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LakeDianchi is a shallowand turbid lake, located inSouthwest China. Since 1985, LakeDianchi
has experienced severe cyanabacterial blooms (dominated by Microcystis spp.). In extreme
cases, the algal cell densities haveexceeded three billion cells per liter. Topredict andelucidate
thepopulation dynamics ofMicrocystis spp. in LakeDianchi, a neural networkbasedmodelwas
developed. The correlation coefficient (R2) between the predicted algal concentrations by the
model and the observed values was 0.911. Sensitivity analysis was performed to clarify the
algal dynamics to the changes of environmental factors. The results of a sensitivity analysis of
the neural network model suggested that small increases in pH could cause significantly
reduced algal abundance. Further investigations on raw data showed that the response of
Microcystis spp. concentration to pH increase was dependent on algal biomass and pH level.
WhenMicrocystis spp. population andpHweremoderate or low, the responseofMicrocystis spp.
population would be more likely to be positive in Lake Dianchi; contrarily, Microcystis spp.
population in Lake Dianchi would be more likely to show negative response to pH increase
when Microcystis spp. population and pH were high. The paper concluded that the extremely
high concentration of algal population and high pH could explain the distinctive response of
Microcystis spp. population to +1 SD (standard deviation) pH increase in Lake Dianchi. And
the paper also elucidated the algal dynamics to changes of other environmental factors. One
SD increase ofwater temperature (WT)had strongest positive relationshipwithMicrocystis spp.
biomass. Chemical oxygen demand (COD) and total phosphorus (TP) had strong positive effect
onMicrocystis spp. abundancewhile total nitrogen (TN), biological oxygen demand in five days
(BOD5), and dissolved oxygen had only weak relationship withMicrocystis spp. concentration.
And transparency (Tr) hadmoderate positive relationship withMicrocystis spp. concentration.

© 2007 Published by Elsevier B.V.
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1. Introduction

Algalbloom,anexplosivegrowthofphytoplankton,hasbecomea
chronic problem in many eutrophic freshwater lakes and
reservoirs in China. With the procedure of urbanization and
industrialization of China, explosion-like formations of algal
logy, The Chinese Academ
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blooms increasingly pollute freshwater ecosystems. They lead to
enormous costs by affecting drinking water supply, aquaculture
systems and tourism.3". Lake Dianchi is a representative, highly
eutrophicated lake in Southwest China, which experienced
severe cyanobacteria blooms (dominated by Microcystis spp.)
and the algal biomass has exceeded three billion cells per liter
y of Sciences, Wuhan 430072, PR China.
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in extreme cases. Further, Lake Dianchi is large (200 km2) and
2.68 million inhabitants lived in the Dianchi basin. Therefore,
improving the understanding of the dynamics of algal blooms
and finally alleviating the damage of algal blooms has critical
importance for the Dianchi basin. Due to the dominance of Mi-
crocystis spp., it was chosen as the output of our model in this
study.

To alleviate the harmful impact, it is imperative to investi-
gate the contribution of different environmental factors to the
algal abundance, and to discover and systematize causal
knowledge about the ecology of algae for better explanation,
prediction and control of cyanobacteria blooms. Due to the
diversity and connections of components governing the sys-
tem's dynamics, aquatic ecosystems are very complex and
possess nonlinear characteristics. Artificial neural networks are
capable of modeling a complex nonlinear system. Many
researchers have used feedforwardneural networks to simulate
the timing and magnitude of algal blooms and to forecast the
cyanobacteria abundance (Yabunaka et al., 1997; Recknagel,
1997; Maier and Dandy, 2001; Wei et al., 2001; Hou et al., 2004),
and recursive neural networks were applied also for the same
purpose (Walter et al., 2001). Compared with other model
approach, neural network models exhibited higher accuracy in
the prediction of algal concentration, and artificial neural
networks have become a popular and useful tool for modeling
environmental systems (Maier and Dandy, 2001). In the present
research, feedforward neural networkwas chosen for modeling
algal concentration in Lake Dianchi.

Using the historical data of Lake Dianchi, the present
research aimed at: (1) forecasting the abundance Microcystis
spp. and determine the sensitivities of algal population to
different environmental variables by means of feedforward
neural network; (2) elucidating the relationships between algal
abundance and environmental factors in Lake Dianchi.
2. Study site and data

Lake Dianchi (24°40′–25°03′ N, 102°37′–102°48′ E) is located in
Kunming, Yunnan Province of China (see Fig. 1). It is a large
Fig. 1 –Lake Dianchi in Yunnan
plateau lake at an altitude of 1886.5mwith an area of 300 km2,
average depth of 4.7 m and a maximum depth of 11 m, and
with 2.68 million residents in the Dianchi basin, and with the
yearly burden of 216 million m3 household waste water and
47.6 million m3 industrial waste water.

To probe the cyanobacteria blooms and seek for an
appropriate control solution, a pilot experiment area (6 km2)
was curtained off by waterproof enclosures from other area of
Lake Dianchi in July 2000. And some blooms control plans were
conducted in the pilot experiment area after that time. First, the
planktivorous fishes (Silver carp, Hypophthalmichthys molitrix
Cuvier et Valencienes and big-head carp, Aristichthys nobilis
Richardson)were culturedwith the population of 75 g of fish per
cubic meter of water. Second, submerged aquatic vegetation
was cultivatedwith theaveragedensity of 4.5 submergedhigher
plants per square meter. However, the control plan has not
shown significant effects on water quality up till now. The
reasonmaybe thatmore time is needed for the effects to reveal,
or that somemore understanding about the algal abundance in
Lake Dianchi is still needed.

From September 2000 to December 2002, sampling was
undertaken once eachmonth at tensites in the experiment area
measuring eight environmental factors such as total nitrogen
(TN, mg/L), total phosphorus (TP, mg/L), chemical oxygen
demand (COD, mg/L), biological oxygen demand in five days
(BOD5,mg/L), dissolvedoxygen (DO,mg/L), pH, transparency (Tr,
cm), and water temperature (WT, °C). The Chlorophyll a
concentration and Microcystis spp. concentration were also
measured. The measurements were conducted according to
Jin and Tu (1990). And some statistics that describe the
measured data were listed in Table 1.
3. Methods

3.1. The network structure

In order to model the relationship between the eight environ-
ment factors and the concentrations ofMicrocystis spp., a three-
layer feedforward neural network was programmed (Fig. 2)
Province, Southwest China.



Table 1 – Some statistics on the measured data in Lake
Dianchi (2000.9–2002.12)

Variable Mean Standard deviation Min Max

TN(mg/L) 3.07 1.48 0.47 10.95
TP(mg/L) 0.30 0.13 0.052 0.83
COD(mg/L) 15.40 5.93 5.00 53.50
BOD5(mg/L) 9.69 6.07 0.00 27.50
DO(mg/L) 7.14 1.72 2.00 12.32
pH 8.88 0.56 7.40 10.20
Tr(cm) 29.88 12.87 0.00 80.00
WT(°C) 16.81 4.42 10.00 26.00
Chl a(mg/L) 0.17 0.11 0.02 0.60
Microcystis
(Cells/L)

2.53 ⁎108 3.42 ⁎108 1.65 ⁎106 3.24 ⁎109

Note: the statistics were computed from 280 data samples (ten
sampling sites for 28 months).

Fig. 3 –A neuron mapping a R-element vector p to a scalar a
(a=f (wp+b).
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using the neural network toolbox in Matlab 7.0. In the neural
network, environmental factors were treated as the network
inputs and algal biomass as the network output respectively.
And we chose the historical data of environmental factors in
two lagged months as the network inputs after comparing the
results with one or threemonth lagged inputs.With onemonth
lagged inputs, the trained network showed much lower
prediction ability than that with two month lagged inputs (the
R2 between the predictions and the targets less than 0.80); with
three month lagged inputs, the prediction ability of the trained
network showedno improvement to that of the trainednetwork
with two month lagged inputs. Stated clearly, the values of TN
(mg/L), TP (mg/L), COD (mg/L), BOD5 (mg/L), DO (mg/L), pH, Tr
(cm) andWT (°C) in the (n−2)thmonth, the (n−1)thmonthwere
included in the network inputs (as shown in Fig. 2).

The input layer of the neural network comprised 16
neurons corresponding with the two month lagged history of
the eight environmental factors, while the output is the Mi-
crocystis spp. concentration. Each neuron is connected to all
neurons of adjacent layer. Neurons receive and send signals
through these connections. Signals are transmitted only in
one direction, from input layer to output layer through hidden
layer. Connections are given a weight that modulated the
intensity of the signal they transmit (Fig. 3).
Fig. 2 –Neural network structure for predicting Microcystis
spp. concentration of nth month with two month lagged
inputs.
An elementary neuron with R inputs is shown in Fig. 2. The
input vector is weighted with an appropriate weight vector w.
The sum of the weighted inputs and the bias forms the input
to the transfer function f. Neurons may use any differentiable
transfer function f to generate their output. In our study, the
output layer used linear transfer function, and tan-sigmoid
transfer function was used for other network layers.

3.2. The network training

One difficulty in the application of an artificial neural network
lies in determining the number of hidden layer nodes and
analyzing their influence on the network output. Up till now, no
assured methods were found for determining the number of
hiddennodes. In our study, an empirical formulawas employed
to calculate the number of hidden nodes (Ma et al., 2002; Xiong
et al., 2002).

The suggested (Ma et al., 2002) formula is

ny ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nx⁎nz

p
ð1Þ

where ny is the number of hidden layer nodes, nx the number
of input layer nodes, and nz the number of output layer nodes.
According to experience, the appropriate number of hidden
nodes should be a little bigger than the calculated ny. And for
good performance of the trained network we tried networks
with different number of hidden nodes around the number
computed from the empirical formula.

Training algorithm selection is the second difficulty in the
ANN modeling. The back-propagation algorithm was created
by generalizing the Widrow–Hoff learning rule (Xu and Wang,
2002). And there are many variations of the back-propagation
(BP) algorithm such as back-propagation with momentum,
Levenberg–Marquardt algorithm, BFGS Quasi-Newton algo-
rithm, resilient backpropagation, scaled conjugate gradient
algorithm, conjugate gradient with Powell/Beale restarts,
Fletcher–Powell conjugate gradient, Polak–Ribiére conjugate
gradient, one-step secant algorithm, variable learning rate
backpropagation (MathWorks Inc., 2004). But it is very difficult
to know which training algorithm will be the best one for a
given problem (MathWorks Inc., 2004). So we tried different
training algorithms in the network training.

Overfitting often occurs during neural network training
(Tzafestas et al., 1996). The error on the training set is driven to
a very small value, but when new data is presented to the
network the error is large. The network has memorized the
training examples, but it has not learned to generalize to new
situations. Another word, the trained network has poor
generalization ability. So improving generalization ability of
networks is another difficulty we have to face when using
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feedforward neural networks. Cross-validation (Amari et al.,
1997; Rivals and Personnaz, 1999) and regularization (Girosi
et al., 1995; Chen and Hagan, 1999) are the two approaches
used widely for improving generalization of feedforward
neural network.

In the cross-validation technique the available sample data
is divided into three subsets, the training subset, the
validation subset, and the testing subset. The training set is
used for computing the gradient and updating the network
weights. The validation set is used to monitor the generaliza-
tion error. The error on the validation set is monitored during
the training process. When the network begins to overfit the
data, the error on the validation set will typically begin to rise.
When the validation error increases for a specified number of
iterations, the training is stopped, and the weights at the
minimum of the validation error are returned. The test subset
is used for verifying the network performance, i.e., the test set
error is used to compare different networks.

The regularization approach involves modifying the per-
formance function. While the typical performance function
for training feedforward neural networks is the mean sum of
squares of the network errors (mse), the regularization
approach modifies the mse performance function by adding
a term that consists of the mean of the sum of squares of the
network weights and we call the modified performance
function msereg. Using msereg performance function in the
network training causes the network to have smaller weights,
and this will force the network response to be smoother and
less likely to overfit. Eqs. (2) and (3) are the mse and msereg
performance functions respectively.

mse ¼ 1
N

XN

i¼1

ðeiÞ2 ¼ 1
N

XN

i¼1

ðti � aiÞ2 ð2Þ

where ti denotes the target for the ith input, and ai represent
the output of the network for the ith input.

msereg ¼ kdmseþ ð1� kÞmsw ð3Þ

where λ is the performance ratio, and msw represents the
mean squared weights, i.e.,

msw ¼
Xn

j¼1

w2
j :

And from our experience, the different combination of
hidden nodes number, training algorithms, and generalization
improving techniques has a complex effect on the general-
ization ability of neural networks. Because of this, we tried all
the combinations of numbers of hidden nodes, from 4 to 11,
the eleven training algorithm aforementioned, and the two
improving techniques for finding a trained neural network
with good generalization ability.

Because the components of input data havedifferent orders
ofmagnitude, theywere standardized before network training,
so that they hadmeans of zero and standard deviations of one.
The standardizing conversion used the relationship

Xs ¼ ðXo �
P
XÞ=rx ð4Þ
where Xs denotes the standardized variable, Xo is the original
variable, and X¯ and σx represent the mean and standard
deviation of the original variable respectively.

3.3. The data set (the input–output examples)

For a specific sampling site, all the measured factors had
historical values of 28 months (from September 2000 to
December 2002). According the network structure, one input–
output example must have one value of Microcystis spp.
concentration for a specific month as the output, and have
two month lagged values of eight environmental variables as
the inputs. Because the first two month, September and
October 2000, had no corresponding two month lagged values
of environmental variables, only 26 input–output examples
could be constructed from the historical data for one specific
sampling site. Hence, the whole data set consisted of 260
input–output examples, which constructed from 28 month
historical data of the ten sampling sites.

Because neural network models usually have poor perfor-
mance for extrapolating, the 52 examples from site No. 4 and
site No. 7, where the algal blooms showed moderate magni-
tude instead of very high or very low magnitude, were
reserved as the testing dataset for model testing. The other
208 examples were used as the training dataset when using
regularization, while 52 randomly selected examples were
used as the validation subset and the remaining 156 examples
as the training subset when using cross-validation (or early
stopping).

3.4. Model validation and neural network based sensitiv-
ity analysis approach

Model validationwas based on R2 values between the observed
and predicted concentrations of Microcystis spp. in the testing
dataset. The network with highest R2 value in all trained
networks was selected as the best-predicting neural network.
For visual comparison, the observed algal concentrations and
predicted concentrations by the best-predicting network were
plotted in the same figure. Using the trained networkwith best
performance, one type of sensitivity analysis, ‘Most Influenc-
ing Parameter’ sensitivity analysis was implemented.

Many researches have applied sensitivity analysis
approaches to determine the impact of input variables on
output (Goh, 1995; Lek et al., 1996; Siginer, 1997; Dimopoulos et
al., 1999; Jeong et al., 2001). In our study, the sensitivity
analysis approach used is similar to the one described in Zar
(1984) and Jeong et al. (2001). To compute the sensitivity of
algal biomass to one variable (the explanatory variable), two
simulations were made. In the first simulation, the trained
network was fed with original input vectors and the output
values represented the predictions with non-disturbed inputs.
In the second simulation, the two components of the
explanatory variable in the input vectors were disturbed by
+1 SD (standard deviation) and the network outputs repre-
sented predictions with disturbed inputs by +1 SD of the
explanatory variable. Subtracting the non-disturbed predic-
tions from the disturbed outputs, the sensitivity of algal
biomass to +1 SD increase of the explanatory variable on every
data point in the whole data set was obtained. And the



Table 2 – ThemeanR2 values for different combinations of
trainingalgorithmsand improvinggeneralizationapproaches

Network
training
algorithm

Generalization improving approach

Cross-validation Regularization

BPM 0.53 0.55
LM 0.68 0.60
BFG 0.64 0.83
RBP 0.57 0.71
SCG 0.62 0.83
CGB 0.67 0.78
CGF 0.63 0.80
CGP 0.59 0.75
OSS 0.63 0.76
VLR 0.69 0.62

Abbreviation: BPM, back-propagation with momentum; LM, Leven-
berg–Marquardt algorithm; BFG, BFGS Quasi-Newton algorithm;
RBP, resilient backpropagation; SCG, scaled conjugate gradient
algorithm; CGB, conjugate gradient with Powell/Beale restarts; CGF,
Fletcher–Powell conjugate gradient; CGP, Polak–Ribiére conjugate
gradient; OSS, one-step secant algorithm; VLR, variable learning
rate backpropagation.
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sensitivity of mean algal biomass to the variable could be
calculated by averaging the sensitivity on all data points in the
whole data set. Here, the SDs of all variables (see Table 1) was
computed on the whole dataset.

Furthermore, to explain the critical influence of pH changes
on algal bloom formation, the scatter plot approach was
applied to investigate with detail the sensitivity of Microcystis
spp. biomass to pH changes at all the data points in the whole
data set. The ecological dynamics often shows nonlinearity.
The response of algal biomass to pH increase at one specific
data points not only depended on the magnitude of pH
increase, but also depended on the values of different
variables at this specific data points. If a significant pattern
existed between algal biomass responses to pH increase and
the values of one specific variable, the scatter plot of algal
responses to pH increase versus the values of that variable
could visualize the pattern. Therefore, scatter plot is a very
useful tool for detecting significant patterns between sensi-
tivities and a certain variable.
Fig. 4 –One-month-ahead predictions of Microcystis spp. concent
No. 7).
4. Results and discussion

4.1. The trained neural network and its validation

The performance of every trained network was evaluated
through correlation coefficients (R2) between its predictions
and the observed algal concentrations in the testing dataset.
Then, the mean R2 values for different combinations of
training algorithms and two approaches for generalization
improving were computed (see Table 2). BFGS Quasi-Newton
algorithm or scaled conjugate gradient algorithm combined
with regularization approach showed superiority for the given
dataset in this study (Table 2). The neural network with best
performance was found when trying the combination of
8 hidden nodes, BFGS Quasi-Newton algorithm and regular-
ization approach with the performance ratio of 0.5. The
trained network was used to predict Microcystis spp. concen-
trations in site No. 4 and site No. 7, and the predicted results
were depicted in Fig. 4.

Fig. 4 showed that the predictions were almost consistent
with the measured biomass of Microcystis spp. The timing of
all significant peak of Microcystis spp. in both sites was well
recognized, even though there were some significant errors
(i.e., June 2001 and Sep. 2002 in Site No. 4, and June 2001 in Site
No. 7).

4.2. Results of sensitivity analysis

Fig. 5 plotted the mean responses of Microcystis spp. popula-
tion to +1 SD increase of different variables. And Fig. 6 was a
whisker plot which represented the responses of Microcystis
spp. biomass to +1 SD increase of different variables with
some more detail. From the Fig. 5 and Fig. 6, +1 SD increase of
water temperature (WT) had strongest positive relationship
withMicrocystis spp. biomass. Chemical oxygen demand (COD)
and total phosphorus (TP) had strong positive effect on algal
abundance while total nitrogen (TN), BOD5, and dissolved
oxygen (DO) had only weak relationship with Microcystis spp.
concentration. And transparency (Tr) had moderate positive
relationship with Microcystis spp. concentration. At last, only
pH increase, it had to be mentioned that, had the strong
negative influence on the Microcystis spp. concentration.
ration in Lake Dianchi (Left panel: site No. 4; Right panel: site



Fig. 5 –Mean responses of Microcystis spp. biomass to +1 SD
(standard deviation) increase of different variables (Abbrevi-
ation: TN, total nitrogen; TP, total phosphorus; COD, chemical
oxygen demand; BOD5, biological oxygen demand in five
days; DO, dissolved oxygen; Tr, transparency; WT, water
temperature).

Table 3 – Chlorophyll a, Microcystis spp. and pH in Lake
Dianchi (2000.9–2002.12) and Lake Kasumigaura (1984–1993)

Lake Dianchi Lake Kasumigaura

Mean Min Max Mean Min Max

Chlorophyll a
(mg/L)

0.165 0.02 0.602 0.073 0.00069 0.28

Microcystis spp.
(⁎106 cells/L)

253 1.65 3236 38.64 0.001 644.12

pH 8.88 7.4 10.2 8.75 7.12 10.13

The statistics of Lake Kasumigaura were collected from Recknagel
(2005).
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From Fig. 6, we could find some outliers. Why these
outliers? For some input patterns with high values of a certain
variable, +1 SD increase of that variablemight push such input
patterns out of the that variable's range in the training dataset.
Then the trained was very likely to produce poor outputs
which led to those outliers in Fig. 6 because of poor
extrapolation ability of the network.

4.3. Relationships between algal abundance and environ-
mental factors

The results of sensitivity analysis in Fig. 5 revealed that Mi-
crocystis spp. had strong negative response to +1 pH increase in
Lake Dianchi. This finding conflicts with the related hypoth-
esis in some researches on hypereutrophic Lake Kasumigaura
(Japan). By analyzing the data in hypereutrophic Lake Kasu-
migaura from 1981 to 1998, Yabunaka et al. (1997) concluded
that pH had strong positive relation with chl a concentration.
Fig. 6 –Responses of Microcystis spp. biomass to +1 SD
(standard deviation) increase of different variables (Abbrevi-
ation: TN, total nitrogen; TP, total phosphorus; COD, chemical
oxygen demand; BOD5, biological oxygen demand in five
days; DO, dissolved oxygen; Tr, transparency; WT, water
temperature).
The increase in photosynthesis led by the increase in
phytoplankton cells, they stated that, decreases the number
of carbonic acid ions and pH increases. Wei et al. (2001) also
found that pH had strong positive influence on Microcystis
growth after analyzing the data in Lake Kasumigaura from
1982 to 1996.

Why algal concentration in Lake Dianchi showed distinc-
tive response to minor change of pH from that in Lake
Kasumigaura? To answer the question, let's probe the algal
biomass and the pH in both lakes first.

Recknagel et al. (2006) reported some limnological proper-
ties of Lake Kasumigaura (1984–1993). The statistics of
chlorophyll a, Microcystis spp. and pH in Lake Dianchi and in
Lake Kasumigaura were collected and presented in Table 3.
From that table, it could be learned that chl a concentration in
Lake Dianchi was twice more than that in Lake Kasumigaura,
and Microcystis spp. in Lake Dianchi was six times more than
that in Lake Kasumigaura and pH in Lake Dianchi was a little
higher also.

As the pH of freshwater is determined by its CO2 budget
(Stumm and Morgan, 1970) alkaline conditions are likely for a
hypereutrophic lake such as Lake Dianchi because of limited
Fig. 7 –Response of Microcystis spp. biomass to +1 SD pH
increase vs. the corresponding one-month-lagged biomass of
Microcystis spp. for the 260 examples in the whole data set.



Fig. 8 –Response of Microcystis spp. biomass to +1 SD pH
increase vs. the corresponding one-month-lagged pH for the
260 examples in the whole data set.
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availability of dissolved CO2 led by the photosynthesis of
highly abundant algal populations. For this reason, high pH
means limited supply of CO2 for the photosynthesis of algal
population. Nevertheless extremely high abundance of algal
populations in Lake Dianchi has much more demand of CO2

for its photosynthesis. Therefore, an increase of pH in Lake
Dianchi with extremely high concentrated algal population
and high pH means a cut in the very limited CO2 supply, and
would be likely to inhibit the algal growth. To sum up,
Table 4 – Relationship between Microcystis spp. biomass of (n
Microcystis spp. biomass in Lake Dianchi (2000.9–2002.12)

MB(n) pH(n) NP NI ND pH(n)

Mean Min

Low Low 41 33 8 8.34 7.60
Moderate 30 22 8 8.85 8.71
High 18 6 12 9.58 9.13

Moderate Low 27 21 6 8.38 7.40
Moderate 23 13 10 8.91 8.76
High 39 14 25 9.57 9.05

High Low 27 9 18 8.27 7.60
Moderate 35 10 25 8.91 8.71
High 24 11 13 9.41 9.06

Abbreviation: MB,Microcystis spp. biomass; MB(n),Microcystis spp. biomass
the subset with lowMB and low pH has 41 data points); NI, number of MB i
an identical sampling site; ND, ND, number of MB decreases in a specific s
site.
Note: 1) HighMBmeansMBN2.394 ⁎108 cells/L, moderate MBmeansMBN1
cells/L. 2) High pHmeans pHN9.04, moderate pHmeans pHN8.7 and pH≤9
spp. to pH increase from the raw data, we first constructed the pH-Microcys
(n) and MB(n+1) at one identical sampling site. Because of one-month-la
data points after deleting six points where MB(n) or MB(n+1) was extrem
subset, such as the low MB(n) and low pH(n) subset with 41 data points, th
high MB(n) and high pH(n) subset with 24 data points. 4) All the five subs
spp. biomass from the nth month to the next month than increases of Mi
high algal population led to negative response of Microcystis spp. concent
extremely high abundance of algal population and high pH,
especially the high algal population relative to that in Lake
Kasugaura, could be a potential explanation for the distinctive
phenomenon in Lake Dianchi, a strong negative response of
chl a to a minor pH increase. However, this is only a hypo-
thesis now. To prove the truth of this hypothesis, some algal
culture experiments in controlled conditions are still needed.

Furthermore, we thought that the higher the abundance of
Microcystis spp. and the higher the pH, an increase of pHwould
bemore likely to have a negative (or strong negative) influence
on Microcystis spp. growth. To search for the evidences for the
hypothesis, two scatter graphs were depicted (Figs. 7 and 8).

In Fig. 7, there were 260 points which corresponding with
260 data points in the whole dataset. One point, represented
by a circle in the plot, showed the response of Microcystis spp.
to +1 SD pH increase versus the one month lagged Microcystis
spp. biomass for a certain example in the whole data set. And
Fig. 8 scattered the Microcystis spp. response to pH increase
versus the one month lagged pH for the 260 examples in the
whole dataset. Both the two scatter graphs revealed a top-left
to right-down trend, and provide clear evidences for the
hypothesis aforementioned.

Because this hypothesis about the link between Microcystis
spp. concentration and pH is so different from some literature
findings, we dived into the raw data for more evidences. To
investigate the responses of Microcystis spp. to pH increase
from the raw data, we first constructed the pH-Microcystis-
relationship dataset, each data point in which consisted of the
Microcystis spp. biomass of the nthmonth (MB(n)), the pH of nth
month (pH(n))and the Microcystis spp. biomass of the (n+1)th
month (MB(n+1))at one identical sampling site. Because of
one-month-lagged structure, therewere 270 data points in this
+1)th month and one-month-lagged pH, one-month-lagged

MB(n) (⁎108 cells/L) MB(n+1) (⁎108 cells/L)

Max Mean Min Max Mean Min Max

8.70 0.37 0.02 1.06 1.04 0.02 4.77
9.01 0.38 0.04 1.05 1.06 0.05 4.50

10.0 0.79 0.52 1.08 0.86 0.06 3.26
8.70 1.66 1.14 2.37 2.89 0.83 6.94
9.04 1.75 1.15 2.39 1.75 0.23 3.54

10.2 1.58 1.11 2.37 1.94 0.02 11.9
8.68 4.15 2.50 14.8 4.18 0.64 14.8
9.04 4.52 2.43 10.9 2.92 0.11 9.39
9.96 5.31 2.48 12.3 4.42 0.05 11.7

of nth month; NP, number of points in a specific subset (For example,
ncreases in a specific subset from the nth month to the next month at
ubset from the nth month to the next month at an identical sampling

.082 ⁎108 cells/L andMB≤2.394 ⁎108 cells/L, lowMBmeansMBb=1.082 ⁎108

.04, low pHmeans pHb8.7. 3) To investigate the responses ofMicrocystis
tis-relationship dataset, each data point inwhich consisted of MB(n), pH
gged structure, there were 270 data points in this dataset first, and 264
ely high, i.e., high than 2 ⁎109 cells/L. This dataset were grouped to 9
e low MB(n) and moderate pH(n) subset with 30 data points,…, and the
ets with high MB(n) or high pH(n) showed more decreases of Microcystis
crocystis spp. biomass. This supported the hypothesis that high pH and
ration to pH increase.
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dataset first, and 264 data points after deleting six points
whereMicrocystis spp. biomass of the nthmonth or the (n+1)th
monthwas extremely high, i.e., higher than 2 ⁎109 cells/L. Then
this dataset were grouped to 9 subset, such as the low MB(n)
and low pH(n) subset with 41 data points, the low MB(n) and
moderate pH(n) subset with 30 data points,…, and the highMB
(n) and high pH(n) subset with 24 data points (Table 4). Last, we
computed the statistical properties for these nine subsets, and
computed the number of increases of Microcystis spp. biomass
from nth month to the next month, and the number of
decreases of Microcystis spp. biomass from nth month to the
next month for the nine subsets respectively. Table 4 repre-
sented the results. In Table 4, all the five subsets with high MB
(n) or high pH(n) showed more decreases of Microcystis spp.
biomass from the nthmonth to the nextmonth than increases
ofMicrocystis spp. biomass. Therefore, the raw data could gave
direct support for the hypothesis that high pH and high algal
population led to negative response ofMicrocystis spp. concen-
tration to pH increase. Furthermore, it could benoted inTable 4
that algal population were more likely to show positive
response to pH increase when algal population and pH were
low or moderate. Therefore the response of Microcystis spp.
biomass was dependent on algal biomass and pH. When Mi-
crocystis spp. population and pH were moderate or low, the
response ofMicrocystis spp. population would bemore likely to
be positive in Lake Dianchi. This is consistent with previous
findings (Yabunaka et al., 1997; Recknagel, 1997). However,
Microcystis spp. population in Lake Dianchi would be more
likely to show negative response to pH increase when Micro-
cystis spp. population and pH were high, contrary to previous
findings. In addition, Figs. 7 and 8 also gave some evidences for
the two different responses of algal population to pH changes.

Reynolds (1984) and Shapiro (1990) presented that domi-
nance of blue-green algae had positive response to high water
temperature, nutrient availability. And Hou et al. (2004) also
concluded that water temperature, TP, TN, COD had positive
effect on algal abundance. The results of sensitivity analysis in
Fig. 5 showed strong positive response of Microcystis spp. to
WT, TP and COD increase, which confirmed the literature
findings aforementioned.

TN showed weak relationship withMicrocystis spp. in Fig. 5.
An abundance of nutrient supply for the algal proliferation in
the highly eutrophicated Lake Dianchi, we think, was the
reason for that.
5. Conclusion

This study showed that neural networks were capable of not
only predicting the algal abundance successfully but also
elucidating the driving factors for the algal proliferation by
means of sensitivity analysis. While much of the findings of
sensitivity analysis corresponded well with existing theory on
the dynamics of algal population, pHwas found to have strong
negative relationship with Microcystis spp. concentration in
Lake Dianchi. Comparedwith Lake Kasumigaura, we think the
severely eutrophication and algal abundance could explain
the distinctive relationship between Microcystis spp. concen-
tration and pH. Furthermore, we found that the response of
Microcystis spp. population was dependent on Microcystis spp.
concentration and pH level after analyzing an in-depth
investigation on the raw dataset. When Microcystis spp.
population and pH were moderate or low, the response of
Microcystis spp. population would be more likely to be positive
in Lake Dianchi; Microcystis spp. population in Lake Dianchi
would bemore likely to shownegative response to pH increase
when Microcystis spp. population and pH were high. However,
this hypothesis still needs more confirmations. Further
comparative studies in lakes with diverse eutrophication,
and algal culture experiments in controlled conditions might
support or discard the hypothesis.
Acknowledgements

The authors would like to thank the two anonymous
reviewers for their helpful, in-depth comments and sugges-
tions. This research was supported by the National Basic
Research Program of China 2002CB412300 and the National
Natural Science Foundation of China (No. 50209003), the
Chinese Academy of Sciences Project (KSCX2-1-10).

R E F E R E N C E S

Amari, S.-i., Murata, N.K.-R., Finke, M., Yang, H.H., 1997. Asymptotic
statistical theory of overtraining and cross-validation. IEEE
Transactions on Neural Networks 8 (5), 985–996.

Chen, D.D., Hagan, M.T., 1999. Optimal use of regularization and
cross validation in neural network modeling. Proceedings of
the 1999 International Joint Conference on Neural Networks,
vol. 2, pp. 1275–1280.

Dimopoulos, Y., Chronopoulos, J., Chronopoulou, S.A., Lek, S., 1999.
Neural network models to study relationships between lead
concentration in grasses and permanent urban descriptors in
Athens city. Ecological Modelling 120, 157–165.

Girosi, F., Jones, M., Poggio, T., 1995. Regularization theory and
neural networks architectures. Neural Computation 7, 219–269.

Goh, A.T.C., 1995. Back-propagation neural networks for modeling
complexsystems.Artificial Intelligence inEngineering9,143–151.

Hou, G.X., Song, L.R., Liu, J.T., Xiao, B.D., Liu, Y.D., 2004. Modeling of
cyanobacterial blooms in hypereutrophic Lake Dianchi, China.
Journal of Freshwater Ecology 19 (4), 623–629.

Jeong, K.S., Joo, G.J., Kim, H.W., Ha, K., Recknagel, F., 2001.
Prediction and elucidation of algal dynamics in the Nakdong
River (Korea) by means of a recurrent artificial neural network.
Ecological Modelling 146, 115–129.

Jin, X., Tu, Q., 1990. Methods for Research of Eutrophicated Lakes,
2nd edition. Meteorological Press, Beijing.

Lek, S., Delacoste,M., Baran, P., Dimopoulos, I., Lauga, J., Aulagner, S.,
1996. Application of neural networks to modeling non-linear
relationships in ecology. Ecological Modelling 90, 39–52.

Ma, X.X., He, X.J., Zhao, D.Q., Wang, X.Y., 2002. Influence of B-P
networks hidden layer on water quality evaluation result.
International Journal Hydroelectric Energy 20, 16–18.

Maier, H.R., Dandy, G.C., 2001. Neural Network Based Modelling of
Environmental Variables: A Systematic Approach.Mathematical
and Computer Modelling 33, 669–682.

MathWorks Inc., 2004. Neural Network Toolbox: User's Guide
(Matlab 7.0). The Natick, MA.

Recknagel, F., 1997. ANNA — Artificial neural network model for
predicting species abundance and succession of blue-green
algae. Hydrobiologia 349, 47–57.

Recknagel, F., Kim, B., Takamura, N., Welk, A., 2006. Unravelling
and forecasting algal population dynamics in two lakes



192 E C O L O G I C A L I N F O R M A T I C S 2 ( 2 0 0 7 ) 1 8 4 – 1 9 2
different in morphometry and eutrophication by neural and
evolutionary computation. Ecological Informatics 2, 133–151.

Reynolds, C.S., 1984. The Ecology of Freshwater Phytoplankton.
Cambridge University Press, Cambridge, p. 384.

Rivals, I., Personnaz, L., 1999. On cross validation for model
selection. Neural Computation 11, 863–870.

Shapiro, J., 1990. Current beliefs regarding dominance of by
blue-greens: the case for the importance of CO2 and pH.
Verhandlungen der Internationalen Vereinigung fur
Limnologie 24, 38–54.

Siginer, I., 1997. Some artificial neural network applications to
greenhouse environmental control. Computers and Electronics
in Agriculture 18, 167–186.

Stumm, W., Morgan, J.J., 1970. Aquatic Chemistry. Wiley, New
York.

Tzafestas, S.G., Dalianis, P.J., Anthopoulos, G., 1996. On the
overtraining phenomenon of backpropagation neural networks.
Mathematics and Computers in Simulation 40, 507–521.

Walter, M., Recknagel, F., Carpenter, C., Bormans, M., 2001.
Predicting eutrophication effects in the Burrinjuck Reservoir
(Australia) bymeans of the deterministicmodel SALMOand the
recurrent neural network model ANNA. Ecological Modelling
146 (1–3), 97–114.

Wei, B., Sugiura, N., Maekawa, T., 2001. Use of artificial neural
network in the prediction of algal blooms. Water Research 35
(8), 2022–2028.

Xiong, L.H., Guo, S.L., Wang, Y., 2002. Study and application of
artificial neural network in real time flood forecasting.
International Journal Hydroelectric Energy 20, 28–31.

Xu, S.G., Wang, J., 2002. Fuzzy optimal decision for structure of
feedforward neural networks and its application in runoff
forecast. International Journal of Hydroelectric Energy 20, 35–37.

Yabunaka, K., Hosomi,M., Murakami, A., 1997. Novel application of
a back-propagation artificial neural network model formulated
to predict algal bloom. Water Science and Technology 36 (5),
89–97.

Zar, J.H., 1984. Biostatistical Analysis, 2nd edition. Prentice-Hall,
NJ, p. 718.


	Prediction and elucidation of the population dynamics of Microcystis spp. in Lake Dianchi (Chin.....
	Introduction
	Study site and data
	Methods
	The network structure
	The network training
	The data set (the input–output examples)
	Model validation and neural network based sensitivity analysis approach

	Results and discussion
	The trained neural network and its validation
	Results of sensitivity analysis
	Relationships between algal abundance and environmental factors

	Conclusion
	Acknowledgements
	References


