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ABSTRACT: The expression of glutathione
S-transferase (GST) is a crucial factor in deter-
mining the sensitivity of cells and organs in response
to a variety of toxicants. In this study, we cloned
the core nucleotide of alpha, kappa, mu, mGST,
pi, rho, and theta-like GST genes from bighead
carp (Aristichthys nobilis). Their derived amino acid
sequences were clustered with other vertebrate GSTs
in a phylogenetic tree, and the bighead carp GST
sequences have the highest similarity with those
from common carp and zebrafish. We quantified the
constitutive mRNA transcription of GST isoforms in
eight different tissues (liver, kidney, spleen, intestine,
muscle, heart, brain, and gill). The information ob-
tained from the present study could be distilled into a
few generalized principles: multiple GST isoenzymes
were ubiquitously expressed in all tissues; majority
of GSTs had high constitutive expression in intestine,
liver, and kidney. These findings are in agreement with
the roles of these tissues in xenobiotic metabolism. At
the same time, some unique findings were detected in
the current experiment: (1) higher expression of most
GSTs was observed in spleen; (2) the expression of
GST pi was highest in almost all the studied tissues
except muscle; the other two isoforms, GST alpha
and rho, were also highly expressed in liver, kidney,
intestine, spleen, heart, and brain of bighead carp.
All these results strongly imply an important role
of these GST isoforms in detoxification of ingested
xenobiotics. C© 2010 Wiley Periodicals, Inc. J Biochem
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INTRODUCTION

In recent decades, an increasing number of con-
taminants are actually present in aquatic ecosystems.
Aquatic organisms suffer from increasing environmen-
tal stress, via exposure to a variety of xenobiotics, such
as cynobactirial toxins, organochlorines, pesticides, ph-
thalates, alkylphenolic compounds [1–4]. Exposure to
these chemicals can affect behavior, reproduction, and
physiology of fish and may also result in mutations or
in death of organisms and their progeny. Moreover,
a large portion of these contaminants can be trans-
ferred through the food chain, making them a poten-
tial threat to entire ecosystems and even human be-
ings. The expression of glutathione S-transferase (GST;
EC 2.5.1.18), which functions to protect cellular macro-
molecules from attack by reactive electrophiles, is a
crucial factor in determining the sensitivity of cells and
organs in response to a variety of toxicants.

The GSTs are a family of phase II detoxification
enzymes that catalyze the conjugation of glutathione
(GSH) to a wide variety of endogenous and exogenous
electrophilic compounds [5,6]. Substrates for GSTs in-
clude many environmental pollutants, pesticides, an-
tibiotics, antineoplastics, and carcinogenic products
of phase I metabolism. Biochemical functions of GST
enzymes include catalyzing the addition of GSH to
electrophilic xenobiotics, facilitating the transfer of
reducing equivalents to toxic products generated dur-
ing oxidative stress, and chemical sequestration [7,8].

250

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Hydrobiology, Chinese Academy Of Sciences

https://core.ac.uk/display/151797005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Volume 24, Number 4, 2010 mRNA EXPRESSION OF GST GENES IN BIGHEAD CARP 251

At least two ubiquitously distributed distantly re-
lated groups of GSTs are classified according to their lo-
cation within the cell: microsomal and cytosolic. A third
group of GSTs, the kappa class, are located in mam-
malian mitochondria and peroxisomes [9,10] and are
structurally distinct from the microsomal and cytoso-
lic GSTs [11]. Cytosolic (alpha, mu, omega, pi, sigma,
theta, and zeta) and mitochondrial (kappa) GST(s)
share some structural similarities but bear no struc-
tural resemblance to the microsomal GST (mGST) en-
zymes. Mammalian and most fish cytosolic GSTs are all
dimeric with subunits of 199–244 amino acids in length;
seven classes of cytosolic GST(s) designated alpha, mu,
omega, pi, sigma, theta, and zeta in mammalian species
and alpha, mu, pi, and theta in fish species are rec-
ognized [12,13]. The mammalian mitochondrial class
kappa GST(s) are dimeric with subunits of 226 amino
acids. Mouse, rat, human, and fish possess only a single
kappa GST [5,13,14]. While in fish, a special GST iso-
form, which has no homologue molecules in mammals,
was found in fish [15]. This special GST was named
as rho class in red seabream Pagrus major, although
its homologue molecule was found previously in the
plaice Pleuronectes platessa and the largemouth bass
Micropterus salmoides [6,16,17].

Profiles of GST isoenzymes constitutively ex-
pressed within tissues and changes subsequent to
chemical exposure point to mechanisms regarding cel-
lular responses to changes in environment. Profiling
metabolic enzymes within tissues permits better pre-
dictions of sites of toxicity, metabolic intermediates,
and responses to exposures to specific environmental
pollutants. In humans, constitutive expression of the
multiple isoforms of GST(s) is tissue specific, suggest-
ing that some isoforms may have specialized functions
[18]. In the mice model, the constitutive mRNA expres-
sion of 19 different GST enzymes was investigated in 14
different tissues and most GST isoforms are most highly
expressed in the gastrointestinal (GI) tract and liver,
which strongly suggests an important role of many GST
isoforms in detoxification of ingested xenobiotics [12].

Fish GSTs play a critical role in xenobiotics detox-
ification and antioxidant defense. Measurement of en-
zyme activities or expression of GST transcripts in fish
has been used as biomarker of exposure to xenobiotics
[19,20,21]. Fu and Xie. [13] examined the mRNA abun-
dance of nine GST isoforms in liver of common carp.
Kim et al. [22] compared the expression of several GSTs
(GST-alpha, GST-mu, GST-theta, and mGST) in differ-
ent tissues of pufferfish. However, the majority of stud-
ies examining GST expression and activity have been
performed using rat, mouse, and human GST(s) and
tissue distribution and constitutive expression of all
fish GST isoforms has not been fully characterized. The
phytoplanktivorous fishes are of economic importance

to humans because of their importance as food fish and
their potential for biological management of cyanobac-
terial blooms [23,24]. Bighead carp (Aristichthys nobilis),
one of the most important freshwater phytoplanktivo-
rous fish, comprises not only much of the production
of Chinese aquaculture [25,26] but also a substantial
proportion (e.g., 6% in 1989) of the total world catch in
inland waters. Therefore, the aims of the present study
were to clone all known fish GSTs from bighead carp
and determine tissue-specific expression of all these
GST isoforms.

MATERIALS AND METHODS

Fish

Bighead carp (Aristichthys nobilis), a phytoplanktiv-
orous fish, is a dominant fresh-water species in China.
Male bighead carp (1 year of age with mean weight of
265 ± 25 g) were obtained from a fish farm and accli-
matized in aerated fresh water tanks for 15 days before
being used in the study. Water temperature was con-
trolled at 25 ± 1◦C, and dissolved oxygen was 6.8 ±
0.7 mg L−1. Feeding of food pellets at a rate of 1% of
the body weight per day was terminated 2 days be-
fore initiation of our experiment. A total of 10 different
fish were killed, after cervical dislocation; the following
tissues were taken: liver, kidney, spleen, muscle, intes-
tine, brain, heart, and gill (n = 10). All tissues were
snap-frozen in liquid nitrogen until use.

Total RNA Extraction and Reverse
Transcription

Total RNA was isolated using Trizol reagent
(Invitrogen, USA) and quantified by determination at
OD260, and the integrity of RNA was determined by
gel electrophoresis. The purified total RNA (2 μg) was
then reverse transcribed.

Reverse transcription was performed with
oligo(dt)18 primer using first strand cDNA synthesis
kit (Toyobo, Japan). The mRNA sequences of mam-
malian GSTs were used to search in zebrafish and
pufferfish genome, and database for homologous
genes, and degenerate primers were designed from
conserved regions to clone partial GST cDNA se-
quences of bighead carp by PCR. PCR was carried out
with the following conditions: 94◦C/3 min; 30 cycles
of 94◦C/30 s, 55◦C/30 s, 72◦C/1 min; and 72◦C/5 min.
PCR products were cloned and sequenced.

Bioinformatics

The sequence identity of bighead carp GST genes
with their homologues in other animals was analyzed
by using the DNAstar software. Multiple sequence
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TABLE 1. GST Sequences Used for Phylogenetic Tree Construction

Species Protein Accession No. Species Protein Accession No.

Homo sapiens Hs Alpha1 CAI13812 Tetraodon nigroviridis Tn Mu CAG07510
Hs Alpha2 AAH02895 Tn Theta CAG09655
Hs Alpha3 NP 000838 Tn mGST1 CAF97117
Hs Alpha4 AAH15523 Tn mGST2 CAG04538
Hs Kappa1 AAH01231 Mus musculus Mm Alpha1 AAH61134

Hs Mu1 AAV38750 Mm Alpha2 AAH30173
Hs Mu2 AAI05067 Mm Alpha3 AAH09805
Hs Mu3 NP 000840 Mm Alpha4 AAH12639
Hs Mu4 AAI08730 Mm Kappa1 NP 083831
Hs Mu5 AAH58881 Mm mu1 NP 034488

Hs Pi AAV38753 Mm mu2 NP 032209
Hs Theta1 NP 000844 Mm mu3 NP 034489
Hs Theta2 AAG02373 Mm Mu4 AAH30444
Hs omega1 NP 004823 Mm Mu6 AAH31818
Hs omega2 NP 899062 Mm Pi AAH61109
Hs zeta 1 AAC33591 Mm Theta1 AAH12254
Hs MGST NP 064696 Mm Theta2 Q61133

Danio rerio Dr alpha AAH60914 Mm Theta3 AAH03903
Dr Kappa1 XP 698521 Mm omega1 NP 034492

Dr Mu NP 997841 Mm omega2 NP 080895
Dr Pi AAH83467 Mm MGST NP 064330

Dr Theta NP 956878
Dr Theta3 XP 692427

Dr Rho CAK10882 Cyprinus carpio Cc Alpha ABD67507
Dr mGST1 AAH74022 Cc Kappa ABD67508
Dr mGST3 XP 695658 Cc Mu ABD67509
Tn Alpha CAG09409 Cc Pi ABD67510

Tn Kappa1 CAF97858 Cc Rho ABD67511
Cc Theta ABD67512

Cc mGST1 ABD67513

alignments were performed using the CLUSTALX pro-
gram. The phylogenetic tree was constructed based on
the results of alignments using the Mega 3.0 program.
A bootstrap analysis was performed using 1000 repli-
cates to test the relative support for particular clades.
The GenBank accession numbers of sequences used are
listed in Table 1.

Quantitative Real-Time PCR (Q-PCR) to
Determine the Levels of Gene Expression

All the primers used in the Q-PCR are listed in
Table 2. The specification of each pair of primers was
confirmed by randomly sequencing six clones, and

TABLE 2. Real Time PCR Primers Used in This Experiment

Primer Sequence (5′–3′)

Target Gene Forward Reverse Size (bp)

Alpha CTTCTGGAGGTCACTCTGATGCTGC TGGCTCAACACCTCCTTCACAGTTT 188
Kappa GTGCTGGTGGAGAGGGTGTCAAGAG AAGTGAGGCAGGCTGGGTAATGTCCT 80
Mu GCTTGCTCAACCAATCCGTCTG GGGAGCGTCACCACAAGAATAGAAC 82
Pi ATCTGTCCAACCTGCTCAAACCATT AGGTCAAACAGGTTGTAGTCCGCAA 82
Rho GCAGAAGTGAAGGCTCTCAATCCCA AACGCACTCTCCAGATACAGACACG 106
MGST ATGCTCCAGACCAATCCTGATGTAG CACCACAAAGGGAATGATGTTCTCC 107
Theta AACGACATCCAGTTCGACTACAAGA TGGTCTGGAGTGTGGAACTTCTCAG 179

further confirmed by the melting curve analysis us-
ing Q-PCR. The amplification efficiency of each pair
of primers was tested by constructing corresponding
plasmid, and only primers with similar amplification
efficiency were used in this experiment. The plasmid
concentration of each GST isoform was measured at
OD260, and the corresponding copy numbers were cal-
culated based on the formula that 1 μg of 1000 bp DNA
equivalent to 9.1 × 1011 molecules.

To examine organ distribution of GST isoforms in
different organs, Q-PCR was conducted by amplifying
1.0 μL of cDNA from the each sample, with the SYBR
Green qPCR kit (Finnzymes, Finland) on a Chromo4
real-time detection system (MJ Research, USA). The
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qPCR conditions were as follows: 94◦C/4 min; 40 cy-
cles of 94◦C/20 s, 60–62◦C/20 s, 72◦C/25 s; 72◦C/5 min.
Melting curve analysis of amplification products was
performed at the end of each PCR reaction to confirm
that a single PCR product was detected. Each sample
was run in three tubes, and PCR reactions without the
addition of the template used as blanks. The absolute
standard curve of each isoform was constructed in the
range of 105–1011 plasmid molecules. After completion
of the PCR amplification, data were analyzed with the
OpticonMonitor software 2.03 version (MJ research),
and the molecular copy of each GST isoform was de-
rived from corresponding threshold value compared
with the standard curve.

Statistics

A total of 10 different bighead carp (n = 10) was
used for each experiment. The error bars in all figures
represent the mean (n = 10) + SE of mean.

RESULTS

Molecular Clone and Phylogenetic
Relationship

The corenucleotide of GST isoforms of alpha,
kappa, mu, mGST, pi, rho, and theta have been cloned
(the Genbank accession numbers of these sequences
were GQ120527–GQ120533). These GST isoforms have
not been reported in bighead carp before except GST
alpha and rho. To investigate the phylogenetic relation-
ship of bighead carp GST isoenzymes with different
classes of GST enzymes from other vertebrates, a phylo-
genetic tree was constructed with deduced amino acid
sequences (Figure 1). Different GSTs included in phy-
logenetic analysis formed their own clades. The big-
head carp GST sequences show the highest similarity
with those from common carp (Cyprinus carpio) and
zebrafish (Danio rerio). However, at present an exact
phylogenetic relationship is difficult to predict, due to
deficient of GSTs sequences information. Since only one
isoform from each class GST was found in bighead carp
as yet, further research is needed to find more members
of GST family.

Tissue Distribution of GST Transcripts

We quantified the constitutive mRNA transcription
of GST isoforms (alpha, kappa, mu, mGST, pi, rho, and
theta) in eight different tissues (liver, kidney, spleen,
intestine, muscle, heart, brain, and gill). All the GST
isoforms can be detected in different organs, whereas

the mRNA expression of certain isoforms showed tis-
sue predominant expression.

The copy number of GST isoforms, alpha, pi,
and rho, (molecules/pg total RNA) in bighead carp
was calculated from the corresponding standard curve
(Figure 2). The expression of GST alpha was highest in
intestine, followed by spleen and heart.

The tissue distribution pattern of GST pi showed
some similarities with GST alpha, but expression of
GST pi was with appreciable levels in gill whereas GST
alpha expression was minimal. The copy numbers of
GST rho isoform in liver, intestine, spleen, heart, and
brain were all above 400 molecules/pg RNA, and it
was scarcest in gill with only 23 molecules/pg RNA.

In bighead carp, the expression of GST kappa
was highest in muscle about 400 molecules/pg
RNA, whereas its expression in liver, kidney, spleen,
heart, and brain were at the same level about 200
molecules/pg RNA (Figure 3). GST mu expression was
highest in spleen followed by brain and heart. The ex-
pression of mGST was higher in intestine and liver
about 500 molecules/pg RNA and showed a relatively
similar level in kidney, gill, muscle, heart, and brain
less than 200 molecules/pg RNA (Figure 3). The GST
theta was expressed in all the tissues studied, and the
expression of GST theta was relatively high in spleen,
intestine, liver, kidney, heart, and brain, but its copy
numbers were less than 100 molecules/pg RNA in all
the tissues (Figure 3).

Figure 4 shows a composite of the tissue expression
of all GST isoforms in the tissues studied. From this
overall view, it is apparent that the majority of the GST
isofoms are expressed in liver, kidney, intestine, and
spleen whereas a few are highly expressed in heart and
brain. GST pi was far highly expressed in almost all
the studied tissues except muscle. GST alpha and rho
were also expressed at a relatively high level in several
organs. This means that GST pi, alpha, and rho may
play an important role in detoxification of xenobiotics.

DISCUSSION

Many drugs and xenobiotics enhance the expres-
sion of GSTs in an isoenzyme-specific way. Differences
in expression of specific GST isoenzymes within tis-
sues might reflect various mechanisms of biological
regulation and have been proposed as one underly-
ing cause of organ-selective toxicity. Profiling GSTs has
been an established method that used to predict poten-
tial sites of toxicity and metabolism in response to ex-
posure to particular environmental pollutants [27,28].
In the present study, Q-PCR was used to measure the
molecule numbers of GST isoenzymes instead of en-
zyme kinetic analysis because it is difficult to define a

J Biochem Molecular Toxicology DOI 10:1002/jbt



254 LI ET AL. Volume 24, Number 4, 2010

Hs Alpha1
Hs Alpha2
Hs Alpha3
Mm Alpha3
Mm Alpha1
Mm Alpha2

Hs Alpha4
Mm Alpha4

Tn Alpha
Dr Alpha
Cc Alpha

An Alpha
Hs Pi
Mm Pi

An Pi
Dr Pi
Cc Pi

Dr Mu
Cc Mu
Tn Mu

An Mu
Hs Mu3
Mm mu1
Mm mu3

Mm mu2

Mm Mu6
Hs Mu4
Mm Mu4
Hs Mu5
Hs Mu1
Hs Mu2

An Theta Cc Theta
Dr Theta
Dr Theta3

Tn Theta
Hs Theta2
Mm Theta2

Mm Theta3
Hs Theta1
Mm Theta1

Hs omega1
Mm omega1
Hs omega2

Mm omega2

Tn mGST1 Cc Rho
Dr Rho

An Rho
Hs MGST
Mm MGST

An mGST
Dr mGST1
Cc mGST1

Hs Kappa1
Mm Kappa1

Tn Kappa1
An Kappa

Cc Kappa
Dr Kappa1

100

99
100

100

100

97

91

44

71

41
65

98

95

94
75

100

95
100

100
100

100

98
100

100

100
100

100
99

92
99

96

100

99
100

100

82
100

98
100

80

50

36

100

100

99

99

50

96

53

41

100

96
69

100

60

20

Kappa

Hs Alpha1
Hs Alpha2
Hs Alpha3
Mm Alpha3
Mm Alpha1
Mm Alpha2

Hs Alpha4
Mm Alpha4

Tn Alpha
Dr Alpha
Cc Alpha

An Alpha
Hs Pi
Mm Pi

An Pi
Dr Pi
Cc Pi

Dr Mu
Cc Mu
Tn Mu

An Mu
Hs Mu3
Mm mu1
Mm mu3

Mm mu2

Mm Mu6
Hs Mu4
Mm Mu4
Hs Mu5
Hs Mu1
Hs Mu2

An Theta Cc Theta
Dr Theta
Dr Theta3

Tn Theta
Hs Theta2
Mm Theta2

Mm Theta3
Hs Theta1
Mm Theta1

Hs omega1
Mm omega1
Hs omega2

Mm omega2

Tn mGST1 Cc Rho
Dr Rho

An Rho
Hs MGST
Mm MGST

An mGST
Dr mGST1
Cc mGST1

Hs Kappa1
Mm Kappa1

Tn Kappa1
An Kappa

Cc Kappa
Dr Kappa1

100

99
100

100

100

97

91

44

71

41
65

98

95

94
75

100

95
100

100
100

100

98
100

100

100
100

100
99

92
99

96

100

99
100

100

82
100

98
100

80

50

36

100

100

99

99

50

96

53

41

100

96
69

100

60

20

Hs Alpha1
Hs Alpha2
Hs Alpha3
Mm Alpha3
Mm Alpha1
Mm Alpha2

Hs Alpha4
Mm Alpha4

Tn Alpha
Dr Alpha
Cc Alpha

An Alpha
Hs Pi
Mm Pi

An Pi
Dr Pi
Cc Pi

Dr Mu
Cc Mu
Tn Mu

An Mu
Hs Mu3
Mm mu1
Mm mu3

Mm mu2

Mm Mu6
Hs Mu4
Mm Mu4
Hs Mu5
Hs Mu1
Hs Mu2

An Theta Cc Theta
Dr Theta
Dr Theta3

Tn Theta
Hs Theta2
Mm Theta2

Mm Theta3
Hs Theta1
Mm Theta1

Hs omega1
Mm omega1
Hs omega2

Mm omega2

Tn mGST1 Cc Rho
Dr Rho

An Rho
Hs MGST
Mm MGST

An mGST
Dr mGST1
Cc mGST1

Hs Kappa1
Mm Kappa1

Tn Kappa1
An Kappa

Cc Kappa
Dr Kappa1

100

99
100

100

100

97

91

44

71

41
65

98

95

94
75

100

95
100

100
100

100

98
100

100

100
100

100
99

92
99

96

100

99
100

100

82
100

98
100

80

50

36

100

100

99

99

50

96

53

41

100

96
69

100

60

20

Alpha

Pi

Mu

Theta

Rho

mGST

FIGURE 1. Phylogenetic tree of piscine GSTs and their homologue molecules from mammals. Multiple sequence alignments were performed
using the CLUSTALX program. The phylogenetic tree based on the results of alignments was obtained by using the Mega 3.0 program. A
bootstrap analysis was performed using 1000 replicates to test the relative support for particular clades. The GenBank accession numbers of
sequences used are listed in Table 1.

distinction between GST classes by specific substrates
because of broad and overlapping substrates [13,29].
The Q-PCR method is of greatly sensitive to detection
and quantification of gene expression levels, in partic-
ular for low abundance mRNA [30,31,32].

The present study cloned seven bighead carp GST
isoforms and examined their expressions in a variety of

tissues, to obtain a global constitutive expression profile
of these enzymes in various tissues. The information
obtained from the study could be distilled into two
generalized principles: (1) multiple GST isoenzymes
were ubiquitously expressed in all tissues, and some
express at a similar pattern in different tissues; (2) some
GST isoforms were expressed in a more predominant
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FIGURE 2. The copy numbers of bighead carp GST alpha, pi, and rho isoform (molecules/pg total RNA) were calculated by each standard
curve in liver, kidney, spleen, muscle, intestine, brain, heart, and gill of bighead carp.

pattern than others, such like that GST pi was far highly
expressed in almost all the studied tissues.

In the present study, many GST isoforms had high
constitutively expression in liver, kidney, intestine, and
spleen. The fish liver, kidney, and intestine have long
been thought to be important organs involved in detox-
ification of xenobiotics [33,34]. Knight et al. [12] exam-
ined the constitutive mRNA expression of 19 different
GST enzymes in 14 different tissues in mice and found
that most GSTs expression was high in the liver, kid-
ney, and large intestine that was consistent with our re-
sults [35]. Higher expression of certain GST isoforms in
spleen was an interesting finding in the present study,
because spleen is generally considered to be an im-
munity related tissue and not involved in xenobiotic

metabolism. Sheweita et al. [36] reported that the ex-
pression of GST isoenzymes was decreased in the
spleen at 2, 4, 6, 8, and 10 weeks in Schistosoma haema-
tobium infected hamsters. Thus, we may speculate that
although spleen is not an organ involved in significant
absorption or metabolism, the expression of specific
GST isoforms in the spleen may offer protection against
environmental xenobiotics.

GST pi was found to have the highest expression
in almost all the studied tissues except muscle in this
experiment; the other two isoforms, GST alpha and rho
were also highly expressed in liver, kidney, intestine,
spleen, heart, and brain of bighead carp. High expres-
sion of GST pi, alpha, and/or rho was similar with
pervious studies on mammals and other fish species.
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FIGURE 4. A composite of the tissue expression of all GST isoforms in the tissues studied in liver, kidney, spleen, muscle, intestine, brain, heart,
and gill of bighead carp.

Coles et al. [37] quantified GST protein expression in GI
tracts of human subjects using HPLC and examined in-
terindividual variability/consistency of organ-specific
patterns of expression. The authors found Gstp1, Gsta1,
and Gsta2 as major, and Gstm1 and Gstm3 as mi-
nor constituents. Fu and Xie [13] examined the copy
number of nine GST isoforms in the liver of common
carp. The authors found that the copy numbers of GST
alpha, rho, and pi isoforms were higher than others
and mGST2 is the scarcest type GST. Knight et al. [12]
also reported the higher expression of GST alpha3, pi,
and mu1 isoform in liver of mice, and the expression
lever of pi was much higher in males than in females,
whereas in other organs the expression pattern of GST
isoforms were different. The expression profiles de-
scribed by Kim et al. [22] in pufferfish have some simi-
larities as well differences from that in bighead carp in
the present study. The authors studied the tissue distri-
bution pattern of GST alpha, mu, theta, and mGST3 in
nine different organs. All the GSTs showed the highest
expression in liver, but contrary to bighead carp, the
highest expression of GST theta was found in most or-
gans. This discrepancy may be due to the differences
between species, the reagents used, and also GST iso-
forms examined.

The expression of GST pi has always been thought
to play an important role in mammals, while its func-
tion in fish has not been paid much attention to. In
human, GST pi is the most widely distributed enzyme
of all GSTs and the most abundant form in many tis-
sues except in the liver [38]. It is dominating, for ex-
ample, in the lungs [39] and in the rectum [40], also
in lymphocytes its activity is higher as that of other
GSTs [41]. Approximately, 50% of the Caucasians carry
a mutation in the GSTP gene [42]. While, in fish, phar-
macologists and toxicologists pay more attention to the

expression of GST alpha. Because the GST alpha class
is the only GST class with Se-dependent glutathione
peroxidase activity, one might expect that the highest
level of these isoforms would be in liver where most
of metabolism occurs. The constitutive levels of expres-
sion of xenobiotic-metabolizing enzymes in a tissue de-
termine its ability to handle xenobiotic load [12]. Thus,
GST pi and rho may play an important role in protect-
ing cellular macromolecules against electrophiles and
products of oxidative stress in fish as well.

In summary, the present experiment cloned seven
bighead carp GST isoforms and examined their expres-
sions in a number of tissues. The majority of GSTs
had the highest constitutive expression in the intes-
tine, liver, kidney, and spleen. These findings are in
agreement with the roles of these tissues in xenobiotic
metabolism. We also found that GST pi, alpha, and
rho were highly expressed in most organs, indicating
that these GST isoforms may play an important role in
detoxification of xenobiotic. However, the specific roles
of individual GST enzymes in each tissue still remain a
matter of speculation and need more research to clarify.
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