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INSIGHTS INTO THE THERAPEUTIC POTENTIAL OF SALT INDUCIBLE KINASE 1:  

A NOVEL MECHANISM OF METABOLIC CONTROL 

Abstract 

Randi Nicole Fitzgibbon 

Advisory professor: Rebecca Berdeaux, Ph.D. 

Salt inducible kinase 1 (SIK1) has been considered a stress-inducible kinase 

since it was first cloned in 1999. Continued efforts since this time have been dedicated 

to characterizing the structure and function of SIK1. Such research has laid the ground 

work for our understanding of SIK1 action and regulation in tissue and stimuli 

dependent manners. The fundamental findings of this dissertation continue in this 

tradition and include investigations of SIK1 regulatory mechanisms in skeletal muscle 

cells, the cellular and physiological effects of SIK1 loss of function in vitro and in vivo, 

and intracellular metabolic and mitochondrial regulation by this kinase. Herein, evidence 

is provided demonstrating that skeletal muscle SIK1 regulates insulin sensitivity and 

blood glucose concentrations through mechanism(s) independent of the canonical 

insulin pathway. Our research addresses many previously unanswered questions about 

SIK1 action in metabolism and positions SIK1 as a potential therapeutic target for the 

treatment of metabolic disorders, such as type 2 diabetes, while provoking new 

questions for future research.  
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Chapter 1: Introduction 

1.1 Salt Inducible Kinase 1 

1.1.1 Discovery of SIK1 

 In the pursuit of identifying factors linking adrenal cortex stimulation and 

steroidogenesis, Wang et. al., led by Dr. Mitsuhiro Okamoto, reported the discovery of a 

previously un-identified polypeptide of 776 amino acids in 1999 (1). The cDNA was 

cloned from adrenocortical glands of rats stressed with high salt diets (to promote ACTH 

stimulation of adrenal cells) but was not present in glands of un-stressed control rats. 

Further investigation of the protein structure revealed that the protein contained a 

putative kinase domain and possessed striking similarities to the AMPK family of 

serine/threonine kinases. For these reasons, the authors termed the newly identified 

protein “Salt inducible kinase”. In this original publication, the authors demonstrated that 

ACTH treatment directly stimulates SIK expression in adrenal cells and that SIK indeed 

possessed enzymatic activity. Additionally, the authors completed histological studies to 

demonstrate patterns of SIK expression. In the before described conditions, Sik mRNA 

was primarily detected in adrenal glands followed by very low expression in heart, 

kidney, stomach, lung, testes, and ovary. Researchers later discovered that this pattern 

of expression provided a narrow perspective on the tissue distribution of SIKs due to the 

specific model used (see section 1.1.3 for insight into SIK expression in a wide variety 

of tissues). The identification of a new AMPK-related kinase opened a new field of study 

that would expand our knowledge of cell signaling pathways and regulation in several 

tissue types and under a wide variety of stimuli. 
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1.1.2 Timeline of important SIK1 discoveries     

 Drawing from the previously established connection between ACTH stimulation 

and increased cAMP-dependent signaling and gene transcription, researchers soon 

discovered the newly identified kinase lies within the cAMP pathway as a target of PKA-

dependent phosphorylation (2, 3). Phosphorylation of SIK on Ser577 by PKA induces 

nuclear export of SIK and reduces the ability of SIK to inhibit CREB-dependent 

transcription (3, 4) of an increasingly large list of genes described over time. Although 

SIK was established as a negative regulator of CREB-dependent transcription, the 

molecular mechanism by which this occurs was unclear for several years. In the 

meantime, significant progress was made in the effort to characterize the domains and 

putative sites of post-translational modification in SIK and in 2003 additional isoforms of 

SIK (SIK2 and SIK3) were described (5). The primary topic of this thesis is the 

characterization of SIK1 but it is important to note that the other SIK isoforms are of 

significant physiological consequence, both congruent and divergent to the actions of 

SIK1 depending on tissue and stimulus type. 

 By 2003, the physiological conditions of SIK1 relevance had begun to diversify. 

In addition to an adrenal gland transcriptional regulator, SIK1 had been described as a 

stress responsive protein in brain injury models (6, 7) and a protein over-expressed in 

liver, fat, and skeletal muscle during obesity (5) (see section 1.2.1 for further discussion 

on stimuli that promote SIK1 activity). In 2004, research led by Dr. Marc Montminy 

played a pivotal role in our understanding of how CREB-dependent transcription is 

turned off by SIKs. This work established a link between SIKs and a CREB 

transcriptional co-activator, CRTC (formerly TORC) (8). They showed that SIK2 could 
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phosphorylate CRTC2 at serine 171 in pancreatic  cells which prompted 14-3-3-

mediated translocation of CRTC2 out of the nucleus, effectively shutting down CREB-

dependent transcription of target genes. This negative feedback mechanism of 

transcriptional regulation has since been described for all SIK and CRTC isoforms and 

has been demonstrated to occur in a wide variety of tissues. Indeed, CRTCs remain the 

best characterized SIK substrates today. 

 The mechanisms regulating SIK1 action were further elucidated in 2006 with the 

revelation that the master AMPK-family kinase regulator, LKB1, critically phosphorylates 

and activates SIK1 (9). Inhibition of LKB1 completely ablates SIK1 phosphorylation of 

CRTC and leads to uncontrolled transcription of CREB target genes. In 2007, two 

publications established class II HDACs (HDAC4 and HDAC5) as new SIK substrates 

and importantly linked SIK regulation of gene transcription to a new transcription factor, 

MEF2 (10, 11). Much like the case for CRTC, SIK1 can phosphorylate class II HDACs 

at conserved 14-3-3 sites that promote nuclear exclusion of the transcriptional regulator. 

Unlike CRTCs, however, class II HDACs are transcriptional repressors of MEF2, so 

SIK1 action on these proteins promotes gene transcription rather than inhibit, as in the 

case of CRTC/CREB.  

In late 2007, SIKs were then shown to suppress gluconeogenesis in liver cells 

(12), and SIK1 was described as a promoter of active sodium transport in renal 

epithelial cells (13). Further diversification of SIK1 tissue distribution and action arose 

from 2009/2010 publications linking SIK1 action to circadian rhythm regulation in the 

brain (14), cancer metastasis (15), hypertension (16), and cardiomyogenesis (17). 

These and other studies demonstrate that SIK1 is a multi-functional protein that is 



4 
 

nearly ubiquitously expressed under the right conditions- an insight that was not clear at 

the time of SIK discovery in 1999. Additionally, similar SIK1 actions have been 

described in c. Elegans (10) and Drosophila melanogaster (18, 19) as those attributed 

to mammals. These findings demonstrate that SIK is a highly conserved protein.  

The first mouse model of SIK1 loss of function was reported in 2012 and 

identified SIK1 as a critical regulator of E-cadherin expression in mouse lung cells (20). 

Around this time, our group published work defining more post-translational regulatory 

mechanisms for SIK1 action (described in chapter 3) and demonstrated a role for SIK1 

in muscle cell differentiation (myogenesis) (21). The data we presented in this work 

prompted us to expand the research tools available for studying SIK1 loss of function 

because we desired to study SIK1 action in a tissue specific manner. Therefore, we 

produced the first conditional Sik1 knockout mouse (published in 2015 and described in 

chapter 4).   

One of the most pivotal publications on SIK1 in recent years came in 2015 when 

a large screen for potential SIK1 substrates was published (22). In addition to identifying 

PDE4D (a cAMP inhibitor) as a new SIK1 substrate, this group performed kinase 

assays on other potential SIK1 targets (based on their reported SIK1 phosphorylation 

consensus sequence). They provided a list of proteins that can be phosphorylated by 

SIK1 (refer to section 1.2.2 and Table 1 for more details) which is of potentially 

monumental benefit to researchers in future work. 

In late 2015, we published research that is largely the basis of this thesis. In this 

work, we presented the first conditional SIK1 knockout mouse line and described our 
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use of these mice to reveal functions of SIK1 as metabolic regulator (23). This work 

established the likely clinical effectiveness of inhibiting SIK1 for the treatment of type 2 

diabetes and metabolic disorders. Indeed, multiple groups are currently working to 

develop SIK inhibitors (24-27). 

The work completed over the last 18 years characterizing SIK1 has established a 

model in which SIK1 expression is relatively low in un-challenged states but increases 

in response to stress to re-establish homeostasis. Some of the most pivotal work on 

SIK1 has been the defining of regulatory pathways controlling this kinase and the 

identification of SIK1 effector proteins, both of which are discussed in the following 

sections.  

1.2 Endogenous regulatory pathways of SIK1 

1.2.1 Stimuli of SIK1 expression and action 

 As previously mentioned, SIK1 was originally identified as a kinase up-regulated 

in response to diets enriched in salt and in response to ACTH cellular stimulation. Since 

the initial 1999 discovery, several SIK1 inducing stressors have been identified (Table 

1). Importantly, the tissue distribution of SIK1 expression is stimulus-dependent, and not 

all stimuli enhance SIK1 expression or activity in the same tissue pattern. The diversity 

of SIK1 action among divergent organ systems and pathologies has united scientists 

from diverse fields of study over a common and sometimes unanticipated interest. It is 

important we continually update the catalogue of SIK1 stimuli since it is often the case 

that cells need stress inducers to promote SIK1 expression. A readily available synopsis 
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of such stimuli, as in Table 1, may prove useful for researchers intending to study this 

protein. 

Table 1. Stimuli of SIK1 expression and activity 

Stimulus Tissue Effect on SIK1 Citation 

High salt diet Adrenal gland Increased expression (1) 

ACTH Adrenal gland Increased expression (1) 

Membrane 
depolarization 

Brain- 
hippocampus, 

cortex 
Increased expression (6) 

Forskolin Ubiquitous Increased expression (2) 

Fluid percussion Hippocampus 
Increased expression in adults but 

not pups 
(7) 

Cellular 
differentiation 

Adipocytes, 
cardiomyocytes, 
skeletal muscle 

cells 

Increased expression 
(5, 17, 

21) 

Dexamethasone 3T3-L1 cells Increased expression (5) 

Db/db mutant mice 3T3-L1 cells Increased expression (5) 

LKB1 manipulation 
Ubiquitous- first 
shown in HeLa 

Loss of LKB1 inhibits SIK1 kinase 
activity 

(9) 

Phenylephrine C2C12 cells Increased expression (11) 

High intracellular 
sodium content 

Renal epithelial 
cells 

SIK1 association with NK complex 
and increased NK activity 

(13) 

TGF- 

Human breast 
carcinoma cells, 

keratinocytes 

Increased expression; SIK1 found 
in ALK5/Smad complex 

(28) 

AICAR C2C12 cells 
Increased SIK1 phosphorylation at 

Thr182 
(29) 

CRTC1 nuclear 
localization 

Cortical neurons Increased expression (30) 

Norepinephrine Rat pineal gland Increased expression (14) 

Nocturnal hours- 
awake state in mice 

Rat pineal gland Increased expression (14) 

Hypertension 
Renal proximal 

tube cells 
Increased SIK1 phosphorylation at 

Thr182 
(16) 
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Muscle injury Skeletal muscle Increased expression (31) 

Isoproterenol 
Lung epithelial 

cells; 
cardiomyocytes 

Increased SIK1 phosphorylation at 
Thr182; increased expression (un-

published) 

(32) and 
un-

published 

Cocaine Rat striatum 
Increased SIK1 phosphorylation at 

Thr182; increased SIK1 
phosphorylation of CRTC1 and 3 

(33) 

Restraint stress 
Rat CRH 
neurons 

Increased expression (34) 

BDNF Cortical neurons Increased expression (35) 

Serum stimulation SCN cells Increased expression (36) 

Gastrin 
Adenocarcinoma 

cells 
Increased expression (37) 

Diet induced 
obesity 

Skeletal muscle Increased expression (23) 

Metformin HepG2 cells Increased expression (38) 

Table 1. List of reported SIK1 stimuli and their effects on SIK1 expression and activity. 
Many of these stimuli have been confirmed by multiple research teams and in multiple 
organ systems; only the initial discoveries are listed.  

 

1.2.2 SIK1 substrates and their physiological relevance 

 Over the years, several SIK1 substrates have been identified with CRTCs and 

class II HDACs being the most widely studied. Both of these groups of SIK1 targets 

modulate transcription factor activity (CREB and MEF2) in the nucleus, thus 

demonstrating SIK1 action as a mechanism for fine-tuning gene expression. Indeed, we 

most often consider SIK1 as an indirect gene regulator; however, many of the other 

substrates listed in Table 2 importantly demonstrate that SIK1 regulates proteins in 

several cellular domains such as the plasma membrane and mitochondria. Additionally, 

SIK1 phosphorylation of these targets results in a variety of cell signaling and 

biochemical outcomes that are certainly not limited to changes in gene expression. 
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Table 2. SIK1 substrates and the effects of phosphorylation 

Substrate 
Phosphorylated 

amino acid 
Effect of phosphorylation Citation 

CRTC2 Ser171 
Nuclear export; inhibited 

CREB transcription 
(8, 9) 

HDA-4 (c. Elegans); 
HDAC5 (mouse) 

Ser259 
Nuclear export; de-repression 

of MEF2 transcription 
(10, 11) 

Pme1 Ser72 
Dissociation with NK complex; 

increased NK activity 
(13, 39) 

SREBP-1C Ser329 
Inactivation of SREBP; 
inhibition of lipogenesis 

(40) 

p53 Ser15 P53 stabilization; anoikis (15) 

TAU 
Thr212, Ser214, 
Ser356, Ser262 

Decreased microtubule 
assembly 

(41) 

PDE4D Ser136*, Ser141 
Increased PDE activity; 

reduced insulin secretion 
(22) 

P300 undefined Undefined (22) 

MLTK undefined Undefined (22) 

SRF undefined Undefined (22) 

M3K3 undefined Undefined (22) 

MKNK1 undefined Undefined (22) 

BRAF undefined Undefined (22) 

AAKG3 undefined Undefined (22) 

ARAF undefined Undefined (22) 

TAB2 undefined Undefined (22) 

ZEP3 undefined Undefined (22) 

RAF1 undefined Undefined (22) 

ULK1 undefined Undefined (22) 

NCOR2 undefined Undefined (22) 

JKIP-1 undefined Undefined (22) 

SR-B1 Ser496 
SR-B1 activation; increased 

cholesteryl ester uptake 
(42) 

SMRT Thr1391 
Inhibition of  catenin; 
decreased metastasis 

(43) 

MCM2 
Ser7, Ser27, 
Ser41, Y90†, 

Ser139 

Enhanced helicase activity; 
increased DNA replication 

(43) 

Table 2. SIK1 substrates reported with kinase assay data. AA refers to rodent sequences. 
Substrates reported for other SIK family members but not verified in SIK1 are not listed. 

*dominant AA, †unconventional AA for SIK1-dependent phosphorylation. 
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1.3 Myogenesis 

1.3.1 Mechanisms and models of muscle regeneration 

 Skeletal muscle is a remarkably resilient tissue with the ability to regenerate after 

injury. The regenerative capacity of muscle stems from the ability to reinstate 

transcriptional programs originally active during embryogenesis. Myogenesis is the 

formation of muscle tissue through differentiation of muscle progenitor cells (stem cells). 

Upon activation, muscle precursor cells proliferate, migrate to damaged or developing 

tissue through chemotaxis, and upregulate the myogenic program (transcriptional 

cascades critical for inhibition of proliferation and expression of terminal differentiation 

factors) (44). Common skeletal muscle injury models utilize these well characterized 

events to study ways in which these processes are regulated and could potentially be 

harnessed to promote skeletal muscle regeneration in injured patients.  

One commonly used model of muscle regeneration involves degeneration of 

muscle fibers induced by injection of cardiotoxin, a component of snake venom that 

causes muscle necrosis without disruption of the basal lamina (45). In this model, 

previously quiescent skeletal muscle progenitor cells are activated upon injury. Peak 

proliferation of these cells occurs 3 days post injury and repaired muscle fibers can be 

visualized as early as 5 days post injury. Full recovery of muscle fiber function and size 

occurs by 21 days after injury. We previously utilized this model to study the function of 

the transcription factor CREB in the regenerative process because molecules that 

increase cAMP production and activate downstream signaling have been demonstrated 

to promote skeletal muscle growth.  
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1.3.2 CREB regulates skeletal muscle regeneration and muscle maintenance 

Briefly, we found that CREB activity promotes skeletal muscle repair through 

enhanced proliferative capacity of muscle progenitor cells (31). Interestingly, in this 

study we found that SIK1, a known CREB target gene, was induced in regenerating 

skeletal muscle. This demonstrated that skeletal muscle injury was yet another stressful 

stimulus of SIK1 expression but any relevant roles of SIK1 expression during 

myogenesis remained elusive.  

In addition to regulating myogenesis, CREB is important for maintenance of un-

injured adult skeletal muscle. Expression of a dominant-negative CREB inhibitor, 

ACREB, results in severe muscle necrosis which is rescued by re-expression of SIK1 

(11). The mechanism of rescue described in this work involved removal of class II 

HDAC inhibition of MEF2-dependent transcription. Since MEF2 is a critical myogenic 

factor and SIK1 expression increases in regenerating muscle, we investigated SIK1 

action during muscle development. This investigation will be discussed in chapter 3 of 

this dissertation. 

Introductory remarks will conclude with a discussion of glucose metabolism and 

known regulatory mechanisms of this process. The relevance of this topic became 

apparent as our investigation of SIK1 loss of function mutant mice progressed (chapter 

4). As previously described, SIK1 is a highly regulated protein that is expressed in 

multiple tissues in response to a wide variety of stimuli that impede homeostasis. 

Impaired glucose metabolism challenges homeostasis and is regulated by SIK1 

(mechanism discussed in chapter 4).    
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1.4  Metabolic pathology and glucose utilization 

1.4.1 Type 2 diabetes is an epidemic 

Type 2 diabetes mellitus (T2DM) is a severe metabolic disorder of increasing 

prevalence affecting 29.1 million Americans in 2012 and contributing to approximately 

$245 billion per year in health care costs in the United States alone (American Diabetes 

Association). This disease is characterized by insulin resistance and hyperglycemia and 

is strongly associated with obesity. Current treatments for T2DM include diet and 

exercise and a medley of oral medications, biguanides (Metformin) being the most 

commonly prescribed. Although T2DM medications have consistently evolved since the 

1950s, there is still a need for discovery of improved treatments, as currently prescribed 

medications are often associated with adverse side effects, are contraindicated for 

patients with common comorbidities, and are burdensome in daily life. In the search for 

new treatments, much interest has emerged in targeting protein kinases to treat T2DM. 

This is due to the fact that multiple critical nodes of the insulin signaling pathway are 

often regulated, positively and negatively, by phosphorylation and kinases are good 

drug targets that can often be selectively inhibited by synthetic small molecules.  

1.4.2 Extracellular insulin action 

Glucose is an important fuel source that requires external regulation to maintain 

blood concentrations within a discrete range (70-100 mg/dL during fasting) which is 

surprisingly consistent among mammalian species (American Diabetes Association). 

Tight regulation of blood glucose concentrations is necessary to provide adequate fuel 

supply to tissues without oversaturation which can cause severe medical issues 
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including neuropathy, retinopathy, and even death. Insulin is a critical hormone for 

maintaining mammalian glucose homeostasis. The main function of insulin is to reduce 

blood glucose concentrations in an environment where fuel supply is ample and blood 

glucose levels are higher than the demand of tissues. Ineffective insulin action, due to a 

lack of insulin production in type 1 diabetes or ineffective insulin action in T2DM, can 

lead to life-threatening hyperglycemia. After meal consumption, insulin is released from 

pancreatic beta cells and enters the blood stream where it can contact insulin receptors 

on target tissues.  

 The ultimate physiological effects of insulin are tissue dependent with an ultimate 

goal of blood glucose reduction. For instance, in the liver, insulin inhibits de novo 

glucose production (gluconeogenesis) and promotes glucose storage (glycogenesis) 

(46-48). In skeletal muscle, insulin promotes glucose uptake and conversion to glucose-

6-phosphate to irreversibly remove glucose from circulation (49, 50). Additionally, insulin 

reduces blood glucose concentrations by promoting glucose uptake into adipose tissue 

and inhibiting fatty acid release which counterbalances glucose uptake into skeletal 

muscle through the Randle cycle (51). The diverse physiological effects and critical 

nature of insulin action have inspired multiple researchers to invest significant time and 

energy into characterizing the precise intracellular signaling networks underlying insulin 

action. While new advances are regularly made regarding our understanding of insulin 

signaling and regulation, a canonical insulin signaling pathway has been described.  
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1.4.3 Intracellular insulin signaling 

Insulin target tissues express insulin receptors on their cell surfaces so the 

circulating hormone can activate intracellular signaling. There are two mammalian 

isoforms of the insulin receptor which are receptor tyrosine kinases (52). Insulin bound 

receptors undergo auto-phosphorylation on conserved tyrosine residues (Y1162, 

Y1163) (53) which in turn promotes recruitment of adaptor proteins such as insulin 

receptor substrate proteins (IRS). Notably, insulin receptors can also be activated by 

insulin-like growth factors (IGF-1 and IGF-11). Recruitment of IRS proteins (through IR 

dependent tyrosine phosphorylation) then exposes binding sites for downstream 

effectors, most notably phosphoinositide 3-OH kinase (PI3K) which catalyzes the 

conversion of phospholipids in the plasma membrane (PIP2 to PIP3). The end product of 

this conversion, PIP3, then activates the serine/threonine kinase Protein kinase B (AKT) 

through membrane recruitment. This positions AKT in close proximity to 3-

phosphoinositide-dependent protein kinase 1 (PDK1), which phosphorylates and 

activates AKT at T308 (54, 55). Subsequent phosphorylation of Ser473 leads to full 

activation of AKT and stimulation of downstream effectors. 

AKT is considered a critical node of the intracellular insulin signaling pathway 

and is often used as a read out of the integrity and effectiveness of insulin action in 

tissues (56, 57). One pathway downstream of AKT activation involves AKT-dependent 

activation of vesicle-associated proteins (AS160 and Rab) which regulate vesicle fusion 

with the plasma membrane and glucose transporter (GLUT) incorporation (58-60).  

GLUT proteins facilitate passive diffusion of glucose down the extracellular/intracellular 

concentration gradient and vary in sensitivity to insulin dependent membrane 
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incorporation. Some GLUT proteins are endogenously located within the plasma 

membrane and are considered insulin insensitive. Such glucose transporters always 

facilitate glucose diffusion (i.e. GLUT1) into cells. Conversely, other GLUT isoforms are 

stored in cytoplasmic vesicles and do not facilitate glucose import until they are 

incorporated into the plasma membrane in response to (61, 62) stimulation by insulin or 

exercise (i.e. GLUT4) (63). Quantification of membrane bound insulin-sensitive GLUT 

isoforms serves as a useful tool for determining the ultimate effectiveness of 

intracellular insulin signaling and correlates with the ability of peripheral cell types to 

remove glucose from circulation. 

1.4.4 Mechanisms of insulin resistance 

 Diet-induced obesity is a prevalent issue in modern society and is associated 

with T2DM. Insulin resistance partly characterizes this disorder. After continued 

overnutrition and persistent hyperglycemia, tissues eventually become resistant to the 

insulin actions described above. Our current mechanistic understanding of insulin 

resistance involves aberrant accumulation of fatty acid derivatives (Acyl-CoAs and 

diacylglycerol, DAG, for example) in skeletal muscles of obese patients. Oversupply of 

fats and carbohydrates contributes to these defects by altering the balance of glucose 

and fatty acid metabolism. High concentrations of plasma free fatty acids, as would 

occur in the obese state, impair glucose uptake into skeletal muscle. Reduced glucose 

availability for fueling skeletal muscle ATP synthesis, increased transcription of 

enzymes involved in -oxidation, and oversupply of fatty acids leads increased fatty acid 

oxidation to meet muscle fuel demands (64, 65), which further reduces glucose 

oxidation. Continued overnutrition leads to such elevated fatty acid availability that even 
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hyperactive -oxidation cannot utilize all available substrates. This leads to aberrant 

accumulation of lipids. Accumulation of plasma membrane bound fatty acids has been 

shown to activate Protein kinase CPKC-, a known inhibitor of IRS activation and 

PI3K activity (66-68). In other models, increased DAG has been shown to inhibit insulin 

action through a mechanism independent of the canonical insulin signaling pathway. 

Oversupply of fatty acids has been suggested to impair mitochondrial function through 

overloading the organelles and stressing respiratory capacity (69-71). This latter effect 

has been demonstrated to impair insulin dependent glucose uptake independently of 

the canonical insulin signaling pathway, although the exact molecular mechanism(s) 

responsible are still elusive; therefore, it is clear that insulin sensitivity relies on more 

than an intact canonical insulin signaling pathway. 

 A relatively new field of study in the realm of insulin resistance involves analysis 

of mitochondrial health, organization, and quality control in the etiology of this disorder. 

An interesting correlation between mitochondrial hyper-fission and obesity has been 

described (72). Hyper-fragmentation of skeletal muscle mitochondria are thought to be 

less efficient power generators than fused mitochondria but further studies are needed 

to confirm this notion (73). Interestingly, the mitochondrial quality control protein, Parkin, 

has been described as a critical component for maintenance of insulin sensitivity in 

skeletal muscle cells (74) suggesting that healthy mitochondria are an integral 

component of insulin action.    
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Chapter 2: Materials and methods 

2.1 Isolation of primary skeletal muscle cells. Forelimb and hindlimb muscles were 

collected from mouse neonates (p0-p3), washed in 1% glucose/ PBS and digested in 

type II collagenase (2500 U/mL, Worthington CLS2) at 37ºC for 3-5x 12 minute 

digestions (until all muscles were digested). Excess debris was then separated from the 

desired cell population through filtration (40m, BD Falcon #352340). Cells were then 

allowed to adhere to Matrigel-coated tissue culture dishes (BD Biosciences) overnight in 

DMEM containing 20% FBS, 25% 2xF-10 (Sigma N6635), 1% 

penicillin/streptomycin/fungizone, and 2.5 ng/mL basic fetal growth factor (bFGF; 

Peprotech #450-33) supplementation. For differentiation time courses and myotube 

experiments, primary cells were differentiated on Matrigel-coated dishes or glass 

coverslips for up to 7 days in DMEM media containing 2% horse serum (heat 

inactivated) and 1% penicillin/streptomycin/fungizone. Cells were monitored daily and 

media was replaced every other day.   

2.2 Diet-induced obesity modeling. Male mice (10-12 weeks old) were weighed prior 

to high fat diet feeding and subsequently weighed weekly or bi-weekly over the course 

of high fat diet feeding (Test Diet #0058170; 60% energy from fat). Subjects were 

housed with 1-3 mice per cage to ensure dominance hierarchy over food consumption 

was avoided and every mouse gained weight. Weight gain among genotypes was 

compared using student’s t-test. Food consumption on singly housed mice was initially 

measured on a daily basis for one week and no difference in amounts consumed was 

observed. 
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2.3 Metabolic testing.  

Glucose tolerance test. Mice were fasted overnight (16 hours) prior to the experiment. 

Body weights and fasting blood glucose measurements were taken from tail (OneTouch 

ultra mini glucometer system). Glucose was then injected intraperitoneally (0.75 U/kg for 

lean mice; 1.5 U/kg for obese mice) and blood glucose measurements were collected 

every 15-30 minutes through the course of 160 minutes total.  

Hyperinsulinemic-euglycemic clamp. Mice were fed high fat diet for 16-18 weeks and 

were transferred to Baylor College of Medicine Mouse Metabolism Core where the 

experiment was conducted by our collaborator Dr. Pradip Saha. Briefly, mice were given 

3-5 days to acclimate to the new environment and were then fasted overnight (16 hours) 

prior to the experiment. Mice remained unrestrained while infused with a super-

physiological dose of insulin (Humulin R, 8mU/min/kg body weight) and a variable dose 

of cold glucose to counterbalance insulin effects and clamp blood glucose levels to a 

range of 100-140 mg/dL. Once dynamic steady state was achieved, blood glucose 

levels were measured and hepatic glucose output and glucose infusion rate were 

calculated.  

Indirect Calorimetry. Mice were acclimated to single-house calorimetry chambers 

(Omnitech Electronics Inc. Fusion v5.0 PhysioScan edition) for 3-5 days prior to 

experimentation. Oxygen consumption and heat production were measured over 3 dark 

cycles and were used to calculate VO2, VC02, and RER. Total activity was 

simultaneously measured using infrared activity frames (Kinder Scientific) that fit around 

the calorimetry chambers.    
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2.4 Biochemical analysis of signaling pathways. Lysates were made from mouse 

tissue or primary skeletal muscle cells with a modified RIPA buffer supplemented with 

protease inhibitors (benzamidine-HCl (1.6 g/mL), phenanthroline (1 g/mL), aprotinin 

(1 g/mL), leupeptin (1 g/mL), pepstatin A (1 g/mL)), sodium vanadate (1mM), 

AEBSF (100M), and MG-132 (10M). The following antibodies were used for western 

blotting: SIK1 (in house custom antibody; 1:1000 overnight), Parkin (Cell Signaling # 

4211; 1:1000 overnight), pAKT Ser473 (Cell Signaling #4060, 1:1000 overnight), pAKT 

Thr308 (13038), AKT2 (Cell Signaling # 5239S, 1:200 overnight for IP, 1:5000 overnight 

for western blots), pMFF (Cell Signaling # 49281, 1:1000 overnight), total MFF 

(Proteintech # 17090-1-AP, 1:1000 overnight), pIRS1 (Cell Signaling # 2389, 1:1000 

overnight), total IRS1 (Cell Signaling # 3407, 1:1000 overnight), phospho HDAC 4/5/7 

(Cell Signaling # 3443, 1:5000 overnight), HDAC4 (Cell Signaling # 2072, 1:1000 

overnight), HDAC5 (Cell Signaling # 2082S, 1:1000 overnight), pCREB (Cell Signaling # 

9198s, 1:5000 overnight), CREB (Cell Signaling # 9197, 1:1000 1 hour), CRTC1, 2, and 

3 (Cell signaling #s 2587, 3826s, 2720s), IR (Cell Signaling # 3025, 1:1000 overnight), 

MEF2 (Cell Signaling # 5030, 1:1000 overnight), HSP90 (SantaCruz, 1:5000 1 hour), 

ATP5b (SantaCruz #SC-55597, 1:2000 1 hour). 

2.5 Glucose transporter staining in mouse skeletal muscle. Quadriceps muscles 

were mounted in OCT and cut in cross-section (7m thick) such that samples for 

staining were collected from the belly of the muscle (the area of largest diameter). 

Tissue sections were fixed in 4% paraformaldehyde, blocked with 10% normal goat 

serum, and incubated in a humidified chamber overnight with anti GLUT4 (Millipore 

#CBL243, 1:300) or anti GLUT1 (SantaCruz #SC377228, 1:300) primary antibodies. 
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After a 1x PBS wash, secondary antibodies (anti-rabbit Alexa 549, 1:200) were 

introduced for 1 hour. Sections were then washed 3 times in PBS and coverslips were 

mounted with 4% n-propyl gallate and nail polish to seal. Samples were imaged using a 

Nikon A1R confocal microscope and the number of fibers with positive GLUT staining 

on myofiber plasma membranes were quantified.  

2.6 Mitochondrial isolation from mouse skeletal muscle. Skeletal muscles 

(quadriceps) were collected from mice anesthetized with isoflurane and mitochondrial 

isolations were performed as previously described by others (75). Briefly, muscles were 

immediately mulched and pulverized in glass dounces with Teflon plungers in a 

Tris/sucrose/EDTA isolation buffer with protease inhibitors and N-Ethylmaleimide 

(5mM). Mitochondria were separated from the rest of the muscular contents through 

percoll gradient (5%, 26%, 40% stacked layers) centrifugation. Once mitochondria were 

collected from gradients (from the 26%-40% interface), they were washed in excess 

isolation buffer and lysed in 8M urea buffer (used as a 2x stock) or fixed on EM grids for 

negative staining with NanoVan for morphological analysis (protocol developed by Dr. 

Neal Waxham). 

2.7 Gene expression analysis. Gene expression patterns were quantified in Cre-

recombinase (control) and SIK1-MKO (Myf5-Cre) quadriceps muscles collected from 

obese male mice. Messenger RNA samples were extracted from tissue lysates by 

phenol-chloroform purification. Reverse transcriptase PCR was then performed using 

oligo dT-20 and M-MLV enzyme to create cDNA for subsequent microarray analysis in 

collaboration with Dr. Tuan Tran (Quantitative Genomics and Microarray Core Lab at 

UT Health McGovern Medical School). Gene expression levels were compared among 
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genotypes and differences in select target gene expression levels were confirmed 

through quantitative PCR analysis using the same cDNA inputs and unique target gene 

primers from those used in the array. Additional QPCR analyses were conducted for 

targets of interest using the primers listed in Table 3.    

Table 3. Primer list for mRNA measurements by Quantitative PCR  

Target Forward primer sequence Reverse primer sequence 

Cox7a CAGCGTCATGGTCAGTCTGT AGAAAACCGTGTGGCAGAGA 

Crtc2 CCACCAGAACTTGACCCACT GGCTGCTGCAATCTCCTTAG 

Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

Glut1 CTCTGTCGGGGGCATGATTG TTGGAGAAGCCCATAAGCACA 

Glut4 CCAGCCTACGCCACCATAG TTCCAGCAGCAGCAGAGC 

Glut12 GCCAGCTTGCTTGTTTATGT GCTGTGTTGGCACTAATTCTTCCTG 

G6Pase TGCTGTGTCTGGTAGGCAAC AACATCGGAGTGACCTTTGG 

Hdac5 AAGGATGAGGATGGCGAGAGTG CCAGGAGCAGCAGGTGAGG 

L32 TTAAGCGAAACTGGCGGAAAC TTGTTGCTCCCATAACCGATG 

Mef2a AACCCAGGGAGTTCACTCGT CATGCTCGAATCTGCTAATGTTG 

Mef2b TTTCACCAAGCGCAAGTTCG GTCGCAGTCACAAAGCACG 

Mef2c ACGAGGATAATGGATGAGCGT ATCAGTGCAATCTCACAGTCG 

Mef2d CAGGCGCTATGGGTCATCTG GCTACTTGGATTGCTGAACTGC 

mtCox2 CAGTCCCCTCCCTAGGACTT TCAGAGCATTGGCCATAGAA 

Nr4a2 CGCCGAAATCGTTGTCAGTA CGACCTCTCCGGCCTTTTA 

Nr4a3 TCAGCCTTTTTGGAGCTGT TGAAGTCGATGCAGGACAAG 

Park2 AAACCGGATGAGTGGTGAGT AGCTACCGACGTGTCCTTGT 

Pdh1b AAGAGGCGTTTTCACCGCTC GTCACCGTATTTCTTCCACAGG 

Pdk4 AGGGAGGTCGAGCTGTTCTC GGAGTGTTCACTAAGCGGTCA 

Pepck AGAGTCACCCCTTCCCACTC CCCTAGCCTGTTCTCTGTGC 

Pgc1a GGACGGAAGCAATTTTTCAA TTACCTGCGCAAGCTTCTCT 

Sdh TGGTGGAACGGAGACAAG CAGCGGTAGACAGAGAAGG 

SIK1 (3’ end) ATTGTCCCCATGTTTGTGGT TACTGCTGCGGTGAGATTTG 

SIK1 (5’ end, 
kinase domain) 

GGAGGTCCAGCTCATGAAAC CTGCCTAGCCTCGTTTTCAC 

SIK2 TTGATGGACCAACTCTCCCTAT TTGGAAGGATCTAGGACCAACA 

SIK3 CTCAAGCACACTGACCAAAGG GGCCTGACTCACAGTTCCC 

Table 3. Mouse sequences used for QPCR measurements 
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2.8 Proteome analysis. Protein composition was analyzed in mitochondria isolated 

from wild type and global SIK1-KO mouse skeletal muscle (quadriceps) from obese 

male mice. Mice were fed high fat diet for 14 weeks and tissue was collected under 

isoflurane anesthesia. Mitochondria were isolated as described above and protein 

lysates were made by diluting samples with an 8M urea, 4% SDS buffer (used as a 2x 

concentrated buffer). Samples were run into 1cm of a 7.5% acrylamide gel and 

subsequently analyzed by mass spectroscopy in collaboration with Dr. Li Li (Clinical and 

Translational Proteomics Service Center at the Institute for Molecular Medicine). 

Proteins of interest were identified by first eliminating non-mitochondrial proteins known 

to be abundant skeletal muscle structural proteins (e.g. Myosin heavy chains). Then, 

proteins were eliminated as background when they did not reach a minimum threshold 

score of 2 for matches or number of sequences identified. The emPAI scores of the 

remaining targets were analyzed for each mouse and overall abundance among 

genotypes was compared. Additionally, post-translational modifications including 

oxidation (M), acetylation (N-term), phosphorylation (S/T or Y), and glycosylation were 

analyzed. No notable alterations in post translational modifications were identified 

between genotypes. 

2.9 Structural and mitochondrial analysis of mouse skeletal muscle. Skeletal 

muscles (quadriceps, soleus, and extensor digitalis longus) from lean and obese wild 

type and SIK1-KO male mice were collected under isoflurane anesthesia and 

immediately fixed in 3% TEM grade glutaraldehyde. In collaboration with Integrated 

Microscopy Core at Baylor College of Medicine and CV Pathology Core at Texas Heart 

Institute, samples were cut in cross-section (60-80 nm) and contrast stained with uranyl 
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acetate followed by lead citrate. Skeletal muscle structure and mitochondrial 

composition were analyzed using transmission electron microscopy (TEM) on a JEOL 

JEM-1400 transmission EM. Images were collected by an experimenter blinded to 

genotype. Consistent parallel alignment of skeletal muscle Z-lines with perpendicular 

sarcoplasmic reticulum structures was a requirement for all images used to quantify 

mitochondrial content and size to ensure mitochondrial networks were viewed from 

similar vantage points. Mitochondrial area was analyzed from .dm4 images using FIJI 

software. After all measurements were collected, blinded samples were decoded and 

mitochondrial areas were compared amongst genotypes.  
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Chapter 3: Regulation of SIK1 abundance and stability in muscle 

3.1 Rationale for studying SIK1 in skeletal muscle 

Skeletal muscle is a remarkably adaptable organ with the ability to reinstate 

developmental programs after insult. This response to injury enables re-establishment 

of complex structural networks and metabolic processes characteristic of healthy 

skeletal muscle. For instance, it is well documented that mouse skeletal muscle has the 

capacity to regenerate after chemical-induced injury or genetic manipulation of 

structural proteins (reviewed in (76)). We previously demonstrated that SIK1 expression 

increases during myogenic repair of cardiotoxin injured skeletal muscles and in mice 

afflicted with muscular dystrophy (31). Since we observed increased SIK1 expression 

during myogenesis in vivo (31) and ectopic expression of SIK1 in adult skeletal muscle 

has a profound protective effect against muscle necrosis (discussed in chapter 1; (11)), 

we hypothesized that SIK1 is a critical regulator of myogenic differentiation of muscle 

precursor cells. To test this hypothesis, we used a common muscle cell line (C2C12) 

and isolated muscle precursor cells from neonatal mice. We then characterized SIK1 

expression and regulation in these cells and in response to manipulation using cAMP 

pathway agonists and RNAi for loss of function analyses during myogenic differentiation 

(21). Through this study, we not only uncovered an important role for SIK1 in myogenic 

differentiation, but also described important regulatory elements for SIK1 action in 

muscle cells that have the potential to further inform us on how to control this protein in 

possible clinical settings.   
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3.2 Post-transcriptional regulation of SIK1 

We found that SIK1 protein levels are nearly undetectable in undifferentiated 

cultured muscle precursor cells (Fig 1, lane 1). Moreover, SIK1 protein levels are only 

transiently increased in undifferentiated muscle precursor cells after incubation with 

forskolin/IBMX to stimulate cAMP production and downstream PKA/CREB signaling. 

We included cycloheximide (CHX) treatment in these experiments to prevent new 

protein synthesis and gauge the true half-life of SIK1 protein. We hypothesized that the 

transient nature of this protein in undifferentiated cells was due to protein degradation 

after we observed no changes in SIK1 mRNA stability after forskolin treatment (Fig 2). 

We further demonstrated that SIK1 is post-translationally modified via ubiquitination by 

a yet unidentified E3 ligase in isolated muscle precursor cells. Our further 

characterization of SIK1 in muscle progenitor cells yielded results demonstrating SIK1 

protein stabilization in the presence of MG-132 (proteasome inhibitor) and 

destabilization of nuclear-localized SIK1 (Fig 1). These results contributed to our 

understanding of the tight regulation of SIK1 in muscle cells and prompted us to 

investigate how upstream cAMP signaling may play a role in this regulation.  
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Phosphorylation of SIK1 by PKA on S577 had previously been demonstrated to 

cause nuclear export of SIK1 thus preventing phosphorylation of SIK1 nuclear targets 

(77). Importantly, it was also shown that this phosphorylation does not affect overall 
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catalytic ability of SIK1 to phosphorylate substrates. Translocation of SIK1 appears to 

merely serve as an influence toward catalytic activity on a different subset of SIK1 

substrates. For example, SIK1 has separate effectors in nuclear and cytoplasmic 

compartments (discussed in chapter 1 and 5). In addition to this previously 

characterized PKA phosphorylation site, we identified another PKA phosphorylation site 

at T475 based on the common PKA target motif (RRHTL) conserved within the SIK 

sequences in multiple species (Fig 3A,B). Indeed, in vitro kinase assays with 

recombinant PKA and WT SIK1 or T475A (non-phosphorylatable mutant) confirmed 

PKA-dependent phosphorylation at this site (Fig 3D). Additionally, we found that T475 

phosphorylated SIK1, or phospho-mimetic mutant T475E, displayed enhanced protein 

stability and altered degrees of ubiquitination (Fig 3E-G). This finding supports the idea 

that PKA phosphorylation of SIK1 not only redirects the kinase to new cellular 

compartments to interact with cytoplasmic targets, but also enhances the half-life of 

SIK1 protein in muscle precursor cells. Interestingly, threonine at the 475 position 

proved to be a critical amino acid for proteasome degradation of SIK1 because mutation 

to any other amino acid resulted in enhanced stabilization of the kinase. Manipulation of 

this site may be a valuable tool in future drug development as a mechanism for 

enhancing or destabilizing this kinase. 
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We were interested in investigating a previously described PEST domain 

identified in the SIK1 sequence because it lies adjacent to T475 and many proteins 

possessing PEST domains are controlled by proteasome degradation. This proves to be 

true for SIK1 as well. Although we did not detect changes in SIK1 ubiquitination when 

the PEST domain was mutated, we did find that SIK1 mutants lacking the PEST domain 

(PEST), were more stable than wildtype SIK1 (Fig 4). Together, the characteristics of 

SIK1 domains and phosphorylation sites reveal tight regulation of SIK1 in 

undifferentiated muscle cells that seems to favor very limited action of this kinase both 

in cellular localization and in time. It will be interesting in future studies to determine the 

reason cAMP/PKA signaling favors enhanced SIK1 half-life with concurrent cytoplasmic 

localization. Since we knew SIK1 to be critical for myocyte enhancer factor-2 (MEF2) 

activity and maintenance of healthy fully differentiated muscle cells, we wondered if 

SIK1 stability and activity were enhanced with differentiation.  
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 We hypothesized that SIK1 abundance and activity would be more critical in 

differentiated muscle cells compared to muscle precursor cells, so we measured SIK1 

half-life in both cell types (both originating from the same isolated primary mouse 

muscle cells). We found that like progenitor cells, forskolin stimulated SIK1 expression 

in fully differentiated, contractile, myotubes; however, SIK1 stability in myotubes 

appeared to be significantly enhanced compared to SIK1 stability in undifferentiated 

cells. The half-life for SIK1 in forskolin treated myotubes was approximately 2 hours and 

only about 30 minutes in undifferentiated cells from the same isolations. In line with 

these results, we found that SIK1 protein expression in myotubes precedes increased 
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Sik1 mRNA levels (Fig 5A-D). Specifically, SIK1 protein levels dramatically increase 

after 1 day of differentiation but it takes 3-5 days for Sik1 mRNA levels to increase to 

the same degree. This supports the finding that SIK1 protein is stabilized in 

differentiated myotubes. We reasoned that enhanced SIK1 protein stability likely occurs 

with differentiation because SIK1 is important for up-regulation of the myogenic 

program, which was also supported by previous results in the ACREB model. Therefore, 

we employed a loss of function strategy for determining whether SIK1 is required for 

myogenic differentiation and/or myotube survival. 
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3.3 Myogenesis in SIK1 depleted primary muscle cells  

We obtained adenoviruses expressing shRNAs encoding an unspecific sequence 

(control) or SIK1 targeted sequence to remove SIK1 during the differentiation process 
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(78). After we confirmed efficient knockdown of SIK1 in SIK1 RNAi treated cultures 

(SIK1i), we differentiated control and SIK1i cells for 0, 18, or 48 hours and collected 

whole cell lysates for western blot analysis. Strikingly, 20-30% of cells lacking SIK1 

failed to survive depletion of this kinase. Additionally, we found that the remaining 

surviving SIK1i cells failed to differentiate into contractile myotubes based on gross 

morphological analysis and failure to adequately upregulate vital myogenic factors 

including MEF2A and myosin heavy chain (MHC) (Fig 6A-B). We also investigated the 

degree of class II HDAC phosphorylation in SIK1i cells since we had previously 

demonstrated this to be an important SIK1 target capable of regulating MEF dependent 

transcription. Interestingly, class II HDAC phosphorylation was reduced but not 

completely abolished in SIK1i treated cells (Fig 6A). This supports the idea that 

additional muscle kinases may regulate class II HDAC phosphorylation during myogenic 

differentiation but are not sufficient to drive differentiation without the action of SIK1.     

Loss of SIK1 in cultured mouse muscle progenitor cells profoundly impairs their 

ability to form fully functional and healthy myotubes. Our findings from these initial 

studies reveal a relatively straightforward mechanism by which this could also occur in 

vivo (through inhibition of critical myogenic factors and structural proteins). This model 

inspired us to imagine SIK1 as a supplement for patients suffering from muscle 

diseases including dystrophies that could benefit from enhanced myogenesis for repair 

of damaged muscle tissue. For this reason, we invested in creating the first conditional 

SIK1 knockout mouse line (23) with the intention of revealing skeletal muscle defects in 

SIK1-KO and muscle specific SIK1 knockout mouse lines. The phenotypes we 
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uncovered in the follow up studies were both surprising and intriguing and expanded our 

research genre as SIK1 is clearly a protein with several diverse roles in skeletal muscle. 
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Chapter 4: Skeletal muscle SIK1 is a metabolic regulator     

4.1 Rationale for studying SIK1 in mice and generation of SIK1 conditional 

knockout lines 

We previously demonstrated that SIK1 expression and stability increase during 

the development of contractile muscle cells and is critical for myogenesis in vitro. 

Cultured muscle progenitor cells lacking SIK1 fail to fully upregulate the myogenic 

transcription factor MEF2a and the structural protein myosin heavy chain (MHC). While 

cultured mouse muscle progenitor cells are a valuable tool for testing cell signaling 

pathways, and are easily manipulated with drug treatments and RNAi adenovirus 

infections, they do not fully represent muscle stem cells in their original niche. 

Confirmation of signaling events and phenotypes in animal models are more powerful 

mechanisms for positioning new protein targets as potential therapeutics for future use 

in humans.  

We were interested in determining the effects of SIK1 depletion in muscle stem 

cells in vivo because we reasoned that ablation of SIK1 might impair muscle 

development or could result in lethality since loss of critical myogenic factors such as 

MEF2C, Myogenin and Myf5/MyoD (double knockout) are not consistent with viability 

(79-81). To address these possibilities, we harnessed the power of Cre-LoxP 

technology (82, 83) to create the first SIK1 conditional knockout mouse line (23). We 

inserted LoxP sites into either side of the exons encoding the SIK1 kinase domain. This 

created a flank of exons 2-7 which could then be excised from the rest of the gene when 

expressed in the presence of Cre recombinase (Fig 7). We then generated global SIK1 

knockout mice using a germline Cre (GDF9-Cre used to delete exons encoding the 

SIK1 kinase domain in all cells including germline haploids) and tissue specific knockout 
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mouse lines using Cre recombinase linked to promoters expressed solely in tissues of 

interest (Myf5-Cre for muscle and brown fat, Albumin-Cre for liver, Adiponectin-Cre for 

white and brown fat, and Nestin-Cre for deletion of SIK1 in the brain).  
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While my interests revolved around SIK1 action in skeletal muscle, it is important 

to remember that SIK1 is ubiquitously expressed (depending on the stress stimulus- 
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chapter 1), and we expected phenotypes in multiple tissues including liver and brain. 

For instance, we hypothesized that loss of SIK1 action in liver may cause 

hyperglycemia due to unrestrained gluconeogenesis (de novo glucose production from 

glycerol, lactate, and amino acids). SIK kinases are among thousands of CREB target 

genes (discussed in chapter 1, (11)) that are expressed in liver cells stimulated by the 

hormone glucagon (84). In addition to increased SIK expression, activation of CREB in 

the liver (S133 phosphorylation and recruitment of co-activators including CRTCs) 

causes transcription of rate-limiting gluconeogenic enzymes including 

phosphoenolpyruvate carboxykinase (Pepck) and a catalytic subunit of glucose-6-

phosphatase (G6pase) (85). Enhanced transcription of these factors leads to increased 

glucose production in liver cells (86, 87). SIK kinases have been observed to serve in a 

negative feedback loop to de-activate CRTCs (through phosphorylation on conserved 

14-3-3 sites and nuclear export) (8, 88). This action ultimately serves to turn off CREB 

dependent transcription. In liver cells, inhibition of all SIK kinases (1,2 and 3) by HG-9-

91-01 treatment was shown to correlate with reduced CRTC phosphorylation, increased 

gluconeogenic gene expression, and increased glucose production (89). Genetic 

deletion of Sik2 alone or in combination with Ampk 1/2 knockout (triple deletion) does 

not increase gluconeogenesis (89), but deletion of Sik3 results in increased Pepck and 

G6pase mRNA expression in adult mouse liver despite enhanced AMPK expression 

(90). We were interested in determining whether Sik1 deletion alone would activate the 

gluconeogenic program like SIK3 loss of function or whether compensation by other SIK 

and AMPK family members would occur. We used conditional SIK1 knockout mice for 
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this investigation. Intriguingly, our interests in SIK1 skeletal muscle action and in 

metabolism merged in an unexpected way.   

4.2 Phenotypes of SIK1 deletion in unchallenged mice 

4.2.1 SIK1-KO skeletal muscle development 

We began phenotyping the SIK1 loss of function rodent model using global SIK1 

knockout mice (GDF9-Cre). Mice were back-crossed with C57/Bl6 mice (Jackson) at 

least seven generations prior to testing. We obtained viable SIK1-KO male and female 

mice at slightly less than the expected Mendelian ratios (~10% reduction in 

homozygous SIK1-KO mice) and found that loss of Sik1 did not affect gross longevity or 

health. Perhaps the most striking initial phenotype we observed in un-manipulated 

cohorts was reduced body size in SIK1-KO mice compared to wildtype littermates (23). 

This phenotype was also observed in a separate SIK1 knockout model (22) and is the 

subject of another study in our laboratory that will not be covered further in this text; 

however, it is an important factor we considered as we assessed metabolic phenotypes 

in these mice.  

 Since we hypothesized that deletion of Sik1 would result in skeletal muscle 

defects, we immediately conducted extensive histological analyses of SIK1-KO skeletal 

muscle. Hematoxylin/Eosin staining of SIK1-KO muscle revealed nearly identical 

structural and organizational qualities of wildtype and SIK1-KO muscle (Fig. 8A) and 

Gömöri trichrome staining did not reveal accumulation of fibrous connective tissue in 

SIK1-KO muscles as we might expect with degenerative phenotypes (not shown). We 

did not find increased numbers of centrally-located nuclei (a hallmark of regenerated 
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muscle fibers) and we did not measure significant differences in gross muscle weights 

(Fig. 8B). Overall, there were no signs of muscle degeneration or impaired muscle 

development observed in SIK1-KO mice. Without data to support my hypothesis that 

SIK1-KO mice would have impaired muscle development, I began to investigate 

metabolic properties of our conditional SIK1 knockout mouse line for the reasons 

mentioned in the previous section.   

 

4.2.2 SIK1-KO lean metabolism 

When investigating metabolic characteristics of SIK1-KO mice, we found that 

lean adult males had modest reduction in ad libitum blood glucose levels but no change 

in fasting blood glucose levels (Fig 9A). Additionally, we found that SIK1-KO mice did 

not have altered glucose (Fig 9C) or insulin (Fig 9D) tolerance compared to wildtype 

littermates and did not display elevated gluconeogenic gene expression (Fig. 9B) (23). 
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This was surprising, as we expected loss of SIK1 to result in uninhibited glucose 

production in the liver and therefore elevated blood glucose levels. We observed no 

changes in lean mass or fat mass composition in global SIK1 knockout mice and 

observed no change in food intake or metabolic rate of SIK1-KO mice compared to 

wildtype controls. While conducting experiments to confirm Sik1 deletion in SIK1-KO 

tissues, we noted that Sik1 mRNA was expressed at such low levels in unchallenged 

mice that SIK1 proteins levels were difficult to even detect. In order to detect SIK1 in 

wildtype tissues, we had to immunoprecipitate the protein and load significant amounts 

of protein in electrophoretic gels. This observation made us hypothesize that 

phenotypes in SIK1-KO mice might only be evident under stressed conditions when 

endogenous SIK1 proteins is more abundant. We therefore considered relevant models 

of physiological stress in which SIK1 expression is elevated and the effects of impaired 

SIK1 action would likely be more apparent. 
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 As previously discussed, SIK1 is a stress inducible kinase. Part of the interest in 

SIKs results from the fact that the expression of these proteins is typically upregulated 

in response to stressful stimuli in order to re-establish homeostatic conditions. Since we 

were interested in SIK1 actions during myogenesis and in metabolism, we searched for 

SIK1-inducing stimuli in muscle. For our myogenesis study, we utilized our previous 

findings that demonstrated increased SIK1 expression in cardiotoxin injured skeletal 

muscle from wildtype mice (31). We conducted similar injury experiments in SIK1-KO 

mice to determine if loss of SIK1 impaired skeletal muscle regeneration.  

4.3 Phenotypes of SIK1 deletion in challenged mice  

4.3.1 SIK1-KO skeletal muscle myogenesis after injury 

To investigate the effects of Sik1 deletion during muscle injury and repair, we 

injected cardiotoxin (CTX) in one tibialis anterior muscle (TA) of adult male SIK1-KO 

and wildtype mice and collected injured (and un-injured contralateral TA) muscles at 

multiple time points (1, 5, and 14 days; 5 days shown in Fig 10). Surprisingly, we found 

that SIK1-KO mice recovered from necrosis just as efficiently as wildtype controls. In 

fact, we found that some SIK1-KO mice even had larger regenerated skeletal muscle 

fibers than controls. These data argue against impaired skeletal muscle myogenesis in 

SIK1-KO mice and support the notion that the cellular phenotypes we originally 

observed in cultured cells are more complicated in the in vivo model we created. It is 

likely that other skeletal muscle kinases compensated for the loss of SIK1 in the in vivo 

injury model but were unable to do so in cells removed from their niche. It is also 

possible that we missed a potential phenotype as a result of the injury model we chose. 
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Cardiotoxin causes muscle necrosis without damaging the underlying basal lamina 

structure. Future studies employing a more severe model of necrosis that would further 

disturb the natural niche, barium chloride injection for example, could possibly reveal a 

myogenic phenotype we missed.  

 

In addition to toxin-induced injury, we tested SIK1-KO myogenic repair of muscle 

by crossing SIK1-KO mice with MDX mice (Dmdmdx). MDX mice lack the structural 

protein Dystrophin and undergo continual rounds of muscle degeneration and 

regeneration beginning reliably at 4 weeks of age (91). This is a commonly used model 

in muscle regeneration studies because researchers know the mechanism and time line 

of muscle degeneration. We did not observe alterations in SIK1-KO degeneration or 

regeneration in this SIK1-KO:MDX model (not shown). From these studies, we 

concluded that SIK1 is dispensable for regeneration of mouse skeletal muscle.  
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In addition to injury related stimuli, I completed several experiments which 

employed exercise as a stimulus. I tested the functional characteristics of SIK1 null 

skeletal muscles and found reduced exercise capacity of SIK1-KO mice and reduced 

force generation in muscles excised from SIK1-KO males in collaboration with Dr. 

George Rodney’s laboratory (Baylor College of Medicine). Additionally, I identified 

differences in MEF2 transcriptional activation after exercise in SIK1-KO mice crossed 

with Mef2LacZ reporter mice.  

4.3.2 SIK1-KO in insulin resistance     

  One of the earliest published reports on SIK1 demonstrated upregulation of SIK1 

expression in multiple tissues of obese db/db mice (5). These authors reported 

increased Sik1 mRNA levels in both white and brown fat pads, liver, and skeletal 

muscle in their db/db cohorts. Since we were interested in identifying metabolically 

relevant stressors that increase SIK1 expression, and in the effects of SIK1 deletion on 

glucose metabolism, we adopted of model of obesity for phenotyping SIK1-KO mice. 

Unlike the previous study, we chose an alternate model of obesity that was not 

stimulated by genetically induced hyperphagy. We used a common diet-induced obesity 

(DIO) model which stimulates weight gain through increased calorie and fat intake. We 

found that this model of DIO induces Sik1 expression in skeletal muscle (Fig11A). 

Briefly, mice were fed a diet high in fat (60% calories from fat) for 12-16 weeks to induce 

obesity and related metabolic disorder. Importantly, SIK1-KO mice became obese and 

gained a similar percentage of weight as wildtype controls despite starting with smaller 

body sizes. In agreement with Horike et al, we found that Sik1 mRNA expression is 

dramatically up-regulated in skeletal muscles of obese wildtype mice compared to lean 
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controls (Fig 11). Additionally, we have since demonstrated that SIK1 protein is 

significantly increased in muscles of obese mice compared to lean controls (not shown). 

This latter finding is of particular importance given our prior characterization of SIK1 

stability in skeletal muscle. With these findings, we had identified a clinically relevant 

model in which SIK1 protein is present at readily detectable levels and SIK1 kinase 

activity was presumably of consequence to metabolic balance. 

 We subsequently subjected obese control and SIK1-KO mice to metabolic 

testing. Interestingly, SIK1-KO mice displayed significantly enhanced glucose tolerance 

compared to obese wildtype controls in glucose tolerance tests (Fig 11B). This finding 

was contrary to our original hypothesis that loss of SIK1 would lead to un-controlled 

CREB dependent transcription of the gluconeogenic program and hyperglycemia. 

Although we found no difference in insulin tolerance in obese SIK1-KO mice, we did 

measure increased blood insulin levels (Fig 11C-D). This latter finding supports a report 

of increased insulin secretion from pancreatic  cells in a separate model (non-

conditional) of Sik1 deletion (22).  
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 Although increased plasma insulin levels could explain reduced blood glucose 

levels in SIK1-KO mice, we wondered whether there was an additional component of 

enhanced insulin sensitivity in SIK1-KO tissues. This is an important topic of 

investigation because advanced metabolic disorder and type 2 diabetes leads to 

hyperglycemia due to reduced insulin sensitivity in metabolic tissues despite abnormally 

high blood insulin concentrations (92). In order to address this possibility, we subjected 

a cohort of obese SIK1-KO and wildtype mice to hyperinsulinemic-euglycemic clamp 

testing. Through this experiment, we found that obese SIK1-KO mice have similar 

hepatic glucose output as controls (endogenous rate of glucose appearance, EndoRa, 

Fig 12A) but require significantly more glucose infusion (glucose infusion rate, GIR) to 

sustain euglycemia in the presence of superphysiological blood insulin concentrations 

(Fig 12B). Importantly, the effects of increased  cell insulin secretion in obese SIK1-KO 

mice are eliminated once euglycemia is reached because blood insulin levels are so 

artificially high in both control and test animals that endogenous insulin levels become 

irrelevant. Additionally, we used a fluorinated glucose analog tracer to determine the 

biodistribution of glucose uptake in obese SIK1-KO and control mice. We measured 

insulin-stimulated glucose uptake in heart, white and brown fat, and skeletal muscle 

(quadriceps, gastrocnemius, and soleus). Interestingly, the only differences we 

observed in glucose consumption were in the large skeletal muscle groups (Fig 12C 

and not shown). Our findings confirm that obese SIK1-KO mice not only have increased 

blood insulin levels but also have enhanced insulin sensitivity with enhanced uptake into 

skeletal muscle. Drug targets with the ability to enhance insulin sensitivity in obese 
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states are of significant clinical interest as depressed insulin sensitivity is the crux of the 

type 2 diabetic disorder.  

 

4.3.3 SIK1 deletion in individual organs 

There are many insulin-sensitive organs that remove glucose from the 

bloodstream in response to simulation by this hormone. Since obese SIK1-KO mice 

displayed enhanced insulin sensitivity, and therefore increased glucose uptake into 

peripheral tissues, we wondered which tissues consumed the excess glucose infused in 

our clamp experiment. In order to test this, we infused labeled glucose analog tracers 

into obese SIK1-KO and wildtype mice and measured the amount of tracer found in 

different tissue groups post insulin injection. Interestingly, the only tissues we found to 
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have significantly increased tracer concentrations in SIK1-KO mice were skeletal 

muscles (quadriceps and gastrocnemius) (Fig 12C). Glucose analog tracer 

concentrations were not statistically different in SIK1-KO heart or white or brown fat 

compared to controls. We previously knew that SIK1 was expressed in adult skeletal 

muscle and is highly regulated in this tissue but had not until this point realized that it 

played a role in skeletal muscle metabolism and glucose uptake. Importantly, increased 

glucose uptake specifically into skeletal muscle of obese SIK1-KO mice could be due to 

cell-autonomous effects of SIK1 in skeletal muscle or could be due to effects of Sik1 

deletion in other tissues that communicate with skeletal muscle to control glucose 

uptake in muscle. In order to decipher the true mechanism of increased skeletal muscle 

glucose uptake in the SIK1-KO model, we utilized the conditional nature of our mouse 

line and systematically deleted Sik1 in tissues of interest before we subjected 

conditional knockout mice to Diet induced obesity and metabolic testing. 

We deleted Sik1 in liver (Albumin-Cre), brain (Nestin-Cre), white/brown fat 

(Adiponectin-Cre), and brown fat/skeletal muscle (Myf5-Cre). We originally used an 

HSMA-Cre (Human alpha-skeletal actin-Cre) mouse line to delete Sik1 in skeletal 

muscle (and avoid deletion in other tissues) but unexpectedly found degenerative side 

effects in Cre control mice (wildtype SIK1 mice expressing HSMA-Cre) so utilized the 

Myf5-Cre mouse line to test the effects of SIK1 loss of function in muscle. It is not 

uncommon for tissue specific Cre mouse lines to lack exclusivity to a single tissue type. 

Since we were unable to use HSMA driven Cre, we were forced to use a driver that 

deletes targeted proteins in precursor cells for both skeletal muscle and brown fat 

(Myf5-Cre). We therefore used a delineative approach where we compared phenotypes 
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of fat-specific SIK1 knockout mice and muscle/fat SIK1 knockouts to determine the 

effects of SIK1 knockout in skeletal muscle specifically. For this reason, and to simplify 

terminology, Myf5 driven SIK1-KO mice will further be termed “SIK1-MKO” (muscle 

knockout) mice. Importantly, this conditional model resulted in significant depletion of 

Sik1 expression in mouse skeletal muscles (Fig 13A). 

After metabolic testing of several conditional SIK1-KO lines, we found that only 

SIK1-MKO obese mice partially phenocopied the results originally observed in global 

SIK1-KO mice. Specifically, obese SIK1-MKO mice had improved glucose tolerance at 

later time points in glucose tolerance tests compared to Cre controls (Fig 13B) and 

higher glucose infusion rates under hyperinsulinemic-euglycemic clamp (Fig 13C). The 

results of SIK1-MKO glucose tolerance tests were not as dramatic as those observed in 

obese global SIK1-KO mice. This is likely due to loss of the hyper insulin secretion 

phenotype in SIK1-MKO mice (Fig 13D) because SIK1 action remains intact in  cells in 

this conditional model. Blood insulin levels were actually slightly depressed in obese 

SIK1-MKO mice compared to cre control mice. Additionally, it is important to note that 

SIK1-MKO mice lack the small body size phenotype observed in global SIK1-KO mice. 

This eliminates an important variable that could have played a significant role in our 

global SIK1-KO studies. Finally, infusion of glucose tracers in obese SIK1-MKO mice 

confirmed enhanced glucose uptake specifically in skeletal muscle lacking SIK1 (Fig 

13E). These findings reveal cell autonomous action of SIK1 in skeletal muscle that 

normally inhibits glucose uptake into muscle in the context of obesity. Our findings 

position SIK1 as a potentially powerful therapeutic target to inhibit in patients suffering 

from T2DM. Inhibition of SIK1 in obese patients with metabolic disorder may serve to 
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enhance insulin sensitivity of skeletal muscle and reduced potentially life-threatening 

blood glucose levels.  
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In order to provide pre-clinical data in support of SIK1 as a potential therapeutic 

target, we sought to determine the precise molecular mechanism by which SIK1 

regulates blood glucose uptake into skeletal muscle. We first interrogated the potential 

effects of SIK1 on the well characterized insulin signaling pathway (discussed in chapter 

1). 
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Chapter 5: Molecular mechanisms of SIK1-KO glucose uptake  

5.1 Insulin signaling in SIK1 null skeletal muscle 

The metabolic phenotypes we discovered in obese mice lacking SIK1 in skeletal 

muscle (enhanced insulin stimulated glucose uptake) position SIK1 as a potentially 

powerful therapeutic target for treating metabolic disorders like type 2 diabetes. Our 

research provides evidence that inhibition of SIK1 could be an effective strategy for 

avoiding insulin resistance associated with diet induced obesity. As a follow up to our 

physiological study of SIK1 loss of function in mice, we next sought to determine the 

molecular mechanism by which SIK1 regulates insulin sensitivity in the obese state. We 

conducted our research in skeletal muscle tissue since we had evidence that SIK1 

regulation of glucose uptake occurs in a skeletal muscle cell autonomous fashion. 

 As discussed in chapter 1, intracellular insulin signaling is depressed in adipose 

and muscle cells of subjects suffering from advanced diabetes. This pathway and the 

alterations associated with insulin resistance are well characterized; therefore, the 

insulin signaling pathway served as a logical place to begin our search for molecular 

mechanism. We first investigated activation of the core insulin effector Protein kinase B 

(AKT). We used Ser473 and Thr308 phosphorylation-specific anti-AKT (pan) antibodies 

to gauge the level of AKT activation in muscle after acute insulin exposure 

(intraperitoneal injection). We found no significant enhancement of AKT phosphorylation 

at these critical sites in lean or obese SIK1-KO or SIK1-MKO mice compared to controls 

(Fig 14). Additionally, we did not observe differences in AKT phosphorylation between 

genotypes after prolonged insulin exposure post hyperinsulinemic-euglycemic clamp 

(not shown). Since we used antibodies that would recognize phosphorylation 
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modifications on all AKT isoforms, we wondered if we were missing alterations in 

phosphorylation of a specific AKT isoform. Since AKT2 is the dominant mediator of 

glucose import in skeletal muscle (93), we performed immunoprecipitation assays using 

an anti-AKT2 antibody to enrich this isoform in lysates. We then used the original 

phosphorylation-specific antibodies to measure AKT2 phosphorylation in western blots. 

Again, we did not observe differences in AKT activation in any of the samples and 

treatment conditions previously mentioned. In addition to probing AKT activation, we 

also explored activation (phosphorylation) of upstream insulin effectors: insulin receptor 

and insulin receptor substrate proteins (IRS). We did not detect differences in activation 

of these signaling molecules in any samples tested. This is not surprising since 

alterations in these upstream factors would likely result in similar alterations in AKT 

activation since it is a central node of the insulin signaling pathway. 
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 Enhanced glucose uptake into skeletal muscle could occur independently of AKT 

if SIK1 were somehow affecting expression, recruitment, and/or incorporation of glucose 

transporters into the plasma membrane of skeletal muscle cells. We measured mRNA 

expression of GLUTs 1, 4, and 12 (Fig 15A) and did not detect differences between lean 

or obese mice of each genotype. Additionally, we did not observe changes in GLUT1 or 

GLUT4 protein levels in lean or obese SIK1-KO muscles compared to controls (not 
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shown). To determine if glucose transporters were more concentrated on membranes of 

SIK1-KO skeletal muscle cells than controls, we used anti-glucose transporter (GLUT 1 

and 4) antibodies and secondary antibodies conjugated to immunofluorescent tags to 

image insulin treated muscle ex vivo. We did not observe differences between 

genotypes in GLUT4 (Fig 15B) or GLUT1 (not shown) localization to plasma 

membranes in skeletal muscles from obese mice. Since we were interested in 

identifying the molecular mechanism of sustained insulin sensitivity in SIK1 null muscles 

specifically during obesity, we considered mechanisms of glucose uptake regulation that 

are independent of the canonical insulin signaling pathway and GLUT trafficking. 

 

5.2 Fuel utilization in obese SIK1-KO skeletal muscle 

 Based on the Randle’s cycle of metabolism (discussed in chapter 1), we 

postulated that glucose uptake in obese SIK1-KO mice could occur through changes in 
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the balance of fatty acid utilization versus glucose metabolism in skeletal muscle cells. 

Enhanced glucose uptake into skeletal muscle could be explained by reduced fatty acid 

utilization in this tissue. We did not observe overtly elevated lipid accumulation in 

quadriceps muscle from obese SIK1-KO mice compared to controls by Oil Red O 

staining (not shown). In collaboration with Olga Ilkayeva, Ph.D. (Director of the 

Metabolomics laboratory at Duke Molecular Physiology Institute), we examined the 

metabolite profiles of muscles from obese SIK1-KO and control mice. In SIK1-KO 

muscle, we did not measure changes in short chain acylcarnitines (Fig 16A) but did 

measure elevated medium and long chain acylcarnitine species (Fig 16B) along with 

elevated C11-Acyl CoA (Fig 16C), indicative of elevated intramyocellular fatty acid 

concentrations. We did not measure changes in DAG or ceramides (not shown). These 

data seem counterintuitive at first glance. Increased fatty acid utilization should 

presumably reduce glucose uptake in skeletal muscle and accumulation of fatty acid 

intermediates such as the acylcarnitines identified, have been linked to insulin 

resistance (71, 94-96). However, we have not yet tested the efficiency of mitochondrial 

import or the fate of these fatty acid intermediates to verify their full metabolism. 

Importantly, a report by Koves et. al. demonstrated that the fate of fatty acid 

intermediates (complete oxidation) is more important for determining insulin sensitivity 

than the actual concentrations of intracellular lipid species. This group showed that 

reduced -oxidation serves to preserve insulin dependent glucose uptake in skeletal 

muscle (71). Therefore, future studies determining the precise intracellular fate of 

muscle metabolites will be important for determining whether alterations in cellular lipid 

metabolism are the cause of the phenotypes we observed in obese SIK1-KO mice.  
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In addition to our investigation of the intracellular lipid profile in muscles from 

obese SIK1-KO mice, we also measured key products along the pathway of glucose 

metabolism. We found no difference in glycogen concentrations in SIK1-KO muscles 

(Fig 17A) indicating that the excess glucose imported into SIK1-KO muscles is not 

stored and is indeed used for glycolysis. Additionally, we did not observe increased 

hexokinase activity in SIK1-KO muscle cells (not shown). We did not observe significant 

increases in pyruvate or lactate concentrations in SIK1-KO muscles, although there was 

a trend toward higher levels of these organic acids (Fig 17B-C). Finally, we did not 

detect changes in acetyl CoA concentrations (the product of both -oxidation and 

pyruvate oxidation used to fuel the TCA cycle) (Fig 17D). This last finding is interesting 

given the evidence of greater glucose and fatty acid availability in SIK1-KO muscles. 

Either acetyl CoA is not being efficiently produced or is being consumed at a higher rate 

in SIK1-KO muscles compared to controls.  
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Despite evidence of increased substrate availability (increased glucose uptake 

and intracellular lipid content), we surprisingly found reduced ATP concentrations in the 

skeletal muscles from HFD fed SIK1-KO mice (Fig 18). This observation demonstrates 

that although there are increased substrates for fuel production (fatty acids and glucose) 

within muscles, obese SIK1-KO mice are either unable to produce energy as efficiently 

as wild type controls or consume energy (ATP) at a significantly elevated rate. Since 

ATP serves as an allosteric regulator of glycolysis (97), we reason that ATP-depleted 

SIK1-KO muscle cells sense that they are in a state of starvation and serve as a 

glucose sink in an attempt to re-establish proper ATP concentrations.    

 

5.3 SIK1 regulates pyruvate dehydrogenase activity 

Increased skeletal muscle glucose availability paired with no change in acetyl 

CoA concentrations and reduced ATP concentrations provoked us to consider potential 

flaws in SIK1-KO pyruvate oxidation. We therefore measured the activity of pyruvate 

dehydrogenase (PDH) which converts the fuel produced from glycolysis (pyruvate) into 

acetyl CoA which is further used to fuel the TCA cycle and ATP production. We found 

drastically reduced PDH activity in muscles from obese SIK1-KO mice compared to 
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wildtype controls (Fig 19A). The reduced enzymatic activity we observed likely results 

from reduced protein concentration since we also observed significantly reduced 

PDH1 protein levels in isolated mitochondria from the same SIK1-KO muscles (Fig 

19B). Despite reduced protein levels, PDH1 mRNA levels are not different in muscles 

from obese SIK1-KO or MKO mice compared to controls. These data indicate possible 

post-translational regulation of PDH1 protein. Indeed, this protein has been 

demonstrated to be degraded by the proteasome (98, 99). It is surprising that we did not 

observe reduced acetyl CoA concentrations despite the significant reduction in PDH1 

content and activity. The source of compensation is a subject of current investigation in 

our laboratory and has potential to explain the phenotypes we observed in vivo.  
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 One focus of our current research is to describe how possibly decreased glucose 

and/or fatty acid metabolism in SIK1-KO muscle could spur increased glucose uptake 

and preserve insulin sensitivity in muscle cells. One hypothesis is that SIK1-KO muscles 

take in excess glucose in an attempt to restore depleted ATP levels but are unable to 

detect the downstream PDH1 defect in glucose metabolic processing. Additionally, 

increased fatty acid oxidation in obese states has been proposed to overload 

mitochondria causing substantial stress and eventual mitochondrial dysfunction if 

substrate input continually exceeds mitochondrial capacity (71). Are SIK1-KO 

mitochondria stressed? Reduced intracellular ATP levels could reflect dysfunctional 

mitochondria or could serve to stimulate processes to enhance mitochondrial efficiency.  

5.4 Mitochondrial stress in SIK1-KO muscle 

 Our findings reveal an interesting paradigm in which muscles with possibly 

defective glucose and/or fatty acid metabolism work to improve whole body glucose 

handling and reduce potentially life-threatening hyperglycemia. Reduced SIK1-KO 

intramuscular ATP concentrations and the contractility defects mentioned in chapter 4 

are indicative of unhealthy muscle. We observed other signs of distress in SIK1 null 

skeletal muscle cells.  

Since multiple SIK1 effectors modulate gene expression, we conducted a 

microarray experiment to identify alterations in SIK1-MKO and control expression 

profiles after DIO. The largest change in gene expression we observed was for the 

Park2 gene which encodes the E3 ligase Parkin. Expression of Park2 was upregulated 

several fold in quadriceps muscle from obese SIK1-MKO mice compared to Cre control 
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mice (Fig 20A). Up-regulation of this gene is of interest to our group because Parkin 

regulates mitochondrial fission and fusion dynamics and mitophagy which have been 

reported to change in the context of obesity (72, 100). Additionally, mitochondrial fission 

and fusion are dynamically regulated in many tissues to accommodate changes needed 

for efficient ATP production in response to stress (101, 102), so perhaps it is not 

surprising that Parkin would be upregulated in seemingly stressed skeletal muscle 

tissue like SIK1-KO muscles. In addition to increased mRNA levels of Park2, we also 

observed significantly higher Parkin protein levels in all samples lacking SIK1 (isolated 

muscle cells and lean and obese tissues from SIK1-KO mice) (Fig 20B). Additionally, 

we found elevated Parkin association with mitochondria isolated from obese SIK1-KO 

mice compared to controls (Fig 20C). Interestingly, we did not observe upregulation of 

the mitophagy pathway driven by Parkin mitochondrial recruitment and target 

ubiquitination (not shown). It is possible that Parkin has effects on mitochondrial 

proteins outside of the mitophagic process in this context or has effects in other cellular 

locations (e.g. at the plasma membrane to regulate fatty acid translocator CD36). Of 

particular interest, PDH1 was shown to associate with Parkin in a pull down 

experiment used to search for Parkin interacting proteins (111). It is quite possible that 

Parkin promotes post-translational degradation of PDH1 and SIK1 regulates PDH1 

activity indirectly through Parkin. This is the subject of future studies in our laboratory 

and signifies research of potentially pivotal importance for our understanding of skeletal 

muscle glucose metabolism in the obese state.   
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5.5 Mitochondrial dynamics in SIK1-KO muscle 

 In the process of characterizing Parkin in SIK1-KO muscles, we noticed that 

mitochondrial organization appeared to differ in SIK1-KO and wildtype muscles. We 

observed hyperfusion of non-triad associated mitochondria in quadriceps and extensor 

digitalis longus (EDL) muscles of obese SIK1-KO mice by transmission electron 

microscopy (Fig 21). This phenotype seems counterintuitive since Parkin is up-

regulated in these muscles and is thought to promote mitochondrial fission. This is 

further support, however, that the increased mitochondrial associated Parkin in SIK1-

KO muscles may be playing a non-traditional role from those previously characterized. 

Additionally, hyperfusion of mitochondria in SIK1-KO muscles may be a compensatory 

result of ATP depletion. Indeed, mitochondrial hyperfusion has been shown to persist in 

stressed cells despite impaired activity of the electron transport chain (103). 
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 Altogether, our current understanding of SIK1-KO mitochondrial organization and 

metabolic profile lead us to a model in which normal homeostatic balance of multiple 

intracellular processes is perturbed but leads to an unexpectedly beneficial outcome on 

whole body metabolism.   
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Chapter 6: Discussion and Future Directions 

6.1 Current model and hypothesis 

 Our work has established SIK1 as a highly regulated protein kinase with a role in 

skeletal muscle glucose consumption and has revealed an interesting twist of possibly 

impaired glucose and fatty acid metabolism in the context of obesity. Loss of SIK1 in 

muscles of obese mice is associated with reduced ATP concentration, accumulation of 

fatty acid intermediates, depletion of PDH1 protein levels, and impaired pyruvate 

oxidation. On the surface, these metabolic deviations would seem to be conducive to 

the development of insulin resistance and hyperglycemia. Nevertheless, our SIK1-KO 

model demonstrates that these “defects” may ultimately function to enhance glucose 

uptake into skeletal muscle cells. Interestingly, our current model suggests that the 

systems sensing glucose availability, intracellular ATP concentrations and degree of -

oxidation in muscle lie upstream of SIK1 regulated metabolism. We hypothesize that the 

impaired glucose metabolism we observe at the level of PDH establishes a glucose sink 

that continually draws glucose into muscle cells and spits it back out as lactate (a 

glucose derivative a lot less toxic in plasma than glucose itself). Importantly, the 

relationship between PDH activity and the development of insulin resistance is currently 

a topic of debate in the glucose metabolism field (104-106). It is currently unclear as to 

whether SIK1 regulates PDH1 directly or if PDH1 inhibition is a secondary result of 

SIK1 deletion in muscle. A potentially powerful experiment for future research would be 

to test the phenotypic dependence of SIK1-KO mice on PDH1 inhibition using SIK1-

KO x PDH kinase (2/4) double knockout mice which were reported to hyper-activate 
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PDH activity. Such a model would enable researchers to investigate whether 

reconstitution of PDH activity can rescue the mutant SIK1-KO phenotype (although it 

would be important to first determine whether activated PDH would still simply be 

degraded in SIK1-KO systems). 

 Another important possibility stemming from this research is the potential 

regulation of fatty acid metabolism by SIK1. We provide evidence of increased medium 

and long chain acylcarnitines within SIK1-KO muscle cells but have not tested the ability 

of such intermediates to enter mitochondria for full utilization. It is formally possible that 

despite fatty acid cellular influx, there is reduced fatty acid entry into mitochondria which 

could ultimately signal for increased glucose uptake (through ATP depletion over time). 

Indeed, the reduced ATP concentrations we observed in muscles from obese SIK1-KO 

mice are supportive of such a model. Future research on SIK1-KO carnitine carrier 

composition and function and efficiency of the TCA cycle and electron transport chain 

could prove valuable information for unlocking the molecular mechanism by which SIK1 

regulates glucose uptake.   

 In addition to our hypotheses involving classic regulators of glucose metabolism, 

we also consider the potential role of Parkin and mitochondrial health and dynamics in 

the insulin sensitivity phenotype we’ve described. We hypothesize that Park2 

expression is elevated in SIK1-KO muscles because these appear to be stressed 

tissues. Parkin, like SIK1, is a stress induced molecule. It is quite possible that reduced 

oxidation and low ATP levels cause cells to operate as if they were starved despite 

abundant provisions. This sort of stress could be the driving force for increased Parkin 

expression and mitochondrial association. Indeed, cellular starvation has been shown to 
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enhance Parkin expression by several fold (107). Furthermore, we hypothesize that 

instead of participating in the most well characterized roles for Parkin (mitophagy and 

fission), this E3 ligase is playing an alternate role in our model. We are currently 

interested in investigating the ability of Parkin to ubiquitinate PDH1 to promote 

degradation of this enzyme in obese SIK1-KO mouse muscles. Indeed it has been 

reported that PDH1 interacts with Parkin (111). It remains unclear how Park2 

expression is increased in our knockout model. It is possible that SIK1 regulates 

modulator(s) of Park2 expression or it is possible that Park2 expression is upregulated 

secondarily to impaired mitochondrial ATP production, reduced PDH1 activity, and/or 

impaired mitochondrial fission through MFF1. These possibilities will be addressed in 

future work in our laboratory. 

6.2 Significance of linking SIK1 to increased glucose metabolism      

The first publications on SIK1 described this kinase as a gate keeper for 

homeostatic maintenance. In many instances, stressed cells upregulate SIK1 

expression to restore homeostatic balance. Why would increased SIK1 expression in 

the obese state promote insulin resistance if the role of SIK1 is to maintain 

homeostasis? Since SIK1 is an evolutionarily conserved kinase that presumably played 

a role in metabolism of early man, I hypothesize that increased SIK1 expression was 

mainly up-regulated during times of starvation to promote fat break down and spare 

glucose for the brain. The stressful state of overnutrition was not likely a metabolic state 

ever encountered in early nomadic man. In modern society, food high in fat is readily 

available and consumed by many people on a regular basis. This leads to overnutrition 

and an imbalance in homeostasis that SIK1 cannot control. Mitochondrial overloading 
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due to severely increased demands for fatty acid oxidation likely leads to mitochondrial 

dysfunction and aberrant fat utilization in skeletal muscle that can eventually lead to 

insulin resistance.  

6.3 SIK1 utility as a drug target to treat type 2 diabetes and unresolved questions 

 Our data support the use of SIK1 inhibitors in treating metabolic disorders 

associated with hyperglycemia. Importantly, deletion of the SIK1 kinase domain does 

not lead to developmental defects or obvious disorders. Pan SIK inhibitors such as HG-

9-91-01 exist and have been used in animal studies; however, drugs that do not 

selectively inhibit SIK1 but rather inhibit all SIK family members would not be suitable 

therapeutics for treating hyperglycemia. SIK2 inhibition has been shown to subdue the 

insulin signaling pathway through IRS1 in fat tissue (5) and mice with global deletion of 

SIK2 display impaired glucose tolerance and insulin sensitivity (108). SIK3 inhibition 

(genetic deletion or inhibition with Pterosin B) results in uncontrolled gluconeogenic 

gene expression in hepatic cells (90, 109) and SIK3-KO mice display several 

detrimental phenotypes including impaired fat storage and defective cartilage formation 

(110).  

Our research provides support for the use of SIK1 selective inhibitors to reduce 

blood glucose levels in obese patients. It is important to consider potential flaws in a 

SIK1 centered treatment strategy, however. For instance, SIK1 has been demonstrated 

as a positive mediator of the tumor suppressor p53 to avoid metastatic growth and low 

SIK1 expression has been associated with poor patient prognosis and increased 

epithelial-mesenchymal transition of tumor cells. For these reasons, it will be important 
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to invoke our conditional knock out model of SIK1 to delete this kinase in a time 

dependent manner, for prolonged intervals, and in additional models of cellular stress 

than presented here.    

 Our work utilizes a conditional knockout mouse model to inhibit SIK1 kinase 

activity prior to the induction of diet induced obesity. An important follow up experiment 

would be to use an inducible model of Sik1 deletion that could be controlled in a time 

dependent manner to delete Sik1 after obesity and insulin resistance are established. 

This type of model would be very clinically relevant for how SIK1 inhibitors would likely 

be used in human patients and would demonstrate whether the phenotypes we 

observed were solely due to proactive kinase inhibition. Additionally, we have not yet 

demonstrated whether SIK1 expression is sufficient to drive the development of insulin 

resistance. Our laboratory is currently developing models to test the hypothesis that 

over-expression of SIK1 is sufficient for the development of this pathology.  

 Despite our extensive characterization of SIK1 metabolic regulation, several 

questions remain to be answered at a later date. For instance, we are unsure about the 

precise SIK1 effector responsible for the glucose sink in SIK1-KO muscle. Rescue 

experiments expressing stable PDH1 or knock down of Parkin may serve to reveal the 

critical SIK1 effector. Additionally, it would be beneficial to determine PDH1 abundance 

and activity in SIK1-KO tissues other than skeletal muscle and much more detailed 

information about fatty acid utilization in SIK1-KO muscles could provide more 

mechanistic insight. We have evidence that Parkin is upregulated in multiple 

metabolically relevant tissues of SIK1-KO mice. It is possible that Sik1 deletion effects 

metabolism in other tissues as well. For example, increased glucose uptake impairs 
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fatty acid release in adipose tissue. Indeed, global deletion of Sik1 resulted in better 

glucose tolerance than deletion in skeletal muscle alone. Perhaps deletion of Sik1 has 

additive effects in multiple tissues but was most apparent in skeletal muscle. 

 The work presented here provides strong evidence for continued investigation of 

SIK1 metabolic regulation and supports SIK1 as a potential clinical therapeutic.            
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