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Several assay methods were screened for viability assessment in cyanobacteria using Microcystis aeruginosa FACHB
905. Compared with fluorescent diacetate (FDA), Evan’s Blue and autofluorescence, the 3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyl tetrazolium bromide (MTT) assay, which was based on the ability of viable cells to reduce MTT to
formazan, was found to be reliable and was selected for further study. MTT concentration, incubation time and
temperature were optimized for M. aeruginosa. Improvements to the sensitivity and reproducibility of the MTT assay
included performing it in the dark to reduce the effects of formazan light sensitivity when extracted in DMSO. Another
improvement involved collecting viability data by cell by counting rather than colourimetrically, which was concluded
from the fact that oxidoreductase activity, responsible for MTT reduction, would elevate or decrease under stress
conditions. Half-life of oxidoreductase in dead cell was calculated to be 3 h. The MTT assay was also found to be
applicable to other cyanobacteria and diatoms, including field samples, but not for algae belonging to Chlorophyta,
Euglenophyta, Pyrrophyta or Chrysophyta. Based on the above results, we proposed an optimized procedure for the
MTT method on Microcystis strains. The use of this assay may be of importance to better understand the dynamics of
bloom and the fate of Microcystis under natural or disturbed conditions.
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INTRODUCTION

Water blooms have attracted much attention in recent

years. However, in contrast to the intense efforts to

elucidate the conditions, mechanisms and strategies that

control phytoplankton cell growth, relatively little attention

has been focused on phytoplankton death (Bidle &

Falkowski 2004). Loss via cell death has been poorly

understood primarily because of the lack of a direct means

of measuring viability (Lee & Rhee 1997). In addition,

questions about how many cells had overwintered success-

fully and would resuscitate to form blooms as seeds,

whether an algaecide was effective, and when a bloom

would decline remain unanswered. To address these

questions, a reliable viability assessment method for

cyanobacteria and algae is necessary.

The classical viability definition is based on reproduc-

ibility. Cell viability could also be reflected by changes in

morphology, motility or the membrane or physiological

state, including production of enzymes for healthy metab-

olism, such as esterase and oxidoreductase, the ability to

pump out or exclude certain dyes or levels of macro-

molecules important for life, such as ATP, proteins and

nucleic acids (reviewed by Breeuwer & Abee 2000; Keer &

Birch 2003).

In an effort to define a reliable viability assessment

method for cyanobacteria and algae, Dorsey et al. (1989)

established that a relationship existed between fluorescent

diacetate (FDA) conversion rates and photosynthetic

capacity. Pouneva (1997) recommended chlorophyll auto-

fluorescence as the most convenient method for viability

assessment. Markelova et al. (2000) suggested tetrazolium

compounds could be useful for cyanobacterial viability

assessments. Brussaard et al. (2001) and Agusti & Sanchez

(2002) developed methods based on membrane permeabil-

ity and applied them for viral infection and field samples,

respectively.

Tetrazolium salts have been used extensively in de-

termining the viability of cells, from bacterial to mamma-

lian (Kairo et al. 1999), including spores (Stentelaire et al.

2001). They have been widely used in anticancer drug

research to investigate cytotoxic and cytostatic effects on

cancer cell lines and tumour cells (Berridge et al. 2005). The

reduction of tetrazolium salts from colourless or weakly

coloured, aqueous solutions to brightly coloured formazan

has been the basis of their use as vital dyes in biochemical

applications. Lately, experimental data have suggested that

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bro-

mide (MTT) and other positively charged tetrazolium salts

are primarily reduced not by the traditionally accepted

succinate dehydrogenase but by oxidoreductase enzymes,

the majority of which utilize the reduced pyridine nucleo-

tide NADH (Berridge et al. 2005).

The application of the tetrazolium salts method in

cyanobacteria or algae is seldom reported. In the present

study, applicability of the MTT assay for this class of

microorganism was explored for viability assessment,

particularly for the toxin-producing species Microcystis* Corresponding author (lrsong@ihb.ac.cn).
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aeruginosa. Besides optimization of the MTT assay pro-

cedure in M. aeruginosa, the half-life of oxidoreductase in

dead M. aeruginosa cells and response of MTT reduction

to stresses were studied. Furthermore, the applicability of

the MTT assay to other cyanobacteria and algae was

investigated.

MATERIAL AND METHODS

Culture conditions

Microcystis aeruginosa FACHB 905 was cultured in 1/2

BG-11 medium at 25uC under an illumination of 20–

25 mmol m22 s21 (LI-COR LI-185B, USA) with a cycled

photoperiod of 12 h light : 12 h dark. Cultures grown for 7–

12 d, after inoculation into 250-ml flasks, were assumed to

be active growing. To obtain heat-shocked dead cells, the

cultures were boiled for 10 min.

Staining and viability calculation

During methods screening, FDA, Evan’s Blue, autofluor-

escence and the MTT methods were compared using active

growing and heat-killed M. aeruginosa. The commonly used

algaecide CuSO4 was also tested at a concentration of

0.15 mg l21 treated culture. MTT (Amresco, USA) was

prepared in PBS (pH 6.8) at a concentration of

0.5 mg ml21 with 0.1 mol l21 sodium succinate. Evan’s

Blue (Sigma, USA) solution was prepared at 4% in glycerol,

and FDA (Sigma) was prepared in acetone at 5 mg ml21.

The working concentrations of these reagents were

0.14 mg ml21, 0.25%, and 0.03 mg ml21, respectively.

Stock solutions of MTT and Evan’s Blue were stored at

4uC, and FDA was stored at 220uC. A 200-ml sample of

culture was used for MTT, Evan’s Blue or FDA staining.

Samples were washed and suspended in 200 ml BG-11

medium before staining. After incubation, the dyes were

removed with centrifugation at 8228 3 g for 3 min. The

pellets were resuspended in 200 ml distilled water.

MTT and Evan’s blue staining were performed at 25 6

1uC in an illuminating incubator for 2 h and 1 h,

respectively, and 8 ml of each suspension were examined

with a haemacytometer using light microscopy (Olympus

CX41, Japan). At least 300 cells were observed in each.

FDA staining was carried out at 25 6 1uC for 5 min in

the dark and was detected by flow cytometry (Beckman

Coulter Epic Altra, USA) or using a fluorescence micro-

scope (Olympus BX41, Japan) equipped with a GFP filter

set (exciter 395/40 nm, emitter 510/40 nm) (Chroma Tech-

nology Corp., USA). Cell concentrations were diluted to

106 cells ml21 before detection using flow cytometry. The

power output was 15 mW, and a wavelength of 488 nm was

used to excite the fluorescent probes. Green fluorescence

was measured through a 535 6 10 nm bandpass filter

(Jochem 1999), and at least 1 3 105 cells were collected. A

value of 2 relative units was assigned based on the value of

the heat-killed culture to separate live cells from dead ones.

Cells with fluorescence readings above that value were

considered FDA positive. Autofluorescence was visualized

using a separate filter set (exciter 510/50 nm, emitter 570/

90 nm).

Conversion of FDA to fluorescein relies on esterase

activity in live cells, and conversion of MTT to formazan

relies on oxidoreductase activity; therefore, for these assays,

viability is equivalent to the ratio of positive cells to total

cell numbers. Evan’s Blue is membrane impermeable.

Compromised membranes are implied in cells coloured

with Evan’s Blue; thus, the ratio of Evan’s Blue negative

cells to total cell numbers reflects culture viability.

Optimization of the MTT colourimetric assay for

M. aeruginosa

In our initial MTT colourimetric assay, 100 ml MTT stock

solution (0.14 mg ml21 MTT) were added to a 250-ml

sample, and the sample was incubated at 25 6 1uC. After

incubation, supernatant was removed, and 1 ml DMSO

was added to dissolve the formazan crystals fully. The

absorbance was measured after centrifugation at a wave-

length of 556 nm with a spectrophotometer (UNICO

UV2000, China). The staining intensity was expressed with

the A556 when 1.87 3 106 cells were treated.

In our optimization experiments, the MTT assay was

performed at different temperatures (10, 25 and 35uC),

different MTT concentrations (0.019, 0.037, 0.068, 0.121

and 0.188 mg ml21) and with different incubation time (15,

30, 45, 60, 90, 120, 180 and 240 min). Finally, the

relationship between the staining intensity and the percent-

age of viable cells (mixing active growing cells and heat-

killed cells) was studied using the optimized procedure.

Determination of oxidoreductase half-life in dead

M. aeruginosa

Microcystis aeruginosa exposed to 0.25 mg l21 CuSO4 for

12 h in a 4uC refrigerator were unable to survive in fresh 1/2

BG11 medium even under optimal conditions. Therefore,

the exposed sample was assumed to be dead though more

than half the cells tested MTT positive. A556 was

determined after the exposed culture was transferred into

fresh 1/2 BG11 medium in a 25uC incubator with 25 mmol

photon (PAR) m21 s21 photon irradiance. The declining

absorbance curve in dead M. aeruginosa was simulated with

the formula [Et] 5 y0 + [Ei] e2kdt, where [Et] is the

enzyme activity at time t, [Ei] is the initial enzyme activity,

kd is the rate of activity decay and t is time. T1/2 was equal

to 0.693/kd.

Response of oxidoreductase to stresses

The responses of oxidoreductase activity to temperature,

nitrogen or phosphorus limitation and dark or formalde-

hyde exposure were studied. Nitrogen- or phosphorus-

limited cells were obtained by inoculating samples of

culture into corresponding nutrient-free media. In the

nitrogen-depleted medium, NaNO3 was omitted, and

FeC6H5O7 was used in place of Fe(NH4)3(C6H5O7)2. In

the phosphorus-free medium, K2HPO4 was omitted. Dark

conditions were obtained by wrapping the flasks with silver

paper. The formaldehyde concentration was 0.0015%.
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The MTT test applied to field samples and other cyanobac-

teria and algae

Tests were performed to investigate whether other cyano-

bacteria and algae would present obvious differences after

MTT incubation under light microscopy. Field samples

were collected from Dianchi (Yunnan, China), a typical

heavy eutrophicated lake. Twenty-three pure cultures of

cyanobacteria and algae, including six Cyanobacteria,

seven Chlorophyta, five Bacillariophyta, two Eugleno-

phyta, one Chrysophyta, one Pyrrophyta and one Rhodo-

phyta were also tested (Table 1). All of them were obtained

from FACHB (Freshwater Algae Culture Collections,

Institute of Hydrobiology, Chinese Academy of Sciences).

The assay conditions were the same as the optimized MTT

assay conditions described in the Results section with the

exception that the incubation time was 2 h to make the

tested strain reacted with MTT fully. After incubation with

MTT, the culture was observed under light microscopy to

make a judgment of whether formazan aggregated obvi-

ously in the cell.

Data analysis

All experiments were performed in three replicates. Data in

this study are presented as means 6 standard deviations (s)

and analyzed using Microcal Origin Software (Version 6.0,

Microcal Software Inc.) Significant analyses were per-

formed when investigating response of oxidoreductase to

stresses. Differences by analysis of variance between treated

samples and control were considered to be significant at P

, 0.05.

RESULTS

Screening of viability assessment methods using

M. aeruginosa

For active growing cells, FDA, Evan’s Blue, autofluores-

cence and MTT methods gave similar estimates of viability,

the result from FDA being only slightly lower (Fig. 1).

Observations under fluorescence microscopy also demon-

strated that some cells with strong autofluorescence

presented less FDA green fluorescence. The same result

Table 1. Application of MTT in other algae. ‘‘+’’ indicates that the species could be stained with MTT; ‘‘–’’indicates that the species could
not be stained with MTT.

Species Strain Staining

Cyanophyta

Anabaena sp. PCC7120 +
Gloeocapsa alpicola FACHB400 +
Merismopedia sp. FACHB286 +
Oscillatoria tenuis FACHB247 +
Phormidium mucicola FACHB723 +
Synechocystis sp. PCC6803 +

Chlorophyta

Chlamydomonas reinhardtii FACHB479 –
Chlorella pyrenoidosa FACHB9 –
Dunaliella parva FACHB815 –
Haematococcus pluvialis FACHB712 –
Pediastrum sp. FACHB721 –
Scenedesmus obliqnus FACHB416 –
Selenastrum capricornutum FACHB271 –

Bacillariophyta

Cyclotella meneghiniana FACHB739 +
Fragilaria sp. FACHB218 +
Melosira granulate var. angustissima NIES333 +
Navicula incerta FACHB371 +
Nitzschia palea FACHB204 +

Others

Euglena gracilis FACHB848 –
Euglena spirogyra FACHB922 –
Glenodinium sp. FACHB328 –
Porphyridium purpareum FACHB806 –
Prymnesium parvum FACHB923 –

Fig. 1. Viability assessment with FDA, Evan’s Blue, autofluores-
cence and MTT for active growing cell and heat-killed sample.
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was obtained with flow cytometry. In contrast, the MTT

reduction product, blue formazan, was clearly discernible in

viable cells (Fig. 2).

For the heat-treated M. aeruginosa, Evan’s Blue gave an

obviously higher estimation of viability. All the other

methods suggested that most of the cells were dead.

However, 32% of the sample was Evan’s Blue negative

(Fig. 1), suggesting those cells had intact membranes and

should be viable. Even when the concentration of Evan’s

Blue was elevated to 0.5% or if staining was performed after

1 d, 20% of cells still tested negative.

Evan’s Blue also overestimated viability in the CuSO4

(0.15 mg/L)-treated sample. After 8 h of CuSO4 treatment,

only 66% of the cells were viable according to the FDA and

MTT methods. The same percentage of viable cells was

recorded at 24 h. Evan’s Blue gave an estimation of 87% at

8 h and decreased to about 70% 24 h later. Autofluores-

cence estimated lower viability than Evan’s Blue but higher

than FDA and MTT (Fig. 3).

Optimization of the MTT colourimetric assay for

M. aeruginosa

SELECTION OF AN EXTRACTION SOLVENT FOR MTT FORMA-

ZAN: To quantify MTT staining intensity, it was necessary

to establish a standard colourimetric assay. Formazan was

much more stable dissolved in isopropanol than in DMSO,

but extraction with isopropanol left blue crystals, even after

mixing for 10 min. In contrast, the formazan was almost

completely dissolved in DMSO within 2 min. However, we

found that formazan dissolved in DMSO was light

sensitive. Under illumination of 35 mmol m22 s21 at 35uC,

formazan had a half-life of 8 min, and the A556 decreased

from 0.820 to 0.156 (Fig. 4). However, under dark

conditions, the A556 did not decrease at all for at least an

hour. We selected DMSO as the extraction solvent based on

the rapid extraction ability and the stable properties in the

absence of light.

OPTIMIZATION OF INCUBATION TEMPERATURE, MTT CONCEN-

TRATION AND INCUBATION TIME: The MTT reduction re-

action was dependent on incubation temperature. The

mixture incubated at 35 6 1uC showed the highest staining

intensity, and the lowest was obtained at 10 6 1uC (Fig. 5–

1). The staining intensity at 35 6 1uC was about twice that

measured at 25 6 1uC.

The staining intensity increased proportionally with

concentration in the range of 0–0.07 mg/ml21 (Fig. 5–2).

By plotting these data according to the Lineweaver-Burk

representation (y 5 1.383/(0.027 + x), R2 5 0.98),

a Michaelis-Menten constant (Km) of 0.027 mg ml21 was

determined. A concentration of 0.1 mg ml21 MTT was

adopted for subsequent experiments.

As shown in Fig. 5–3, the staining intensity for

a suspension of 7.5 3 106 cells ml21 of M. aeruginosa was

linear for up to 2 h incubation (R25 0.9992). Considering

the optimum absorbance range for linearity (0.1–1) in most

spectrophotometers, 1 h was a long enough duration for

the assay, and the deposited formazan was also enough to

detect by light microscopy.

In the finalized assay procedure, 250-ml samples were

combined with 60 ml MTT stock solution and incubated at

35 6 1uC for 1 h. According to our results, the relationship

between A556 and viable M. aeruginosa was linear from 2.5

3 106 to 1.5 3 107 cells ml21 (Fig. 5–4).

Response of oxidoreductase to stresses

Under light microscopy, more formazan was observed in

most of the cells grown at 10uC than in cells cultured at

Fig. 2. Active growing M. aeruginosa under light microscopy (1)
without staining. (2) Stained with MTT. Bar 5 10 mm.

Fig. 3. Decrease of viability in M. aeruginosa after 0.15 mg l21

CuSO4 exposure evaluated with FDA, Evan’s Blue, autofluores-
cence and MTT.

Fig. 4. Decline of DMSO-dissolved formazan. The extraction
process was performed under light or dark.
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25uC. Based on this phenomenon, we compared the A556

values for cultures grown at different temperatures.

Our results showed that cells cultured at 10uC, with

a lower growth rate (Fig. 6–1), produced over 30% more

formazan than those grown at 25uC, while cells at 35uC,

having the highest growth rate, produced the least

formazan (Fig. 6–2). MTT-reducing activity was the lowest

when cells were incubated at 10uC (Fig. 5–1). We proposed

that cells grown at 10uC express more oxidoreductase to

offset their weakened ability to transport electrons at lower

temperatures.

Response of oxidoreductase was also studied in cells

suffering from other stresses (Fig. 7). Under dark condi-

tions, more than 95% of the cells were MTT positive, but

A556 decreased significantly (P , 0.01) in the first 12 h and

remained low. A556 also decreased immediately when

cultures were exposed to 0.0015% formaldehyde (P ,

0.05). No significant increase was observed before the

decrease occurred in nitrogen-depleted cultures, but A556

increased significantly after 28 h in phosphorus-depleted

medium, suggesting that the cells might increase oxidore-

ductase activity to survive the phosphorus limitation (P ,

0.05).

Half-life of oxidoreductase in dead M. aeruginosa

The A556 of M. aeruginosa exposed to 0.25 mg/L CuSO4 for

12 h at 4uC decreased from 0.42 to 0.04 in less than 10 h

(Fig. 8). The formula [Et] 5 20.03105 + [Ei]e20.232t (R2

5 0.9826) fit the curve well. The rate of decay (kd) and the

half-life (t1/2) were 0.232 h21 and 3 h, respectively. The 3-h

half-life ensured a low deviation from the true value due to

false MTT positive results.

Application of the MTT assay to field Microcystis samples,

other cyanobacteria and algae

MTT staining could be extended to field Microcystis samples.

Field Microcystis, including M. aeruginosa, M. viridis and

M. wesenbergii, could all be stained with MTT. Most of the

colonies were definitively MTT positive under microscopic

inspection. However, portions of the colonies were hard to

clearly determine because of interference from gas vesicles.

According to our observations of 23 strains of cyanobacteria

and algae, the MTT method could be applied to all the tested

Cyanobacteria, Bacillariophyta and Rhodophyta but was

Fig. 6. (1) Growth curve and (2) staining intensity in M. aeruginosa
cultured at 10uC, 25uC and 35uC.

Fig. 7. Response of oxidoreductase to stress condition.

Fig. 8. Decline of oxidoreductase activity in dead M. aeruginosa.

Fig. 5. Optimization of MTT assay with M. aeruginosa. (1) Effect
of incubation temperature on staining intensity. 250 ml 7.5 3 106

cells ml21 incubated for 1 h. (2) Relationship between staining
intensity and MTT concentration. 250 ml 7.5 3 106 cells ml21

incubated for 2 h. (3) Dependence of staining intensity on
incubation time. 250 ml 7.5 3 106 cells ml21 was used. (4) Linear
regression between staining intensity and the percentage of viable
cell. 250 ml 1.5 3 107 cells ml21 incubated for 1 h. All the reactions
were incubated at 35 6 1uC with the exception of temperature test.
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not ideal for algae belonging to Chlorophyta, Euglenophyta,

Chrysophyta and Pyrrophyta (Table 1).

DISCUSSION

The MTT assay was previously suggested to be a sensitive

and reliable method for measuring cell viability. We

compared this assay with FDA, Evan’s Blue and auto-

fluorescence and found the MTT assay to be a relatively

reliable and easily performed viability assessment method

for M. aeruginosa.

The formazan extraction process was crucial to the

accuracy and reproducibility of the MTT colourimetric

method. DMSO had been suggested as the best solvent for

dissolving formazan (Twentyman & Luscombe 1987), but the

effect of light on the DMSO-dissolved formazan was seldom

considered, possibly because many results were read out

quickly with an ELISA reader. DMSO-dissolved formazan

had a half-life of 8 min under 35 mmol m22 s21 light

intensity at 35uC. This rapid decline could be expected to

lead to an underestimation of staining intensity. Protection

from light should be ensured during the extraction process.

The M. aeruginosa cells appeared to increase their

oxidoreductase activity in response to stressful environ-

ments. This has also been reported for other cell cultures

(Sieuwerts et al. 1995; Zhang & Cox 1996; Bernhard et al.

2003) but has never been reported in cyanobacteria or

algae. Capasso et al. (2003) compared viability of nitrogen-

limited, 0.0015% v/v formaldehyde-treated and 0.5% v/v

acetic acid–treated Dunaliella viridis with that of active

growing cultures, employing 3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium

(MTS), another tetrazolium salt. As a result, reduction of

tetrazolium MTS to formazan proceeded at a much lower

rate in stressed cultures than in healthy cultures. According

to our results, tetrazolium MTT reducing ability decreased

after 0.0015% v/v formaldehyde exposure but would increase

at low temperatures and upon exposure to phosphorus-

depleted conditions.

The MTT method is often performed colourimetrically,

and viability is expressed by the ratio of A556 in test cultures

to the value in healthy cultures (Gaboriau et al. 1997). It

was, indeed, alluring to perform viability testing using the

colourimetric method, especially for material such as a field

colony of Microcystis. For our assay, we had to break apart

the cells into single cells before viability estimation by cell

counting, but this step is not necessary if estimating

colourimetrically. However, the elevated oxidoreductase

hinders this method. If oxidoreductase expression was

higher under stress (low temperature or phosphorus

starvation) and even part of the cells became MTT

negative, the A556 still indicated higher values than in the

healthy culture and gave a much higher estimation of cell

viability. In the case of decreased oxidoreductase activity,

such as under dark conditions and at high temperatures

(35uC), A556 decreased considerably in 2 d, but more than

95% of the cells were still MTT positive. That is, they were

viable and would divide and propagate after the stress was

withdrawn. In light of this consideration, we strongly

recommend that viability based on MTT reduction be

calculated by cell counting.

The elevated oxidoreductase levels would also lead us to

believe that cells rich in formazan were in a healthy state

when observed by light microscopy. No doubt that they were

viable, but in fact they were under stress. Kept under stress

conditions, they appeared to enter death phase and become

MTT negative, as more MTT negative cells were observed in

10uC cultures than in 25uC culture (data not shown). Either

way, oxidoreductase in the dead M. aeruginosa at 25uC had

a half-life of about 3 h, which ensured that the number of

false positives was moderately low.

FDA was effective for Thalassiosira, Dunaliella, Emiliania

and Chlorella spp. but not for Synechococcus, Phaeodactyl-

lum or Prochlorococcus spp. (Agusti & Sanchez 2002).

Methods based on membrane permeability like Evan’s Blue

failed to differentiate dead cells under some stresses such as

CO2 limitation (Vardi et al. 1999) or nitrogen starvation

(Sauer et al. 2001) or, as in this study, exposure to heat and

CuSO4. MTT also had its limitations as an assay. First,

MTT was restricted as to the range of species it was suitable

for testing. It was not applicable for Chlorophyta, Eugleno-

phyta, Chrysophyta and Pyrrophyta spp. In addition, when

cultures were grown above 30uC, less formazan was

aggregated. It would be exhausting to differentiate the dead

cells under light microscopy. Finally, for some field samples,

gas vesicles distributed widely in single cells interfered with

our observations. Though phycoerythrin was suspected to

disturb the reaction, the obvious difference under light

microscopy between Porphyridium purpareum, one strain of

Rhodophyta rich in phycoerythrin, and its MTT treated

samples excluded our suspicion. Regardless of these short-

comings, the MTT method was inexpensive, simple and

relatively reliable compared to other assays. It was also

rapid to perform and would be an effective tool for

cyanobacteria and algae viability assessment when applied

for species such as Bacillariophyta and Rhodophyta.
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