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EVALUATING THE THERAPEUTIC EFFICACY OF RESTORING WILD-TYPE P53 

ACTIVITY IN P53-MUTANT TUMORS  

Connie A. Larsson, B.S. 

Advisor: Guillermina Lozano, Ph.D. 

The p53 transcription factor is the most frequently altered in human cancers usually 

via missense mutations that undermine its transcriptional activity. Clinically, TP53 mutations 

have been shown to be remarkably predictive of refractoriness to treatment, resulting in 

poor outcome. Consequently, the development of p53 pathway activating agents is rapidly 

evolving and gaining more attention in cancer therapeutics research, with several small 

molecule compounds currently in preclinical and clinical trials. However, it remains largely 

unknown what types or proportions of p53-mutant tumors will respond to p53 restoration-

based therapies.  

Using a mouse model of Li Fraumeni syndrome, we genetically restored wild-type 

p53 in mice carrying a germline p53R172H (corresponding to the TP53R175H hotspot in 

humans) missense mutation and observed heterogeneous responses. We found that 

approximately 50% of tumors responded by regressing in volume whereas 50% of tumors 

failed to regress after p53 reinstatement. To gain insight into the molecular events 

underlying therapeutic response to p53 restoration, we sequenced the transcriptome of 

twelve p53-mutant thymic lymphomas that were sensitive (n=8) or resistant (n=4) to p53 

restoration. Differential gene expression analyses suggested a critical role for the TNF 

pathway and RARγ, an effector in the TNF pathway, in promoting response as they were 

up-regulated in tumors sensitive to p53 restoration. Furthermore, we demonstrate that 

pharmacological activation of RARγ with the synthetic retinoid, CD437, sensitizes resistant 

tumors to p53 restoration while additively improving outcome and survival in tumors 

inherently sensitive to p53 restoration.  
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1.1 The discovery of p53, a bona fide tumor suppressor 

 In 1979 several groups identified a cellular protein of approximately 53 kilodaltons (kD) 

that co-precipitated with SV40 large T-antigen in rodent cell lines transformed by simian virus 

SV40 (1, 2). Subsequently, the same 53 kD protein was found in stable complexes with the 

E1B-55kd oncoprotein in adenovirus transformed cells (3). These findings led to the 

hypothesis that the 53 kD protein, appropriately named p53, was a cellular oncoprotein. This 

hypothesis was further supported by observations that transformed cell lines had exponentially 

higher levels of p53 protein compared to non-transformed cells and must therefore, be 

associated with cellular transformation (4). 

 However, confounding data demonstrating viral-induced murine erythroleukemias had 

inactivated p53 due to rearrangement at the p53 locus emerged (5-7), suggesting that 

inactivation of p53 may provide a selective advantage for cellular transformation. This notion 

was further substantiated by human data where a large proportion of osteosarcomas had 

rearrangement in the p53 gene that correlated with absence of p53 expression (8). The 

confusion surrounding the contradictive data implicating p53 as either a protooncogene or 

tumor suppressor was attributed to the existence of independently derived p53 cDNAs 

possessing mutations that impaired p53 function and promoted accumulation of mutant p53 

proteins (9). A decade after its initial discovery, the paradoxical role of p53 was finally resolved 

and p53 was established as a bona fide tumor suppressor (8, 9). 

1.2 p53, guardian of the genome  

 Encoded by the TP53 gene, the p53 tumor suppressor protein is a transcription factor 

with the capacity to activate and/or repress the expression of hundreds of genes involved in a 

wide range of cellular processes that include, but are not limited to development, fertility, 

metabolism, DNA repair, survival, and stem cell homeostasis (10, 11). More importantly, p53 

plays a pivotal role in maintaining genomic stability by initiating cellular programs that eliminate 
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or prevent the proliferation of damaged or transformed cells (12-14). Genotoxic conditions that 

cause damage to the DNA activates p53. There are a number of external stimuli that can 

activate p53 such as cellular exposure to ultra-violet (UV) radiation, ionizing radiation (IR), 

mutagens, and carcinogens, including chemotherapeutic agents (15, 16). Endogenous stress 

signals that promote the activation of p53 including hypoxia, oncogene activation, reactive 

oxygen species (ROS), and telomere attrition, to name a few (17).  

Upon sensing these stress signals, p53 will transactivate target genes to initiate 

apoptosis, cell cycle arrest and senescence. These responses have been clearly shown, in 

both human and murine systems, to be crucial in suppressing cellular transformation, tumor 

progression, and mediating response to multiple cancer therapies (18-20). Pro-apoptotic 

genes induced by p53 include p53- upregulated-modulator-of-apoptosis (Puma/Bbc3) (21), 

BCL2-associated-X- protein (Bax) (22), phorbol-12-myristate- 13-acetate-induced-protein-1 

(PMAIP1/Noxa) (23), TP53 apoptosis effector (Perp) (24), and p53-regulated Apoptosis-

Inducing Protein 1 (p53AIP1) (25); whereas cyclin-dependent-kinase-inhibitor-1A 

(Cdkn1a/p21) (26), cyclin G1 (Ccng1) (27), and growth arrest and DNA-damage-inducible 45 

alpha (Gadd45a) (28) are some of the p53 targets important for cell cycle arrest. However, this 

is not a complete list of all the p53 target genes and while apoptosis and cell cycle arrest are 

important tumor suppressive programs. Emerging data demonstrates that p53 can exert tumor 

suppressive activity through other mechanisms such as metabolic reprogramming (29), 

autophagy (10), and ferroptosis (30, 31). It is also worthy to note that although p53 has been 

implicated in the activation of over 400 genes (10), only 129 of them, thus far, have been 

experimentally validated as direct p53 transcriptional targets genes (11).  

 The p53 protein contains two acidic N-terminal transactivation domains (TAD), a 

proline-rich (Pr) domain, a sequence-specific DNA binding domain (DBD) that is centrally 

located, followed by a nuclear export signal (NLS), the tetramerization (TET) domain and a 
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basic C-terminal regulatory domain, which is important for regulating the stability and function 

of p53 activity (Figure 1) (32). In order for p53 to carry out its transcriptional activity, it must 

first form a homotetramer, and the TET domain (also referred to as the oligomerization 

domain) is critical for not only the oligomerization of p53 proteins, but for proper binding to 

DNA. The DBD of p53 is also crucial for DNA binding at p53 response elements (RE) of its 

target genes. Not surprisingly, the DBD is the target of approximately 90% of p53 mutations 

found in human cancers. Among them, six residues are considered ‘hot spots’ as they tend to 

be targeted for mutations more frequently than other residues (Figure 1) (33, 34). Moreover, 

many of these mutants have dominant-negative effects on WT p53 protein whereby the mutant 

protein can form a stable a complex with WT p53, thus abolishing its transcriptional activity 

(35). More details about the different types of p53 mutations and its effect on protein function 

are described in section 1.4.  

Since p53 is capable of initiating cellular death programs, balancing p53 activity is 

critical and there is a fine threshold between having excessive or insufficient activity. On one 

hand, attenuating p53 allows for the survival and proliferation of mutated or transformed cells, 

thus leading to spontaneous tumorigenesis (36). Yet, unrestricted p53 activity can be 

deleterious and depending on the level of activation, can lead to organismal death (37). 

Therefore, the transcriptional activity of p53 is tightly regulated and described in the following 

section. 
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Figure 1: Schematic of the p53 protein along with the top six “hotspot” mutations 

The p53 protein contains two N-terminal transactivation domains (TAD) followed by a proline-

rich domain (Pr). The DNA binding domain (DBD) is critical for the transcriptional function of 

p53. Notably, all hotspot mutations fall within the DNA-binding domain of the p53 protein. 

Residues denoted with blue text are conformational mutants while residues denoted in black 

text are DNA contact mutants. The C-terminus of p53 contains the nuclear localization signal 

(NLS), the tetramerization (TET) domain, and the (REG) domain (residues 363-393), which is 

important for the negative regulation of p53. 
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1.3 Regulation of p53 activity 

Considering the anti-proliferative and cell lethal effects of p53, it is not surprising that 

p53 protein has a very short half-life of less than 20 minutes in unstressed cells (4, 38). The 

protein turnover of p53 is a rather complex process that is governed by a milieu of post-

translational modifications at different target residues impacting the stability and function of 

p53. These modifications include ubiquitination, phosphorylation, acetylation, sumoylation, 

neddylation, methylation, and glycosylation (4, 38, 39). The outcome of these modifications 

can vary and is dependent on the type and residue modified. This complexity is compounded 

by the fact that many of these post-translation modifications can converge on the same target 

residue or juxtapose to another modified residue, which in turn can either enhance or 

antagonize the effects of other modifications (39, 40). Protein ubiquitination is a cascading 

sequential process that requires three different classes of enzymes: E1-activating enzymes, 

E2-conjugating enzymes, and E3 ubiquitin ligases. Additionally, ubiquitination is a critical 

process for the regulation of p53 function and activity and the most critical regulator of p53 is 

an E3 ligase of the murine double minute (Mdm) family of proteins.  

Mdm2 and its homologue, Mdm4 (AKA MdmX) are arguably the two most imporant 

negative regulators of p53 (41-45). Both Mdm2 and Mdm4 contain RING finger domains but 

they differ in that the RING domain of Mdm2 has E3 ligase activity whereas the RING domain 

of Mdm4 lacks enzymatic activity (45, 46). Additionally, Mdm2 interacts with Mdm4 via its 

RING domain. Inhibition of p53 by the Mdm proteins occurs via two mechanisms: 1) the RING 

domain of Mdm2 ubiquitinates p53 at key lysine residues that target p53 for proteasomal 

degradation (47) and 2) Mdm2/4 heterodimer directly binds to the N-terminal TAD domain of 

p53 to abolish its ability to transactivate its target genes (48-50). Keeping p53 levels under 

tight control is critical to maintain tissue and organismal homeostasis, as unrestricted p53 

activity is cell lethal. This is highlighted by studies showing homozygous deletion of either 

Mdm2 or Mdm4 from the germline leads to early embryonic lethality in mice, and this lethal 
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phenotype can be rescued by concomitant deletion of p53 (42, 43, 51). Additionally, abolishing 

the E3 ligase activity of Mdm2 or disrupting or the Mdm2-Mdm4 interaction via RING domain 

deletions or mutations results in embryonic lethality in mice that is p53-dependent (44, 48, 49), 

underscoring the critical role of the Mdm proteins in suppressing p53 activity.  

In addition to the Mdm proteins, a number of other RING domain-containing proteins 

have been reported to negatively regulate p53 (40). These include, but are not limited to, 

Tripartite-motif protein 24 (Trim24) (52, 53), constitutively photomorphogenic 1 (Cop1/Rfwd2) 

(54), and p53-induced protein with a RING-H2 domain (Pirh2) (55). Interestingly, mice with 

homozygous deletion of Trim24 or Pirh2 are viable and develop normally, suggesting that 

inhibition of p53 by Trim24 or Pirh2 is not as potent compared to the Mdm proteins (56, 57). In 

contrast, Cop1 deficiency results in embryonic lethality at day E15.5 due to cardiovascular 

defects in mice (58, 59). However, this lethal phenotype was not attributed to unrestricted p53 

since Cop1-deficient tissues did not exhibit elevated levels of p53 protein or upregulation of 

p53 target gene expression (58).  

Activation of p53 upon DNA damage is critical to maintain genomic stability. However, 

it is just as critical that p53 becomes destabilized once the cell has recovered to ensure 

survival. Mdm2 regulates this transition by two different mechanisms. One involves Mdm2-

mediated ubiquitination of key lysine residues that target p53 for proteasomal degradation 

(40). But the primary mechanism for down-regulating p53 activity is through an auto-regulatory 

negative feedback loop between p53 and Mdm2. Mdm2 is a transcriptional target of p53 and 

upon DNA damage p53 binds to the p53 response element (RE) in the P2 promoter of Mdm2 

to induce Mdm2 expression, which in turn leads to the down-regulation of p53 activity and 

protein levels. Perturbing this feedback loop by mutating the RE in the Mdm2 P2 promoter 

leads to hematopoietic defects and subsequent death in mice exposed to low dose ionizing 

radiation (60). Taken together, these findings further substantiate the notion that Mdm2 and 

Mdm4 are the most essential regulators of p53.  
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1.4 p53 mutations in cancer 

 Recent advancements in the era of genomics reveal that the p53 pathway is perturbed 

or attenuated in the majority of human cancers. Additionally, unbiased sequencing approaches 

carried out by the AACR Project Genie Consortium identified TP53 as the most frequently 

mutated gene in all human cancers (Figure 2) (61), while a large subset of tumors without p53 

mutations inhibit p53 function by altering other central genes in the pathway by amplifying the 

MDM2 or MDM4 locus (62). Moreover, certain cancer types, such as ovarian serous 

cystadenocarcinoma, have near complete penetrance of p53 mutations (63). The p53 pathway 

can also be attenuated through inactivating mutations or deletions at the CDNK2A locus, 

which encodes two different tumor suppressor proteins, p16 and p14Arf (p19Arf in mouse) (33, 

64). The critical role of the p53 pathway in preventing tumorigenesis is further highlighted by 

the observation that TP53 mutations and MDM2 or MDM4 amplification are mutually exclusive 

events in human tumors (65). In addition, Li-Fraumeni Syndrome (LFS), an autosomal 

dominant hereditary disorder that is characterized by a predisposition to an early onset of 

cancer, is directly linked to germline TP53 mutations (66).  

1.5 Clinical significance of p53 mutations  

Typically, p53 mutation confers poor prognosis and chemoresistance (33), but our lab 

has shown in a mouse model of breast cancer that retention of wild-type p53 results in an 

inferior response to chemotherapy compared to tumors with complete loss of p53 function 

(67). This confounding observation challenged the dogma of p53 biology and was followed by 

the emergence of corroborating clinical data indicating the negative impact of p53 on treatment 

response. A clinical study on patients with muscle-invasive bladder carcinoma found 

resistance to frontline chemotherapy was associated with a wild-type p53 gene expression 

signature (68). Therefore, it must be taken into account how p53 mutation status will affect 

therapeutic response to anticancer therapies.   
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Figure 2. Top 10 most recurrently mutated genes in human tumors. 

A graphical representation of data generated from the AACR Project Genie Consortium 

showing the top 10 most recurrently mutated genes in over 18,804 human tumor samples (61). 

TP53 is the most frequently mutated gene, nearly 3-fold higher than the second most 

frequently mutated gene, KRAS.  

With permission from: AACR Project GENIE Consortium. AACR Project GENIE: Powering 
Precision Medicine Through an International Consortium, Cancer Discov. 2017 Aug;7(8):818-
831 

C. Larsson would like to acknowledge the American Association for Cancer Research and its 
financial and material support in the development of the AACR Project GENIE registry, as well 
as members of the consortium for their commitment to data sharing. Interpretations are the 
responsibility of study authors 
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1.6 Mouse models of p53 mutations 

Monumental advances have been made in understanding the p53 pathway, greatly 

owing to advancements in recombinant DNA technology. A number of genetically engineered 

mouse models (GEMMs) carrying different p53 mutant alleles have been generated to 

characterize the role of p53 in development and tumorigenesis, and what these models have 

taught us is that not all p53 mutations are equal (69, 70). Mice inheriting one copy of a null 

allele at the p53 locus (p53+/−) are tumor prone and have decreased survival compared to wild-

type (p53+/+) mice. Interestingly, homozygous p53 null (p53−/−) mice are viable and 

phenotypically look normal, but exhibit a drastic decrease in tumor latency concomitant with a 

significant reduction in survival compared to p53+/+ or p53+/− mice (36). Exposing p53+/− or 

p53−/− mice to ionizing radiation or carcinogens further reduces tumor latency and survival (71, 

72). However, unlike other tumor suppressor such as RB or PTEN that most often undergo 

truncating or deletion-type mutations, the majority p53 mutations are point mutations that 

changes a single residue and often results in the expression of a dysfunctional full-length 

protein (73, 74). Characterization of GEMMs carrying different p53 mutations revealed a 

differential impact of between different point mutations, suggesting that there are differences in 

the activity and function between different p53 mutant proteins proteins (69, 70). A great 

example is discussed below.  

Back in 2004 our lab generated two different p53 knockin mice to better understand the 

impact of p53 missense mutations in vivo (14, 18). Both models carried substitutions at 

nucleotide 515 but carried different amino acid substitution that resulted from the nucleotide 

change. One model carried a G to A substitution resulting in an arginine to histidine 

substitution at amino acid 172 (p53R172H) and corresponds to the TP53R175H hotspot mutation in 

human tumors. The histidine substitution abolishes the ability of p53 to bind DNA, thus 

preventing its ability to transcriptionally activate target genes critical for tumor suppression. 
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Mice inheriting one copy of the mutant allele (p53R17H/+) exhibited increased metastatic 

potential that was largely absent in p53+/− or p53−/− mice (18, 19). The other mouse model had 

a G to C substitution at nucleotide 515, this time resulting in an arginine to proline substitution 

at the same codon 172 (p53R172P). At variance with the p53R172H mutant protein, this mutant 

protein has only a partial loss-of-function since it retains some capacity to bind DNA to induce 

cell cycle arrest and senescence, but the ability to activate apoptosis is abolished (14). The 

human tumor data and mouse genetic studies clearly demonstrate the importance of the p53 

pathway in maintaining genomic stability and suppressing spontaneous tumorigenesis.  

1.7 p53 and therapeutic approaches 

The observations that a large portion of p53-mutant tumors are resistant or refractory 

to standard frontline treatments (i.e. chemo- and radiotherapy) demonstrates a dire need for 

alternative treatments, particularly ones that do not induce massive DNA damage that 

increases the likelihood of developing secondary cancers. Since a high proportion of tumors 

inactivate the p53 pathway, a rational strategy is to reverse this process. Evidence to support 

that restoring p53 function induces tumor suppressive effects has demonstrated in different 

cancer models. In 2007 three groups independently showed genetically restoring WT p53 in 

p53-null tumors induced rapid tumor regression and in some cases, a complete response in 

mice (75-77). The limitation of these studies is that the efficacy of p53 restoration was 

evaluated in p53-null tumors and the majority (~75%) of tumors inactivate p53 via point 

mutations that most often occur of the DBD of p53. These mutations abolish the transcriptional 

activity of p53 and mutant p53 also exerts dominant repressive effects on its wild-type (WT) 

counterpart (61). Moreover, TP53 missense mutations are frequently accompanied by loss of 

the remaining WT allele, referred as loss-of-heterozygosity (LOH). It is important to note this 

distinction since mouse models carrying different p53 alleles reveal a clear difference between 

p53 deletions and missense mutations. Specifically, mutant p53 has acquired gain-of-function 
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(GOF) and dominant-negative (DN) activities that endow the mutant-p53 with oncogenic 

properties by exacerbating malignant transformation, metastatic potential and drug resistance 

(18, 19, 78). These findings raise the question of whether the presence of mutant p53 may 

affect response to WT p53 restoration therapy, especially considering that certain p53-mutants 

proteins (i.e. R175H, R248W & R273H) are capable of inducing drug resistance by 

transactivating non-canonical target genes such as the multidrug resistance (MDR1) gene 

(79). Based on these observations, it is likely that certain p53 alterations can affect response 

to various anticancer agents, including p53 restoration-based therapies. Investigating the 

factors underlying response to p53 restoration is imperative since the development of p53 

pathway activating agents is rapidly evolving in cancer therapeutics research. These include 

MDM2 inhibitors (broadly referred to as nutlins) (80, 81), agents that deplete mutant p53 

proteins (82, 83), and mutant p53 reactivators (84-86), to name a few.  

MDM2 inhibitors (MDM2i) have been extensively studied and these small molecules 

antagonize the negative regulation of p53 by binding the hydrophobic pocket of MDM2 with 

high affinity to prevent or disrupt its physical interaction with p53 (87, 88). However, MDM2i 

would in principle, be effective for tumors that retain WT p53 such as liposarcomas where the 

majority of these tumors are driven by MDM2 amplification, and as discussed earlier, TP53 

mutation and MDM2/4 amplification are generally mutually exclusive genetic events (88, 89). 

Our lab has examined the effects of genetically restoring p53 in Mdm2-amplified tumors using 

an Mdm2 transgenic mouse model (90). Interestingly, mice with sarcomas responded more 

favorably to p53 restoration compared to mice with lymphomas, further supporting nutlins may 

have clinical applicability in MDM2-amplified sarcomas.  

Another class of p53 activating agents that show promise is mutant p53 reactivators, 

which have been of particular interest due to the observation that many tumors exhibit high 

levels of stabilized mutant p53 proteins. Among the different types of mutant p53 reactivators, 

the most widely studied is a compound called APR-246 (2-(hydroxymethyl)-2-
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(methoxymethyl)quinuclidin-3-one), which targets and refolds mutant p53 proteins to its wild-

type conformation, thus restoring the ability to bind DNA (86). APR-246 has already been 

tested in a phase I/IIa clinical trial in patients with hormone-refractory prostate cancer or 

hematological malignancies and reported that restoring p53 activity was well tolerated with 

minimal adverse side effects, unlike the severe side effects associated with MDM2i (88, 91). 

However, this clinical trial only addressed the safety and dosage of APR-246 treatment, thus, 

an unknown is which p53-mutant tumors and cells, in particular, will respond favorably to p53 

restoration therapy. 
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1.8 Rationale and Aims   

The role of p53 has been clearly shown, in both human and murine systems, to be 

crucial in suppressing cellular transformation, tumor progression, and mediating response to 

radio- and chemotherapy. It is therefore not surprising that the p53 gene is the most frequently 

mutated in all human tumors, prompting many researchers to investigate the utility of restoring 

the p53 pathway as an alternative treatment approach.  

Since the development of mutant-p53 reactivators is rapidly evolving and gaining more 

attention in cancer therapeutic research, it is important to take into account that resistance is 

anticipated and remains a frequent impediment to conventional or targeted therapies. 

Moreover, it remains largely unknown if mutant-p53 reactivators will provide any survival 

benefits or have an impact on promoting tumor regression and merits further investigation. 

Prospective studies in conjunction with global gene expression profiling will provide a better 

understanding of who would benefit from p53-based therapies and a framework for identifying 

the pathways mediating. I hypothesize that mutant p53 gain-of-function drives 

heterogeneous responses to wild-type p53 reactivation that is dictated by the dynamic 

interplay of acquired somatic alterations. I intend to gain a deeper understanding of the 

cellular processes accounting for the variable therapeutic response through the following aims: 

1. Evaluate the therapeutic efficacy of genetically restoring p53 in tumors with a p53R172H 

missense mutation. 

2. Characterize the gene expression profile of p53-mutant tumors subjected to p53 

activation using high-throughtput RNA-sequencing 

3. Examine the effects of p53 restoration with novel drug combinations  

I aim to characterize the factors accounting for responses to p53 restoration in addition to 

novel drug combination to potentiate the anti-tumor effects of p53 reactivation, which will be 

critical when it comes to translating p53-based therapies into clinical practice.  
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CHAPTER 2 

 

EVALUATING THERAPEUTIC RESPONSE TO WILD-TYPE P53 RESTORATION IN 

TUMORS WITH A P53R172H MISSENSE MUTATION 
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2.1 INTRODUCTION  

Previously our lab developed a knock-in mouse carrying a hypomorphic p53 allele 

(p53neo) that can be conditionally reactivated to investigate the effects of restoring p53 activity 

in vivo (92). Using this allele, our lab showed that reinstatement of WT p53 in tumors with a 

p53R172H missense mutation induces apoptosis or senescence, which are potent tumor 

suppressive mechanisms. However, reduction in tumor volume after p53 restoration was less 

remarkable compared to tumors that were p53-null (75-77, 92). What was not addressed in 

this study is whether restoring p53 in a p53 mutant background has any impact on prolonging 

survival and the degree of variability that can occur in response to p53 restoration.  

 Here I comprehensively examine the impact of restoring p53 in tumors with a p53R172H 

missense mutation. Using the same p53neo allele to restore p53, my objective is to characterize 

the pleiotropic anti-tumorigenic effects of reactivated p53 and to evaluate whether p53 

restoration confers any survival benefits. 
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2.2 METHODS 

Animal studies 

Rosa26-CreERT2, Rosa26-tdTomato and Rosa26-GNZ (herein referred to as R26CreER, 

R26tdT and R26GNZ, respectively) knockin mice were purchased from Jackson Laboratory.  

p53R172H/+ mice were crossed to R26CreER mice then intercrossed to generate double 

homozygous p53R172H/R172H;R26CreER/CreER mice. p53neo/neo mice were crossed to either R26tdT or 

R26GNZ mice then intercrossed to generate p53neo/neo;R26TdT/TdT or p53neo/neo;R26GNZ/GNZ double 

homozygous mutants. p53neo/neo;R26tdT/tdT or p53neo/neo;R26GNZ/GNZ were then crossed to 

p53R172H/R172H;R26CreER/CreER or p53R172H/R172H to generate p53neo/R172H;R26CreER/tdT, 

p53neo/R172H;R26CreER/GNZ or p53neo/R172H;R26tdT/+ , respectively. All mice were maintained in a 

>95% C57BL/6J genetic background. 

Magnetic Resonance Imaging  

All MRI studies were performed on a 7 Tesla (7T) BioSpec small animal imaging 

system (Bruker BioSpin Corp., Billerica, MA; software: ParaVision) equipped with a 60 mm 

imaging gradient and a 35 mm RF coil for signal excitation. Prior to imaging, mice were 

sedated with 5% isoflurane/oxygen (v/v) in an induction chamber and anesthesia was 

maintained with 1-2% (v/v) isofluorane delivered via nosecone throughout image acquisition. 

Mice were imaged in the supine position and a scout spin-echo images in the coronal 

orientation verified proper positioning. Images were acquired by T2-weighted rapid acquisition 

with relaxation enhancement (RARE) scans sequence (echo time/repetition time, 65 ms/5,000 

ms; RARE factor 12; 4 averages) with in plane geometry parameters (50 mm x 30 mm field of 

view; 256 x 192 voxels image matrix; 1 mm thick slice geometry with 0.25 mm skip) in the 

sagittal orientation. Image analyses was performed using ImageJ (93). Tumor volumes were 

calculated by manual segmentation of region of interests drawn on T2-weighted sagittal stacks 

for each tumor-containing slice.  
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Tamoxifen treatments 

Mice that develop tumors were randomly assigned to tamoxifen or corn-oil vehicle 

treatment group. Tamoxifen (Sigma-Aldrich) was prepared at a concentration of 30 mg/mL in 

corn oil and mice were treated at a dose of 3mg/40g body weight via intraperitoneal (IP) 

injections, while the control group received equal volumes of corn oil IP injections.  

Statistics  

Statistical analyses were performed using GraphPad Prism 6 software (GraphPad, San 

Diego, CA, USA) using ANOVA analyses with Bonferroni’s correction for multiple testing 

unless otherwise specified. Mouse survival curves by Kaplan-Meier plots were analyzed by the 

log-rank (Mantel-Cox) tests. Statistical significance was defined as p < 0.05. 

Study approval 

All mouse experiments were approved by the MD Anderson Cancer Center Institutional 

Animal Care and Use Committee and conformed to the guidelines of the United States Animal 

Welfare Act and the National Institutes of Health. 
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Table 1. Primers used for genotyping and recombination PCR 
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2.3 RESULTS 

Generation and characterization of p53neo/R172H mice with different genetic backgrounds 

 To comprehensively evaluate how tumors with a p53 missense mutation would 

respond to wild-type p53 restoration, I generated cohorts of mice with genotypes 

p53neo/R172H;R26CreER/GNZ, p53neo/R172H;R26CreER/tdT and p53neo/R172H;R26tdT/+ for our studies. The 

p53neo allele contains a floxed PGK-neomycin cassette in the fourth intron of the endogenous 

p53 locus. In the absence of Cre recombinase, p53 is expressed at approximately 7% 

compared to a wild-type p53 allele, making p53neo a hypomorphic allele (92). This 7% 

expression confers a survival advantage as p53neo/− mice live longer than mice with 

homozygous p53 deletions or mutations but develop tumors with a shorter latency than p53+/− 

mice (92). Removal of the PGK-neomycin cassette through Cre-mediated recombination 

reconstitutes the locus, thus restoring p53 expression (Figure 3). The p53R172H missense 

mutant corresponds to the p53R175H hotspot mutation in human tumors and has GOF and 

dominant-negative properties (18, 19). The R26CreER allele constitutively expresses a Cre 

recombinase fused to a modified ligand-binding domain of the estrogen receptor under the 

Rosa26 promoter and this Cre fusion protein is activated only in the presence of the active 

metabolite of tamoxifen (76). The R26GNZ reporter allele is supposed to express a GFP-LacZ 

fusion protein upon Cre-mediated recombination but in our hands was non-functional. 

Specifically, we observed no GFP or LacZ expression in tissues or cells after recombination 

was induced (data not shown), thereby prompting us to generate the p53neo/R172H;R26CreER/tdT 

cohort that faithfully expresses the red fluorescence protein (RFP) tdTomato upon Cre-

mediated recombination. No differences in tumor spectrum were observed and there was no 

significant difference in survival between the three cohorts indicating that homozygous or 

heterozygous knock-in at the Rosa26 locus has minimal to no effects on tumor development 

(Figure 4).  
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The mean median survival of untreated p53neo/R172H mice, regardless of the Rosa26 

allele used, is 157.5 days, which is nearly identical to the previously published survival curve 

of p53neo/R172H;CreERTM mice (median survival 160 days) that carry a transgenic CreERTM allele 

and have an intact Rosa26 locus (92). These mice develop a wide spectrum of tumors that 

can be detected by conventional T2-weighted magnetic resonance imaging (MRI) (Figure 5), 

but primarily succumb to lymphomas (~65%) and sarcomas (~30%) (Figure 4B).  

It is worthwhile to note that the p53neo/R172H;R26CreER/GNZ cohort was studied 

independently and prior to the p53neo/R172H;R26CreER/tdT and p53neo/R172H;R26tdT/+ cohorts. 

However, p53neo/R172H;R26CreER/tdT and p53neo/R172H;R26tdT/+ mice were studied in conjunction with 

each other at the same time.   
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Figure 3. Genetic restoration of wild-type p53 in vivo 

(A) Schema of the p53neo alleles used in this study. The p53neo allele contains a floxed 

PGKneomycin-resistance cassette inserted into the fourth intron of the endogenous p53 locus 

(top). Recombination of the p53neo (denoted as p53Δneo) allele occurs upon activation of Cre 

recombinase (middle). The p53R172H mutant allele (bottom) corresponds to the TP53R175H 

hotspot mutation in human cancers. To examine recombination, primers (represented as a, b, 

and c with arrows underneath) were designed to specifically amplify the p53neo and p53Δneo 

alleles and not the p53R172H allele. (B) PCR of tumor DNA showing recombination of the p53neo 

allele after tamoxifen treatment. Primer sequences used in this figure can be found in Table 1 

and the names of the primers indicated above are as follows:  

 - primer a (forward) = VpCl-FW;  

 - primer b (reverse) = VpCl-NeoR;  

 - primer c (reverse) = VpCl-2  

	
  

	
  

A 

B 
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Figure 4. Survival and tumor spectrum of untreated p53neo/R172H mice. No differences in 

survival (A) or tumor spectrum (B) observed between p53neo/R172H mice with heterozygous or 

homozygous knock-in alleles (Rosa26CreERT2, Rosa26tdTomato and Rosa26GNZ) at the Rosa26 

locus. Survival was analyzed by Kaplan-Meier test and significance is defined as p < 0.05.  
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Figure 5. Tumor spectrum diversity in p53neo/R172H;R26CreER/tdT  mice. 

Mice were monitored for tumor formation by T2-weighted magnetic resonance imaging (MRI) 

(top panels) and tumors were diagnosed by routine histological analyses by hematoxylin & 

eosin (H&E) staining (bottom panels). MRIs are sagittal sections of a liver angiosarcoma (left 

panel), while the middle panels represent a mouse with a high-grade sarcoma. The most 

common tumor type observed were lymphomas of the thymus (right panels).  
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Restoring wild-type p53 activity in tumor-bearing mice carrying a p53R172H missense 

mutation significantly prolongs survival 

To determine if p53 restoration could prolong overall survival, cohorts of 

p53neo/R172H;R26CreER/tdT or p53neo/R172H;R26tdT/+ mice were monitored by MRI for tumor formation 

(Figure 5). To induce recombination of the p53neo allele, mice were administered tamoxifen, 

resulting in the genomic reconstitution of the p53 locus (Figure 3). Tumor-bearing mice were 

randomized to either tamoxifen or corn-oil vehicle treatment group where they received up to 

four weekly intraperitoneal (I.P.) injections and overall survival was determined by calculating 

the number of days survived post start of treatment. Tamoxifen treatments significantly 

prolonged survival (p = 0.01) in p53neo/R172H;R26CreER/tdT mice (median survival = 22 days) 

compared to vehicle-treated mice (median survival = 14 days) or tamoxifen-treated 

p53neo/R172H;R26tdT/+ mice lacking CreER (p = 0.03) that have a median survival of 17 days 

(Figure 6A). Further, mice from both control cohorts all died within 27 days after treatment start 

while 40% of mice subjected to p53 restoration were still alive 40 days after starting treatment, 

with one mouse living beyond 100 days. The differences in survival were not dependent on 

initial tumor volume (Figure 6B) or tumor-type (Figure 6C) supporting the notion that restoring 

wild-type p53 in p53-mutant tumors has therapeutic efficacy.  

Interestingly, the increase in survival was also not dependent on tumors regressing 

since we observed survival benefits in some tumor-bearing mice that failed to show a 

decrease in tumor volume after tamoxifen treatments. This was demonstrated through routine 

MRI to follow tumor growth changes in mice undergoing tamoxifen treatment to restore p53 

(Figure 7). We followed tumor growth changes in a mouse that started tamoxifen treatments 

for an abdominal tumor measuring 265 mm3 on day 0 (Figure 7A, top panels). We imaged the 

mouse again 29 days after starting weekly tamoxifen treatments and observed the abdominal 

tumor had grown up to 360 mm3, a 35% volume increase, and by day 47 the mouse had 

developed a sizeable thymic lymphoma that increased nearly 600% over the course of 11 
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days, whereas the abdominal tumor volume increased by only 43% (Figures 7A, top panels & 

7B, left). In this case, it appears that the abdominal tumor stabilized upon p53 restoration but 

the mouse eventually succumbed to a thymic lymphoma that developed after completing its 

treatment regimen and had to be sacrificed on day 58. We observed the same delayed growth 

effect in thymic lymphomas as well (Figure 7A, bottom panels). Over the course of 24 days the 

thymus tumor grew from 73 to 271 mm3 (Figure 7B, right), but the mouse did not become 

moribund until day 48 (data not shown). These findings suggest that p53 restoration slows 

tumor growth even in cases where tumors appear to be more resistant to p53 restoration. 
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Figure 6. Restoring wild-type p53 in p53-mutant tumors significantly prolongs survival 

(A) Kaplan-Meier analysis of p53neo/R172H;R26CreER/tdT mice treated with tamoxifen (black curve) 

or corn-oil vehicle (red curve) and p53neo/R172H;R26tdT/+ mice (lacking Cre) treated with 

tamoxifen (blue curve). B,C, No significant differences in tumor volume at the start of 

treatment (B) and tumor spectrum (C) of mice from the survival cohort.  

Abbreviations: Cre-pos = p53neo/R172H;R26CreER/tdT mice; Cre-neg = p53neo/R172H;R26tdT/+ mice; 

Tam-RX = tamoxifen treated 
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Figure 7. Survival benefits in the absence of tumor regression upon p53 reinstatement 

Representative MRIs (A) and corresponding tumor volume graphs (B) at indicated days in two 

different tamoxifen-treated p53neo/R172H;R26CreER/tdT mice. Despite the tumors failing to regress 

upon tamoxifen-treatment, these mice exhibited an increase in survival that extended beyond 

20 days. Although the thymus is not observable in the first two top panels it was present in 

other MRI sections and measurable, accounting for the lymphoma volumes at day 0 and 29 in 

the left graph of (B).  
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p53neo/R172H;R26CreER/tdT mice	
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Heterogeneous response to p53 restoration in tumors with a p53R172H missense mutation 

 We then aimed to determine what proportions of spontaneous p53-mutant tumors are 

sensitive or resistant to wild-type p53 restoration and evaluated the degree of variability that 

occurs in response to p53 restoration. We monitored a cohort of p53neo/R172H;R26CreER/GNZ mice 

for tumor development by MRI. Upon detection of a tumor, mice started weekly tamoxifen 

injections and were closely monitored for changes in tumor volume (Figure 8). In total, 17 mice 

with 24 tumors were treated (Table 2) and 50% of treated tumors responded by showing a 

>20% decrease in total volume while ~37% of tumors were classified as non-responders 

because they had a >20% increase in total volume and ~12% of tumors stabilized with a 

change of <5% in volume (Figure 9 & Table 2). Factors that could contribute to the differences 

in response include loss of heterozygosity (LOH) and recombination efficiency of the p53neo 

allele. To this end, a pyrosequencing assay was developed to quantify recombination 

efficiency and to assess LOH. Recombination of the p53-neo allele was approximately 25% in 

all treated tumors with the exception of tumor 1, which showed 0% recombination (Figure 9 & 

Table 2). This tumor also lost the p53R172H allele. LOH analysis revealed partial LOH of the 

p53neo allele in two tumors whereas the remaining tumors exhibited no LOH (Table 2).  

These data suggest that the heterogeneous therapeutic impact of p53 restoration in 

p53-mutant tumors are not caused by alterations of the p53 locus itself, but by other molecular 

events such as the acquisition of somatic mutations or alterations in gene expression that 

impact how transformed cells with a p53R172H mutation responds to wild-type p53 activation.  
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Figure 8. Variations in response to p53 restoration  

Sagittal MRIs (left) and corresponding tumor volume graphs (right) of p53neo/R172H;R26CreER/GNZ 

mice before the start of tamoxifen treatment (left MRI panels) and after tamoxifen (right MRI 

panels) demonstrating variations in treatment response.  
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Figure 9. Summary of response to p53 restoration  

Waterfall plot of tumor volumetric change from baseline in tamoxifen-treated 

p53neo/R172H;R26CreER/GNZ  mice demonstrating the varying degrees of response. Solid bars 

represent lymphomas while checkered bars are sarcomas. Grey bar represents recombination 

efficiency of the p53neo allele 
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Table 2. Detailed log of treated autochthonous tumors from the MRI cohort  

Mice in this table represent treated mice from the waterfall plot in Figure 9. Last column 

indicates the tumor samples used for RNA sequencing experiments. 

Abbreviations:  

LN = lymph node 

NR = non-responder  

S = stable  

R = responder  

RX = tamoxifen treatments 

LOH = loss of heterozygosity 
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2.4 CONCLUSION 

In this chapter I characterized the impact of mutant p53 gain-of-function (GOF) on 

therapeutic response to p53 restoration. I genetically reactivated p53 in tumor-bearing mice 

carrying a germline p53R172H mutation to examine, in vivo, whether restoring p53 restoration 

promotes any survival advantages. I showed that restoring p53 in p53-mutant tumors does 

have therapeutic potential as it significantly prolonged survival. However, tumor volumetric 

change upon p53 restoration varied widely, ranging from 75% reduction to a 300% increase in 

volume. Analyses of the p53neo locus revealed the level of restored p53 was equivalent in all 

tamoxifen-treated tumor samples, with a recombination efficiency of 25%, on average. In 

addition, I observed minimal to no loss-of-heterozygosity (LOH) of the p53neo allele, indicating 

that variations in response are not likely caused by alterations or differences in the p53neo 

locus and must be attributed to other molecular events. In the following chapter we take a 

more comprehensive approach to explore the molecular basis driving the widely ranging 

variability to p53 restoration.  
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CHAPTER 3 

 

GLOBAL GENE EXPRESSION PROFILING OF P53-MUTANT TUMORS TO IDENTIFY THE 

PATHWAYS UNDERLYING RESPONSE TO P53 RESTORATION 
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3.1 INTRODUCTION 

High throughput next-generation sequencing (NGS) platforms have provided long 

beseeched aid to understanding the molecular pathogenesis of many different human 

diseases. Recent advancements in NGS technologies have led to the identification of novel 

somatic mutations in a variety of human cancers that have important prognostic value and 

may serve as potential therapeutic targets. For example, RNA-sequencing is often used to 

compare tumors sensitive or resistant to a particular treatment to identify the pathways or gene 

expression signature underlying response and to provide a better understanding of who would 

benefit from a certain therapy. 

In the previous chapter I showed that restoring p53 in p53-mutant tumors led to 

heterogeneous responses that could not be attributed to LOH or differences in the level of 

restored p53 and hypothesized that variations in response were attributed to other molecular 

events. To delineate these events and gain novel insight on the molecular processes 

accounting for variable responses to p53 restoration, we performed high-throughput RNA 

sequencing (RNA-seq) across 12 treated p53neo/R172H;R26CreER/GNZ mutant tumors that were 

sensitive (n=8) or resistant (n=4) to p53 restoration. All 12 treated tumors were T-cell 

lymphomas of the thymus (Table 2). RNA-sequencing data will provide a diagnostic platform to 

better understand the gene networks and pathways underlying resistance or sensitivity to p53 

restoration.  
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3.2 METHODS 

mRNA sequencing and gene expression analyses 

Tumors from tamoxifen-treated p53neo/R172H;R26CreER/GNZ mice were harvested right after 

the final MRI during which a response (growth vs. shrinkage) was observed. Total RNA was 

isolated from tumors using TRIzol reagent (Life Technologies) following standard 

manufacturer’s instruction. Total RNA was submitted to the M.D. Anderson sequencing core 

facility.  Barcoded Illumina compatible libraries were prepared using the Illumina TruSeq 

mRNA seq Kit, per the manufacturer’s protocol. The libraries were multiplexed 4 per lane and 

sequenced on the HiSeq3000 sequencer using the 75 bp paired end format.  The raw RNA-

sequencing (RNA-seq) readouts were mapped to the mouse mm10 assembly reference 

genome using TopHat, an open-source software tool that aligns RNA-seq reads to a reference 

genome. Differential gene expression analysis was performed with DESeq (an R/Bioconductor 

package) using a false discovery rate (FDR) of 5%. Gene set analyses were analyzed with the 

bioinformatics tool “GSEA” (Gene Set Enrichment Analysis) developed by the Broad Institution 

(94). The enrichment analyses were done with the Gene Ontology biological process gene 

sets and oncogenic gene sets from the molecular signature databases (MSigDB). The 

pathway analysis was performed with IPA (Ingenuity Pathway Analysis) developed by 

Ingenuity Inc. The significantly differentially expressed genes were used as input gene list for 

the IPA core analysis.   
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3.3 RESULTS 

Distinct molecular profiles between tumors sensitive or resistant to p53 restoration  

We performed high-throughput mRNA sequencing (RNA-seq) on 12 treated 

p53neo/R172H;R26CreER/GNZ mutant T-cell lymphomas that were sensitive (n=8) or resistant (n=4) 

to p53 restoration to determine if a molecular profile of response could be defined. All 12 

treated tumors were T-cell lymphomas of the thymus (Table 2). Comparative analyses was 

performed with DESeq (Bioconducter) using a false discovery rate (FDR) < 5%. Differential 

expression analysis comparing responders vs. non-responders yielded 2484 significantly 

differentially expressed genes (DEGs) and hierarchical clustering of the significantly DEGs 

reveal that 2 out of 8 responders clustered more closely to the 4 non-responders (Figure 10). 

One plausible explanation is that those two tumors became refractory to tamoxifen treatments 

and began to relapse even though the tumors were smaller than before starting treatment. 

This could result in the refractory tumors acquiring a gene expression signature similar to 

tumors that are resistant to p53 restoration. Despite this, these two samples were analyzed in 

further pathway analyses and maintained in the responder’s category.  
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Figure 10. RNA-seq heatmap of significantly differentially expressed genes 

Hierarchical clustering and gene expression heatmap of tamoxifen-treated thymic lymphomas 

yielded 2484 genes that were significantly differentially expressed (false discovery rate [FDR] 

< 0.05) between responders (n=8) and non-responders (n=4). 
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The TNF pathway is activated in responders 

To identify the top upstream molecules that can explain the observed gene expression 

changes between responding (n = 8) and non-responding (n = 4) tumors, upstream regulator 

analysis of the significantly DEGs was performed using the Ingenuity Pathway Analysis (IPA). 

Among the top 10 most significant upstream regulators 9 molecules were predicted to be 

activated in responders and 5 of them were cytokines (Figure 11). WNT3A was the only 

cytokine with an unpredicted activation state. This means that in our dataset the downstream 

targets of WNT3A showed a random pattern of directional change that could not be correlated 

with WNT3A being in a state of activation or inhibition. Tumor Necrosis Factor (TNF) was the 

most significant upstream regulator with a reported activation state (Z-score = 4.76) in 

responders (Figure 11). TNF promotes an inflammatory response and binding of TNF to its 

cognate receptors can initiate several pathways such as activation of NF-κB, MAPK pathways, 

or induction of death receptor signaling (95).  

Notably, NF-κB was another top upstream regulator with a reported activation state (Z-

score = 7.69). Although less significant than TNF, the Z-score was higher due to a higher ratio 

of genes following a directional change of being in an activated state. Gene set enrichment 

analysis (GSEA) identified the inflammatory response (Figure 12) as being significantly 

enriched in responding tumors with a nominal p-value <0.01, providing further support that the 

TNF pathway may play a substantial role in the therapeutic response to p53 restoration. 

Additional GSEA results showed that the top 9 most enriched gene sets were biological 

processes involved in immune response, inflammatory response, and processes that have 

been linked to TNF pathway activation (Appendix A).   
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Figure 11. IPA upstream regulator analysis Graphical representation of the top 10 most 

significant upstream regulators identified from upstream pathway analysis using IPA. 
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Figure 12. Gene set enrichment analysis of RNA-seq data presented as enrichment score 

(left), and corresponding heatmap (right) of leading-edge gene expression changes for genes 

of inflammatory response, which is significantly enriched with a nominal p-value < 0.01. Black 

arrows on the heatmap (right) point to TNF family members. 
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Identification of actionable targets in the TNF pathway 

The upstream regulator analysis reported 293 genes from our dataset of significantly 

DEGs that are downstream effectors of TNF. TNF downstream effector molecules include any 

genes belonging to the TNF receptor superfamily or genes that are affected as a result of TNF 

signaling. To narrow down the list of 293 genes, we considered the top 10 most differentially 

expressed genes with the objective to focus on the molecules that are members of the TNF 

receptor superfamily while disregarding those that are only affected by TNF activation (Table 

3). Of the top 10 most differentially expressed, Fas ligand (Fasl) was the only gene belonging 

to the TNF receptor superfamily. Fasl expression was upregulated 3.4 (log2 fold change) in 

responders. Binding of Fasl to its receptors initiates the extrinsic apoptotic pathway via 

activation of death receptor signaling (96, 97). Using this knowledge, I used IPA to build a 

pathway of molecules upstream of Fasl then applied the drug overlay function to identify those 

that are pharmacologically targetable (Figure 13). This led to the identification of RARγ 

(denoted as RARG), a retinoic acid receptor (RAR) that was also significantly upregulated in 

responding tumors (Figure 14). RARs are a type of nuclear receptor that can transactivate 

target gene expression upon ligand-binding of retinoic acid (RA), such as all-trans retinoic acid 

(ATRA) (denoted as tretinoin & isotretinoin in Figure 13) that binds to all three retinoic acid 

receptors, RARα, RARβ & RARγ (98). However, RNA-seq expression analysis revealed that 

RARγ was significantly upregulated in responding tumors, while no significant differences in 

RARα and RARβ expression were observed (Rarg, Rara & Rarb, respectively in Figure 14). 
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Table 3. Top 10 most differentially expressed TNF downstream molecules  

Genes in this table include those that belong to the TNF receptor superfamily or any genes 

known to be directly or indirectly affected by TNF signaling. Among the top 10, Fasl was the 

only gene that is a TNF receptor superfamily member.  
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Figure 13. Identification of actionable targets in the TNF pathway. IPA was used to build a 

pathway of significantly differentially expressed genes directly upstream of FasL (denoted as 

FASLG). Degree of red color indicates genes that are significantly upregulated in responders 

(darker red = higher fold change). 
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Figure 14. DESeq differential expression analysis of Rarg, Rara, and Rarb presented as 

normalized Log2 read count with adjusted p-value for Benjamin-Hochberg corrections for 

multiple testing.  
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3.4 CONCLUSION 

In this chapter I describe using RNA-sequencing as an approach to comprehensively 

characterize the gene expression profile and molecular networks impacting response to p53 

restoration. I genetically reactivated wild-type p53 in p53R172 mutant tumors then sequenced 

the transcriptome of 12 treated T-cell lymphomas that were sensitive or resistant to p53 

restoration with the goal of identifying the pathways critical for response and actionable targets 

that may synergize or have an additive effect when combined with p53 restoration therapy. I 

performed upstream regulator pathway analyses, which revealed that the TNF pathway was 

activated in p53-sensitive tumors. Further, I identified the retinoic acid receptor, RARγ, as a 

druggable target in the TNF pathway and hypothesized that pharmacologically activating 

RARγ with a synthetic retinoid will have an additive or synergistic effect with reactivated p53. 

In the following chapter I evaluate and describe the effects of combining retinoic acid treatment 

with p53 restoration therapy.  
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CHAPTER 4 

 

EVALUATING THE THERAPEUTIC EFFICACY OF A COMBINATION THERAPY WITH 

RETINOIC ACID AND P53 RESTORATION  
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4.1 INTRODUCTION 

In the previous chapter I identified the TNF pathway and RARγ, an effector in the TNF 

pathway, as critical mediators in response. Like p53, activation of RARs can promote cell 

death by initiating apoptosis through the intrinsic or extrinsic pathway. RARs are a type of 

nuclear receptor that heterodimerizes with RXR, and this complex functions as a transcription 

factor that can be activated upon ligand binding of retinoic acid (RA). RARs and p53 share 

some common transcriptional target genes including Fas, Fasl, Pidd, Trail, and several pro-

apoptotic genes (99-101). In addition, cytosolic p53 and RXR/Nurr77 are both capable of 

inducing intrinsic cell death by directly interacting with anti-apoptotic Bcl-2 family members on 

the outer mitochondrial membrane as illustrated in Figure 15 (96, 100).  

Based on the overlapping roles of p53 and RARs in activating cell death (Figure 15), I 

hypothesized that treating tumors with a synthetic retinoid would improve therapeutic response 

to p53 restoration. Using treatment-naïve thymic lymphomas from p53neo/R172H;R26CreER/tdT mice, 

I developed a syngeneic transplant model to propagate tumors for parallel combinatorial 

therapy studies that can be achieved in a single tumor type (Figure 16A). I performed an initial 

baseline study to determine sensitivity to p53 restoration and acquired T-cell thymic lymphoma 

lines that were sensitive (Figure 16B, top panels) and resistant to p53 restoration (Figure 15B, 

middle panels). As with the treated autochthonous tumors from the MRI study, the reduction in 

tumor growth and prolonged survival were not caused by tamoxifen since tamoxifen-treated 

p53neo/R172H;R26tdT/+  mice exhibited no reduction in tumor volume or survival advantages 

(Figure 16B, bottom panels).  

In this chapter we investigated the effects of a combination therapy regimen to 

determine if response to p53 restoration can be augmented when combined with retinoic acid 

treatment.  
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Figure 15. Overlapping roles of p53 and RARs in activating cell death 

Both p53 and RAR can initiate cell death via the extrinsic pathway by transcriptionally 

activating death receptor genes such as Fas, Fasl, Pidd, and Trail, to name a few. In addition, 

p53 and RAR are capable of inducing cell death via the intrinsic pathway by physically 

associating with anti-apoptotic factors on the mitochondrial outer member.  

 

 

 

 

 

 

 

 

  

	
  



50	
  
	
  

 

	
  

	
  

A 

B 



51	
  
	
  

Figure 16. Generation & treatment of syngeneic tumor models 

(A) Syngeneic transplant model used to propagate treatment-naïve tumors from 

p53neo/R172H;R26CreER/tdT or p53neo/R172H;R26tdT/+ mice. (B) Tumor growth curves of syngeneic 

thymic lymphomas from the tamoxifen baseline study. (Top panels) a p53neo/R172H;R26CreER/tdT 

thymic lymphoma that was classified as p53-sensitive, (middle panels) a 

p53neo/R172H;R26CreER/tdT thymic lymphoma that was classified as p53-resistant, (bottom panels) 

a p53neo/R172H;R26tdT/+  thymic lymphoma line used as a negative control to demonstrate that 

tamoxifen treatment alone does not affect tumor growth.  
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4.2 METHODS 

Syngeneic tumor transplants 

All procedures were carried out using aseptic techniques. Treatment-naïve thymic 

lymphomas were harvested from euthanized p53neo/R172H;R26CreER/tdT or p53neo/R172H;R26tdT/+ 

mice and disassociated using two 18 gauge needles in a petri dish with DMEM culture media 

supplemented with 10% fetal bovine serum. Tumor cells were then strained through a 70 

micron cell strainer, pelleted by centrifugation, then resuspended in a solution of Matrigel:PBS 

(1:2 v/v) (BD Bioscience). Tumor cells (5 x 106 cells/injection site) were subcutaneously 

injected into the left and right fat pads of 8 week old syngeneic C57BL/6J mice (n ≥ 32 for 

each combination therapy experiment) purchased from The Jackson Laboratory. 

Treatment of syngeneic mice 

Stock solutions of CD437 (Tocris) were prepared by dissolving in DMSO to a 

concentration of 25 mg/mL then further diluted to 2.5 mg/mL in 10% (w/v) 2-hydroxypropyl-β-

cyclodextrin (Sigma, Cat # H107) right before treatment. For each combination therapy cohort, 

mice were randomly divided to one of four different treatment groups before exhibiting tumor 

growth: vehicle (2-hydroxypropyl-β-cyclodextrin) (n ≥ 7), tamoxifen (n ≥ 6), (3 mg per injection); 

CD437 (n ≥ 6) (0.3 mg per injection) and tamoxifen + CD437 (n ≥ 8) (3 mg & 0.3 mg, 

respectively) and treatments did not start until a tumor reached 150-250 mm3 in volume. 

Tumors were measured with digital calipers every 1-2 days and tumor volumes were 

calculated using the equation [(length x width2)/2] as previously described (67). Mice were 

sacrificed once a tumor reached 1500 mm3 in volume or 1.5 cm in any direction. All syngeneic 

mice that developed tumors were included in the analyses. 
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Flow cytometry 

Tumors were harvested from euthanized mice and disassociated into a single cell 

suspension in phosphate buffered saline (PBS) supplemented with bovine serum albumin 

(BSA). Red blood cells (RBC) were depleted by incubating in RBC lysis buffer. For 

immunophenotypic analyses, 1x106 tumor cells were incubated in an antibody cocktail of α-

mouse CD4-APC (Biolegend, 100411), α-mouseCD8a-APC-Cy7 (Biolegend, 100713), and α-

mouse CD3-FITC (Biolegend, 100203) at a concentration per the manufacturer’s 

recommendation. After DAPI exclusion, cells were gated on singlets. Annexin-V flow cytometry 

was performed following the same protocol with Annexin V-FITC (Biolegend, 640905). All 

antibody incubations were performed on ice, protected from light. Flow analyses were 

performed on the Gallios 561 flow cytometer and data were analyzed using Kaluza software 

(Beckman Coulter, Indianapolis, IN, USA). 

Quantitative real-time PCR (qPCR)  

Total RNA was isolated from harvested tissues of euthanized mice using TRIzol 

reagent (Life Technologies) following standard manufacturer’s instruction. For each tumor 

sample, 1 µg of total RNA using was reverse transcribed using iScript 5X supermix (BioRad) 

according to manufacturer’s protocol. qPCR analyses were performed in triplicates on a 

7900HT Fast Real-time PCR system (Applied Biosystems, software: SDS). All primers used 

were for mouse mRNA sequences and are as follows: Cd38 (forward, 5’-

GAAGACTACGCCCCACTTGT; reverse primer, 5’- ATGGGCCAGGTGTTTGGATT), Fasl 

(forward, 5’-	
  ACCGCTCTGATCTCTGGAGT; reverse, 5’-	
  GGCTGGTTGTTGCAAGACTG); Bid 

(forward, 5’-	
  CCAGTCACGCACCATCTTTG; reverse, 5’-	
  GTCCATCTCGTTTCTAACCAAGT), 

Rplp0 (forward, 5’ CCCTGAAGTGCTCGACATCA; reverse, 5’-	
  TGCGGACACCCTCCAGAA), 

p21 (forward, 5’-	
   CCTGACAGATTTCTATCACTCCA, reverse, 5’-	
  

AGGCAGCGTATATCAGGAG); and Puma (forward, 5’-GTACGAGCGGCGGAGACAAG; 

reverse, 5’-	
  GCACCTAGTTGGGCTCCATTTCTG). 
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Statistics  

Statistical analyses were performed using GraphPad Prism 6 software (GraphPad, San 

Diego, CA, USA) using ANOVA analyses with Bonferroni’s correction for multiple testing 

unless otherwise specified. Mouse survival curves by Kaplan-Meier plots were analyzed by the 

log-rank (Mantel-Cox) tests. Statistical significance was defined as p < 0.05. 

Study approval 

All mouse experiments were approved by the MD Anderson Cancer Center Institutional 

Animal Care and Use Committee and conformed to the guidelines of the United States Animal 

Welfare Act and the National Institutes of Health. 
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4.3 RESULTS 

Designing a combination therapy regimen with the RARγ-specific retinoid, CD437, for 

combination therapy experiments 

To assay if combining retinoic acid treatments with p53 restoration via tamoxifen could 

improve response, I designed a combination therapy drug study to evaluate the synthetic 

retinoid, CD437 (6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid). I chose 

CD437 since it is a RARγ-selective agonist and RNA-seq expression analysis revealed that 

Rarg was significantly upregulated in responding tumors, whereas as Rara & Rarb showed no 

differences in expression (Figure 14).  

I used a syngeneic transplant model where tumor cells are subcutaneously injected 

into both the right and left fat pads of recipient mice to allow so that more tumors could be 

evaluated without increasing the number of mice. In addition, since tumor cells were 

subcutaneously injected, tumor growth could easily be tracked and measured on a daily basis 

with digital calipers. A treatment regimen was designed to evaluate and compare the efficacy 

of p53 restoration and CD437 treatment as a monotherapy or combination therapy approach. 

Mice in the tamoxifen treatment group were administered 3 mg/dose once a week (2 

treatments total) via IP injection, which is the same regimen used on mice from the MRI 

cohort. Mice treated with CD437 were administered 0.3 mg/dose via IP injections for 5 

consecutive days for two weeks, with a two-day break between each round. I designed this 

regimen based on literature search and found that this is one of the standard regimens 

commonly used for administering retinoic acid in mice. Mice in the combination therapy cohort 

were administered the same dosage of both drugs, starting with tamoxifen first (Figure 17). 
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Figure 17. Treatment regimen for combination therapy experiments 

For the tamoxifen cohort (top), mice were administered 3 mg per dose via IP injections once a 

week for up to two weeks then followed for survival. For the CD437 cohort (middle), mice were 

treated with 0.3 mg/dose via IP injections for 5 consecutive days for two weeks, with a two-day 

break between each round. The combination therapy cohort received the same dose of 

tamoxifen and CD437 as single-agent treated mice (bottom).  
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The RARγ-selective retinoid, CD437, sensitizes resistant tumors to p53 restoration 

We first evaluated the effects of combining CD437 treatment with p53 restoration via 

tamoxifen treatment in the p53-resistant T-cell lymphoma. Equivalent numbers (5 x 106) of 

treatment-naïve p53neo/R172H;R26CreER/tdT lymphoma cells were subcutaneously injected into the 

right and left fat pads of wild-type C57BL6/J syngeneic mice (n = 42). Of the 42 mice injected, 

80% (n=34) developed at least one tumor. Mice were randomized to different treatment groups 

and treatments did not start until a tumor reached at least 150 mm3 in size (Figure 17). Survival 

was measured as days survived post treatment start, in which mice were sacrificed once a 

tumor reached 1500 mm3 in volume or measured 1.5 cm in any direction.  

In the p53-resistant T-cell lymphoma line, monotherapy with tamoxifen or CD437 was 

insufficient to promote tumor regression (Figure 18) or prolong survival (Figure 19) since the 

tumor volumes measured at each day and survival overlapped with vehicle-treated mice. 

However, mice treated with tamoxifen (to restore p53) in conjunction with CD437 exhibited a 

reduction in tumor growth that corresponded with a significant increase in survival (Figure 20 & 

Figure 21A). When we looked at tumor volumes 12 days after the start of treatment, the mean 

tumor volume of combo-treated mice was 385.1 mm3, which was significantly lower (p < 0.01) 

compared to vehicle-treated mice (mean tumor volume = 931.7 mm3) or mice treated with 

tamoxifen (mean tumor volume = 807 mm3) or CD437 (mean tumor volume = 927.1 mm3) 

alone (Figure 21B). In conclusion, the combination of CD437 and p53 restoration sensitized 

p53-resistant tumors, as it effectively promoted tumor regression whereas single agent 

treatment had minimal to no effect in reducing tumor burden or prolonging survival compared 

to vehicle-treated mice.  
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Figure 18. Tumor growth curves of single-agent treated p53-resistant tumors  

Mean ± s.e.m. of tumor growth curve (mm3) plotted as percent change from baseline for mice 

treated with tamoxifen (top) or CD437 (lower).  	
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Figure 19. Survival of single-agent treated mice with p53-resistant tumors 

Kaplan-Meier analyses of mice from Figure 18 with tumor size reaching 1500 mm3 as the end-

point.  
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Figure 20. Tumor growth & survival of combo-treated p53-resistant tumors  

Mean ± s.e.m. of tumor growth curve (mm3) plotted as percent change from baseline (top) of 

mice treated with tamoxifen plus CD437 and Kaplan-Meier analyses of mice with tumor size 

reaching 1500 mm3  as the end-point of data shown in growth curve above.  
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Figure 21. Summary of treatment for p53-resistant tumors  

(A) Kaplan-Meier analyses for all treatment groups of mice with tumor size reaching 1500 mm3 

as the end-point of data shown in the p53 resistant line. (B) Mean ± s.e.m. of tumor size 

distribution (mm3) at day 12 of data shown in Figures 18 & 20. Data were analyzed by ANOVA 

with Bonferroni corrections for multiple comparisons (B).  

Levels of significance: *p < 0.05, **p < 0.01,  
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CD437 additively improves response and survival in p53-sensitive tumors 

Next we evaluated therapeutic response to CD437 in the p53-sensitive thymic 

lymphoma line. For this cohort, 33 mice were injected with equivalent numbers (5 x 106) of 

tumor cells and 88% of mice (n = 29) developed tumors. In line with the results of the baseline 

study (Figure 16), we observed that p53 restoration alone promoted rapid tumor regression as 

tamoxifen-treated mice exhibited smaller tumor volumes across all measured days (Figure 

22A) as well as a significant (p = 0.005) increase in survival (Figure 22B). Mice treated with 

CD437 as a monotherapy also showed tumor regression (Figure 23A) that corresponded with 

a significant (p = 0.002) increase in survival (Figure 23B) compared to vehicle-treated mice. 

This is contrary to what we observed in the p53-resistant cohort where CD437-treated mice 

showed no changes in tumor volume or survival benefits compared to vehicle-treated mice 

(Figure 21).  

Interestingly, combination therapy showed a superior response by additively increasing 

survival tumor regression in mice. The combination of tamoxifen and CD427 promoted rapid 

tumor regression that extended for a longer duration of time compared to vehicle or single-

agent-treated mice (Figure 24A) and corresponded with an even more significant increase (p = 

0.0001) in survival compared to controls (Figure 24B). Moreover, combo-treated mice also 

showed a significant increase in survival compared to tamoxifen-treated mice (Figure 25A). 

When we looked at tumor volumes 12 days after the start of treatment; the mean tumor 

volume of combo-treated mice was significantly smaller (p < 0.0001) compared to mice treated 

with vehicle (187.6 mm3 vs.1315 mm3, respectively), tamoxifen (187.6 mm3 vs. 787 mm3, 

respectively), or CD437 (187.6 mm3 vs. 747.6 mm3, respectively) alone (Figure 25B).  
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Figure 22. Tumor growth curve & survival of tamoxifen-treated p53-sensitive tumors 

(A) Tumor growth curves plotted as mean ± s.e.m. of percent change from baseline for 

tamoxifen-treated syngeneic mice harboring tumors from p53neo/R172H;R26CreER/tdT mice sensitive 

to p53 restoration. (B) Kaplan Meier analysis of tumor size reaching 1500 mm3 as an endpoint 

for data shown in (A).  
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Figure 23. Tumor growth curve & survival of CD437-treated p53-sensitive tumors 

(A) Mean ± s.e.m of tumor growth curves plotted as percent change from baseline for CD437-

treated syngeneic mice harboring tumors from p53neo/R172H;R26CreER/tdT mice sensitive to p53 

restoration. (B) Kaplan Meier analysis of tumor size reaching 1500 mm3 as an endpoint for 

data shown in (A). 
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Figure 24. Tumor growth curve & survival o combo-treated p53-sensitive tumors 

(A) Tumor growth curves plotted as mean ± s.e.m. of percent change from baseline for 

tamoxifen-treated syngeneic mice harboring tumors from p53neo/R172H;R26CreER/tdT  mice 

sensitive to p53 restoration. (B) Kaplan Meier analysis of tumor size reaching 1500 mm3 as an 

endpoint for data shown in (A). 
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Figure 25: Treatment summary for p53-sensitive tumors  

(A) Kaplan-Meier analyses for all treatment groups of mice with tumor size reaching 1500 mm3 

at end-point. (B) Mean ± s.e.m. of tumor size distribution (mm3) at day 12 of data shown in 

Figures 22-24. Data were analyzed by ANOVA with Bonferroni corrections for multiple 

comparisons. Levels of significance: *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001. 
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Histological differences between p53- sensitive and resistant T-cell lymphomas 

To better understand why two genetically identical thymic lymphomas carrying the 

same p53 missense mutation could exhibit such striking differences in treatment responses, 

we compared the pathology of treatment-naïve syngeneic p53neo/R172H;R26CreER/tdT lymphomas  

resistant or sensitive to p53 restoration by Hematoxylin & Eosin (H&E) staining. Histological 

analysis was done with the help of an expert human pathology, Dr. Adel El-Naggar. Together, 

we observed that p53-resistant lymphomas exhibited higher number of mitotic cells, indicative 

of proliferation, compared to the sensitive tumors (Figure 26, red arrows). Additionally, there 

was a marked difference in basal apoptosis as the number of apoptotic bodies per field of view 

was much higher in sensitive tumors compared to resistant tumors where the presence of 

apoptotic bodies was sparse (Figure 26, yellow arrows).  

The observation that the proportion of mitotic vs apoptotic cells was much higher in 

p53-resistant tumors provides some insight as to why these tumors were inherently more 

difficult to treat. It plausible that restoring p53 or CD437 treatment as a monotherapy was 

insufficient to shift the balance from proliferation to apoptosis. To further explore how 

combination therapy with CD437 sensitizes resistant tumors to p53 restoration, we evaluated 

the treatment-induced molecular and cellular changes in p53-resistant tumors.  
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Figure 26. Histological differences between resistant and sensitive T-cell lymphomas  

H&E staining of treatment-naïve p53neo/R172H;R26CreER/tdT syngeneic T-cell lymphomas reveal 

resistant tumors (left panels) exhibit more frequent mitotic cells (red arrows) with fewer 

apoptotic bodies (yellow arrows) per field of view compared to sensitive tumors (right panels). 

Lower panels are lower magnification of top panels. Scale bar: 100 µM 
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CD437 in conjunction with tamoxifen potentiates the transcriptional activity of RARγ 

and p53 in p53-resistant syngeneic tumors 

Following the observation that CD437 treatment in conjunction with p53 restoration 

therapeutically improved response in p53-mutant tumors, we next evaluated the acute 

molecular and cellular changes in p53-resistant tumors to elucidate the mode of tumor 

regression. Syngeneic mice were administered a single dose of vehicle, tamoxifen, CD437, or 

tamoxifen + CD437 once tumors reached a minimum of 250 mm3 and tumors were harvested 

24 – 48 hours post treatment (Figure 27A). We chose to harvest any tam-treated tumors at the 

48 hour time point to allow for maximal recombination of the p53neo allele and to ensure 

consistency, in the context of time, for evaluating tumors treated with tamoxifen as a single-

agent approach or in combination with CD437. We performed qPCR analyses on p53-resistant 

syngeneic tumors to examine the transcriptional activity of p53 and RARγ induced by 

tamoxifen and CD437, respectively. Single agent treatment with tamoxifen or CD437 had 

minimal effect at inducing the p53 targets, Puma, p21, Bid, and CCng1 or the RAR target, 

Cd38, compared to controls. However, in combo-treated tumors, the level of p21 is 

significantly higher (p < 0.01) compared to controls or single-agent treated tumors (Figure 

27B). Indeed, the p21 promoter contains an RA response element (RARE) and exposing cells 

to retinoic acid induces p21 expression in various cancer cell lines without functional p53 (102, 

103). Additionally, combo-treated tumors also exhibited significantly higher levels the p53 

targets, Ccng1 (p < 0.001), Puma (p < 0.05) and Bid (p < 0.05). Although not validated as RAR 

transcriptional targets, CD437 has been shown to induce pro-apoptotic-related proteins 

including BID and PUMA (104-107). The RAR target Cd38, a marker of differentiation and T-

cell activation (108, 109), was the most significantly upregulated in combo-treated tumors (p < 

0.0001).   
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Figure 27. Activation of p53 and RAR target genes in treated syngeneic tumors 

(A) Experimental timeline for evaluating the acute molecular changes in tumors induced by 

tamoxifen and CD437. Wild-type C57BL6/J syngeneic mice were injected with equivalent 

number (5 x 106) of tumor cells subcutaneously. Once tumors reached a minimum of 250 mm3 

mice were administered a single dose of drug then sacrificed 24-48 hours post treatment. (B) 

qPCR analysis of target genes of p53 (Bid, Puma, Ccng1 and p21) and RARγ (CD38). Results 

are representative of biologically independent tumor samples treated with vehicle (V, n=3), 

tamoxifen (T, n=5), CD437 (C, n=5) or tam + CD437 (T+C, n=9) and plotted as fold change 

relative to vehicle, ANOVA test with Bonferroni’s correction for multiple comparisons against 

vehicle.  Levels of significance: *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001  
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Combination therapy induces cell death in p53-resistant syngeneic tumors 

To examine if up-regulation of pro-apoptotic genes on the mRNA level corresponded 

with increased cell death, we performed cleaved caspase-3 (CC3) immunohistochemical (IHC) 

staining, TUNEL assay, and Annexin-V flow cytometric analysis on treated p53-resistant 

syngeneic tumors. Again, equivalent number of tumors cells (5 x 106 per site) were injected 

into the right and left fat pads of syngeneic mice (two mice per treatment group) and 

administered a single dose of vehicle, tamoxifen, CD437, or tamoxifen + CD437 once tumors 

reached a minimum of 250 mm3 and tumors were harvested 24 – 48 hours post treatment. 

Apoptosis was observably higher in combo-treated tumors, as indicated by CC3 and TUNEL 

positivity, compared to controls or single-agent treated tumors (Figure 28A). This was further 

substantiated by flow cytometric analysis where the number of Annexin V positive cells was 

significantly higher in combo-treated tumors compared to vehicle or single-agent treated 

tumors (Figure 28B). One CD437-treated tumor had to be excluded from the flow analyses 

due to insufficient number of tumor cells that could be analyzed (< 2,000 cells). 
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Figure 28. Evaluation of apoptosis in p53-resistant syngeneic tumors 

Syngeneic mice were injected with equivalent numbers of p53-resistant tumor cells, then 

treated with one dose either vehicle, tamoxifen, CD437, or tamoxifen followed by CD437 and 

tumors were harvested 24-48 hours post treatment. (A) Histological analyses of IHC staining 

against cleaved caspase-3 (CC3) (top panels) and TUNEL (bottom panels). Scale bar: 100 

µM. (B) Flow cytometric analysis of single-cell gated Annexin V+/DAPI+ cells processed from 

biologically independent tumor samples treated with vehicle (V, n=3), tamoxifen (T, n=3), 

CD437 (C, n=2) or tam + CD437 (T+C, n=4), ANOVA test with Bonferroni’s correction for 

multiple comparisons against vehicle. Level of significance: *p < 0.05  
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Treatment-induced histological and morphological changes in syngeneic tumors 

Our observation that Cd38 was significantly upregulated in combo-treated tumors 

prompted up to investigate whether this impacted the morphology or immunophenotype of 

tumor cells since CD38 is a marker of differentiation as well as T-cell activation (108). Tumors 

harvested from p53-resistant syngeneic mice 24-48 hours after a single dose of treatment 

revealed distinct histological changes in combo-treated tumors that were largely absent in 

vehicle or monotherapy-treated tumors (Figure 29). In accordance with the apoptosis assay 

performed, combo-treated tumors exhibited higher numbers of apoptotic bodies per field of 

view compared to vehicle or single-agent treated tumors (indicated by yellow arrows in Figure 

29). Additionally, combo-treated tumors exhibited a higher density of smaller, round-shaped 

lymphocytes (diameter < 8 µM), which are phenotypic characteristics of normal lymphocytes 

while lymphoma cells are larger (< 15 µM diameter) and atypical in shape (Figure 29.  

Examination of p53-sensitive lymphomas revealed single-agent treated tumors had an 

observable increase in the number of apoptotic bodies present per field of view (Figure 30). 

However, combo-treated tumors exhibited drastic histological changes characteristic of 

massive cell death compared to vehicle or single-agent treated tumors, further supporting data 

presented earlier indicating that combining CD437 with p53 restoration additively improves 

response in tumors inherently sensitive to p53 restoration.  
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Figure 29. Histology of treated syngeneic resistant T-cell lymphomas 

H&E staining of treated p53-resistant lymphomas demonstrating combo-treated tumors exhibit 

markedly different histological features such as increased apoptosis (yellow arrows) and a 

higher density of phenotypically normal lymphocytes, compared to vehicle control or single-

agent treated tumors. 

Scale bar: 100 µM 
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Figure 30. Histology of treated syngeneic sensitive T-cell lymphomas 

H&E staining of treated p53-sensitive lymphomas. Combo-treated tumors exhibit histological 

features of massive cell death or necrosis. Monotherapy treated tumors showed increases in 

apoptotic bodies and with moderate morphological changes compared to vehicle tumors. 

Scale bar: 100 µM 
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Combination therapy induces immunophenotypic changes in syngeneic p53-sensitive 

lymphomas  

Since the majority of thymic lymphomas from p53-mutant mice are characterized as 

being CD4+/CD8+ DP (110), we wanted to examine if treatments impacted the population of 

T-cells. We performed multicolor flow cytometric analyses with antibodies against CD4+ and 

CD8+ on syngeneic tumors harvested 24-48 hours after a single dose of treatment. To our 

surprise, the p53 resistant lymphoma line was not CD4+/CD8+ DP as anticipated (Figure 

31A). However, immunofluorescence staining with an antibody against the T-cell marker, CD3, 

demonstrates that this tumor is a T-cell lymphoma (Figure 31B). 

On the other hand, examination of the p53-sensitive line was more telling, as the 

majority of vehicle-treated tumor cells were double positive for both CD4+ and CD8+. 

Intriguingly, combo-treated tumors exhibited a significant reduction in the population of 

immature CD4+/CD8+ double positive (DP) T-cells that corresponded with increased levels of 

mature CD4+ or CD8+ single positive T-cells, whereas single-agent treatment had minimal 

impact on the T-cell population (Figure 32), suggesting a differentiation program may be 

contributing to tumor regression.  

  



77	
  
	
  

 

Figure 31. Immunophenotypic analyses of p53-resistant lymphomas 

(A) Flow cytometry scatter plot for CD4+,CD8+, and CD4+/CD8+ cells on single-gated cells 

reveal p53-resistant lymphomas, both vehicle and treated, are not are not CD4+/CD8+ double 

positive. (B) Immunofluorescence staining of p53-resistant lymphoma cells with the CD3-FITC 

antibody. 

  

	
  

	
  

A 

B 



78	
  
	
  

 

 

Figure 32. Combination therapy reduces the population of immature CD4+/CD8+ double 

positive T-cells in p53-sensitive syngeneic tumors 

(A) Scatter plot for CD4+, CD8+, and CD4+/CD8+ double positive T-cells on single-gated 

cells. (B) Graphical representation of data from (A) of the population of CD4+/CD8+ double 

positive T-cells (top left), CD4+ (top right graph), and CD8+ (bottom graph) single- positive T-

cells. Data are representative of biologically independent tumor samples treated with vehicle 

(V, n = 3), tamoxifen (T, n = 4), CD437 (C, n = 3) or tamoxifen plus CD437 (T+C, n = 4), 

ANOVA test with Bonferroni’s correction for multiple comparisons against vehicle: *p < 0.05.   
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4.4 CONCLUSION 

Using a syngeneic tumor transplant mode, I show that restoring p53 in combination the 

RARγ-selective agonist, CD437, promoted a better response in T-cell lymphomas with a 

p53R172 missense mutation. Combination therapy sensitized treatment-resistant tumors by 

significantly inducing cell death. Interestingly, combination therapy also additively improved 

response in T-cell lymphomas inherently sensitive to p53 restoration. 

 Histological analyses of treatment-naïve tumors revealed that the resistant lymphomas 

were highly aggressive and proliferative compared to sensitive lymphomas. Additionally, basal 

apoptosis was comparatively higher in sensitive tumors whereas apoptotic bodies were 

infrequent and sparse in resistant tumors. This may explain why this tumor line was more 

resistant to single-agent treatments. It is plausible that restoring p53 or CD437 treatment as a 

monotherapy was insufficient to induce the level of cellular death programs needed to promote 

tumor regression, but the combination of the two therapies shifted the balance from a 

proliferative state towards a dying state in tumor cells.  
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Summary 

Using a genetic approach, I show that restoring wild-type p53 in a p53-mutant 

background has therapeutic potential as it significantly prolonged survival, but due to the 

heterogeneous nature in response, will unlikely be effective as a monotherapy. To better 

understand these differences, we performed RNA-sequencing on treated tumors to 

comprehensively characterize the gene expression profile and molecular networks impacting 

response to p53 restoration in tumors with a p53R172H missense mutation. Gene expression 

profiling of treated autochthonous T-cell lymphomas suggested a critical role for the TNF 

pathway in promoting response, as it was upregulated in tumors sensitive to p53 restoration. 

Further, I identified retinoic acid receptor gamma (RARγ), an effector in the TNF pathway, as 

an actionable target. Both TNF and RARγ play critical roles in the regulation of immune cells 

and T-cell homeostasis (98, 108, 111). Further, TNF signaling aberrations are implicated in 

variety of human cancers while loss of RARγ leads to the development of myeloproliferative 

syndromes in mice (112).  

To investigate if pharmacologically activating RARγ in conjunction with p53 restoration 

would improve response in T-cell lymphomas, I performed combination therapy drug studies 

using a RARγ-selective retinoid (CD437) in a syngeneic tumor transplant model. In tumors that 

were resistant to p53 restoration as a monotherapy, I show that combination therapy with 

CD437 sensitized T-cell lymphomas that were resistant to p53 restoration as a monotherapy. 

Overall, a combination of p53 restoration (via tamoxifen injections) and CD437 resulted in 

significant tumor regression with a significant increase in survival compared to mice in the 

vehicle or monotherapy treatment groups. I provide compelling evidence that RARγ 

cooperates with p53 in circumventing resistance in p53-resistant lymphomas significantly by 

activating pro-apoptotic genes that corresponded a significant induction in apoptosis. In 

contrast, p53 restoration or CD437 as a monotherapy was insufficient to induce the expression 
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of p53 or RARy target genes and exerted minimal cytotoxic effects. One explanation for this is 

that CD437 has been shown to increase p53 protein levels that corresponded with increased 

expression of pro-apoptotic and cell cycle arrest genes in non-small cell lung carcinoma 

(NSCLC) cell lines with wild-type, but not mutant p53 (105, 107). Moreover, additional studies 

demonstrate that CD437 promotes both p53-dependent and independent cell death via 

activation of extrinsic and intrinsic apoptotic pathways (107, 113). Since we observed that this 

this resistant T-cell lymphoma exhibited histological features characteristic of an aggressive 

tumor (i.e. abundant mitosis with low basal apoptosis), it is plausible that restoring p53 or 

CD437 as a monotherapy was insufficient at inducing the level of cellular death programs to 

shift the cell from a proliferative state into a dying state.  

We show that sensitive T-cell lymphomas had basally higher levels of apoptosis while 

resistant T-cell lymphomas were inherently more proliferative and aggressive. Indeed, when 

we examined the effects of different treatments, sensitive tumors showed a favorable 

response to both p53 restoration and CD437 as a monotherapy and combining the two 

therapies additively improved response and survival in mice. We also show that combination 

therapy in sensitive T-cell lymphomas impacted the population of T-cells by significantly 

reducing the number of immature T-cells. Interestingly, single-agent treatment had exerted 

minimal changes on the T-cell population compared to vehicle mice, suggesting a 

differentiation program may be contributing to the enhanced response.  
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Clinical implications 

Since the p53 pathway is impairment or attenuated in the majority of human tumors, 

restoring the pathway has become an attractive treatment approach. Several strategies to 

reactivate the p53 pathway have been evaluated in various cancer models, such as inhibiting 

the negative regulation of MDM2 and/or MDM4, depleting mutant p53 protein, and restoring 

wild-type p53 function, to name a few. Moreover, the development of p53 pathway activating 

agents has become a rapidly evolving field in cancer therapeutics research (114). 

For example, the nutlin derivative RG7112 has already progressed from pre-clinical 

testing and into clinical trials (87, 88). Results from early phase clinical trials in patients with 

liposarcoma or hematological malignancies revealed RG7112 treatment leads to p53 

activation, with some patients achieving a complete response. However, all patients 

experienced at least one adverse event, while a large proportion exhibited severe adverse 

events, primarily renal, hematological and gastrointestinal toxicities. This is not surprising 

considering that excessive p53 activity can have dire cellular consequences. For example, 

homozygous deletion of either Mdm2 or Mdm4 from the germline leads to embryonic lethality 

in mice, which can be rescued by concomitantly deleting both p53 alleles (42, 43). Moreover, 

unrestricted p53 activity has deleterious effects in fully developed radio- sensitive and 

insensitive tissues. Using a conditional Mdm2 allele, our lab has showed that global loss of 

Mdm2 in adult mice leads to a multitude of pathological defects, resulting in lethality (37). 

Aside from the deleterious effects of excessive p53 activity, Mdm2 inhibitors would, in 

principle, be effective only for tumors that retain wild-type p53 and about 50% of tumors harbor 

inactivating p53 mutations. Therefore, an attractive surrogate for reactivating the p53 pathway 

is to restore wild-type p53 function. 

Initially, it was long-held though that p53 would be undruggable since it is a 

transcription factors (TFs). Since the majority of TFs, with the exception of nuclear hormone 
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receptors, do not have substrates or small molecule regulators, they are inherently more 

difficult proteins to target in comparison to kinases or cell surface receptors. In addition, since 

TFs are nuclear proteins this precludes them from antibody-based therapies whereas cytosolic 

or membrane bound proteins are more accessible to an array of compounds and antibodies 

(115). However, the use of high-throughput chemical compound and drug screens to identify 

the agents that could suppress growth in p53-mutant cell lines led to the identification of 

several compounds that could restore p53 function (114).  

Mutant-p53 reactivators have been of particular interest due to the fact that many 

tumors exhibit high levels of stabilized mutant p53 proteins. Among the different types of 

mutant p53 reactivators, the most widely studied is a compound called APR-246 (2-

(hydroxymethyl)-2-(methoxymethyl)quinuclidin-3-one), which targets and refolds mutant p53 

proteins to its wild-type conformation, thus restoring DNA binding capabilities (86) . Notably, 

APR-246 has already been tested in a phase I/IIa clinical trial in patients with hormone-

refractory prostate cancer or hematological malignancies (91). In contrast to the phase I/IIa 

clinical trial with the Mdm2 inhibitor RG7112, results this clinical trial reported that APR-246 

treatment was well tolerated with minimal adverse side effects. Since this clinical trial only 

addressed the safety and dosage of APR-246 treatment, an important unknown is which p53-

mutant tumors and cells, in particular, will respond favorably to p53 restoration therapy. 

However, as with most anticancer therapies it is anticipated that a proportion of tumors will be 

resistant. Therefore, identifying the mediators of response or resistance mechanisms will 

provide a better understanding of who would benefit from p53-based therapies and provide a 

framework for identifying rational drug combinations to potentiate the tumor suppressive 

effects of p53 restoration. 
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Advantages of our model 

In our model, mice spontaneously develop tumors over time as they would in patients 

with Li Fraumeni Syndrome have germline p53 missense mutations and heterogeneous 

response provided an ideal system to model what might be observed in a clinical setting. 

Additionally, since the majority of human tumors (~75%) acquire p53 missense mutations as 

opposed to truncating or deletion-type mutations, we believe the genetic model used here is 

more relevant compared to previous mouse models where p53 was genetically restored in a 

p53-null background, (75-77). It is Important to note this distinction because mutant p53 has 

acquired GOF that often promotes drug resistance and mutant p53 protein also exerts 

transdominant repressive effects on its WT counterpart to prevent DNA binding as an 

additional measure to inhibit its transcriptional activity (18, 19).  

Considering the mice used in the present were genetically identical and the level of p53 

that was restored was equivalent in all tumor samples (approximately 25%), it was surprising 

that response to p53 restoration was strikingly divergent, even between mice with the same 

type of tumor type. However, this provided us with the ideal system to effectively evaluate the 

molecular changes defining response to p53 restoration therapy. Assuming that mutant p53 

reactivating agents are unlikely to be 100% efficient in vivo (i.e. binding and restoring 100% of 

mutant p53 proteins to WT conformation), the level of p53 restoration that was induced in our 

genetic model from one p53 allele may be more physiologically representative to what may be 

observed in a clinical setting. Further, since we genetically restored p53 we were able to avoid 

any off-target effects associated with pharmacological p53 restoration using mutant p53 

reactivators. For example, APR-246 has been shown to have off-target effects such as binding 

and activating the p53 family members, p63 and p73. In addition, other groups previously 

described p53-independent cytotoxic activities exerted by APR-246 in various cancer cell lines 

with wild-type p53 or have p53 deletions (116, 117). Additionally, by using a syngeneic model 

for the combination therapy experiments we were able to evaluate the effects of different 
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treatments within a single tumor type in a more controlled environment to mitigate 

experimental artifacts that could lead to inconclusive or inaccurate interpretations of results. 

Another advantage of using a syngeneic tumor model is that we were able to maintain a 

normal wild-type stroma and immune compartment.  

Significance 

To our knowledge, this is the first time the global gene expression profile of p53- 

mutant tumors was used as a method to understand the molecular basis driving sensitivity to 

p53 restoration. Based on our findings and the supporting results of the validation experiments 

designed to test our hypothesis, we feel the approach used here can be applied to multiple 

p53-mutant cancer types as a method to identify the critical pathways impacting response p53- 

restoration therapy while providing the capability of identifying novel drug combination to 

circumvent resistance or enhance therapeutic response, 

Additionally, the recent advancement in the era of genomics has allowed the utilization 

of high-throughput next generation sequencing (NGS) approaches to become very affordable, 

thus feasible for researchers worldwide. Resultantly, NGS approaches, such as whole genome 

or exome sequencing, is frequently and widely used as a tool to better understand the etiology 

of a spectrum of human diseases, including cancer. In addition to identifying mutations that are 

causally implicated in tumorigenesis, called driver mutations, NGS is frequently utilized as a 

tool for defining molecular signatures contributing to a phenotype. For example, RNA-

sequencing is often used to characterize the molecular profile or gene expression signatures 

mediating response to a certain treatment or for determining who may benefit from a certain 

therapy. Among the multiple utilities for NGS approaches, one of the most propitious is to 

identify novel or alternative therapeutic targets in tumors that are resistant to standard frontline 

treatments, such as radio- and chemotherapy.  
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Future direction 

Further work is needed to delineate the mechanism by which p53 and RARy cooperate 

in mediating tumor suppression. Additionally, a limitation to my study is that bulk tumors were 

sequence, so it remains unknown which cell-types were responsive or resistant to p53 and 

merits further investigation. However, the groundbreaking development of single-cell 

sequencing has illuminated the complexity and heterogeneity that exists within a tumor, often 

referred as intratumor heterogeneity. Moreover, the use of single cell sequencing on different 

tumor cell populations and metastatic sites has furnished important clues into the evolution of 

malignant clones and their roles drug resistance, invasion & metastasis (118-120). Since I 

observed that CD437 treatment sensitized T-cell lymphomas to p53 restoration, whereas 

monotherapy exerted minimal cytotoxic effects, identifying the specific cell-type or clones that 

responded to combination therapy may provide insight into the mechanisms of resistance or 

how co-activating p53 and RARy promotes a synergistic-type effect at inducing cell death. 

Therefore, performing single-cell sequencing on these tumors may be warranted in the future.  

Noteworthy, this drug combination may exert the same anticancer activities in other 

non-lymphoid cancers, particularly ovarian carcinomas, since they almost universally carry p53 

mutations (63). Ancillary to this is that CD437 has been shown to have growth inhibitory 

effects in p53-mutant, chemo-resistant ovarian carcinoma cell lines, providing a strong 

rationale for evaluating this drug combination in this tumor type (104, 106, 121) 
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APPENDIX 

Appendix A. Snapshot of RNA-- sequencing gene set enrichment analyses of the top 9 

most significant gene sets with a nominal p-- value < 1% and nominal enrichment score > 

2.10. 
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