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We investigated the capability of Microcystis aeruginosa to cause apoptosis by pursuing morphological, molecular and
physiological characteristics after exposure to H2O2. Microcystis proliferation was only weakly affected after exposure
to 150 mM H2O2 but cell numbers decreased dramatically after exposures of 250 and 325 mM H2O2. Cells exposed to 250
and 325 mM H2O2 were examined using transmission electron microscopy, and they exhibited membrane deformation
and partial disintegration of thylakoids. Correspondingly, fluorescence imaging of DNA by Hoechst 33342 staining
revealed the condensation of nucleoid chromatin. Moreover, cellular injury was concomitant with dramatic decreases in
photosynthetic efficiency (ratio of variable fluorescence to maximum fluorescence [Fv/Fm], maximum electron transport
rate [ETRmax]) and elevated caspase-3–like activity after exposure of 250 and 325 mM H2O2. Terminal deoxynucleotidyl
transferase Deoxyuridine 5-triphosphate nick end labelling (TUNEL) positive staining appeared in cells exposed to
250 mM and 325 mM H2O2, and the percentage staining increased with increasing H2O2 concentration. These data
suggested that M. aeruginosa exposed to H2O2 underwent an apoptotic event. Additionally, cells exposed to H2O2 had
increased cytoplasmic vacuolation and nontypical DNA laddering. Increased caspase-3–like activity was not inhibited in
the presence of the synthetic caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone.
Therefore, H2O2 induced apoptotic-like cell death in a dose-dependent manner. Taken together, our results provided a
novel mechanism for explaining cyanobacterial bloom dynamics in response to environmental stress. The results also
contributed to the understanding of the origin and evolution of programmed cell death.
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INTRODUCTION

Traditionally, phytoplankton were considered immortal

unless eaten by predators or sank irreversibly (Kirchman

1999). There is recent evidence, for both marine and

freshwater species, that phytoplankton can undergo pro-

grammed cell death (PCD) in response to environmental

stress (Bidle & Falkowski 2004). PCD is an irreversible,

genetically controlled form of cell suicide that is essential

for the proper development, function and ultimate survival

of multicellular organisms (Ameisen 2002). A well-known

form of PCD is apoptosis, which is accompanied by plasma

membrane blebbing, chromatin condensation, involvement

of cysteine proteases (caspases) and fragmentation of DNA

(Kerr et al. 1972). Under diverse environmental stresses, the

filamentous marine cyanobacterium Trichodesmium sp.

IMS101 initiates PCD with an increase in caspase activity

(Berman-Frank et al. 2004). DNA fragmentation occurs in

the unicellular Microcystis aeruginosa (Kützing) Kützing

when it is placed in darkness or is exposed to elevated

temperatures (Bouchard & Purdie 2011). Various types of

PCD, with overlapping morphological and physiological

hallmarks, have been described in unicellular organisms

(Madeo et al. 2002; Herker et al. 2004; Kroemer et al. 2009;

Reape & McCabe 2010). Other cell death types termed

‘paraptosis’, ‘aponecrosis’ and ‘autophagy’, which are

fundamentally different from apoptosis, have also been

described (Jimenez et al. 2008, 2009). However, few studies

have dealt with PCD in cyanobacteria. PCD may be

ecologically relevant for unicellular algae because it may

control massive cell lysis of phytoplankton in nature.

Furthermore, PCD investigations can contribute to our

understanding of the evolutionary origin of cell death

processes. Among the toxic cyanobacteria, M. aeruginosa

commonly occurs in highly eutrophic lakes, and it often

dominates the phytoplankton in eutrophic lakes and ponds

(Yamamoto & Nakahara 2009). Microcystis aeruginosa

produces the hepatotoxin microcystin, which is a threat to

human and environmental health (Babica et al. 2006).

Recently, it has been reported that M. aeruginosa NIES 843

and PCC 7806 harbour genes for PCD that may be related

to the rapid collapse of Microcystis blooms (Kaneko et al.

2007; Frangeul et al. 2008). Therefore, M. aeruginosa is an

ideal organism for investigating cellular mechanisms under

specific environmental conditions involved in PCD.* Corresponding author (lrsong@ihb.ac.cn).
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PCD is induced by various stresses, such as viral

infection, heat, ultraviolet (UV) irradiation, nutrient

deprivation, salt stress, extreme temperature or oxidative

stress (Bidle & Falkowski 2004; Bidle et al. 2007). Oxidative

stress is among the most frequent causes of PCD induction.

For example, UV-B radiation generates high amounts of

reactive oxygen species (ROS) in phytoplankton (Chen et al.

2009). ROS are inevitably generated in processes such as

respiration and photosynthesis (Apel & Hirt 2004) when the

production of reactive oxidants exceeds the cellular

antioxidants. Cyanobacteria are often exposed to changing

conditions, including drastic fluctuations in light intensity

and temperature, and therefore ROS are easily produced.

Common ROS include singlet oxygen (1O2), superoxide

radical (O{
2
: ), hydrogen peroxide (H2O2) and hydroxyl

radicals (OḢ). The production of H2O2 within the cells is a

key element in both biotic and abiotic stresses and PCD

(Tsanko & Jacques 2005). For example, the production of

ROS in Microcystis aeruginosa is significantly increased

under exogenous H2O2 conditions (Bouchard & Purdie

2011). On the other hand, H2O2 may act as an algicide

because of its rapid decomposition into oxygen and water.

Qian et al. (2010) reported that H2O2 inhibited algal growth

by blocking transcription of photosynthesis-related genes

or by destroying photosynthetic pigments. Ross et al.

(2006) established that the addition of H2O2 elicited caspase

activity in M. aeruginosa in the environment but they did

not provide detailed descriptions of other biochemical and

cellular parameters. Therefore, we asked the question: Does

an apoptotic form of PCD exist in cyanobacteria and can

H2O2 induce this type of PCD? We investigated whether M.

aeruginosa is capable of executing apoptosis when exposed

to H2O2 by studying the morphological, molecular and

physiological features associated with this process.

MATERIAL AND METHODS

Unicellular Microcystis aeruginosa strain FACHB-905 was

cultured in BG-11 medium at 25uC under 20–25 mmol

photons m22 s21 illumination (Li-Cor LI-185B, USA) with

a 12:12 h light:dark cycle. Cultures were grown for 7 to

12 days after inoculation into 250 ml flasks. Cells were

harvested by centrifugation and washed three times with

sterilized distilled water; the pellets were inoculated into

50 ml flasks. The cell concentration was approximately 8.0

3 106 cells ml21. The effects of H2O2 were tested at

concentrations 150, 200, 250 and 325 mM.

Methylthiazolyldiphenyl-tetrazolium bromide (MTT;

Sigma, USA) was prepared in phosphate-buffered saline

(PBS; pH 6.8) at a concentration of 0.5 mg ml21 with

0.1 mol l21 sodium succinate. The stock MTT solution was

stored at 4uC. A 250 ml sample was used for MTT staining.

Samples were washed and suspended in 250 ml BG-11

medium before staining. After incubation, the dye was

removed by centrifugation at 5,939 3 g for 3 min. The

pellets were resuspended in 250 ml distilled water. The

250 ml samples were combined with 100 ml MTT stock

solution and incubated at 35 6 1uC for 1.5 h; 8 ml of

suspension was examined with a hemacytometer using light

microscopy (Olympus CX41, Japan). From each sample at

least 300 cells were analyzed.

For transmission electron microscopy (TEM), cells were

harvested 24 h after exposure to 250 and 325 mM H2O2.

Cells were washed three times with PBS, fixed with 2.5%

glutaraldehyde and then placed in 1% OsO4 for 2 h at room

temperature. After graded ethanol dehydration, samples

were embedded in Epoxy epon-812 and polymerized at

70uC for 8 h. Sections were cut, stained with uranyl acetate

and lead citrate and examined with a Hitachi H-600

electron microscope.

For Hoechst staining, cells were harvested after 24 h

exposure to 250 and 325 mM H2O2. Cells were washed three

times with PBS and fixed by addition of formaldehyde

(final concentration 4% vol/vol), and then drops of the cell

suspension were placed on polylysine-coated slides for

90 min. Slides were washed in PBS to remove formalde-

hyde. To stain DNA with the fluorescent DNA binding

probe, cells were incubated with Hoechst 33342 at

10 mg ml21 for 1 h. Cells were photographed with a digital

camera and a fluorescence microscope (Olympus BX51).

Chlorophyll fluorescence parameters were measured with

a pulse-amplitude–modulated fluorescence monitoring sys-

tem (PAM, Walz, Effeltrich, Germany). The values of Fv/

Fm (ratio of variable fluorescence to maximum fluores-

cence; the maximum effective quantum yield of photosys-

tem II) and ETRmax (the maximum electron transport

rate) were recorded.

The CaspGlow Fluorescein Active Caspase-3 Staining

Kit (BioVision, USA) was used to quantify caspase-3–

like activity in cells. The assay utilized the fluorescein

isothiocyanate (FITC)-labelled Benzyloxycarbonyl-Asp(OMe)-

Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, which was

cell permeable and irreversibly bound to activated caspase-3

in apoptotic cells. The kit was used according to the

manufacturer’s instructions. After labelling, cells were

washed twice in buffer to remove background fluorescence.

For analysis with a fluorescence plate reader, each cell

sample was resuspended in 100 ml wash buffer and then

transferred into a well of a black microtiter plate. The

fluorescence intensity was measured at 485 nm (excitation)

and 535 nm (emission). We used nontreated cells that were

exposed to FITC-DEVD-FMK as the control. The protein

content was estimated by the Bradford Method (Bradford

1976). The caspase activity was expressed as the percentage

enzyme activity compared to the control group.

DNA was extracted according to a previously described

method (LoSchiavo et al. 2000), with the following

modifications. Briefly, after exposure to H2O2 for 24 or

48 h, the cells were collected, washed once with PBS and

lysed in the buffer (10 mM Tris; 1 mM ethylenediamine-

tetraacetic acid [EDTA]; 100 mM NaCl; 100 mg ml21

lysozyme, pH 9.0) at 37uC for 30 min. Thereafter,

20 mg ml21 proteinase K and 10% sodium dodecyl sulfate

were added. After incubation at 55uC for 90 min, DNA was

extracted with phenol-chloroform and centrifuged at

13,362 3 g for 8 min at room temperature. The upper

aqueous phase was mixed with cold ethanol and 10 M

ammonium acetate (1/10), precipitated at 220uC for at least

for 1 h and centrifuged at 13,362 3 g for 20 min. The

nucleic acid pellet was washed with 70% vol/vol ethanol, air
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dried, resuspended in Tris EDTA buffer (10 mM Tris-HCl,

pH 7.5, 1 mM EDTA) and incubated with RNase A

(20 mg ml21) at 37uC for 30 min. DNA fragmentation and

standard DNA markers were analyzed by electrophoresis

using 1.6% agarose gel at 100 V for 55 min, and the bands

were stained with ethidium bromide (0.5 mg l21) in

preparation for UV light visualization using the BioSpec-

trum Imaging System (UVP, CA, USA).

Terminal deoxynucleotidyl transferase labelling (TU-

NEL) assays were carried out with the In Situ Cell Death

Detection Kit, Fluorescein (Roche Diagnostics, Cat. No. 11

684 795 910, Mannheim, Germany). The samples were

harvested after 24 h and 48 h exposure to H2O2. Cells were

fixed at room temperature for 1.5 h with 2% paraformal-

dehyde in PBS and then washed with PBS. Cells were

permeabilised for 20 min at 4uC in solution containing 0.1%

Triton X-100 and 0.1% sodium citrate. The labelling and

signal conversions were carried out according to the

manufacturer’s instructions. Finally, samples were analyzed

under a fluorescence microscope (Olympus BX51) using an

excitation wavelength in the range of 450–500 nm, and

results were processed using the Image-Pro Express 6.0

software program. Representative images were taken after

analysis of at least 500 cells per sample.

All experiments were performed in triplicate; data were

presented as means 6 standard deviations (s) and analyzed

using Microcal Origin Software (Version 8.0, Microcal

Software Inc. Northampton, MA, USA).

RESULTS

The effects of H2O2 on the growth of Microcystis

aeruginosa within a period of 48 h were shown in Figs 1,

2. Compared to the control, cells exposed to 150 mM H2O2

were only weakly affected. However, the optical density680

of the sample exposed to 325 mM H2O2 decreased from

0.402 to 0.149 within 48 h, while the cell number decreased

from 8 3 106 cells ml21 to 2.3 3 106 cells ml21.

As shown in Fig. 3, the exposure to H2O2 for 0, 3, 9, 24

and 48 h resulted in a dose-dependent decrease in viability

compared with control cells. More than 60% of the cells

were alive after 3 h of exposure to 150 and 200 mM H2O2.

After 24 h, 50% of the cells were dead at both

concentrations. However, only 20% of cells were alive after

24 h when the cells were exposed to 250 mM H2O2, and only

1% were alive after 48 h when exposed to 325 mM H2O2.

Therefore, control cells and cells exposed to 250 and 325 mM

H2O2 were used for TEM examination and Hoechst 33342

staining experiments.

The control cells showed normal nucleoid zone, dense

cytoplasm, well-defined thylakoid and intact plasma

membranes (Fig. 4). Cells exposed to H2O2 had less dense

Fig. 1. Growth curves for cells exposed to 150, 200, 250 and 325 mM H2O2. Control represents untreated cells.
Fig. 2. Changes in cell number for cells exposed to 150, 200, 250 and 325 mM H2O2. Control represents untreated cells.

Fig. 3. Cell viability determined by MTT assay after exposure to
150, 200, 250 and 325 mM H2O2. Control represents untreated cells.
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stroma, and membrane deformation was observed (Figs 5,

8–10). And Figs 6, 7 clearly showed that the wavy folds of

outer cells became irregular. Deformation, partial disinte-

gration of thylakoids and cytoplasmic vacuolation were

observed after exposure. Figs 8–10 show a progressive

amplification of these changes, especially the increasing

cytoplasmic vacuolation.

Control cells exhibited more diffuse chromatin and an

intact cell membrane (Fig. 11). Cells exposed to H2O2

showed highly condensed chromatin, an early apoptotic

character (Figs 12, 13 white arrows). The loss of chromatin

architecture or even a completely lysed nucleoid zone,

characteristic of late apoptosis, was observed in cells

exposed to 325 mM H2O2 (Fig. 13, red arrows). Moreover,

apoptotic-like cells were more permeable to Hoechst 33342,

causing a brighter blue fluorescence.

To determine the effect of H2O2 on photosynthesis, the

maximum photochemical yield (Fv/Fm) and the maximum

ETR (ETRmax) of photosystem II were measured (Figs 14,

15). Within 3 h of exposure, the Fv/Fm values of cells

exposed to H2O2 were all rapidly decreased comparable to

control cells. The ETRmax of cells exposed to 250 and

325 mM H2O2 decreased nearly to zero at 9 h, while the Fv/

Fm value decreased to zero at 24 h.

After exposure to 250 and 325 mM H2O2, the caspase-3–

like activity increased gradually from 2 h to 8 h compared

to controls (Fig. 16). At 8 h, the caspase-3–like activity of

cells exposed to 325 mM H2O2 reached the peak, 33-fold

compared with the control. Caspase-3–like activity showed

a statistically significant decrease after 24 h exposure (P ,

0.05). Caspase-3–like activity of cells exposed to 250 mM

H2O2 for 24 h was not statistically significantly different

from the activity detected at 8 h, and activity was still on

average six times higher than that of the control cells (P ,

0.05). When the cells were preincubated with the caspase

inhibitor Z-VAD-FMK, caspase-3–like activity was not

inhibited (data not shown).

To discern whether the degradation of chromatin was

accompanied by characteristic DNA fragmentation associ-

ated with PCD, we analyzed the DNA by adopting classical

methods, i.e. with detection of DNA laddering in agarose

gels and with the TUNEL assay. Agarose gel analysis of

genomic DNA isolated from control cells and from cells

exposed to increasing amounts of H2O2 at 24 h and 48 h

was used to determine whether H2O2 stress could induce

DNA fragmentation (Fig. 17). DNA was extracted from

the cells after 24 h of H2O2 exposure, when caspase-3–like

activity was increased (Fig. 16). The DNA was slightly

Figs 4–10. Various stages of the ultrastructural changes induced by H2O2. Scale bars 5 500 nm.
Fig. 4. Ultrastructure of a control cells.
Figs 5, 8. Ultrastructural changes of cells after exposure to 250 mM H2O2 for 24 h.
Figs 6, 7. Enlarged views of designated windows in 4 and 5, respectively.
Figs 9, 10. Ultrastructural changes of cells after exposure to 325 mM H2O2 for 24 h.
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degraded and appeared as a faint smear on the gel (Fig. 17,

lane 3). However, at 48 h of 250 mM H2O2 exposure, diffuse

low molecular weight bands were visible (Fig. 17, lane 4).

Such fragmentation was not observed in the cells exposed

to 325 mM H2O2, and only a smear was detectable on the

gel after 24 h (Fig. 17, lane 5). No DNA laddering was

detected in the controls.

The TUNEL assay was performed to corroborate the

DNA fragmentation (Figs 18–24). Free 39OH ends of

DNA, generated by activation of endonuclease activity in

dying cells, were fluorescently labelled in the TUNEL

assay. The percentage of TUNEL-positive cells after

exposure to H2O2 increased gradually from 2 h to 48 h

(Fig. 18). In negative controls without the terminal

deoxynucleotidyl transferase enzyme, no TUNEL-positive

cells were observed (Fig. 19). The TUNEL-positive signal

was only found in H2O2 treated cells, while the control cells

showed no positive signal, apparently because of the

absence of DNA free ends that allow the incorporation of

fluorescein labelled dUTP (Fig. 20). When cells were

treated with 250 mM H2O2 at 24 h, 51% of the cells were

TUNEL-positive (Fig. 21). When cells were treated with

325 mM H2O2 at 48 h, 92% of cells were TUNEL-positive

(Fig. 24).

DISCUSSION

We found several classic parameters associated with

apoptosis in Microcystis aeruginosa cells exposed to 250

and 325 mM H2O2, e.g. membrane deformation, cytoplas-

mic vacuolation, chromatin condensation, DNA fragmen-

tation and increasing caspase-3–like activity. Caspases have

only been isolated from multicellular animals (sponges to

Figs 11–13. Cells stained with fluorescent dye Hoechst 33342 at 24 h after H2O2 exposure. White arrows 5 chromatin condensation; red
arrows 5 loss of chromatin architecture. Scale bar 5 5 mm.

Fig. 11. Untreated cells.
Fig. 12. Cells exposed to 250 mM H2O2.
Fig. 13. Cells exposed to 325 mM H2O2.

Fig. 14. Ratio of variable fluorescence to maximum fluorescence
(Fv/Fm) for cells exposed to 150, 200, 250 and 325 mM H2O2.
Control represents untreated cells.

Fig. 15. Electron transport rate maximum (ETRmax) for cells
exposed to 150, 200, 250 and 325 mM H2O2. Control represents
untreated cells.
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humans) but their activity has also been reported for

vascular plants, yeast and bacteria (De-Jong et al. 2002;

Madeo et al. 2002; Herker et al. 2004; Jimenez et al. 2008,

2009; Chen & He 2009). Within the caspase family, caspase-

3 is believed to be the final executor of apoptotic cell death;

it elicits organized degradation of many cellular proteins,

and it changes the nuclear morphology (Fischer et al. 2003;

Rice & Bayles 2008). We found caspase-3–like activity

increased over time after exposure to 250 and 325 mM

H2O2. Similar results have also been reported during PCD

for the green algae Micrasterias denticulata Brébisson &

Godey ex Ralfs (Darehshouri et al. 2008), Dunaliella

tertiolecta Butcher (Segovia et al. 2003) and Chlorella

saccharophila (Krüger) Migula (Zuppini et al. 2007) as well

as the cyanobacterium Trichodesmium sp. IMS101 (Ber-

man-Frank et al. 2004). However, our findings show that

increased caspase-3–like activity was not inhibited in the

presence of the caspase inhibitor Z-VAD-FMK. Therefore,

we cannot claim that H2O2 triggers a caspase-dependent

cell death. The broad-spectrum caspase inhibitor Z-VAD-

FMK inhibits caspase-3 in animals and is commonly used

in elucidating apoptotic pathways; however, it does not

inhibit all caspases in plants (Equils et al. 2009; Elodie et al.

2010). Microcystis is a prokaryote, and Z-VAD-FMK

might not bind to the catalytic site of its caspase-3–like

proteins. Cyanobacterial caspase-like proteins form several

distinct clusters in phylogenetic analyses, showing consid-

erable diversity (Bidle & Falkowski 2004). Perhaps

cyanobacterial caspase-like orthologues represent an an-

cestral core of caspase-like proteins, different from caspases

in metazoans.

DNA fragmentation has also been used to diagnose

apoptosis in animals and plants (Ameisen 2002; Williams &

Dickman 2008). Our TUNEL results demonstrated that

Microcystis aeruginosa exposed to H2O2 can lead to DNA

fragmentation, which indicates apoptosis. Similar results

are reported for Anabaena sp. (Ning et al. 2002), Micro-

cystis aeruginosa (Bouchard & Purdie 2011), Dunaliella

viridis Teodoresco (Jimenez et al. 2009) and Skeletonema

costatum (Greville) Cleve (Chung et al. 2005). However, we

found only diffuse low molecular weight bands on agarose

gels at 48 h following 250 mM H2O2 exposure, not DNA

laddering. Nevertheless, the absence of typical DNA

laddering does not rule out the existence of PCD because

most unicellular prokaryotic organisms, and even in some

eukaryotic algae, don’t produce DNA laddering with PCD.

For instance, programmed cell death without a DNA

ladder has been observed in Thalassiosira pseudonana Hasle

& Heimdal (Bidle & Bender 2008), Anabaena sp. (Ning et al.

2002) and Dictyostelium discoideum Raper (Cornillon et al.

1994). Affenzeller et al. (2009) found that DNA laddering

only occurred in NaCl-stressed Micrasterias cells but not in

cells undergoing other types of stress. Therefore, it appears

that the mechanism of DNA laddering varies in different

species or even as a result of different environmental

stresses.

During cell death induced by high concentrations of

H2O2, there is an increase in cytoplasmic vacuolation, a

feature regarded as a cytological hallmark of paraptosis.

Cytoplasm vacuolation was also observed during PCD for

Fig. 16. Caspase-3–like activity measured by fluorescence intensity
at 485 nm (excitation) and 535 nm (emission). * P , 0.05, *** P
, 0.001.

Fig. 17. DNA degradation shown by agarose gel electrophoresis.
L1 5 control cells for 24 h; L2 5 control cells for 48 h; L3 5

250 mM H2O2 for 24 h; L4 5 250 mM H2O2 for 48 h; L5 5 325 mM
H2O2 for 24 h; M 5 molecular markers.

Fig. 18. The percentage of TUNEL-positive cells exposed to 250
and 325 mM H2O2 for 2, 4, 8, 24 and 48 h.

572 Phycologia, Vol. 51 (5), 2012



Anabaena sp. (Ning et al. 2002), Micrasterias denticulata

(Darehshouri et al. 2008) and Amphidinium carterae

Hulbert (Franklin & Berges 2004). However, paraptosis

involves mitochondrial swelling and lacks apoptosis char-

acters such as caspase activation and DNA fragmentation.

To gain deeper insight, Microcystis aeruginosa cells were

stained with Hoechst 33342. Under the fluorescence

microscope, we observed chromatin condensation in cells

exposed to H2O2, and this evidence indicates an apoptotic

event. There was a complete loss of chromatin architecture

or a completely lysed nucleoid zone in cells exposed to

325 mM H2O2; this may be due to DNA fragmentation

because small DNA fragments are typical during the final

stages of apoptotic-like PCD. Overall, our results clearly

suggest that H2O2 induced apoptotic-like cell death in a

dose-dependent manner.

Apoptosis has been mainly studied in metazoans, but the

precise subcellular mechanisms and evolutionary drivers are

still largely unknown in unicellular organisms. Our study,

using a diverse suit of markers with H2O2 treatments,

contributes to the understanding of PCD models that occur

in unicellular phytoplankton and to how PCD events are

regulated. Differences between the typical animal apoptotic

characteristics and our results are probably due to

fundamental differences between metazoa and prokaryotes.

For animals and plants, mitochondria and chloroplasts are

sources of ROS in stress situations, and the chloroplast

plays an important role in plant PCD because the process is

light-dependent (Doyle et al. 2010; Li & Xing 2011). Given

the fact that cyanobacteria do not possess mitochondria, it

is likely that their photosynthetic apparatus might have full

control over cell death regulation.

ACKNOWLEDGEMENTS

This research was supported by grants from the National Key

Project for Basic Research (2008CB418006) and National

Natural Science Foundation of China (U08333604).

REFERENCES

AFFENZELLER M.J., DAREHSHOURI A., ANDOSCH A., LUTZ C. &
LUTZ-MEINDL U. 2009. Salt stress-induced cell death in the
unicellular green algae Micrasterias denticulata. Journal of
Experimental Botany 60: 939–954.

AMEISEN J.C. 2002. On the origin, evolution, and nature of
programmed cell death: a timeline of four billion years. Cell
Death and Differentiation 9: 367–393.

APEL K. & HIRT H. 2004. Reactive oxygen species: metabolism,
oxidative stress, and signal transduction. Annual Review of Plant
Biology 55: 373–399.

Figs 19–24. In situ detection of cell death using TUNEL assay; TUNEL-positive cells 5 green; others 5 red. Scale bar 5 5 mm.
Fig. 19. Negative control without terminal transferase.
Fig. 20. Cells not exposed to H2O2.
Fig. 21. Cells exposed to H2O2 250 mM H2O2 at 24 h.
Fig. 22. Cells exposed to H2O2 250 mM H2O2 at 48 h.
Fig. 23. Cells exposed to H2O2 325 mM H2O2 at 24 h.
Fig. 24. Cells exposed to H2O2 325 mM H2O2 at 48 h.

Ding et al.: Hydrogen peroxide induces PCD in Microcystis 573



BABICA P., BLAHA L. & MARSALEK B. 2006. Exploring the natural
role of microcystins—a review of effects on photoautotrophic
organisms. Journal of Phycology 42: 9–20.

BERMAN-FRANK I., BIDLE K.D., HARAMATY L. & FALKOWSKI P.G.
2004. The demise of the marine cyanobacterium, Trichodesmium
spp., via an autocatalyzed cell death pathway. Limnology and
Oceanography 49: 997–1005.

BIDLE K.D. & BENDER S.J. 2008. Iron starvation and culture age
activate metacaspases and programmed cell death in the marine
diatom Thalassiosira pseudonana. Eukaryotic Cell 7: 223–236.

BIDLE K.D. & FALKOWSKI P.G. 2004. Cell death in planktonic,
photosynthetic microorganisms. Nature Reviews Microbiology 2:
643–655.

BIDLE K.D., HARAMATY L., RAMOS J.B. & FALKOWSKI P. 2007.
Viral activation and recruitment of metacaspases in the
unicellular coccolithophore, Emiliania huxleyi. Proceedings of
the National Academy of Sciences USA 104: 6049–6054.

BOUCHARD J.N. & PURDIE D.A. 2011. Effect of elevated
temperature, darkness and hydrogen peroxide treatment on
oxidative stress and cell death in the bloom-forming toxic
cyanobacterium Microcystis aeruginosa. Journal of Phycology 47:
1316–1325.

BRADFORD M.M. 1976. Rapid and sensitive method for quantita-
tion of microgram quantities of protein utilizing principle of
protein-dye binding. Analytical Biochemistry 72: 248–254.

CHEN F. & HE Y.Q. 2009. Caspase-2 mediated apoptotic and
necrotic murine macrophage cell death induced by rough
Brucella abortus. Plos One 4, (8), 13. e6830. doi:10.1371/
journal.pone.0006830

CHEN L.Z., WANG G.H., HONG S., LIU A., LI C. & LIU Y.D. 2009.
UV-B-induced oxidative damage and protective role of exo-
polysaccharides in desert cyanobacterium Microcoleus vaginatus.
Journal of Integrative Plant Biology 51: 194–200.

CHUNG C.C., HWANG S.P.L. & CHANG J. 2005. Cooccurrence of
ScDSP gene expression, cell death, and DNA fragmentation in a
marine diatom, Skeletonema costatum. Applied and Environmen-
tal Microbiology 71: 8744–8751.

CORNILLON S., FOA C., DAVOUST J., BUONAVISTA N., GROSS J.D. &
GOLSTEIN P. 1994. Programmed cell-death in Dictyostelium.
Journal of Cell Science 107: 2691–2704.

DAREHSHOURI A., AFFENZELLER M. & LUTZ-MEINDL U. 2008. Cell
death upon H2O2 induction in the unicellular green algae
Micrasterias. Plant Biology 10: 732–745.

DE-JONG A.J., YAKIMOVA E.T., KAPCHINA V.M. & WOLTERING

E.J. 2002. A critical role for ethylene in hydrogen peroxide
release during programmed cell death in tomato suspension cells.
Planta 214: 537–545.

DOYLE S.M., DIAMOND M. & MCCABE, P.F. 2010. Chloroplast and
reactive oxygen species involvement in apoptotic-like pro-
grammed cell death in Arabidopsis suspension cultures. Journal
of Experimental Botany 61: 473–482.

ELODIE L., DELPHINE M., JUSTIN T., NICOLE T., NATHALIE A.A.,
THIERRY L., HERVE B. & BRUNO S. 2010. Caspase-10-dependent
cell death in Fas/CD95 signalling is not abrogated by caspase
inhibitor zVAD-fmk. Plos One 5, (10), e13638. doi:10.1371/
journal.pone.0013638.

EQUILS O., MOFFATT-BLUE C., ISHIKAWA T., SIMMONS C.F.,
ILIEVSKI V. & HIRSCH E. 2009. Pretreatment with pancaspase
inhibitor (Z-VAD-FMK) delays but does not prevent intraper-
itoneal heat-killed Group B Streptococcus-induced preterm
delivery in a pregnant mouse model. Infectious Diseases in
Obstetrics and Gynecology 2009: 749432.

FISCHER U., JANICKE R.U. & SCHULYE-OSTHOFF K. 2003. Many
cuts to ruin: a comprehensive update of caspase substrates. Cell
Death and Differentiation 10: 76–100.

FRANGEUL L., QUILLARDET P., CASTETS A.M., HUMBERT J.F.,
MATTHIJS H.C.P., CORTEZ D., TOLONEN A., ZHANG C.C.,
GRIBALDO S., KEHR J.C., ZILLIGES Y., ZIEMERT N., BECKER

S., TALLA E., LATIFI A., BILLAULT A., LEPELLETIER A.,
DITTMANN E., BOUCHIER C. & TANDEAU DE MARSAC, N. 2008.
Highly plastic genome of Microcystis aeruginosa PCC 7806, a
ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9:
274. doi:10.1186/1471-2164-9-274.

FRANKLIN D.J. & BERGES J.A. 2004. Mortality in cultures of the
dinoflagellate Amphidinium carterae during culture senescence
and darkness. Proceedings of the Royal Society of London,
Biological Series 271: 2099–2107.

HERKER E., JUNGWIRTH H., LEHMANN K.A., MALDENER C.,
FROHLICH K.U., WISSING S., BUTTNER S., FEHR M., SIGRIST S. &
MADEO F. 2004. Chronological aging leads to apoptosis in yeast.
Journal of Cell Biology 164: 501–507.

JIMENEZ C., CAPASSO J.M., EDELSTEIN C.L., RIVARD C.J., LUCIA

S., BREUSEGEM S., BERL T. & SEGOVIA M. 2009. Different ways
to die: cell death modes of the unicellular chlorophyte Dunaliella
viridis exposed to various environmental stresses are mediated by
the caspase-like activity DEVDase. Journal of Experimental
Botany 60: 815–828.

JIMENEZ V., PAREDES R., SOSA M.A. & GALANTI N. 2008. Natural
programmed cell death in T. cruzi epimastigotes maintained
in axenic cultures. Journal of Cellular Biochemistry 105: 688–
698.

KANEKO T., NAKAJIMA N., OKAMOTO S., SUZUKI I., TANABE Y.,
TAMAOKI M., NAKAMURA Y., KASAI F., WATANABE A.,
KAWASHIMA K., KISHIDA Y., ONO A., SHIMIZU Y., TAKAHASHI

C., MINAMI C., FUJISHIRO T., KOHARA M., KATOH M.,
NAKAZAKI N., NAKAYAMA S., YAMADA M., TABATA S. &
WATANABE M.M. 2007. Complete genomic structure of the
bloom-forming toxic cyanobacterium Microcystis aeruginosa
NIES–843. DNA Research 14: 247–256.

KERR J.F.R., WYLLIE A.H. & CURRIE A.R. 1972. Apoptosis: a
basic biological phenomenon with wide-ranging implications in
tissue kinetics. British Journal of Cancer 26: 239–257.

KIRCHMAN D.L. 1999. Oceanography—phytoplankton death in
the sea. Nature 398: 293–294.

KROEMER G., GALLUZZI L., VANDENABEELE P., ABRAMS J.,
ALNEMRI E.S., BAEHRECKE E.H., BLAGOSKLONNY M.V., EL-
DEIRY W.S., GOLSTEIN P., GREEN D.R., HENGARTNER M.,
KNIGHT R.A., KUMAR S., LIPTON S.A., MALORNI W., NUÑEZ G.,
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