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SUMMARY

This paper focuses on efficiently solving large sparse symmetric indefinite systems of linear equations
in saddle-point form using a fill-reducing ordering technique with a direct solver. Row and column
permutations partition the saddle-point matrix into a block structure constituting a priori pivots
of order 1 and 2. The partitioned matrix is compressed by treating each nonzero block as a single
entry and a fill-reducing ordering is applied to the corresponding compressed graph. It is shown

that, provided the saddle-point matrix satisfies certain criteria, a block LDLT factorization can be
computed using the resulting pivot sequence without modification. Numerical results for a range of
problems from practical applications using a modern sparse direct solver are presented to illustrate
the effectiveness of the approach. Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: fill-reducing ordering; saddle-point systems; LDLT factorization; sparse symmetric
indefinite matrices

1. INTRODUCTION

Our interest lies in solving large sparse symmetric indefinite systems of equations in saddle-
point form:

Kz = b, K =

[
A BT

B −C

]
, z =

[
x
y

]
, b =

[
f
g

]
, (1)

where the (1,1) block A is an n× n symmetric positive-definite (SPD) matrix, the (2,1) block B
is an m× n matrix of full row rank with m < n, and the (2,2) block C is an m×m symmetric
positive semidefinite (SPSD) matrix (including the case C = 0), z is the solution vector, and b
is given. In this paper, we focus on the case where B can be permuted to the trapezoidal form

PT
r BPc = [B1 B2] , (2)

where B1 is an m×m nonsingular upper triangular matrix and Pr and Pc are m×m and
n× n permutation matrices, respectively. Define

PK =

[
PT
c

PT
r

]
,
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2 S. LUNGTEN, W. H. A. SCHILDERS AND J. A. SCOTT

then pre multiplying K by PK and post multiplying by PT
K , we obtain another system of the

form (1), given by

K̃z̃ = b̃, K̃ =

[
PT
c APc PT

c BTPr

PT
r BPc −PT

r CPr

]
, PT

K z̃ = z, PT
K b̃ = b. (3)

It is this system that we then solve. For simplicity of notation, we omit the ˜ in our discussion.
Linear systems of saddle-point type arise in a wide variety of applications throughout

computational science and engineering and their efficient solution has been the study of
extensive research. A comprehensive review of work done prior to 2005 is given in the paper
[2] and, because of the ubiquitous nature of saddle-point systems and the challenges they
pose, new algorithms and results continue to be presented in the literature. Systems of the
form (1) that also satisfy (2) occur in a number of important practical applications. Such
systems include the class of F matrices, where C = 0 and each column of B has at most two
entries and if there are two entries, they sum to zero. Such a B is sometimes called a gradient
matrix [5]. Many of these matrices are related to topological network problems. For example,
application of Kirchhoff’s current law and Ohm’s resistor law to a resistor network leads to
a saddle-point matrix of the form (1) with B a reduced node-arc incidence matrix with each
column containing at most two nonzero entries {−1, 1} (see Section 2.1 below). Another source
is water-distribution pipe network analysis in which B is again a node-arc incidence matrix.
Such network systems are nonlinear and are solved by using the Newton iteration method, see
[10]. These need a fast robust linear solver since a saddle-point system has to be solved at each
iteration. Other problems coming from practical applications that satisfy (2) are included
in The University of Florida Sparse Matrix Collection [4]; we employ some of these in our
numerical experiments (see Section 5).
The most common direct solution method for solving sparse symmetric indefinite linear

systems involves factorizing K into the form

K = LDLT ,

whereD is a diagonal matrix with 1× 1 and 2× 2 blocks and L is a sparse unit lower triangular
matrix. In practice, a more general factorization of the form

PTSKSP = LDLT

is computed, where S is a diagonal scaling matrix and P is a permutation matrix (or, more
generally, a product of permutation matrices) that holds the pivot sequence (elimination order).
It is the choice of S and P that determines the sparsity of L as well as the accuracy and stability
of the numerical factorization.
Before the factorization commences, P is normally computed using one of the many available

fill-reducing ordering algorithms (a variant of nested dissection [11] or minimum degree
[1, 19, 30] is most usually employed). These make the implicit assumption that the diagonal
entries of K are present. An analyse phase uses the chosen pivot sequence to set up data
structures for the subsequent factorization. A key difference between a sparse direct solver for
symmetric positive-definite systems and one for symmetric indefinite systems is that the former
can choose P on the basis of the sparsity pattern of K and then use it without change during
the factorization while the latter may need to modify it to incorporate pivoting to ensure the
factorization exists and to maintain numerical stability. In particular, for a saddle-point matrix
with C = 0, following a fill-reducing ordering, variables corresponding to the (2, 2) block may
be chosen as pivot candidates before the diagonal entry has filled in. In this case, the pivot
must either be delayed until later in the factorization or a suitable partner for use as a 2× 2
pivot must be sought. A nonzero pivot candidate may also have to be delayed if it is small
compared to the other entries in its column. Delaying a pivot leads to P being modified. Not
only does modifying P contribute significantly to the complexity of the development of a sparse
indefinite solver, it also adds overheads in terms of both time and memory requirements when

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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FILL-REDUCING PREORDERING FOR SADDLE-POINT SYSTEMS 3

the solver is run. These overheads occur in the search for a suitable pivot at each stage of the
factorization and then in the handling of candidate pivots that are found to be unsuitable.
Furthermore, pivoting means there is less scope for achieving parallelism and hence a reduction
in performance when compared to the positive-definite case (see [13] for recent work on this
for solving symmetric indefinite sparse linear systems on modern CPU/GPU architectures).
Our interest is in finding a permutation P such that PSKSPT can be factorized stably

without the need for numerical pivoting and without modifying the entries of K, while still
limiting the number of entries in the factor L. This problem has been considered for F matrices
by Tůma [29] and De Niet and Wubs [5]. For general saddle-point problems, Bridson [3] splits
the nodes of the adjacency graph of K into two disjoint sets: A-nodes that correspond to the
diagonal entries of K and C-nodes corresponding to the remaining diagonal entries. He then
modifies a sparsity-preserving ordering so that a C-node is ordered only after all its A-node
neighbours have been ordered. Using this so-called constraint ordering, provided A is semi-
definite and B is of full row rank, the LDLT factorization can be shown to exist. Moreover, the
pivots associated with the A-nodes are guaranteed to be positive and those associated with C-
nodes are guaranteed to be negative. By rescaling, L← L|D|1/2 and D ← sign(D) = diag(±1),
the diagonal matrix is fully determined in advance by the structure of the problem, independent
of the numerical values. This constrained ordering allows a Cholesky factorization code to
be modified to perform the factorization of the indefinite K without numerical pivoting.
Experiments reported in [16] demonstrate that, compared to using a nested dissection ordering
and modifying it during the factorization to maintain stability, the constrained ordering leads
to a significantly denser factor L and the flop counts to compute it are greater.
In recent years, there has been considerable interest in using matching-based orderings

to obtain orderings (and scalings) for sparse matrices. For unsymmetric matrices, maximum
weighted matching algorithms are used to move large entries on to the diagonal. The idea is
that these will potentially provide stable candidate pivots and the number of delayed pivots
during the subsequent factorization will be reduced. In the symmetric case, symmetry needs
to be preserved but a symmetric permutation leaves the diagonal unchanged. Thus the aim
for a general symmetric matrix K = {kij} is to permute a large off-diagonal entry kij close to

the diagonal so that the 2× 2 block

[
kii kij
kij kjj

]
is potentially a good 2× 2 candidate pivot.

Duff and Gilbert [6] noticed that the cycle structure of the permutation associated with the
unsymmetric maximum weighted matchingM can be exploited to obtain such a permutation
Ps. This has been explored further by Duff and Pralet [8] and, amongst others, Schenk et
al. [12, 25, 26].
A maximum weighted matchingM is first computed. Any diagonal entries that are in the

matching are immediately considered as potential 1× 1 pivots and are held in a set M1. A
set M2 of potential 2× 2 pivots is then built by expressing the computed permutation in
terms of its component cycles. A cycle of length 1 corresponds to an entry kii in the matching.
A cycle of length 2 corresponds to two nodes i and j, where kij and kji are both in the
matching. r potential 2× 2 pivots can be extracted from even cycles of length 2r or from odd
cycles of length 2k + 1. To combine the resulting permutation with a fill-reducing ordering, the
adjacency graph of PT

s KPs is compressed and an ordering is applied to the compressed graph.
In the compression step, the union of the sparsity structure of the two rows and columns
corresponding to a potential 2× 2 pivot is built and used as the structure of a single row
and column in the compressed matrix. A fill-reducing ordering is applied to the (weighted)
compressed graph, and the resulting permutation is expanded to a permutation Pf for the
original matrix. The final permutation is the product P = PfPs.
Hogg and Scott [16] report on the use of matching-based orderings for solving tough general

indefinite systems and extend their use to rank deficient problems [15]. They found that while
matching-based orderings can substantially reduce the number of delayed pivots, it may still
be necessary to perform some numerical pivoting. Moreover, computing a matching-based
ordering can add a significant computational cost and, because the values of the entries of the

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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4 S. LUNGTEN, W. H. A. SCHILDERS AND J. A. SCOTT

matrix are used in its computation, if a sequence of problems with the same sparsity pattern
needs to be factorized, the pivot order may have to be recomputed for each problem.
The main aim of this paper is to obtain a fill-reducing permutation P by exploiting the

structure and properties of B so that PSKSPT can be factorized without modifications to
the pivot sequence. To achieve this, B is permuted to the trapezoidal form (2). This form is
used to obtain a block saddle-point matrix with m 2× 2 blocks and (n−m) 1× 1 blocks on
the diagonal. In previous work, Lungten et al [22, 23] used this form and took as their pivot
sequence m 2× 2 pivots followed by (n−m) 1× 1 pivots. They proved that when C = 0 and
subject to the matrix B1 having large diagonal entries, the resulting factorization is stable.
Furthermore, they showed that the work needed to compute L using this sequence can be
limited by exploiting the fact that some of the blocks are unchanged during the factorization.
However, a key disadvantage is that there can be substantially more fill-in in L compared to
standard fill-reducing orderings that ignore the block structure, resulting in higher memory
requirements and greater solve times (see [20] and Section 5 below). In this paper, we propose
a new approach that aims to improve on the earlier work by treating each nonzero block of
the block saddle-point matrix as a single entry to determine a compressed adjacency graph
and then applying a fill-reducing ordering to the compressed graph. The application of a
fill-reducing ordering mixes up the order of the 1× 1 and 2× 2 pivots and leads to less fill.
We show that Schur complement updates of this mixed pivot sequence exist provided B1 is
nonsingular; this allows us to prove existence of the factorization without modifications to the
pivot sequence.
The outline of the rest of this paper is as follows. In Section 2, we consider permuting

the matrix B to trapezoidal form, looking first at reduced node-arc incidence matrices and
then more general matrices. Our new ordering algorithm, which we call BAMD, is presented
in Section 3 and, in Section 4, we prove that using the BAMD pivot sequence the LDLT

factorization exists. Numerical results are presented in Section 5. These include comparisons
in terms of fill and the backward error with a matching-based ordering. Finally, in Section 6,
some concluding remarks are given.

2. PERMUTATION OF B TO TRAPEZOIDAL FORM

2.1. Reduced node-arc incidence matrices

We first consider the saddle-point systems that arise in the network analysis of electronic
circuits and water distribution pipe networks. In such systems, the matrix B is a reduced
node-arc incidence matrix. Consider a connected directed graph (or network) G(V, E) with
m+ 1 nodes V = {η0, η1, . . . , ηm} and n arcs (or edges) E = {ξ1, ξ2, . . . , ξn}. The node-arc
incidence matrix of G is an (m+ 1)× n matrix B̂ with entries

b̂ij =

 1 if ηi is the initial node of arc ξj
−1 if ηi is the terminal node of arc ξj
0 otherwise.

Thus the rows of B̂ correspond to nodes and the columns to arcs.
Saddle-point systems arising from network problems are made consistent by grounding a

node, say η0, and removing the corresponding row of the node-arc incidence matrix. The
resulting m× n matrix B is a reduced node-arc incidence matrix. The columns that had
entries in row η0 have only one entry while all other columns have exactly two entries (one of
which is 1 and the other is −1). Starting from the ground node, a breadth-first search type
algorithm to permute B to upper trapezoidal form is developed in [21]. This technique is based
on connected star subgraphs and aims to obtain an upper triangular matrix B1 such that B−1

1

is sparse. A star graph of order k is a tree with k nodes such that one node (referred to as the
central node) is of degree k − 1 and the remaining k − 1 nodes are of have degree 1; these k − 1
nodes are neighbours of the central node. A modified version of [21, Algorithm 2] is presented

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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FILL-REDUCING PREORDERING FOR SADDLE-POINT SYSTEMS 5

in Algorithm 1 (see also the thesis of Lungten [20, Algorithm 3.2.2]). Here (and elsewhere) ei is
the i-th unit vector and Pr(i) and Pc(i) denote the i-th columns of the permutation matrices Pr

and Pc, respectively. The graph G(V, E) associated with an m× n reduced node-arc incidence
matrix B can contain q (1 ≤ q ≤ m− 1) star subgraphs connected to each other. The first star
subgraph of G(V, E) is the one with the central node ηc = η0 that is grounded; k is initialised
to 1. A neighbour ηik of ηc and the corresponding arc ξjk = (ηc, ηik) are determined and the
corresponding columns ik and jk are permuted with column k of the permutation matrices
Pr and Pc, respectively. ηik is then appended to the set W and ξjk is removed from E and
k is incremented. The process is repeated for any remaining neighbours of ηc. One of the
neighbours of the first central node is selected as the central node of the second star subgraph;
q points to next central node, and the algorithm continues with this new central node (no
search is needed to find the next central node).

Algorithm 1 Permutes a reduced node-arc incidence matrix B to trapezoidal form [B1 B2],
where B1 is upper triangular matrix and B−1

1 is sparse.

Input: An m× n (m < n) reduced node-arc incidence matrix B of full row rank and its
corresponding directed graph G(V, E) with V = {η0, η1, . . . , ηm} and E = {ξ1, ξ2, . . . , ξn},
with ground node η0.

Output: Permutation matrices Pr and Pc such that PT
r BPc = [B1 B2], where B1 is anm×m

upper triangular matrix and B2 is an m× (n−m) matrix such that B−1
1 is sparse.

1: Set q = 1, k = 1, W = {η0}, ηc = η0. Set Pr = Im and Pc = In.
2: while k ≤ m do
3: Find ξjk = (ηc, ηik) such that ηik /∈W
4: if ξjk 6= φ then
5: Permute columns k and ik of Pr

6: Permute columns k and jk of Pc

7: W ←W ∪ {ηik}
8: E ← E \ {ξjk}
9: k ← k + 1

10: else
11: q ← q + 1
12: Select a new ηc ∈W to be the central node of the q-th star subgraph.
13: end if
14: end while

It is of interest to note that, while in [21] the permutation focuses only on obtaining an
upper triangular B1 (the remaining n−m columns in B2 are ordered randomly), Algorithm 1
additionally obtains B2 with a banded structure. This is illustrated by the example in Figure 1.

2.2. More general matrices

We now consider more general matrices B. We could employ a sparse QR algorithm to
transform B to trapezoidal form as in [27]. However, our interest is transforming B using
permutations so that the number of entries in the matrix K̃ given by (3) is the same as in the
original K (1) (using a QR factorization to transform K can lead to a dense (1, 1) and/or a
dense (2, 2) block).
Given the m× n sparse matrix B = [bij ], we associate a bipartite graph GB(Vr ∪ Vc, E) in

which the node sets Vr = {row1, row2, ..., rowm} and Vc = {col1, col2, ..., coln} correspond to
the rows and columns of B; there is a directed edge ξ : rowi → colj of weight bij whenever
bij 6= 0. An edge subsetM⊆ E is called a matching if no two edges inM are incident to the
same node. In matrix terms, a matching corresponds to a set of nonzero entries with no two
in the same row or column. A node is matched if there is an edge in the matching incident on

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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(b) Trapezoidal B = [B1 B2] (c) Trapezoidal B = [B1 B2]

Figure 1. Example illustrating two different permutations of a reduced node-arc incidence matrix to
upper trapezoidal form. (a) Original reduced node-arc incidence matrix B of order 60× 100. (b)
Trapezoidal form obtained using [21, Algorithm 2]. (c) Trapezoidal form with banded B2 obtained

using Algorithm 1.

the node. The cardinality of a matching is the number of edges in it. A maximum matching
is a matching of maximum cardinality. If B is of full row rank and m < n, the maximum
cardinality is m. Let Vmr and Vmc denote the row and column node sets corresponding to a
maximum matching.
To permute B, we use a simple minimum degree technique based on the following degree

one principle.

The degree-one principle
Let GB(Vr ∪ Vc, E) be the bipartite graph of anm× n (m < n) sparse matrixB of full row rank.
B can be permuted to trapezoidal form if, for k = 1 . . . n− 1, the bipartite graph of B(k) has
at least one node jk ∈ Vc of degree one, where B(1) = B, and B(k+1) is the (m− k)× (n− k)
matrix obtained by removing column jk and the corresponding row from B(k).

Consider the 6× 8 matrix B in Figure 2(a) and its associated bipartite graph GB in
Figure 2(b). The first column node with degree one is j1 = 2; it is matched with the row
node i1 = 4. Deleting j1 and i1 removes edges {(4, 2), (4, 3), (4, 5), (4, 6), (4, 8)}. Column node
j2 = 3 now has degree one. It is matched with the row node i2 = 6. Repeating the process
gives a matching M = {(4, 1), (6, 3), (1, 4), (5, 5), (2, 1), (3, 6)} together with row and column
matched node sets Vmr = {4, 6, 1, 5, 2, 3} and Vmc = {2, 3, 4, 5, 1, 6}. Using the ordered sets Vmr

and Vmc ∪ (Vc \ Vmc), permutation matrices Pr and Pc of order m and n, respectively, can be
defined to obtain the trapezoidal form in Figure 2(c).
The steps are summarised in Algorithm 2. Here for rowi ∈ Vr, N(rowi) denotes the set

of column nodes colk ∈ Vc that are neighbours of rowi (that is, the edges (rowi, colk) ∈ E)
and for colj ∈ Vc, deg(colj) is the number of row nodes rowi ∈ Vr for which (rowi, colj) ∈ E.
The algorithm continues until either E = φ or all columns of the reduced matrix have degree
greater than 1. If this happens after k steps, the permuted matrix is of the form

PT
r BPc =

[
B11 B12

B22

]
, (4)

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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Vr 1 2 3 4 5 6

1 2 3 4 5 6 7 8Vc
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(a) B (b) GB
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•© •

•© •


(c) PT

r BPc = [B1 B2]

Figure 2. Permutation based on the degree-one principle. (a) B is matrix of dimensions 6× 8 of
full rank. (b) GB is the bipartite graph. The thick edge lines connect the matched row and column
nodes (corresponding to the circled nonzero entries in B). (c) The trapezoidal form with a 6× 6
upper triangular matrix B1 and a 6× 2 rectangular matrix B2, where Pr = [e4 e6 e1 e5 e2 e3] and

Pc = [e2 e3 e4 e5 e1 e6 e7 e8] are the row and column permutation matrices.

where B11 is k × k upper triangular, B12 is k × (n− k) and the (m− k)× (n− k) block B22

has columns of degree greater than one. A QR decomposition of B22 can be used to complete
the transformation of B to trapezoidal form.

Algorithm 2 The degree-one principle matching algorithm for permuting an m× n (m < n)
sparse matrix B of full row rank with at least one column with a single entry to the form (4).

Input: B and its bipartite graph GB(Vr ∪ Vc, E).
Output: Permutation matrices Pr and Pc such that PT

r BPc is of the form (4), where B11 is
an k × k upper triangular matrix for some k, 1 ≤ k ≤ m.

1: Initialize Vmc = φ and Vmr = φ. Set k = 0. Set Pr = Im and Pc = In.
2: For each colj ∈ Vc, compute deg(colj)
3: while there exists (rowi, colj) ∈ E such that deg(colj) = 1 do
4: k ← k + 1
5: Vmr ← Vmr ∪ {rowi}
6: Vmc ← Vmc ∪ {colj}
7: Permute columns k and rowi of Pr

8: Permute columns k and colj of Pc

9: E ← E \
⋃
{(rowi, colk) : colk ∈ N(rowi)}

10: For each colj ∈ Vc \ Vmc, update deg(colj)
11: end while

Remark 1
In practice, rather than finding a single column of degree 1 at each step, all the columns of
degree 1 are found at once and the updates to the degrees is then done after all such columns
and their matched rows have been removed.

Remark 2
An advantage of Algorithm 1 compared to Algorithm 2 is that, for the former, B−1

1 is sparse.
Note also that Algorithm 1 has to look for a ground node η0 to use as the first central node only

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
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8 S. LUNGTEN, W. H. A. SCHILDERS AND J. A. SCOTT

once; having found this node, the algorithm proceeds without having to search the remaining
nodes looking for a new central node. The disadvantage of Algorithm 1 is that it is only
applicable to reduced node-arc matrices.

3. BAMD ORDERING

Having permuted B so that B1 is upper triangular, the permuted saddle-point matrix can be
written as:

K =

 A11 A12 BT
1

A21 A22 BT
2

B1 B2 −C

 , (5)

where A = [A11 A12; A21 A22] with A12 = AT
21, and B = [B1 B2]. Let A = [aij ], B = [bij ], and

C = [cij ]. If we now define a permutation matrix P of order n+m by

P = [e1 en+1 e2 en+2 . . . em en+m em+1 . . . en] ,

where ei is the ith unit vector of length n+m, then applying P to K we obtain the block
structure

PTKP = [Kij ],

where Kij is either a 2× 2, 2× 1, 1× 2 or 1× 1 block given by

Kij =



[
aii bii

bii −cii

]
, 1 ≤ i = j ≤ m;

[
aij bji

0 −cij

]
, 1 ≤ j < i ≤ m;[

aij 0

bij cij

]
, 1 ≤ i < j ≤ m;

[
aij

bij

]
, 1 ≤ i ≤ m < j ≤ n;

[
aij bji

]
, 1 ≤ j ≤ m < i ≤ n;

[
aii

]
, m < i, j ≤ n.

(6)

There are exactly m 2× 2 and (n−m) 1× 1 diagonal blocks Kii that form ‘a priori’ pivots.
In [22, 23], Lungten et al. show that, in the important special case that B1 is nonsingular and
upper triangular and C = 0, using this pivot sequence results in a stable factorization provided
the entries of B1 satisfy the following condition

|bkk| ≥ {|bkj |, j = k + 1, . . . , n}, for k = 1, . . . ,m. (7)

If B is a node-arc incidence or gradient matrix then (7) is clearly satisfied. Lungten et al. also
show that some of the blocks Kij remain unchanged within the L factor, limiting the work
needed to compute the factorization.
The key disadvantage of employing this pivot sequence in which all m 2× 2 pivots precede

the 1× 1 pivots is that it can lead to significantly more fill-in in the factors than is necessary. To
reduce the fill, we need to combine the preselection of pivot blocks with a fill reducing ordering.
We can do this as for the matching-based orderings that we described in the Introduction. That
is, we compress the adjacency graph of PKPT by considering each block as a single entity
and merging the sparsity patterns of the rows and columns belonging to a 2× 2 diagonal
block; a fill-reducing ordering is then applied to the compressed graph. When an approximate
minimum degree (AMD) ordering [1] is used on the compressed graph, we refer to this as
BAMD ordering.
We observe that when ordering the compressed graph we do not employ a weighting when

a row of the compressed graph corresponds to two rows of the original matrix. In their work
on matching-based orderings, Hogg and Scott [16] found that this offered little advantage.
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4. EXISTENCE OF THE FACTORIZATION

To prove existence of the factorization, we use the following well-known result.

Lemma 1
Partition an n× n SPD matrix A into the block form

A =

[
A11 A12

A21 A22

]
,

where A11 is m×m (1 ≤ m < n), A21 = AT
12 is n−m×m, and A22 is n−m× n−m. Then

the Schur complement S = A22 −A21A
−1
11 A12 is SPD.

Recall that the a priori pivot sequence comprises 2× 2 pivots formed by taking rows and
columns of A11, B1, and C, and 1× 1 pivots that are the elements of A22; the fill reducing
ordering of the compressed graph permutes the order of these pivots. At each stage of the
factorization, all the remaining pivots must be updated. Each updated 2× 2 pivot has one of
the following forms: [

α β
β −γ

]
,

[
α β
β 0

]
or

[
α 0
0 −γ

]
, (8)

where, if B1 is nonsingular and triangular, α, β and γ, which are from the Schur complement
updates of A, B and C, respectively, are nonzero. This is a result of the following theorem,
which shows that a 2× 2 pivot updated by the Schur complement of a 1× 1 pivot is nonsingular
and vice versa.

Theorem 1
Let K be the (n+m)× (n+m) saddle-point matrix (5), where the m× n matrix B = [B1 B2]
is of full rank with B1 an m×m nonsingular matrix, the n× n SPD matrix A is partitioned
conformally and C is anm×m SPSD matrix (including C = 0). LetK be permuted as follows: A11 BT

1 A12

B1 −C B2

A21 BT
2 A22

 .

Then the Schur complement Sindef of the symmetric indefinite matrix

[
A11 BT

1

B1 −C

]
and the

Schur complement Sspd of the SPD matrix A22 are nonsingular.

Proof
From Lemma 1, the Schur complements

S1 = A22 −A21A
−1
11 A12 and S2 = A11 −A12A

−1
22 A21

are SPD. Now let

SA11 = C +B1A
−1
11 B

T
1 . (9)

Since C is SPSD, A is SPD, and B1 is nonsingular, SA11 is SPD and thus is nonsingular.
Therefore,

Sindef = A22 −
[
A21 BT

2

] [A11 BT
1

B1 −C

]−1 [
A12

B2

]

= A22 −
[
A21 BT

2

] A−1
11 −A−1

11 B
T
1 S

−1
A11

B1A
−1
11 A−1

11 B
T
1 S

−1
A11

S−1
A11

B1A
−1
11 −S−1

A11

A12

B2


= A22 −A21A

−1
11 A12 +A21A

−1
11 B

T
1 S

−1
A11

B1A
−1
11 A12 −A21A

−1
11 B

T
1 S

−1
A11

B2

−BT
2 S

−1
A11

B1A
−1
11 A12 +BT

2 S
−1
A11

B2.
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i.e.,

Sindef = S1 +
(
A21A

−1
11 B

T
1 −BT

2

)
S−1
A11

(
B1A

−1
11 A12 −B2

)
. (10)

The right-hand side of (10) is the sum of SPD and SPSD matrices and hence Sindef is SPD
and nonsingular.
The Schur complement of A22 is

Sspd =

[
A11 BT

1

B1 −C

]
−
[
A12

B2

]
A−1

22

[
A21 BT

2

]
=

[
S2 B̂T

B̂ −Ĉ

]
,

where B̂ = B1 −B2A
−1
22 A21 and Ĉ = C +B2A

−1
22 B

T
2 . The Schur complement of S2 is

SC = −Ĉ − B̂S−1
2 B̂T = − (C +G) ,

where G = B2A
−1
22 B

T
2 + B̂S−1

2 B̂T . We need to show that SC is nonsingular. It suffices to show
that SC is negative definite by showing G is SPD. Define a block permutation matrix P of
order n by

P =

[
0 Im

In−m 0

]
.

It is easy to see that G = BP
(
PTAP

)−1
PTBT , which is SPD.

Remark 3
Theorem 1 proves that if B1 is nonsingular, then the factorization of the permuted saddle-
point system using the BAMD pivot sequence exists. If an ordering such as the matching-based
MC64 ordering [7] is applied to B alone, it is possible to obtain a B1 with large entries on the
diagonal. However, such orderings do not guarantee that B1 is nonsingular and consequently
the LDLT factorization may not exist without modifications to the pivot sequence. We have
performed numerical experimentation that confirm this.

Remark 4
If C is SPD, the requirement that B1 is nonsingular is not needed to prove the existence of
the Schur complements Sindef and Sspd.

5. NUMERICAL EXPERIMENTS

In this section, we present numerical results to illustrate the effectiveness of our proposed
ordering algorithm BAMD for solving sparse saddle-point systems (1). Our test matrices are
listed in Table I. They all satisfy n+m > 12, 000 and, in each case, the (2, 1) block B can
be permuted to trapezoidal form (2). The problems come from a range of application areas.
The c-xx problems are interior-point optimization matrices and are taken from the University
of Florida Sparse Matrix Collection [4]. For these examples, C = −δIm, where δ = 10−8; for
all other examples, C = 0. The problems tuma1 to d pretok are finite element models and are
also from [4]. The S3D-xx examples are generated using finite difference methods for Stokes
equation in three dimensions [5]; the RNxx examples are from industrial resistor network
analysis [24]; and the WNx examples are water distribution pipe networks [10].
The numerical experiments are performed on a MacBook Pro Retina, 64-bit OS X EI Capitan

with a 2.6 GHz Intel Core i5 using MATLAB R2016a (9.0.0.341360). The right-hand side vector
b is computed so that the exact solution is z = [1, . . . , 1]T . In the following, the scaled residual
εrb is given by

εrb =
‖Kz − b‖

‖K‖‖z‖+ ‖b‖
,
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Table I. Test problems. n and m denote the order of A and C (see (1)), and nz(K) is the number of
entries in K.

Identifier n m nz(K) C
c-55 19121 13659 403450 −δIm
c-58 22461 15134 552551 −δIm
c-62 25158 16573 559341 −δIm
c-70 39302 29622 658986 −δIm
c-72 47950 36114 707546 −δIm
c-73 86417 83005 1279274 −δIm
c-big 201877 143364 2340859 −δIm

tuma1 13360 9607 87760 0
tuma2 7514 5477 49365 0
mario001 23130 15304 204912 0
mario002 234128 155746 2097566 0
helm3d01 30060 2166 428444 0
k1 san 46954 20804 559774 0
d pretok 129160 53569 1641666 0

S3D-15 11520 4095 122298 0
S3D-18 19494 6858 208158 0
S3D-24 45000 15624 484044 0
S3D-32 104544 35936 1130772 0

RNB6 21208 13167 106034 0
RNC1 58054 36392 290264 0
RNC3 12222 7631 61104 0
RNC4 7459 4656 37289 0
RNC6 16551 19775 82749 0

WN6 8584 8392 42916 0
WN7 14830 12523 74130 0
WN8 19647 17971 98205 0

with the infinity norm. The computed solution is only accepted if εrb is less than tol = 10−13;
where necessary, up to 20 steps of iterative refinement are performed. If εrb remains greater
than tol after iterative refinement then we record a failure. We define the fill ratio to be

fill(L) = nz(L)/nz(KL),

where nz(KL) and nz(L) denote the number of entries in the lower triangular part of K and
in L, respectively. Although not explicitly reported on here, we also always check the forward
errors of our computed solutions.
We use the MATLAB interface to the state-of-the-art sparse direct solver HSL MA97 [14, 18].

HSL MA97 implements a multifrontal algorithm and, for indefinite systems, employs threshold
partial pivoting to ensure that all entries of L satisfy lij < u−1, where the threshold parameter
u ∈ [0, 0.5] is under the control of the user (the default setting is 0.01). If u is chosen to be small,
then the number of pivots that are delayed during the factorization will generally be small,
minimising fill-in in L (that is, the chosen pivot sequence is used with little or no modification)
but for a general fill-reducing pivot sequence the factorization is potentially unstable. Increasing
u gives a greater guarantee of stability but at the possible cost of increased fill-in in L. Note
that it is important that the entries of K are well-scaled before the factorization commences.
HSL MA97 offers a number of scaling options; in our experiments, we use the MC64 scaling.
HSL MA97 includes a number of ordering options. Our interest is comparing our proposed

BAMD ordering algorithm with the matching-based ordering (MBO) offered by HSL MA97. In
particular, we employ the matching-based ordering with AMD on the compressed graph (the
MATLAB interface setting is control.ordering = 7). We report on two cases: (i) default
settings (u = 0.01) and (ii) threshold u = 0.0. With the latter setting, numerical pivoting is
“switched off” and pivots are only delayed if they are (approximately) zero.
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Sparsity results and the scaled residuals for the MBO and BAMD orderings for case (i) are
reported in Figures 3 and 4. It can be observed that the fill ratio for the two orderings is similar,
with the BAMD resulting in less fill for the c-xx examples. In each instance, a single step of
iterative refinement is sufficient to reduce the scaled residual to be less than tol, confirming
that the default setting for the threshold pivoting parameter u leads to stable factorizations
for our test examples.
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Figure 3. Sparsity of the factor for the MBO and BAMD orderings for case (i) (default u).
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Figure 4. Relative backward errors εrb for the MBO and BAMD orderings for case (i) (default u).

Analogous results for case (ii) are shown in Figures 5 and 6; where an ordering leads to a
failure, no result is plotted. Again, for all the problems, BAMD requires at most one step of
iterative refinement to achieve the requested accuracy. However, for MBO there are 4 failures
(problems mario001, mario002, k1 san, and d pretok). These results confirm that while using
a matching-based ordering limits the need for numerical pivoting, pivoting is still needed for
some “tough” practical cases. However, using a BAMD guarantees the existence of the LDLT

factorization without pivoting. Furthermore, the level of fill it produces is comparable (or less)
than for MBO. We conclude that BAMD can offer an attractive ordering for saddle-point
systems for which B is permuted to trapezoidal form.
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Figure 5. Sparsity of the factor for the MBO and BAMD orderings for case (ii) (u = 0.0).
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Figure 6. Relative backward errors εrb for the MBO and BAMD orderings for case (ii) (u = 0.0).

We remark that we have performed tests on problems of the form (1) from the University
of Florida Sparse Matrix Collection for which B cannot be permuted to trapezoidal form. In
this case, we used the sparse QR algorithm and then ran the BAMD ordering. We compared
our results with employing the MBO ordering, using default u and u = 0.0. We found similar
levels of fill in the factors for both orderings and there were no failures. We conclude that the
sparse QR algorithm can be used to extend the applicability of the BAMD ordering (but it
adds to the total computational cost).
Finally, we compare the BAMD ordering with that of Lungten et al [22, 23] in which all m

2× 2 pivots precede the 1× 1 pivots; we refer to this as the 2F1 ordering. Results are presented
in Table II for a subset of our test problems. We are unable to run the 2F1 ordering on some
of the larger examples because of insufficient memory. The results clearly demonstrate that
requiring all the 2× 2 pivots are used first is too restrictive as it leads to unacceptable fill-in
in the factors.
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Table II. Sparsity of the factor for the 2F1 and BAMD orderings. nz() denotes the number of entries
in the matrix and fill(L) is the fill ratio.

Identifier
2F1 BAMD

n m nz(K) nz(L) fill(L) nz(L) fill(L)
c-55 19121 13659 403450 71117712 326 7177301 33
c-58 22461 15134 552551 112668327 382 3564490 12
tuma1 13360 9607 87760 6684202 132 1368774 27
mario002 234128 155746 2097566 675010515 579 13788854 12
S3D-15 11520 4095 122298 59741873 893 4426057 66
RNB6 21208 13167 106034 174348828 2740 310044 4.9
RNC4 7459 4656 37289 16911441 756 127938 5.7
WN6 8584 8392 42916 1627607 63 112118 4.4

6. CONCLUDING REMARKS

In recent years, driven by the need to develop direct solvers for efficiently solving sparse
indefinite symmetric linear systems on modern parallel computing platforms, there has been
an interest in the development of new ordering strategies that can chose a pivot sequence
before the factorization commences and that can then used with minimal (or ideally, with no)
modification during the factorization (see, for example, [9, 12, 13, 17]). Since data movement
can be more expensive than numerical operations, it can be advantageous to perform more
operations (and possibly allow more fill-in in the factor) than are performed by a traditional
serial code. Matching-based orderings have been developed that, while leading to more fill, limit
the changes needed to the pivot sequence. However, as our results confirm, such orderings
do not remove the need for pivoting. Furthermore, they are computed using the numerical
values of the matrix entries and so, if more than one matrix with the same (or almost the
same) sparsity pattern is to be factorized, matching-based orderings have the disadvantage of
potentially needing to be recomputed for each example.
In this paper, we have focused on a new fill-reducing ordering algorithm that can be used

to solve symmetric indefinite saddle-point systems without the need for pivoting during the
numerical factorization. The ordering is computed using only the sparsity structure. We have
considered a class of saddle-point matrices in which the (2, 1) block B can be permuted to
trapezoidal form B = [B1, B2], where B1 is a nonsingular triangular matrix. We have discussed
permuting B so that B1 is upper triangular, but our proposed ordering is also applicable if B1

is lower triangular. Using the diagonal entries of B1, the rows and columns of the saddle-point
matrix are partitioned into a block structure constituting a priori pivots of order 1 and 2. The
partitioned matrix is compressed and a fill-reducing ordering applied to the resulting graph.
Based on this strategy, we have shown that a block LDLT factorization can be computed
without having to modify the preselected pivot sequence. In our experiments, we reported on
using AMD applied to the compressed graph; in some cases, the fill-in in L may be reduced
by employing other orderings (in particular, a nested dissection ordering could be used).
Finally, we remark that Scott and Tůma [28] recently found that, for symmetric indefinite

saddle-point systems, preordering the matrix using a matching-based ordering and then
computing its incomplete factorization resulted in a higher quality preconditioner than
preordering with a minimum degree or nested dissection ordering. A possible future
investigation is to look at whether the preconditioner quality can be further improved using our
proposed new ordering strategy. Another future direction is to look at other ways of preordering
B to try and extend the applicability of our approach to more general saddle-point systems.
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29. M. Tůma. A note on the LDLT decomposition of matrices from saddle-point problems. SIAM Journal
on Matrix Analysis and Applications, 23:903–925, 2002.

30. W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations by optimally ordered
triangular factorization. Proceedings of the IEEE, 55:1801–1809, 1967.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla


