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Summary

Thylakoid formation1 protein (Thf1) is a multifunc-

tional protein that is conserved in all photosyn-

thetic organisms. In this study, we used the model

cyanobacterium Synechococcus sp. PCC7942

(hereafter Synechococcus) to show that the level of

Thf1 is altered in response to various stress condi-

tions. Although this protein has been reported to be

involved in thylakoid formation, the thylakoid mem-

brane in the thf1 deletion strain (DThf1) was not

affected. Compared with the WT, DThf1 showed

reduced PS II activity, with increased levels of D1

under high light (HL) conditions, which was

resulted from blocked D1 degradation by the FtsH

protease and thus inhibits PS II repair. PS I was

found to be more seriously affected than PS II in

DThf1, even under low light conditions, suggesting

that PS I damage could be the primary effect of thf1

deletion in Synechococcus. Further analysis

revealed that the DThf1 mutant had a lower PS I sub-

unit content and lower PS I stability under HL con-

ditions. Further sucrose gradient fractionation of

the membrane protein complexes and crosslinking

and immunoblot analysis indicated that Thf1 inter-

acts with PS I. Together, our results reveal that Thf1

interacts with PS I and thereby stabilizes PS I in

Synechococcus.

Introduction

Oxygenic photosynthesis, the principal mechanism by

which sunlight is converted into chemical energy on

earth, is catalyzed by four multisubunit membrane-

localized protein complexes, that is, photosystem II (PS

II), the cytochrome b6/f complex, photosystem I (PS I)

and ATP synthase (Hohmann-Marriott and Blankenship,

2011). The first three complexes are connected in series

through the photosynthetic electron transport chain,

which is coupled to proton pumping that drives ATP

synthase-mediated ATP production. PS II is the core

component of photosynthesis. By serving as a light-

driven water plastoquinone oxidoreductase, PS II medi-

ates the initial charge separation that generates the high

energy electrons needed for photosynthetic electron

transport. The PS I complex functions at the reducing

end of the photosynthetic electron transfer chain as a

plastocyanin-ferredoxin oxidoreductase.

The preservation and functioning of both PS I and PS

II are essential for cell survival under stress conditions,

including exposure to high light (HL). Both PS I and PS

II are multisubunit chlorophyll (Chl)-binding protein com-

plexes. Cyanobacterial PS I usually forms a trimer con-

sisting of monomers composed of 11–12 subunits. By

contrast, PS I in plants and algae does not form a trimer

and each monomer has 3 additional subunits which

are unique to plants and algae (Jordan et al., 2001;

Ben-Shem et al., 2003). Among the PS I subunits, PsaA

and PsaB form the core complex around which other

subunits are organized and most cofactors of the PS I

electron transfer system are bound to. The native func-

tional form of the PS II complex appears to be a dimer,

and in most detailed structural models of cyanobacterial

PS II, each monomer contains 16 intrinsic and three

extrinsic protein subunits (Umena et al., 2011). Among

the PS II subunits, the core integral subunits D1 and D2

bind most of the redox cofactors. D1 is the primary tar-

get of photooxidative damage and is rapidly degraded

and replaced by de novo-synthesized subunits (Aro

et al., 1993, Yamamoto, 2001).

Our understanding of the functions of the different

subunits of the two phototsystems has improved consid-

erably over recent years (Nelson and Yocum, 2006).
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Proteins that lack a structural function were also identi-

fied and shown to be essential regulators of photosys-

tem assembly, stabilization and degradation; however,

our knowledge of these regulatory factors is limited.

One such regulatory factor, Psb29, was first identified

from isolated His-tagged PS II preparations of Synecho-

cystis sp PCC 6803, and a Synechocystis knockout

lacking Psb29 has reduced PS II activity and increased

uncoupling of the antenna proteins (Kashino et al.,

2002; Keren et al., 2005). Psb29 is conserved in all oxy-

genic photosynthetic organisms and the homolog of

Psb29 in Arabidopsis thaliana was named Thylakoid

Formation 1 (Thf1), as it was first reported to be

involved in the normal development of thylakoid mem-

brane stacks (Wang et al., 2004). In Arabidopsis, Thf1

was also reported to interact with GPA1 and function

downstream of the plasma membrane–delimited hetero-

trimeric G-protein (GPA1) in the D-glucose signaling

pathway (Huang et al., 2006). A study of the Triticum

aestivum (wheat) homolog of Thf1 showed that Thf1

could be isolated using the proteinaceous toxin Ptr ToxA

as bait in a yeast two-hybrid screen, implying a possible

role for Thf1 in the plant’s response to the fungal patho-

gen (Manning et al., 2007). Consistent with this, Thf1 in

Solanum lycopersicum (tomato) was also reported to

participate in defense against pathogen infection as a

novel player in the coronatine signaling pathway

(Wangdi et al., 2010).

Furthermore, Thf1 was found to function in chloroplast

development. Thf1 deletion in Arabidopsis resulted in a

variegated leaf phenotype; reduced levels of FtsH prote-

ase, which repairs photodamaged D1 protein; and

defects in chloroplast development (Zhang et al., 2009).

Consistent with this, ectopic expression of GPA1, the G

protein a-subunit and mutation of Clp R4, a subunit of

the ATP-dependent caseinolytic protease, resulted in

increased FtsH levels and rescued the thf1 variegation

phenotype (Zhang et al., 2009, Wu et al., 2013). Inter-

estingly, thf1-mediated leaf variegation was also

reported to be triggered by defects in plastid gene

expression and could be suppressed by the down-

regulation of specific plastid ribosomal proteins and muta-

tion of s-FACTOR6 (SIG6), both of which affect plastid

gene expression (Hu et al., 2015; Ma et al., 2015).

Thf1 was also shown to affect the degradation and

dynamics of Chl-protein complexes. Loss-of-function

mutations in Thf1 resulted in a stay-green phenotype in

both rice and Arabidopsis. Plants harboring a mutation in

NYC4, the Oryza sativa (rice) ortholog of Thf1, retained

relatively high levels of PS II core subunits D1 and D2,

indicating that NYC4 was involved in the degradation of

Chl and Chl-protein complexes during leaf senescence

(Yamatani et al., 2013). An analysis of a thf1 mutant in

Arabidopsis, which exhibits the stay-green phenotype,

suggested that Thf1 modulates the dynamics of PS II-light

harvesting complex II (LHCII) complexes and that the

stay-green phenotype depends on the presence of both

PS II and LHCII complexes (Huang et al., 2013).

Thus, Thf1/Psb29 appears to be a multifunctional pro-

tein that exists in various species. However, the func-

tions of Thf1 are poorly defined, and many of its

proposed functions were deduced exclusively from mor-

phological and physiological studies. In the present

study, we used the model cyanobacterium strain Syne-

chococcus sp. PCC7942 to demonstrate that the level of

Thf1 increased in response to nitrogen and sulfur star-

vation (-N and -S), HL and low temperature stress (LT)

and declined under phosphorus depletion (-P) and

hyperosmotic stress (HS). By constructing and studying

the thf1 null mutant (DThf1) in Synechococcus, we show

that Thf1 deletion not only limits the degradation of

damaged D1 under HL conditions, but also reduces PS

I stability, even under normal growth conditions. Further-

more, we demonstrate that Thf1 interacts with PS I,

confirming its function on PS I.

Results

Thf1 is regulated by various stress conditions

Thf1 was found to be induced by HL conditions in Syne-

chocystis and Arabidopsis (Wang et al., 2004; Keren

et al., 2005). Using an antibody specific to Thf1, we

examined the Thf1 protein levels under various stress

conditions, including N, S and P deficiency, HS and oxi-

dative and LT stress. We found that Thf1 was signifi-

cantly induced by N and S starvation, oxidative and LT

stress as well as HL conditions and inhibited by P defi-

ciency and HS (Fig. 1).

The thylakoid membrane system is not affected in

DThf1

To determine the function of the Thf1, we constructed

targeted disruption mutants in which a kanamycin resist-

ance cassette was introduced into the thf1

(Synpcc7942_1555) gene of Synechococcus via double

homologous recombination (Fig. 2A). The insertion site

and full segregation of the mutant were validated by

PCR analysis (Fig. 2B). We further confirmed knockout

of Thf1 in the mutant by immunoblot analysis (Fig. 2B).

Thf1 was reported to be involved in thylakoid mem-

brane formation in Arabidopsis by affecting vesicle

transport (Wang et al., 2004). Considering that light

intensity can affect the ultrastructure of the thylakoid

membrane (Anderson, 1986), we next evaluated

whether a defect in Thf1 would affect the thylakoid
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membrane architecture in Synechococcus. To this end,

we compared the thylakoid membrane ultrastructure of

DThf1 and wild-type (WT) cells grown under different

light conditions using transmission electron microscopy

(TEM). Consistent with the findings of a previous study

of another model cyanobacterium Synechocystis (Keren

et al., 2005), the thylakoid membrane structures of WT

and DThf1 cells grown under low light (LL) were similar,

suggesting that Thf1 was not involved in thylakoid mem-

brane formation (Fig. 3A). However, when cells were

grown under HL conditions, the number of thylakoid

layers was reduced in both cell types, but to a much

greater extent in DThf1 than in WT (Fig. 3B), suggesting

that the thylakoid membrane of DThf1 experienced more

severe oxidative stress.

Both PS I and PS II are affected by Thf1 deletion, with

PS I being the initial target

To gain insight into the function of Thf1 in photosynthe-

sis, we evaluated the growth and photosynthetic charac-

teristics of DThf1 under different light conditions.

Consistent with previous findings reported in Synecho-

cystis (Keren et al., 2005), DThf1 Synechococcus cells

grew slower than WT cultures under normal light (NL)

and HL conditions (Supporting Information Fig. S1B and

S1C). Furthermore, the light sensitivity phenotype could

be rescued by complementation with thf1 (Supporting

Information Fig. S1E and S1F), confirming that Thf1

functions in HL acclimation.

To determine the effect of Thf1 deletion on the relative

contents of PS I and PS II, we conducted a low-

temperature fluorescence emission spectroscopy analy-

sis. Upon excitation at 435 nm, the emission spectrum

is typically composed of three peaks, F685, F695 and

F720. Among these, F685 and F695 originate from PS

II, whereas F720 originates from PS I (Wang et al.,

2008). As shown in Fig. 4A, when grown under LL con-

ditions, the fluorescence spectra of the WT and DThf1

cells were similar to each other. However, when grown

at NL and HL, DThf1 showed decreased F720 accom-

panied with increased F685 and F695, as compared

with those of the WT (Fig. 4B and C), although those

changes in the NL were not as evident as in the HL

(Fig. 4B and C). Therefore, loss of Thf1 affects the stoi-

chiometry of PS I and PS II.

We further investigated the impact of the thf1 deletion

on the electron transport activities of PS I [from DCPIP

to methyl viologen (MV)], PS II (from DPC to PPBQ)

and whole chain (from H2O to CO2) under different light

conditions. We found that the PS II activity of DThf1 was

lower than that of the WT under HL conditions, but com-

parable to that of the WT under LL and NL (Fig. 4D).

The apparently contradictory combination of lower PS II

activity (Fig. 4D) and higher PS II titer (Fig. 4C) in

DThf1 cells under HL conditions was consistent with

Fig. 2. Construction of the DThf1 mutant of Synechococcus.
A. Diagram showing the construction of the thf1 mutant. The box
shows the thf1 gene (Synpcc7942_1555) of Synechococcus. The
triangle shows the position of the kanamycin resistance cassette
(KmR).
B. Verification of the mutant. Left: PCR analysis showing fully
segregation of the disrupted thf1 gene. Right: Immunoblot analysis
of WT and mutant (DThf1) cells using anti-Thf1 antibody.

Fig. 1. Differential expression of Thf1 under various stress
conditions in Synechococcus. The cultures were grown under
normal conditions, nitrogen deficiency (-N), sulfur deficiency (-S),
phosphorus deficiency (-P), cold stress (LT), HS, oxidative stress
(H2O2) and HL stress conditions.
A. Representative image of the SDS-PAGE as the loading control
in the immunoblot analysis of the current and all following figures;
10 lg of proteins from different cultures were separated by 12%
SDS-PAGE and stained with Comassie Brilliant Blue.
B. Immunoblot analysis of Thf1 induction using specific antibody,
relative changes were quantified using ImageJ for the current and
all following figures. The 35 kD marks the location of the maker
near the Thf1 protein. All data are shown as the means 6 SD
(n 5 5). * indicates a significant (P< 0.01) difference between WT
and a mutant.
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findings reported in Synechocystis (Keren et al., 2005)

and it was speculated that higher PS II fluorescence in

DThf1 was caused by increased uncoupling of PS II

antenna proteins under HL conditions. As shown in Fig.

4E, the PS I activity of the mutant decreased signifi-

cantly relative to the WT strain, even under LL condi-

tions, in agreement with the results of the 77K

fluorescence emission spectra (Fig. 4A–C). Although

whole chain electron transport was similar between the

two strains when grown under LL conditions (Fig. 4F), it

was markedly lower in DThf1 than in the WT under NL

and HL conditions.

A comparison of electron transport activities of the

WT strain under different light conditions showed that

PS II activity decreased, while PS I activity increased

when cells were shifted from LL to NL/HL conditions

(Fig. 4D and E). Furthermore, whole chain electron

transport activity increased markedly with the increase

in light intensity, which was synchronized with the

change in PS I activity (Fig. 4E and F). These findings

suggest that PS I activity is the decisive factor during

HL acclimation in Synechococcus. Thus, the DThf1

mutant showed not only a relative decrease in PS II

activity but also a reduction in PS I activity, with the lat-

ter being the decisive factor during HL acclimation. By

contrast, the decreased PS I activity resulting from the

Thf1 defect was observed even under LL conditions,

suggesting that the Thf1 defect may initially affect PS I

activity.

To further investigate the effects of Thf1 deletion on

the photosystems during HL acclimation, PS I and PS II

activity were monitored simultaneously as the cultures

were transferred from LL to HL conditions. Fv/Fm, the

maximum quantum efficiency of PS II photochemistry,

was used as a measurement of PS II activity (Baker,

2008). While the P7001 re-reduction rate in the

presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea

(DCMU) was used to estimate PS I activity (Yu et al.,

1993). Fv/Fm was similar in DThf1 and WT cells (Fig.

5A), but the halftime of the P7001 re-reduction (t/2) was

about 50% higher in DThf1 than in WT cells (Fig. 5B)

before transfer to HL (0 h), indicating a similar PS II

activity in both genotypes, but a reduced PS I activity in

DThf1. After transfer to HL conditions, both strains

showed decreased PS II activity as shown by decreased

Fv/Fm (Fig. 5A), but increased PS I activity as shown

by decreased t/2 (Fig. 5B), in correspondence to their

electron transport activities (Fig. 4D and E). Further-

more, the PS II activity of DThf1 was only significantly

lower than that of the WT after 18 hours of HL stress

(Fig. 5A), but the PS I activity of DThf1 remained lower

than that of the WT throughout the treatment (Fig. 5B).

These results further confirm that loss of Thf1 initially

affects PS I (Figs. 4 and 5).

D1 recovery and PS I stability are impaired by deletion

of Thf1

We next conducted immunoblot analysis to examine the

levels of the PS I and PS II subunits and test for further

photosystem damage by Thf1 deletion under HL condi-

tions. PsaC, PsaD and PsaE were used to estimate PS

I and PsbO, CP47 and D1 were used to estimate PS II.

Fig. 3. Membrane architecture of WT and DThf1 Synechococcus cells grown under different light conditions.
A. Transmission electron micrographs of WT and mutant cells grown under LL conditions (7 lE).
B. Transmission electron micrographs of WT and mutant cells grown under HL conditions (HL; 1000 lE). Arrows in the right panels indicate
the zoomed-in cells to their left. TM, thylakoid membrane.
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In consistent with the activity tests (Figs. 4 and 5), Fig.

6 shows that although both the WT and DThf1 strains

had reduced level of PS I subunits under HL conditions,

the DThf1 cells had significantly lower PS I subunits

contents than the WT under NL/HL.

To figure out if PS I trimerization has any role in com-

pensatory mechanism in regulating the PS I/PS II ratio,

we analyzed the transcriptional level of psaL in WT and

DThf1 under different light conditions by real-time PCR,

and further analyzed the PS I trimerization in WT and

DThf1 under HL using sucrose gradient ultra-

centrifugation. The qRT–PCR analysis showed that

although the levels of the psaL mRNA were inhibited by

HL, there was no significant difference between the two

strains (Supporting Information Fig. S2A). The results

were further proved by sucrose gradient ultra-centrifugation

analysis, which showed that the content of PS I trimers

(F3) were not affected by thf1 deletion (Supporting

Information Fig S2B). The results indicated that the

decrease of PS I/PS II ratio caused by Thf1 defect

showed no significant effect on the PS I trimerization.

While the immunoblot analysis of PS II subunits

showed that although reduced with increased irradiance,

the two strains had similar amounts of CP43 and PsbO

under LL/NL/HL (Fig. 6). However, the amount of D1

increased significantly in DThf1 when cells were shifted

from LL to NL/HL (Fig. 6), in contrast to those in WT,

which decreased.

FtsH protease was shown to be involved in D1 degra-

dation (Lindahl et al., 2000), and the deletion of Thf1 in

Arabidopsis resulted in a decrease in FtsH2/5 by reduc-

ing the stability of FtsH2/5 (Zhang et al., 2009). As could

be seen in Fig. 7, the protease FtsH could be induced

by elevated irradiance at both the protein (Fig. 7A) and

the mRNA levels (Fig. 7B). As compared with the WT,

the FtsH protein levels were significantly declined (Fig.

Fig. 4. The photosynthetic characteristics of WT and DThf1 cells grown under different light conditions. Cells were grown at LL (7 lE), NL
(120 lE) and HL (1000 lE) and recovered at the mid-logarithmic growth phase for parameter determination.
A–C. 77 K fluorescence emission spectra (excitation wavelength 430 nm) of WT and DThf1 under different light conditions. Curves were
normalized at 760 nm.
D–F. Determination of PS II (D), PS I (E) and the whole chain (F) electron transport activity. All error bars represent SD (n 5 5). � indicates a
significant (P< 0.01) difference between WT and a mutant.
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7A and B) in DThf1, though the mRNA levels (Fig. 7B)

in both strains tend to be similar under all light condi-

tions. The findings strongly suggested that the accumu-

lated D1 in DThf1 under NL/HL (Fig. 6A) were resulted

from the decrease of FtsH. Taken together, it could be

concluded that the deficiency of Thf1 leads to a

decrease in the amount of PS I subunits, but has no

effect on PS II subunits except D1.

To discriminate whether the decrease in PS I subu-

nits of DThf1 under HL conditions was caused by low-

ered stability or downregulated synthesis of proteins,

we conducted immunoblot analysis of the PS I subu-

nits PsaC and PsaD under HL with the addition of pro-

tein synthesis inhibitor chloramphenicol (CAP; Naver

et al., 2001). As shown in Fig. 8, in contrast to the rel-

atively stable PS I subunits content in WT cells during

the 24 h of HL treatment in the presence of CAP, that

of DThf1 showed significant decrease of both PsaC

and PsaD. Thus, Thf1 appears to affect the stability of

PS I subunits, rather than protein synthesis, during HL

acclimation.

Since Thf1 could be induced by LT stress and influ-

enced PS I stability (Figs. 1 and 8), we next examined

the chilling stress acclimation of WT and DThf1 cells. It

has been reported that PS I is an important target of

photodamage in vivo under relatively weak light and

chilling temperature, conditions under which PS II is

not appreciably affected (Zak and Pakrasi, 2000). To

avoid the PS II damage caused by higher irradiance,

the chilling stress (208C) experiment was performed

under LL conditions (7 lE). As shown in Fig. 9A,

DThf1 showed a retarded growth rate compared with

the WT, accompanied with reduced PS I activity shown

by higher t/2 of PS I re-reduction (Fig. 9B), while the

maximum quantum efficiency of PS II photochemistry,

Fv/Fm was the same in the two strains. Further west-

ernblot analysis of PsaD indicated lower amount of PS

I subunit in DThf1 than in WT cells (Fig. 9C).

Fig. 5. Changes in PS II and PS I activity of WT and DThf1
during HL treatment. Samples were recovered at 0, 6, 12, 18,
24, 36 and 48 h after the transfer to HL (1000 lE), Fv/Fm (A)
and the decay halftime (t/2) of P7001 re-reduction (B) were
measured and calculated to represent PS II and PS I activity,
respectively. Error bars represent SD (n 5 5). The inset panel in
figure B shows representative kinetics of P7001 re-reduction
curve.

Fig. 6. The levels of PS I/PS II subunit in WT and DThf1 cells
grown under different light conditions.
A. Immunoblot analysis of PS I subunits (PsaC, PsaD and PsaE)
and PS II subunits (CP43, PsbO and D1) in WT and DThf1 cells
grown under the indicated light conditions.
B. Quantification of the protein levels shown in (A). The specific
protein levels of the WT and mutant cultured under the same
conditions were compared and the asterisk indicates statistically
significant differences between WT and DThf1 cells under the same
condition (*P< 0.01).
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HL-induced Thf1 is localized to membrane

Arabidopsis Thf1 was reported to contain a chloroplast

transit signal peptide and could be localized to both the

soluble stroma and chloroplast membranes (Wang

et al., 2004), while the subcellular location of Thf1 in

cyanobacteria remains unknown. The secondary struc-

ture of Thf1 from Synechococcus and two other model

organisms, Synechocystis and Arabidopsis, were ana-

lyzed to determine whether they contain transfer mem-

brane structures using Phyre (Kelley and Sternberg,

2009), JPred4 (Cole et al., 2008) and GORV (Sen et al.,

2005). As shown in Supporting Information Figure S3,

the secondary structure of Thf1 is conserved among the

three organisms, and no transmembrane structures exist

in any of the three proteins. Thus, Thf1 structurally

appears to be water soluble.

To characterize the actual localization of Thf1 in Syne-

chococcus, total (TP), membrane (MP) and soluble (SP)

protein fractions were carefully prepared (see Material

and Methods) and subjected to immunoblot analysis

using anti-Thf1 antibody. CP43 and RbcL were used as

controls of membrane protein and soluble protein,

respectively. In contrast to its secondary structure (Sup-

porting Information Fig. S3), Fig. 10A shows clearly that

Synechococcus Thf1 could be localized to both the mem-

brane and soluble fractions. Further test of the mem-

brane association property of Thf1 with various potential

solubilizing reagents including NaCl, Na2CO3, urea and

TX-100 revealed that the membrane-bound Thf1 could be

partially solubilized and released from the membrane by

all the reagents except NaCl (Fig. 10B). This suggests

that the membrane co-localized Thf1 (Fig. 10A) is periph-

eral membrane fraction, which tends to associate periph-

erally with the thylakoid, possibly through temporarily

interaction instead of covalent connection.

To explore how the localization of Thf1 relates to its

function, we compared the Thf1 distribution in cultures

grown under LL and HL conditions by immunoblot analy-

sis and immunofluorescence microscopy. Immunoblot

analysis showed that Thf1 was localized to both the

soluble and membrane fraction and could be induced

significantly by HL (Fig. 11A), confirming the results of

both Fig. 1 and 10A. Furthermore, as shown in Fig.

11A, the increase in the membrane fraction (204%)

under HL was larger than the increase in soluble frac-

tion (160%), indicated that the HL induced Thf1 tends to

be associate with membranes, which could be further

proved by in vivo localization analysis using immunofluo-

rescence microscopy (Fig. 11B). As shown in Fig. 11B,

Thf1 could be significantly induced by HL and most of

the increased proteins were distributed along the cell

Fig. 7. Analysis of FtsH protein content and ftsH mRNA levels in
WT and DThf1 cells grown under different light conditions.
A. Immunoblot analysis of FtsH protein levels in WT and DThf1
cells under the indicated light conditions. The data below show the
quantification of the protein levels.
B. Expression of ftsH mRNA in WT and DThf1 under different light
conditions were analyzed by quantitative real-time PCR. The
expression level in WT cells under normal light (NL) was set to 1.
Error bars represent SD (n 5 5).

Fig. 8. Analysis of PS I stability in WT and DThf1 cells. Cultures were transferred to HL conditions (1000 lE) and 5 mM CAP was added to
inhibit protein synthesis. Samples were recovered at 0, 4, 6, 8, 12 and 24 h and immunoblot analysis against PsaC and PsaD was performed.
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membrane, consistent with the distribution of the thyla-

koid (Fig. 3).

Thf1 interacts with PS I

The above results showing that Thf1 was peripherally

localized to membranes under HL and the loss of Thf1

was shown to affect PS I stability (Figs. 9 and 11). We

thus speculated that Thf1 might be associated with the

PS I complex. To explore this possibility, thylakoid mem-

branes were isolated, solubilized in n-dodecyl-b-D-malto-

pyranoside (DM), fractionated by sucrose gradient

separation and analyzed with Thf1 antibody. As shown

in Fig. 12A, Thf1 could be detected in all three fractions,

with the most abundant in F1 (the free pigment and pro-

tein fraction), suggesting that a large amount of Thf1

was released from the thylakoid by DM, in agreement

with the finding that Thf1 is a peripheral membrane pro-

tein that can readily be released from the membrane by

detergent treatment (Fig. 10B). We further separated F3

(the trimeric PS I fraction) by BN-PAGE and analyzed

the resulting subfractions with Thf1 antibody to identify

which complex Thf1 was associated with. However, Thf1

was not co-transferred with any photosystem complex

(data not shown). This implies that the interaction

between Thf1 and the complex was lost during electro-

phoresis, which in consistence with the results in Fig.

10B and proved our speculations that the association

between Thf1 and the thylakoid membrane is temporar-

ily and noncovalently. To avoid disassociation during

BN-PAGE, we treated the samples with disuccinimidyl

suberate (DSS), a 12-Å cross-linker that has been used

to elucidate the interactions of the extrinsic proteins with

photosystem proteins (Nagao et al., 2010, Liu et al.,

2011), to “fix” the association between Thf1 and its

interacting protein before sucrose gradient fractionation.

F3 from DThf1 was used as a control. Thf1 was found

to be colocalized with PS I trimers after DSS crosslink-

ing (Fig. 12B). Taken together, these findings show that

although the interaction is relatively weak, Thf1 is asso-

ciated with the PS I complex, which is in agreement

with its function in the PS I complex (Figs. 6 and 8).

Discussion

Psb29/Thf1 is a multifunctional protein that functions in

sugar signaling, disease resistance, Chl-protein degra-

dation and chloroplast development (Keren et al., 2005,

Huang et al., 2006, Wangdi et al., 2010). Thf1 was first

identified as a substoichiometric component of His-

tagged CP47 preparations isolated from Synechocystis

Fig. 9. Growth rates and photosynthetic competence of WT and
DThf1 cells subjected to chilling stress.
A. Growth of WT and mutant cultures was monitored by measuring
the absorption at 730 nm.
B. PS I and PS II activity of cultures under chilling stress. Half-time
of P7001 re-reduction and Fv/Fm were exploited to measure PS I
and PS II activity, respectively.
C. Immunoblot analysis of the representative PS I subunit PsaD in
total protein extracts from WT and DThf1 cells grown under normal
temperature (308C) and chilling stress (208C). Error bars represent
SD (n 5 5).

Fig. 10. Localization of Thf1 in Synechococcus.
A. TP, MP and SP protein fractions of Synechococcus were
immunodecorated with the indicated antibodies. CP43 and RbcL
were used as controls of membrane and soluble fractions,
respectively.
B. Membrane association property of Thf1. The membrane fraction
from figure A were treated with various potential solubilizing reagents
as indicated, separated again into membrane (M) and soluble (S)
fractions by centrifugation and subjected to immunoblot analysis.

Thf1 stabilizes PS I in Synechococcus 745
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(Kashino et al., 2002). Although the function of Thf1

was not well established, thf1 knockout strains of Arabi-

dopsis and Synechocystis were reported to have

reduced PS II activity (Keren et al., 2005). However,

based on the results obtained in this study, Synechococ-

cus Thf1 was additionally found to interact with the PS I

complex and affect PS I stability in Synechococcus.

Thf1 was suggested to function in thylakoid membrane

formation in Arabidopsis by affecting vesicle transport

(Wang et al., 2004), while in Synechocystis, the Thf1

defect was found to have no effect on the structure of the

thylakoid membrane (Keren et al., 2005). This result is

confirmed by our analysis in Synechocuccos (Fig. 3A).

However, loss of Thf1 also rendered the thylakoid mem-

brane less stable under HL conditions (Fig. 3B).

The manner in which environmental factors regulate a

protein provides clues as to its functions. As reported

previously, thf1 is induced by chilling stress and alkaline

stress in the deciduous tree Populus simonii and Syne-

chocystis, respectively (Summerfield and Sherman,

2008; Song et al., 2013). In this study, we observed that

Thf1 could be induced under various stresses, including

-N, -S, oxidative, cold and HL stress (Fig. 1). As in Syn-

echocystis (Keren et al., 2005), Thf1 was found to be

important for HL acclimation in Synechoccocus (Sup-

porting Information Fig. S1).

During HL acclimation, a defect in Psb29 in Synecho-

cystis was reported to result in a seemingly contradic-

tory phenotype, with reduced PS II activity but higher

PS II fluorescence, which was speculated to be the

result of increased uncoupling of PS II antenna proteins

(Keren et al., 2005). This finding was confirmed in this

study (Fig. 4). Furthermore, loss of Thf1 led to a defect

in the breakdown of Chl and the Chl-binding protein D1

in rice and Arabidopsis (Huang et al., 2013; Yamatani

et al., 2013). Consistent with this, our whole cell absorb-

ance spectrum analysis also revealed that DThf1 Syne-

chococcus cells had a higher Chl content than did WT

cells (Supporting Information Fig. S4). It is also clear

that the Chl-binding protein D1 was more abundant in

DThf1 than in WT Synechococcus cells (Fig. 6).

Besides, we found that DThf1 cells had a lower content

of FtsH protein than did WT cells, but a similar level of

ftsh mRNA expression (Fig. 7). FtsH proteases are

involved in the degradation of D1 protein following pho-

todamage to PS II (Lindahl et al., 2000) and an Arabi-

dopsis mutant with defects in chloroplastic FtsHs are

defective in D1 degradation and PS II recovery, which

results in HL sensitivity (Kato et al., 2009). Taken

together, these results suggest that the defect in Thf1

resulted in a decrease in FtsH content and thus in

Fig. 12. The correlation between Thf1 and the photosystem.
A. Detection of Thf1 (lower panel) in the three fractions of the
sucrose gradient (upper panel). The three fractions obtained from
sucrose gradient ultracentrifugation are indicated with arrows as
F1, F2 and F3.
B. BN-PAGE separation of DSS crosslined F3 (upper panel) and
co-localization of Thf1 with PS I trimer (lower panel). Thylakoid
membranes from DThf1 cells were subjected to the same treatment
and used as the control.

Fig. 11. Change in Thf1 localization in response to HL exposure.
A. Immunoblot analysis of Thf1 in the TP, SP and MP fractions
from cultures grown under LL and HL conditions. Numbers below
the blot show the relative content of Thf1.
B. Immunofluorescence images showing the adaptation of the
content and the localization of Thf1 in cells grown under LL and
HL. Thf1 was observed by staining cells first with anti-Thf1
antibodies and then with an Alexa FluorVR 488 Rabbit IgG Labeling
Kit (Thermo Fisher Scientific) for indirect immunofluorescence
microscopy. Alexa FluorVR 488 was excited with an argon laser
(488 nm) and detected at 510–520 nm.
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inefficient degradation of damaged D1, which resulted in

the accumulation of uncoupled antenna proteins, a

higher Chl content, inhibition of PS II recovery and

decreased PS II activity. In addition, the excitation of

uncoupled antenna proteins can also lead to photosys-

tem damage via the generation of active oxygen species

(Latifi et al., 2009), and led to the photo-destruction of

thylakoid membrane (Fig. 3B).

An important finding of our study is that, besides a

decrease in PS II activity, the Thf1 defect in Synecho-

coccus also repressed PS I activity and reduced the

electron transport of PS I and the PS I re-reduction rate

relative to the WT under HL conditions (Figs. 4 and 5).

Consistent with these results, when compared with the

WT, DThf1 cells showed a reduced PS I content, based

on both the 77K fluorescence and immunoblot analysis

(Figs. 4 and 6). The mechanism by which Thf1 affects

the function of PS I remains to be determined. However,

we demonstrated that PS I stability is reduced in the

thf1 mutant (Fig. 8). This indicates that Thf1 plays a role

in stabilizing the PS I complex. The PS I assembly fac-

tor BtpA was also found to stabilize the reaction center

proteins of PS I under LT, and the btpA knockout mutant

showed a differential decrease in PS I activity and PS I

content (Zak and Pakrasi, 2000). Similar to the BtpA

defect, the Thf1 defect also resulted in decreased PS I

activity and PS I content without affecting PS II activity

under chilling stress (Fig. 9). Few protein factors

involved in PS I assembly/stability have been identified

in cyanobacteria, algae and higher plants. Mutations of

Ycf3 led to a modest decrease in PS I content, but pre-

vented photoautotrophic growth and caused enhanced

light sensitivity (Naver et al., 2001). The ycf4 mutant

strain of Synechocystis had a similar phenotype and

Ycf4 was shown to be an assembly chaperone for PS I

(Wilde et al., 1995). Inactivation of Ycf37, a conserved

protein reported to affect the stability of PS I, caused a

lower content of PS I and increased light sensitivity in

Synechocystis (Wilde et al., 2001; Duhring et al., 2006).

Inactivation of these genes always resulted in a reduc-

tion or complete loss of PS I reaction centers and all the

corresponding mutants showed HL sensitivity, which is

similar to the phenotype of Thf1 inactivation reported

here. Thus, we speculate that Synechococcus Thf1 may

affect PS I assembly. However, the mechanism remains

to be deciphered. We propose that Thf1 and PS I are

associated with each other, based on the presence of

Thf1 in both F2 and F3 of the sucrose gradient fracitons

(Fig. 12A). Furthermore, crosslinking of Thf1 by DSS

revealed that Thf1 was physically associated with the

PS I trimer (Fig. 12B), which confirms that Thf1 is asso-

ciated with the PS I complex.

The results presented here suggest that Thf1 is

involved in both PS II and PS I function. Some other

thylakoid proteins showing such a two-pronged function

have been identified. RpaA was reported to regulate the

accumulation of monomeric PS I and D1 protein under

HL conditions (Majeed et al., 2012). Vipp1, another pro-

tein reported to maintain the thylakoid membrane, was

found to affect both photosystem activities (Gao and Xu,

2009) and reduced expression of Vipp1 in Synchocystis

resulted in a decreased PS I content and an altered PS

I/PS II ratio (Fuhrmann et al., 2009). Recently, Vipp1

was demonstrated to affect the biogenesis of PS I

(Zhang et al., 2014). Interestingly, although the Thf1

defect led to both reduced PS II activity and decreased

PS I activity, the latter was the decisive factor for the HL

acclimation of the mutant. On one hand, the increase in

whole electron transport chain activity was synchronized

with the change in PS I activity (Fig. 4), and on the

other, PS I damage is more harmful than PS II inhibition

to photosynthetic organisms (Scheller and Haldrup,

2005; Sonoike, 2011). The recovery of PS I activity is

much slower than that of PS II (Tjus et al., 1999) and it

was reported that the photodamaged reaction center of

Arabidopsis PS I was not completely restored after one

week (Zhang and Scheller, 2004). More importantly, we

suggest that the photoinhibition of PS I would enhance

PS II inhibition. The cellular level of PS I is controlled to

avoid excessive accumulation of the reductants pro-

duced by PS II (Melis et al., 1987). Once the photoinhi-

bition of PS I is induced and electron transfer is blocked

at PS I, the resulting over-reduction of the PQ pool will

result in photoinhibition of PS II in the light (Sonoike,

2011). Besides, the photoinhibition of PS I would lead to

the collapse of ATP synthesis, which is essential for D1

protein synthesis during the PS II repair cycle (Nixon

et al., 2005). Thus, the decrease in PS I activity caused

by the Thf1 defect enhanced PS II damage of the

mutant, leading to increased sensitivity to HL. This

speculation was supported by the finding that PS I activ-

ity was reduced in DThf1 before PS II activity was inhib-

ited (Figs. 5 and 6).

In conclusion, by comparing the HL response of the

thf1 mutant and WT Synechococcus, we found that Thf1

affects not only PS II and D1 degradation by reducing

the FtsH protease content, but also PS I stability. Thus,

we show that Thf1 influences the stability of PS I in Syn-

echococcus, thereby providing a basis for investigating

the mechanism of Thf1 action.

Experimental procedures

Mutant construction

The Synechococcus elongatus PCC 7942 Thf1-disruption

mutant was constructed by transforming WT cells with the

pMD-19 (Thermo Fisher Scientific) vector carrying a thf1

Thf1 stabilizes PS I in Synechococcus 747
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gene that was disrupted by integration of a kanamycin

resistance gene using overlap PCR technology. The

upstream segment of thf1 (primers thf1-1-F/thf1-1-R), the

downstream segment of thf1 (primers thf1-2-F/thf1-2-R),

and the kanamycin cassette (primers Kana-F/Kana-R) were

amplified separately by PCR to generate overlapping gene

segments and used as template to generate full-length dis-

rupted thf1. Primers are listed in Supporting Information

Table S1.
To generate strains in which the thf1 mutation was com-

plemented, a NS2 targeting vector pNS2 was constructed

first according to Nakahira (Nakahira et al., 2013). The NS2

gene (primers NS2-F/NS2-R) was cloned and inserted into

the pMD-19 vector. Next, thf1 (primers thf1-F/thf1-R), the

cpcB promoter (primers promoter-F/promoter-R) from Syne-

chocystis sp. PCC6803 and the CAP cassette (primers

Cm-F/Cm-R) were amplified by PCR using Phusion DNA

polymerase as template, respectively. The DNA fragments

were recombined by overlap extension PCR and the result-

ing fragment was cloned into the BstpI site of pNS2 to con-

struct the thf1 expression cassette. The constructed

cassette was then transformed into the Thf1-disruption

mutant.

Culture conditions

Normally, the Synechococcus cells were cultured under 120

lE normal light at 308C in BG11 medium. For the stress

treatment experiments, cells were harvested by centrifuga-

tion at 6,000g for 3 min after they had reached the

mid-logarithmic growth phase (OD730 �0.8), and were then

cultured under different stress conditions. Deficiencies in

nitrogen (N), sulfur (S) and phosphorus (P) were achieved

by washing and transferring the cultures into the corre-

sponding element-free BG11 medium. The hyperosmotic

condition (HS) was achieved by adding NaCl to a final con-

centration of 0.5 M. Cold stress (LT) was carried out at

208C. For the exogenous oxidative stress treatment,

1.5 mM H2O2 was added to the BG11 medium. The culture

temperature was set to 308C, except when samples were

subjected to cold stress treatment, and normal light condi-

tions (120 lE) were employed, except when samples were

subjected to HL stress.
For the light experiments, the culture was bubbled with

air under LL conditions (7 lE), NL conditions (120 lE) and

HL conditions (1000 lE). Light intensities were measured

using a quantum light meter (Spectrum, American). All cells

were cultivated in BG-11 medium at 308C. For chilling

stress experiments, the cultures were grown at 208C and

under LL conditions. The control was grown at 308C and

under LL conditions.

77K fluorescence

77K fluorescence emission spectra were determined as

described previously (Zhang et al., 2013) using a PTI Fluo-

rometer (QM-4CW, Photon Technology International, South

Brunswick, NJ). The logarithmic phase cell suspensions

were adjusted to an OD730 of 0.8 in BG11 media and

frozen in liquid nitrogen. An excitation wavelength of

435 nm was used to excite Chl.

Analysis of Chl fluorescence and P700 redox kinetics

Chl fluorescence was measured as described (Zhang et al.,

2013) using a Dual-PAM-100 Chl fluorometer (Walz,

Germany). The re-reduction of P7001 in darkness was

measured as described by Barthel (Barthel et al., 2013).

Complete P700 oxidation was achieved by a 50-ms satura-

tion pulse (I 5 10.000 mmol photons m22 s21), and 10 lM

DCMU was added to the cultures prior to measurement.

Averages of 10 individual traces were taken. P7001 decay

kinetics were fitted with single exponential functions to

determine decay halftimes (t/2) using Origin 8.0.

Thylakoid membrane preparation and treatment of

membranes for Thf1 localization

Thylakoid membranes were prepared as previously

described (Wang et al., 2008; 2010). Briefly, cell pellets

derived from cells grown to the mid-logarithmic phase were

resuspended in ice-cold SMN buffer (50 mM MOPS, pH

7.0, 0.4 mM sucrose, 10 mM NaCl, 1 mM freshly made

phenylmethylsulfonyl fluoride). Cells were broken by a

French press apparatus (JN-02C, JNBIO). After removal of

unbroken cells and cellular debris, the membrane suspen-

sions were pelleted by centrifugation at 50,000g at 48C for

60 min. The membranes were washed three times with

SMN buffer and resuspended in SMN to 1 lg/lL Chl

concentration.
Membranes were solubilized according to Schottkowski

et al. (2009) with some modifications. Pellets obtained were

resuspended in 100 lL of SMN buffer and 100 lL of 0.2 M

NaCl, 0.2 M Na2CO3, 2 M urea, or 0.5% Triton X-100 was

added. After a 30-min incubation on ice and centrifugation

for 15 min at 18 000g at 48C, the supernatants were col-

lected and the pellets were washed twice with SMN buffer.

DSS cross-linking and fractionation of membrane

protein complexes

DSS cross-linking experiments were performed as reported

(Liu et al., 2011). Thylakoid membranes were resuspended

at 0.2 mg/mL Chl and then incubated with 5 mM DSS for

30 min in darkness at room temperature. The cross-linking

reaction was terminated by adding stop solution [Tris�Cl (pH

7.5)] to a final concentration of 50 mM for 15 min.

Membrane protein complexes were fractionated accord-

ing to Wang et al. (2008). To fractionate the membrane pro-

tein complexes without/after crosslinking, a solution of 10%

(w/v) dodecyl maltoside was added to the thylakoid mem-

branes to achieve a detergent-to-Chl ratio of 15:1 (w:w).

The membrane was solubilized at 48C for 30 min and then

loaded onto a 15–60% (w/w) continuous sucrose gradient.

After centrifugation at 170,000g for 17 h at 48C, the mem-

brane was separated into three fractions, which were col-

lected and stored at 2808C until use.
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Electrophoresis and immunoblot analysis

For SDS-PAGE immunoblot analysis, proteins were
extracted with 50 mM Tris-HCl (pH 7.0) and were quantita-

tively determined with a BCA Kit (Tiangen, China). Then,
an equal amount of proteins was denatured with 10 3 SDS

sample buffer. Rabbit primary antibody and goat anti-rabbit
secondary antibody (Sigma) were used at dilutions of

1:3,000 and 1:6,000, respectively. The hybridized proteins
were detected by chemiluminescence.

Blue native PAGE was performed as described previously

(Wang et al., 2008). Different sucrose gradient fractions
were collected and combined with a 1:10 volume of 10X

sample buffer (5% Serva G; 25 mM BisTris-HCl, pH 7.0;
250 mM 6-amino-caproic acid; 10 mM EDTA; 30%

sucrose). The prepared samples were then loaded onto a
5–12.5% gradient gel, and run at a constant voltage of 100
V. For immunoblot analysis, the BN gel was incubated in

SDS sample buffer containing 400 mM DTT and 8% SDS
for 1 h at 258C. Immunoblot analysis and SDS PAGE were

performed as described above.

Estimation of electron transport rate

The whole-chain, PS I-mediated and PS II-mediated elec-
tron transport rates were estimated by measuring the O2

evolution/consumption using a Clark-type electrode (Hansa-
tech, Germany) as described (Wang et al., 2008; 2010).

Cultures were adjusted to an OD730 5 2 with fresh BG-11
for the measurements of PS II and whole-chain electron
transport. The whole-chain electron transport (H2O to CO2)

rate was measured using water as the electron donor in the
presence of 1 mM NaHCO3. The PS II-mediated reaction

mixture contained 5 mM NH4Cl, 4 mM K3FeCN and 1 mM
phenyl-p-benzoquinone (PPBQ), which was used to mea-

sure the electron transport rate from H2O to PPBQ via PS
II. To measure the PS I-mediated electron transport rate,

thylakoid membranes were isolated as above and were
adjusted to a Chl concentration of 15 lg ml21 with SMN

buffer. PS I activity was measured as oxygen consumption
in the presence of 20 lM DCMU, 2 mM NaN3, 200 mM

2,3,5,6-tetramethyl-1,4-phenylenediamine, 5 mM sodium
ascorbate and 200 mM MV.

Electron microscopy

For TEM, cells grown under LL and HL were harvested upon
reaching the mid-log phase. Cells were washed three times

with PBS, fixed with 2.5% glutaraldehyde and then placed in
1% OsO4 for 2 h at room temperature. After graded ethanol

dehydration, samples were embedded in Epoxy epon-812
and polymerized at 708C for 8 h. Sections were cut, stained

with both uranyl acetate and lead citrate, and examined with
a Hitachi H-7000FA electron microscope.

Immunofluorescence microscopy

Microscopy analysis of cells grown in liquid BG11 medium
was carried out using a confocal scanner (Zeiss LSM 710

NLO). Thf1 localization was performed as previously

described (Miyagishima et al., 2005). Briefly, Thf1 was

observed by staining cells first with anti-Thf1 antibodies and

then with an Alexa FluorVR 488 Rabbit IgG Labeling Kit

(Thermo Fisher Scientific) for indirect immunofluorescence

microscopy. Alexa FluorVR 488 was excited with an argon

laser (488 nm) and detected at 510–520 nm.

Protein secondary structure prediction

Secondary structure prediction was carried out using the

following programs: Phyre (Kelley and Sternberg, 2009),

JPred4 (Cole et al., 2008) and GORV (Sen et al., 2005). A

consensus model was constructed based on the results of

all programs.
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