文章编号:1000-0615(2010)06-0905-08

Provided by Institute of Hydrobiology, Chinese Academy Of S

DOI: 10. 3724/SP. J. 1231. 2010. 06819

中华绒螯蟹铁蛋白基因的克隆及表达分析

郭慧芝¹², 付建平², 昌鸣先², 郭 D^{2} , 朱邦科¹, 聂 \mathbb{H}^{2*}

(1. 华中农业大学水产学院 湖北 武汉 430070;

2. 中国科学院水生生物研究所,淡水生态与生物技术国家重点实验室,湖北 武汉 430072)

摘要:铁蛋白普遍存在于生物体内,具有铁离子解毒和储存等功能。在构建脂多糖刺激的中华 绒螯蟹 cDNA 文库的基础上,获得了中华绒螯蟹铁蛋白基因 EsFer 的 cDNA 序列,其全长为 1 118 bp ,包含 480 bp 的开放阅读框 推测编码的蛋白质为 159 氨基酸 其 5' 和 3' 端的非编码区 分别为 178 bp 和 461 bp 预测的分子量为 18.3 ku 理论等电点为 5.81 在 15~37 aa 处有一个跨 膜螺旋。在5′非编码区核甘酸序列的135~162的位置有个特殊的结构,即铁反应元件(iron response element IRE)。通过荧光定量 PCR 的方法研究了铁蛋白基因在中华绒螯蟹的组织表达 分布 以及经脂多糖刺激后在血淋巴、肠和肝胰腺组织中的表达变化 发现 EsFer 在中华绒螯蟹 血淋巴、肌肉、肠、鳃、心脏、性腺、肝胰腺等组织器官中都有表达 在肝胰腺的表达量最高 血淋巴 中表达量最低。经脂多糖诱导后 EsFer 在血淋巴、肠和肝胰腺呈上调表达。

关键词: 中华绒螯蟹: 铁蛋白: 表达: 脂多糖

中图分类号: Q 785; S 917 文献标识码: A

在生物有机体中 铁是一种必不可少元素 其 在生物有机体中含量的高低对维持细胞正常生长 和代谢起着重要的作用^[1]。铁蛋白(ferritin) 是一 类广泛存在于动植物体内的铁贮藏蛋白。在植物 中 铁蛋白的主要功能是贮存铁原子,为植物光合 作用和生物固氮提供铁源^[2];此外,作为胁迫反应 蛋白 广泛参与清除由于过量铁^[3]和 H₂O^[4]等因 子诱导产生的活性氧,缓解活性氧对植物体的危 害 以及参与抵制病原菌的侵染⁵³。在动物体内, 铁蛋白可储存机体中的过剩铁,避免产生铁中毒; 另一方面,可以释放给需铁的细胞,用于体内合成 含铁的蛋白质^[6]。动物的铁蛋白除了具有铁离子 解毒和储存的功能外 还具有抗氧化的功能^[7]以及 作为急性时相反应蛋白 参与机体的免疫反应^{®]}。

中华绒螯蟹(Eriocheir sinensis),俗称河蟹、大 闸蟹、毛蟹 属于节肢动物门、甲壳纲。中华绒螯 蟹因其味道鲜美而深受人们喜爱 是我国具有重 要经济价值的水产品^{9]}。近年来、随着养殖规模 的不断扩大及环境的恶化,各种由细菌性、病毒

性、寄生虫性等病原引起的疾病频繁发生 給中华 绒螯蟹的养殖带来了巨大经济损失^{9-11]}。尽管 自 20 世纪 80 年代以来,甲壳动物的免疫日益受 到国内外学者的重视,但大多研究主要集中在斑 节对虾(Penaeus monodon Fabricius)、日本对虾 (Penaeus japonicus)、锯缘青蟹(Scylla serrata)等 少数的几种海洋经济甲壳动物。对中华绒螯蟹免 疫相关基因的研究仅有少量报道^[12-14]。

对节肢动物铁蛋白的研究始于 1988 年。自 Collin 等^[15]从长沫蝉(Philaenus spumarius)的中肠上 皮细胞分离出铁蛋白,此后陆续从巴西白斑弄蝶 (Calpodes ethlius)^[16]、埃及斑蚊(Aedes aegypti)^[17]、 烟草天蛾(Manduca sexta)^[18]、螯虾(Pacifastacus leniusculus)^[19]、果蝇(Drosophila melanogaster)^[20]、蜡 螟(Galleria mellonella)^[21]、蜜蜂(Apis mellifera and Scaptotrigona postica) ^[22]、毛白钝缘蜱(Ornitho-doros moubata ticks) 和篦子硬蜱(Ixodes ricinus)^[23]、卤虫 (Artemia franciscana)^[24]、美国白蛾(Hyphantria cunea)^[25]、粒肩天牛(Apriona germari)^[26]、南美白对 虾(Litopenaeus vannamei)^[27]、中 国 明 对 虾 (Fenneropenaeus chinensis)^[28]等节肢动物中克隆 到铁蛋白基因。但到目前为止尚无有关中华绒螯 蟹铁蛋白基因的报道。本文通过构建脂多糖刺激 的中华绒螯蟹 cDNA 文库,筛选到铁蛋白基因。 在此基础上,通过荧光定量 PCR 技术对该基因在 不同组织中的组成型表达以及经脂多糖刺激后的 诱导型表达做了检测,以期能为深入研究铁蛋白 的生物学功能奠定基础。

1 材料与方法

1.1 实验动物

本实验所用中华绒螯蟹购自于湖北省武汉市 梁子湖渔场,共40只,体重每只约100g。于8个 水族箱(120 cm×55 cm×76 cm)中暂养,恒温(20 ±2)℃,循环水养殖7 d,每箱5只,暂养过程中每 天投喂一次人工饲料。

1.2 中华绒螯蟹 cDNA 文库的构建

首先用脂多糖(10 mg/mL Sigma) 免疫(剂量 为 500 µg/kg) 3 只中华绒螯蟹 约 18 h 后将其解 剖,取肌肉、心脏、性腺、肝胰腺、肠、鳃、眼球各 100 mg 及血淋巴 100 µL ,冷冻后保存于 - 80 ℃ 冰箱中备用。然后利用 Trizol(Invitrogen) 提取总 RNA,总 RNA 经过 mRNA 磁珠纯化试剂盒 (Invitrogen) 纯化得到 mRNA; 以 mRNA 为模板, 按照 SMART cDNA 构建试剂盒(Clontech) 的方法 合成双链 cDNA: 双链 cDNA 经过 cDNA 柱层析分 离(Invitrogen) 去除小分子片段的 cDNA 及残余的 引物 将 750 bp 以上的 cDNA 片段通过乙醇沉淀 后连入 pMD-18T 载体(TaKaRa);将连接产物转 化到大肠杆菌(Escherichia coli) TOP10 感受态细 胞 用菌液 PCR 的方法筛选 cDNA 克隆,引物为 M13F(5'-GTAAAACGACGGCCAG-3'), M13R(5'-CAGGAAACAGCTATGAC-3'); 用 1% 的琼脂糖凝 胶电泳检测,将插入片断700 bp 以上的阳性克 隆 送北京六合华大基因科技股份有限公司测序 , 均用 M13F 单向测序。

取 100 μL 原始文库 ,以 10⁻²、10⁻³、10⁻⁴梯度 进行稀释 在 90 mm 培养皿上涂布适量稀释的文 库,每个梯度设 3 个平行 *3*7 ℃恒温培养 12 h,计 数每个平板上长出的克隆由此得出文库滴度。以 M13 为引物用 PCR 扩增的方法随机检测 24 个单 克隆,确定文库的重组率及插入片段的分布范围。

1.3 铁蛋白基因的序列分析

使用 NCBI 网站(http: // www.ncbi.nlm.nih. gov/blast)的 BLASTN 和 BLASTX 软件进行同源基 因的搜索;使用 ExPASy 网站(http: // expasy.pku. edu.cn)有关软件进行开放阅读框的搜索、氨基酸 序列的推断;使用(http: // www.expasy.ch/tools/pi _tool.html)进行 PI 和蛋白分子量预测;用 SignalP 3.0(http: // www.cbs.dtu.dk/services/SignalP/)预 测编码蛋白的信号肽 跨膜区预测用 TMHMM 软件 (http: // www.cbs.dtu.dk/services/TMHMM-2.0)进 行。氨基酸的多序列排列使用 Clustal W 1.8 软件; 同源性分析使用 MatGAT2.01 软件;系统进化树的 构建使用 MEGA 4.1 软件的邻接法构建 NJ 系统树 (Neighbor-joining tree),设置1 000次 bootstraps 进 行评估。

1.4 中华绒螯蟹的免疫刺激、RNA提取及 cDNA的合成

将健康的中华绒螯蟹按前面介绍的方法饲养 7 d 后 将其随机分为两组 ,每组 12 只 ,实验组注 射脂多糖 ,注射剂量为 500 μg/kg ,用灭菌 PBS(0. 1 mol/L ,pH 7.2)稀释后每只蟹注射 100 μL ,对照 组每只蟹注射 100 μL 灭菌 PBS。注射部位为中 华绒螯蟹第四步足基节处 ,注射后立即将其放回 清水中 ,实验组和对照组分别于注射后 4、8、24 h 取样 ,每次各取 3 只蟹的肝胰腺、肠及血淋巴。另 外 ,为检测 *EsFer* 在不同组织中的表达水平 ,分别 取 3 只健康蟹的肌肉、心脏、性腺、肝胰腺、肠、鳃 及血淋巴。按 Trizol(Invitrogen) 试剂盒说明书提 取各器官或组织总 RNA。

RNA 经 DNase I (Fermentas) 处理后,取5μg 用 cDNA 逆转录试剂盒(Fermentas) 进行逆转录, 反应体系为 20μL。反应结束后将产物分装,保 存在 – 20℃。

 1.5 中华绒螯蟹铁蛋白基因的组织表达分布及 在脂多糖刺激下的诱导性表达

实时荧光定量 PCR 是在 ABI PRISM 7300 定 量 PCR 仪上完成的。将反转录后反应液,引物各 稀释 10 倍。20 μ L 的实时荧光定量 PCR 反应混 合液中含 cDNA 模板稀释液 3 μ L,10 μ L 2 × SYBR green Real-time PCR Master Mix, (TOYOBO) 正反引物各 1 μ L(10 μ mol/L)和 5 μ L 水。铁蛋白基因的两个特异性引物为 ferritin-F: 5'-TATTGCTCTGCCTTGGGATG-3', ferritin-R: 5'- AACAGGCTCTGGTTGACTTG-3', PCR 扩增片段大 小为 211 bp; 内参基因 *β*-actin 的引物为: *β*-actin-F: 5'-GCATCCACGAGACCACTTA-CA-3', *β*-actin-R: 5'-CTCCTGCTTGCTGATCCA-CATC-3', PCR 扩 增片段大小为 266 bp。扩增序列经测序证实。实 时荧光定量 PCR 反应程序为 95 ℃预变性 2 min, 95 ℃变性 15 s 55 ℃退火 15 s ,72 ℃ 延伸 40 s , 反应进行 40 个循环。同一样品的内参和目的基 因在同一板中进行,每个样品有3个重复。PCR 结果用 ABI 7300 SDS software (Applied Biosystems)进行分析。

由于目的基因 *EsFer* 和内参基因 *β-actin* 的引物在 PCR 中的扩增效率接近 1(图 1),因此本研究的数据分析采用 2^{-ΔΔCt}法。结果用 *t* 检验来进行显著性分析 ,*P* 值小于 0.05 说明具有显著性差异。

- 图 1 利用相对标准曲线来验证目的基因 EsFer 和 β-actin 的引物的 PCR 扩增效率 Fig. 1 Standard curve of target and control genes in real-time PCR
- 2 结果

2.1 cDNA 文库构建

相对拷贝数

原始文库的库容为 6.28 × 10⁶ pfu/mL,文库 滴度为 1.57 × 10⁶ pfu/mL。随机挑选 24 个单克 隆,以载体特异的 M13 正向引物和 M13 反向引物 进行 PCR 扩增,大小分布在 300 ~ 1 000 bp,平均 插入片断大小为 700 bp 左右,重组率为 95.8% (图 2)。说明该文库具有良好的质量。通过随机 测序获得了 319 条 ESTs 序列,使用 BlastX 软件和 GenBank 的非冗余蛋白库比对,获得 140 个包含 重叠群的 ESTs,有 127 个序列可以得到鉴别,占 90.71%,包括 24 个重叠群和 103 个单拷贝 EST, 未能比对上的 EST 占 9.29%。从序列比对结果 中筛选到与螯虾、罗氏沼虾(*Macrobrachium rosenbergii*)相似性高达 73% 的铁蛋白基因的 序列。

M:DL2000 ladder

图 2 中华绒螯蟹 cDNA 文库插入片断的 PCR 鉴定 Fig. 2 PCR identification of 24 recombinant clones in the cDNA library

2.2 铁蛋白基因 *EsFer* 核酸序列及推导的氨基酸序列特征

EsFer cDNA 全长 1 118 bp(GenBank 登录号:

GT296186) ,包含 480 bp 的开放阅读框(ORF),编码 159 aa 其 5'和 3'的非编码区分别为 178 bp 和 461 bp。理论等电点 PI 为 5.81,预测分子量大小

为 18.3 ku SignalP 3.0 软件预测 *EsFer* 无信号肽, TMHMM 预测 *EsFer* 在 15~37 aa 处有一个跨膜螺 旋 Expasy 推测有 1 个 N 端糖基化位点 即 N⁹⁷(图 3)。在 5'非编码区核甘酸序列的 135~162 的位置 有个特殊的铁反应元件(IRE),含有一个共同的序 列 CAGUGU(图 3),中华绒螯蟹预测的铁反应元件 的二级结构,与螯虾、中国明对虾、人(Homo sapiens)等一样也是一个典型的茎环结构(图 4)。

tcgccttaggcatgcatcagtcgcacttggaggcatcgtcgccttcctaagcagtgcaag	60
gaattgctgcaagcgatagtgtacgcagttcagtcagacgtgtaacgacgcaagtcagct	120
gcatgctgcagtcgacgatagcagtgtatcacgcagagtggcattacgctggactacatg	180
м	1
agacttgtgaggctccatcacagcagatcacatgagctgtatgccagttatgtttacatt	240
RLVRLHHSRSHEL <u>YASYVYI</u>	21
tccatgagttactctttgatagagatgatattgctctgccttgggatgaagaaattcttc	300
<u>S M S Y S L I E M I L L C L</u> G M K K F F	41
catgaatcaagtgatgaggagagggaacatgctcagaagttgatgaagtaccagaatcag	360
HESSDEEREHAQKLMKYQNQ	61
cgcggtggaaggatcgtgctgcaggccatcgctgctccaccccagcaggagtggggcaat	420
R G G R I V L Q A I A A P P Q Q E W G N	81
tgcaacgatgcccttcaggctgccctggaccttgaaaagcaagtcaaccagagcctgttg	480
C N D A L Q A A L D L E K Q V (N Q S L) L	101
gaccttcatggcgttgctagcaagaacaacgacccccacctgaccaatatgctggagggt	540
D L H G V A S K N N D P H L T N M L E G	121
gaatteetggaggaacaggtegagteeatgaagaaaeteggggacatgateaecegeetg	600
E F L E E Q V E S M K K L G D M I T R L	141
aagcgtgccggaatatctggcctgggagaattcctgtttgacaaggagtttgagtaatgc	660
KRAGISGLGEFLFDKEFE*	159
atcatggggcacaacattggctgaactaggtgcttctaacacccaagtttttcaatcata	720
gtagtaactgatgatatgtggacatgattttgttttatttcattattgctgccagcatgt	780
aagaatttgttttgtgatccaaactttttaagaggctattttattttgaaaaaggaaaaa	840
tcacctgaggottttagttttgtctgttcacagctcagtagatatctcaacagccaatgt	900
tcatctaaggtcaatgcatttatacatatataatggatgttcaacagtaacagatattga	960
taccaatcagctgaagcatacatagttaccatatgcttattctgtgttgattttgctttc 1	020
ctttgccttctcttggtgacatcaatccgatgtttacagggcactc attaaa agattacc 1	080
aaccaagcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	118

图 3 中华绒螯蟹铁蛋白 EsFer cDNA 的核甘酸 序列及其推导的氨基酸序列

小写字母为核甘酸序列 大写字母为氨基酸序列 起始密码子由 方框显示 终止密码子以*表示 椭圆标示为 N 端糖基化位点, 铁反应元件以灰色阴影显示。多聚腺苷酸加尾信号以加粗显 示 粗斜体所示为 mRNA 不稳定信号 跨膜区以下划线显示。

Fig. 3 cDNA sequence and deduced protein of *EsFer*. The nucleotide sequence (upper) and the deduced amino acid sequence(lower) are numbered. The start codon(atg) is boxed and the stop codon(taa) indicated by an asterisk. The ellipse indicates the position of the N-glycosylation site. The iron responsive element (IRE) is indicated by gray shadow. The bold indicates the position of the polyadenylation signal and the bold italic indicates mRNA instability motif. The transmembrane helix is underlined with a single line.

2.3 铁蛋白基因 EsFer 的多序列比对以及系统 进化树分析

比对南美白对虾、中国明对虾、贻贝(Mytilus galloprovincialis)、人等铁蛋白的氨基酸序列,发现 与金属结合位点相关的7个残基呈现高度的保守 性(图5)。

GU A G C U GA AU UC AA GC C C UA GC C UA GG AA	GU A G C U GG AU CG UG GA G C C UA CG GC	GU A G CG GU CG UA GA G CG CG CC UA CG GC	G U A G C U AU CG UG UA G CC CG CG UA
Chinese mitten crab 中华绒螯蟹	Chinese shrimp 中华明对虾	Crayfish 螯虾	GC Human 人

图 4 中华绒螯蟹与中国明对虾、螯虾及人类的铁蛋白 基因的铁反应元件的假定二级结构的比较

ig. 4 A comparison in the putative secondary structure of ferritin IRE from *E. sinensis F. chinensis*, *P. leniusculus H. sapiens*.

EsFer	MRLVRLHHSRSHELYASYVYISMSYSLIEMILLCLGMKKF 40
LvFer	MASQVRQNYHEDCEASINKQINMELYASYVYLSMAYYFERDDVALPGFAKF 51
FcFer	MASQVRQNYHEDCEASINKQINMELYASYVYLSMAHYFERDDVALPGFAKF 51
DpFer-H	MAANPESTTKTSRVRMNFHKECEAGINKQINLELYASYVYQQMAFHFNREDVALPGFEKF 60
MgFer	INIELYASYCYQSMSYYFDRDDVALPGFSKF 31
HsFer-H	MTTASTSQVRQNYHQDSEAAINRQINLOLYASYVYLSMSYYFDRDDVALKNFAKY 55
	. ****** * .*:. : . : *:
EsFer	$\label{eq:constraint} Fhess define Harklinky on organivly a 1 a Approximation of the statement of the stat$
LvFer	${\tt FKDSSD} \end{tabular} {\tt FKDSD} \end{tabular} {\tt FK$
FcFer	$\label{eq:resolution} FKessdeerdHaqifmkyqnkrggrivlqqiaapsmqewgtglealqaaldlekqvnqsl 111$
DpFer-H	FHESSEEEREHAEKLMKLQNQRGGRIVLQDIPKPVQQDWSSGLEALKASLELEKTVNQSL 120
MgFer	FKKSSDEEREHAEKFMKYQNKRGGRIVLQDIKKPDRDEWGT-LDAMQVALSLEKSVNQSL 90
HsFer-H	FLHQSHEEREHAEKLMKLQNQRGGRIFLQDIKKPDCDDWESGLNAMECALHLEKNVNQSL 115
	.*:**: :** **:****.** * ::* . :*:: :* *** **
EsFer	LDLHGVASKNNDPHLTNMLEGEFLEEQVESMKKLGDMITRLKRAGISGLGEFLFDKEF 158
LvFer	LELHGTASGNNDPHLTKLLEDEYLEEQVDSIKKIGDMITKLKRAGP-AGLGEYLFDKEL 169
FcFer	LELHGTASGNNDPHLTKLLEDEYLEEQVDSIKKIGDMITRLKRAGP-AGLGEYMFDKEL 169
DpFer-H	LDLHDLATKHNDAQFADFIESNYLHEQVEAIKKLADYITNLERCGS-VGLGEYLFDRHT 178
MgFer	LDLHKTADSHNDAQMCDFLESEYLEEQVNAIKEISDHILKRVGSGLGEYMYDKES 145
HsFer-H	LELHKLATDKNDPHLCDFIETHYLNEQVKAIKELGDHVTNLRKMGAPESGLAEYLFDKHT 175
	*:** * :**.::.::*.:*::*::*::*::*::*::*::*::*::*
EsFer	E 159
LvFer	H 170
	1 110
FcFer	Q 170
FcFer DpFer-H	Q 170 LQ 180

图 5 中华绒螯蟹 EsFer 和其它物种铁蛋白 基因的氨基酸序列比对

HsFer-H

LGDSDNES 183

使用 Clustal W1.8 进行序列比对,相同的氨基酸用星号表示, 相似的氨基酸用圆点表示,缺失的氨基酸以破折号表示,与金 属结合位点相关的7 个残基用方框显示。所用铁蛋白基因的 GenBank 登录号见图6。

Fig. 5 Multiple alignment of *EsFer* amino acid sequence with other ferritin proteins

Missing amino acids are denoted by hyphens. Symbol (*) represents identical residues ,(:) conservative substitution ,(.) similar residues and (-) missing residues. Seven residues associated with the metal binding site in the Ferritin were boxed. GenBank accession numbers were listed as Fig. 6.

同源性分析显示中华绒螯蟹铁蛋白与甲壳纲的螯虾、南美白对虾、中国明对虾、罗氏沼虾同源性最高,分别达71.8%、73.1%、75.9%和76.5%。与节肢动物昆虫纲的铁蛋白同源性最低,为37.0%~40.4%。与节肢动物蛛形纲、软体动物以及脊椎动物铁蛋白的同源性分别为66.3%~71%、64.9%~69.8%、58.8%~ 67.6%。在此基础上,用 Mega4.1 软件邻接法构建的系统进化树表明,中华绒螯蟹的铁蛋白与节肢动物甲壳纲的螯虾、南美白对虾、中国明对虾、罗氏沼虾的铁蛋白聚为一支(图6)。

2.4 铁蛋白基因 *EsFer* 的组织表达分布及诱导 性表达

用实时荧光定量 PCR 方法检测中华绒螯蟹 EsFer 在不同组织的表达情况 结果表明 ,EsFer 在 所检测的组织中都有表达 ,在肝胰腺的表达量最 高; 其次是肌肉、鳃、性腺 ,肠以及心脏 ,在血淋巴 中的表达量最低(图7)。

在中华绒螯蟹的血淋巴和肠中 *EsFer* 在脂多 糖诱导 4 h 后表达呈现显著的上调。在血淋巴 中 *EsFer* 在 8 h 诱导的倍数最高 ,在 24 h 表达没 有显著的变化。在肠中 ,*EsFer* 在 24 h 诱导的倍 数最高。*EsFer* 在肝胰腺中的表达在 24 h 呈现显 著增加(图 8)。

3 讨论

本研究从 cDNA 文库中筛选得到中华绒螯蟹 铁蛋白基因。与其它无脊椎动物和脊椎动物的铁 蛋白的相同,中华绒螯蟹铁蛋白基因的 cDNA 序 列在 5'的非编码区含有一个特殊的铁反应元件 (IRE)(图4);与其它动物氨基酸序列进行比较, 发现它们都存在与金属结合位点相关的7个残 基;经同源性分析,与已经报道的甲壳动物的铁蛋 白的同源性最高;进化树分析结果也表明中华绒 螯蟹的铁蛋白基因与甲壳纲的螯虾、南美白对虾、 中国明对虾以及罗氏沼虾的铁蛋白聚为一支。根 据以上分析,可以确认所筛选到的基因为中华绒 螯蟹铁蛋白的编码基因。

铁蛋白是体内铁的主要储存形式。在节肢动物中,铁蛋白的 mRNA 在器官组织中呈广泛性的 组成型表达,但参与贮存铁的器官有所不同。在 南美白对虾中,铁蛋白 mRNA 在血细胞、中肠腺、脑神经节、腮、肝胰腺、腹神经节、眼柄、肌肉,胸神

无脊椎动物和脊椎动物铁蛋白的系统发育树 图 6 使用 MEGA 4.1 软件的邻接法构建 NJ 系统树(Neighbor joining tree) 并用 bootstraps 进行了 1000 次评估。系统树绘制所用铁 蛋白基因的 GenBank 登录号如下: 人(HsFer-H) NP_000137 小 鼠(MmFer-H) NP_034369,鸡(GgFer-H) NP_990417,斑马鱼 (DrFer-H) NP_571660 ,人(HsFer-L) NP_002023 ,小鼠(MmFer-L) AAH83350; 长牡蛎(CgFer-1) AAP83793, 长牡蛎(CgFer-2) AAP83794, 贻贝(MgFer) ACM86786, 九孔螺(HdFer) ABY87353 海湾扇贝(AiFer) AAV66907; 篦子硬蜱(LrFer) AAC19131, 镰形扇头蜱(RhFer) AAQ98621, 派氏钝缘蜱 (OpFer) ABR23389, 钝缘蜱(OmFer) AAC19132, 大腹鬼蛛 (AvFer) AAN39099, 尘螨(DpFer-H) AAG02250; 螯虾(PlFer) CAA62186,中华绒螯蟹(EsFer)GT296186,罗氏沼虾(MrFer) ABY75225,中国明对虾(FcFer) ABB05537,南美白对虾 (LvFer) AAX55641;巴西白斑弄蝶(CeFer) AAD50238,埃及斑 蚊(AaFer-L) AAO41698, 白蚁(PpFer-L) ABV44741, 果蝇 (DmFer-L) AAF07879 , 粒肩天牛(AgFer) AAM44044 , 烟草天蛾 (MsFer) AAF44717 , 蜡螟(GmFer) AAL47694。

Fig. 6 Phylogenetic tree based on sequences of ferritins in invertebrates and vertebrates

The tree was constructed by NJ method supported with 1000 bootstrap replications by using software of MEGA 4. 1. GenBank accession numbers were listed as followings:

Homo sapiens (HsFer-H) NP_000137 "Mus musculus (MmFer-H) NP_034369 ,Gallus gallus (GgFer-H) NP_990417 ,Danio rerio (DrFer-H) NP_571660 ,Homo sapiens(HsFer-L) NP_002023 ,Mus musculus (MmFer-L) AAH83350; Crassostrea gigas1 (CgFer-I) AAP83793 , Crassostrea gigas2 (CgFer-2) AAP83794 , Mytilus galloprovincialis(MgFer) ACM86786 ,Haliotis diversicolor(HdFer) ABY87353 Argopecten irradians(AiFer) AAV66907; Ixodes ricinus (LrFer) AAC19131, Rhipicephalus haemaphysaloides (RhFer) AAQ98621 ,Ornithodoros parkeri (OpFer) ABR23389 ,Ornithodoros moubata (OmFer) AAC19132, Araneus ventricosus (AvFer) AAN39099, Dermatophagoides pteronyssinus (DpFer-H) AAG02250; Pacifastacus leniusculus (PlFer) CAA62186 , Eriocheir sinensis (EsFer) GT296186 , Macrobrachium rosenbergii (MrFer) ABY75225, Fenneropenaeus chinensis (FcFer) ABB05537, Litopenaeus vanname(LvFer) AAX55641; Calpodes ethlius(CeFer) AAD50238 , Aedes aegypti (AaFer-L) AAO41698 , Phlebotomus papatasi (PpFer-L) ABV44741 , Drosophila melanogaster (DmFer-L) AAF07879 , Apriona germari (AgFer) AAM44044 , Manduca sexta(MsFer) AAF44717 Galleria mellonella(GmFer) AAL47694.

经节、心脏均有表达 其中血细胞是参与铁储存的

图 8 脂多糖诱导中华绒螯蟹后 24 h 内血淋巴、 肠和肝胰腺铁蛋白 mRNA 表达水平的变化

取脂多糖诱导后 4 8 24 h 的血淋巴、肠和肝胰腺提取 RNA 实时荧光定量 PCR 检测诱导后 *EsFer* 相对于 PBS 对照组的定量 变化。星号(P < 0.05) 表示诱导组和对照组存在明显的差异, 每组数据为 3 只蟹的平均值 \pm 标准差。

Fig. 8 Expression of *EsFer* gene induced by LPS

in haemolymph intestine and hepatopancreas

RNA was extracted from the haemolymph, intestine and hepatopancreas at 4,8,24 h post injection. The transcriptional changes are shown in ratio of control crab ,as determined by real-time PCR. Each column and bar represent the mean \pm SE from three individuals. The asterisk (*) indicates the significant difference between induced and corresponding control group(P < 0.05).

主要器官^[27]。而 Huang 等^[9]的研究结果则显示 螯虾的铁蛋白 mRNA 在肝胰腺中的表达量最高, 在血细胞中没有检测到表达,这说明在螯虾中肝 胰腺是参与铁储存的器官,而螯虾血细胞不是储 存铁的器官。在本研究中,中华绒螯蟹铁蛋白的 mRNA 在肝胰腺、肌肉、鳃、性腺、肠、心脏以及血 淋巴中均有表达,其中在肝胰腺、肌肉、鳃、性腺中 的含量比较高,说明这些器官参与铁的储存。 Huang 等^[9]认为铁蛋白可以分为两类:一类 是存在于脊椎动物以及甲壳动物中的胞质内铁蛋 白;另外一类是存在于昆虫和蜗牛中的分泌型铁 蛋白。然而 Linder 等^[9]的研究结果发现分泌型 的铁蛋白也以微量的形式存在于脊椎动物的血液 中。在本研究中,中华绒螯蟹铁蛋白的氨基酸序 列没有信号肽,这表明我们所筛选到的铁蛋白为 胞质内铁蛋白。而分泌型铁蛋白是否也存在于中 华绒螯蟹或者是甲壳动物中,目前还未知。

铁蛋白不仅是主要的铁调节蛋白,也是细胞 用来抵抗应激和炎症的一种蛋白³⁰¹。在机体组 织损伤、炎症或感染时,体内许多血浆成分的浓度 在数小时内发生显著的变化,这种变化称为急性 时相反应;在急性时相反应中出现显著变化的血 浆蛋白成分称为急性时相反应蛋白。急性时相反 应蛋白的浓度变化有重要的临床意义^[30]。Beck 等^[31]和 Li 等^[32]的研究结果表明铁蛋白是一种急 性时相反应蛋白。在棘皮动物福氏海盘车 (Asterias forbesi) 中,佛泊脂/脂多糖的刺激能增加 福氏海盘车铁蛋白的 mRNA 和蛋白含量^[31]; 当文 昌鱼(Branchiostoma belcheri) 浸泡在浓度为 10 μg/mL 脂多糖的海水中时, 文昌鱼铁蛋白的同源 物在转录和翻译水平上分别上调了 1.6 和 1.5 倍^[22]。在本研究中 脂多糖的刺激在数小时内能 显著增加中华绒螯蟹铁蛋白在非储存铁的器官中 mRNA 的表达。此外, Pan 等^[33]发现在对 WSSV 病毒有抵抗力的虾中,铁蛋白呈现上调表达,这表 明铁蛋白作为宿主内的一种应激蛋白存在,同时 在机体的免疫反应也可能有一定的作用^[33]。本 实验筛选并克隆到中华绒螯蟹铁蛋白的编码基 因 这一结果将为构建铁蛋白的重组表达质粒 深 入研究中华绒螯蟹铁蛋白的生物学功能打下 基础。

参考文献:

- [1] Thomas A M, Rogers J T, Leedman P J. Ironregulatory proteins, iron-responsive elements and ferritin mRNA translation [J]. Int J Biochem Cell Biol 1999 31(10):1139-1152.
- [2] Petit J M , Briat J F , Lobréaux S. Structure and differential expression of the four members of the *Arabidopsis thanliana* ferritin gene family [J]. Biochem J 2001 359(3): 575 – 582.
- [3] Savino G ,Briat J F ,Lobreaux S. Inhibition of the iron

induced ZmFerl maize ferritin gene expression by antioxidants and serine/threonine phosphatase inhibitors [J]. J Biol Chem, 1997, 272 (52): 33319 – 33326.

- [4] Balla G , Jacob H S , Balla J , et al. Ferritin: a cytoprotective anti-oxidant strategem of endothelium
 [J] J Biol Chem ,1992 267(25):18148 18153.
- [5] Dellagi A , Rigault M , Segond D , et al. Siderophore mediated up , regulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection [J]. Plant J 2005 43(2): 262 – 272.
- [6] Harrison P M , Arosio P. The ferritins: molecular properties iron storage function and cellular regulation
 [J] Biochim Biophys Acta ,1996 ,1275 (3): 161 203.
- [7] Orino K ,Lehman L ,Tsuji Y ,et al. Ferritin and the response to oxidative stress [J]. Biochem J 2001 357 (1):241-247.
- [8] Torti F M ,Torti S V. Regulation of ferritin genes and protein [J]. Blood 2002 99(10): 3505 – 16.
- [9] Wang W, Chen J, Du K, et al. Morphology of spiroplasmas in the Chinese mitten crab Eriocheir sinensis associated with tremor disease [J]. Res Microbiol 2004, 155(8):630-635.
- [10] 陆宏达,范丽萍,薛美.中华绒螯蟹小核糖核酸病 毒病及其组织病理学[J].水产学报,1999 23(1): 61-68.
- [11] 宋学宏 朱茂晓,王永玲,等.中华绒螯蟹肝胰腺白 化症组织病理变化 [J].水产学报,2007,31(2): 257-263.
- [12] Zhao D ,Chen L ,Qin C ,et al. Molecular cloning and characterization of the lipopolysaccharide and β-1 ,3-glucan binding protein in Chinese mitten crab (*Eriocheir sinensis*) [J]. Comp Biochem Physiol(Part B) 2009 ,154(1):17-24.
- [13] Gai Y, Wang L, Song L, et al. cDNA cloning, characterization and mRNA expression of a pacifastin light chain gene from the Chinese mitten crab Eriocheir sinensis [J]. Fish & Shellfish Immunol, 2008 25(5):657-663.
- [14] Li C, Zhao J, Song L, et al. Molecular cloning, genomic organization and functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis [J]. Dev Comp Immunol 2008, 32(7):784-794.
- [15] Collin O ,Thomas D ,Flifla M ,et al. Characterization of a ferritin isolated from the midgut epithelial cells of a homopteran insect ,*Philaenus spumarius* L [J]. Biol

Cell 1988 63(3):297 - 306.

- [16] Ketola-Pirie C A. Characterization of an insect ferritin subunit synthesized in a cell-free system [J]. Biochem Cell Biol ,1990 68(7-8): 1005 - 1011.
- [17] Dunkov B C ,Zhang D ,Choumarov K ,et al. Isolation and characterization of mosquito ferritin and cloning of a cDNA that encodes one subunit [J], Arch Insect Biochem Physiol ,1995 29(3): 293 – 307.
- [18] Winzerling J J , Nez P , Porath J , et al. Rapid and efficient isolation of transferrin and ferritin from Manduca sexta [J]. Insect Biochem Mol Biol ,1995 25 (2):217-224.
- [19] Huang T S ,Law J H ,Soderhall ,K. Purification and cDNA cloning of ferritin from the hepatopancreas of the freshwater crayfish *Pacifastacus leniusculus* [J]. Eur J Biochem ,1996 236(2):450-456.
- [20] Charlesworth A, Georgieva T, Gospodov I, et al. Isolation and properties of Drosophila melanogaster ferritin-molecular cloning of a cDNA that encodes one subunit, and localization of the gene on the third chromosome [J]. Eur J Biochem, 1997, 247 (2): 470-475.
- [21] Kim B S , Yun C Y , Yeo S M , et al. Cloning and expression of a ferritin subunit for Galleria mellonella
 [J] Arch Insect Biochem Physiol ,2001 ,47 (1): 8 17.
- [22] Keim C N, Cruz-Landim C, Carneiro F G, et al. Ferritin in iron containing granules from the fat body of the honeybees Apis mellifera and Scaptotrigona postica [J]. Micron 2002 33(1):53-59.
- [23] Kopácek P ,Zdychová J ,Yoshiga T ,et al. Molecular cloning expression and isolation of ferritins from two tick species—Ornithodoros moubata and Ixodes ricinus
 [J]. Insect Biochem Mol Biol ,2003 ,33 (1): 103 113.
- [24] Chen T, Amons R, Clegg J S, et al. Molecular characterization of artemin and ferritin from Artemia franciscana [J]. Eur J Biochem, 2003, 270 (1): 137 – 145.
- [25] Kim H J ,Yun C Y ,Cheon H M ,et al. Hyphantria cunea ferritin heavy chain homologue: cDNA sequence and mRNA expression [J]. Arch Insect Biochem Physiol 2004 56(1):21-33.
- [26] Kim S R , Lee K S , Yoon H J , et al. Molecular cloning , expression and characterization of cDNAs encoding the ferritin subunits from the beetle *Apriona* germari [J]. Comp Biochem Physiol (Part B) ,2004 , 138(4):423-433.

- [27] Hsieh S L , Chiu Y C , Kuo C M. Molecular cloning and tissue distribution of ferritin in Pacific white shrimp(*Litopenaeus vannamei*) [J]. Fish & Shellfish Immunol 2006 21(3):279-283.
- [28] Zhang J Q , Li F H , Wang Z Z , et al. Cloning expression and identification of ferritin from chinese shrimp ,*Fenneropenaeus chinensis* [J]. J Biotechnol , 2006 ,125(2):173-184.
- [29] Linder M C ,Madani N ,Middleton R ,et al. Ferritin synthesis on polyribosomes attached to the endoplasmic reticulum [J]. J Inorg Biochem ,1992 ,47 (3-4): 229-240.
- [30] Durand J P ,Goudard F ,Barbot C ,et al. Ferritin and hemocyan: 210Po molecular traps in marine fish oyster lobster [J]. Mar Eco Prog Ser 2002 233: 199 – 205.

- [31] Beck G ,Ellis T W ,Habicht G S ,et al. Evolution of the acute phase response: iron release by echinoderm (Asterias forbesi) coelomocytes , and cloning of an echinoderm ferritin molecule [J]. Dev Comp Immunol 2002 26(1):11-26.
- [32] Li M Saren G Zhang S. Identification and expression of a ferritin homolog in amphioxus *Branchiostoma belcheri*: Evidence for its dual role in immune response and iron metabolism [J]. Comp Biochem Physiol(Part B) 2008 150(3): 263 270.
- [33] Pan D ,He N H ,Yang Z Y ,et al. Differential gene expression profile in hepatopancreas of WSSV resistant shrimp(*Penaeus japonicus*) by suppression subtractive hybridization [J]. Dev Comp Immunol ,2005 ,29(2): 103 - 112.

Cloning and expression analysis of *ferritin* gene in Chinese mitten crab *Eriocheir sinensis*

GUO Hui-zhi^{1,2}, FU Jian-ping², CHANG Ming-xian², GUO Zheng², ZHU Bang-ke¹, NIE Pin^{2*}

(1. College of Fisheries Huazhong Agricultural University , Wuhan 430070 , China;
2. State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology ,

Chinese Academy of Sciences , Wuhan 430072 , China)

Abstract: In living organisms ferritin plays an important role in iron storage and detoxification. The full-length cDNA sequence of a ferritin (*EsFer*) was obtained from the cDNA library of the Chinese mitten crab *Eriocheir sinensis* stimulated with lipopolysaccharide(LPS). It has 1 118 bp in length and contains a 480 bp open reading frame(ORF) encoding 159 amino acids(aa). The 5'-and 3'-untranslated region(UTR) is 178 bp and 461 bp, respectively. The predicted molecular weight is 18. 3 ku and the theoretical isoelectric point 5. 81. A transmembrane helix was found at the position of 15 - 37 aa. A complete iron-responsive element (IRE) was found at the 5' untranslated region corresponding to the nucleotide sequence at the positions of the 135 - 162. Quantitative real-time PCR was used to assess the mRNA expression of *EsFer* in organs or tissues and its induced expression in haemolymph intestine hepatopancreas of crabs challenged with LPS. The results showed that *EsFer* was expressed in all tested organs or tissues of the Chinese mitten crab , including haemolymph , muscle , intestine , gills , heart , gonad and hepatopancreas. The highest expression level was observed in hepatopancreas was up-regulated following the challenge with LPS.

Key words: *Eriocheir sinensis*; ferritin; expression; lipopolysaccharide(LPS) Corresponding author: NIE Pin. E-mail: pinnie@ ihb. ac. cn