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The effects of different weaning strategies during the larval rearing of Chinese longsnout catfish were deter-
mined in two trials. In the first trial, the effect of abrupt-weaning from live prey (Artemia nauplii) to micro-
diet at 5, 6, 7, 8, 10 dph, respectively was investigated. The second trial examined the effect of weaning with
co-feeding at different ages (6, 8 and 10 dph).
The survival, growth, digestive enzymes, coefficient of variation of final body weight (CVFBW) and body
length (CVBL), digestive enzyme activities, fish body lysozyme and fish body glucose were significantly
influenced by abrupt-introducing of microdiet (Pb0.05). When weaning with live prey, only the fish body
lysozyme significantly increased in the group introduced to microdiet on 8 and 10 dph (Pb0.05).
The study showed that abrupt-weaning of Chinese longsnout catfish should be obtained after 10 dph. Co-
feeding could reduce the stress to larvae and therefore the weaning could start at 6 dph with co-feeding.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In fish larviculture, zooplankton and Artemia are generally provid-
ed at first feeding. But low production and high price have become
the bottleneck for large scale culture (Person-Le Ruyet et al., 1993).
Formulated microdiets could be the substitute of live food. But the
use of formulated microdiets soon after hatching often leads to low
survival and poor growth due to improper weaning age or weaning
diet (Jones et al., 1993; Person-Le Ruyet et al., 1993; Watanabe and
Kiron, 1994).

Low acceptance and low digestibility of themicrodiet are also due to
inadequate digestive enzyme development in fish larvae. Previous
research found that the optimum initiation of feeding was species-
specific and was primarily related to the development of the digestive
system (Cahu and Zambonino Infante, 2001). Digestive enzyme activi-
ties are often used as indicators to judge thematuration of the digestive
system and the nutritional status of fish larvae (Gawlicka et al., 2000;
Hjelmeland et al., 1996; Oozeki and Bailey, 1995; Ueberschar, 1993).
The occurrence time and the development of key enzymes also decide
weaning success (Gawlicka et al., 2000; Moyano and Sarasquete,
ient of variation for final body
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1993). Improper weaning age or weaning diet could damage the diges-
tive tract and lead to chronic stress with progressive starvation
(Pickering, 1998), and delay or impair the development, health and
physiological function of fish larvae (Cahu and Zambonino Infante,
1994; Fevolden and Røed, 1993; Fevolden et al., 1999; Hamza et al.,
2007; Iwama et al., 2005; Wendelaar Bonga, 1997).

Co-feeding with live prey has been reported to help alleviate these
problems and increase the success of early weaning to microdiet
(Alves et al., 2006; Curnow et al., 2006a,b; Kestemont et al., 2007).
Two reasons have been accepted while explaining this success: (1)
unknown nutritional factors carried by live prey stimulate larval pan-
creatic secretions which then stimulate endocrine responses and are
helpful to the maturation of the digestive process (Koven et al.,
2001); (2) visual and chemical stimulation of live prey facilitates
intake of microdiet subsequently affecting the growth of larvae
(Cañavate and Fernández-Díaz, 1999; Kolkovski et al., 1997a,b;
Rosenlund et al., 1997).

The ontogeny of digestive enzyme patterns in fish larval has been
comprehensively studied to design adequate larval rearing and feed-
ing strategies, and to formulate microdiets (Gawlicka et al., 2000;
Lazo et al., 2007; Oozeki et al., 1995). The appearance of functional
stomach as a final step of larval development and the acquisition of
juvenile-like digestive characteristics were normally considered
(Gawlicka et al., 2001). In our previous study, it was observed that
Chinese longsnout catfish (Leiocassis longirostris Günther) larvae
started first feeding at 5 dph and grew well with live prey. From
8 dph, the digestive enzymes such as pepsin, trypsin, amylase and
lipase reached a plateau. The increasing values of pepsin and trypsin
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from 1 dph to a plateau (8–13 dph) seem to indicate that the stomach
rather than the pancreas is in rapid development at 5–8 dph (Liu,
2011). In this stage, a progressive enzyme activity shift from alkaline
to acid proteases mentioned by Lazo et al. (2007) occurred, and
pepsin-like protease finally became the main digestive enzyme in
the stomach development (Govoni et al., 1986; Pérez-Casanova et
al., 2006; Zambonino Infante and Cahu, 2001).

Chinese longsnout catfish, L. longirostris Günther is one of the high
value aquaculture species in China. However, high mortality is often
encountered during weaning stage. Previous investigations are
restricted to juveniles on rearing conditions such as ration level, fish
size and water temperature (Han et al., 2004; Liu et al., 2008; Pei et
al., 2004; Zhu et al., 2005). The weaning strategy with microdiet is
still not confirmed and limits the large scale production.

Therefore, the present study was designed to investigate the
effects of abrupt weaning to a microparticulate diet and co-feeding
with live prey on survival, growth and how the microdiet would
affect the digestive enzyme activities and physiological responses of
Chinese longsnout catfish larvae.

2. Materials and methods

2.1. Diet preparation

Commercial powdered feed for juvenile soft shell turtles (Q/WHFL
01‐2009, Coland Feed Co., Ltd., Wuhan, China) (crude protein: 50.4%;
crude lipid: 6.2%) was used as microparticulate weaning feed. The
powder was blended with water and stirred by hand, then sieved to
obtain particles of 250–500 μm. The diet was then stored at −4 °C
until further use.

2.2. Fish and feeding trial

Chinese longsnout catfish larvae 4 dph (6.2 mg) were obtained
from the National Thoroughbred Farm for Chinese longsnout catfish,
Shishou, Hubei, PR China and were transported to the laboratory at
the Institute of Hydrobiology (Wuhan, China).

The two trials were conducted using the same batch of larvae
obtained at 4 dph. The feeding regime is shown in Table 1. During
the trials, the larvae were fed microdiet (MD) or Artemia nauplii.
Newly hatched Artemia nauplii (eggs from Tianjin Red Sun Aquacul-
ture Co., Ltd., China) contain about 58% crude protein and 19% crude
Table 1
Feeding regime of three trials.

Larvae
age

Trial 1

Control 5 dph 6 dph 7 dph 8 d

4 dph
5 dph AT MD AT AT AT
6 dph AT MD MD AT AT
7 dph AT MD MD MD AT
8 dph AT MD MD MD M
9 dph AT MD MD MD M
10 dph AT MD MD MD M
11 dph AT MD MD MD M
12 dph AT MD MD MD M
13 dph AT MD MD MD M
14 dph AT MD MD MD M
15 dph AT MD MD MD M
16 dph AT MD MD MD M
17 dph AT MD MD MD M
18 dph AT MD MD MD M
19 dph AT MD MD MD M
20 dph AT MD MD MD M
21 dph AT MD MD MD M
22 dph End End End End En

NF: no feeding; AT: Artemia nauplii; CO: 5% Artemia nauplii+25% microdiet; MD: microdie
lipid. The moisture of the microdiet and Artemia was determined
daily.

During all the experiments, water temperature was measured twice
daily (09:00 and 15:00). Total ammonia nitrogen and dissolved oxygen
were monitored every 7 days and pH was detected daily. Photoperiod
was 13 h:11 hwith the light period from 08:00 to 21:00. Light intensity
was about 260.25–301.35 lx. Flow-through systems were used in two
trials. Tap water was treated by active carbon and zeolite and water
flow into each tank was 500 mL/min. Total ammonia nitrogen (TAN)
was less than 0.5 mg/L, and pH ranged between 7.0 and 7.5.Water tem-
perature was 24.9±0.15 °C in Trial 1 and 24.3±0.41 °C in Trial 2.
Dissolved oxygen (DO) was higher than 5 mg/L.

2.2.1. Trial 1: Abrupt weaning with microdiet
The larvae at 4 dph were randomly transferred into eighteen glass

tanks (60×40×50 cm, water volume: 96 L) at a density of 250 larvae
per tank. Six treatments were tested in triplicates. During the experi-
ment,fish larvaewere fed at 30% BW/d, threemeals per day. The control
groupwas fedwith Artemianauplii. Abruptweaning groupswere trans-
itioned from Artemia to the artificial microdiet on 5, 6, 7, 8, and 10 dph,
respectively. Experimental schedule is shown in Table 1.

2.2.2. Trial 2: Co-feeding with Artemia and artificial microdiet
4 dph larvae were randomly transferred into twelve fiberglass

tanks (diameter: 50 cm, water depth: 40 cm, water volume: 80 L).
In order to meet the requirement of step sampling, 500 larvae were
reared in each tank. Larvae were fed at about 30% BW/d, three
meals per day. Four treatments were tested in triplicates. Larvae
were fed with Artemia nauplii as the control (CT) and co-feeding
lasted for four days with 5% Artemia nauplii+25% microdiet begin-
ning on 6, 8, and 10 dph, respectively. Experimental schedule is
shown in Table 1.

2.3. Sampling

At the beginning of the experiment, three samples (30 larvae/
sample) were taken and batch-weighed to calculate average initial
body weight. At the end of the experiment, larvae were counted
and batch weighed to calculate survival and growth. In the abrupt
weaning trial (Trial 1), 60 larvae per tank were sampled for analysis
of digestive enzyme activities and whole fish body lysozyme and glu-
cose. In the co-feeding trial (Trial 2), 100 larvae per tank were sam-
pled at 8 and 10 dph while 60 larvae were sampled at the end of
Trial 2

ph 10 dph Control T1 T2 T3

AT AT AT AT AT
AT AT CO AT AT
AT AT CO AT AT

D AT AT CO CO AT
D AT AT CO CO AT
D MD AT MD CO CO
D MD AT MD CO CO
D MD AT MD MD CO
D MD AT MD MD CO
D MD AT MD MD MD
D MD AT MD MD MD
D MD AT MD MD MD
D MD AT MD MD MD
D MD AT MD MD MD
D MD AT MD MD MD
D MD AT MD MD MD
D MD AT MD MD MD
d End End End End End

t.



Table 2
Growth, CV of final body length and weight, and survival of Chinese longsnout catfish larvae at different sudden weaning times (mean±S.E.).

Weaning time FBW1 (mg) SGR2 (%/d) Survival3 (%) CVBL
4 CVFBW

5

Control 112.3±2.32a 18.0±0.13a 95.5±1.19a 0.07±0.01a 0.19±0.02a

5 dph 81.5±0.44b 16.0±0.03b 66.1±2.15c 0.15±0.02b 0.56±0.12b

6 dph 79.9±3.70b 15.9±0.28b 73.3±8.42cb 0.16±0.05b 0.38±0.05ab

7 dph 77.8±2.16b 15.8±0.18b 80.2±4.11abc 0.12±0.02ab 0.41±0.07ab

8 dph 78.2±3.21b 15.8±0.26b 79.5±6.60cb 0.12±0.02ab 0.38±0.07ab

10 dph 61.2±4.62c 14.2±0.48c 88.0±1.22ab 0.10±0.01ab 0.36±0.04ab

Values are mean±S.E. Different superscript letters in the same row show significant differences between treatments (n=3, Pb0.05).
1 FBW: final body weight (mg).
2 SGR: specific growth rate (%/d)=100×[ln (final wet body weight)− ln (initial wet body weight)] /days.
3 Survival rate (%)=100×live larvae left in the tank/ initial larvae number.
4 CVBL: coefficient of variation for final body length.
5 CVFBW: coefficient of variation for final body wet weight.
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the trial for analyzing digestive enzymes activities and whole fish
body lysozyme and glucose. For calculating CVFBW (coefficient of var-
iation of final body weight) and CVBL (coefficient of variation of final
body length), 10 larvae per tank were sampled for measuring body
wet weight and body length. Sampling was carried out in the morning
(07:00–08:30) before feeding. The samples were frozen in liquid ni-
trogen and stored at −80 °C for further analysis.
2.4. Analytical methods

Whole fish body homogenate was used for all analysis. Trypsin
activity was measured using N-benzoyl-L-arginine ethyl ester
(BAEE) as the substrate (Bergmeyer et al., 1974). Trypsin activity
was expressed as the equivalent content per milligram of protein
that made the absorbency change to 0.001 at pH 8.0. Amylase
activity was measured using starch as the substrate (Métais and
Bieth, 1968). Amylase-specific activity was expressed as the equiv-
alent enzyme activity that was required to hydrolyze 1 mg of starch
in 30 min at 37 °C. Lipase activity was determined photometrically
(OD 420 nm) with p-nitrophenylpalmitate as substrate (Jaeger et
al., 1992). One unit of activity was defined as the amount of
enzymes necessary to liberate 1 μmol of p-nitrophenol per minute
from p-nitrophenylpalmitate. Pepsin activity was determined at
pH 2.0 using bovine hemoglobin as a substrate (Anson, 1938).
Pepsin activity was expressed as specific activity with 1 U representing
1 μg tyrosine liberated per minute, per milligram of protein at 37 °C.
Lysozyme was measured using Micrococcus lysodeikticus according to
themodifiedmethod of Hultmark et al. (1980). Glucose contentwas de-
termined using the glucose oxidase–peroxidase method (Barham and
Trinder, 1972). Protein concentration was determined using the
Bradford (1976) method with bovine serum albumin as the standard.
Table 3
Growth, CV of final body weight and length, and survival of Chinese longsnout catfish larva

Diet FBW1(mg) SGR2

CT (Artemia) 93.27±16.36 16.80±1
T1 (4 days co-feeding from 6 dph) 83.26±2.58 16.18±0
T2 (4 days co-feeding from 8 dph) 84.14±2.36 16.25±0
T3 (4 days co-feeding from 10 dph) 73.78±0.18 15.43±0

Values are mean±S.E. (n=3). Different superscript letters in the same row show significa
1 FBW: final body weight (mg).
2 SGR: specific growth rate (%/d)=100×[ln (final wet body weight)− ln (initial wet bod
3 Survival (%)=100×live larvae left in the tank/ initial larvae number.
4 CVBL: coefficient of variation of final body length.
5 CVFBW: coefficient of variation of final body wet weight.
2.5. Statistical analysis

Statistica 6.0 for Windows was used for data analysis. Results are
expressed as means±SE (standard error). Homogeneity was tested
(Levene's test) before ANOVA. After one-way analysis of variance
(ANOVA), Duncan's multiple range test was used in Trial 1 and unequal
LSD was used in Trial 2 to detect the differences of means between
groups. Discrimination of values was identified at a significant level of
Pb0.05.

3. Results

3.1. Survival and growth performance

In the abrupt weaning trial, survival significantly increased with
increasing weaning age (Pb0.05, Table 2). Abrupt weaning on 7 and
10 dph resulted in no significant difference between the group and
the control (P>0.05) (Table 2). Fish final body weight (FBW) and
specific growth rate (SGR) significantly decreased while CVBL and
CVFBW decreased with the increased weaning time (Pb0.05) (Table 2).

In the co-feeding trial, no significant differences of survival were
observed between groups (P>0.05) though the values increased
with increasing weaning age (Table 3). No significant differences,
but a slightly decreased SGR, CVBL and CVFBW, were observed with
increasing weaning age (P>0.05) (Table 3).

3.2. Digestive enzymes, lysozyme and glucose

In the abrupt weaning trial, fish body pepsin activity decreased
when weaned at 5–7 dph (Fig. 1A, Pb0.05), while it had a close
value to that of the control when weaned at 10 dph (P>0.05). Fish
body trypsin activity increased by abrupt weaning (Pb0.05) though
e with different weaning methods (mean±S.E.).

Survival
(%)3

CVBL
4 CVFBW

5

.11 86.42±0.58 0.36±0.02 0.11±0.01

.19 80.82±3.73 0.39±0.04 0.13±0.00

.18 86.67±0.00 0.33±0.02 0.10±0.01

.02 89.50±0.50 0.29±0.03 0.08±0.02

nt differences between treatments (n=3, Pb0.05).

y weight)] /days.



Fig. 1. Effects of different weaning age with abrupt-weaning to microdiet on fish body digestive enzyme activities in Chinese longsnout catfish larvae (mean±S.E.). Different su-
perscripts show significant differences between treatments (Pb0.05). (A) Pepsin; (B) trypsin; (C) lipase; (D) amylase.
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there was no difference among different weaning ages (P>0.05)
(Fig. 1B). No significant differences were found in lipase activities of
different treatments (P>0.05) (Fig. 1C). Abrupt-weaning caused in-
creased amylase activities and the highest value was observed at
5 dph (Pb0.05) (Fig. 1D). Abrupt weaning resulted in increased fish
body lysozyme (Pb0.05) which was however not significantly differ-
ent among different weaning ages (P>0.05) (Fig. 3A). Fish body
glucose showed slightly lower values after abrupt weaning, with
significantly lower values (Pb0.05) (Fig. 3C) obtained in the group
weaned at 8 dph.

In the co-feeding trial, no significant differences in fish body pep-
sin, trypsin, lipase or amylase activities and glucose content were
8dph

A

C

Fig. 2. Effect of different weaning age with co-feeding on fish body digestive enzyme activiti
(D) amylase.
observed between groups (P>0.05) (Fig. 2A–D; Fig. 3D). Fish body
lysozyme at 8 and 10 dph significantly increased in the group intro-
duced to microdiet (Fig. 3B, Pb0.05).

4. Discussion

Larvae survival is the most important parameter to justify the
success of weaning. Increased survival with weaning age of Chinese
longsnout catfish larvae as observed in Trial 1 of the present study
might be related to a gradually progressive functioning of the stomach.
The depressed activities of pepsin (Trial 1) indicated malnutrition in
weaned groups. Those results are consistent with the studies of
10dph 22dph 

B

D

es in Chinese longsnout catfish larvae (mean±S.E.). (A) Pepsin; (B) trypsin; (C) lipase;

image of Fig.�2


Fig. 3. Fish body lysozyme and glucose in Chinese longsnout catfish larvae subjected to different weaning strategies (mean±S.E.). Different superscripts show significant differ-
ences between treatments (Pb0.05). (A) Fish body lysozyme in abrupt-weaning; (B) fish body lysozyme in co-weaning; (C) fish body glucose in abrupt‐weaning; (D) fish body
glucose in co-weaning.
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morphology and digestive enzyme activities during Chinese longsnout
catfish larvae development in our previous study (Liu, 2011). During
5–8 dph, the stomach is not functional enough for artificial diets, and
the digestive enzyme activities are in rapid increase (Liu, 2011). At
this stage, an improper abrupt‐weaning time and microdiet diets
might delay the stomach development or impair epithelial cell as ob-
served by Hamza et al. (2007). Formulated feed was reported to delay
or even prevent the maturation process of fish larvae (Cahu and
Zambonino Infante, 2001). Engrola et al. (2007) also found that fish
larvae had an adaptation period to inert diets with perturbation of en-
zymatic secretion processes and this adaptation period is inversely pro-
portional to post-larvae age. This may explain the facts that survival
was lower until 7 dph andpepsin activity significantly decreased except
for that in groups of 8 and 10 dph in Trial 2. The delayed development is
prevented or repaired only until 8 dph.

On the other hand, trypsin and amylase activities in fish larvae fed
with microdiet (Trial 1) significantly increased. The enhanced digestive
enzymes afterweaning are often considered as the result of compensato-
ry adaptation for malnutrition (Hamza et al., 2007; Zambonino Infante
and Cahu, 1994). In Trial 1, fish with higher digestive enzymes did not
have good survival and growth. One possible reason could be that the
absorption and assimilation capacities of fish larvae did not meet the
growth requirement and caused chronic starvation (Ragyanszki, 1980).
Fish larvaemodulate their digestive capacity to compensate lower diges-
tion caused by lower pepsin activity. Higher fish body lysozyme with
lower fish body glucose (Trial 1) also supported the fact that the fish
larvae were in sub-healthy state. Based on the improved fish body lyso-
zymes in Trial 1 and Trial 2, it could be concluded that the introduction of
microdiet was a clear stress, both in the abrupt‐weaning and in the co-
weaning, even though no apparent difference was observed at the end
of Trial 2. This phenomenon was ameliorated when the larvae were
weaned with live prey. The survival and growth in Trial 2 showed that
Chinese longsnout catfish larvae could be weaned at 6 dph with 4 days
of co-feeding. The data of four selected digestive enzymes (Trial 2)
showed that co-weaning alleviated the malnutrition status that
appeared during abrupt-weaning. These results are consistent with pre-
vious observations that co-feeding strategies can improve survival and
growth performance of fish larvae even in early stages (Alves, et al.,
2006; Baskerville-Bridges and Kling, 2000; Engrola et al., 2007).
According to the present results, the activity of pepsin rather than
other three digestive enzymes could be one of the key indicators to eval-
uate the weaning time and the nutritional status of Chinese longsnout
catfish larvae. The fact that adequate timing of weaning was determined
by stomach differentiation and pepsin secretion was also advocated by
many authors (Person-Le Ruyet et al., 1993; Segner et al., 1993;
Walford and Lam, 1993).

A lower survival rate was observed in the co-feeding experiment
(Trial 2) compared with the control group of the sudden weaning
trial (Trial 1), while the growth performance in both the two trials de-
creased with increasing survival rate. Similar results were observed in
summer flounder Paralichthys dentatus (King et al., 2000) and
matrinxã, Brycon cephalus (Characidae) (Gomes et al., 2000), and
have been attributed to the differences in space shared by the larvae
(Jobling and Wandsvik, 1983). Lower survival in Trial 2 could be due
to the stress of step sampling on 8 and 10 dph as the stocking density
was not a stress to longsnout catfish larvae culture. Our previous
study showed that stocking density of 26.4 ind/L could be used with
no detrimental effect on the survival of Chinese longsnout catfish
(Liu, 2011).

CVBW and CVBL are also two important parameters used to evalu-
ate the success of larviculture (Engrola et al., 2007; Rosenlund et al.,
1997). In the present study, CVBW and CVBL were significantly
improved by the abrupt change from Artemia to microdiet and the
variation was reduced with weaning age. This could be due to the
social hierarchy caused by differential ontogenesis and individual
adaptability to the microdiet in the same batch of larvae (Jobling
and Wandsvik, 1983; McCarthy et al., 1992). Co-feeding could thus
improve the nutritional status of larvae to avoid this big variation.
Similar results were reported in barramundi (Lates calcarifer Bloch)
(Curnow et al., 2006a), fat snook (Centropomus parallelus Poey1864)
(Alves et al., 2006), Senegalese sole (Engrola et al., 2007) and Dover
sole (Solea solea L.) (Rueda-Jasso et al., 2005).

In conclusion, considering the values of pepsin activity, abrupt-
weaning of Chinese longsnout catfish should be obtained after
10 dph. Co-feeding could reduce the stress to larvae and therefore
the weaning could start at 6 dph with co-feeding.
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