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Abstract 

 

ENDOCYTIC TRAFFICKING OF THE AMYLOID PRECURSOR PROTEIN IN 

RAT CORTICAL NEURONS 

  
Sahily Reyes-Esteves, B.S. 

 
Advisory Professor: Andrew J. Bean, Ph.D. 

 

Amyloid-beta (Aβ) aggregation and deposition into extracellular plaques is a hallmark 

of the most common forms of dementia, including Alzheimer’s disease. The Aβ-containing 

plaques result from pathogenic cleavage of amyloid precursor protein (APP) by secretases 

resulting in intracellular production of Aβ peptides that are secreted and accumulate 

extracellularly. Despite considerable progress towards understanding APP processing and 

Aβ aggregation, the mechanisms underlying endosomal production of Aβ peptides and their 

secretion remain unclear. Using endosomes isolated from cultured primary neurons, we 

determined that the trafficking of APP from the endosomal membrane into internal vesicles 

of late endosome/multivesicular bodies (MVB) is dependent on Endosomal Sorting 

Complexes Required for Transport (ESCRT) machinery. This implied that APP is 

ubiquitinated to allow ESCRT interactions. We then identified that the endosome-associated 

E3 ubiquitin ligase, UBE4B, is required for efficient endosomal APP trafficking. These 

results suggest that the efficiency of endosomal APP trafficking regulates Aβ generation. 

Decreasing Aβ levels in the brain may be a mechanism for disease modification in amyloid-

related dementia. These experiments elucidate cellular mechanisms that are amenable to 

regulation and could serve as potential therapeutic targets for amyloid pathologies.   
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Chapter 1. Introduction 

 
1.1 Alzheimer’s Disease  

Alzheimer’s disease (AD) is the most common human neurodegenerative disease 

(1–4). In the United States, close to 100,000 individuals die from AD every year (5) and 

those affected typically die within 10 years of diagnosis (6, 7). This disease manifests as 

progressive loss of cognitive ability and personality alterations, a process known as 

dementia. Despite decades of research, there is no disease-modifying therapy or diagnostic 

test for this insidious disease.  

AD was first described by Alois Alzheimer in publication from 1902 (8). The report 

described a 50-year-old female named Auguste Deter who experienced worsening paranoia 

and cognitive decline. Upon her death, an overall reduction in brain mass was noted, as was 

an accumulation of material inside and around the cells of her brain. During the 20th century, 

additional reports of patients experiencing similar symptoms led to the recognition that AD is 

the most common form of dementia.   

Like other neurodegenerative diseases, brains from AD patients are characterized by 

marked neuronal death resulting in loss of brain mass. Unlike other similar disorders, which 

tend to localize to specific brain regions, the loss of neurons in Alzheimer’s is robust and 

involves most of the cortex, as well as other key brain structures thought to be involved in 

memory formation such as the hippocampus (9–11). Histological examination of AD patient 

brains has revealed accumulation of protein aggregates inside and outside of cells, as 

illustrated on Figure 1A.  

The classical intracellular pathology observed in AD is called a neurofibrillary tangle 

(NFT), and is mostly composed of a hyperphosphorylated form of the Tau protein. Tau is a 

microtubule-associated protein that becomes abnormally phosphorylated in some 

pathological processes, like AD and other neurological disorders (12–16). 
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Hyperphosphorylated Tau results in neurotoxicity due to aggregation and inability to bind to 

cytoskeletal microtubules, which results in microtubule disassembly and cytoskeletal 

dysfunction (17–19). However, phosphorylated Tau is thought to be a secondary event in 

the development of AD for the following reasons. First, in animal models, anomalies in Tau 

or its phosphorylation lead to a phenotype with marked motor dysfunction (something 

absent in classical AD) that more closely resembles a different disease, frontotemporal 

dementia (FTD) (20–23). Second, Gotz et al. (24) observed that injection of a protein called 

amyloid beta (Aβ, whose role in AD will be discussed in detail later in this chapter) into the 

brains of a murine strain predisposed to the deposition of NFTs accelerated the formation of 

tangles. A study published simultaneously(25) showed that crossing a mouse predisposed 

to formation of Aβ with P301L mice led to accelerated formation of NFTs. Third, mice from a 

mutant strain predisposed to the formation of Aβ have memory impairments that are 

dependent on the expression of Tau, although these mouse models do not form NFTs. Tau-

mediated Aβ toxicity has also been observed in in vitro studies of neurons (26). Finally, 

phosphorylated Tau was observed to mediate Aβ toxicity in post-synaptic neurons by 

inducing excitotoxicity (which often leads to a seizure phenotype in AD animal models (27–

29).  While the controversy between these two potential etiologies for AD continues, the 

substantial evidence of a role for Aβ in human dementia merits its investigation.  

The extracellular pathology most commonly associated with AD is characterized by 

protein aggregates known as plaques (2–4, 18).  For reasons that are as yet unclear, 

amyloid plaques can be diffuse or dense (30), and they can form outside of neurons or 

inside blood vessel walls in the brain (31–34). This latter process is called cerebral amyloid 

angiopathy, and while it is a distinct diagnosis from AD, the two diseases can be co-morbid 

(34–36) and result in dementia. The protein aggregates that form plaques are composed 

primarily of Aβ (18, 37).  Aβ was first isolated and purified in 1984 (38, 39) and is a 4.2 kDa 

peptide most commonly found in extracellular aggregates in the brains of AD patients (3, 18, 
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37, 40). Aβ can exist in variants of 40-46 amino acids in length, with the 42-amino acid long 

variant, called Aβ42, being the form most prone to aggregation (41).  

The mechanism underlying the neuronal toxicity of Aβ in the central nervous system 

is still under investigation. In fact, some reports have linked Aβ to beneficial effects in the 

central nervous system, including enhanced neuron survival, synaptic modulation, and 

protection from oxidative stress (42–45). A prevailing hypothesis in the field is that the 

balance of Aβ production and clearance is disturbed in AD (41, 46). Excess Aβ production 

has been repeatedly shown to result in synaptic dysfunction, neuroinflammation, and 

oxidative stress, effects that are thought to ultimately produce neuronal death (41, 47–49). 

Although aggregation of Aβ is most commonly observed outside of neurons, several studies 

have reported that intraneuronal accumulation of Aβ is toxic to cells and antecedes the 

appearance of overt plaques in mouse models of AD (50–53). 

 

1.2 Amyloid Precursor Protein  

The amyloid precursor protein was identified in 1987 (4, 54) as the propeptide that 

led to Aβ formation. Since its discovery, APP has been strongly implicated in dementia (3, 4, 

18, 41, 55). Several lines of evidence support this idea. First, familial mutations (56–61) in 

this protein strongly correlate with the development of many forms of early-onset AD, and 

many of these mutations are shown to result in the formation of Aβ(62, 63). Second, the 

APP gene is located on chromosome 21, and patients with Down syndrome (who have a 

trisomy of this chromosome) have a high likelihood of developing early-onset AD (64–67). 

Finally, APP has been shown to be the only known protein that leads to formation of Aβ (68–

70).  

Amyloid precursor protein (APP) is a Type-I transmembrane protein that exists as 8 

isoforms (71–74) of 677-770 amino acids in length, of which the 695-amino acid variant is 

the most common in the human brain(75, 76). It is found in a variety of cell types (77–80), 
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and several physiological roles in neurons have been investigated. In neurons, APP 

contributes to cell adhesion (81), neurite outgrowth (82–84), synaptogenesis (85), and 

neuronal migration (86). Mice lacking APP have mild deficits compared to these described 

functions (87, 88)suggesting that APP’s role in neuron physiology and normal function might 

be redundant with other related proteins, like the amyloid precursor-like proteins 1 and 2.  

Cleavage of amyloid precursor protein (APP) can be amyloidogenic (leading to the 

formation of Aβ) or non-amyloidogenic (3, 89–92)(Figure 2). APP cleavage by a member of 

the alpha-secretase family (predominantly ADAM10)(93, 94) can occur at the plasma 

membrane (PM). Alpha-secretase cleavage results in the APP soluble fragment APPsα and 

a membrane-bound C-terminal fragment (α-stub)(3, 89, 90). Cleavage of APP by an alpha-

secretase occurs in a portion of the Aβ sequence that renders the remaining peptides 

incapable of producing Aβ. The APPsα fragment mediates many of the described functions 

of full-length APP described above, such as neurite outgrowth and neuronal development 

(95–99). The C-terminal α-stub can be subsequently cleaved by the γ-secretase complex 

(composed of presenilin, nicastrin, APH-1, and PEN-2) to form the fragment P5. 

Interestingly, mutations in the presenilins are the most common form of inherited early-onset 

AD (100–102).   

If APP is cleaved by the β-secretase, Beta-site APP Cleavage Enzyme 1, (BACE-1), 

instead of an alpha-secretase, generation of the soluble APPsβ and a C-terminal fragment 

(β-stub, or C99) occur (103, 104). BACE-1 was first identified in 1999 by five independent 

groups (105–109). BACE-1 is a type-I transmembrane protein mostly expressed in the brain 

(3, 90, 103). BACE-1 enzyme activity has an optimal acidic pH such as is found in the Golgi 

and endosomes (90, 110–114). Increased expression of BACE-1 has been found in AD 

brains (115–117). Importantly, some familial AD-associated mutations in APP have 

increased susceptibility to cleavage by BACE-1(118) which then results in increased Aβ 

levels.  
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After BACE-1 cleavage, the β-stub can be further cleaved by the γ-secretase 

complex to yield the soluble Aβ species. The γ-secretase complex not only cleaves APP, but 

is essential for the cleavage of Notch, required for Notch signaling(119–121). Members of 

the γ-secretase complex have been localized to a variety of subcellular locations, although 

recent data suggests that the mature complex is mostly localized to the plasma membrane 

and the endosome/lysosome system(3, 122–125). For reasons that remain unclear, the γ-

secretase-mediated cleavage of APP can generate Aβ peptides of various lengths, 

accounting for the variety of Aβ species found in AD brains(3, 126–129).  

 

1.3 Endocytic trafficking of membrane proteins in mammalian cells  

APP is synthesized and trafficked through the secretory pathway en route to the 

plasma membrane. In the endoplasmic reticulum (ER) and Golgi apparatus, membrane 

proteins can be cleaved into mature variants, post-translationally modified, or removed for 

degradation (130–134). Many membrane proteins are inserted into the PM after trafficking 

through the ER/Golgi (133–137) and from there, various mechanisms (such as binding of 

ligands) can promote their internalization into the cell. In neurons, these events often occur 

as a result of synaptic activity. Once a membrane protein is internalized from the PM, it can 

travel in transport vesicles to endosomes. From endosomes, membrane proteins can either 

recycle to the PM, or can be degraded via fusion of the endosomes with the lysosome. 

Because the focus of this study is on the movement of APP through endosomes, the 

endocytic pathway will be discussed in further detail.  

The protein content of the plasma membrane is constantly renewed via insertion of 

proteins from the biosynthetic pathway and removal of other proteins via endocytosis. This 

dynamic state is a key regulatory mechanism that allows cells to adapt to their environment 

(138–140). This is especially important for neurons, where changes in surface protein 

expression (e.g. levels of glutamate receptors in the membrane are regulated by insertion 
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and endocytosis) can underlie functional alterations such as synaptic plasticity (141–145).  

The residence time of APP on the plasma membrane is approximately 10 minutes (83, 146–

149).  After internalization, vesicles containing membrane proteins (such as APP) can fuse 

with each other to form early endosomes, or fuse with existing early endosomes (150–152). 

Endosomes are organelles of approximately 500nm in diameter(153), that carry membrane 

proteins from the plasma membrane onto other cellular compartments for recycling or 

degradation(150–152). Endosomes mature from early into late endosomes by recruiting and 

discarding peripheral membrane proteins from the cytosol(154–159). Early endosomes are 

characterized by expression of markers such as EEA1, Rab5, Rab11, and transferrin (160–

163). From early endosomes, membrane proteins can bud in vesicles that can fuse with the 

PM or travel to secretory compartments (163, 164). Early endosomes are thought to mature 

into late endosomes, characterized by markers such as Lamp1, Tsg101, CD63, and Rab7 

(150, 154–159).  Late endosomes are formed when the limiting membrane invaginates and 

buds internally producing vesicles that accumulate in the endosomal lumen. The formation 

of these internal vesicles can occur as a result of the involvement of cytosolic proteins that 

bind the endosomal limiting membrane (a process that will be discussed in Section 1.5), 

although some studies have demonstrated that budding into the endosomal lumen can 

occur in the absence of such proteins, by inward budding of lipid-containing domains 

present on the endosomal limiting membrane (165–168). Regardless of the mechanism of 

internal vesicle formation, the development of late endosomes by these inward budding 

events also gives them their particular structure: a larger endosomal compartment 

containing smaller internal vesicles between 50-200nm in size (150, 152, 169–173). For this 

reason, the late endosome is also known as the multivesicular body (MVB) or the 

multivesicular endosome (MVE). MVBs can have different itineraries in cells: (a) they can be 

degraded upon fusion of the late endosome with the lysosome, or (b) fuse with the PM for 

release of its contents. If an MVB fuses with the PM, its internal vesicles are released as 
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exosomes into the extracellular space (174–179). Exosomes are nanovesicles of endosomal 

origin (178, 180–184) secreted by a wide variety of cells (178, 185–188), including neurons 

(189–192). After it transits to mature endosomes, APP can be degraded upon fusion of the 

MVB with the lysosome (68, 69, 193). However, multiple reports suggest that APP is present 

on exosomes (194–196) suggesting that APP may also be present on MVBs that fuse with 

the plasma membrane (69, 193, 196–199).  

 

1.4 Ubiquitination of membrane proteins for endocytic trafficking  

Many membrane proteins that move from early endosomes into late endosomes 

(particularly into the intraluminal vesicles within the late endosome) require ubiquitination to 

enable association with the sorting machinery at endosomes (200–204). Ubiquitin is a 76-

amino acid protein that can be conjugated to lysine residues of proteins as a post-

translational modification. It is highly conserved throughout eukaryotic organisms1, and the 

four genes (UBI1, UBI2, UBI3, and UBI4) that contain its code are present in both mammals 

and yeast. The presence of polyubiquitin chains on a protein often targets that protein for 

proteasomal degradation (204–208). The ubiquitination of a protein occurs in a series of 

steps mediated by the ubiquitin activating (E1), ubiquitin conjugating (E2), and ubiquitin 

ligase (E3) enzymes. There are two different E1 enzymes in mammalian cells, and these 

covalently bind and activate ubiquitin (207, 209, 210).  From there, ubiquitin is passed to the 

E2 enzyme, of which there are an estimated 40 different kinds (205–208, 211–213). E2 

enzymes will bind ubiquitin to the substrate, with the assistance of E3 ligases. The substrate 

specificity of ubiquitination is mediated by E3 ligases (214–217), of which the human 

genome is estimated to encode more than 600 unique proteins (214–216, 218). 

Ubiquitination is a reversible process and ubiquitin can be removed from proteins by the 

activity of deubiquitinating enzymes (219–223).  

 Proteins can be monoubiquitinated, multiubiquitinated (one ubiquitin is placed on 
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various lysine residues), or polyubiquitinated (various ubiquitin molecules form a chain 

anchored at one residue) (224–230). In polyubiquitination, two kinds of chains are 

commonly described: K48-linked chains and K63-linked chains. K48-linked chains are 

ubiquitin chains that bind to each other at lysine 48 of the ubiquitin sequence, forming 

branches that can be as long as 20 molecules. K63-linked chains occur after binding of 

additional ubiquitin molecules to lysine 63 of ubiquitin.  

The ubiquitination of a membrane protein can signal its degradation or can be a 

signal important for trafficking events. However, the correlation between the type of 

ubiquitination present on a target protein and the role of that ubiquitin for protein disposition 

has not been conclusively established (217, 231), although K48-linked chains have been 

suggested to constitute a specific signal for proteasomal degradation (202, 208, 232). Since 

the proteasome functions in the breaking down of cytosolic proteins, the observation that 

ubiquitination could occur on membrane proteins represented a challenge to the 

understanding of the field (206, 207, 233–236). Studies performed in the yeast 

Saccharomyces cerevisiae were the first to discover that ubiquitination of some membrane 

proteins was a signal for their further movement down endocytic compartments (237, 238). 

In mammalian systems, the first evidence of the role of ubiquitin in the trafficking of 

membrane proteins through the endocytic pathway came from the study of tyrosine kinase 

receptors, that were observed to become ubiquitinated after binding of their ligands (239–

242). For example, the epidermal growth factor receptor (EGFR) is monoubiquitinated prior 

to internalization from the PM (243, 244), although ubiqutination is not required for EGFR 

internalization (245–248). In these studies, cellular levels of EGFRs were unaffected by 

pharmacological proteasome inhibitors, suggesting their ubiquitination was not a signal for 

proteasomal degradation. Besides EGFR, a wide variety of membrane proteins can be 

ubiquitinated (249, 250). and both polyubiquitin and monoubiquitination can induce 

membrane protein internalization into endosomes (200, 251).  
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1.5 Recognition and trafficking of cargo by the ESCRT complexes:  

Once a membrane protein is ubiquitinated en route to or at endosomes, it can be 

recognized by a sorting machinery that assembles at the endosomal limiting membrane, 

known as the Endosomal Sorting Complexes Required for Transport (ESCRTs) (170, 172, 

248, 252–258). These proteins were discovered in a series of separate studies conducted 

between 1989 and 1992 by Rothman and Raymond (259–264). These investigations led to 

the discovery of a series of genes denominated the vacuolar protein sorting (Vps) genes. 

Some of the proteins encoded by these genes, denominated the ESCRT complexes, were 

discovered to be required for the degradation of many membrane proteins in the yeast 

vacuole (an organelle homologous to the mammalian endosome/lysosome) and 

subsequently, in mammalian endosomes (165, 203, 255, 256, 265–271).  

ESCRT complexes are well conserved across eukaryotes, likely because their role in 

protein homeostasis at endosomes is essential for normal cell function. This is highlighted 

by the fact that embryonic lethality is observed in mice that contain deletions or loss-of-

function mutations of various ESCRT components, such as hepatocyte growth factor-

regulated tyrosine kinase substrate (Hrs) and the tumor susceptibility gene 101 (Tsg101) 

(252, 262, 272–274). As would be expected, ESCRT deletion mutants often exhibit aberrant 

morphology such as enlargement and decreased internal vesicle formation (173, 256, 265, 

275). 

There are 4 ESCRT complexes: ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III 

(summarized in Figure 3). ESCRT complexes assembly on the endosomal membrane by 

recruitment from the cytosol. First, a member of the ESCRT-0 family, Hrs, is recruited to 

endosomal membranes through its membrane-lipid targeting domain FYVE(272, 276, 277), 

although its P/Q domain has been observed to play a role in this process (278). At 

endosomes, Hrs first binds membranes through interaction with phosphatidylinositol 3-
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phosphate (PI3P) (256, 272, 276, 277). It can then bind to membrane proteins (often 

referred to as cargo) by recognizing ubiquitin with its ubiquitin-interacting motif (UIM)(251, 

265). After cargo recognition, Hrs recruits other ESCRT-0 components (which help cluster 

targeted cargo) as well as ESCRT-I components such as Tsg101. Tsg101 can also 

recognize ubiquitinated cargo (166, 255, 256, 279), and also aids in the recruitment of other 

ESCRT-I components. ESCRT-I formation leads to recruitment of the ESCRT-II complex 

components (165, 203, 268). The binding of these ESCRT complexes leads to invagination 

of the endosomal limiting membrane toward the endosomal lumen(280) in a process that is 

opposite to the invaginations observed from assembly of coat proteins (257, 281). ESCRT-II 

is thought to recruit ESCRT-III (165, 255, 256, 268), which is believed to aid the fission of 

invaginated endosomal membranes (255, 264, 268). Although there are several models 

about how this binding of ESCRT complexes leads to invagination of membranes (255, 

282), it is clear that ESCRT-0 proteins bind the ubiquitinated cargo and aid the assembly of 

the other ESCRT complexes. 

 

1.6 The ubiquitin factor E4B (UBE4B) in endocytic trafficking:   

 The E3 ligase, UBE4B, is a ubiquitinating enzyme first described as UFD2 in yeast 

(283). UBE4B is part of a family of E3 ligases known as ‘U-box’ ligases (284–287), because 

they possess a ‘U-box’ domain that confers their ubiquitinating capacity (287–291). The ‘U-

Box’ contains the binding site for the two E2 ligases known to bind UBE4B, UbcH5c and 

Ubc4 (287–292). UBE4B has at times been catalogued as a separate class of E3 ligase 

(also known as E4 enzymes) that, aside from aiding the ubiquitination of specific substrates 

as an E3 ligase, can also aid in the placement of additional ubiquitin molecules to specific 

substrates (289, 293).  

UBE4B has been implicated in yeast survival after cell stress (284). In the adult 

mouse, UBE4B is predominantly expressed in neurons (285). In the brain, it has been 
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suggested to have a role in degeneration following axonal injury(294). UBE4B is involved in 

the ubiquitination and subsequent degradation of abnormal accumulations of ataxin-3, an 

aggregated protein that underlies spinocerebellar ataxia (292). UBE4B can also bind and 

decrease levels of p53, a known tumor suppressor (295). Homozygous UBE4B deficiency 

results in embryonic lethality in mice due to anomalies in cardiac development (289), and 

heterozygous UBE4B deficiency results in severe motor defects and Purkinje cell 

degeneration.  These data suggest that UBE4B is essential for normal development of the 

heart, as well as maintenance of neuronal integrity in the brain.  

  Previous work from the Bean laboratory(296) has shown UBE4B is an endosomally-

active E3 ligase. In that study, UBE4B was recruited to endosomes by binding to the early 

ESCRT, Hrs, that mediates its interaction with EGFR. This study also observed that UBE4B 

can ubiquitinate EGFR (296).  The UBE4B-mediated EGFR ubiquitination is an obligatory 

step in efficient movement of EGFR from the endosomal limiting membrane into internal 

vesicles within the mature endosome. These data highlight UBE4B as an E3 ligase with an 

active role at the endosome, and open the doors for the discovery of new substrates for 

UBE4B-mediated ubiquitination at this cellular site.   

 

1.7 APP movement and Aβ production through the endocytic pathway:   

While BACE-1 is expressed in many subcellular locations, only the secretory 

pathway and the endocytic pathway contain sufficient expression(105) and adequately low 

pH for optimal activity of APP by BACE-1 (103, 297). Moreover, BACE-1 and APP colocalize 

at both of these locations (298–306). For this reason, both of these sites have been the 

focus of a variety of studies seeking to identify the key location of APP cleavage into Aβ (3, 

299, 300, 305–311). Endosomes are of particular interest as a potential site of BACE-1 

mediated APP cleavage for several reasons. First, blockade of APP internalization by 

clathrin-mediated endocytosis from the PM (312)or by removal of the YENP endocytosis 
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signal (146, 313, 314) decreased Aβ levels in conditioned media in several studies, 

including studies performed in neurons (315, 316). Synaptic activity mediates APP 

internalization from the PM and results in increased Aβ secretion (315–318). Moreover, 

synaptic activity results in colocalization of BACE-1 and APP in endosomal compartments 

(299, 300). These data suggest that the endocytic itinerary of APP is a crucial location for 

amyloidogenic cleavage.   

There is conflicting evidence for a role of ESCRTs in the sorting of APP at 

endosomes and the secretion of Aβ. Depletion of early ESCRT components (Hrs and 

Tsg101) resulted in decreased Aβ secretion in some experimental models (305, 307), 

whereas others (306)have found that the same manipulation results in greater Aβ secretion. 

If APP trafficking is ESCRT dependent, then APP must be ubiquitinated to enable ESCRT 

interaction, suggesting that there may be a specific E3 enzyme that ubiquitinates APP. 

Interestingly, the E3 ligase FBL2 ubiquitinates APP resulting in proteosomal degradation 

(319), although the differences in ubiquitination requirements likely mean that a different E3 

enzyme is required for endosomal trafficking. In this regard, our preliminary data suggest a 

role for the endosome-associated E3 ubiquitin ligase, UBE4B, in the degradation of APP.   

 

1.8 Hypothesis statement:   

This study investigated my hypothesis (Figure 1D) that under non-pathogenic 

conditions, trafficking of full-length APP into the MVB is dependent on a specific E3 

ligase, UBE4B, and the ESCRT machinery. Disruptions in MVB trafficking that delay 

APP sorting may result in amyloidogenic processing of APP.  
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Figure 1A. Pathological findings in Alzheimer’s disease (AD). (A) Accumulation of 

intracellular neurofibrillary tangles and extracellular amyloid plaques leads to neuronal 

dysfunction and death in AD. (B) Current understanding of the diseases processes behind 

AD suggests that these toxic accumulations lead to neuronal degeneration and death, as 

shown by decreased mass in affected brains.   

  

Amyloid Plaques

(extracellular)
Neurof brillary tangles

(intracellular)

A B

Normal Brain AD Brain



 14 

 

 

Figure 1B. Processing of the amyloid precursor protein (APP). Amyloid precursor 

protein can be cleaved in two main pathways. In the non-amyloidogenic cleavage, APP is 

cleaved into APPsα, secreted into the extracellular space, and the α-stub. This cleavage 

occurs through the Aβ sequence, precluding amyloid production after alpha-secretase 

cleavage. The stub is further cleaved by the gamma secretase complex into the amyloid 

precursor protein intracellular domain (AICD) and P3. In amyloidogenic cleavage, APP 

cleavage by a beta-secretase (BACE-1 in the brain), leading to generation of APPsβ 

(released into the cytosol) and the β-stub, C99 (which faces vesicular lumens). Further 

cleavage by the gamma secretase complex generates AICD and Aβ. The subcellular site 

where this occurs is a matter of controversy and is the subject of this dissertation.  
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Figure 1C. Summary of ESCRT proteins involved in the endocytic trafficking of 

mammalian membrane proteins. ESCRTs are classified as 4 complexes in both mammals 

and yeast, and their metazoan names are illustrated in this schematic. ESCRT complexes 

sequentially bind ubiquitinated membrane proteins at the endosomal limiting membrane. 

These interactions are thought to mediate the necessary changes in membrane curvature 

that allow budding of vesicles containing membrane proteins into the endosomal lumen. 

Adapted from (255). 
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Figure 1D. Illustration of endocytic APP trafficking in neurons.  (A) APP traffics through 

endosomes in neurons, and this is an important site of amyloidogenic cleavage (Das 2016, 

Morel 2013). (B) In physiological trafficking of APP through endosomes, the full-length 

protein is moved into internal vesicles of the maturing endosome through engagement of 

cytosolic proteins. When this trafficking is altered, APP can get cleaved by the secretases at 

the endosomal limiting membrane into Aβ, which will accumulate in the endosomal lumen.  
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Chapter 2. METHODS 

2.1 Materials— Antibodies were purchased from the following commercial sources: C-

terminal APP (Sigma, A8717; 5ug/mL for immunoblotting, IB; 50ug/mL for 

immunocytochemistry, ICC), N-terminal APP (Clone 22C11, Millipore; 10ug/mL for ICC), 

mouse and rabbit MAP2 (MAB3418 and AB5622, Millipore; 5ug/mL); Rab7 (D95F2  for ICC,  

for IB; Cell Signaling), EEA1 (2.5 ug/uL for ICC, 0.25ug/ml for IB; Thermo Fisher), BACE-1 

(1ug/mL; Cell Signaling), Flotillin (Abcam), Alix (0.29 ug/ml; Abcam), Actin (0.3 ug/ml; 

Millipore), UBE4B (0.3 ug/ml; Abcam), Ubiquitin (1 ug/ul; Enzo), Hrs (1 ug/ul; Axxora). 

Chemical reagents were purchased from various sources: GW4869 (Cayman Chemical), β-

Secretase Inhibitor IV – CAS 797035-11-1 (also known as C3; Millipore Sigma), and anti-

fade DAPI mounting media (Life Technologies).  

 

2.2 DNA/RNA Constructs—Short hairpin RNAs directed against UBE4B 

(CCGGTGGACCAACTGACGGATATTTCTCGAGAAATATCCGTCAGTTGGTCCATTTTTG; 

TRCN0000338294) and a scrambled shRNA 

(CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTT; 

SHC002) were purchased from Mission® shRNA (Sigma).  

 

2.3 Mammalian Cell Culture— TLA-HEK 293T cells (ATCC) were maintained at 37°C in 

5% CO2, with DMEM (Life Technologies) and10% FBS (Sigma), and passaged using 0.05 % 

trypsin/EDTA.  

 

2.4 Primary Neuron Culture—Primary cortical neurons were obtained from E17-18 rat 

embryos as described (321, 322). Briefly, cortical brain tissue was extracted from rat 

embryonic brains, dissected on ice, enzymatically dissociated, and seeded (8 million cells) 
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on 100 mm2 plates coated with 50ug/mL Poly-D-Lysine (Millipore).  Neurons were 

maintained with Neurobasal Media (Life Technologies), 2% B27 (Life Technologies), 1% 

Glutamax (Life Technologies), and 1% Penicillin-Streptomycin (Sigma) under 5% CO2 at 

37°C. Media was replenished every 4 days. Experiments were carried out using neurons 

that had been cultured for 5-7 days in vitro unless otherwise specified.   

 

2.5 Immunocytochemistry—Neurons (1x106) were plated on coverslips coated with Poly-

D-Lysine.  After 5 days in culture, neurons were fixed with 4% paraformaldehyde (15 min at 

room temperature) and treated with 100mM glycine in PBS (10 min). Fixed neurons were 

permeabilized with 0.1% Triton X-100 (10 min), and blocked with 10% normal goat serum in 

PBS (60 min). Fixed neurons were incubated with primary antibodies (overnight at 4°C), 

washed 3x with PBS, and incubated with secondary antibodies (60 min at room 

temperature). Slides were washed 3x with PBS and mounted using anti-fade DAPI mounting 

media (Life Technologies). Neurons were examined using a TCS SPE microscope-camera 

(Leica).  

 

2.6 Discontinuous sucrose gradient for endosome enrichment— Endosomally-enriched 

fractions were obtained from neuron lysates by fractionation using a discontinuous sucrose 

gradient, as described (323, 324). Briefly, after 5-7 days in vitro (DIV) neurons were washed 

with PBS, and gently scraped from the plate using a rubber cell scraper. Neurons were 

collected by centrifugation (1500 x g for 5 min) and resuspended in homogenization buffer 

(HB; 20 mM HEPES pH 7.4, 0.25 M sucrose, 2 mM EGTA, 2 mM EDTA, and 0.1 mM DTT) 

containing a protease inhibitor cocktail (112 μM leupeptin, 3 μM aproptinin, 112 μM PMSF, 

and 17 μM pepstatin). Neurons were lysed by passage through a 22-g needle 20 times, or 

until 80% of cells were lysed as demonstrated by assessing trypan blue exclusion. Post-

nuclear supernatant (PNS) was obtained by centrifugation of lysed cells (2000 x g for 10 
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min). The concentration of sucrose in PNS was adjusted to 40.6% and PNS (440 μL) was 

loaded at the bottom of a 2ml ultracentrifugation tube and overlaid with three layers of 

sucrose: 35% sucrose (660 μL), 25% sucrose (440 μ L), and 8% sucrose (500 μL). All 

sucrose-containing solutions also contained imidazole (3mM) and EDTA (1mM, pH 7.4). The 

gradient was centrifuged (150,000 x g for 60 min, model TLS55; Beckman Coulter). After 

centrifugation, 200uL fractions were collected from the top of the gradient (10 steps per 

gradient). Fractions were diluted using at least 1:1 in HB and membranes were pelleted by 

centrifugation (150,000xg for 30 min). A summary of the steps of this gradient, and a sample 

gradient after centrifugation is shown in Figure 2A. 

 

2.7 Cytosol preparation— Mammalian cytosol: Rat brain cytosol was produced as 

described (Sun, JCB 2003). For cytosol prepared from rat cortical neurons, neurons were 

scraped and centrifuged (2000 x g for 5 min at 4 °C). This neuron pellet was resuspended in 

homogenization buffer (HB; described above) with protease inhibitors (112 μM PMSF, 3 μM 

aprotinin, 112 μM leupeptin, 17 μM pepstatin), and sonicated 3 times (8 pulses of 1 second 

at output control 2; Branson Sonifier 250, VWR Scientific). The resulting lysate was 

centrifuged (2000 x g for 10 min at 4°C) and the supernatant was further centrifuged 

(100,000 x g for 60 min at 4°C). The supernatant was collected as cytosol and protein 

concentrations were calculated using a BCA assay (Pierce).  

Yeast cytosol: Saccharomyces cerevisiae deletion strains (Dharmacon) were plated 

on YPD plates (20 g/L bactopeptone, 10g/L yeast extract, 16 g/L agar, 2% dextrose) with 

G418 (500 μg/mL), and incubated overnight at 30°C. The parental strain was cultured 

without antibiotic. Colonies were inoculated in YPD media (5 mL) and incubated overnight 

on a shaker at 30°C. A secondary culture of YPD media (50 mL) was inoculated with the 

overnight culture and grown until OD600 reached 0.8-1.0. Cells were collected (3000 x g for 

10 min) and washed with ddH2O, followed by TP buffer (20 mM Tris, pH 7.9; 0.5 mM EDTA; 
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10% glycerol; 50 mM NaCl, 112 μM leupeptin, 3 μM aproptinin, 112 μM PMSF, and 17 μM 

pepstatin). The final pellet was resuspended in 100 μL of TP buffer.  Cells were lysed using 

glass beads.  Lysate was centrifuged (3000 x g for 10 min), and the supernatant was 

collected and further centrifuged (100,000 x g for 60 min) to collect cytosol. Protein 

concentrations were calculated using a BCA assay (Pierce). The supernatant was divided 

into 160 μg aliquots and stored at -80 °C.  

 

2.8 Immunoprecipitation and Immunodepletion— For co-immunoprecipitation 

experiments, neurons were collected using a rubber scraper, followed by centrifugation 

(1500 x g for 5 mins). Neurons were lysed using RIPA Buffer (10 mM Tris-Cl pH 8, 1 mM 

EDTA, 0.5 mM EGTA, 1% Triton X-1000, 0.1% sodium deoxycholate, 140 mM NaCl) 

containing protease inhibitors (60 min at 4°C with end-over-end rotation) followed by 

centrifugation (20,000 x g for 10min). For immunodepletion experiments, rat brain cytosol 

was isolated from lysate that was centrifuged (100,000xg for 60min). Cytosol was then 

incubated with 1 μg of antibody per 100μg of cytosol with the addition of a protease inhibitor 

cocktail (overnight with end-over-end rotation). Samples were subsequently incubated with 

washed protein A agarose beads (15 μL) for 4h at 4°C. Following brief centrifugation (1000 x 

g for 3 seconds) to separate beads from supernatant, immunodepleted supernatant was 

collected for use in cell-free endosomal reconstitution assays (described below). For 

immunoprecipitation, beads were washed (3x with 1X PBS) prior to resuspension in sample 

buffer and immunoblotting.  

 

2.9 Cell-free endosomal reconstitution assay—A summary of this assay is presented in 

Figure 2B. Reconstitution of endosomal maturation (and formation of inwardly-budded 

vesicles) was performed as previously described (173, 296, 325), with some modifications. 

Briefly, early endosomes from primary neurons were obtained from a discontinuous sucrose 
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gradient (described above), and resuspended in HB. Each reaction (50 μL) contained 

endosomal membranes, mammalian cytosol (75μg) or yeast cytosol (160μg), and an ATP 

regeneration system (2 mM MgATP, 50 μg/mL creatine kinase, 8 mM phosphocreatine and 

1mM). Reactions were incubated (3 hours at 37°C) prior to analysis (as below).  

For experiments examining the movement of full-length APP into the endosomal 

lumen, reactions (as above) were followed by trypsin-treatment (10 μl of 0.25 μg/μL trypsin; 

30 min at 4°C) and centrifugation (20,000 x g; 30 min at 4°C). Supernatant was aspirated 

and pellet was resuspended in sample buffer for immunoblotting. Resultant blots were 

probed with an antibody that recognizes the C-terminal epitope APP (Sigma).  For 

experiments examining the generation of Aβ42, reactions were centrifuged (20,000xg for 30 

min at 4°C) and pellets were resuspended in HB for analysis by ELISA.   

Western blot densitometry was quantitated using Image J (NIH). For analysis of 

experiments using yeast cytosol, quantitation of immunoblot bands from deletion strains 

were normalized to bands obtained in reactions containing parental control. For analysis of 

experiments using mammalian cytosol, quantitation of immunoblot bands from reactions 

using depleted or transfected cytosol were normalized to immunoblot bands obtained in 

reactions containing IgG-treated cytosol.  

In experiments involving C3 (also known as β-Secretase Inhibitor IV – CAS 797035-

11-1), endosomal membranes were treated with drug (20uM) or vehicle for 15 minutes at 

37°C, prior to use in reactions containing cytosol and ATP regeneration system.  

 

2.10 Cell transfection and lentivirus production—TLA-HEK 293T cells were transfected 

with third-generation lentiviral packaging plasmids (pMLg/pRRE, pRSV-Rev, pMD2.g; 

Addgene) and target DNA using Lipofectamine 3000 (Life Technologies), according to 

manufacturer’s instructions. After 48 hours, media containing virus was passed through a 

0.22um PVDF filter (VWR) and applied to neurons. After 24 hours, virus was removed and 



 22 

conditioned media (media that has been previously exposed to neurons, and as such, 

contains secreted factors that might aid neuronal survival in culture) added to neurons. For 

experiments in which exosome production was measured after lentiviral transduction, 

conditioned media was centrifuged (150,000 x g for 2 hours), passed through a 0.22um 

filter, and warmed to 37°C prior to addition to neuronal cultures. 

 

2.11 Immunoblotting— Samples were separated using SDS-PAGE and transferred onto 

nitrocellulose membranes (Genesee). All primary antibodies were incubated overnight at 

4°C, and all secondary antibodies were incubated for 60 min at room temperature. 

Membranes were incubated with ECL 2 (Pierce) and developed using a Typhoon FLA 7000 

(GE).  

 

2.12 ELISA— The murine Aβ42 enzyme-linked immunosorbent assay (ELISA) kit (Life 

Technologies) was used according to manufacturer’s instructions. For analysis of 

endosomal Aβ42, endosomal membranes generated from each reaction of the cell-free 

assay were sonicated (2 x 10 pulses) and loaded onto the bottom of an ELISA well. Each 

experiment was performed at least 3 times. For experiments measuring Aβ42 secretion, 

100L of conditioned media was loaded onto wells and each sample was measured in 

duplicate. Each experiment was performed at least 3 times.  

 

2.13 Statistical Analysis—For the comparison of two means, a paired t-test was performed 

for the determination of significance. For the comparison of three or more means, a one-way 

ANOVA with post-hoc Tukey test was used to determine significance. A p-value of < 0.05 

was considered statistically significant with an n=>3.  
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Figure 2A. Discontinuous sucrose gradient for separation of endosomal 

subpopulations in primary cortical neurons. Post-nuclear supernatant was loaded at the 

bottom of a discontinuous sucrose gradient. After ultracentrifugation (150,000 x g for 60 min) 

interfaces accumulate material that corresponds to endosomal subpopulations.  
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Figure 2B. Schematic of the cell-free endosomal maturation assay. After obtaining an 

enriched population of early endosomes from a discontinuous sucrose gradient, the location 

of APP on these endosomes can be determined via susceptibility to trypsin cleavage. (a) 

Early endosomes from primary cortical neurons contain APP, as shown by immunoblot. (b) 

Treatment of early endosomes with trypsin results in a loss of APP immunoreactivity, 

suggesting APP is localized on the limiting membrane of these endosomes. (c) In our cell-

free assay, early endosomes are incubated with cytosol and an ATP regeneration system, 

that supports the formation of internal vesicles within endosomes. If APP is transported into 

internal vesicles it will be protected from protease treatment and APP will be visible on 

immunoblot. 
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Chapter 3. Endogenously Expressed Amyloid Precursor Protein (APP) is 

localized on neuronal endosomes  

Rationale: Pathological cleavage of APP into A fragments underlies the plaque 

pathology that is a hallmark of Alzheimer’s Disease. While we understand much about the 

enzymes involved in APP cleavage(3, 4, 89), the cellular location of these cleavage events 

is unclear. There is considerable evidence suggesting that endosomes may be the location 

of pathologic APP cleavage.  However, APP trafficking through endosomes is the subject of 

significant controversy in the scientific literature. In particular, the cytosolic requirements for 

APP movement from early to late endosomes and the implications of this movement for 

pathogenic processing are unclear. To address this scientific problem, I chose to use a 

cellular model, cultured primary cortical neurons, that is both physiologically relevant for 

Alzheimer’s Disease and is tractable for mechanistic examination. In this chapter, I address 

the characterization of this model.  

APP trafficking through endosomes has been observed in a variety of cell types, 

(194, 300, 305–307, 315). However, many of the published experiments examining APP 

trafficking have employed approaches including overexpression of exogenous APP or 

examination of trafficking events in heterologous non-neuronal cells. These experiments 

have greatly contributed to our understanding of APP movement through subcellular 

compartments, but it is unclear whether the results obtained are comparable to the itinerary 

of endogenous APP in neurons. To begin my approach of this scientific question, I 

examined whether endogenous APP is expressed in neurons in my preparation (cultured 

primary cortical neurons from E17 rat pup brains) at the time in culture when I would be 

investigating endosomal trafficking. Using immunocytochemistry and two different APP 

antibodies (Figure 3A), I observed that APP is expressed primarily in neurons (as shown by 

colocalization of APP with the neuronal marker, MAP2).  
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After establishing that APP was expressed in cultured neurons, I investigated 

whether APP is colocalized with endosomal markers in the absence of exogenous stimuli. I 

immunolabeled neurons using APP antibodies, as well as antibodies against endosomal 

marker proteins early endosomal antigen 1 (EEA1, a marker of early endosomes) and Rab7 

(a small GTPase that identifies late endosomal compartments). I observed that APP could 

be localized to distinct puncta that also contained one or another of these markers (Figure 

3B).  

 Because I was interested in examining the movement of APP through the endosomal 

pathway, I next determined whether early and late endosomal compartments from cultured 

neurons could be separated using velocity gradients, and whether APP would fractionate 

with endosomal markers in these preparations. Discontinuous sucrose gradients have been 

used extensively in the literature to separate fractions enriched in early and late endosomes 

(323, 324, 326). Using this technique, separation of post-nuclear supernatant derived from 

primary cortical neurons resulted in two major peaks (Figure 3C). The density of both 

endosomal peaks corresponds to reported values for the density of early and late 

endosomes (327). The peak observed in fractions 4 and 5 corresponds to lighter fractions in 

which both early and late endosomal markers have increased immunoreactivity. The peak 

observed in fractions 8 and 9 corresponds to more dense fractions where there is a peak in 

immunoreactivity for the EEA1 early endosomal marker. APP is enriched in both early and 

mixed endosomal peaks, although the APP-cleaving secretases BACE-1 and PS1 (a 

component of the gamma-secretase complex) are only enriched in the mixed endosomal 

fractions.  

 The Bean Laboratory has developed and characterized a cell-free endosomal 

reconstitution assay to investigate the movement of transmembrane proteins through 

endosomes (173, 296, 325). This approach examines the movement of a membrane protein 

from the limiting endosomal membrane into the internal endosomal vesicles that 
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corresponds to a critical step in which the cell determines whether a protein will be: (1) 

degraded in the lysosome, (2) become embedded in the lysosomal membrane, or (3) bud 

from the endosomal membrane for transport to other cellular compartments. In this 

approach, protease protection is used to follow the fate of an intracellular epitope of 

membrane proteins. Thus, when a transmembrane protein invaginates from the endosomal 

limiting membrane into internal vesicles within the endosomal lumen, it becomes 

inaccessible to the trypsin protease therefore assessing whether a membrane protein has 

entered the endosome lumen (refer to Figure 2B in Chapter 2). The movement of APP into 

endosomes renders its C-terminal tail inaccessible to trypsin, while APP residing on the 

endosomal membrane is susceptible to trypsin cleavage.  Protection of the APP C-terminal 

tail would happen as APP moves from the endosomal limiting membrane into internal 

vesicles.  

 We examined how accessible an APP C-terminal epitope was to trypsin treatment on 

endosomes that had been separated using a discontinuous sucrose gradient.  We 

hypothesized that in the early endosome, APP would be localized on the endosomal limiting 

membrane, suggesting that its C-terminal tail would be facing the exterior of the vesicle and 

would be cleaved by trypsin treatment. However, on the late endosome, we hypothesized 

that APP would have moved from the endosomal limiting membrane into internal vesicles 

within the mature endosome, and the APP C-terminal epitope would be inaccessible to 

trypsin.  

 We observed that APP was present on fractions enriched with early endosomes, and 

upon treatment by trypsin, immunoreactivity to APP using a C-terminal antibody was 

eliminated (Figure 3D). This suggested that the C-termini of most of the APP molecules 

present on early endosomes were exposed to the protease and that APP was therefore 

mostly residing on the limiting membrane of early endosomes. Interestingly, APP was also 

present on mixed endosomal fractions (that contain both early and late endosomes). 
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However, C-terminal APP immunoreactivity was not reduced by trypsin treatment on mixed 

endosomal fractions suggesting that the C-terminal of APP molecules on late endosomes 

was protected from proteolysis, perhaps because a large fraction of these APP molecules 

were already within the internal vesicles of late endosomes.  

These results suggest that endogenous APP is present in cultured primary cortical 

neurons and that endosomal fractions from these neurons can be separated and used in 

cell-free reconstitution reactions to investigate the mechanisms by which APP travels from 

the limiting endosomal membrane into internal vesicles, a critical step in determining the fate 

of the APP that transits this pathway.   
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Figure 3A. Endogenous APP is expressed in cultured rat cortical neurons. 

Cultured neurons were stained with fluorescent antibodies against APP, MAP2 (a neuronal 

marker), and DAPI (a nuclear stain), as shown by the first three panels A and B. The last 

panel is a merged image of all fluorescent channels.  (A) Cells present in the preparation 

were stained for both DAPI and MAP2 (rabbit antibody, Millipore). Most of the staining for 

APP (mouse antibody, Millipore) colocalizes with MAP2, suggesting the APP present in our 

culture is primarily expressed in neurons. (B) A different set of antibodies (rabbit anti-APP, 

Sigma; mouse anti-MAP2, Millipore) against the same target proteins reveal a similar result 

as in Panel A. Scale bar = 25 μm. The data shown in this figure was performed in 

collaboration with Francisco Rivera-Milián.  
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Figure 3B. Endogenous APP colocalizes with endosomal markers in primary 

cortical neurons at steady state. Neurons were fixed and stained with APP (first panel), 

endosomal markers (second panel), and the nuclear stain DAPI (third panel). The fourth 

panel represents a merged image of all fluorescent channels. Arrows mark distinct punctae 

where endosomal markers colocalize with APP.  (A) EEA1 is an early endosomal marker 

that colocalizes with endogenous APP at steady state. (B) Rab7 is a late endosomal marker 

that colocalizes with endogenous APP at steady state. Scale bar = 10um. The data shown in 

this figure was performed in collaboration with Francisco Rivera-Milián.  
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Figure 3C. Enrichment of endosomal subpopulations from cortical neurons 

through discontinuous sucrose gradient. Post-nuclear supernatant was loaded onto a 

discontinuous 8-40.6% sucrose gradient and centrifuged. Fractions were immunoblotted for 

endosomal markers (EEA1 for early endosomes and Rab7 for late endosomes), APP, and 

APP-modifying enzymes BACE1 and presenilin 1 (PS1, a component of the gamma-

secretase complex). Refractive index (RI) and calculated density of each fraction is reported 

at the bottom. A mixed endosomal peak was observed at fractions 4 and 5 (as shown by 

immunoreactivity to both EEA1 and Rab7), and an early endosomal peak was observed at 

fractions 8 and 9 (as shown by immunoreactivity to EEA1). 
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Figure 3D. APP localization on endosomes can be assessed by protease 

protection. Endosomal subpopulations were obtained from post-nuclear supernatant 

extracted from primary neurons, as described observed in Figure 3C. Untreated mixed 

endosomal fractions were analyzed via immunoblotting for presence of APP (lane 1). Upon 

treatment with trypsin, a protease, APP immunoreactivity persisted in this fraction (lane 2), 

suggesting APP is localized in a compartment inaccessible to trypsin (such as internal 

vesicles within the late endosome). Early endosome fractions were also analyzed for 

presence of APP (lane 3). Upon protease treatment, APP immunoreactivity was abolished 

(lane 4), suggesting APP in these endosomes is localized to a site accessible to trypsin, 

such as the endosomal limiting membrane. This experiment is representative of an 

experiment performed at least 3 times.  
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Chapter 4. Inward budding of endogenous APP into the mature endosome 

lumen  

Rationale: From the endosomal limiting membrane, transmembrane proteins can 

travel to different cellular destinations. The canonical route taken by membrane proteins 

involves movement from the endosomal limiting membrane into internal vesicles within the 

maturing endosome. Following transit into internal vesicles, membrane proteins can be 

degraded upon endosome-lysosome fusion or can be exported outside of the cell upon 

endosome-plasma membrane fusion. For membrane proteins to move from the endosomal 

limiting membrane into internal vesicles, cytosolic machinery is often required to sort 

proteins destined for internal vesicles from those that will remain on the limiting membrane. 

This movement of APP from the endosomal limiting membrane into internal vesicles has 

been suggested by others (305–307) to be a key location for amyloidogenic cleavage of 

APP. My previous results (Chapter 3) showed that APP is present on endosomes and that it 

is susceptible to protease cleavage on early, but not late endosomes suggesting that I could 

examine the requirements for endosomal APP trafficking, as well as how alterations in this 

trafficking might affect the fate of APP.  

 To investigate the mechanisms of endogenous APP trafficking from the endosomal 

limiting membrane into endosome lumen, I used a cell-free reconstitution assay previously 

characterized by the Bean laboratory (173, 296, 325). This assay relies on protease 

protection of cargo to examine movement of proteins (173, 328, 329), and it recapitulates 

endosomal maturation including accumulation of internal vesicles, the movement of 

membrane proteins from the limiting endosomal membrane into internal vesicles, and the 

dependence of membrane protein movement into internal vesicles on the cytosolic 
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machinery known as Endosomal Sorting Complexes Required for Transport (ESCRTs) (173, 

296).  

To confirm APP movement from the limiting endosomal membrane to internal 

vesicles, I separated early endosomes on a velocity gradient and incubated the early 

endosomes with rat brain cytosol or cytosol isolated from a parental S. cerevisiae (yeast) 

strain and an ATP regenerating system (Figure 4A). Inclusion of either mammalian or yeast 

cytosol in the reconstitution reactions was required to protect the APP C-terminal epitope 

from trypsin cleavage, suggesting that cytosolic components are necessary for the 

movement of APP from the endosomal membrane into internal vesicles.  

As summarized in the Introduction, the requirement of ESCRT machinery for the 

endosomal trafficking of APP is unclear. In particular, there is conflicting data on the role of 

early (ESCRT 0 and I) and late (ESCRT II and III) ESCRT complexes on APP trafficking 

(305, 307). In particular, deletion of early ESCRT components have been observed to both 

increase (306) and decrease (305, 307) amyloid production and secretion. I employed the 

cell-free reconstitution approach (as described in Figure 2B of Chapter 2) to directly 

determine whether ESCRT proteins are involved in APP movement from the endosomal 

membrane into its lumen.   

The capability of yeast cytosol to support APP movement into internal vesicles within 

endosomes allowed me to screen a yeast deletion library for proteins that might be required 

for the movement of APP from the limiting endosomal membrane into internal vesicles. I 

observed that components of all 4 ESCRT complexes are necessary for efficient APP 

movement into internal vesicles (Figures 4B, 4C). Thus, absence of ESCRT components 

from each of the four ESCRT complexes resulted in significant decreases in the protease 

protection of the C-terminal APP epitope, suggesting that these components are required for 

efficient movement of APP from the limiting endosomal membrane into the endosome lumen 

(Figure 4C).  
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The production of Aβ fragments is affected after deletion of ESCRT components, 

although previous studies did not address whether Aβ production in the absence of ESCRT 

components was endosomal (305–307). I investigated whether absence of ESCRT 

components affects endosomal production of Aβ42 within endosomes isolated from cultured 

neurons that had been used in the cell-free assay. Because of the limited endosomes 

obtained from each neuron, and the sensitivity limit of the ELISA, our assay does not allow 

for assessment of multiple Aβ species from one sample.  I focused on the Aβ42 species of 

APP cleavage product because of its reported increased pathogenicity and aggregation 

potential (41), compared to Aβ40, the other most common form of amyloid found in the 

human brain.  

Using the cell-free approach, with cytosol isolated from yeast strains lacking 

individual ESCRT components, I measured levels of endosomal Aβ42 following incubation 

of endosomal membranes with yeast cytosol lacking individual ESCRT components. I 

observed that Aβ42 levels were significantly increased in the absence of both early and late 

ESCRT components (Figure 4D), conditions that also resulted in decreased movement of 

APP into internal vesicles (see Figure 4C).  

I next examined whether immunodepletion of ESCRT components from mammalian 

cytosol would also affect endosomal Aβ42 levels. In particular, I wanted to understand 

whether deletion of an early ESCRT component affected APP trafficking, as the role of early 

ESCRT components in APP trafficking have been observed to both increase and decrease 

Aβ production and secretion (305–307). To this end, I immune-depleted rat brain cytosol of 

the mammalian early ESCRT, Hrs, and employed this cytosol in our cell-free endosomal 

reconstitution assay. I confirmed the depletion of Hrs using immunoblotting (Figure 4E). I 

incubated Hrs-depleted cytosol with APP-containing early endosomes in the cell-free 

endosome maturation assay and observed that the protease protection of APP was 

significantly reduced in Hrs-depleted conditions compared to IgG-treated cytosol (Figure 
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4F). Using a similar experimental design, I used endosomes in reactions with Hrs-depleted 

and control (IgG treated) cytosols and examined Aβ42 production. Interestingly, Aβ42 

production was dramatically increased in the absence of Hrs (Figure 4G).  

The results from these experiments suggest that ESCRT complexes may assist in 

the trafficking of APP through endosomes and confirm that absence of early and late 

ESCRT components result in increased Aβ42 accumulation in the endosomal lumen.  
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Figure 4A. APP movement from the endosomal limiting membrane into internal 

vesicles is mediated by cytosolic components. Early endosomes were isolated from rat 

cortical neurons using velocity gradients, as described (see Chapter 2), and incubated with 

cytosol isolated from yeast or rat brain. (A) Immunoblotting of early endosome fractions 

demonstrates that this fraction contains APP protein (lane 1). Treatment with trypsin results 

in the loss of APP immunoreactivity (lane 2), suggesting APP is present on the endosomal 

limiting membrane. Incubation of early endosomes with parental yeast cytosol results in 

persistent APP immunoreactivity despite trypsin treatment (lane 3). This suggests that 

cytosolic components can induce the movement of APP into trypsin-resistant compartments, 

such as the endosomal lumen.  (B) As in A, APP is present on early endosomal membranes 

(lane 1), and is susceptible to trypsinization (lane 2). Incubation with rat brain cytosol results 

in persistent APP immunoreactivity despite trypsin treatment (lane 3), suggesting that rat 

brain cytosol also supports movement of APP into internal vesicles.  
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Name 

ESCRT 
Mammalian 
Homolog 

ESCRT 
Complex 

 
Genotype 

 
Source 

BY4741 *parental 
strain 

--- MATa his3Δ1 leu2Δ0 ura3Δ0 
met15Δ0 

Dharmacon 

Δhse1 STAM1,2 ESCRT-0 MATa his3Δ1 leu2Δ0 ura3Δ0 
met15Δ0 hse::KANMX6 

Dharmacon 

Δvps23 Tsg101 ESCRT-I MATa his3Δ1 leu2Δ0 ura3Δ0 
lys2Δ0 vps23::KANMX6 

Dharmacon 

Δsnf8 Vps22/EAP30 ESCRT-II MATa his3Δ1 leu2Δ0 ura3Δ0 
lys2Δ0 snf8::KANMX6 

Dharmacon 

Δvps24 CHMP3 ESCRT-III MATa his3Δ1 leu2Δ0 ura3Δ0 
lys2Δ0 vps24::KANMX6 

Dharmacon 

 
Figure 4B. Yeast deletion strains used to examine the role of ESCRT machinery in 

APP endosomal trafficking. This table summarizes the Saccharomyces cerevisiae deletion 

strains for ESCRT components used in this study.  
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Figure 4C. Efficient trafficking of full-length APP depends on components of all 4 

ESCRT complexes. Early endosomal membranes containing APP were obtained using 

velocity gradients (see Figure 2C of Chapter 2). Endosomal membranes were incubated 

with cytosol isolated from yeast strains lacking ESCRT components (ΔHse for ESCRT-0, 

ΔVps23 for ESCRT-I, ΔSnf8 for ESCRT-II, and ΔVps24 for ESCRT-III).  Cytosol isolated 

from a parental yeast strain served as a reaction control. For these experiments, n=4 and (*) 

denotes p<0.05. 
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Figure 4D. Absence of early and late ESCRT components leads to increased Aβ42 

production. Early endosomes containing APP were isolated with from velocity gradients 

and incubated with yeast cytosol isolated from yeast strains lacking an early ESCRT 

component (ΔHse) or a late ESCRT component (ΔSnf8). After incubation, endosomes were 

collected and analyzed via ELISA for Aβ42 levels. The amount of Aβ42 present in 

endosomes following reactions containing cytosol from each deletion condition was 

normalized to the Aβ42 level obtained in a reaction containing cytosol isolated from a 

parental yeast control. For these experiments, n=4 and (*) denotes p<0.05.     
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Figure 4E. Immunodepletion of Hrs from rat brain cytosol.  Rat brain cytosol was 

prepared as previously described (173). Hrs was immunoprecipitated from cytosol, and 

equal amounts of cytosol were separated using SDS-PAGE and immunoblotted using anti-

Hrs antibody. .  
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Figure 4F. Depletion of Hrs significantly reduces APP movement into endosomal 

internal vesicles. Rat brain cytosol was immunodepleted of Hrs (see Figure 4E) and 

incubated with APP-containing early endosomes obtained from velocity gradients. After 

incubation and trypsin treatment, APP levels are significantly decreased in the ΔHrs 

condition, suggesting that Hrs is required for efficient movement of APP into internal 

vesicles within the endosomal lumen. For these experiments, n=3 and p=0.025.  
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Figure 4G. Absence of Hrs results in significantly increased Aβ42 in endosomes. 

APP-containing early endosomal membranes were incubated with cytosol that had been 

immunodepleted using anti-Hrs antibodies (see Figure 4E). After cell-free endosomal 

reconstitution reactions resulting endosomal membranes were recollected and analyzed by 

ELISA for Aβ42 levels. For these experiments, n=3, p=0.02.  
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Chapter 5. UBE4B is an E3 ubiquitin ligase that binds to, ubiquitinates APP 

and mediates efficient APP trafficking on endosomes 

Rationale: My data, along with the work of other groups, suggests a role for ESCRT 

proteins in the endosomal trafficking of APP. However, it is thought that ESCRT recognizes 

ubiquitinated cargo at the endosomal membrane. If so, APP must be ubiquitinated at this 

cellular location by a specific E3 ligase. I examined a candidate enzyme, UBE4B, and show 

that it affects APP trafficking at endosomes. My work suggests that UBE4B is a specific 

ligase that ubiquitinates APP at endosomes.   

  To determine whether APP can be ubiquitinated at steady state in cultured cortical 

neurons I immunoprecipitated APP and observed that it is ubiquitinated (Figure 5A).   I 

hypothesized that endosomally localized E3 ubiquitin ligases might be potential APP 

modifying enzymes that could affect APP trafficking at endosomes. In collaboration with Drs. 

Ritika Tewari, Monica Goss and Ting Wang we observed that one of these endosomally 

localized E3 ubiquitin ligases, UBE4B, co-immunoprecipitates with APP (Figure 5B) from 

neurons suggesting that APP and UBE4B can bind to each other.  

 To further elucidate the relationship between APP and UBE4B, I obtained SK-N-AS 

(a neuroblastoma cell line) that overexpressed UBE4B from another member of the lab, 

David Savage. I observed that SK-N-AS cells expressing increased UBE4B possessed 

significantly decreased levels of APP (Figure 5C) suggesting that there may be a 

relationship between UBE4B expression and APP stability.  

 I next used an shRNA against UBE4B in neurons to determine whether depletion of 

UBE4B would alter neuronal APP levels. The efficiency of lentiviral delivery was confirmed 

by infection of neurons with a virus containing GFP (Figure 5D). I then used this strategy to 

deliver an shRNA targeted toward UBE4B and a control shRNA containing a scrambled 

sequence. I observed that the shRNA containing a UBE4B target sequence resulted in 
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UBE4B protein depletion and decreased levels of APP in neuron lysate (Figure 5E), 

compared to the scrambled shRNA.  

 To assess whether UBE4B levels affected the state of APP ubiquitination in cortical 

neurons, I immunoprecipitated APP from neurons that had been treated with scrambled 

shRNA or shRNA against UBE4B. I observed that absence of UBE4B led to significantly 

decreased levels of APP ubiquitination (Figure 5F). 

 To determine whether UBE4B affects endosomal APP trafficking, I immunodepleted 

UBE4B from rat brain cytosol (Figure 5G) and used this cytosol in reactions containing early 

endosomes. Interestingly, immunodepletion of UBE4B did not significantly affect other 

endosomally associated cytosolic proteins that are known to bind UBE4B, such as Hrs 

(Figure 5H). Incubation of endosomes with UBE4B-depleted cytosol resulted in significantly 

decreased protease protection of the C-terminal epitope of APP compared to IgG-treated 

control cytosol (Figure 5I). These data suggest that UBE4B can ubiquitinate APP and that 

movement of APP into internal vesicles within the maturing endosome cannot occur 

efficiently in the absence of UBE4B.  

I next examined whether incubation of endosomes with UBE4B-depleted cytosol 

resulted in increased endosomal Aβ42 levels (Figure 5J). The increase observed was 

comparable to the Aβ42 increase observed when the early ESCRT Hrs was depleted in a 

similar experiment (See Chapter 4). To confirm that the Aβ42 was produced at endosomes 

during our cell-free assay, I performed cell-free reactions that included endosomes and the 

UBE4B-depleted cytosol, in the presence and absence of the BACE inhibitor, C3. I observed 

that reactions performed in the presence of the BACE1 inhibitor resulted in significantly 

decreased levels of Aβ42 compared to the amount of Aβ42 generated in the absence of this 

drug (Figure 5K). These data suggest that absence of UBE4B leaves APP more susceptible 

to cleavage by BACE-1, potentially due to increased time spent on the endosomal limiting 

membrane.    
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Figure 5A. APP is ubiquitinated at steady-state in primary cortical neurons. (A) APP 

was immunoprecipitated from neuron lysate (Lane 1). As a control, neuron lysate was 

incubated with a non-specific IgG control (Lane 2). (B) Ubiquitin co-immunoprecipitated with 

APP (Lane 1) but not with a nonspecific IgG (Lane 2). Together, these data suggest APP is 

ubiquitinated at steady state in primary cortical neurons.   
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Figure 5B. UBE4B co-immunoprecipitates with APP. Using lysate from the neuron-like 

cell line SK-N-AS, UBE4B was immunoprecipitated. Loaded material is shown in Lane 1. On 

immunoblotting, APP is shown to co-immunoprecipitate with UBE4B (Lane 2), but not with 

an IgG-treated control (Lane 3). Experiments performed in conjunction with Dr. Ritika 

Tewari.  
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Figure 5C. Overexpression of UBE4B leads to decreased APP levels in lysate. (A) 

UBE4B was overexpressed under a CMV promoter in SK-N-AS, a neuron-like human cell 

line (Lane 2). As a control, untransfected SK-N-AS cells are shown in Lane 1. (B) Increased 

UBE4B led to significantly reduced levels of APP in cell lysate, as demonstrated by 

quantitation. For these experiments, n=3 and p=0.03.  
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Figure 5D. Efficiency of lentiviral transfection in primary cortical neurons. Primary 

cortical neurons (as shown in the first panel) were successfully transduced with lentiviral 

particles packaged with a pFUGW plasmid (which encodes the GFP gene), as shown by the 

abundant expression of GFP in culture (second panel). The merged (third) panel 

demonstrates the high efficiency of transduction. 
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Figure 5E. UBE4B depletion in primary cortical neurons leads to increased APP levels 

in lysate. UBE4B was depleted from primary cortical neurons using lentivirally-delivered 

shRNA (as detailed in Chapter 2). As a control, neurons were also transduced with virus 

containing a non-specific shRNA (scrambled, Lane 1). Depletion of UBE4B was confirmed 

by immunoblotting (Lane 2). Depletion of UBE4B leads to significant increases in APP levels 

in lysate, as shown by quantitation. For these experiments, n=3 and p=0.04.  
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Figure 5F. Absence of UBE4B leads to decreased APP ubiquitination.  Lysates for 

immunoprecipitation were obtained from primary cortical neurons treated with lentivirus 

packaged with either scrambled or scrambled shRNA against UBE4B. (A) Left, a third of the 

material used for immunoprecipitation was used as a loading control. Right, lysates were 

immunoprecipitated with anti-APP or a nonspecific IgG control antibody. Immunoprecipitated 

materials were immunoblotted with antibodies against APP or ubiquitin. Immunoblot against 

ubiquitin was quantitated and normalized to immunoprecipitated APP in the scrambed and 

shUBE4B conditions. For these experiments, n=5 and p=0.041.   
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Figure 5G. Immunodepletion of UBE4B from rat brain cytosol.  UBE4B was 

immunodepleted from rat brain cytosol, and confirmed via immunoblotting (Lane 2). As a 

control, a separate sample of rat brain cytosol was immunodepleted with a nonspecific IgG 

control (Lane 1). UBE4B levels are markedly decreased in the ΔUBE4B condition, 

compared to IgG-treated cyotosol. 
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Figure 5H. Depletion of UBE4B does not affect Hrs levels in cytosol. UBE4B was 

immunodepleted from rat brain cytosol, and confirmed via immunoblotting (See Figure 5G). 

Immunodepletion of UBE4B did not affect levels of the early ESCRT component, Hrs, known 

to bind UBE4B and required for the efficient trafficking of many membrane proteins at 

endosomes, including APP (detailed in Chapter 4). Lane 1 shows IgG-treated cytosol. Lane 

2 shows cytosol immunodepleted for Hrs. Lane 3 shows cytosol immunodepleted for 

UBE4B.  
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Figure 5I. Absence of UBE4B leads to decreased APP protection from trypsin. APP-

containing early endosomes were incubated with IgG-treated cytosol (Lane 1) or ΔUBE4B 

cytosol (Lane 2). After trypsin cleavage, APP levels are significantly decreased in the 

ΔUBE4B condition, when compared to IgG control. In these experiments, n=4 and p=0.033.  
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Figure 5J. Absence of UBE4B leads to significantly increased levels of Aβ42 in 

endosomes.   APP-containing early endosomes were incubated with IgG-treated cytosol 

(Lane 1) or ΔUBE4B cytosol (Lane 2). After incubation, endosomes were recollected and 

analyzed for Aβ42 via ELISA. Aβ42 levels significantly increased in the ΔUBE4B condition, 

when compared to IgG control. In these experiments, n=3, p=0.04.  

 

  



 56 

 

Figure 5K. Production of Aβ42, caused by absence of UBE4B, can be significantly 

decreased in the presence of the BACE inhibitor, C3. APP-containing early endosomes 

were incubated with 20uM C3 prior to incubation with ΔUBE4B cytosol. After endosomal 

recollection, endosomes were analyzed for Aβ42 levels via ELISA. For these experiments, 

n=4, p=0.019.  
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Discussion  
 

The trafficking of APP through subcellular compartments has been a matter of 

intense investigation because of the role that these trafficking events may play in its 

amyloidogenic cleavage.  Reports suggesting that APP may be cleaved at specific locations 

in the secretory and endocytic pathways have not clarified the primary sites underlying 

pathogenic APP fragment formation (3, 330–334). While the trans-Golgi network (TGN) and 

endosomes are likely important sites for production of Aβ, I focused my investigation on 

endosomal APP trafficking because of the strength of the evidence in favor of amyloid 

production at this cellular site. First, abnormal endosomal morphology and increased 

endosomal accumulation of pathogenic Aβ40 and Aβ42 peptides in the brain of individuals 

with dementia suggest that endosomal dysfunction may be key to its pathogenesis (335, 

336). Second, APP and β-secretase (BACE1) co-localize on endosomes (299, 300, 337, 

338). Third, both BACE1  (103, 112, 297)and the γ-secretase complex are enzymatically 

active at endosomes(83, 96, 123, 125). Fourth, BACE1 has optimal activity at the low pH 

found in endosomes(298, 339), and BACE1 inhibitors tethered to endosomes result in 

decreased APP processing into Aβ in vitro(340). Given the topology of APP on the 

endosomal membrane, amyloidogenic APP cleavage into Aβ would result in Aβ 

accumulation in the lumen of the endosome. Fifth, internalization of APP from the PM into 

endosomes is required for secretion of Aβ into the extracellular space(312, 315). These data 

point to endosomes as an important site for pathogenic APP cleavage. The findings of my 

dissertation contribute to this important scientific discussion as they approach the problem in 

a novel way, focusing on neuronal endosomes containing endogenous APP using 

biochemical and cell biological approaches. 
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6.1 Endogenously Expressed Amyloid Precursor Protein (APP) is localized on 

neuronal endosomes  

 The available literature on APP trafficking through endosomes has been confounded 

by the differences in cellular models (e.g. heterologous cell lines, neurons differentiated in 

vitro) used to study this process (3, 4, 89). Murine models have been used extensively in 

studies that inform our current understanding of Aβ production in the brain (341–344). I used 

a tractable model system that is relevant for APP processing in brain, primary cultured rat 

cortical neurons, to understand the cell biology of APP trafficking, 

To confirm that cultured cortical neurons from my preparations expressed APP, I 

performed a series of experiments using two different APP antibodies, as well as antibodies 

against the neuronal marker, MAP2 (see Figure 3A). The results from that experiment 

confirmed that APP is mostly expressed in neuronal cells in my preparations. Moreover, 

their morphology provides evidence that the neurons within my preparation are healthy (321, 

345, 346). It has been my experience that alterations in the culturing of these delicate cells 

greatly impacts the quality of the results obtained, and variance in neuronal health can 

interfere with observations. Aside from morphology, colocalization of APP with a neuronal 

marker (MAP2) provides evidence that in my preparation, APP is expressed in mostly in 

neruons, as opposed to glial cells or other brain associated cells that could contaminate 

cultures. In my experiments, no pharmacological agents were used to suppress the growth 

of supporting cells, so all experiments were performed between 5-10 days in vitro. It is 

important to note that these neurons are still considered developing neurons, which could 

impact my results. However, it is important to remember the conserved nature of the 

biological problem being examined and the fact that the mechanisms I have studied are 

similarly preserved in organisms across the eukaryotic taxon.  

Much of the previous research examining APP trafficking through endosomes has 

been performed using cell lines overexpressing APP, expressing tagged APP, or with 
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altered compartments that facilitate examination of their endosomal trafficking. This work 

has provided an essential framework that informs our current understanding of the itinerary 

of this protein within the cell, and that has laid the foundation for the work exposed in this 

dissertation. However, there are abundant examples in the scientific literature in which 

overexpression of a protein can saturate trafficking mechanisms in the cell in both endocytic 

and secretory pathways (347–349), and can obscure the interpretation of data generated 

under such conditions. Moreover, fusion of large epitope or fluorescent tags (e.g. green 

fluorescent protein (GFP) can change the protein structure or cause multimerization (350–

352), that can potentially alter protein function. For these reasons, examining the trafficking 

of endogenously expressed APP without the addition of tags is appealing and likely more 

accurately reflects trafficking in the human condition where APP is only overexpressed 

under limited circumstances, as in Down Syndrome (55, 64–66).  

To examine the trafficking of a membrane protein through endosomes, many studies 

employ pulse-chase methods in which binding of a ligand to a surface protein, triggers its 

internalization into endosomal compartments (353–356). However, the absence of an 

established ligand for APP (4) made the possibility of a pulse-chase experiment unfeasible. 

Although some studies have observed that events like synaptic activity can trigger APP 

internalization (315–317, 357), I wanted to understand whether, in the absence of 

investigator-driven stimuli, APP was localized in endosomal compartments. Our results 

confirmed that APP colocalized with early and late endosomal markers within our cellular 

model (Figure 3B), suggesting that in the absence of exogenous stimuli, APP enters the 

endocytic pathway as part of its typical itinerary.   

The use of velocity gradients to separate cellular organelles in a variety of tissues 

and cells (including neurons) has been extensively described (324, 327, 358, 359). I 

observed APP in fractions enriched in both early endosomes and fractions enriched in 

mixed (early and late) endosomes (Figure 3C). It is likely that the mixed endosomal peak 
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reflects intermediate states of the maturing endosome (150, 152, 154–156, 360).  

Interestingly, I observed that APP also peaks in fractions that coincide with the endosomal 

peaks, suggesting that, at steady state, APP can localize to endosomes. However, BACE1 

and PS1 (the enzymes that modify APP) seem to only be enriched in the mixed endosomal 

fraction. Other studies in the literature have observed APP-modifying enzymes to be present 

in endosomes (299, 300, 337), but their absence in early endosomal fractions suggests they 

can encounter APP at specific endosomal subpopulations. Despite this, it is still plausible 

that these enzymes are present (although not enriched) in early endosomal fractions, as 

evidenced by the accumulation of amyloid beta in in vitro assays, a product of the specific 

cleavage of APP by these enzymes.  

Since the fractions obtained from this gradient are not truly pure preparations of each 

endosomal subpopulation, I confirmed that protease protection (173, 328) was a way to 

assess the location of APP with respect to the maturing endosome (Figure 3D).  The 

differential response I obtained to protease protection with respect to the C-terminal epitope 

of APP in these two subpopulations allowed me to tailor a previously developed cell-free 

endosomal reconstitution assay (173, 296, 325) to the investigation of APP movement 

through endosomes.  

It is important to note that this gradient isolation of endosomes only separates these 

organelles based on their density. It cannot distinguish between endosomes destined to 

target particular neuronal projections, such as axons or dendrites, versus those localized to 

the neuronal soma (361–363). Two recent studies(299, 300) showed that APP interacted 

with BACE-1 preferentially at endosomes from dendritic spines, presynaptic boutons, and 

axons. However, while these endosomal subpopulations might have different cellular 

destinations, they have been characterized using endosomal markers similar to those used 

in this dissertation (299, 300). It is currently not possible to identify or separate these 
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subpopulations for in vitro use. Future studies could identify the neuronal location where the 

endosomal proteins identified in these studies affect APP trafficking in intact neurons.  

 

6.2 Inward budding of endogenous APP into the mature endosome lumen  

I observed that both yeast and mammalian cytosol supported the movement of APP 

from the endosomal limiting membrane into internal vesicles, as shown by the increase in 

protease protection that resulted from incubating these early endosomes with each type of 

cytosol (Figure 4A). This result provides further evidence of the conserved nature of 

endosomal trafficking machinery (as discussed in the Introduction). Furthermore, the 

successful implementation of this in vitro examination of APP trafficking in neuronal 

endosomes will allow future studies to examine the trafficking of other membrane proteins in 

the brain using this approach.   

The data presented supports our interpretation that trypsin protection can assess the 

location of APP with regard to the maturing endosome, and that cytosolic components 

support the development of internal vesicle formation in endosomes, even under cell-free 

conditions. Previous studies from the Bean laboratory have characterized this assay using 

other tools such as electron microscopy (173, 296, 325). However, it could be that the 

differential response to trypsin we observe in early vs mixed endosomal populations results 

from other factors (e.g. inhibitors to trypsin present in the preparation). In collaboration with 

Dr. Neal Waxham, I have performed preliminary experiments to address these questions 

and confirm that our in vitro assay can recapitulate endosomal maturation and internal 

vesicle formation in primary cortical neurons. In these experiments, we are using cryo-

electron microscopy to examine the distribution of multi-vesicular endosomes (which have a 

distinct morphology) in endosomal fractions obtained from discontinuous sucrose gradients. 

This will allow us to assess the degree of endosomal subpopulation separation yielded by 

the gradient by using a different parameter (endosome morphology) besides endosomal 
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molecular markers. This assessment will also allow us to confirm whether the cell-free 

endosomal reconstitution assay leads to quantifiable increases in multi-vesicular 

endosomes within our assay reactions. Published work from the Bean laboratory has 

previously used electron microscopy to confirm this in heterologous cell lines (173), but not 

in primary neuronal cultures.  

The acquisition of early endosomal membranes by using velocity gradients, and 

subsequent cell-free reactions yields very small amounts of material.  I observed that 

successful immunoblot detection of APP on endosomes required at least 10 million neurons 

per cell free reaction. For this reason, I limited my investigation of the role of ESCRT 

proteins in APP trafficking to one component per ESCRT complex (described in Figure 4B). 

Using the described assay and yeast deletion strains for a component of all ESCRT 

complexes, I observed that members of the ESCRT 0, I, II, and III complexes are needed for 

efficient movement of APP from the endosomal limiting membrane into internal vesicles 

(Figure 4C). These data confirm previous observations (305–307) that ESCRT proteins are 

involved in APP endosomal trafficking, and strengthen the evidence supporting the 

endocytic pathway as an important cellular site for APP trafficking in neurons.  However, 

there are differences in how these previous studies hypothesized endosomal production of 

Aβ occurs as a result of the absence of early (ESCRT-0, I) versus late (ESCRT-II, III) 

ESCRT proteins. As discussed in the introduction, Choy et al.(305) observed that deletion of 

early ESCRT components retained APP at endosomes and inhibited Aβ40 secretion, 

whereas deletion of a late ESCRT component redirected APP into secretory compartments 

and enhanced secretion of Aβ40. Morel et al.(306) observed that deletion of early ESCRT 

components also resulted in APP retention in endosomes (specifically, the endosomal 

limiting membrane), but led to increased Aβ40 secretion. Finally, Edgar et al.(307) observed 

that deletion of early ESCRT components led to increased intracellular Aβ40, but decreased 

Aβ40 secretion.  
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Using yeast deletion strains, I observed that absence of early and late ESCRT 

components led to a small but statistically significant increase in endosomal accumulation of 

Aβ42 (Figure 4D). Due to limitations in the amount of neuronal material available, I chose to 

only examine Aβ42 production in endosomes because of its increased pathogenicity and 

greater association with the development of AD (see Introduction), and because previous 

studies on the endosomal production of amyloid did not examine production of this species. 

Also, since there was significant controversy in the literature specifically regarding the role of 

early ESCRT proteins in amyloid production at endosomes (305–307), I examined how 

depletion of an early ESCRT, Hrs, affected APP trafficking. My results show that Hrs is 

required for efficient movement of full-length APP into the endosomal lumen (Figures 4E-F). 

Absence of Hrs dramatically increased Aβ42 production at endosomes (Figure 4G). 

There were differences in the levels of endosomal Aβ42 generated in cell-free 

reactions containing yeast cytosol compared with reactions containing mammalian cytosol. 

Although the endosomal trafficking machinery is generally well conserved across species, it 

appears that the requirements for amyloid production through cleavage of APP are less 

efficient in reactions containing yeast cytosol in our in vitro reconstitution assay. BACE-1, is 

a transmembrane protein (104) that is not present in the yeast genome (364), so it must 

therefore be contributed by its presence on neuronal endosomes. BACE-1 can cleave APP 

in cell-free conditions (365), suggesting it does not require other cofactors for this activity. 

The γ-secretase complex requires the integration of 4 members of the complex (presenilins 

1 and 2, APH, and nicastrin), none of which are expressed in yeast (366, 367) suggesting 

that they too are contributed on neuronal endosomes. The γ-secretase complex has been 

reconstituted by expression in yeast and shown to be sufficient for the cleavage of APP 

(368, 369). Thus, while both BACE-1 and the γ-secretase complex are capable of APP 

cleavage in the absence of co-factors, amyloidogenic cleavage of APP requires localization 

of APP and BACE-1 on lipid rafts (370–373). It is possible that the yeast cytosol does not 
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efficiently recapitulate this clustering of APP and the secretases in the appropriate 

endosomal microdomains.  

The observation of intra-endosomal accumulation of Aβ42 under conditions where 

both early (examined using yeast and mammalian cytosols) and late (examined using yeast 

cytosols) ESCRT components are deleted contrasts with the observations made by Choy et. 

al(305), where only absence of late ESCRTs led to increased amyloid production. Although 

my studies did not investigate the secretion of Aβ under conditions where ESCRTs were 

deleted from whole cells, my results are in accordance with the observations made by Morel 

et al. (306) and Edgar et al.(307) who showed that deletion of early ESCRTs causes 

generation of amyloid species in endosomes. The discrepancies in the results of these 

investigations might be due to differences in the cell model used, the type of APP examined 

(human vs. murine), and the degree of expression employed (exogenous vs. endogenous). 

However, my experiments do not address all aspects of the fate of APP in the absence of 

ESCRTs. It is likely that only a fraction of APP gets cleaved into amyloid at the endosome, 

and that some APP may be exported from endosomes in budded vesicles. This hypothesis 

is consistent with the observations made by Choy et al. (305), who showed that deletion of 

Hrs led to increased recycling of APP into the TGN. The cell-free assay used herein has 

been recently adapted to examine budding of vesicles from the endosomal limiting 

membrane (unpublished work from Bean laboratory). Such an approach could be used to 

examine whether APP may traffic from endosome-TGN in the absence of ESCRTs, and to 

elucidate the molecular machinery that may be required for this itinerary.  

My observations are limited to the production of Aβ42 at endosomes, but do not 

address where these endosomes may be targeted within neurons.  Late endosomes may 

fuse with the lysosome (174, 374, 375) or with the plasma membrane (168, 376, 

377)although the mechanisms distinguishing these fusion events are unclear.  Aβ 

production in these two different populations of endosomes would have different outcomes: 



 65 

in one case Aβ would remain inside neurons and in the other Aβ would be exported into the 

extracellular environment. Although the classical AD pathology involves aggregation of 

amyloid species outside of neurons, many studies (4, 51–53) have observed that 

intraneuronal accumulation of Aβ is toxic to neurons and might precede extracellular 

deposition. 

Finally, it is not clear whether the degree of amyloid production caused by 

endosomal disturbances is sufficient to drive AD pathogenesis. As discussed in the 

Introduction, animal models deficient in ESCRT proteins have severely affected phenotypes, 

and any in vivo investigation of the role of ESCRTs in amyloidopathies would be obscured 

by the many other afflictions that these animals would develop. However, Morel et al. (306) 

observed decreased expression of components of the endosomal sorting machinery in the 

brains of people with AD, suggesting that these defects might contribute to pathogenesis in 

humans.  

 

6.3 UBE4B is an E3 ubiquitin ligase that binds to, ubiquitinates APP and mediates 

efficient APP trafficking on endosomes 

 The involvement of ESCRT proteins in APP trafficking suggests that APP is 

ubiquitinated in its passage through the endocytic pathway, since ESCRT proteins enable 

endosomal sorting by binding to ubiquitin moieties on cargo proteins at the endosomal 

limiting membrane (203, 217, 256, 273, 378). In this regard, a previous publication(306) has 

demonstrated that APP is ubiquitinated at endosomes and that this ubiquitination facilitates 

its movement into mature endosomes. Aberrant ubiquitination has been correlated with AD 

(379–383), specifically the abnormal accumulation of ubiquitinated proteins inside 

endosomes of diseased neurons (384, 385). However, the identity of the E3 ligase (the 

ubiquitinating enzyme that is thought to provide specificity to the ubiquitination process, as 

detailed in the Introduction) that ubiquitinates APP at endosomes has been unclear. 
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 APP ubiquitination has been correlated with its trafficking in previous studies. 

Ubiquilin-mediated ubiquitination of APP has been observed, although it occurs in secretory 

compartments (386, 387), prior to insertion in the plasma membrane. Also, the E3 ligase 

FBL2 was identified by microarray data as a gene downregulated in the hippocampus of AD 

subjects (388). A follow-up study discovered that overexpression FBL2 decreased 

production of Aβ40 and Aβ42 in murine hippocampal neurons (319). Although FBL2 

expression did not significantly impact cellular APP levels, the study demonstrated that 

FBL2 can ubiquitinate APP at lysine 726 and increase its degradation (319). Interestingly, 

ubiquitination of APP by FBL2 at the cell surface inhibited APP endocytosis suggesting that 

FBL2 may play a role at the plasma membrane regulating APP internalization (Watanabe 

2012). In this regard, the ubiquitination of membrane proteins at the plasma membrane can, 

but does not always, trigger the internalization of membrane proteins (389–393). In another 

study (306), mutations of lysine residues 724-726 of APP led to decreased ubiquitination of 

APP, as well as increased Aβ40 production and retention of APP at the endosomal limiting 

membrane.  

 In my experiments, I observed that the E3 ligase UBE4B affects the endocytic 

trafficking of APP in neurons. It binds to APP, potentially affects its ubiquitination, and alters 

APP levels in lysate. My observation that APP levels are significantly increased in neuronal 

lysate in the absence of UBE4B underscores the importance of this ligase in APP 

homeostasis in neurons. The only other E3 ligase known to ubiquitinate APP, FBL2, does 

not affect cellular levels of full-length APP.  

As discussed in the Introduction, UBE4B has been implicated in the endosomal 

trafficking of other membrane proteins (296). In this previous study from the Bean 

laboratory, UBE4B is recruited to endosomes by binding to the early ESCRT protein Hrs. 

Depletion of UBE4B in HeLa cells did not affect levels of Hrs or other endosomally 

associated proteins in lysate, suggesting that it does not indiscriminately affect expression of 
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other important trafficking proteins (296). Of note, I observed that immunodepletion of 

UBE4B from rat brain cytosol did not affect Hrs levels, suggesting that the effects of UBE4B 

on APP endosomal trafficking observed with the cell-free assay are not due to depletion of 

Hrs.  

My results demonstrate that UBE4B aids in the efficient movement of APP through 

endosomes. It is important to underscore that the interaction between APP and UBE4B I 

examined in cell-free reconstitution reactions occurs at endosomes, where APP is located 

prior to incubation with UBE4B-containing cytosol. These results do not exclude upstream 

interactions between APP and UBE4B molecules, but highlight the consequences of this 

interaction at the endosomal limiting membrane. While these results emphasize the 

importance of UBE4B as an endosomally-associated peripheral membrane protein, it is 

important that future investigations identify whether other protein targets are affected by 

UBE4B at endosomes. If UBE4B has many endosomally localized targets whose trafficking 

is affected by its activity, it would complicate the potential exploitation of the UBE4B-APP 

interaction for therapeutic purposes.  

In my studies, the absence of UBE4B led to dramatic increases in endosomal Aβ42. 

The 7-fold increase in Aβ42 production observed in the absence of UBE4B is similar to the 

effect that deleting an ESCRT protein, Hrs, has on Aβ42 production. Further, the 

observation that pharmacological inhibition of BACE-1 in our cell-free assay leads to 

significant inhibition of the increases in Aβ42 production produced by Hrs or UBE4B 

depletion, suggests that active cleavage of APP by BACE-1 during the reaction incubations 

results in amyloid production. These observations suggest that endosomal sorting of wild-

type APP from the endosomal limiting membrane to internal vesicles within the endosomal 

lumen is a key regulatory step in the balance between APP elimination and Aβ production. 

In the context of endogenous expression of APP, depletion of Hrs and UBE4B leads to such 
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dramatic changes in Aβ42 production that it is possible that alterations in this APP trafficking 

step could result in pathological levels of Aβ in patients.  

Although the in vitro experiments performed in this dissertation propose a role for 

UBE4B in the formation of Aβ, the relevance of this result to in vivo conditions has yet to be 

examined. Deletion of UBE4B results in embryonic lethality in mice (289), so conditional 

knockouts would have to be generated to investigate whether absence of UBE4B in the 

brain could lead to accumulation of amyloid species, as would be predicted by my results.   

E3 ligases like UBE4B have been observed to confer specificity to the ubiquitination 

process, and are thought to have limited protein targets. This makes them suitable as 

potential therapeutic targets (200, 214, 216, 394), since alteration of their activity would 

likely have decreased potential for off-target effects. Future experiments could investigate 

the therapeutic role of UBE4B in the context of Aβ-related diseases like AD. For example, 

one might envision that overexpression of UBE4B could stimulate increased trafficking of 

APP into the endosomal lumen and may prevent Aβ production. Future investigations could 

explore UBE4B as a drug target for AD and other amyloidopathies of the brain.  

 

6.4 Future Directions 

The results discussed in this dissertation have examined the endocytic itinerary of 

APP, and determined that disruptions in this trafficking result in increased amyloid 

production. These findings also raise new questions that could drive further research in this 

field. 

 

1. To determine whether endosomally produced Aβ42 is actively secreted from neurons. 

A pressing question raised by the observation of endosomal accumulation of Aβ42 is 

whether this Aβ42 is secreted from cells. As discussed, intracellular Aβ can also be toxic to 

neurons, but previous work has shown that endosomal anomalies lead to increased Aβ 
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accumulation in conditioned media from cells (305–307). To address this question, I am 

pursuing experiments to examine how knockdown of UBE4B in neurons affects the 

accumulation of Aβ42 extracellularly.    

If it is the case that Aβ42 is secreted as a result of abnormalities at endosomes, how 

is this Aβ42 exported? As discussed in the introduction, endosomes can potentially fuse with 

the plasma membrane, and release its luminal contents and internal vesicles to the 

extracellular space. Evidence for this event is the observation of nanovesicles in the 

extracellular space that contain endosomal markers such as Tsg101 and the ESCRT-

associated protein Apoptosis-Linked Gene 2-Interacting Protein X (Alix) (178, 181, 183, 377, 

395). Upon secretion, these nanovesicles of endosomal origin are called exosomes, and are 

characterized as 100-200nm vesicles expressing endosomal proteins, such as Alix and 

Tsg101 (396), as well as lipid raft markers such as Flotillin(396, 397). Exosome release has 

been documented in a variety of cell types and body fluids (185, 186, 398, 399), including 

neurons (189–191). There is controversy regarding what physiological function exosomes 

have, and how they are secreted. However, in a 2008 study(168), Trajkovic and others 

observed that inhibition of nSMase2 (led to decreased release of exosomes. Since then, 

multiple studies have replicated this effect in a variety of cells (400, 401), including neuron-

like cells (192, 402). This effect has also been observed in in vivo experiments (403–405). I 

am actively pursuing experiments to address whether inhibition of endosome-PM fusion can 

block the release of endosomally accumulated Aβ42.  

 

2. To determine whether UBE4B can inhibit Aβ formation in the presence of disease-

inducing APP mutants.  

Another interesting aspect of these studies that could be explored is the potential for 

UBE4B to be used therapeutically to modulate production of Aβ. In the 2004 study by 

Matsumoto et al., the authors observed that overexpression of UBE4B led to decreased 
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accumulation of another toxic protein, ataxin 3, that is also a target of UBE4B ubiquitination. 

A similar strategy could be used in our investigations, where increased UBE4B could force 

degradation of the full-length APP, and lead to decrease Aβ42 levels induced by disease-

causing mutations in APP.  

The results of this dissertation suggest that UBE4B can ubiquitinate APP in living 

cells. However, the details of this ubiquitination were not explored. The work from Watanabe 

et al. and More at al. (306, 319) suggested that lysine residues 724-726 are crucial for APP 

ubiquitin. It would be interesting to verify whether these residues are ubiquitinated by 

UBE4B. This information would be beneficial not only for our mechanistic understanding of 

this relationship, but also because it would allow a more specific targeting of this interaction 

for therapeutic purposes.  

 

3.  To determine whether the itinerary of APP in endosomes leads to its degradation in 

lysosomes or its release via endosome-PM fusion. 

The observation of APP in exosomes (194, 199) is in contrast with previous work 

showing that APP gets degraded at the lysosome (122, 146, 147, 197, 406). This raises 

questions regarding the itinerary of APP after arrival at the late endosome, and could also 

be the subject of future investigations. Furthermore, if the itinerary of APP is release on 

exosomes via endosome-PM fusion, what advantage would this give neurons? Is exosomal 

APP physiologically relevant? Future projects could help clarify whether APP is lysosomally 

degraded in neurons, or exported in exosomes upon endosome-plasma membrane fusion. 

Moreover, if both observations are true, it would be of interested to investigate whether 

different subgroups of late endosomes lead to these divergences in the itinerary of APP, and 

what signals this segregation of APP on endosomes.   
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4.  To explore whether APP can traffic from endosomal compartments into outwardly 

budded vesicles, and how the retromer complex modulates this process.  

The subcellular site of APP cleavage into Aβ species has been highly controversial 

in the scientific literature (3, 4). My results suggesting that APP is processed through the 

amyloidogenic pathway at endosomes do not exclude the possibility that APP also gets 

cleaved into Aβ in secretory compartments. The retromer complex is a coat complex that 

has been established in retrograde trafficking from endosomes into the trans-Golgi network, 

TGN (137, 407–410). The retromer complex has been implicated in Alzheimer’s disease, 

although the direction of that relationship (whether increased or decreased expression of 

retromer components leads to Aβ formation) has been controversial (reviewed in (411)). 

Choy et al. (305) observed that ESCRT deficiencies led to retromer-dependent trafficking of 

APP into the TGN, where it was processed into Aβ. While my investigations did not examine 

this route of trafficking for APP, recent unpublished work by the Bean laboratory has 

adapted our cell-free assay to the examination of outward budding events from the 

endosomal limiting membrane. This assay could be adapted to evaluate whether neuronal 

endosomes traffic APP outwardly in a retromer-dependent matter, and whether those 

vesicles already contain endosomally produced Aβ or whether the processing truly occurs in 

the TGN.  

 
6.5 Conclusions  

 The findings of my dissertation contribute to the ongoing conversation regarding APP 

trafficking through endosomal compartments, and the production of Aβ as a result of 

trafficking disturbances. They address controversies in the literature regarding the role of 

ESCRT proteins in APP trafficking and Aβ production. Although these observations stem 

from in vitro reconstitution experiments, they suggest that, in the absence of pathogenic 

mutations in APP or the secretases, disturbances in endocytic trafficking of APP can lead to 
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marked increases in Aβ production. According to the amyloid cascade hypothesis (2, 41), 

imbalances in the production and clearance of Aβ can create a scenario that leads to brain 

disease, and the dramatic increases in Aβ production observed as a result of endocytic 

deficiencies in this study suggest that such mechanisms could underlie the pathogenesis of 

at least some individuals with AD and other diseases where Aβ accumulates.  

 A particular weakness of this investigation is the use of cell-free conditions to 

elucidate APP endosomal trafficking. While this assay has yielded information that I believe 

helps advance the field, the use of such assays disregards any regulatory mechanisms that 

the cell might employ to correct disturbances in trafficking. For example, it is feasible to 

envision how decreased UBE4B might, over time, lead the cell to also downregulate APP 

expression as a compensatory mechanism. In that sense, future experiments should design 

strategies that confirm these findings in whole cells, particularly neurons. However, the 

observation of how UBE4B impacts APP levels in lysate, as well as APP ubiquitination, lead 

me to believe that this compensatory mechanism might not be occurring, or at least might 

not occur before harm is done to the cell.   

Like with other complex diseases of aging, it is likely that individuals develop similar 

disease phenotypes of dementia due to distinct pathological mechanisms (412, 413). In that 

sense, the findings of this study do not disprove that Aβ production can happen at other 

cellular sites as have been described, particularly the secretory pathway (120, 147, 299, 

305). However, because Aβ accumulation is a common observation in demented patients, 

and dementia is so prevalent in our society, it is likely that endosomal cleavage of APP into 

Aβ is a relevant disease mechanism for at least some individuals.  

 Despite the significant controversies surrounding the pathogenesis of Alzheimer’s 

disease and the role that Aβ plays in that process, there is an overwhelming literature that 

suggests excess Aβ is toxic to neurons. However, multiple failures in the development of 

therapeutic strategies that target Aβ have led to decreased enthusiasm for Aβ as a target for 
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dementia (4, 48, 413). Studies during the last 5 years (including this dissertation) have 

allowed enhanced mechanistic understanding of Aβ production in cells, and have 

particularly highlighted the endocytic pathway. This new understanding of the cell biology of 

APP could aid in the development of new therapeutics for AD, especially in patients in which 

the disease is caused by endocytic trafficking disturbances. 
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