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Modeling Post Stroke Respiratory Dysfunction, 

Apneas and Cognitive Decline 

Anthony Patrizz, B.A. 

Advisory Professor: Louise McCullough M.D., Ph.D. 

Stroke is a major cause of mortality and the leading cause of long-term 
disability in the US. More than 60% of individuals suffering a first time stroke develop 
respiratory dysfunction, prolonging recovery and increasing mortality. Post-stroke 
cognitive decline is a major contributor to disability and nursing home placement, 
therefore the cognitive consequences of Stroke Induced Respiratory Dysfunction 
(SIRD) need to be explored if we hope to enhance functional recovery. The first step 
towards treatment of the negative consequences of SIRD is the development of 
appropriate animal models that will allow us to explore the pathophysiology of SIRD 
and provide the opportunity to test potential pharmacological agents. 

We developed and characterized an animal model of stroke induced 
respiratory dysfunction recapitulating the respiratory phenotype witnessed in the 
clinical population, characterized by incidences of apnea and hypoventilation. 
Interestingly, mice with high incidence of apneas display signs of progressive 
cognitive decline compared to those with low/no incidence of apneas. Histological 
analysis of vital brainstem respiratory control sites unveiled reactive astrocytosis, an 
important cell type in the neurovascular unit and an essential component of 
chemoreception. Respiratory dysfunction and brainstem astrocytosis was 
reproduced in mice that underwent intracerebroventricular injections of TGF-β. 
Suggesting the TGF-β signaling pathway contributes to the onset of astrogliosis and 
respiratory dysfunction. 

Our data suggests that stroke disrupts basal breathing rather than increasing 
chemoreceptor gain. Therefore, we predict treatments designed to stimulate 
breathing independent of chemoreceptor gain will improve respiratory instability, 
behavior, cognition and mortality. Systemic application of acetazolamide eliminated 
apneas while preventing further cognitive decline. 

This work not only developed a model of stroke induced respiratory 
dysfunction that recapitulates the respiratory phenotype witnessed in the clinical 
population, but also providing translational relevance to the field of stroke, aging, 
and cognitive decline.  Successful treatment of SIRD may lead to significant 
improvements in post-stroke recovery and cognition. 
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Chapter 1. Introduction. 

 

1.1. Stroke is a leading cause of adult disability: 

Stroke continues to be the leading cause of serious long-term disability in the 

United States. (1) In 2012, stroke care cost an astounding 77.1 billion dollars, and 

due to the aging of the US population, this number is expected to triple by 2030 to 

183 billion.  Over 4% of the US population has suffered a stroke. (2) This public 

health issue is not just faced by the United States; globally stroke is the second 

leading cause of death behind ischemic heart disease. (3) Stroke results from the 

lack of blood supply (ischemia) to the brain due to a thrombus, embolus or 

hemorrhage. Thrombotic and embolic strokes are both classified as ischemic strokes 

and account for 87% of all strokes. (4) Periods of ischemia quickly kill brain cells, 

disrupting brain function and resulting in disability or death. Currently, there is only 

one pharmacological treatment for stroke, tissue plasminogen activator (tPA), which 

has a short therapeutic window and carries a significant risk of hemorrhage in the 

periphery and in the brain. (5) Although acute mortality from stroke has declined due 

to improvements in medical care, this has led to a growing number of stroke 

survivors in our communities. Therefore, enhancing functional recovery and 

preventing further disability in stroke patients is critical.  

Advanced chronological age is the most important non-modifiable risk factor 

for stroke. (6) Since >80% of strokes occur in individuals over the age of 65(2), the 

aging population bears the major brunt of stroke related mortality and disability. Age 

is an independent predictor of poor outcome after stroke, and older patients have 
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both higher in-hospital mortality and poorer functional outcomes after an ischemic 

event(2, 7), leading to high rates of nursing home placement, poor quality of life and 

skyrocketing public health costs.(8) 

 

1.2. Stroke and Respiratory Dysfunction 

It is well documented that respiratory dysfunction, particularly during sleep, is 

common following stroke and is associated with a worse prognosis. (9-13) More than 

60% of individuals suffering a first stroke develop respiratory dysfunction 

characterized by apneas and hypoventilation. (9) Over 80% of stroke survivors 

initially diagnosed with stroke disordered breathing had continued deficits even three 

years after their initial stroke. (14) Despite the high prevalence of stroke induced 

respiratory dysfunction (SIRD), little is known about the mechanism by which stroke 

affects breathing in part due to the lack of animal models of this disorder.  Direct 

lesions to brainstem respiratory centers can severely disrupt breathing. (15, 16) 

However, patients with hemispheric strokes (the most common type of stroke) also 

develop disordered breathing, and damage from these strokes do not directly affect 

the brainstem. Additionally, there is a lack of correlation between respiratory 

dysfunction and stroke location and/or severity.8 Disordered breathing that 

accompanies stroke is associated with higher one-year mortality and worse 

functional outcome at 3 months and 12 months following stroke. (17, 18) Importantly, 

a decrease in cognitive performance was closely associated with the severity of 

respiratory disturbance, and an increase in daytime sleepiness after stroke was a 

strong predictor of cognitive decline.(19) 
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A common type of stroke-induced periodic breathing is known as Cheyne-

Stokes respiration, which results from hyper-activation of the mechanism by which 

the brain controls breathing in response to changes in tissue CO2/H+ (i.e., respiratory 

chemoreceptors). Currently the only treatments available for stroke induced 

respiratory disorders are physical interventions designed to maintain airway patency 

i.e. continuous positive airway pressure (CPAP). Unfortunately, this type of 

intervention is only marginally successful. Studies have shown that CPAP therapy 

has proven beneficial in improving outcomes for stroke patients with obstructive 

sleep apnea but not those with central sleep apnea. (20) Another study reported no 

benefit from CPAP treatment during the sub-acute phase of stroke. (21) Further, 

CPAP treatment is not well tolerated in recent stroke victims so patient adherence is 

poor. (22) Therefore, an effective treatment of stroke-induced respiratory 

dysfunction, particularly central apnea, is needed.  

 

1.3. Respiratory dysfunction and cognitive decline 

The majority of the evidence linking disordered breathing to cognitive decline 

has come from studies of obstructive sleep apnea (OSA). OSA increases the risk of 

cardiac and cerebrovascular events. It is has been shown that periods of intermittent 

hypoxia can affect cerebral circulation and result in brain hypoperfusion(23, 24), 

leading to decreased cerebral auto-regulation. (25, 26) In animal models of OSA, 

cellular stress promotes white matter loss and axonal injury in brain regions such as 

the hippocampus. (27, 28) Consistent with this finding, hypomyelination and 
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impairments in long and short-term working memory have been seen in intermittent 

hypoxia (IH) models such as sleep apnea(29).  

Possibly due to this shared neuro-circuitry, sleep disturbances are common 

among Alzheimer’s patients. Over 40% of patients with Alzheimer’s have evidence 

of sleep-disordered breathing compared to only 5% of healthy controls. (30) 

Evidence suggests that sleep disturbances can lead to a decline in cognitive function 

and exacerbate memory impairment. Fragmented sleep and hypoxia induce a 

neuroinflammaory state, disrupting neuronal plasticity and impairing hippocampal 

dependent learning and memory. (31) Several studies have shown a link between 

sleep apnea and executive function, working memory, episodic memory and 

attention. (32, 33) In elderly women, those with sleep apnea are at a significantly 

higher risk of developing cognitive impairment than controls. Females with sleep 

apnea also exhibit increased white matter loss and changes in structural integrity in 

several brain regions compared to age-matched males.  (34) Although it did not 

account for severity of sleep apnea and type or size of stroke, the REGARDS study 

found a strong correlation between stroke and sleep apnea with poorer memory and 

executive function compared to individuals with stroke or sleep apnea alone. Beyond 

the cognitive damage that is sustained with the stroke itself, stroke patients have 

accelerated cognitive decline in the years following the injury compared to controls, 

which may be more pronounced in females. (35, 36) Poor cognitive function is a 

strong predictor of nursing home placement and increases the length of 

hospitalization. (37) The mechanism underlying “post-stroke cognitive decline” are 
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unknown. This thesis work specifically aims to answer the question: does disordered 

breathing following stroke result in cognitive decline? 

 

1.4. Respiratory physiology 

Breathing is maintained by a negative feedback regulator designed to 

maintain blood gas homeostasis (i.e., obtain O2 and eliminate CO2). Central and 

peripheral chemoreceptors form the feedback portion of the control loop by adjusting 

the rate and depth of breathing in response to changes in tissue CO2/H+ and O2.  

The forward component of the respiratory control loop reflects effects of ventilation 

on blood gases, and so determines the relationship between ventilation and arterial 

CO2 (Fig.1.1). The stability of breathing depends on the sensitivity of the feedback 

and forward components, which are referred to as controller (chemoreceptor) and 

plant gain, respectively. Chemoreceptor gain is a linear relationship between 

ventilation and arterial CO2, where the x-axis intercept represents the level of CO2 

required to stimulate breathing (i.e., apneic threshold).  Plant gain is reflected as an 

isometabolic line, and where it intersects with chemoreceptor gain represents the 

predicted equilibrium point (eupneic CO2).  The difference between eupneic and 

apneic CO2 (i.e., the CO2 reserve) is considered a key determinant of respiratory 

stability; the larger the CO2 reserve the more breathing must increase to reduce 

arterial CO2 to apneic threshold (Fig. 1.2). The CO2 reserve and consequently 

respiratory stability varies inversely with both plant and chemoreceptor gain.  

Therefore, an increase in either plant or chemoreceptor gain is predicted to 

destabilize breathing.  As long as the PaCO2 remains above apneic threshold there 
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will be a constant stimulus to the respiratory network inducing rhythmic 

breathing.(38, 39) 

Respiration is mainly an autonomous activity determined by the metabolic 

demands of the body. The pons and medulla have been identified as the anatomical 

structures responsible for the autonomic control of respiration. (40) The medulla 

contains a diverse set of respiratory neurons, divided into the ventral respiratory 

group (VRG) and dorsal respiratory group (DRG), each with a distinct function 

involved in respiratory control. This central site of respiratory activity is a point of 

convergence of peripheral and central chemoreceptors, and is critical in maintaining 

normal respiratory function. Central chemoreceptors communicate directly with the 

central pattern generator (CPG), known as the Botzinger Complex. In coordination 

with key respiratory neuronal populations such as the nucleus tract solitarius (NTS) 

and the retrotrapezoid nucleus (RTN), the pacemaker and non-pacemaker cells of 

the Botzinger complex controls rhythmic respiratory activity. 
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Figure 1.1. Schematic of the feed back control of ventilation. Respiratory activity 

is controlled by a combination of peripheral/central chemoreceptors and the central 

pattern generator (CPG). Peripheral and central chemoreceptors receive stimulus 

input in the form of PO2 and PCO2, respectively, communicating directly with the 

central pattern generator. In response to changes in levels of PO2 and PCO2, the 

CPG coordinates ventilation to maintain narrow parameters of ABGs. Stroke may 

disrupt the breathing loop by altering the chemosensitivity of peripheral and central 

receptors or by fluctuating the ventilatory response to levels of O2/CO2. 
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Figure 1.2. Relationship between minute ventilation and arterial CO2. The linear 

relationship between minute ventilation and arterial CO2 dictates that an increase in 

minute ventilation produces a larger reduction in arterial CO2. Apneic threshold is a 

measurable level of CO2 at which the drive to breath exists. Once the detectable 

level of CO2 drops below threshold the drive to breath ceases. Increases in plant 

gain (increase the effect of ventilation of ABGs) are predicated to destabilize 

breathing by decreasing the CO2 reserve. Similarly, increases in chemoreceptor gain 

(increase in ventilatory response to CO2) by eliciting a larger ventilatory response to 

a misperception of ABGs are predicted to destabilize breathing.  
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1.5. Central chemoreception 

 1.5.1. Retrotrapezoid Nucleus 

Located in the rostroventrolateral medulla and part of the VRG, a population 

of neurons referred to as the retrotrapezoid nucleus (RTN), functions as an 

important site of central chemoreception. (41, 42) These neurons are intrinsically pH 

sensitive, glutamatergic and project directly to the respiratory pattern generator. 

Chemosensitive RTN neurons also express the transcription factor Phox2b, which is 

considered a molecular signature of chemosensitive RTN neurons (Fig. 1.3). (43) 

Mutations in this gene have been shown to cause severe respiratory deficits known 

as congenital central hypoventilation syndrome (CCHS), also known as Ondine’s 

Curse, the principal symptom of which is hypoventilation during sleep and reduced 

or absent chemical drive to breath. Activation of RTN neurons expressing channel 

rhodopsin increases both inspiratory and expiratory activity in conscious animals. 

(44, 45) It has recently been shown that GPR4 channels in the RTN serve as the H+ 

sensing mechanism and disruption of these channels produces frequent apneas and 

an altered CO2 evoked breathing response. (46) A common type of disordered 

breathing, Cheyne-Stokes respiration, is thought to result from hyper-activation of 

the chemo sensing mechanism by which the brain controls breathing in response to 

changes in tissue CO2/H+, a form of breathing reproduced in our stroke model.   
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Figure 1.3. Phox2b immunoreactivity of RTN neurons. 20x fluorescence image of 

a 30-micron coronal brainstem slice. RTN neurons in the ventral medulla surface 

characterized by transcription factor Phox2b immunoreactivity (yellow). Glial fibrillary 

acidic protein GFAP (red), dapi (blue).  
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 1.5.1.1. KCNQ channels 

The KCNQ family of K+ channels, namely KCNQ 2 and 3, found in the RTN, 

are essential regulators of neuronal excitability and a K+ conductance known as M-

current. M-currents first activate at sub threshold potentials and increase outward K+ 

conductance as neurons approach action potential threshold. This outward K+ efflux 

counteracts Na+ influx, preventing full action potential. (47, 48) These channels are 

regulators of RTN excitability and can be pharmacologically manipulated to alter 

responsiveness to carbon dioxide. Loss of function of either KCNQ channel 2 or 3 

results in certain types of epilepsy and is proposed to contribute to apnea related 

deaths in Sudden Unexplained Death in Epilepsy (SUDEP). (49-51) Specifically, 

patients with KCNQ2 encephalopathy exhibit apnea with some reported cases of 

SUDEP. (52) Furthermore, genetically engineered KCNQ2 knockout mice succumb 

to respiratory failure within 24 hours of birth. (53) Pharmacological inhibition of RTN 

KCNQ channels with XE991 increases both basal activity and responsiveness to 

CO2 of RTN neurons both in vivo and in vitro. (54) In contrast, activation of KCNQ 

channels with Retigabine decreases neuronal action potentials and silences RTN 

activity. (54)  

 

1.5.2. Nucleus Tract Solitarius 

The Nucleus Tract Solitarius (NTS) is located in the dorsal medial aspect of 

the medulla and is a point of central entry of cardiovascular and respiratory afferents 

namely peripheral chemoreceptors, baroreceptors and pulmonary stretch receptors 

relaying information on pH, O2, CO2 and blood pressure. (55, 56) Neurons of the 
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NTS not only receive excitatory input from these afferent fibers in response to low 

levels of PaO2, but are also capable of detecting changes in PaO2. (57) In response 

to hypoxic conditions the NTS coordinates sympathetic and respiratory output to the 

ventral lateral medulla and the CPG by increasing blood pressure and enhancing 

ventilation. (58, 59) The NTS contains both glutamatergic and P2-purinergic 

receptors, which influence the sympathetic response of the NTS. (60, 61) The NTS 

projects axons to numerous areas including the ventral medullary surface, 

respiratory pattern generator, as well as bulbospinal neurons that project to the 

spinal cord to innervate respiratory associated muscles (Fig. 1.4).  

In addition to contributing to the hypoxic ventilatory response, the neurons of 

the NTS have been demonstrated to supplement the hypercapnic ventilatory 

response (HCVR). Lesioning or pharmacological inhibition of these neurons 

attenuates the HCVR. Many neurons of the NTS also express Phox2b, similar to 

RTN neurons. The Phox2b transcription factor is required for normal development 

and migration of reflex circuitry pathways of the autonomic system that persist 

through adulthood. (62), Ablation of Phox2b NTS neurons with substance P-saporin 

impairs HCVR but had no effect on basal activity under normocapnia(63) extending 

the evidence that Phox2b expressing neurons are essential central chemoreceptors.  
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Figure 1.4. Schematic of brainstem respiratory circuitry. NTS receives 

peripheral input from the carotid bodies, aortic arch and baroreceptors detecting pH, 

O2 and blood pressure, relaying information to the pre-Botzinger’s complex. RTN 

central chemoreceptors monitor levels of CO2/H+ in the brain, also sending 

projections to the pre-Botzinger’s complex.  
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1.5.3. Astrocyte, purinergic signaling and central chemoreception 

The traditional view of astrocytes is that they provide structural and metabolic 

support to neurons, regulate blood flow and maintain blood brain barrier integrity. 

(64) Under pathological conditions such as stroke, astrocytes become reactive, 

markedly increasing the expression of glial fibrillary acidic protein (GFAP), the 

hallmark signature of reactive gliosis, in response to intercellular signaling molecules 

including but not limited to IL6, TNFα, TGFβ, INFγ and IL10 released from neurons, 

microglia, monocytes and endothelial cells. (64) Reactive astrocytes have the 

potential to alter their function and this can be both beneficial and detrimental to the 

brain. (65) In response to cortical stroke, reactive astrocyte processes overlap 

forming a persistent scar acting as a neuroprotective barrier to the ischemic site but 

also increases infarct size while limiting neurological recovery. (66)  

Research over the past decade has begun to elucidate additional dynamic 

astrocytic functions. One is to modulate respiratory chemoreceptor activity in 

response to hypercapnia through purinergic signaling, P2X and P2Y receptors. (67) 

Injections of ATP in the region of the chemosensitive RTN increase respiratory 

activity that can be reversed by application of the P2X antagonist, PPADS. (63, 67) 

Ventral surface brainstem astrocytes sense extracellular pH changes and respond to 

acidification through elevations of intracellular Ca2+ evoking ATP release, uniquely 

different from cortical astrocytes. (68, 69)  

This finding is not unique to RTN astrocytes, ATP injections into the region of 

the NTS stimulate cardiorespiratory activity although P2 receptor blockade did not 

alter the ventilator response to CO2/H+, suggesting an alternative mechanism by 
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which astrocytes contribute to respiratory activity. It is proposed that astrocytes in 

this region decrease glutamate uptake in response to acidification subsequently 

increasing output of the NTS. (70) Besides the hypercapnic ventilatory response, 

astrocytic purinergic signaling contributes to the hypoxic ventilatory response in the 

pre-Botzinger complex, in which blockade of vesicular release of ATP reduces the 

hypoxic ventilatory response. (71) Blockade of ATP release enhanced the secondary 

response to hypoxia, respiratory depression, a product of normoxia combined with 

hypocapnia. In response to hypoxia the respiratory system will increase minute 

ventilation to improve oxygenation. In doing so levels of end tidal CO2 increase while 

PaCO2 decreases. As PaO2 returns to normal, PaCO2 has plummeted below apneic 

threshold producing a system with no chemical inputs resulting in apnea. By 

controlling the ventilatory response to hypoxia, large fluctuations in arterial blood 

gases can be avoided, stabilizing respiratory patterns, a major goal in treating the 

clinical conditions of apnea and sleep disordered breathing. 

Astrocytic end feet are closely associated with cerebrovasculature and 

provide a vital role in regulating vascular tone in response to neuronal metabolic 

demands(72) (Fig. 1.5). Recently, purinergic signaling has been shown to modulate 

arterial tone in the region of the RTN. Disruption of this mechanism increases vessel 

diameter and more importantly decreases the ventilatory response to CO2. (73) 

Astrocytes play a seemingly vital role in contributing to respiratory chemoreception 

while disrupting cellular functions alters the ventilator response to CO2. We 

hypothesize that ischemic stroke induces brainstem reactive gliosis contributing to 

respiratory dysfunction.  
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Figure 1.5 Astrocyte end feet closely associate with vasculature. 40x confocal 

image of GFAP staining of astrocytic (red) end feet “wrapping” around lectin stained 

(green) cerebral brainstem vasculature. Dapi – blue.  
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1.6. Disordered breathing 

Sleep disordered breathing (SDB) refers to periods of reductions in breathing 

amplitude or complete cessation of airflow which results in hypoxia, hypercapnia, 

arousals and fragmented sleep. SDB is associated with increased morbidity and 

mortality, and increases the risk of development of hypertension, stroke, cardiac 

failure and diabetes. (74) Regardless of the subtype of disordered breathing, 

patients suffer numerous episodes of hyponea or apnea per hour as defined by the 

apnea-hyponea index. Five or more episodes an hour is classified as minor while 15 

or more is severe. (75) During episodes of hypoventilation oxygen levels plummet 

with concurrent increase in CO2 levels. Decreases in PaO2 levels stimulate the O2 

sensing carotid body while rises in PaCO2 activate central chemoreceptors, resulting 

in sympathetic excitation of brainstem neurons stimulating breathing, arousals and 

producing fragmented and decreased quality of sleep.  

Although Cheyne-Stokes respiration is proposed to be a result of alterations 

in chemoreception, the underlying mechanism and circuitry remains to be 

elucidated. There are many alterations that can produce disordered breathing 

including chemosensitivity, plant gain or transport time delays of arterial blood flow 

between the lungs and respiratory chemoreceptors. (76) All can result in periodic 

breathing characterized by PaCO2 levels that drop below apneic threshold and 

subsequently lead to apneas. (77) Following periods of apnea, PaCO2 levels rapidly 

rise stimulating a large ventilatory overshoot, which lowers PaCO2 levels below 

apneic threshold. Concurrently, during periods of apnea PaO2 levels plummet 

resulting in hypoxia. 
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Disordered breathing with recurrent apneas is associated with intermittent 

hypoxia, defined as an apneic period of sufficient duration to cause a >3% drop in 

oxygen saturation of hemoglobin. (78) Hypoxemia activates peripheral 

chemoreceptors in the aortic arch and carotid bodies potentiated by catecholamines. 

Peripheral afferent fibers integrate with the brainstem respiratory network innervating 

the respiratory pattern generator. In response to hypoxia alone, respiratory 

frequency and tidal volume increase, raising levels of PaO2 while decreasing levels 

of PaCO2. An unfortunate byproduct of this response is O2 levels above threshold 

and CO2 levels below apneic threshold resulting in apnea. Hypercapnia and hypoxia 

following apnea can synergistically stimulate the sympathetic response further 

complicating this matter. 

 

1.7. TGFβ increases in the ipsilateral hemisphere following stroke 

Transforming Growth Factor Beta (TGFβ) is a multifunctional cytokine 

belonging to the large transforming growth factor family.  It has many cellular 

functions in both development/embryogenesis and adulthood, including cell growth, 

differentiation, apoptosis and a context dependent activation/inhibition of 

inflammation. (79) TGFβ can be secreted as four different latent isoforms, named 

TGFβ1-4, that become active following proteolytic cleavage and binding to the type II 

TFGβ receptor. (80) Binding with the TGFβ receptor initiates the SMAD signaling 

pathway, resulting in phosphorylation of SMAD proteins, with the RSMAD/coSmad 

complex translocating to the nucleus, binding various transcriptional promoter sites, 

and altering expression of a variety of genes. TGFβ activity can be evaluated by 
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measuring the downstream effects on the SMAD signaling pathway, specifically 

phosphorylated SMAD2 (Fig. 1.6).(81) 

The TFGβ receptor is expressed on all major cell types of the brain, including 

neurons, microglia and astrocytes. (82) After brain injury TGFβ has powerful effects 

on the immune system, being both pro and anti-inflammatory depending on the cell 

type and context. In the setting of experimental stroke TFGβ expression remains 

elevated for a week and is thought to be neuroprotective, as blocking TGFβ1 

signaling exacerbates injury. (83, 84) Activated microglia and macrophages appear 

to be the source of TGFβ following ischemic stroke and signal in an autocrine 

manner promoting an anti-inflammatory phenotype resulting in a wound healing 

response. Activated astrocytes also upregulate TGFβ signaling during ischemic 

stroke as evidenced by increased pSmad2 promoting reactive gliosis and scar 

formation (Fig. 1.6).(85)Inhibition of TGFβ signaling via the Smad3 pathway 

improves wound healing and decreases scar formation, as evidenced by decreased 

GFAP immunoreactivity and fibronectin expression in a brain stab wound model. 

(86) Glial scar formation is proposed to be detrimental to post stroke recovery 

preventing neurogenesis and angiogenesis in the infarct region. (87) The effect of 

TGFβ on astrocytes outside the infarct region remains to be elucidated. The varying 

roles of the different TGFβ isoforms further complicate this matter.  

The amount of TGF-β in the aged 18-month-old murine brain was elevated 

compared to that of a 5-month-old brain while following a similar time course of 

expression; these levels further increase following ischemic stroke. Interestingly, 

baseline levels of TGF-B do not fluctuate with sex though sex based changes in the 



	

	 20	

aged brain in response to stroke are still unknown. (85) Corresponding with findings 

of increased TGFβ expression is evidence of an accelerated glial reactivity in aged 

brain following cerebral ischemia, resulting in premature scar formation hindering 

post stroke recovery. (88) Early scar formation is also associated with an untimely 

accumulation of BRD-U positive astrocytes further indicative of proliferation and 

reactive gliosis. (89)  

In the aged brain activated microglia produce an exaggerated level of 

cytokines contributing to a prolonged neuroinflammatory condition. Following 

immune challenge, astrocytes will respond to IL-10 in turn attenuating microglia 

activation in a TGF-β1/Smad3 dependent manner. (90) Inhibition of this signaling in 

young mice prolonged sickness behavior while amplifying the pro inflammatory 

cytokine profile in LPS challenged mice. (91) Following immune challenge, 

astrocytes from the aged brain show a 3 fold increase in GFAP expression 

compared to young counterparts as well as decreased expression of IL-10 

receptor,(92)suggesting a dysfunctional reactive astrocyte profile contributing to an 

increase in neuroinflammation. Interestingly, the TGF-B1/Smad3 signaling pathway 

is also impaired in aged mice promoting further neuronal dysfunction and 

neurodegenerative disease.  Differential astrocyte reactivity in the aged brain could 

explain, at least partially, why aged animals display worse functional outcomes and 

may contribute to the development of disordered breathing and further cognitive 

impairment. 
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Figure 1.6. TGF-β signaling and MCAO induced astrogliosis. (A) Schematic of 

TGF-β signaling pathway via phosphorylation of SMAD2/3 complex leading to 

increased GFAP expression and fibrosis. (B) Fluorescence image of a day 3 post 

stroke 10x mosaic coronal slice depicting increased astrocyte expression of GFAP 

on ipsilateral side. 20x image of yellow reference frame shown. (C) Day 42-post 
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stroke coronal slice of GFAP staining depicting glial scar formation surrounding 

injury. 20x image of yellow reference frame shown. GFAP-red, dapi – blue.  
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1.8. Acetazolamide and cerebral blood flow 

Carbonic anhydrase is an enzyme that catalyzes the removal of a water 

molecule from carbonic acid predominantly expressed in blood cells and exerting its 

effects on the kidney allowing for the reabsorption of bicarbonate and other 

electrolytes. (93) Acetazolamide, also known as Diamox, is a carbonic anhydrous 

inhibitor that prevents the reabsorption of bicarbonate in the kidneys and increases 

its excretion. According to Le Chatelier’s principle the carbonic acid equation shifts 

towards an increase in bicarbonate and hydrogen ions, lowering blood pH, which 

can modulate respiratory neuronal excitability.  Acetazolamide has shown promise in 

the treatment of intracranial hypertension, altitude sickness and obstructive sleep 

apnea. (94-96) In the treatment of obstructive sleep apnea, Acetazolamide is 

proposed to improve breathing by either decreasing the efficacy of CO2 removal, i.e. 

decreasing plant gain, or by increasing neuronal excitability by increasing H+ 

concentration.  

 It has been well established that acetazolamide’s increases cerebral blood 

flow. A balance between intraluminal pressure and interstitial pressure regulates 

regional blood flow. The water-shed channel, aquaporin 4 (AQP4), has been shown 

to regulate this balance. As interstitial water flow increases vascular diameter 

decreases and subsequent blood flow decreases. (97, 98) AQP4 channels are 

inhibited by H+ under physiological conditions, decreasing interstitial flow while 

increasing regional blood flow. Recently, MRI has demonstrated that regional neural 

activity increase H+ concentration while increasing blood flow. (99) Furthermore, 
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acetazolamide administration results in accumulation of extracellular H+, increased 

capillary dilation and cerebral blood flow (Fig. 1.7).(100) 

Cerebral autoregulation maintains constant blood flow irrespective of 

pressure changes to meet regional metabolic demands. (101) Increase in 

concentrations of metabolites such as CO2 and H+ induce vascular changes that 

lead to an increase blood flow. (102, 103) This in turn facilitates removal of excess 

metabolites, matching blood flow to metabolic need. (104) Respiration is one method 

in which the body regulates the removal of CO2/H+, which is initiated by respiratory 

centers and leads to an increase in minute ventilation. If the vasculature surrounding 

key respiratory neuronal populations responded to CO2/H+ in a similar manner as 

other vessels in the cerebral vascular bed, this would facilitate the removal of 

CO2/H+ limiting the ability of respiratory chemoreceptor to detect these metabolites. 

(105) Recently this concept of reversed vascular reactivity has been demonstrated in 

the arterioles in the RTN. Arterioles in this region and the cortex are differentially 

regulated during exposure to CO2/H+ via purinergic signaling. (73) Whereas the 

vasculature in the cortex dilates in the presence of CO2/H+, RTN arterioles constrict 

following identical stimuli.  
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Figure 1.7. Astrocyte aquaporin 4 mediated control of regional cerebral blood 

flow. Regional cerebral blood flow is regulated by an equilibrium between 

intraluminal and interstitial pressure. Intraluminal pressure is maintained by cerebral 

autoregulation, while interstitial pressure is predominantly sustained by bulk water 

flow through astrocytic aquaporin 4 channels (Aqp4). Aqp4 channels are inhibited by 

excess H+, decreasing interstitial pressure, subsequently leading to vasodilation and 

increase regional blood flow.  
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1.9. Objectives 

 The objective of this thesis is to determine if a mouse model of ischemic 

stroke produces disordered breathing recapitulating the phenotype seen in clinical 

populations. Numerous studies have reported stroke patients with disordered 

breathing have worse functional and cognitive outcomes than those with stroke 

alone. (17-19) The first step towards treatment of the negative consequences of 

SIRD is the development of appropriate animal models to study the pathophysiology 

of SIRD and to test potential pharmacological agents. My central hypothesis is that 

stroke will induce chronic respiratory instability and apnea in mice, and that this is 

linked to higher mortality and greater post-stroke cognitive deficits. As the aging 

population suffers the brunt of stroke related morbidity and mortality it is critical to 

investigate the mechanisms contributing to these factors. Previously, we have found 

that although aged male mice have similar size infarcts as females they suffer higher 

mortality and functional deficits compared to aged females. This poor recovery 

witnessed in aged males may be linked to respiratory dysfunction. I expect aged 

male animals will have a slower recovery following MCAO compared to young 

animals and that the severity of disordered breathing will correlate with poorer 

cognitive outcomes. 

The mechanisms that lead to post-stroke respiratory dysfunction are 

unknown. The contribution of central apnea to progressive cognitive decline that is 

seen after stroke is also unclear. This work specifically aims to answer the 

questions: does disordered breathing occur after stroke in animal models?  Is this 

worse in aged animals? Does the severity of post stroke respiratory dysfunction 
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correlate with post-stroke cognitive decline? We performed longitudinal studies in 

young and aged mice to evaluate the prevalence and evolution of post-stroke 

disordered breathing. We then examined how post-stroke respiratory dysfunction 

contributed to progressive cognitive decline. Next we assessed the role of TGF-β 

induced astrogliosis and subsequent respiratory dysfunction.  

Lastly we determined if targeting specific aspects of respiratory control could 

improve the breathing phenotype leading to an enhancement in long-term recovery 

after stroke. We employed various pharmacological techniques to manipulate plant 

gain in order to suppress hypoxic apneic events. We proposed the following three 

aims to answer these questions  (Fig. 1.8). 

 

Aim 1: Determine the phenotype of stroke disordered breathing across age 

and sex. The MCAO model of ischemic stroke produces a disordered breathing 

phenotype characterized by a decrease in respiratory frequency as well as an 

increase in incidence of spontaneous apneas. Prior work has shown that the 

response to stroke differs dramatically based on both the age and sex of the animal 

examined. We have examined young (2-3 month) and aged (18-20 month) male and 

female mice and discovered that aged males present with a severe form of 

disordered breathing while aged females display a very mild phenotype. 

 

Aim 2: Assess the severity of stroke induced respiratory dysfunction and its 

relationship with post-stroke progressive cognitive decline. We will employ the 

MCAO model of ischemic stroke to replicate the disordered breathing phenotype 
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seen in the clinical stroke population. Utilizing this pattern of respiratory instability we 

will explore the severity of disordered breathing, progression of cognitive decline and 

overall outcomes across both age and sex over a six-week period. Lastly, we will 

explore if increased TFG-β expression following ischemic stroke contributes to brain 

stem glial cell reactivity and respiratory dysfunction.   

 

Aim 3: Targeting stroke induced respiratory dysfunction to improve 

neurological recovery. Apneas are a central trait of disordered breathing and 

produce numerous physiological changes. Manipulating individual components of 

the respiratory control system may stabilize respiratory activity, eliminate hypoxic 

events and promote the maintenance of normal blood levels of O2 and CO2. This will 

reduce progressive insults to neuronal tissue and improve cognitive outcomes after 

stroke. Preliminary evidence shows that administration of Acetazolamide stabilizes 

respiratory activity by eliminating apneas. We propose continuous treatment with 

Acetazolamide will not only stabilize respiratory instability but will also reduce post-

stroke cognitive deficits. 

 

This work will not only develop a model of stroke induced respiratory 

dysfunction that recapitulates the respiratory phenotype seen in the clinical 

population, but will also provide significant translational relevance to the field of 

stroke, aging, and cognitive decline.  We have integrated studies to examine SIRD in 

both males and females, as our preliminary studies have shown significant 

differences in respiratory function after stroke based on the sex of the animal 
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examined, recapitulating clinical data. Successful treatment of SIRD may lead to 

significant improvements in post-stroke recovery and cognition, resulting in improved 

outcomes and prevention of further disability. 
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Figure 1.8. Schematic overview of experimental aims. 
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Chapter 2. Materials and Methods. 

2.1. Animals 

Young (8-12 weeks, 21-27g) C57/B6 male and female mice were purchased 

from Jackson Laboratories. Aged C57/B6 mice (18-21 months) of both sexes were 

obtained from the National Institute on Aging. All mice were housed in a 

temperature- and humidity-controlled vivarium, 5 per cage (11”L, 6”W, 6”H) with a 

12-hour light/dark schedule with ad libitum access to food and water for 4 weeks 

after arrival. All experiments were performed according to NIH guidelines for the 

care and use of animals in research and under protocols approved by the University 

of Texas Health Science Center Houston Institutional Animal Care and Use 

Committee.  
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Cohort Sacrifice  

Plethysmography Day 7  

Brainstem Histology Day 3 TTC & Fluorojade 

Arterial Blood Gases Day 3  

Pulse Oximetry Day 3 Perfused 

42 day studies of cognitive outcomes Day 42 IHC/CV/Western 

Distal MCAO Day 42 IHC/CV 

Cohorts for each: Acute Retigabine/XE991/ 

Actazolamide Assessment 

Day 7 

 

Perfused 

 Chronic Acetazolamide Day 42 IHC/CV/Western 

TGF- β Day 7 IHC  

 

Table 1. Cohort Table.  
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2.2. Middle cerebral artery occlusion 

Focal transient ischemia was induced by middle cerebral artery occlusion for 

60 minutes under Isoflurane anesthesia followed by reperfusion as described 

previously. (106, 107) Briefly, mice were placed prone onto a heating pad and a 

midline incision was made into the skin. The carotid artery was ligated to allow for 

placement of a silicon filament through the external carotid into the internal carotid, 

which allowed access to the middle cerebral artery (MCA). An 80% drop in cerebral 

blood flow confirmed occlusion of the MCA by Laser Doppler (Moore Instruments). 

After 60 minutes of occlusion the silicone filament was withdrawn, the surgical site 

was sutured and the animals were returned to home cages and monitored. The 

same procedure was conducted in sham animals except the silicone filament was 

not introduced past the internal carotid. Body temperatures were monitored rectally 

and maintained at approximately 37 °C.  

 

2.3. Neurological-Deficit Score (NDS) 

Mice were given a neurological-deficit score as previously described. (108) 

Neurological deficits were scored using the following rubric on a scale from 0-5: 0 = 

no deficit, 1 = forelimb weakness and torso turning to ipsilateral side when held by 

the tail, 2 = circling to affected side; 3 = unable to bear weight on affected side and 

circling immediately when placed on a bench, 4 = no spontaneous locomotor activity 

or barrel rolling, and 5 = dead.   
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2.4. Distal middle cerebral artery occlusion 

Mice were subjected to permanent distal middle cerebral artery occlusion 

(pDMCAO) as previously described. (109) Following this, the right dorsolateral 

cranium was shaved and a 1cm2 skin flap was cut over the temporalis muscle, which 

was then incised with Vannas scissors to expose the temporal bone.  The skull was 

scrubbed with sterile saline and a 2 mm burr hole was drilled over the middle 

cerebral artery, immediately dorsal to the zygomatic arch.  The dura were reflected 

with sharp forceps and the middle cerebral artery washed with sterile saline.  Stroke 

was then induced by 1-2 seconds of low temperature cauterization of the exposed 

middle cerebral artery, and ischemia confirmed by laser doppler as a greater than 

90% drop in blood flow to the cortex distal to the occlusion.  Following successful 

induction of ischemia, the burr hole was closed with dental cement, the temporalis 

muscle incision repaired with Vetbond and the skin incision closed with Vicryl 5-0 

nylon sutures.  Sham surgeries were performed following an identical procedure, 

except that no cauterization was performed.  

 

2.5. Whole body plethysmography 

Respiratory parameters (frequency, tidal volume, minute ventilation, # of 

apneas) were measured using whole body plethysmography, a well-established 

technique for respiratory activity. (110, 111) Mice were placed individually into a 

ventilated (1L/min) plexiglass chamber and allowed 1 hour to acclimate. Inspiration 

and expiration result in decreases or increases in chamber pressure relative to a 

reference chamber that are detected using a pressure transducer, which is 
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calibrated prior to every experiment. Tidal volume (ml, normalized to body weight 

and corrected for chamber temperature, pressure and humidity) and respiratory 

frequency (breaths/min) will be recorded on a breath-to-breath basis and analyzed 

from periods of relative quiescence during the last 2 minutes of each experimental 

condition; the product of tidal volume and frequency is minute ventilation (ml/min/g). 

The frequency of apneas (defined as ≥3 or more missed breaths) will be determined 

for the duration of the recording. We confirmed that the section of data selected for 

analysis is devoid of behavior artifacts and is most representative of each animal’s 

breathing pattern. All animals received baseline assessment of respiratory activity 

prior to undergoing surgery. Central chemosensitivity was assessed starting 3 days 

after surgery by exposing animals to graded hypercapnia (3, 5 and 7% CO2 

balanced O2; 5 minutes per condition). During a separate period of testing peripheral 

chemoreflexes were assessed by exposing animals to 5 minutes of hypoxia (10% O2 

balanced N2) to stimulate carotid chemoreceptors. Control of gases and calculation 

of respiratory parameters was controlled by Buxico Finepoint software (DSI). 

 

2.6. Arterial blood gas analysis 

A small volume of blood (100ul) was collected via a cannula surgically 

implanted into the carotid artery on day 3-post surgery to measure arterial blood 

gases (ABG) and analyzed using CG8+ iStat cartridges (Abbott). 
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2.7. O2 consumption 

To assess differences in metabolic activity animals were placed in individual 

chambers where they were allowed to move freely and have access to food and 

water. Under room air conditions O2 consumption was measured using Oxymax 

(CLAMS) open flow system as described. (112) Levels of O2 and CO2 were 

measured for 24 hours to capture both wake and rest periods. 

 

2.8. Pulse oximetry 

On day 3-post surgery pulse oximetry measurements (SpO2) were recording 

using MouseOx neck collar (Starr Life Sciences Corp.). Collars were place around 

shaved neck of both stroke and sham mice. Mice were returned to their home cages 

and allowed to acclimate to the collars. Recordings were taken during periods of 

time when the animals were at rest (calmly sitting in cage without any signs of 

distress or motor activity).  

 

2.9. Histological assessment 

Mice were anesthetized with a 0.1mL/10g body weight dose of Avertin 

(T48402, Sigma-Aldrich) dissolved in 2-Methyl-2-Butanol.  Animals were perfused 

transcardially with phosphate-buffered saline followed by 4% paraformaldehyde.  

The brain was removed from the skull, post-fixed for 24 h, and subsequently placed 

in cyroprotectant (30% sucrose).  The brain tissue was cut into 30-µm free-floating 

coronal sections and was stained using cresyl violet (CV, C5042, Sigma-Aldrich) for 

evaluation of ischemic cell damage. Images were acquired by a charge-coupled 
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device camera (Micropublisher 5.0 RTV, QImaging) and analyzed using Sigmascan 

Pro5 (Systat Software Inc.) as described. (113) Atrophy volumes were expressed as 

a percentage of the ipsilateral hemisphere. Animals were excluded if they had a 

posterior cerebral artery occlusion or no intra-ischemic deficits. 

 

2.10. 2,3,5-triphenyltetrazolium chloride (TTC) staining 

Brains were extracted after euthanasia and cut into five 2-mm coronal 

sections, and stained with 1.5% 2,3,5 triphenyltetrazolium chloride (TTC) as 

performed. (114) This stain is used to distinguish between metabolically active 

versus inactive tissue, here it is used as a measurement of infarct size. 

 

2.11. Fluorojade staining 

 Thirty micron sections were slide mounted and stained for degenerating 

neurons(115) using Fluorojade (EMD Millipore) following manufacturer’s 

recommendations.  

 

2.12. Immunohistochemistry 

Thirty micron sections were slide mounted and heat induced antigen retrieval 

was performed using citrate acid pH 6. Permeabilized in 0.15% TritonX in PBS and 

blocked in 10% Normal Donkey Serum / 1% Bovine Serum Albumin (Sigma). 

Sections were incubated overnight with rabbit anti-pSmad2 (1:200, Abcam), CY3 

conjugated GFAP (EMD Millipore) and then incubated for 60 min with anti-host 

antibody conjugated with a fluorophore (1:1000), DAPI nuclear stain solution 
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(1:1000; Invitrogen), and images were then taken using an inverted light Leica 

fluorescence microscope. Quantifications performed with Leica LAS X software 

platform.  

 

2.13. Acetazolamide administration 

For acute studies mice received a 40mg/kg subcutaneous (SQ) or vehicle 

injection day 3 post surgery. For long term studies osmotically driven alzet pumps 

(Alzet) filled with acetazolamide or saline were surgically placed SQ on day 14 

following surgery. Following manufacturer’s instructions for pump priming, animals 

were placed prone under Isoflurane anesthesia and a small SQ incision was made 

between the shoulder blades. A pair of blunt sterile scissors was introduced into the 

incision and slowly advanced to create a pocket for pump placement. Following 

pump placement the wound was sutured closed and a local anesthetic was 

administered. Animals were monitored daily for wound healing and to make sure the 

pump stayed in place.  

 

2.14. Retigabine and XE991 administration 

 As discussed earlier, subthreshold K+ conductance is produced by KCNQ 

channels which regulate basal activity of chemo sensitive RTN neurons. (54) We 

employ Retigabine a KCNQ channel agonist and XE991, a KCNQ channel 

antagonist, to decrease and increase respiratory instability respectively. Retigabine 

(10mg/kg) or DMSO vehicle was administered SQ day 3 post surgery. XE991 

(2mg/kg) or DMSO vehicle was administered SQ on day 3 post surgery. 
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2.15. Transforming Growth Factor-Beta (TFG- B) administration 

TGF-B or vehicle (5 uL sterile saline) was administered by 

intracerebroventricular (ICV) injection into naïve mice under Isoflurane anesthesia 

under stereotaxic guidance. (116) A burr hole was made with the tip of a 30 gauge 

needle in the right skull at the coordinates -0.9mm lateral and -0.1mm posterior from 

Bregma, followed by needle insertion of a 10 uL, 33 gauge syringe (Model 701 SN, 

Hamilton Company) to a depth of -3.1mm. 5 ul of TFG-B or vehicle was injected over 

2 minutes. The needle was left in place for 5 minutes to prevent efflux of solution. 

 

2.16. Behavioral tests 

2.16.1. Novel Object Recognition Test (NORT) 

This test was conducted in a quiet temperature controlled room. Mice are 

individually place into separate plexiglass rectangular boxes with 2 identical objects, 

termed familiar objects, equally placed on each side. Mice are allowed to freely 

explore the chamber and objects for 10 minutes. At the end of the training period 

mice are returned to their home cage for 5 minutes. During this time the chambers 

are cleaned and one of the objects in each arena is replaced with a novel object of 

different shape, size and color. At the conclusion of the 5-minute rest period mice 

were placed into the same chamber as the training probe and again allowed to freely 

explore for 10 minutes. Following this test trial mice were returned to their home 

cage and the test was concluded. Both the training and test trials were recorded 

using a video tracking system (Noldus EthioVision XT) via an overhead mounted 
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camera. Familiar and Novel objects were identical for all mice. New novel objects 

were used during subsequent testing periods.  

2.16.2. Barnes Maze 

Barnes maze was conducted on an elevated circular platform (92cm 

diameter) with 20 evenly spaced holes (5cm diameter). (117) A randomly chosen 

hole was designated as the escape hole, which allowed the animal to escape the 

platform into a dark rectangular box below. During training trials, mice learn the 

location of the escape hole by spatial clues positioned around the platform. All 

training trials and the test trial were performed in a dark room with the platform lit by 

bright white light. Animals received 3 training trials followed by a test trial 4 hours 

later on day 21 or 42-post surgery. During the first training trial, the mouse was 

placed into the center of the arena and then guided to the escape hole by a clear 

cylindrical chamber, which it was allowed to explore for 1 minute. During the second 

and third trials the animal was again placed into the center of the platform and 

allowed to freely explore the arena for 5 minutes. At the end of each trial if the 

animal did not find the escape hole it was guided to it using the same clear chamber. 

The arena was cleaned between trials. The testing period consisted of one 3-minute 

trial. The trial was terminated when the animal entered the escape hole or at the end 

of the 3 minute period. Any animal that did not find the escape hole once during any 

training trial was excluded. A camera was mounted above the maze to monitor 

performance through a video tracking system (Noldus EthoVision XT). 
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2.16.3. Contextual fear conditioning 

 Animals were allowed to acclimate to a square plexiglass container with metal 

grid floor (Harvard Apparatus) for 2 minutes on day 42 post surgery. Two opposing 

walls of the chamber displayed different patterns, the back wall was white and the 

front wall was clear. Contextual chambers were inside a larger soundproof box lite 

by white light and closed during acclimation, training and testing trials. Chambers 

were cleaned prior to use and between animals with scented wipes. White noise was 

played inside the box. Following all acclimation trials animals were placed back into 

the plexiglass container for 2 minutes then received a 0.7mA shock through the 

metal grid floor lasting 2 seconds. Animals were then returned to their home cage. 

24 hours later animals were again placed in the contextual fear chambers and the 

session was recorded for 3 minutes. (Noluds EthioVision XT) The amount percent of 

time the animal spent freezing was calculated. (118)  

 

2.16.4. Corner test 

This test detects integrated sensory-motor function as it involves stimulation 

of vibrissae sensory) and rearing (motor). This test was carried out as described.	

(119) Briefly, a mouse is encouraged to enter a 30-degree corner created by two 

cardboard pieces. Once in the corner, the boards stimulate both sides of the 

vibrissae, the mouse then rears forward and up, turning to face the open end. 

Twenty trials are performed and the percentage of right turns is calculated. 
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2.17. Statistical analysis 

Statistics are presented as means ± SEM for all experiments. Statistics were 

performed using GraphPad Prism 7.  Interval power analysis was performed to 

determine group size. A student’s t-test was used when comparing 2 groups and a 

2-way ANOVA was performed when comparing multiple groups. If an interaction was 

statistically significant, then Sidak’s post-hoc analysis was used to assess where the 

interaction occurred. If there was no significant interaction, main effects were 

reported when significance. Linear regression analysis was used to assess changes 

in chemosensitivity. A probability value of p<0.05 was considered statistically 

significant. All investigators were blinded to surgical condition when analyzing data. 
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Chapter 3. Stroke Induces Respiratory Dysfunction 

Characterized By Apneas and Hypoxia. 

Rationale: Stroke induced respiratory dysfunction is highly prevalent amongst 

individuals suffering a first time stroke. Patients suffering respiratory dysfunction, 

characterized by apneas and periods of hypoxia, have worse functional outcomes 

and demonstrate progressive cognitive decline following ischemic stroke. CPAP, the 

only approved therapy for respiratory dysfunction, is poorly tolerated by stroke 

patients and has proven futile in improving respiratory activity. This first step towards 

treatment of the negative consequences of SIRD is the development of appropriate 

animal models that will allow us to explore the pathophysiology of SIRD and provide 

us with the opportunity to test potential pharmacological agents. 

 

3.1. Middle cerebral artery occlusion produces disordered breathing characterized 

by hypoventilation and increased apneas. 

 To determine if MCAO produces disordered breathing 6-8 week old male 

mice were subject to 60 minutes of MCAO or sham surgery. To establish baseline 

respiratory activity mice underwent plethysmography testing as described in 2.4 1-

day prior to surgery. On day 3-post surgery mice underwent plethysmography to 

identify the phenotype of stroke induced respiratory dysfunction. Respiratory 

frequency, measured as breaths per minute, decreased compared to sham, 

(164.4±5.09 stroke vs. 286.7±13.97 sham) respectively, p<0.0001 (Fig. 3.1a). Stroke 

mice displayed an increase in tidal volume (ml/min), although not significant, 

(0.0079±0.0003 stroke vs. 0.006±0.0004 sham), p=0.06, Fig. 3.1b). Under room air 
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conditions minute ventilation (ml/min/kg) was decreased compared to sham, 

(1.244±0.24 stroke vs. 2.037±0.24 sham, p<0.01, Fig. 3.1c). Strikingly, stroke mice 

(6.8±1.7) display an increase incidence of apneas of compared to baseline (1.2±0.4) 

or sham (0.8±0.8), p<0.01 (Fig. 3.1d). Representative waveforms of respiratory 

activity shown of baseline sham, and stroke respectively. (Fig. 3.1e) n=12. 
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Figure 3.1. Phenotype of stroke induced respiratory dysfunction. Whole body 

plethysmography was performed on stroke and sham mice day 3 post surgery. 

Under room air conditions respiratory frequency, measured in breaths per minute, 

decreased, 164.4±5.09 and 286.7±13.97, p<0.0001 (A) while tidal volume (ml/g) 

increased although not significantly, 0.006±0.0004 vs. 0.0079±0.0003, p=0.06 (B). 

The product of frequency and tidal volume, minute ventilation (ml/min/g), decreased 

(C) following MCAO, suggestion hypoventilation, 1.244±0.24 vs. 2.037±0.24, p<0.01. 

The number of apneas per minute markedly increased following stroke, 

6.8±1.7±0.8±0.8, p<0.01 (D). Representative respiratory waveform tracings of mice 

at baseline, sham and stroke are shown (E). n=14 
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3.2. Respiratory dysfunction results in hypoxia & hemoglobin desaturation. 

 To determine if changes in respiratory parameters following MCAO had 

physiological consequences both stroke and sham mice underwent arterial blood 

gas analysis and pulse oximetry monitoring on day 3 following surgery. Arterial blood 

gas analysis found that stroke mice had a decreased level of PaO2 (104±4.7 vs. 

79.3±0.57, p<0.05), and an increased PaCO2 level (33.9±5.1 vs. 48.1±0.8, p=0.5) 

while pH remained unchanged (7.35±0.02 vs. 7.37±0.01, n=3). (Table 2.) 

 Stroke mice undergoing pulse oximetry monitoring displayed oscillations in 

their hemoglobin saturation levels (SpO2). Baseline SpO2 levels fluctuated between 

94-96% and would periodically drop between 80-90% based on the duration of the 

apnea. Sham mice consistently maintained a SpO2 level between 97-100%. 

Representative tracings shown (Fig3.2).  

 

 

 

 

 

 

 

 

 

 

 



	

	 49	

 

 

 

 

 

 

Table 2. Arterial blood gases. Obtained day 3 following surgery from stroke and 

sham mice. Stroke mice have an increase in PaCO2, 33.9±5.1 vs. 48.1±0.8, p=0.5, 

and a decrease in PaO2, 104±4.7 vs. 79.3±0.57, p<0.05, suggesting a state of 

hypercapnia and hypoxia. pH remained unchanged 7.35±0.02 vs. 7.37±0.01, n=3. 
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Figure 3.2. Pulse oximetry tracings day 3 post surgery. Oxygen hemoglobin 

saturation is maintained between 97-100% in sham mice.  SpO2 levels drop in stroke 

mice representing intermittent hypoxia. A 3-4% drop in SpO2 is considered an 

indicator of a hypoxic event, p<0.05 n=3 
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3.3. Ischemic stroke does not alter chemoreceptor gain as measured by whole body 

plethysmography. 

 As part of whole body plethysmography testing mice were exposed to 100% 

O2 and a graded CO2 response to assess changes in the central chemoreflex. Under 

conditions of increased atmospheric O2 peripheral chemoreceptor input is silent 

allowing for the assessment of CO2/H+ driven central chemoreceptors. (120) Both 

respiratory frequency and minute ventilation were blunted across all air conditions 

compared to sham. (Fig. 3.3a) No difference was observed between stroke and 

sham in the slope of the ventilatory response to CO2 across the four gas conditions 

as a measure of chemosensitivity, sham=0.38, stroke=0.34, p=0.77. (Fig. 3.3b) 
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Figure 3.3. MCAO does not alter CO2/H+ sensitivity. Minute ventilatory response 

to CO2 is slightly blunted, evident by the right shift in minute ventilatory response to 

CO2, following 60 minute MCAO in young male mice (A). The slope of the minute 

ventilatory response to CO2 is unchanged following MCAO (B), slope sham=0.38, 

stroke=0.34, p=0.77. n=14 
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3.4. Peripheral chemoreflex. 

To understand if MCAO disrupts the hypoxic ventilatory response, mice 

underwent plethysmography recordings with exposure to 21% O2 (room air) followed 

by 10% O2. Day 3 post surgery the minute ventilatory response to hypoxia of stroke 

mice was blunted (2.02±0.15 vs. 1.51±0.28, p<0.05), yet the chemosensitivity to 

hypoxia remained unchanged. Slope of the chemosensitivity to hypoxia in 

sham=0.03, stroke=0.04, difference between the slopes was not significant, p=0.73. 

(Fig. 3.4) n=14  
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Figure 3.4. Hypoxic ventilatory response. Ventilation and the ventilatory response 

to hypoxia are blunted following MCAO. Yet, the chemosensitivity to hypoxia 

remains unaltered. Slope sham=0.03, stroke=0.04, difference between the slopes 

was not significant, p=0.73. 
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3.5. MCAO does not result in brainstem cell death. 

 To rule out brainstem neuronal cell death as a causative factor of disordered 

breathing, tissue was assessed for histological damage at day 3-post surgery. No 

cell death or neuronal degeneration was observed in the brainstem as evidenced by 

either TTC staining or Fluorojade staining. (Fig. 3.5) TTC staining is used as a 

marker metabolically active tissue and is used to distinguish healthy neuronal tissue 

from infarcted. It is enzymatically reduced to a red color in living tissue and will 

remain white in infarcted regions. Fluorojade staining is used as a marker of 

degenerating neurons. 
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Figure 3.5. MCAO does not result in direct brainstem cell death. Brainstem cell 

death was assessed by both TTC (A) and fluorojade staining (B) on day 3 following 

MCAO. MCAO produces a large wedge shaped infarct in the hemisphere indicated 

by lack of “red” staining by TTC. The brainstem was unaffected (A). Fluorojade, a 

marker for degenerating neurons, was positive in the striatum of the right 
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hemisphere in mice that underwent MCAO. The brainstem was negative for any 

fluorojade positive cells, n=3. Fluorojade green, dapi blue.  

 

3.6. Ischemic stroke does not alter basal metabolic activity. 

 To determine if factors other than deficits in central respiratory circuitry 

contribute to stroke disordered breathing, mice underwent metabolic activity 

assessments. Stroke has the potential to alter other parameters such as body 

temperature, food intake and overall energy expenditure. Systemic energy 

metabolism can be evaluated by monitoring the volume of oxygen consumption in 

individual animals. (121) If stroke were to decrease energy expenditure in mice, 

metabolic activity would therefore decrease (observed by decrease in O2 

consumption). A decrease in O2 consumption would present as a decrease in minute 

ventilation on whole body plethysmography, similar to our observed outcomes. 

Stroke had a negligible effect on O2 consumption compared to sham on day 7, 21 or 

42-post surgery. Day 7 data shown (Fig. 3.7) (sham 56.75±4.37 vs. 65.35±4.5, 

p=0.24). This further supports the conclusion that disordered breathing is a 

consequence of stroke, not a compensatory response to a decrease in activity or 

alterations in metabolic activity.   
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Figure 3.6. Oxygen consumption as a measurement of metabolic activity. 

Metabolic activity was assessed on day 3-post surgery. The volume of oxygen 

consumed was recorded every 10 minutes and averaged per mouse over a 4-hour 

period during resting hours. MCAO did not alter basal metabolic activity, minimizing 

the possibility that alterations in metabolic activity contributions to SIRD. Sham 

56.75±4.37 vs. 65.35±4.5, p=0.24, n=5. 
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3.7. Effect of age on post-stroke respiratory activity 

Age is an independent predictor of poor outcomes as older individuals have 

both higher in hospital mortality and worse functional and cognitive outcomes 

following an ischemic event. (122) Age may also affect the SIRD phenotype we 

observed in young mice. Therefore, we performed a comprehensive assessment of 

the effects of age on respiratory physiology in stroke and sham mice. On day 3-post 

surgery aged male mice that underwent MCAO display decreases in both respiratory 

frequency (243.5±29.6 vs. 185.3±12.4bpm, p<0.05, Fig. 3.7a) and minute ventilation 

(2.5±0.3 vs. 1.1± 0.15 ml/g/min p=0.001, Fig. 3.7b&c), indicators of hypoventilation. 

Although blunted, the ventilatory response to CO2 was unchanged, p=0.21, data not 

shown. The incidence of apneas did increase following stroke (2.8±0.8 vs. 

9.25±1.37, p<0.01, Fig. 3.7d). There was an effect of stroke on the ventilatory 

response to hypoxia (p=0.05, Fig. 3.7e), although the chemosensitivity to hypoxia 

remained unchanged, p=0.68, data not shown. 
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Figure 3.7. Respiratory parameters of post-MCAO in aged males. The 

respiratory phenotype of aged males (18-20 months) at day 3 that underwent MCAO 

is similar to young males. Respiratory frequency is decreased, 243.5±29.6 vs. 

185.3±12.4, p<0.05 (A) resulting in diminished minute ventilation under room air 

conditions, 2.5±0.3 vs. 1.1± 0.15 ml/g/min p=0.001 (B). The ventilatory response to 

CO2 is significantly blunted across all tested conditions, suggesting that aging is a 

contributing factor limiting the system’s ability to respond to changes in ABG. 

Interestingly, at day 3 the incidence of apneas increased significantly, 2.8±0.8 vs. 

9.25±1.37, p<0.01 (D). Stroke also had a strong effect on the ventilatory response to 

hypoxia, p=0.05 (E). 
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3.8. Effect of sex on stroke induced respiratory dysfunction. 

 Stroke is a sexually dimorphic disease, with women having a lower incidence 

of stroke in the age group of 55-75, until the age of 85 when women have a higher 

incidence. (123, 124) Elderly women are disproportionally affected by stroke, having 

higher age specific mortality and worse post stroke outcomes. (125) The majority of 

human studies report an age dependent blunting of hypoxic and hypercapnic 

ventilatory responses. (126, 127) However, there is conflicting evidence regarding 

sex-associated change in the control of breathing. (128, 129) Sleep apnea has a 

higher prevalence among men at all ages especially in elderly men who have a 

higher incidence of all forms of sleep apnea: central, mixed and obstructive. (130) 

Interestingly, elderly females with sleep apnea exhibit increased white matter loss 

and changes in structural integrity in several brain regions compared to age-

matched males. (131) The incidence of SIRD as well as morbidity and mortality has 

never been evaluated on the basis of sex.  

To investigate sex differences in respiratory dysfunction following stroke we 

subjected age 18-20 month old female mice to MCAO and assessed respiratory 

parameters on day 3 post stroke. Minute ventilation was decreased in stroke mice 

on day 3, sham 2.481±0.2179 vs. 1.849±0.1602 ml/min/g, p=0.03(A). Yet, there was 

no increase in the incidence of apneas, sham 0.6±0.6 vs. 1.778±0.49 apneas/min, 

p=0.16 (B). Aged female mice had higher baseline minute ventilation across all air 

conditions compared to age males, room air females 2.729±0.18 vs. 2.22±0.07 

ml/min/g, p<0.05 (C). Aged males displayed a greater percent change in minute 

ventilation from baseline following stroke, males 52.66±3.25% vs. 30.22±3.1% 
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p<0.001 (D). Metabolic demand, as measured by consumption of O2, was higher in 

females accounting for increased levels of minute ventilation in comparison to age-

matched males, females 72.79±13.28 vs. 55.19±4.68 males, effect of sex p=0.01, 2-

way ANOVA. (E). Stroke did not affect metabolic activity in neither males nor 

females. This does not explain the greater change in minute ventilation experienced 

by males post stroke than females.   Variations in infarct did not account for the 

discrepancies in minute ventilation observed between the sexes, day 7 % cerebral 

atrophy male 17.07±8.91% vs. 24.22±4.65%, p=0.44 (F).  
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3.8. Effect of sex on stroke induced respiratory dysfunction. Aged female mice 

undergoing MCAO display a decrease in minute ventilation on day 3 following 

surgery, sham 2.481±0.2179 vs. 1.849±0.1602 ml/min/g, p=0.03 (A). Despite having 

no increase in the incidence of apnea, sham 0.6±0.6 vs. 1.778±0.49 apneas/min, 

p=0.16 (B). At baseline aged females display an higher minute ventilation under 

room air conditions and in response to hypercapnia, room air females 2.729±0.18 

vs. 2.22±0.07 ml/min/g, p<0.05 (C). Aged males displayed a greater percent change 

in minute ventilation from baseline following stroke, males 52.66±3.25% vs. 

30.22±3.1% p<0.001 (D). Metabolic activity was increased in females compared to 

males at baseline, females 72.79±13.28 vs. 55.19±4.68, 2-way ANOVA effect of sex 

p=0.01, whereas stroke had no effect on metabolic activity in either sex (E). 

Variations in infarcts did not account for the discrepancies in minute ventilation 

observed between the sexes, male 17.07±8.91% vs. 24.22±4.65% atrophy, p=0.44 

(F). 
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3.9. Discussion. 

 We found that ischemic stroke induced by a transient 60 minute MCAO 

produced respiratory dysfunction characterized by apneas and hypoventilation in 

both young and aged male mice.  This recapitulates the respiratory phenotype 

observed in human stroke patients. Stroke mice displayed a decrease in respiratory 

frequency as well as an increase in the incidence of apneas resulting in a blunted 

minute ventilatory response. This state of hypoventilation results in systemic hypoxia 

and hypercapnia as measured by ABG, reconfirmed by periodic desaturations in 

SpO2. ABG and SpO2 measurements were performed on day 3-post surgery during 

the acute phase of post stroke recovery. Our long-term studies, (see Chapter 4), 

found that apneas persist in mice up to 6 weeks following surgery.  Weekly ABG 

measurements following mice over this time period would further the understanding 

of the magnitude of chronic apneas. Apneas and systemic hypoxia can have far 

reaching consequences. In models of OSA, apneas produce arousals and 

fragmented sleep. Experimental evidence utilizing chronic intermittent hypoxia found 

amplified sympathetic response contributing to a hypertensive state. (132, 133) With 

further consequences resulting in cellular stress promoting white matter loss and 

axonal injury in brain regions such as the hippocampus.  

Taken together, this suggests that the respiratory phenotype following stroke 

is not a physiological compensatory response to changes in metabolic activity. Tidal 

volumes in stroke mice do not decrease, but actually increase slightly compared to 

sham, possibly as a compensatory mechanism in an attempt to maintain minute 

ventilation. Implying that stroke induced hypoventilation is not a result of paralysis or 
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paresis. Understandably, as direct brainstem lesions result in respiratory dysfunction 

we wanted to rule out neuronal brainstem cell death as a contributing factor to 

disordered breathing. MCAO does not result in any observable brainstem cell death 

or degenerating neurons as assessed by TTC or Fluorojade staining. Unfortunately, 

this does not rule out withdrawal of excitatory input from higher-level neuronal 

circuitry disrupting respiratory neuron function.  

 Respiratory constancy relies on a delicate balance of chemoreceptor gain, 

plant gain and temporal control of brain/heart blood flow. The Cheyne-Stokes 

respiratory pattern observed in humans is proposed to be a result of the gaining up 

of the chemoreflex. In this model of SIRD the slope of the ventilatory response to 

CO2 remains unchanged, suggesting that chemoreceptor gain is not perturbed 

following MCAO in an in-vivo whole body respiratory assessment. To further confirm 

this electrophysiology techniques must be employed to assess the chemosensitivity 

of varying neuronal respiratory control sites. Electrophysiology studies will also allow 

for the interrogation of respiratory rate control neuron populations,.  

The ventilatory response to hypoxia was explored by exposing mice to 10% 

O2 environment. MCAO blunts the ventilatory response to hypoxia, yet the 

chemosensitivity of this system was not affected. Suggesting that the intrinsic ability 

of the neuronal populations responsible for detecting hypoxia remain intact, yet the 

output of these groups is altered. Time delays in circulating blood gases between 

lungs and chemoreceptor populations may contribute to this blunted response. This 

may be due to local or systemic alterations in vascular reactivity or cardiac 

variability. Local variations in astrocyte reactivity, basement membrane restructuring 
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and fibrosis are potential candidates for disrupted neural vascular communication. 

Decreases in respiratory activity may be indirectly altered by stroke. O2 

consumption as a measure of metabolic activity was not altered by ischemic stroke. 

Taken in consideration with our other findings this suggests the ischemic stroke 

decreases basal respiratory activity in the presence of either hypoxia or 

hypercapnia, while also increasing the incidence of apneas.  This culminates in a in 

a cyclic feed forward loop of respiratory dysfunction. 

Since >80% of strokes occur in individuals over the age of 65(2), the aging 

population bears the major brunt of stroke related mortality and disability. (122) It is 

critical to investigate the mechanisms underlying stroke induced mortality and 

functional/cognitive deficits.  Surprisingly, our lab has found that although aged male 

mice have less histological injury, they have significantly higher mortality and 

functional deficits than their young counterparts. (134, 135) We performed a 

comprehensive assessment of the effects of age on respiratory physiology in stroke 

and sham mice. 

Aged male mice display a higher level of respiratory activity, reflective of an 

increase in minute ventilation (normalized to body weight), which may be explained 

by changes in metabolic activity that accompany aging. The SIRD phenotype 

witnessed in aged males was similar to that of young. They displayed a decrease in 

respiratory frequency, a blunted minute ventilatory response to both hypercapnia 

and hypoxia, with no changes to chemosensitivity. Aged males also suffer from an 

increase in apneas during respiratory assessments conducted during the acute 
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phase of ischemia. Collectively, the stroke induced respiratory phenotype is similar 

regardless of age in males. At baseline aged females display an increased minute 

ventilation under room air conditions compared to males, which is explained by 

increased metabolic activity. Interestingly, aged females have a less pronounced 

disordered breathing phenotype despite having similar sized infarcts as aged males. 

This may partly explain why aged male mice have worse functional outcomes and 

higher post stroke mortality than females. The hormonal and chromosomal 

contributions to sex differences in stroke are an area of ongoing investigation.   For 

example, ischemia induced astrocyte reactivity is differentially regulated by age and 

sex. Increased levels of IL-6, IL-1b and TNF-α were observed in aged male 

astrocytes compared to astrocytes derived from females. (136, 137) There are likely 

many mechanisms contributing to the sex based variations in respiratory dysfunction 

following ischemia. The long-term consequences of apnea may differ greatly based 

on the age and sex of the animal, and this may contribute to increased mortality and 

worse outcomes following ischemia.  

3.10. Future Directions. 

We identified and characterized a stroke induced disordered breathing model 

in mice characterized by hypoventilation and apneas, resulting in systemic hypoxia. 

Recapitulating the breathing phenotype observed in the human population suffering 

from stroke. To further understand how stroke disturbs respiration, cellular electrical 

properties of major respiratory central chemoreceptor sites such as the NTS and 

RTN, as well as rate control sites (Botzinger and pre-Botzinger complex) should be 

examined. Intrinsic characteristics such as resting membrane potential, basal firing 
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rate and chemosensitivity must be studied to completely understand how stroke 

induces respiratory dysfunction.  

Before we can conclude that disordered breathing is strictly a result of a 

decrease in basal respiratory activity the other components of loop gain must be 

evaluated. MCAO may have direct effects on cardiac output and rhythmicity. Cardiac 

instability could contribute to time delays in circulation between the lungs and 

chemoreceptors. Implantable telemetry can be employed to monitor changes in 

blood pressure and EKG variability. To further corroborate these findings 

measurements of arterial CO2 and O2 should be collected from the pulmonary vein 

and the entrance of the brain to assess time delays between heart/lung and brain 

tissue. Lastly, the apneic threshold in mice may be perturbed following stroke. 

Utilizing mechanical ventilation and diaphragmatic electromyography (EMG) as 

previously described(138); alterations to CO2 apneic threshold can then be 

addressed under steady state conditions.  
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Chapter 4. The Severity of Respiratory Dysfunction 

Correlates with Progressive Cognitive Decline. 

Rationale: Patients suffering from stroke induced respiratory dysfunction display 

signs of progressive cognitive decline for years following stroke. To determine if 

MCAO induced respiratory dysfunction produces cognitive decline, we performed 

longitudinal studies to evaluate the progression of respiratory parameters and 

cognitive outcomes over a six-week period.  

 

4.1. MCAO results in progressive cognitive decline. 

Sham and stroke mice underwent cognitive assessment utilizing the Barnes 

maze on days 21 and 42 post surgery. On day 21-post surgery stroke mice take 

longer to find the escape hole than sham (stroke 53.26±8.45 seconds vs. sham 

21.04±2.6, p<0.01, Fig. 4.1a). On day 42-post surgery stroke mice again perform 

worse than sham in both escape time (stroke 95.02±26.75 seconds vs. sham 

22.83±6.72, p<0.05) and total errors made prior to finding escape hole (stroke 

50.91±9.5 vs. sham 15.2 ±5.7, p=0.01, Fig. 4.1b). More importantly stroke mice 

performed worse on day 42 than on day 21, taking longer to escape and making 

more total errors (day 21 25.8± vs. day 42 50.91±9.5 errors, p=0.01), suggestive of 

progressive cognitive decline. Coinciding with these findings stroke mice perform 

worse on the Novel Object Recognition Test and in Contextual Fear Conditioning. 

Stroke mice spend dramatically reduced time with the novel object compared to 

sham on day 28 (2.51±0.7 vs 1.29±0.19 ratio of time (s), p<0.05, Fig. 4.1c). On day 
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42, stroke mice display less freezing behavior compared to sham in fear conditioning 

arena (65.49±6.87% vs 48.91±3.6, p<0.05, Fig. 4.1d).  
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Figure 4.1. MCAO results in cognitive decline. During Barnes maze testing stroke 

mice take longer to find escape hole on day 21 than sham (stroke 53.26±8.45 

seconds vs. sham 21.04±2.6, p<0.01) indicative of cognitive impairment, stroke n 

=11, sham n=6. Barnes maze assessment on day 42 post surgery stroke mice again 

perform worse than sham, increasing the time to find the escape hole compared to 

day 21, stroke 95.02 ± 26.75 seconds vs. sham 22.83 ± 6.72, p<0.05 (A). 

Interestingly, on day 21 stroke mice make approximately the same number of errors 

as sham, yet on day 42, stroke mice not only make more errors than sham but more 

errors than they did on day 21, suggesting progressive cognitive decline (stroke 

50.91±9.5 vs. sham 15.2 ±5.7, p=0.01) (B). Findings of day 28 NORT also are 
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indicative of cognitive decline, stroke mice spend less time with the novel object in 

relation to the familiar object when compared to sham, 2.51±0.7 vs 1.29±0.19 ratio 

of time (s), p<0.05 (C). Lastly, stroke mice spend less time displaying freezing 

behavior during contextual fear condition on day 42, 65.49±6.87% vs 48.91±3.6, 

p<0.05, n=11 and n=6 respectively (D). 
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4.2. Evolution of stroke induced respiratory dysfunction. 

Following plethysmography assessment on day 42-post surgery, we found 

that stroke mice can be stratified into two groups based on the number of apneas 

per minute. The minor group presented with 5 or less apneas a minute, while the 

severe group had 5 or more apneas a minute, representative plethysmography 

waveforms shown (Fig. 4.2a). The determination to separate groups based on the 

number of apneas a minute was adapted from American Academy of Sleep 

Medicine criteria used in humans. (75) The respiratory pattern of the severe group is 

indicative of Cheyne-Stokes patterned breathing, marked by waxing and waning of 

tidal volume followed by periods of apnea, representative waveforms (Fig. 4.2c). 

Consistent with day 3 findings, we find no indications of alteration in 

chemosensitivity as measured by the ventilatory response to CO2, p= 0.51 (Fig. 

4.2b).  
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Figure 4.2. Evolution of the SIRD phenotype. On day 42 post surgery, stroke mice 

can be stratified into 2 groups based on the number of apneas a minute. The minor 

group experience 5 or less while the severe group suffers 5 or more apneas a 

minute (A). The central chemosensitivity did not differ between the minor or the 

severe groups, p=0.51 (B). Representative waveforms of the minor and severe 

groups on day 42 post surgery, n=7 respectively (C). The waveform of the severe 

group is indicative of the Cheyne-Stokes respiratory pattern, marked by waxing and 

waning of tidal volume followed by apnea. 
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4.3. Progressive cognitive decline correlates with the severity of disordered 

breathing. 

 After stratifying stroke mice based on the severity of respiratory dysfunction 

cognitive functions were reevaluated based on this criteria. Surprisingly, we found 

that mice that suffer severe form of disordered breathing display signs of progressive 

cognitive decline while those with minor apneas, do not. Performance on Barnes 

maze was consistent with progressive cognitive decline (Fig. 4.3). There is an effect 

of time on total errors made in the stroke group as a whole (D21 vs D42, p=0.01, 

n=7 Fig. 4.3a). Interestingly, multiple comparisons analysis revealed that animals 

with the most severe disordered breathing made more errors on day 42 (D21 

28.3±13.1 vs. D42 70±21.6 errors, p=0.05, Fig 4.3a). Again, on Barnes maze there 

was an effect of time to escape hole in the stroke cohort as a whole (D21 vs. D42, 

p<0.05). Multiple comparison analysis exposed the severe group to have increasing 

escape time (D21 86.96±36.3 seconds vs. D42 217.9±82.1, p=0.05, Fig. 4.3b). 

These findings were consistent during contextual fear conditioning.  

Mice with the most severe disordered breathing display less freezing behavior 

in fear conditioning arena on day 42 post stroke (Minor 47.1±2.1 secs vs. severe 

35.8±4.8 secs. P<0.05) (Fig. 4.3c.). Linear regression analysis of percent time 

freezing compared to the number of apneas a minute, found a significant non-zero 

slope (p<0.05), indicating a negative correlation between apneas and freezing 

behavior. (Fig. 4.3d) 

 

 



	

	 78	

 

 

 

 

Figure 4.3 Progressive cognitive decline correlates with the severity of SIRD. 

Barnes maze performance was similar on day 21 between the minor and severe 

groups on time to escape and number of errors made. On day 42-post stroke, the 

minor group is consistent in their performances on day 21.  The severe group on the 

other hand not only takes longer to find the escape hole (D21 86.96±36.3 seconds 

vs. D42 217.9±82.1, p=0.05), but also makes more errors than they did on day 21 

(D21 28.3±13.1 vs. D42 70±21.6, p=0.05, n=7), (A & B). During contextual fear 

condition testing, the severe group displays less freezing behavior than the minor 

group suggesting cognitive impairment, (minor 47.1±2.1 secs vs. severe 35.8±4.8 
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secs. P<0.05) (C). Linear regression analysis found a negative correlation between 

the number of apneas and cognitive performance measured as freezing time during 

contextual fear conditioning test, p<0.05 (D).  
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4.4. Variations in stroke severity do not define the severity of respiratory dysfunction. 

To rule out variation in infarct variability amongst the two groups of disordered 

breathing we assessed cerebral atrophy and day 3 post stroke assessments. No 

differences were observed in measurements of cerebral atrophy between the minor 

and severe groups after sacrifice on day 42, p=0.66. NDS, p=0.19.  Corner test, a 

measurement of sensory motor function were the same for both groups of mice 

when they were assessed at day 3-post stroke, p=0.75 (Fig. 4.4).  
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Figure 4.4. Variations in stroke severity do not define the severity of 

respiratory dysfunction. No differences in volume of cerebral atrophy were found 

at day 42 post stroke between the minor and severe groups of disordered breathing, 

p=0.66 (A). Neurological deficit scores at 1 hour following ischemia and day 3 post 

stroke were identical between the two groups, p=0.19, n=7 (B). Functional 

outcomes, measured by the corner test, at day 3 (p=0.75) and 7-post stroke 

(p=0.23) were similar amongst the groups (C).  
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4.5. Distal MCAO does not produce disordered breathing or cognitive decline. 

Distal MCAO was employed to determine if a smaller cortical infarct produces 

disordered breathing or cognitive decline in a similar manner to MCAO. 

Plethysmography assessment on days 3, 21 or 42-post surgery found no indications 

of disordered breathing, hypoventilation, p=0.97, or apneas, p=0.77, day 3 data 

shown (Fig. 4.5a and 4.5b). Cognitive performance, assessed by Barnes Maze, 

p=0.7, and NORT, p=0.56, was found to be unremarkable between stroke and sham 

groups (Fig. 4.5).  
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Figure 4.5. Distal MCAO does not result in disordered breathing or cognitive 

decline. Mice undergoing dMCAO do not develop respiratory dysfunction evident by 

no change in minute ventilation, p=0.97 (A) or absence of apneas, p=0.77 (B). Sham 

and stroke mice had similar escape times on Barnes maze on day 42, p=0.7, n=6 

(C). Both groups of mice showed a preference for the novel object, indicative of no 

deterioration in cognitive performance, p=0.56 (D).  
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4.6. Discussion. 

 Our six-week studies reproduced findings of many studies reporting cognitive 

deficits following ischemic stroke. (139, 140) Cognitive deficits following MCAO may 

be detected as early as 3 days following ischemia and persist for months in rodents 

and for years in humans. (141) Human studies have one additional prominent 

finding; they report signs of persistent cognitive decline over many years following 

stroke. Our current study found indications of progressive cognitive decline in spatial 

learning and memory, a hippocampal dependent task, over a six-week period 

following MCAO. The hippocampus receives blood supply via the anterior choroidal 

artery and the posterior communication artery(142), both of which are unaffected by 

MCAO. This suggests that other factors are contributing to post stroke cognitive 

decline such as inflammation, disordered breathing and hypoxia.(143) 

 During the course of six weeks mice underwent weekly plethysmography 

studies to assess respiratory function post stroke. To our surprise we discovered 

that mice could be divided into one of two groups based on the number of apneas 

per minute. This criteria is similar to the Apnea-Hypopnea Index (AHI) used in 

humans to report the number of apneas an hour during sleep. Mice were stratified as 

either minor (less than 5 apneas a minute) or severe (10 or more apneas a minute).  

Respiratory tracings from mice in the severe group represent a Cheyne-Stokes like 

form of periodic breathing, with a waxing and waning of tidal volume. While the 

minor group displays a relatively stable respiratory pattern, displaying improvements 

from day 3 tracings. The slope of the ventilatory response to CO2 remains 

unchanged in either group, consistent with our previous findings, suggesting no 
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change in chemoreception. The variations in tidal volume in the severe group 

suggest it is the effects of ventilation on blood gases that may be contributing to the 

development of apneas in mice. Respiratory chemoreceptors contribute to both 

respiratory rate and tidal volume based on stimulus of CO2/H+, the increases in tidal 

volume on a breath to breath basis eliminate larger volumes of CO2, decreasing the 

CO2 reserve until CO2 levels drop below apneic threshold resulting in apnea. We can 

infer that CO2 levels begin to drop by the decreases in tidal volume observed in the 

one or two breaths preceding an apnea. Increases in plant gain are predicted to 

destabilize breathing by decreasing the CO2 reserve. Breath by breath 

measurements of tidal volume and exhaled CO2 will confirm our conclusions that 

MCAO increases plant gain therefore destabilizing breathing.  

 Based on our respiratory findings, we performed a post hoc analysis of 

cognitive function based on our assigned apnea criteria. Surprisingly, only mice with 

a severe form of disordered breathing suffer from progressive cognitive decline. Both 

groups had similar outcomes in the number of errors made prior to finding the 

escape hole, as well as time to find the escape hole on Barnes Maze at a 21-day 

time point. In contrast, on day 42 the severe group made more errors prior to finding 

the whole and took longer than the minor group. More importantly, performance on 

day 42 was worse than day 21 within the severe group, indicative of progressive 

cognitive decline. The minor group displayed similar performance on both days 21 

and 42.  

 Freezing behavior measured on contextual fear conditioning arena, an 

amygdala-hippocampal associative learning task, found that the severe group 
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displayed less freezing behavior than the minor group. We also found a negative 

correlation between the number of apneas per minute and percent time freezing, 

indicative of a relationship between the severity of disordered breathing and 

deteriorating cognitive function.  

 Although studies in human patients found no association between stroke size 

or location and the development of disordered breathing, we wanted to assess the 

effect of stroke size on the development of disordered breathing. Differences in 

cerebral atrophy volumes between the two groups at day 42 was negligible. We also 

found no histological indications of posterior hemisphere or brainstem infarction. 

NDS measured at the time of ischemia and on day 3 were identical between animals 

in both groups. Corner test, a measure of functional disabilities, again was identical 

between animals of both groups on day 3 and 7.  Taken together, we conclude that 

variation in stroke severity does not impact the development of disordered breathing.   

 Lastly, we employed the distal MCAO model to determine if a small stroke 

limited to the cortex produced disordered breathing or cognitive decline. When 

followed for a six week time period no detectable differences were noted between 

stroke and sham groups in any of the respiratory parameters previously assessed. 

We did not find any evidence of cognitive decline on either Barnes Maze or NORT. 

These findings are important for two reasons. First the mechanism by which stroke 

induces disordered breathing is not initiated or sustained in a smaller, cortical stroke. 

Until we have a better understanding of the mechanism(s) underlying the 

development of disordered breathing the use of the distal model to rule out stroke as 

the primary contributor to progressive cognitive decline is limited. Second, a single 
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cortical stroke does not result in cognitive decline, suggesting that disordered 

breathing is a factor in contributing to progressive cognitive decline witnessed in 

MCAO mice.  

 

4.7. Future Directions. 

 To better understand the role of disordered breathing, namely apneas, in the 

development of progressive cognitive decline steps must be taken to separate other 

possible contributions induced by ischemic stroke. Currently, animal models of 

disordered breathing are not well equipped to answer this question. Models inducing 

central apneas are not specifically targeted to disrupt only breathing such as whole 

animal monoamine oxidase-A knock out mouse. (144) Recently, a GPR4 channel 

was determined to be a major chemosensing mechanism of RTN neurons, and 

lentiviral knock down of this protein produced hypoventilation and an increase in the 

incidence of apneas. (46) GPR4 knock out mice are available but come with many 

downfalls, such as decreased litter size, spontaneous hemorrhage and altered 

kidney function. The development of an inducible Phox2b Cre floxed GPR4 mouse 

line would avoid many of these issues. An inducible line would bypass any potential 

detrimental outcomes in knocking out this protein during development while limiting 

the knockdown of GPR4 to Phox2b positive neurons such as the RTN and NTS. 

This KO line would allow for further assessment of apneas role in progressive 

cognitive decline.  
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Chapter 5. Brainstem reactive gliosis and the role of TGF-B 

Rationale: Evidence from our previous studies suggests that hemispheric stroke 

does not result in direct brainstem neuronal cell death to produce disordered 

breathing. With this in mind we began to explore other cell types as possible 

contributors to disordered breathing. As we began our investigation a study was 

published determining that intracerebroventricular (ICV) injections of streptozotocin 

not only induced blunted respiratory response but also produced reactive gliosis 

surrounding many key respiratory control centers such as the NTS and pre-

Botzinger complex. (145) This suggests that there is a pathway of communication 

from the cerebral hemispheres to the brainstem that may be transmitted via CSF 

and provides evidence that glia cells may be contributing to respiratory dysfunction. 

TGF-B expression increases following ischemic stroke leading to reactive 

astrogliosis in infarct area. We explore this as a possible mechanism of stroke 

induced respiratory dysfunction. 

 

5.1. MCAO results in pronounced brainstem astrogliosis. 

 GFAP staining of young and aged brainstem slices revealed a pronounced 

astrogliosis in brainstem areas of the NTS and ventral medullary surface (VMS) 

young shown, a region containing RTN neurons (average # cells/field of view VMS: 

47.67±4.33 vs. 94±11.15, p<0.05, NTS: 13±3.78 vs. 125.7±31.6, p<0.05, Fig. 5.1). 

This reactive gliosis is evident as early as day 3-post stroke and remains present on 

day 21 and day 42.  
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Figure 5.1. MCAO induces pronounced astrogliosis surrounding key 

brainstem respiratory neuronal populations. 20x view of GFAP IHC staining of 

brainstem slices from day-3 post stroke mice revealed a pronounced astrogliosis in 

the VMS and NTS compared to sham, average # cells/field of view VMS: sham 

47.67±4.33 vs. 94±11.15, p<0.05, NTS: sham 13±3.78 vs. 125.7±31.6, p<0.05 (A). 

Schematic included showing geographical location of these sites. GFAP + cell 

counts were significant in both regions compared to sham (B & C).   
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5.2. ICV injection of TGF-B produces disordered breathing and reactive gliosis in the 

brainstem. 

 ICV injections of TGF-B into the lateral ventricle of naïve mice produced 

respiratory dysfunction characterized by hypoventilation (minute ventilation room air 

2.076±0.008 vs. 1.157±0.07 ml/g/min, p<0.001, Fig. 5.2b) and an increase in 

apneas compared to saline injected animals (1.3±0.3 vs. 5.6±1.6, not significant 

p=0.06, Fig. 5.2c) on day 1. Brainstem IHC analysis revealed a pronounced 

astrogliosis compared to vehicle in areas of the NTS and VMS (Fig. 5.2d).  
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Figure 5.2. ICV TGF-β injections induce altered respiratory activity and 

brainstem astrogliosis. 2mm brain slices following Evan’s Blue ICV injection into 

cerebrospinal fluid. Lateral ventricle injection diffuses throughout CSF compartments 

(A). On day 1 following injection mice display blunted minute ventilation, 

2.076±0.008 vs. 1.157±0.07 ml/g/min, p<0.001, n=3 (B) as well as an increase in 
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the incidence of apneas, 1.3±0.3 vs. 5.6±1.6, not significant p=0.06 (C). IHC 

performed on tissue day 7-post injection revealed pronounced astrogliosis in 

brainstem regions of respiratory control (D).  
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5.3. TFG-B signaling in brainstem astrocytes increases following MCAO. 

 Increases in TGF-B1 expression following stroke are proposed to be 

neuroprotective while other isoforms enhance glial reactivity obstructing recovery, 

but have only been assessed in the peri-infarct region following stroke. (85) We 

performed IHC using pSmad2, a downstream component of the TFG-B signaling 

cascade, to assess both increases in TGF-B signaling as well as evidence of co-

localization with reactive astrocytes. On day 3 post surgery increases in GFAP 

immunoreactivity were observed in stroke mice compared to sham as previously 

reported. pSmad2/GFAP co-localization was increased in stroke tissue, although it 

only accounted for a small number of GFAP positive astrocytes (0.33±0.33 vs. 

5.4±1.3, p<0.01, Fig. 5.3c). Representative images shown of 20x and 63x views 

(Fig. 5.3a and b). Total pSmad2 signaling in brainstem regions was unaffected by 

MCAO as measured by IHC, data not shown. N=3 animals per group, 2 slices per 

animal.  
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Figure 5.3. TGF-β signaling increases in the brainstem following MCAO. 

pSmad2 immunoreactivity, indicative of TGF-β signaling, was co-localized with  

astrocytes on day 3 following MCAO, 20x images shown (A), 63x image, arrows 

indicating colocalization of GFAP and pSmad2. (B). Quantification of pSmad2/GFAP 

co-localization quantified, sham 0.33±0.33 vs. 5.4±1.3, p<0.01 (C). pSmad2-green, 

GFAP-red, Dapi-blue.  
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5.4. Distal MCAO does not result in brainstem astrogliosis.  

 To understand if brainstem reactive gliosis is unique to MCAO we performed 

GFAP IHC on brainstem slices of mice that underwent distal MCAO. We found no 

indications of reactive gliosis as evident by GFAP immunofluorescence in distal 

MCAO or sham mice, sham 20.67±10.88 vs. 19.33±1.76, p=0.53 (Fig. 5.4).  

 

 

Figure 5.4. dMCAO does not up regulate GFAP expression in the brainstem. 

No measureable differences in the level of GFAP expression in the regions of NTS 

or VMS following dMCAO, sham 20.67±10.88 vs. 19.33±1.76, p=0.53. N=3 animals 

per group, 2 slices per animal. 
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5.5. Discussion:  

MCAO induces a multifaceted, progressive inflammatory response affecting a 

variety of cells both locally and systemically. Following ischemia, injured or dying 

neurons, astrocytes, microglia or endothelial cells release components containing 

damage associated molecular patterns (DAMPs), triggering innate immune 

activation and production of numerous cytokines including IL-6, IL-1, TNF-α and 

TGF-β. (85, 146, 147) These cytokines induce systemic responses inducing 

reactivity in both bone marrow and the spleen. We considered whether MCAO 

induced an inflammatory response in the brainstem contributing to respiratory 

dysfunction. IHC analysis of serial slices of brainstem tissue revealed pronounced 

astrogliosis, markedly in the region of the VMS, 4th ventricle and NTS.  This reactive 

gliosis was evident on day 3 and persisted through day 42-post stroke. It is worth 

noting that GFAP immunoreactivity is the current hallmark of astrocyte reactivity and 

that its detection may be extremely limited in quiescent astrocytes. (64) As the 

contributions of astrocytes to respiratory activity are continuously being investigated, 

this finding is conceivably an indicator of how stroke disrupts breathing. Brainstem 

astrogliosis may disrupt breathing via many mechanisms not limited to: basement 

membrane fibrosis, purinergic control of vascular tone or stimulation to neuronal 

activity. Alterations in basement membrane fibrosis may inhibit both neuronal and 

astrocyte detection of CO2/H+. The latter two will be discussed in the following 

chapter. 

In the peri-infarct region following stroke, astrocytes play a major role in 

extracellular matrix remodeling and glial scar formation by secreting numerous 
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proteins including laminin and fibronectin. (148) The presence of these molecules 

along with glial scar formation contributes to inhibition of neural regeneration and 

communication into the injury site. Numerous factors including context dependent 

signaling and distance from lesion influence the degree of astrocyte reactivity and 

alterations in gene profile. It is not possible to equate GFAP reactivity with a single 

unique astrocyte profile. (149)  

 A number of cytokines are up regulated following stroke that can induce 

astrocyte reactivity such as TGF-β. Increases in astrocyte TGF-β signaling following 

stroke have been recently demonstrated. (85) As others have shown ICV injections 

of other compounds, such as Streptozatocin, induces respiratory dysfunction and 

brainstem astrogliosis. (145) To explore this signaling mechanism TGF-β ICV 

injections were performed in naïve mice. To our surprise, respiratory parameters 

were blunted by TFG-β injection on day 1 and persisted for a week in a similar 

fashion following MCAO. GFAP staining of these tissues additionally demonstrated a 

pronounced reactive astrogliosis in the brainstem.  This indicates that CSF-perfused 

TGF-β induces astrocyte reactivity in the brainstem as well as producing respiratory 

dysfunction. Total levels of brainstem pSMAD2, indicative of TGF-β signaling, were 

not increased following MCAO at day 3 or 21 in the brainstem. Only accounting for a 

small percentage of reactive astrocytes, co-labeling of pSmad2/GFAP was 

increased in stroke animals on day 3. Albeit a small one, this suggests that TGF-

β/Smad2 signaling plays a role in astrocyte activation. While phosphorylation of 

Smad2 has been accepted as marker of TGF-B signaling in astrocytes, most likely 

as a neuroprotective signal, it fails to account for any contribution of Smad3 
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signaling.  Ablation of Smad3 signaling reduces inflammation, gliosis, and fibronectin 

deposition in the weeks following injury. (150, 151) Numerous inflammatory 

cytokines, many of which are up regulated following ischemic stroke, can induce 

astrocyte reactivity and should be explored to further understand post stroke 

brainstem gliosis. Neuroinflammation activates the Jak2-Stat3 signaling pathway 

prior to the up regulation of GFAP. (152) Conditional astrocyte Stat3 knockout mice 

attenuated astrogliosis in a model of MPTP neurotoxicity(153) and could be utilized 

to understand if astrogliosis induces respiratory dysfunction following MCAO. 

 Previously, we have shown that dMCAO produces neither disordered 

breathing nor cognitive decline. IHC analysis of brainstem tissue revealed no 

differences in GFAP immunoreactivity between dMCAO stroke and sham mice, 

further supporting a strong a contribution of astrogliosis to disordered breathing.  

 

5.6. Future Directions. 

Our experimental findings demonstrate a pronounced astrogliosis in major 

sites of brainstem respiratory control, as evident by increased GFAP expression. 

Although understood to be a marker of reactive astrocytes, GFAP expression is not 

indicative of a beneficial or detrimental role of astrocytes. At this time we are 

unaware if this reactivity disrupts normal astrocytic functions in respect to respiratory 

control. A cytokine profile of CSF and brainstem tissue may provide insight to what 

molecules are potentially activating brainstem astrocytes. Yet, those findings may 

denote numerous molecules are contributing to a reactive phenotype. Many pro-

inflammatory cytokines converge on the same signaling pathway, providing a more 
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strategic target. The p38 MAPK pathway is activated by numerous pro-inflammatory 

cytokines(154) and plays an important role in ischemic stroke induced gliosis. 

Inhibition of this pathway reduced glial scar formation without affecting infarct 

volumes or functional outcomes when measured 4 days after stroke. (152) It would 

be interesting if overexpression of p38 MAPK or Jak2-Stat3 in astrocytes induces 

respiratory dysfunction. Furthermore, inhibition of these pathways following MCAO 

should be explored as potential therapeutic targets to prevent SIRD. 

Further experimentation must be performed to understand the relationship 

between TGF- β induced astrogliosis and disordered breathing. We our currently in 

the process of crossing a floxed TGF- β receptor to an inducible GFAP cre line 

resulting in an astrocyte specific TGF- β receptor knockout mouse. The inducible 

feature of this animal model allows for temporal control of TGF-β knockout.  

Assessments of gliosis and disordered breathing will be obtained following the ICV 

administration of TGF- β. We anticipate that this animal model will further our 

understanding of the role of gliosis in the development of disordered breathing.  
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Chapter 6. Pharmacological stabilization of respiratory 

activity to improve cognitive outcomes.  

Rational: Clinical evidence suggests respiratory dysfunction slows recovery and 

contributes to increased mortality. For example, although CPAP is not 

recommended for treatment of central apneas and is poorly tolerated by elderly 

patients, it has been shown to enhance neurological recovery in some stroke 

patients thus underscoring the importance of normal respiratory function in stroke, 

and suggesting treatments targeting respiratory dysfunction can improve post-stroke 

recovery. Consistent with these clinical observations, preliminary evidence in male 

mice show that stroke results in a respiratory phenotype in conjunction with other 

behavioral deficits including functional disabilities, cognitive decline and a high 

mortality rate. These results suggest ventilatory problems contribute to stroke-

induced functional deficits and high mortality. To test this, we will evaluate the 

efficacy of treatments designed to improve respiratory function on motor and 

cognitive outcomes.  

 

6.1. Administration of KCNQ agonist Retigabine destabilizes breathing. 

 In an effort to stabilize post stroke respiratory dysfunction we utilize the 

KCNQ channel agonist Retigabine, to target RTN KCNQ channels. On day 3-post 

surgery mice underwent plethysmography, followed by Retigabine (10mg/kg) or 

DMSO vehicle SQ with subsequent plethysmography testing. Retigabine decreased 

both respiratory frequency and minute ventilation in stroke and sham mice (data not 
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shown). This was a result of increasing the interbreath interval as observed (Fig.6.1). 

For 90% of the breaths taken in stroke mice, the time between breaths is 368ms or 

less. Retigabine increases that interval to 468ms. Following these observations, we 

hypothesized that XE991, a KCNQ channel antagonist previously shown to increase 

basal activity of RTN neurons in vitro, would stimulate respiratory activity following 

MCAO. XE991 (2mg/kg) or vehicle was administered to mice day 3-post surgery 

with no detectable effect on any respiratory parameter, data not shown. 
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Figure 6.1. Retigabine increases the interbreath interval further destabilizing 

breathing. Retigabine (10mg/kg) administered on day 3-post surgery results in a 

right shift of the histogram indicating increase in time between all breaths, expected 

to further destabilize respiratory activity.  
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6.2. Acetazolamide administration eliminates apneas. 

 Acetazolamide is known to enhance basal breathing by inducing metabolic 

acidosis, commonly used to treat acute altitude sickness. Acetazolamide (40mg/kg) 

or saline vehicle was administered SQ to mice on day 3 following surgery. 

Acetazolamide increased respiratory frequency in stroke mice compared to vehicle 

(152.6±6.49 vs. 318.4±61.95 bpm, p<0.05, Fig.6.2a) (Sham respiratory frequency 

286.7±13.97). While concurrently decreasing the incidence of apneas (6±1.15 vs 

0±0, p<0.01, Fig.6.2b). Representative respiratory tracings shown (Fig.6.2c). 
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Figure 6.2. Acetazolamide increases respiratory frequency and eliminates 

apneas. Acetazolamide increases the respiratory frequency of stroke mice, 

152.6±6.49 vs. 318.4±61.95 bpm, p<0.05 (A), while also eliminating apneas under 

room air conditions, 6±1.15 vs 0±0, p<0.01, n=3 (B). Representative waveform 

tracings shown (C).  
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6.3. Long-term administration of acetazolamide improves cognitive outcomes 

following MCAO. 

 Acetazolamide (40mg/kg) or saline vehicle was administered over a four 

week period beginning on day 14 following surgery via osmotically driven SQ 

implanted Alzet pumps. Cognitive assessments performed on day 21 following 

surgery detected no differences between the treatment groups, as a group stroke 

mice perform worse on Barnes maze than sham, (Mantel-Cox test, p<0.001, 

Fig.6.3a). On day 42 stroke mice treated with Acetazolamide had significantly 

improved cognitive performance compared to sham (p=0.0005, n=6 per sham group, 

n=11 per stroke group Fig. 6.3b). Upon sacrifice histological assessment of 

hemisphere atrophy was conducted. There were no differences in cerebral 

hemisphere atrophy between acetazolamide and saline vehicle administered stroke 

groups, (sham 34.53±3.45 vs. 29.94±6.47, p=0.5, Fig. 6.3c).  
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Figure 6.3. Continuous administration of Acetazolamide improves long term 

cognitive outcomes following MCAO. Mice underwent spatial learning and 

memory testing using the Barnes maze on day 21 and day 42-post surgery. On day 

21 stroke mice as a group perform worse than sham, taking longer to locate the 

escape hole, Mantel-Cox test, p<0.001 (A). On day 42 testing, acetazolamide 

administered stroke mice show a marked improvement in their ability to locate the 

escape hole when compared to vehicle-administered shams, p=0.0005 (B). No 

variations in the severity of infarct between the two groups when hemispheric 

atrophy was measured, sham 34.53±3.45 vs. 29.94±6.47, p=0.5 (C).  
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6.4. Acetazolamide dilates cortical arteries while constricting brainstem arteries in 

slice recordings. 

 Slices of brain tissue from naïve mice were collected to measure arteriole 

vessel diameter in the cortices and brainstem under physiological conditions (5% 

CO2 balanced air) and after application of Acetazolamide (500 um plus 5% CO2 

balanced air). We reconfirmed that application of Acetazolamide dilated cortical 

arteries  (mean of differences 0.5584±0.1303 µm, p=0.002, Fig. 6.4c and e). 

Surprisingly, this effect was reversed in RTN arterioles, were we observed 

constriction (-0.6089±0.1942 µm, p=0.0095, Fig. 6.4a and e). 

 

 

 

 

 

 

 

 

 

 

 



	

	 111	

 

 

Figure 6.4. RTN and cortical arterioles differentially react in in vitro arteriole 

slice recordings. (A) Diameter trace of an example RTN arteriole constricting in 

response to bath application of 500 µm Acetazolamide. (B) An example RTN vessel 

image profile plot with application of Acetazolamide, -0.6089±0.1942 µm, p=0.0095. 

Profile plot scale bars: 2000 a.u., 10 µm. (C) Diameter trace of an example cortical 

arteriole dilating in response to application of 500 µm Acetazolamide, mean of 

differences 0.5584±0.1303 µm, p=0.002. (D) An example cortical vessel image 

profile plot with application of Acetazolamide. Profile plot scale bars: 2000 a.u., 10 

µm (E) Summary data shows differential reactivity of Acetazolamide; a 

vasoconstriction is seen in the RTN (N = 10 vessels) while a vasodilation is seen in 

the cortex (N = 10 vessels)**, difference in µm from baseline (p<0.01). 
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6.5. Discussion and Future Directions. 

 Our earlier experimental results indicate that MCAO produces disordered 

breathing in mice and that the severity of disordered breathing correlates with 

worsening cognitive decline. With an understanding of brainstem respiratory 

physiology we employed Retigabine in effort to improve respiratory instability while 

eliminating apneas. Retigabine, a high affinity voltage gated potassium channel 

(KCNQ) agonist, decreases membrane potential altering the firing rate of RTN 

neurons in vitro. Referencing Figure 4.2c, we originally believed the burst of 

respiratory activity (segments of waxing and waning of tidal volume) to be 

problematic and by reducing the activity of RTN neurons (responsibility for both 

respiratory frequency and tidal volume) would stabilize breathing and eliminate 

apneas.  

Retigabine had a depressive effect on respiratory activity in both stroke and 

sham mice, while also increasing mortality in the stroke coort. By enhancing 

potassium channel activity, Retigabine increased the breath-to-breath time interval, 

reduced tidal volume while overall decreasing minute ventilation. Based on these 

experimental outcomes, we hypothesized that XE991 (a KCNQ antagonist) would 

have opposite effects by increasing respiratory activity. When administered 

systemically we observed no effect on respiratory activity in either stroke or sham 

mice. To rule out low dosage as the cause, 3mg/kg was administered, which 

induced seizure like activity in sham mice. This finding does not come as a surprise 

due to the KCNQ channel’s  regulation of neuronal excitability. In summary, systemic 

activation of KCNQ channels decreases respiratory activity.  
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In subsequent experiments we demonstrate that the administration of 

Acetazolamide to MCAO mice enhances respiratory activity while suppressing the 

apneas. Continuous administration of Acetazolamide greatly improves long-term 

cognitive outcomes. Lastly, in contrast with the observed and expected vasodilation 

of cortical arterioles, we show that in vitro application of Acetazolamide to brainstem 

slices from young male animals constricts arterioles of the RTN. This may provide 

insight into the mechanism of how Acetazolamide enhances respiratory activity, and 

how MCAO disturbs brainstem respiratory function. To address the later, similar 

experiments must be performed in brainstem slices of MCAO and sham mice to 

examine vascular responsiveness to changes in CO2.  The concept of differential 

regulation of vascular tone is not new to mammalian physiology. Unlike systemic 

arterioles, which dilate in response to low levels of O2, pulmonary arterioles constrict 

in a process referred to as hypoxic pulmonary vasoconstriction or pulmonary 

shunting. (155) Although the precise mechanism underlying this phenomenon is still 

be resolved, there is increasing evidence that suggests hypoxia stimulates a rise of 

intracellular calcium in pulmonary artery smooth muscle culminating in vascular 

constriction. (156) This concept must be considered when studying the physiology of 

brainstem arterioles as well as the mechanisms in which stroke disrupts brainstem 

processes producing disordered breathing.  

 It has been hypothesized that the Acetazolamide mediated increase in 

respiratory activity following acute altitude sickness is in response to increase in H+ 

concentration.  This increase in H+ can have a two-fold effect on respiratory activity. 

First, an increase in H+/CO2 concentration would intensify central chemoreceptor 
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stimulation, increasing respiratory activity, while concurrently expanding the CO2 

reserve, stabilizing breathing. Second, acetazolamide decreases arteriole diameter 

in the region of the RTN in a similar manner as increased H+/CO2, effectively 

decreasing regional blood flow.  

 Alternatively, it is understood that vascular tone in the region of the RTN is 

mediated in part by purinergic signaling. Previous evidence indicates RTN 

astrocytes release ATP in response to increases in CO2/H+. Pharmacological 

activation of RTN astrocytes reconfirmed this finding, while also demonstrating a 

subsequent purinergic mediated arteriole constriction. To further confirm our findings 

of acetazolamide-induced vasoconstriction, these experiments should be performed 

with acetazolamide in combination of purinergic blockade. These outcomes could 

further support our findings of reactive astrogliosis in the brainstem as pathological. 

 Consistent with our earlier data, we find that elimination of apneas prevents 

further cognitive decline, suggesting a correlation between apneas and cognitive 

outcomes. We must acknowledge the possibility that acetazolamide enhanced 

respiratory activity while independently improving cognitive function by a different 

and distinct mechanism. Intralateral ventricular administration of carbonic anhydrase 

inhibitors enhanced synaptic efficacy and improved spatial learning/memory in rats. 

(157) At the moment this model does not allow for the delineation of the two. The 

inducible RTN specific GPR4 knockout model described previously could be of use 

to further our understanding of this matter. The GPR4 knockout model presents with 

a greatly diminished CO2/H+ sensing capacity of RTN neurons, therefore 

Acetazolamide mediated increase of H+ should not induce a large alteration in 
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respiratory activity. If this model of disordered breathing results in cognitive decline, 

Acetazolamide therapy could also be initiated to understand the direct effects of the 

drug on cognitive performance. Models of intermittent hypoxia would fail to answer 

this question as Acetazolamide therapy stimulates respiratory activity in an attempt 

to improve oxygenation, adverting hippocampal cell stress/loss. 

 Collectively, our findings indicate that 1.) MCAO induces respiratory 

dysfunction possibly by disrupting astrocyte control of vascular tone in key brainstem 

regions. 2.) The severity of respiratory instability, namely apneas, correlates with 

progressive cognitive decline following MCAO. 3.) Improving respiratory activity by 

suppressing apneas, as seen with Acetazolamide administration, prevents further 

post stroke cognitive decline.  
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Chapter 7. Conclusion. 

The first report of stroke disrupting respiratory function originated in the early 

1960s from the studies of Brown and Plum. (158) Since then numerous studies have 

described a high prevalence of sleep disordered breathing following stroke. 

Disordered breathing that accompanies stroke is associated with higher one-year 

mortality and worse functional outcomes at the time of discharge, 3 months and 12 

months following stroke. (17, 18) Importantly, a decrease in cognitive performance 

was closely associated with the severity of respiratory disturbance, and an increase 

in daytime sleepiness after stroke was a strong predictor of cognitive decline. (19)  

Numerous experimental studies have been undertaken to comprehend the 

effects of obstructive sleep apnea and/or intermittent hypoxia on the maladaptive 

consequences of hypertension, heart failure and cognitive impairment. Our review of 

the literature discovered only one experimental report of stroke altering ventilatory 

patterns. Koo et al. reported that following transient 60-minute left middle cerebral 

artery occlusion, A/J mice displayed an increase in the coefficients of variation for 

respiratory frequency, tidal volume and minute ventilation 24 hours after stroke. 

They concluded that ischemic stroke could develop a characteristic-breathing 

pattern similar to Cheyne-Stokes respiration. (159) Albeit a significant finding, this 

work did not fully characterize the respiratory phenotype induced by MCAO and 

lacked any discussion of apnea, the fundamental feature of stroke disordered 

breathing and a major contributor to hypoxia and cognitive decline. Advanced 

chronological age is the most important non-modifiable risk factor for stroke and is 
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an independent predictor of poor outcome after stroke. To date no studies have 

been undertaken to investigate either age or sex as a biological variable in the study 

of stroke induced respiratory dysfunction.  

A large body of evidence exists suggesting that obstructive sleep apnea 

increases the risk of declining neurological function, cardiovascular disease, cancer 

and death.  A majority of these studies employ intermittent hypoxia as a model to 

mimic the episodes of apnea observed in sleep apnea. Potential mechanisms 

contribute to cognitive decline include neuro-inflammation, mitochondrial 

dysfunction, oxidative stress and neuronal apoptosis. (160) In the models of 

intermittent hypoxia, investigators subjected animals to severe hypoxic conditions 

resulting in arterial oxygen levels that plummeted to levels between 40-48 mmHg. 

(161) These levels of PaO2 are extreme and far from measureable levels in human 

studies of OSA (88.14±17.83 mmHg). (162) Our studies found mice suffering from 

SIRD present with PaO2 levels of 79.3 and SpO2 desaturations to 90%, consistent 

with human reports.  

On the other end of the spectrum many studies report a neuroprotective effect 

of intermittent hypoxia. Several animal models of neurological disease or injury, 

including Alzheimer’s, brain and spinal cord injury have shown benefits of hypoxic 

conditioning on enhancing neuroplasticity, cerebral vascular function and preventing 

further cognitive decline. (163-165) Furthermore, the concept of rapid and delayed 

post-conditioning induced neuroprotection, is proposed to minimize reperfusion 

injury following a cerebral ischemic event by engaging the brain’s own endogenous 
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responses. (166) This raises a critical question of whether stroke induced alterations 

in respiratory activity serve as a compensatory response to improve outcomes, a 

question that this study answers.  

This study reports similar findings of Koo et al. in that 60 minutes of MCAO 

produces alterations of respiratory activity in a separate mouse strain, C57B6. Koo 

et al. reported alterations in respiratory frequency and minute ventilation 24 hours 

after ischemia. Our findings indicate that these respiratory parameters are 

continuously perturbed 3 and 7 days following ischemia. A key finding of this work 

was that apneas are the underlying cause of respiratory instability. These episodes 

of apnea not only decrease breaths per minute and subsequently minute ventilation, 

but also result in periods of oxygen desaturation and systemic hypoxia.  After fully 

characterizing the respiratory phenotype resulting from following stroke, we sought 

to understand if apneas are a consequence or compensatory response to ischemia. 

We found that the number of apneic events an animal suffered per a minute 

correlated with worse cognitive outcomes over a 42 day period. Consistent with 

evidence from human stroke patients, a higher apnea-hypopnea index (AHI) directly 

correlates with a decline in cognitive function.  

Continuous positive airway pressure (CPAP) is a well-established therapy for 

the treatment of obstructive sleep apnea and is currently the only treatment for 

stroke disordered breathing despite its poor efficacy in these patients. Utilizing 

knowledge of the molecular mechanisms contributing to neuronal respiratory activity, 

we utilized the carbonic anhydrase inhibitor, Acetazolamide, to stimulate respiration. 
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Which resulted in the elimination of apneas and ultimately improved long-term 

cognitive outcomes following stroke. This study also demonstrates that 

Acetazolamide differentially modifies vascular reactivity in the brainstem, offering an 

alternative mechanism of stabilizing post stroke respiratory activity. The next line of 

experiments conducted should aim to further clarify the mechanism(s) of 

Acetazolamide stabilizing respiratory activity.  

 Lastly, this work provided insight into how stroke may disrupt respiratory 

activity resulting in apneas. We discovered a pronounced astrogliosis surrounding 

two key brainstem respiratory neuronal populations; the NTS and RTN. 

Intracerebrovascular administration of TGF-β induced brainstem astrogliosis as well 

as respiratory dysfunction and apneas. Suggesting a possible causative role of TGF-

β mediated astrogliosis disrupting respiration. Further studies using astrocyte 

specific TGF-β receptor knockout mice will further our understanding of respiratory 

dysfunction stemming form TGF- β mediated astrogliosis and may help in the design 

of efficacious therapies to prevent the development of SIRD. 

This work was the first to fully characterize stroke induced respiratory 

dysfunction and show that it is a maladaptive response resulting in progressive 

cognitive decline. Although this work highlights the correlation between apnea 

induced hypoxia and cognitive decline, further work is necessary. As previously 

discussed in Chapter 4, the use of inducible RTN specific GPR4 knockout model can 

further confirm a causal role of apneas leading to cognitive decline, while also 

providing a model to study the underlying mechanism(s). This proposed work would 
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have significant relevance beyond the field of stroke. Recently the Alzheimer’s 

Association released a statement summarizing the findings of 3 separate studies 

concluding that sleep disordered breathing is associated with an increase in amyloid 

deposition, suggesting that SDB is an independent risk factor for Alzheimer’s. This 

raises the possibility that interventions targeted to improving respiratory activity may 

reduce the risk of Alzheimer’s. Interestingly, overproduction of TGF- β, astrogliosis 

and basement membrane thickening enhanced Alzheimer’s disease and 

cerebrovascular abnormalities. (167) Furthermore, increased levels of TGF-B lead to 

a decline in cerebrovascular dilatory ability and perturbed resting vessel tone in the 

same animal model. (168)  

This work recapitulated the findings of numerous studies reporting a negative 

correlation between the incidence of apnea and cognitive function. Further 

emphasizing this point, we found that elimination of apneas following Acetazolamide 

therapy prevents further cognitive decline, strengthening the correlation between 

apneas and cognitive outcomes. This work has established a murine model of stroke 

induced respiratory dysfunction. Laying the groundwork for further investigations into 

the mechanisms of disordered breathing and the development of therapies to 

prevent respiratory dysfunction and ultimately cognitive decline. Ameliorating 

respiratory instability and sequelae is of high relevance to several disciplines in 

preventing cardiovascular disease, stroke, cancer and death, improving overall 

patient health and wellbeing. 
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