon rather than part

of a continuum.

This brings us to the question what might explain our second

key result, namely that giant forests across climate zones require a

minimum of 1,500 mm mean annual precipitation. This seems unli-

kely to be an artifact of our novel data source. For instance, a classi-

cal floristic study independently suggests a similar limit of 1,400 mm

mean annual precipitation for temperate rainforests (Alaback, 1991),

and a study based on tree cover sets the limit for tropical rainforest

to 1,500 mm (Hirota et al., 2011). Of course, mean annual precipita-

tion is a rather crude indicator of climate. A more detailed analysis

shows that in addition to the dominant effect of mean annual pre-

cipitation, there is also a marked effect of climate variability

(Table S1). The occurrence of giant forest is negatively related to

interannual variability of rainfall in all climate zones, and to seasonal-

ity of rainfall in the tropics. Also, seasonal low and high temperatures

are negatively associated to the chances for giant forests in

temperate regions. Effects of high temperatures are likely due to ele-

vated vapor pressure deficits associated to tree mortality events

(Allen et al., 2010), while negative effects of low temperatures may

be associated to cavitation associated to freeze–thaw cycles (Willson

& Jackson, 2006). Alternatively, deviations from an energetic opti-

mum of ~13°C could play a role (Larjavaara, 2014).

Although climatic variability is an obvious qualifier for the emerg-

ing universality of the 1,500 mm precipitation requirement, it

remains puzzling why roughly the same precipitation level would be

critical for giant forests across climate zones. Rainforests in temper-

ate and tropical regions differ widely. For instance, temperate rain-

forests harbor about two orders of magnitude less tree species than

their tropical counterparts (Alaback, 1991). Also, among temperate

forests, species composition as well as fire regimes differ widely

between hemispheres (Alaback, 1991). Most importantly, (potential)

evapotranspiration is obviously higher in warmer climates.

Many lines of evidence support the idea that water availability

must be a key factor limiting giant growth. For instance, during natu-

ral droughts and in throughfall displacement experiments, the largest

trees suffer the highest mortality upon drought (Nepstad, Tohver,

David, Moutinho, & Cardinot, 2007), and physiological research sug-

gests that leaf water stress due to gravity and xylem path length

resistance are likely to ultimately limit tree height (Koch et al., 2004).

However, availability of soil water depends on precipitation as well

as evapotranspiration, which will differ markedly between temperate

and tropical forests. Plotting the probability of finding giant forest

against net precipitation suggests that precipitation exceeding evapo-

transpiration might approximate the critical condition in the tropics

(Figure 5 panel b). However, puzzlingly, for temperate giant forest,

the required net precipitation appears to be higher than in the trop-

ics (Figure 5 panel d vs. b).

A possible explanation is that additional local stressors reduce

the ‘safe operating space’ (Scheffer et al., 2015) when it comes to

the critical moisture for giant trees outside the tropics. The concept

of a safe operating space stresses the fact that resilience of
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ecosystems always depends on a combination of multiple interacting

stressors (Figure 6). Typically, increase in one stressor (e.g., thinning

forest) can reduce the critical level tolerated for another stressor

(e.g., drought) (Scheffer et al., 2015). Temperate giant forests have

historically been under higher logging pressure than tropical forests.

For instance, the range of Californian coastal redwoods has shrunk

by 95% over the past 150 years (Koch et al., 2004). It might well be

that the remaining pockets of giant trees are preferentially in the
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wettest places as resilience is largest there (Figure 6b red arrow I as

opposed to II). Analyzing microscale distributional patterns could

help to further resolve the role of local factors. For instance, in the

southern end of the range redwoods are mostly restricted small

pockets sheltered in narrow valleys (Lorimer et al., 2009). Opening

forests makes them more vulnerable to water stress and fire (Malhi

et al., 2008), as well as windfall (Lorimer et al., 2009), and recovery

and survival of these forests might consequently be limited to the

wettest, sheltered, and most productive places. Indeed, such prefer-

ential survival of forests in the face of human disturbance has been

documented for oceanic islands, where despite similar human occu-

pational history, islands that have more rain and more fertile soils

kept their forests longer (Rolett & Diamond, 2004).

This view of a multivariate safe operating space has important

corollaries. On one hand, tropical forests of the world might become

limited to a much narrower band if human exploitation pressures

reach those that have historically reduced the temperate rainforests.

In addition to deforestation, road construction and fragmentation are

major threats to tropical forest as they imply desiccation at forest

edges which may boost tree mortality and fire risks during periods

of drought (Malhi et al., 2008). If our inference is correct, this ongo-

ing process could lead to a systematic retreat of tropical forest to

regions where precipitation is well above the current 1,500 mm/year

limit. On the other hand, the potential for giant forest across the

globe might be much larger than suggested by its current distribu-

tion, and giant forests could potentially expand significantly if we

enlarge the tolerated climate conditions by reducing exploitation

pressure. Indeed, such management of the safe operating space

(Scheffer et al., 2015) for giant forest may have potential. Although

drought and heat events impose a risk to forests (Allen et al., 2010),

many of the currently wet areas around the globe might well

become wetter under future conditions, and the total area with

annual precipitation levels beyond the critical 1,500 mm is projected

to increase by ~4 million km2 globally both at the RCP 4.5 and the

RCP 8.5 scenario (Figure S4). For comparison, that is roughly eight

times the surface area of Spain. Clearly, it would be na€ıve to expect

forest expansion to simply follow expected rainfall patterns. Projec-

tions of increased precipitation are uncertain (Greve et al., 2014)
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200 mm precipitation, and inflated to contain 50 data points at minimal) are used to avoid data scarcity at high precipitation levels
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and climate extremes (Holmgren, Hirota, Van Nes, & Scheffer, 2013;

Reichstein et al., 2013) and warmer conditions (Feeley, Joseph

Wright, Nur Supardi, Kassim, & Davies, 2007) may negatively affect

the potential for forests. Most importantly, political and economic

barriers to a reallocation of land to the expansion of the world’s

cathedral forests are obviously formidable. On the other hand,

although the growth of giant trees is slow, the gains are potentially

large. In addition to carbon storage, expanded giant forests could

secure much endangered biodiversity. Recent evidence suggests that

even setting aside about one-third of the land for forest in a land-

scape, may already secure most of the associated biodiversity

(Banks-Leite et al., 2014) due to a surprisingly generic threshold of

about 30% forest cover for species richness in fragmented land-

scapes (Andr�en, 1994; Banks-Leite et al., 2014).

In conclusion, our analysis reveals that giant forest is a distinct

phenomenon worldwide, which—depending on human disturbance—

occurs beyond a sharply defined universal rainfall level. Understand-

ing the interactive effects of climate and disturbance better may help

us preserve and perhaps expand the range of these iconic ecosys-

tems, harboring much of the world’s biodiversity as well as carbon.
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