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In order to gain insight into the bloom sustainment of colonial Microcystis aeruginosa Kütz., physiological
characterizations were undertaken in this study. Compared with unicellular Microcystis, colonial Microcystis

phenotypes exhibited a higher maximum photosynthetic rate (Pm), a higher maximum electron transfer rate (ETRmax),
higher phycocyanin content, and a higher affinity for inorganic carbon (K0.5 DIC # 8.4 6 0.7 mM) during the growth
period monitored in this study. This suggests that photosynthetic efficiency is a dominant physiological adaptation
found in colonial Microcystis, thus promoting bloom sustainment. In addition, the high content of soluble and total
carbohydrates in colonial Microcystis suggests that this phenotype may possess a higher ability to tolerate enhanced
stress conditions when compared to unicellular (noncolonial) phenotypes. Therefore, high photosynthetic activities and
high tolerance abilities may explain the bloom sustainment of colonial Microcystis in eutrophic lakes.

KEY WORDS: Dissolved inorganic carbon (DIC), Electron transport rate (ETR), Photosynthetic rate, Unicellular and
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INTRODUCTION

The tendency for cyanobacteria to dominate the microbial

flora for considerable lengths of time has been previously

reported in many eutrophic lakes and reservoirs (Reynolds

et al. 1987). The widespread occurrence of cyanobacteria

has been attributed to their ecological and physiological

advantages over other algae (Oliver & Ganf 2000).

However, with the exception of a few species, much of the

biology of the cyanobacteria involved in bloom sustainment

remains unknown (Yamamoto & Nakahara 2005a).

Microcystis aeruginosa Kütz is a cyanobacterium found

globally in freshwater (Reynolds & Walsby 1975). In China,

Microcystis blooms often accumulate and proliferate as

serious surface scum during active growth periods in many

lakes, including lakes Taihu and Dianchi. Because of water

management problems associated with its blooms (Eloff

1981) and toxins (Carmichael 1994; Sivonen 1996), M.

aeruginosa has received considerable attention over the past

few decades. It has been hypothesized that certain

physiological strategies may be involved in Microcystis

bloom development and sustainment such as buoyancy

regulation (Reynolds et al. 1987), dissolved inorganic

carbon uptake (Yamamoto & Nakahara 2005b), and light

intensity adaptation (Raps et al. 1983). However, none of

the hypotheses has been given confirmation, and the

problem persists (Shapiro 1972). Thus, the physiological

mechanism and strategies involved in Microcystis blooms

still need to be further studied.

Compared with noncolonial phenotypes that grow pre-

dominantly in culture, Microcystis occurs mainly as

a colonial form under natural conditions (Reynolds et al.

1981). Because of the lack of comparisons, however, the

role of the colonial form in competition remains largely

unknown. In addition, many studies on physiological

strategies have focused mainly on the unicellular Micro-

cystis. Therefore, considering the predominance of colonial

Microcystis in the field, the present study compared

physiological strategies utilized by unicellular and colonial

Microcystis phenotypes.

MATERIALS AND METHODS

Strains and culture conditions

The strains of colonial and unicellular M. aeruginosa Kütz

used in this study are listed in Table 1. All axenic strains

were obtained from the Culture Collections of the Fresh-

water Algae of the Institute Hydrobiology (FACHB-

Collection, Wuhan, China). The strains were grown in

BG11 medium (Rippka et al. 1979) under constant white

light intensity at 25 mmol photons m22 s21, on a 12 : 12

L : D cycle and at a temperature of 25 6 1uC.

Photosynthetic activities measurements

The photosynthetic oxygen evolution of M. aeruginosa

during log phase of growth was measured using a Clark-

type oxygen electrode at 25uC. Samples were harvested by

centrifugation and resuspended in fresh BG11 medium.

Illumination was provided by a halogen lamp and ranged

from 45 to 1200 mmol photons m22 s21. Irradiance was

measured with a quantum sensor LI-185B (LI-COR

Biosciences, Lincoln, NE). Oxygen evolution was measured* Corresponding author (lrsong@ihb.ac.cn).
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for at least 5 min at each irradiance value. The parameters

for the photosynthetic responses to irradiance curves

(photosynthesis–irradiance [P-I] curves) were analyzed

according to Henley (1993):

P ~ Pm tan h(aI = Pm) z Rd, Ik

~ Pm =a, Ic ~ { Rd = a

where I represents irradiance, P the photosynthetic rate at

irradiance I, Pm the maximum photosynthesis rate, Ik the

saturating irradiance for photosynthesis, Ic the light

compensation point a the slope of the light-limited part

of the P-I curve, and Rd the dark respiration rate. The

nonlinear curve fitting of the data was performed with

Microcal Origin (Version 6.1; Microcal Software North-

ampton, MA).

Photosynthetic oxygen evolution responses to dissolved

inorganic carbon (DIC) concentration were measured at

25uC and 700 mmol photons m22 s21. DIC-free medium

was prepared according to Qiu & Gao (2002). Fresh

samples were washed four times with reaction medium for

each measurement. Different concentrations of DIC (0–

300 mmol l21) were obtained by adding a known concen-

tration of NaHCO3 to the DIC-free medium. The

parameters of photosynthetic responses to DIC were

obtained by fitting net photosynthetic rates at various

DIC concentrations with the Michaelis–Menten formula: v

5 Vmax?[S]/(K0.5 (DIC) + [S]), where v is the photosynthetic

rate, Vmax the DIC-saturated photosynthetic rate, [S] the

concentration of DIC, and K0.5 (DIC) the DIC concentra-

tion for which photosynthetic activity is half the maximum

value.

Light response curve and electrons transfer

rate determinations

The light response curve was measured according to Wu et

al. (2007). The electron transport rate of PSII (ETR) was

calculated as follows: relative ETR~½ððF 0

m{FtÞ=F
0

mÞ|
0:84 | 0:5 | PAR m�2 s�1

� �
� and Ft are the maximum

and steady state fluorescence in light, respectively (Maxwell

& Johnson 2000).

Photosynthetic pigments and products measurements

Chlorophyll a (Chl a) was extracted in 80% acetone. The

contents of phycobilisomes were measured according to

Abelson & Simon (1988). Soluble carbohydrates (EPS) and

total carbohydrates were quantified spectrophotometrically

by the phenol-sulfuric acid method using glucose as

a standard (Dubois et al. 1956).

Statistical analysis

All experiments were performed with three replicates. Data

are presented as the means 6 standard deviation (s).

Significance analysis was performed by analysis of variance

with Microcal Origin Version 6.1. Differences were

considered to be significant at P , 0.05.

RESULTS

Photosynthetic characteristics

The photosynthetic responses to irradiance in nine strains

of Microcystis are shown in Fig. 1. No apparent photo-

inhibition was observed at irradiances up to 1200 mmol

photons m22 s21 in either unicellular or colonial Micro-

cystis (Fig. 1a, b). The photosynthetic parameters are

shown in Table 2. The light-saturated photosynthetic rates

(Pm) of colonial Microcystis were significantly higher than

those of unicellular Microcystis (F 5 7.878, P 5 0.000).

Saturating irradiances (Ik) for photosynthesis in colonial

and unicellular Microcystis were 357–487 and 237–

366 mmol photons m22 s21, respectively (F 5 5.48, P 5

0.052). However, the difference in light compensation

points (Ic), dark respiratory rates (Rd), and photosynthetic

efficiencies (a) among the nine strains did not differ

significantly.

The results of photosynthetic responses to DIC concen-

trations in unicellular and colonial Microcystis are shown in

Fig. 2. Compared with unicellular Microcystis, the values

of K0.5 (DIC) in colonial Microcystis decreased significantly

(F 5 66.905, P 5 0.000). The values of K0.5 (DIC) in

unicellular and colonial Microcystis were 10.8–33.6 and

1.1–8.4 mM, respectively.

The results of a comparison of maximal electrons transfer

rates (ETRmax) between unicellular and colonial Micro-

cystis are shown in Fig. 3. The results indicate that the

ETRmax in the colonial Microcystis were significantly

higher than those in the unicellular Microcystis (F 5

66.905, P 5 0.000). ETRmax values in the unicellular

Microcystis ranged from 17.8 to 31.7 mmol electrons

m22 s21, whereas those in the colonial Microcystis ranged

from 61.9 to 86.5 mmol electrons m22 s21.

Table 1. The strains of Microcystis aeruginosa used in this study.

Code Origin Sampling stations Size Form

924 NSW1 Australia 2–3 mm unicellular
905 FACHB Dianchi, China 2–3 mm unicellular
942 FACHB Dianchi, China 2–3 mm unicellular
7806 PCC2 The Netherlands 2–3 mm unicellular
907 FACHB Dianchi, China 62.5–100 mm intermediate colony
938 FACHB Tuanshang, China .650 mm large colony
909 FACHB Bao’anhu, China .205 mm large colony
910 FACHB Xinyan, China 25–50 mm small colony
975 FACHB Wudalianchi, China 37.5–50 mm small colony
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Pigment composition and content

Compared with the unicellular Microcystis, the colonial

Microcystis contained lower Chl a contents (Fig. 4).

However, total phycocyanin content in the colonial

Microcystis was higher than in unicellular Microcystis (F

5 0.657, P 5 0.444) (Fig. 5), and the ratios of allophyco-

cyanin to phycoerythrin in colonial Microcystis (1.7 : 1) are

more constant than those in the unicellular Microcystis

(1.7–2.1 : 1) (data not shown).

Fig. 1. Photosynthetic O2 evolution as a function of incident photon flux density (PFD) in unicellular and colonial M. aeruginosa at 25uC.
Values are presented as the means 6 s. A, Unicellular M. aeruginosa; B, Colonial M. aeruginosa.
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Soluble and total carbohydrate contents

The results of the determinations of soluble and total

carbohydrate contents in unicellular and colonial Micro-

cystis (Table 3) indicate that both carbohydrates in colonial

Microcystis were significantly higher than those in unicel-

lular Microcystis (F 5 29.13, P 5 0.001; F 5 10.94, P 5

0.013). After 18 d, the soluble and total carbohydrate

contents in colonial Microcystis were 2.9–7.9 and 16.9–

159.5 mg mg21 DW, respectively. In contrast, the soluble

and total carbohydrate contents in unicellular Microcystis

were 0.6–1.0 and 2.2–3.4 mg mg21 DW, respectively.

DISCUSSION

A variety of hypotheses have been proposed and a number

of experiments performed in order to explain the pro-

liferation of cyanobacteria during freshwater blooms. Tilzer

(1987) considered that cyanobacterial dominance in eutro-

phic lakes was due to the light dependence of photosyn-

thesis and growth in cyanobacteria. In the present study, P-

I curve measurements were performed in unicellular and

colonial Microcystis. The results demonstrated that both

unicellular and colonial Microcystis could tolerate high

light intensity (1200 mmol photons m22 s21) (Fig. 1). This

supported the results that effective prevention of damage by

excessive light levels near the lake surface might enable

cyanobacteria in surface scums not only to survive (Zohary

1985) but also to maintain active growth (Paerl & Ustach

1982). The results also revealed that colonial Microcystis

exhibited a higher Pm than unicellular Microcystis (Ta-

ble 2). It is suggested that colonial Microcystis exhibit

higher photosynthetic activities than the unicellular forms.

The results support our previous findings that photosyn-

thetic and growth parameters were related to phenotypes of

M. viridis (Song et al. 2004). However, the observed

changes of Pm in the unicellular and colonial Microcystis

are inconsistent with the results of Li & Gao (2004)

obtained from different Nostoc sphaeriodes colonies. Pre-

vious study has shown that the formation of colonial

Microcystis was a mucilaginous matrix, unlike Nostoc

colonies as a sheath or capsule form (Forni et al. 1997).

Thus, the effect of packaging and self-shading may be not

significant features in Microcystis in comparison with

Nostoc.

Table 2. Parameters of photosynthesis–irradiance (P-I) curves for unicellular and colonial Microcystis aeruginosa.1

Code Pm a Rd Ik Ic r2

905U 324.16 6 26.42 1.29 6 0.15 240.44 6 21.72 282.56 6 6.25 31.34 6 2.82 0.93
924U 385.94 6 13.24 1.26 6 0.49 250.41 6 18.05 346.44 6 18.25 40.02 6 9.59 0.94
7806U 338.17 6 32.57 1.01 6 0.23 233.07 6 29.24 366.02 6 20.62 32.61 6 9.75 0.91
942U 366.27 6 26.50 1.77 6 0.41 255.07 6 37.35 237.89 6 14.57 31.09 6 7.37 0.92
910C 413.89 6 20.39* 1.27 6 0.15 242.12 6 18.48 357.13 6 25.08 33.05 6 2.41 0.98
975C 417.73 6 36.81* 1.21 6 0.41 236.34 6 17.57 376.58 6 33.73 30.14 6 7.04 0.92
907C 440.83 6 10.29* 1.23 6 0.07 226.77 6 8.99 378.41 6 1.22 21.70 6 0.57 0.99
909C 536.60 6 30.24* 1.21 6 0.16 254.77 6 23.91 487.04 6 8.41 45.11 6 3.71 0.97
938U 415.90 6 23.01* 1.16 6 0.19 222.60 6 11.79 376.93 6 9.18 19.43 6 4.47 0.97

1 Values are the means 6 s derived from the P-I curve. Pm, a, Rd, and Ic (mmol O2 mg Chl a21 h21), Ik (mmol photons m22 s21). U 5
unicellular Microcystis, C 5 colonial Microcystis.

* Significantly different at P 5 0.05.

Fig. 2. HCO{
3 uptake values {K0.5 (DIC)} for unicellular and

colonial strains of M. aeruginosa. ** indicates significantly different
at P 5 0.01. U 5 unicellular Microcystis, C 5 colonial Microcystis.

Fig. 3. The maximal electron transfer rates (ETRmax) in unicellular
and colonial strains of M. aeruginosa. ** indicates significantly
different at P 5 0.01. U 5 unicellular Microcystis, C 5 colonial
Microcystis.
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King (1970) suggested that cyanobacteria are more

efficient in obtaining CO2 at low concentrations than are

green algae. Shapiro (1972) found that the addition of free

CO2 stimulated a shift from blue-green to green algae.

Yamamota & Nakahara (2005b) demonstrated that advan-

tageous DIC uptake system appeared to be responsible for

the competitive dominance of Microcystis aeruginosa in

nutrient-rich culture conditions. Cermeñ et al. (2005) found

that larger phytoplankton attained higher C-specific

photosynthesis rates than those of smaller sizes. In the

present study, lower K0.5 (DIC) values were observed in

colonial Microcystis compared to unicellular Microcystis

(Fig. 2). It is suggested that colonial Microcystis possess

a high affinity for DIC and that they are affinity-adapted

strategists. The results are consistent with the observation

that the surface scum of Microcystis might be conducive to

preferential DIC uptake (Paerl & Ustach 1982; Paerl 1983).

In addition, the results provide an explanation for the

existence of a colonial morphology under natural condi-

tions.

ETR can be attributed mainly to the presence of the

secondary oxygen-consuming processes such as photorespi-

ration and the Mehler reaction and provide supplementary

information about the status of the photosynthetic appara-

tus at the level of PSII-dependent electron transport

(Masojı́dek et al. 2001). In the present study, the results

demonstrated that colonial Microcystis exhibited higher

ETRmax than unicellular Microcystis (Fig. 3). This indicated

that colonial Microcystis possess a more efficient photosyn-

thetic electron transport system compared to unicellular

Microcystis. Genty et al. (1989) demonstrated a high

correlation between ETR and photosynthetic CO2 fixation

rates. Our results also demonstrated that both DIC uptake

and ETRmax exhibit similar trends in colonial and unicel-

lular Microcystis, suggesting that photosynthetic efficiency

may be physiologically dominant in colonial Microcystis,

thus enabling them to form and sustain blooms.

In the present study, the pigment contents were measured

in order to assess light-harvesting ability. The results

indicated that high diversities of light-harvesting pigments

are present in Microcystis. Compared with the unicellular

Microcystis, colonial Microcystis possessed lower Chl

a concentration (Fig. 4). However, higher phycocyanin

content was found in colonial Microcystis (Fig. 5).

Sathyendranathe et al. (1987) considered that other

pigments could contribute significantly to light absorption,

although Chl a is commonly used as a measure of pigment

content. Sedmak and Elerše (2006) showed that a significant

Fig. 4. Comparison of Chl a concentration in unicellular and
colonial strains of M. aeruginosa during the growth phase. U 5
unicellular Microcystis, C 5 colonial Microcystis. Fig. 5. Comparison on the contents of phycocyanin in unicellular

and colonial strains of M. aeruginosa during the log phase. AP 5
allophycocyanin, PC 5 phycocyanin, PE 5 phycoerythrin, U 5
unicellular Microcystis, C 5 colonial Microcystis.

Table 3. Comparison of soluble carbohydrate (EPS) and total carbohydrate in unicellular and colonial Microcystis aeruginosa over an 18-
d growth study.1

Code
EPS yield

(mg mg21 DW d21)
EPS content

(mg mg21 DW)
Total carbohydrate yield

(mg mg21 DW d21)
Total carbohydrate content

(mg mg21 DW)

942U 0.03 6 0.00 0.71 6 0.05 0.17 6 0.02 2.49 6 0.07
7806U 0.03 6 0.02 0.62 6 0.03 0.15 6 0.08 2.17 6 0.07
924U 0.05 6 0.01 0.98 6 0.07 0.23 6 0.012 3.42 6 0.86
905U 0.04 6 0.01 0.91 6 0.04 0.21 6 0.07 3.19 6 0.08
975C 0.13 6 0.05** 2.86 6 0.36** 1.13 6 0.07* 16.88 6 1.11*
910C 0.23 6 0.09** 4.27 6 0.09** 2.14 6 0.09* 32.05 6 0.30*
938C 0.33 6 0.07** 7.94 6 0.19** 9.63 6 0.16* 159.47 6 3.47*
907C 0.23 6 0.06** 4.95 6 0.14** 4.05 6 0.29* 60.75 6 0.46*
909C 0.23 6 0.01** 7.15 6 0.02** 6.05 6 0.14* 90.72 6 1.02*

1 U 5 unicellular Microcystis, C 5 colonial Microcystis.
* Significantly different at P 5 0.05.
** Significantly different at P 5 0.01.
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increase in phycocyanin content was found in cyanobac-

teria with the presence of microcystin. In addition,

cyanobacteria are able to regulate their phycobilisome

contents according to light intensity and light quality

(Aráoz & Häder 1997). Therefore, we consider that the high

phycocyanin content in colonial Microcystis may be an

adaptive mechanism promoting the formation of blooms in

eutrophic water bodies.

In addition to its effects on the physiological character-

ization and pigment content, colony size affects soluble and

total carbohydrate contents. In the present study, the

contents of soluble and total carbohydrate in unicellular

Microcystis were similar to those reported by Forni et al.

(1997). However, compared with the unicellular Micro-

cystis, colonial Microcystis possessed higher soluble and

total carbohydrate contents. Otero & Vincenzini (2003)

indicated that the total carbohydrate contents were

approximately 2.5–3.5 times higher than the EPS contents

in Nostoc PCC8113, 7936, and 7413 cultured in BG11

medium. However, in the present study, we found that total

carbohydrate contents were significantly higher than the

soluble contents in colonial Microcystis (Table 3). Tien et

al. (2002) demonstrated that the highest mucus contents

were found in a bloom of Microcystis in Rostherne Mere.

This suggests that EPS was used to form or maintain the

mucus in colonial Microcystis rather than being released

into the medium. The important roles of EPS are as

follows: (1) the storage of water (Li & Gao, 2004); (2) as

a carbon source (Lancelot et al. 1986); and (3) as a strong

metal chelator (Amemiya & Nakayama 1984). Our pre-

vious study also found that colonial Microcystis could

tolerate higher Cu2+ stress than unicellular Microcystis (Wu

et al. 2007). In addition, Shen & Song (2007) also found

that colonial Microcystis had higher affinity for low levels

of P and had an advantage with regard to dominance and

persistence in fluctuating P conditions. These observations

suggest that colonial Microcystis could survive longer than

unicellular forms under stress conditions because of their

higher carbohydrate contents.

CONCLUSIONS

Our results indicated that higher photosynthetic activities,

higher phycocyanin contents, and higher EPS and total

carbohydrate contents were found in colonial Microcystis

in comparison with unicellular Microcystis. Thus, it is

considered that the dominant physiological selection in

colonial Microcystis may be an adaptive mechanism

promoting the formation, sustainment and longevity of

blooms in eutrophic water bodies.
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