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        Melanoma is the most malignant form of skin cancer. The five-year survival 

rate for metastatic melanoma is 19.9%. Although targeted therapy of BRAF and 

MEK inhibitors were developed for melanoma, resistance to therapy is inevitable. 

Immune checkpoint blockade, which reverses the suppression of the immune 

system, on the other hand, has shown a durable response in 20-30% of patients 

with metastatic melanoma. However, more predictive and robust biomarkers of 

response to this therapy are still needed, and resistance mechanisms remain 

incompletely understood. To address this, we examined a cohort of metastatic 

melanoma patients treated with sequential checkpoint blockade against cytotoxic 

T lymphocyte antigen–4 (CTLA-4) followed by programmed death receptor–1 

(PD-1) by immunogenomic profile analyses from serial tumor biopsies. 

        From immune profiling (12 marker immunohistochemistry and NanoString 

Gene Expression Profiling), we found that adaptive immune signatures in tumor 

biopsies obtained from early on-treatment time points are predictive of response 

to immune checkpoint blockade. We also demonstrated differential mechanistic 
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signatures of tumor microenvironment induced by CTLA-4 and PD-1 blockade. 

Importantly, VEGFA was identified as a potential target of combination therapy 

with PD-1 blockade. 

        From genomic profiling (whole exome sequencing and T cell receptor 

sequencing), we demonstrated that a higher TCR clonality in pre-treatment 

biopsy was predictive of response to PD-1 but not CTLA-4 blockade. We also 

observed increased TCR clonality after CTLA-4 blockade treatment in patients 

responding to the following PD-1 blockade treatment. Analysis of copy number 

alterations (CNAs) identified a higher burden of copy number loss in 

nonresponders to CTLA-4 and PD-1 blockade and found that it was associated 

with decreased expression of genes in immune-related pathways. The effect of 

mutational load and burden of copy number loss on response was nonredundant, 

suggesting the potential utility of these as a combinatorial biomarker to optimize 

patient care with checkpoint blockade therapy. 

        In summary, our integrative cancer immunogenomic analysis shows that 

genomic and immune profiling of longitudinal tumor biopsies can identify novel 

biomarkers and resistance mechanisms of immune checkpoint blockade.   
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Chapter 1 INTRODUCTION  

1.1 Melanoma  

        Melanoma is a malignancy of melanocytes, the melanin-producing cells of 

neuroectodermal origin (1). Melanocytes can be found throughout the body 

including the skin, iris, and rectum, and melanocytes at different sites can 

develop into phenotypically diverse malignancies. The cutaneous form of 

melanoma is common in the Western world and contributes 75% of deaths from 

skin cancer (2). The major risk factor for cutaneous melanoma is UV exposure. 

Therefore, a typical UV exposure signature, C-to-T transition, is frequently 

observed in the mutational signatures of cutaneous melanoma. Due to mutagenic 

effect of UV radiation, cutaneous melanoma has a high mutation rate of 16.8 

mutations/Mb (3).    

        Sequencing studies of melanoma have identified melanoma driver genes 

involved in mitogen-activated protein kinase (MAPK) and other signaling 

pathways (4-6). The most common genetic alterations occur in BRAF and NRAS, 

which leads to MAPK pathway hyperactivation (7, 8). Amplification of AKT3 by 

copy number increases and loss of PTEN by deletion are also recurrent genetic 

alterations (9, 10). The recent The Cancer Genome Atlas (TCGA) study of 

cutaneous melanoma further identified four subtypes based on genomic 

classification: mutant BRAF, mutant RAS, mutant NF1, and Triple-WT (wild-type) 

(11).    

        The identification of genetic alterations in melanoma led to development of 

targeted therapies. The first targeted therapy for melanoma was a BRAF 
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inhibitor. In phase III clinical trial of vemurafenib (a BRAF inhibitor) in BRAF 

V600E-mutant melanoma patients, an overall response rate was 48% with a 

survival advantage compared to chemotherapy of dacarbazine (12). Dabrafenib 

(another BRAF inhibitor) showed similar clinical benefit (13). Vemurafenib and 

dabrafenib were approved by the U.S. Food and Drug Administration (FDA) for 

treatment of advanced BRAF-mutant melanoma patients. However, the response 

to targeted therapy was transient with median progression-free survival of 5 to 7 

months due to intrinsic and acquired resistance mechanisms (12-14). The first-

line BRAF/MEK combination therapy showed an overall response rate of 67%, 

which is significant improvement in response rates compared to BRAF 

monotherapy, but the median progression-free survival was only 9.3 months 

(15). Although there has been considerable amount of efforts to overcome drug 

resistance for targeted therapies in melanoma, durability of clinical response is 

still limited. 

 

1.2 Cancer immunology and immune checkpoint blockade (ICB) 

1.2.1 Cancer Immunology 

        Cancer is a genetic disease. Tumor cells support their growth by mutations 

activating oncogenes or suppressing tumor suppressor genes. However, factors 

extrinsic to cancer cells, such as the immune system, can also affect their fate as 

they evolve over their lifetime under the selective pressure from tumor 

microenvironment. For instance, cancer cells can be recognized as ‘foreign’ by 

the immune system due to the mutated peptides presented by cancer cells on 
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their cell surface. Therefore, the tumor is visible to the immune system and the 

immune system can act as a critical selective pressure in tumor 

microenvironment. 

        The interaction between cancer and the immune system can be explained 

by the ‘cancer-immunity cycle’ (16). In the first step, peptides containing mutated 

amino acid residues (neoantigens) produced by mutations in cancer cells are 

released and captured by dendritic cells (DCs). Then, DCs present these 

antigens on MHC I and MHC II molecules to T cells. This leads to the priming 

and activation in effector T cells with antigen specificity. Next, the activated 

effector T cells traffic to and infiltrate into tumor sites, resulting in recognition of 

cancer cells through interaction between TCR and MHC-bound antigen on the 

surface of cancer cells. Finally, the activated effector T cells can kill their target 

cancer cell. Death of cancer cells releases additional tumor-associated antigens 

providing fuel for the next round of cancer-Immunity cycle.     

        However, the cancer-immunity cycle is not always continuous. The flow of 

cancer-immunity cycle is tightly controlled by balance between positive regulators 

and negative regulators. Positive regulators can be tumor intrinsic (cytokine 

secretion, genetic composition) or extrinsic (gut microbiota composition and 

infection status, exposure to sunlight). Checkpoint molecules are examples of 

negative regulators in the cancer-immunity cycle. The equilibrium between 

positive and negative regulators is termed ‘cancer-immune set point’ (17). The 

threshold of cancer-immunity set point should be surpassed for the immune 

system to eliminate target cancer cells. 
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        According to the cancer immunoediting theory (18), cytotoxic antigen-

specific T cells can recognize and eliminate subclinical tumors, but at some point 

the tumor remains in situ in a state of equilibrium. Then, most tumors can escape 

from equilibrium and become clinically visible. Therefore, effective 

immunotherapy should aim to lower the threshold of cancer-immune set point by 

activating positive regulators of cancer-immunity cycle or by suppressing 

negative regulators of cancer-immunity cycle. 

 

1.2.2 Immune Checkpoint Blockade (ICB) 

        The diversity, specificity, and memory of the immune cells that target tumor 

cells expressing tumor-associated-antigens and neoantigens (non-self peptides 

resulting from exonic missense mutations) are unique features that are 

harnessed in immunotherapy strategies (19). Melanoma is particularly 

responsive to immunotherapy due to the high infiltration of immune cells into 

tumors and potentially, the greater number of neoantigens that are presented 

due to its high mutation burden (3). However, the natural balance between 

cancer and immune cells is tolerance (the failure to mount an immune response) 

and thus cancer cells can evade immune surveillance (20). The tolerance 

mechanisms can be immunosuppressive cytokines and chemokines, regulatory 

immune cells, and immune checkpoint pathways suppressing immune activation. 

Among several ways to reverse tolerance are the immune checkpoint blockades 

(ICB) (CTLA-4 blockade, PD-1 blockade), antibodies blocking the negative 

signals of T cell activation. ICB is recognized as breakthrough cancer 
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immunotherapy. The first FDA-approved agent ICB was ipilimumab, an antibody 

against CTLA-4, which showed long-term survival for 20% of melanoma patients 

(21). More recently, PD-1 blockade (nivolumab and pembrolizumab) has been 

approved with response rates between 28% and 40% (22, 23).    

 

1.3 Cancer immunogenomics  

1.3.1 Next-generation sequencing (NGS) 

        Next-generation sequencing (NGS) technologies have changed the 

landscape of cancer research and clinical care by enabling identification of 

alterations at the base-pair resolution in cancer patients. From NGS 

technologies, multiple variants (single nucleotide variants, small insertions and 

deletions, copy number variants, structural variants and gene fusions), gene 

expression, and DNA methylation can be profiled in a genome-wide scale from a 

same sample. Therefore, multidimensional profiling of genome, transcriptome, 

and epigenome from individual patients becomes feasible. A genomic directed 

approach of tailoring cancer therapy to individual patients (precision oncology) is 

currently being implemented in many centers. The application of NGS 

technologies (whole exome sequencing, RNA-seq, and bisulfite sequencing for 

DNA methylation) and computational pipelines can build major databases for 

cancer immunogenomics (24). For example, in addition to the multidimensional 

profiling data generated from our study, we could download and analyze the 

publicly available genomic data (whole exome sequencing and RNA-seq) from 
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an independent cohort of melanoma patients treated with CTLA-4 blockade, 

termed Van Allen cohort in our study (25). 

 

1.3.2 Characterization of immune infiltrates  

        The composition of tumor-infiltrating lymphocytes (TILs) can affect tumor 

progression (26). Therefore, cellular characterization of TILs can provide a 

framework for discovery of prognostic and predictive markers. A large number of 

bioinformatics tools have been developed to quantify the cellular composition of 

TILs from transcriptome data. One approach is gene set enrichment analysis 

(GSEA) which can evaluate ranked gene list for enrichment of certain pathways 

and cellular processes (27). Immunological signatures (ImmuneSigDB) can be 

used with GSEA to characterize cellular composition of TILs from transcriptome 

data. Another approach is deconvolution method which uses cell type-specific 

expression signature matrix to infer cellular composition of TILs. Several 

algorithms (DeconRNASeq, CIBERSORT, and TIMER) were developed for this 

purpose (28-30).  

 

1.3.3 In silico prediction of neoantigens  

        Neoantigens are somatic mutations in the cancer genome that can be 

presented and recognized by the immune system as foreign. From NGS data, we 

can profile predicted neoantigens in silico by three steps: identification of 

predicted mutated peptides, HLA typing, and prediction of binding affinity 

between neoantigens and MHC molecules. First, somatic mutations are called 
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from somatic variant callers. Then, the DNA sequences spanning somatic point 

mutations are virtually translated into the mutated “peptides” with amino acid 

sequence length ranging between 8 and 11 (31). Next, HLA typing can be 

performed from NGS data by several computational methods including 

Polysolver (32) and Optitype (33). Finally, binding affinity between virtually 

translated mutated peptides and patient-specific HLA molecules can be predicted 

by neural network algorithms trained on data from the Immune Epitope Database 

(IEDB) (34). Mutated peptides with predicted binding affinity below IC50 value of 

500nM are generally considered as predicted neoantigens (31). 

 

1.3.4 T cell receptor (TCR) profiling 

        T lymphocytes of the adaptive immune system can recognize foreign 

molecules through antigen binding receptors. The diversity of immune repertoire 

can be obtained by V(D)J recombination, which is the somatic recombination of 

gene segments in the variable (V), diversity (D), and joining (J) loci. Further 

diversification occurs by the addition or removal of random nucleotides at the 

junction sites and by combination of α and β subunits. Antigen-specificity is 

largely determined by the complementary-determining regions 3β (CDR3β), 

which is the junctional site of V(D)J recombination, because this region accounts 

for the most variability in T cell repertoire. T cells with the same CDR3β are 

considered as the same clone. 

        TCR sequencing is a targeted repertoire sequencing of the TCR locus. 

MiXCR algorithm (35) can extract CDR3β sequences from TCR sequencing data 
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and profile the type and frequency of T cell clones in a person’s T cell repertoire. 

TRUST algorithm (36) can also detect TCR hyper-variable region sequences 

from RNA-seq data. Once all the T cell clones are profiled, diversity of T cell 

repertoire and clonal expansion of T cell clones can be characterized.   

 

1.4 Biomarkers and resistance mechanisms of immune checkpoint 

blockade (ICB) 

1.4.1 Known biomarkers and resistance mechanisms of ICB 

        Response rates to immune checkpoint blockade (ICB) can be modest but 

are often durable (21-23). Therefore, there are ongoing efforts to identify 

biomarkers that predict patient response to ICB. First, it is important to 

understand how tumor cell intrinsic factors and extrinsic factors of tumor 

immunogenicity contribute to resistance to ICB (37). Tumor cell intrinsic factors 

include the mechanisms involved with tumor antigens and interaction with T cells. 

Absence of antigenic proteins due to low mutational load, lack of viral antigens, 

or lack of cancer-testis antigens is one of the tumor cell intrinsic factors (25, 38-

41). Absence of antigen presentation due to alterations in antigen presentation 

pathways can also contribute to resistance (40). Other tumor-intrinsic 

mechanisms include genetic T cell exclusion (42-44) and loss of interferon-

gamma signaling pathways (45-47). Tumor cell extrinsic factors include absence 

of T cells due to lack of T cells with tumor antigen-specific TCRs (48), expression 

of inhibitory immune checkpoints such as VISTA, LAG-3, and TIM-3 (49, 50), 
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presence of immunosuppressive cells such as tumor-associated macrophages 

and regulatory T cells (51, 52), and gut microbiota composition (53).  

        Biomarker discovery can be aided by mechanistic insights from resistance 

mechanisms. Tumor cell intrinsic factors are closely related with genetic 

biomarkers and tumor cell extrinsic factors are closely related with immunological 

biomarkers. For example, high mutational load and neoantigen load (tumor cell 

intrinsic factors) were associated with response to ICB (25, 38-41), and high 

CD8+ T cell density at the invasive tumor margin and high TCR clonality (tumor 

cell extrinsic factors) were correlated with response to PD-1 blockade TCR 

clonality (48).  

        Additionally, resistance mechanisms can provide insights into new 

biomarker discovery. For example, the resistance mechanism by absence of 

antigenic proteins due to low mutational load suggested that the tumor types with 

defects in DNA mismatch repair complex (MMR) might show higher response to 

ICB due to their higher mutational load. These tumor types can be detected with 

microsatellite instability (MSI) or with the absence of a single MMR protein by 

immunohistochemistry. Notably, MMR-deficient tumors have 10- to 100-fold 

higher mutational load than MMR-proficient tumors. Since MMR deficiency 

confers high mutational load in tumors, it was hypothesized that MSI phenotype 

would be associated with increased antitumor immunity. As predicted, MSI colon 

cancers showed high infiltration of T cells relative to microsatellite stable (MSS) 

colon cancers (54), and the clinical response of colorectal cancer patients treated 

with PD-1 blockade was higher in patients with MSI phenotype than those with 
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MSS phenotype (55). In line with these results, FDA recently approved PD-1 

blockade treatment for cancer patients with microsatellite instability-high (MSI-H) 

or mismatch repair deficient (dMMR). The example of FDA approval of MSI-H 

and dMMR as a biomarker for PD-1 blockade treatment shows that 

understanding of resistance mechanisms can help discovery of novel 

biomarkers.  

 

1.4.2 Potential biomarkers and resistance mechanisms of ICB 

        There is an active ongoing effort for discovering novel genetic and 

immunological biomarkers predictive of clinical benefit to ICB. Intratumor 

heterogeneity (ITH) is generally associated with drug resistance and worse 

prognosis (56-58) and several studies have investigated the implication of ITH in 

cancer immunotherapy. One study reported that ITH is associated with 

expression of immunomodulators and enrichment of immune cell subtypes in 

colorectal cancer (59). Another study showed that a high burden of clonal 

neoantigens was correlated with better prognosis, increased immune cell 

infiltration into tumors, and a durable response to immunotherapy (60). 

Therefore, I hypothesized that ITH might also confer resistance to immune 

checkpoint blockade in melanoma. In addition to ITH, I further investigated 

somatic HLA mutations because recent pan-cancer study showed the evidence 

of recurrent somatic HLA mutations as immune escape mechanism (32). I also 

extensively investigated copy number alterations because previous studies 

mostly focused on only somatic point mutations and mutational load. 
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1.4.3 Integrative and longitudinal approach for discovery of biomarkers and 

resistance mechanisms of ICB 

        Previous studies have focused on identifying genetic biomarkers and 

immunological biomarkers independently. Therefore, there is lack of information 

about mechanistic link between genetic and immunological biomarkers. In this 

study, we generated patient-matched genomic (whole exome sequencing, TCR 

sequencing) and immune (12 marker immunohistochemistry, NanoString Gene 

Expression Profiling) profiling data. Therefore, our patient-matched genomic and 

immune profiling data provided novel insight into the interaction between cancer 

and the immune system.  

        Our study was also unique in that longitudinal tumor biopsies (pre-, on-, and 

post-treatment) were analyzed for discovery of biomarkers and resistance 

mechanisms of ICB. By comparing on-/post-treatment samples with pre-

treatment samples, we could investigate dynamic change in mechanistic 

signatures and adaptive resistance signatures after treatment.  

 

1.5 Hypothesis, specific aims and rationale 

        My hypothesis is that integrative and longitudinal analysis of genomic and 

immune profiling data can provide predictive signatures and mechanistic 

signatures for response and resistance of sequential immune checkpoint 

blockade treatment (CTLA-4 blockade followed by PD-1 blockade). The primary 

objective of this study is to discover genetic and immunological biomarkers for 
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immune checkpoint blockade response and elucidate resistance mechanisms to 

find potential strategies to overcome them and increase response rate to immune 

checkpoint blockades. 

 

Specific Aims 

I tested the hypothesis by the following specific aims: 

Aim 1) Determine the immunological biomarkers and resistance mechanisms of 

immune checkpoint blockade 

Aim 2) Determine the genetic biomarkers and resistance mechanisms of immune 

checkpoint blockade 

Aim 3) Investigate the molecular interplay between the immune system and cancer 

under immune checkpoint blockade 

 

Rationale: Blockade of T cell coinhibitory molecules such as CTLA-4 and PD-1, 

can activate T cell antitumor response. Although the immune checkpoint 

blockades (CTLA-4 blockade and PD-1 blockade) have shown durable response 

in metastatic melanoma, response rate is modest. Therefore, there is a pressing 

need to find stable biomarkers predictive of response to immune checkpoint 

blockades and to understand underlying resistance mechanisms. We collected 

longitudinal (pre-/on-/post-treatment) tumor biopsies from a cohort of metastatic 

melanoma patients treated with sequential immune checkpoint blockade and 

performed multidimensional genomic and immune profiling of this cohort. We aim 

to discover stable biomarkers and resistance mechanisms by identifying the 

predictive signatures from pre-treatment biopsies and the mechanistic signatures 



	
   14	
  

that change during treatment from longitudinal biopsies. Multidimensional 

approach of genomic and immune profiling can allow discovery of novel 

combinatorial biomarkers, mechanistic insights into the interaction between 

tumors and the immune system, and understanding of how their interaction leads 

to differential response to immune checkpoint blockade.  
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Chapter 2 MATERIALS AND METHODS  

2.1 Patient Cohort and Tumor Samples 

2.1.1 Study design 

        Serial tumor biopsies were collected from patients with metastatic 

melanoma treated with CTLA-4 blockade and/or PD-1 blockade through the 

Expanded Access Program for MK-3475 at the UT MD Anderson Cancer Center. 

From serial tumor biopsies, we generated multidimensional profiling data (whole 

exome sequencing data, TCR sequencing data, and NanoString gene expression 

profiling). These data were analyzed to identify genomic and immune correlates 

of treatment response and resistance mechanisms of immune checkpoint 

blockade. 

 

2.1.2 Patient cohort and tumor samples 

        A cohort of 56 patients with metastatic melanoma were included in this 

study. These patients were treated at the UT MD Anderson Cancer Center 

between October 2011 and March 2015 and had tumor samples collected with 

appropriate written informed consent and analyzed (IRB LAB00-063; LAB03-

0320; 2012-0846; PA13-0291; PA12-0305). All tumor measurements were 

performed by a physician formally trained in tumor metrics, specifically RECIST 

1.1 (61) as it applies to the cohort. All metrics used computerized axial 

tomography scan imaging of measurable lesions (5 lesions total and 2 per organ 

max.) that met measurability based on strict RECIST 1.1 criteria (i.e > 10mm long 

axis per target lesion or > 15mm short axis for target lymph nodes). The sum of 
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these respective diameters were compared to the sum at baseline. Per RECIST 

1.1 criteria a lymph node < 10mm short axis was considered non-pathologic. As 

such patients were first defined at those having either a (1) complete response 

(disappearance of ALL target lesions, reduction in any pathological lymph nodes 

(whether target or not) in short axis to <10 mm, and the appearance of NO new 

lesions), (2) partial response (at least a 30% decrease in the sum of diameters of 

target lesions, no PD in non-target lesions and the appearance of NO new 

lesions), (3) progressive disease (at least a 20% increase in the sum of 

diameters of target lesions, taking as reference the smallest sum or baseline, 

with a minimum absolute increase of 5mm, and/or the development of any new 

lesions), or (4) stable disease [neither sufficient decrease to designate complete 

response (CR)/partial response (PR) nor increase to qualify as progressive 

disease (again using as a reference the smallest sum of appropriate diameters)]. 

All image responses were vetted with ≥2 serial images over a ≥6 month interval 

between baseline and assignment of response. RECIST 1.1 quantification of 

response was then used to assign patient designation as responder (i.e. CR, PR, 

or stable disease (SD) ≥6 months) or non-responder (progressive disease (PD) 

or SD < 6 months duration). All specimens were excisional biopsies or resection 

specimens.  

 

2.2 Immune Profiling 

2.2.1 Immune profiling by IHC 
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        Tumor samples (n=88) were formalin-fixed and paraffin-embedded, 

including pretreatment anti–CTLA4 (n=36; 5 responders and 31 nonresponders), 

on-treatment anti-CTLA4 (n=5; 2 responders and 3 nonresponders), progression 

anti-CTLA4 (n=22), pretreatment anti–PD-1 (n=24; 7 responders and 17 

nonresponders), on-treatment anti–PD-1 (doses 2–3; n=11; 5 responders and 6 

nonresponders), and progression anti–PD-1 (n=12) biopsies. To examine the 

effect of CTLA4 blockade on pretreatment and on-treatment PD-1 blockade 

biopsies, additional immune profiling analysis by IHC was performed on a 

separate cohort of patients treated with PD-1 blockade who were CTLA4 

blockade–naïve (n = 13), including pretreatment anti–PD-1 (n=9; 7 responders 

and 2 nonresponders) and on-treatment anti–PD-1 (n=4; 2 responders and 2 

nonresponders) biopsies. From each tissue block, a hematoxylin and eosin–

stained slide was examined to evaluate tumor cellularity. IHC was performed 

using an automated stainer (Leica Bond Max, Leica Biosystems), and the 

primary antibodies used included CD3 (DAKO, A0452, 1:100), CD4 (Leica 

Biosystems, NCL368, 1:80), CD8 (Thermo Scientific MA5-13473, 1:25), CD20 

(DAKO, L26, 1:1,400), CD45RO (Leica Biosystems, PA0146, ready to use), 

CD57 (BD Biosciences, 347390, 1:40), CD68 (DAKO, MO876, 1:450), FOXP3 

(BioLegend, 320102, 1:50), Granzyme B (Leica Microsystems, PA0291, ready to 

use), LAG3 (LifeSpan Bioscience, 17B4, 1:100), PD-1 (Epitomics, ab137132, 

1:250), PD-L1 (Cell Signaling Technology, 13684, 1:100), CD14 (Abcam, 

Ab133503, 1:100), CD33 (Leica Microsystems, LCD33-L-CE, 1:100), CD163 

(Leica Biosystems, NCL- L-CD163, 1:500), and CD206 (Abcam, Ab64693, 
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1:2,000). All slides were stained using previously optimized conditions with 

appropriate positive and negative controls. The IHC reaction was detected using 

the Leica Bond Polymer Refine detection kit (Leica Biosystems) and 

diaminobenzidine (DAB) was used as chromogen. Counterstaining was done 

using hematoxylin. IHC and hematoxylin and eosin–stained slides were 

converted into high-resolution digital images using an Aperio slide scanner 

(Aperio AT Turbo, Leica Biosystems). The digital images were then analyzed 

using the Aperio Image Toolbox analysis software (Leica Biosystems), Aperio 

image analysis algorithms nuclear and cytoplasmic v9. From each e-slide, 5 × 1 

mm2 areas within the tumor region (except for small biopsy samples) were 

chosen by a pathologist for digital analysis. IHC staining for CD3, CD4, CD8, 

CD20, CD45RO, CD57, CD68, FOXP3, Granzyme B, LAG3, PD-1, CD14, CD33, 

CD163, and CD206 was evaluated as density of cells, defined as the number of 

positive cells per mm2. PD-L1 expression was evaluated in tumor cells using H-

score, which includes the percentage of positive cells showing membrane 

staining pattern (0–100) multiplied by the intensity of the staining (0 to 3+), with a 

total score ranging from 0 to 300. The final score for each marker was expressed 

as the average score of the areas analyzed within the tumor region (tumor 

center). In addition, of the initial cohort of 88 samples scored, 41 samples 

showing discernible tumor margins were evaluated for CD8 density at both tumor 

margin and center. The final scores for each marker from each patient were then 

transferred to a database for statistical analysis. 
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2.2.2 Immunofluorescence 

        For a subset of formalin-fixed and paraffin-embedded samples (n=19), 

immunofluorescence staining was performed for CD8 (Thermo Scientific, MA5-

13473) and CD68 (DAKO, MO876) to investigate potential myeloid–T cell 

interactions, including pretreatment anti-CTLA4 (n=5; 2 responders and 3 

nonresponders), on-treatment anti-CTLA4 (n=2; 1 responder and 1 

nonresponder), pretreatment anti-PD-1 (n=6; 3 responders and 3 nonresponders), 

and on-treatment anti-PD-1 (doses 2–3; n=6; 3 responders and 3 nonresponders) 

biopsies. This was done following the Opal protocol staining method with CD8 in 

Alexa488 (1:50) and CD68 in Alexa594 (1:100). For quantification, each 

individual DAPI-, CD8-, and CD68-stained section was utilized to establish the 

spectral library of fluorophores required for multispectral analysis. Slides were 

scanned using the Vectra slide scanner (PerkinElmer) under fluorescent 

conditions. For each marker, the mean fluorescent intensity per case was then 

determined as a base point from which positive calls could be established. Finally, 

an average of five random areas on each slide were analyzed for contact 

quantification (ratio of number of CD68 cells in contact with CD8 divided by 

number of CD68 cells) blindly by a pathologist at 20× magnification. 

 

2.2.3 NanoString Gene Expression Analysis 

        A subset of tumor samples (n=54) with adequate tissue following immune 

profiling were selected for NanoString analysis using a custom-designed 795-

gene codeset (The gene list can be found from Supplementary Table S5 in Chen, 
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Pei-Ling, et al. "Analysis of immune signatures in longitudinal tumor samples 

yields insight into biomarkers of response and mechanisms of resistance to 

immune checkpoint blockade." Cancer discovery 6.8 (2016): 827-837.). This 

gene codeset includes the genes involved in immune response (Chemokines, 

Cytokines, Cell Functions, B-Cell Functions, Antigen Processing, Regulation, 

Cytotoxicity, NK Cell Functions, Transporter Functions, Pathogen Defense, 

Leukocyte Functions, T-Cell Functions, Adhesion, Complement, Senescence, 

Interleukins, Macrophage Functions, TLR, Microglial Functions, and TNF 

Superfamily) and cancer pathways (Notch, Wnt, HedgeHog, Chromatin 

Modification, Transcriptional Regulation, TGF-B, MAPK, STAT, PI3K, RAS, Cell 

Cycle, and Apoptosis). All tumor samples were prepared from formalin-fixed and 

paraffin-embedded tissue blocks, including pretreatment anti-CTLA4 (n=16; 5 

responders and 11 nonresponders), on-treatment anti-CTLA4 (n=5; 3 responders 

and 2 nonresponders), progression anti-CTLA4 (n=15), pretreatment anti–PD-1 

(n=16; 7 responders and 9 nonresponders), on-treatment anti–PD-1 (doses 2–3; 

n=10; 5 responders and 5 nonresponders), and progression anti–PD-1 (n=7) 

biopsies (Supplementary Tables S1D and S5). Hematoxylin and eosin–stained 

sections were prepared to evaluate tumor cellularity. Total RNA was extracted 

from each sample individually using the RNeasy Mini Kit (QIAGEN). For each 

NanoString assay, 1 µg of total tissue RNA was isolated, mixed with a 

NanoString code set mix, and incubated at 65°C overnight (16–18 hours). The 

reaction mixes were loaded on the NanoString nCounter Prep Station for binding 

and washing, and the resulting cartridge was transferred to the NanoString 
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nCounter digital analyzer for scanning and data collection. A total of 600 fields 

were captured per sample to generate the raw digital counts for each sample. To 

examine the effect of prior CTLA4 blockade on anti–PD-1 pretreatment and on-

treatment tissue samples, a separate gene expression profiling analysis was 

performed using a custom-designed, 795-probe codeset on 28 samples. 

Compared with the initial code set, the β2-microglobulin probe was deleted and 

the Melanoma Inhibitory Activity (MIA) probe was added. The same 

preprocessing, normalization, and statistical analysis of NanoString nCounter 

data were applied to these 28 anti–PD-1 samples, which included 7 pretreatment 

samples (4 responders, 3 nonresponders) and 8 on-treatment samples with prior 

CTLA4 blockade (3 responders, 5 nonresponders), as well as 8 pretreatment 

samples (6 responders, 2 nonresponders) and 5 on-treatment samples (2 

responders, 3 nonresponders) that were CTLA4 blockade–naïve. 

 

2.2.4 Statistical Analysis 

2.2.4.1 Immune Profiling by IHC  

        Analyses were performed using GraphPad Prism software. All tests were 

two-sided, parametric t tests. P values of <0.05 were considered statistically 

significant. 

 

2.2.4.2 NanoString Data Preprocessing  

        Raw count data were preprocessed using NanoStringNorm R package 

NanoStringNorm (62). Specifically, geometric mean–based scaling normalization 
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was performed to account for technical assay variation, followed by background 

adjustment and RNA content normalization via annotated housekeeping genes. 

The most stable set of housekeeping genes (ABCF1, GUSB, TBP, and TUBB) 

was selected by the geNorm algorithm (63). Log2-transformed data were used 

for downstream analyses.  

 

2.2.4.3 Differential Gene Expression Analysis  

        Fold change of each gene was calculated as the ratio of average gene 

expression intensity of the responder group to that of the nonresponder group. A 

two-sample t test was used to compare gene expression intensities between the 

responder group and the nonresponder group. To account for multiple testing, 

False Discovery Rate (FDR) (64), defined as the probability of being true under 

null hypothesis when rejected, was used. The beta-uniform mixture model (65) 

was used to obtain FDR. A gene was claimed to be differentially expressed if it 

showed a fold change of > 2 (increased in responders) or ≤ −1/2 (increased in 

nonresponders) and FDR ≤ 0.05. Volcano plots were used to visualize log2 fold 

change on the x-axis and P values on the y-axis. Each gene was color-coded 

based on its fold change and FDR. This analysis was performed at individual 

time points (pre–anti-CTLA4, on–anti-CTLA4, pre–anti-PD-1, and on–anti-PD-1 

treatment). 

 

2.2.4.4 Assessment of Time-by-Response Interaction  
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        A linear mixed effects model, implemented using R package lme4, was 

used to evaluate interactions between “Time (pretreatment, on-treatment)” and 

“Response (responders, nonresponders)” on gene expression intensity (66). In 

this model, the covariates of time, response, and time-by-response interactions 

were included as the fixed effects and a patient-specific random intercept was 

assumed to follow a mean 0 normal distribution. Again, an FDR threshold of 0.05 

was used to select genes with significant interaction between time and response. 

Genes with positive interaction coefficients showed upregulated expression in 

responders or downregulated expression in nonresponders after a treatment, 

whereas genes with negative interaction coefficients showed downregulated 

expression in responders or upregulated expression in nonresponders after a 

treatment. Volcano plots were used to visualize the interaction coefficients on the 

x-axis and P values on the y-axis. Each gene was color-coded based on its 

interaction coefficients and FDR.  

 

2.3 Genomic Profiling 

2.3.1 Sample processing 

        After fixation and mounting, 5 to 10 slices of 5 µm thickness were obtained 

from formalin-fixed, paraffin-embedded (FFPE) tumor blocks. Tumor-enriched 

tissue was macrodissected, and Xylene (EMD Millipore) was used for 

deparaffinization, followed by two ethanol washes. Reagents from the Qiagen 

QIAamp DNA FFPE Tissue Kit (#56404) were used in conjunction with an 

overnight incubation at 55°C to complete tissue lysis. Next, samples were 
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incubated at 90°C for one hour to reverse formaldehyde modification of nucleic 

acids. After isolation by QIAamp MinElute column, variable amounts of buffer 

ATE were added to each column to elute the DNA. Germline DNA was obtained 

from peripheral blood mononuclear cells (PBMCs). 

 

2.3.2 Whole exome sequencing 

        The initial genomic DNA input into the shearing step was 250 ng in 55 µL of 

low Tris-EDTA buffer. Forked Illumina paired-end adapters with random 8 base 

pair indexes were used for adapter ligation. All reagents used for end repair, A-

base addition, adapter ligation, and library enrichment PCR were from the KAPA 

Hyper Prep Kit (#KK8504). Unligated adapter and/or adapter-dimer molecules 

were removed from the libraries before cluster generation using SPRI bead 

cleanup. The elution volume after post-ligation cleanup was 25 µL. Library 

construction was performed following manufacturer's instructions. Sample 

concentrations were measured after library construction using the Agilent 

Bioanalyzer. Each hybridization reaction contained 650-750 ng of the prepared 

library in a volume of 3.4 µL. Samples were lyophilized and reconstituted to bring 

the final concentration to 221 ng/µL. After reconstitution, the Agilent SureSelect-

XT Target Enrichment (#5190-8646) protocol was followed, according to 

manufacturer guidelines. The libraries were then normalized to equal 

concentrations using an Eppendorf Mastercycler EP Gradient instrument and 

pooled to equimolar amounts on the Agilent Bravo B platform. Library pools were 

quantified using the KAPA Library Quantification Kit (#KK4824). Based on qPCR 
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quantification, libraries were then brought to 2 nM and denatured using 0.2N 

NaOH. After denaturation, libraries were diluted to 14-20 pM using Illumina 

hybridization buffer. Next, cluster amplification was performed on denatured 

templates according to manufacturer’s guidelines (Illumina), HiSeq v3 cluster 

chemistry and flow cells, as well as Illumina’s Multiplexing Sequencing Primer 

Kit. The pools were then added to flow cells using the cBot System and 

sequenced using the HiSeq 2000/2500 v3 Sequencing-by-Synthesis method, 

then analyzed using RTA v.1.13 or later. Each pool of whole exome libraries was 

subjected to paired 76 bp runs. An 8-base index-sequencing read was used to 

meet coverage and to demultiplex the pooled samples. Mean coverage for 

exome data was 177X in tumors and 91X in germline. Mean sequencing 

coverage and tumor purities were similar across groups, with the exception of on-

treatment biopsies given the presence of lower tumor content and enriched 

immune infiltrates. Therefore, whole exome sequencing data from on-treatment 

samples were excluded from downstream analysis. 

 

2.3.3 Mutation calling and intratumor heterogeneity analysis 

        Exome sequencing data was processed using SaturnV, the NGS data 

processing and analysis pipeline developed and maintained by the Bioinformatics 

group of the Institute for Applied Cancer Science and Department of Genomic 

Medicine at UT MD Anderson Cancer Center. BCL files (raw output of Illumina 

HiSeq) were processed using Illumina CASAVA (Consensus Assessment of 

Sequence and Variation) software (v1.8.2) for demultiplexing/conversion to 
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FASTQ format. The FASTQ files were then aligned to the hg19 human genome 

build using BWA (v0.7.5) (67). The aligned BAM files were subjected to mark 

duplication, realignment, and recalibration using the Picard tool and GATK 

software tools (68-70). The BAM files were then used for downstream analysis. 

MuTect (v1.1.4) (71) was applied to identify somatic point mutations, and Pindel 

(v0.2.4) (72) was applied to identify small insertions and deletions. Somatic 

mutations in HLA genes were called by POLYSOLVER (v1.0) (32). EXPANDS 

(v1.6.1) (73) and SciClone (v1.0.7) (74) were applied with only LOH-free regions 

to estimate the number of clones per tumor. 

 

2.3.4 Neoantigen prediction 

        HLA class I neo-epitopes were predicted for each patient as previously 

described (75). In short, patient HLA-A, -B, and -C variants were identified using 

ATHLATES (v2014_04_26) (76). Next, all possible 9- to 11-mer peptides flanking 

a nonsynonymous exonic mutation were generated computationally, and binding 

affinity was predicted based on patient HLA and compared to that of the wild-type 

peptide counterpart using NetMHCpan (v2.8) algorithm (77). Mutated peptides 

with predicted IC50 < 500 nM were considered as predicted neoantigens. TCGA 

melanoma (78) gene expression data were used to further filter out predicted 

neoantigens with mean gene expression values below 5 (mean RSEM < 5). 

 

2.3.5 Copy number alteration analysis  

Sequenza (v2.1.2) (79) was applied to obtain copy number segments of 
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log2 copy ratios (tumor/normal) for each tumor sample. R package ‘CNTools’ 

(v1.24.0) (80) was used to identify copy number gain (log2 copy ratios > log21.5) 

or loss (log2 copy ratios < -log21.5) at the gene level. The burden of copy number 

gain or loss was then calculated as the total number of genes with copy number 

gain or loss per sample. For recurrent copy number alteration analysis, R 

package ‘cghMCR’ (v1.26.0) (81) was applied to log2 copy ratios (tumor/normal) 

obtained from ‘exomecn’ (in-house copy number caller). Segment Gain or Loss 

(SGOL) scores of copy number segments or genes were calculated as sum of 

log2 copy ratios of each copy number segment or gene across all samples within 

a group of interest. Copy number segments with both copy number gain and 

copy number loss present within a group were excluded. We identified genomic 

regions of recurrent copy number alterations (MCRs: minimum common regions) 

using cghMCR function with the following parameters: gapAllowed=500, 

alteredLow=-log2(1.5), alteredHigh=log2(1.5), recurrence=60, spanLimit=2e+07, 

thresholdType=”value” (recurrent copy number loss was defined as copy number 

loss observed in more than 60% of samples in a group of interest). Tumor 

suppressor genes annotated in recurrent copy number loss plots were obtained 

as cancer genes present in both the Catalogue of Somatic Mutations in Cancer 

(COSMIC) (v77) (82) and TSGene databases (83). Two samples were excluded 

from analysis due to unusable copy number profiles (45E and 20E).  

 

2.3.6 TCR sequencing and clonality analysis 
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        T cell receptor sequencing of the CDR3 variable region of the beta chain 

was performed by ImmunoSeq hsTCRB Kit as described previously (Adaptive 

Biotechnologies) (84, 85). In brief, DNA was extracted from FFPE tumor tissues, 

and CDR3 regions were amplified prior to sequencing by MiSeq 150X (Illumina). 

Data were then transferred to Adaptive Technologies for deconvolution of CDR3 

beta sequences. For each sample, Shannon entropy and TCR clonality were 

calculated using the ImmunoSeq Analyzer (86). 

 

2.3.7 NanoString gene expression profiling 

        NanoString was performed using a custom codeset of 795 genes as 

previously described (87). In brief, RNA was extracted using the RNeasy Mini Kit 

(QIAGEN) from FFPE blocks, after initial confirmation of tumor presence and 

content by two pathologists by H&E. For gene expression studies, 1 µg of RNA 

was used per sample. Hybridization was performed for 16-18 hours at 65°C, and 

samples were loaded onto the nCounter Prep Station for binding and washing 

prior to scanning and capture of 600 fields using the nCounter. Preprocessing of 

NanoString data was performed as previously described (87). Immune scores 

were calculated as geometric mean of gene expression of cytolytic markers 

(GZMA, GZMB, PRF1, GNLY), HLA molecules (HLA-A, HLA-B, HLA-C, HLA-E, 

HLA-F, HLA-G, HLA-H, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, 

HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1), IFN-γ 

pathway genes (IFNG, IFNGR1, IFNGR2, IRF1, STAT1, PSMB9), chemokines 
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(CCR5, CCL3, CCL4, CCL5, CXCL9, CXCL10, CXCL11), and adhesion 

molecules (ICAM1, ICAM2, ICAM3, ICAM4, ICAM5, VCAM1).  

 

2.3.8 Independent (Van Allen) cohort analysis 

        Mutational load was obtained from nonsynonymous mutational load in an 

earlier study (25). WES data (SAM files) from 110 melanoma patients and RNA-

seq data from 42 patients (FASTQ files) were downloaded through the dbGaP 

(accession number phs000452.v2.p1). Copy number alterations were identified 

from the same computational pipeline as described above. For the Van Allen 

cohort, recurrent copy number loss was defined as copy number loss observed in 

more than 40% of samples in a group of interest. Twelve samples were excluded 

from analysis due to unusable copy number profiles (Pat06, Pat73, Pat78, Pat81, 

Pat92, Pat106, Pat121, Pat132, Pat165, Pat166, Pat171, and Pat175). In the 

minimal or no clinical benefit group, samples with low burden of copy number 

loss (<100) were excluded from recurrent copy number alteration analysis. The 

relatively low cutoff of 100 was chosen to capture the majority of recurrent 

events. For RNA-seq analysis, all the RNA-seq samples were first aligned to the 

human reference genome (hg19, GRCh37.75) with Bowtie2 (v2.2.5). RSEM 

(v1.2.12) was used to quantify transcript expression at the gene level in FPKM. 

Immune scores for the independent cohort were calculated by ESTIMATE (88). 

eBayes-moderated t-test was performed to compare the high burden of copy 

number loss (n=10) and low burden of copy number loss groups (n=10). Rank 

metric was then calculated as the sign of log2 fold changes multiplied by inverse 
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of P values. Gene set enrichment analysis (GSEA) (89) was performed on the 

rank metric-sorted list of genes. 

 

2.3.9 Statistical analysis 

        Statistical analyses were performed using R 3.2.2. Statistical tests included 

two-sided Fisher’s exact tests and two-sided Mann-Whitney tests.  
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Chapter 3 IMMUNE PROFILING  
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3.1 Introductions and Rationale 

        Major advances have been made in the treatment of metastatic melanoma 

through the use of immune checkpoint blockade, with the FDA approval of 

numerous therapeutic regimens within the past several years (21, 90-94) and 

many more being studied in clinical trials (95, 96). Treatment with immune 

checkpoint inhibitor monotherapy [such as monoclonal anti- bodies targeting 

cytotoxic T-lymphocyte–associated antigen-4 (CTLA4) and programmed death-1 

(PD-1)] is associated with response rates of 8% to 44%, and many of these 

responses are durable (i.e., >2 years). However, the majority of patients do not 
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respond to these regimens as monotherapy, and some patients develop 

significant toxicity (90, 97-99), particularly when these regimens are combined 

(92). Given these complexities, a critical need exists to identify biomarkers that 

accurately predict which patients will benefit from this form of therapy. 

        Although several genomic and immune predictors of response have been 

reported based on analysis of pretreatment tumor biopsies, these biomarkers are 

not very robust, and there is significant overlap between responders and 

nonresponders to therapy for the markers tested (39, 41, 48, 100). Genomic and 

RNA-based studies exploring predictors of outcome to immune checkpoint 

blockade in melanoma suggest that tumor-specific mutational load and 

neoantigen signature as well as cytolytic activity are significantly associated with 

clinical benefit and increased overall survival (25, 39, 101). IHC-based studies 

also support the notion that CD8+, CD4+, PD-1+, and programmed death-ligand 

1–positive (PD-L1+) cell densities in pretreatment biopsies can predict response 

to therapy (48, 100). However, cumulative evidence from these studies suggests 

that these biomarkers are not perfectly predictive (39, 48), and better biomarkers 

are clearly needed to optimize therapeutic decisions. 

        In addition to identifying predictors of response to immune checkpoint 

blockade, there is growing interest in understanding the mechanistic differences 

between different forms of immune checkpoint blockade. Transcriptome and 

pathway analysis using purified human T cells and monocytes from patients on 

either CTLA4 or PD-1 blockade demonstrates distinct gene expression profile 

and immunologic effects between these forms of therapy (102, 103). Whereas 
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CTLA4 blockade induces a proliferative signature in memory T cells, PD-1 

blockade leads to changes in genes implicated in cytolysis and natural killer cell 

function (103). This notion is further supported by animal models that 

demonstrate differential effects of CTLA4 and PD-1 blockade therapies on the 

transcriptional profiles of tumor-infiltrating CD8+ T cells, with increased NFAT–

JAK–STAT signaling, cell proliferation/cell cycle, and activation of effector T-cell 

pathways seen in CTLA4 blockade versus changes in IL2 signaling, response to 

type I IFN, and metabolic pathways seen in PD-1 blockade (102). 

        Along with this, there is a critical need to identify mechanisms of therapeutic 

resistance to immune checkpoint inhibitors that are potentially actionable. Groups 

have begun to study this (50, 101), and there is evidence that somatic mutations 

in antigen processing and presentation as well as upregulation of genes involved 

in cell adhesion, angiogenesis, and extracellular matrix remodeling may 

contribute to immune escape in cancer (104). In addition, molecular analyses of 

human melanoma samples and animal models also suggest that tumor-intrinsic 

oncogenic signals related to the WNT/β-catenin signaling pathway may mediate 

cancer immune evasion and resistance to immunotherapy, including CTLA4- and 

PD-1–based therapy (105). 

        In this study, we sought to address each of these areas of critical need by 

studying a unique cohort of patients with metastatic melanoma who were initially 

treated with CTLA4 blockade and were then treated with PD-1 blockade at time 

of progression. A deep immune analysis of longitudinal tumor samples was 

performed, yielding insights into biomarkers of response, mechanistic differences 
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between each of these forms of therapy, and means of therapeutic resistance to 

immune checkpoint blockade. 

 

3.2 Results 

3.2.1 Patient Cohort, Checkpoint Blockade Treatment, and Longitudinal 

Tumor Biopsies 

        To explore differential changes in the tumor microenvironment in distinct 

forms of immune checkpoint blockade, we assembled a unique cohort of 53 

patients with metastatic melanoma who were initially treated with CTLA4 

blockade and were then treated with PD-1 blockade if they did not respond or 

progressed on therapy. The scheme of treatment and longitudinal tumor 

sampling is shown in Figure 1. Biopsies were obtained (when available) prior to 

initiation of CTLA4 blockade, on-treatment, and after restaging in patients who 

did not respond to or who progressed on therapy. Clinical responders were 

defined by radiographic evidence of absent disease, stable disease, or 

decreased tumor volume for >6 months. Nonresponders were defined by tumor 

growth on serial CT scans after the initiation of treatment or any clinical benefit 

lasting ≤6 months (minimal benefit). Nonresponders to CTLA4 blockade were 

then treated with PD-1 blockade therapy, and additional biopsies were obtained 

early during the course of therapy and late on-treatment in nonresponders (or 

progressors) on PD-1 blockade (Figure 1). Among the patients treated with 

CTLA4 blockade, 13% achieved clinical benefit, whereas 87% did not, consistent 

with published response rates (21, 99). Table 1 and 2 shows the clinical and 
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demographic characteristics of the patients in this cohort. Available biopsies were 

subsequently processed for downstream immune profiling by IHC and gene 

expression studies (Table 3 and 4).        
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Figure 1. A cohort of patients treated with sequential CTLA4 and PD-1 blockade. 

Patients with metastatic melanoma were initially treated with CTLA4 blockade (n = 53) 

and nonresponders to CTLA4 blockade were then treated with PD-1 blockade (n = 46; 

Expanded Access Program for MK-3475 at the MD Anderson Cancer Center). Of these 

46 patients, 13 responded to PD-1 blockade, whereas 33 progressed. Tumor biopsy 

samples were collected at multiple time points during their treatment when feasible, 

including pretreatment, on-treatment, and progression anti–CTLA4 biopsies, and 

pretreatment, on-treatment (doses 2–3), and progression anti–PD-1 biopsies, for 

downstream immune profiling by IHC and gene expression studies. The median elapsed 

time between tumor biopsies and treatment is shown for each time point. The profile and 

kinetics of immune cell infiltrates in the tumor microenvironment were compared 

between responders and nonresponders to CTLA4 blockade. Tumor samples available 

for immune profiling by IHC included pretreatment anti-CTLA4 [n = 36; 5 responders (R) 
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and 31 nonresponders (NR)], on-treatment anti-CTLA4 (n = 5; 2 responders and 3 

nonresponders) and progression anti-CTLA4 biopsies (n = 22). 
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Anti%CTLA%4*Responders Anti%PD%1*Responders Anti%PD%1*Progressors All*Patients*

(n=7) (n=15) (n=33) (n=56)
Age*at*start*of*first*immunotherapy

Mean- 61 57 56 57
Range 47182 27186 28184 27186

Sex%*no.*of*patients*(%)

Female 5-(71) 4-(27) 10-(30) 19-(34)
Male 2-(29) 11-(73) 23-(70) 37-(66)

Disease*Origin%*no.*of*patients*(%)

Acral 1-(14) 2-(13) 4-(12) 7-(12)
Cutaneous 5-(71) 9-(60) 24-(73) 39-(70)
Mucousal 0-(0) 1-(6) 0-(0) 1-(2)
Unknown-Primary 1-(14) 3-(20) 5-(15) 9-(16)

Mutational*Status%*no.*of*patients*(%)

BRAF 4-(50) 4-(22) 2-(7) 10-(22)
NRAS 1-(12) 5-(28) 10-(34) 16-(29)
CKIT 0 1-(5) 4-(14) 5-(9)
TP53 2-(25) 2-(11) 5-(26) 9-(16)

Lactate*dehydrogenase*level*at*start*of

therapy*—*no.*of*patients*(%)

Normal-(<618-IU/L) 2-(29) 11-(74) 1-(3) 15-(27)
Above-Normal-(>-618-IU/L) 4-(57) 2-(13) 25-(76) 31-(55)
Not-Available 1-(14) 2-(13) 7-(21) 10-(18)

Previous*Therapies*%no.*

Mean- 1 2 4 2
Range 014 017 019 019

Duration*between*aCTLA%4*and*aPD1%%wk

Mean NA 21.6 36.7 NA
Range- NA 0186 01165 NA

RECIST*Response*Classification*

Progression-of-Disease 2-(29) 3-(20) 33-(100) 38-(68)
Stable-Disease 0-(0) 3-(20) 0-(0) 3-(5)
Partial-Response 5-(71) 7-(47) 0-(0) 12-(21)
Complete-Response 0-(0) 2-(13) 0-(0) 2-(4)

* includes 1 additional patient (Patient 17) who progressed on anti-CTLA-4 and did not receive anti-PD-1 
 
Table 1. Cohort level clinical summary 
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Patient'
ID

Group'
(1=IR,2=INR,3=PDR,4=

PDNR)
Sex' Age

anti=CTLA=4'
Response

anti=PD=1'
Response

Treated'
(Y/N)

RECIST'(CR,'
PR,'SD,'PD)

#'of'prior'or'
concurrent'therapies

Treated'
(Y/N)

RECIST'(CR,'
PR,'SD,'PD)

#'of'prior'or'
concurrent'therapies

1 4 F 48 nonresponse nonresponse Y PD 1 Y PD 3
2 4 M 50 nonresponse nonresponse Y PD 2 Y PD 3
3 4 F 60 nonresponse nonresponse Y PD 3 Y PD 4
4 4 M 72 nonresponse nonresponse Y PD 4 Y PD 8
5 1 F 47 response NA Y PR 3 N NA NA
6 3 M 48 nonresponse response Y PD 1 Y PD* 2
7 3 M 64 nonresponse response Y PD 1 Y PR 2
8 3 M 54 nonresponse response Y PD 1 Y CR 2
9 3 M 58 nonresponse response Y PD 2 Y SD 4
10 1 F 54 response NA Y PR 0 N NA NA
11 4 M 82 nonresponse nonresponse Y PD 3 Y PD 5
12 1 M 70 response NA Y PD* 2 N NA NA
13 4 M 52 nonresponse nonresponse Y PD 0 Y PD 2
14 3 F 66 nonresponse response Y PD 1 Y PR 2
15 3 F 43 NA response N NA NA Y PD* 0
16 4 M 34 nonresponse nonresponse Y PD 0 Y PD 2
17 2 F 58 nonresponse NA Y PD 0 N NA NA
18 4 F 66 nonresponse nonresponse Y PD 2 Y PD 3
19 4 M 55 nonresponse nonresponse Y PD 3 Y PD 8
20 4 M 59 nonresponse nonresponse Y PD 1 Y PD 2
21 4 M 63 nonresponse nonresponse Y PD 0 Y PD 1
22 1 F 50 response NA Y PR 0 N NA NA
23 4 M 40 nonresponse nonresponse Y PD 0 Y PD 1
24 3 M 50 nonresponse response Y PD 0 Y SD 2
25 4 F 46 nonresponse nonresponse Y PD 4 Y PD 6
26 4 F 60 nonresponse nonresponse Y PD 1 Y PD 7
27 1 F 56 response NA Y PR 0 N NA NA
28 4 M 55 nonresponse nonresponse Y PD 2 Y PD 4
29 4 M 34 nonresponse nonresponse Y PD 7 Y PD 9
30 4 M 66 nonresponse nonresponse Y PD 1 Y PD 2
31 1 F 71 response NA Y PD* 4 N NA NA
32 4 F 84 nonresponse nonresponse Y PD 0 Y PD 1
33 4 F 61 nonresponse nonresponse Y PD 0 Y PD 2
34 3 M 69 nonresponse response Y PD 1 Y PR 2
35 3 F 49 nonresponse response Y PD 0 Y CR 1
36 4 M 56 nonresponse nonresponse Y PD 1 Y PD 4
37 1 M 82 response NA Y PR 1 N NA NA
38 4 F 53 nonresponse nonresponse Y PD 0 Y PD 2
39 4 M 55 nonresponse nonresponse Y PD 1 Y PD 4
40 4 M 53 nonresponse nonresponse Y PD 1 Y PD 5
41 4 M 68 nonresponse nonresponse Y PD 3 Y PD 6
42 4 F 48 nonresponse nonresponse Y PD 2 Y PD 6
43 4 M 61 nonresponse nonresponse Y PD 2 Y PD 2
44 4 F 62 nonresponse nonresponse Y PD 0 Y PD 1
45 4 M 59 nonresponse nonresponse Y PD 0 Y PD 5
46 3 F 27 nonresponse response Y PD 3 Y PR 4
47 3 M 72 nonresponse response Y PD 2 Y PR 3
48 4 M 68 nonresponse nonresponse Y PD 2 Y PD 3
49 4 M 46 nonresponse nonresponse Y PD 1 Y PD 4
50 4 M 68 nonresponse nonresponse Y PD 0 Y PD 4
51 3 M 37 nonresponse response Y PD 1 Y PD* 2
52 3 M 65 nonresponse response Y PD 5 Y SD 7
53 4 M 54 nonresponse nonresponse Y PD 5 Y PD 6
54 4 M 28 nonresponse nonresponse Y PD 2 Y PD 3
55 3 M 86 NA response N NA NA Y PR 0
56 3 M 69 nonresponse response Y PD 1 Y PR 2

anti?CTLA?4 anti=PD=1

 

Table 2. Patient level clinical characteristics 
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Pre On Pro Pre On Pro
1 No$sample$profiled
2 Sample$profiled
3 Not$applicable
4
5
6
7
8
10
12
13
14
•15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
38
39
40
41
42
43
44
45
47
49
50
51
52
53
54
•55
•56
•58
•59
•60
•61
•63
•64
•65
•67
•68

•=$CTLAB4$blockade$naïve$patients

antiBCTLAB4 antiBPDB1
Patient*ID

 

Table 3. Immune profiling by IHC sample log 
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Pre On Pro Pre On Pro
1 No$sample$profiled
2 Sample$profiled
3 Not$available
4
5
6
7
8
9
10
•15
16
18
19
22
23
24
25
26
27
31
37
40
42
43
45
47
49
50
52
54

•=$CTLAB4$blockade$naïve$patients

Patient*ID
antiBCTLAB4 antiBPDB1

 

Table 4. Immune profiling by NanoString 54 sample log 
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3.2.2 Immune Profiling in Early On-Treatment Biopsies Is Predictive of 

Response to CTLA4 Blockade in a Unique Cohort of Patients Treated with 

Sequential CTLA4 and PD-1 Blockade 

        The profile and kinetics of immune cell infiltrates in the tumor 

microenvironment were first investigated via a 12-marker IHC panel. At the 

pretreatment time point, there was no difference in any of the measured markers 

between responders versus nonresponders to CTLA4 blockade (Figure 2), 

consistent with previous reports (106). However, analysis of early on-treatment 

tumor biopsies identified a significantly higher density of CD8+ T cells in 

responders versus nonresponders to CTLA4 blockade (Figure 2; P < 0.05). IHC 

for other immune and immunomodulatory markers at the on-treatment time point 

on CTLA4 blockade showed no significant differences in responders versus 

nonresponders, though a trend toward higher PD-L1 expression was observed in 

responders (Figure 2). Representative IHC images for CD8, CD4, and PD-L1 

expression in responders and nonresponders to CTLA4 blockade are shown for 

each time point in Figure 3. 
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Figure 2. Immune profiling of pre-treatment, on-treatment and progression CTLA-4 

blockade samples by immunohistochemistry. Immune profiling was performed via a 

12-marker immunohistochemistry panel. CD8, CD4, PD-L1 (H-score), CD45RO, CD3, 

CD20, CD57, CD68, FoxP3, Granzyme B, PD-1, and LAG-3 were assessed for density 

by quantitative IHC. Error bars represent standard error mean. n.s.= not significant 
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(The experiment and analysis were done by Dr. Pei-Ling Chen. This figure was used 

with permission from Dr. Pei-Ling Chen.) 
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Figure 3. Representative IHC images of CD8, CD4, and PD-L1 in responders and 

nonresponders at the pre- and on-treatment time point. Representative images at 

pretreatment and early on-treatment time points are shown in responders versus 

nonresponders to CTLA4 blockade (20× magnification). Error bars, SEM. *, P ≤ 0.05; 

n.s., not significant. Scale bars, 200 µm. 

(The experiment and analysis were done by Dr. Pei-Ling Chen. This figure was used 

with permission from Dr. Pei-Ling Chen.) 
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        In addition, to better understand the contribution of myeloid–T cell 

interactions to therapeutic response, we also stained sections with additional 

myeloid markers (CD14, CD33, CD163, and CD206). Though we saw no clear 

quantitative differences in any of the myeloid subsets in responders versus 

nonresponders to CTLA4 blockade (Figure 4), we observed a slightly higher 

proximity of CD68+ myeloid cells to CD8+ T cells in nonresponders at the 

pretreatment time point (Figure 5A and 5B; P = 0.08); however, this did not reach 

statistical significance in this small cohort. 
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Figure 4. Myeloid cell profiling of pre-treatment, on-treatment and progression 

CTLA-4 blockade samples by immunohistochemistry. Immune profiling was 

performed via a 4-marker immunohistochemistry panel. CD14 (a), CD33 (b), CD163 (c), 

and CD206 (d) were assessed for density by quantitative IHC. Shown in (e)-(h) are 

representative IHC images in responders and non-responders at the pre-treatment 

timepoint. Error bars represent standard error mean. n.s.= not significant. Statistical 

analysis was not possible between responders and non-responders at on-treatment time 

point as only one sample was available per group. 

(The experiment and analysis were done by Dr. Pei-Ling Chen. This figure was used 

with permission from Dr. Pei-Ling Chen.) 
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Figure 5. Increased contact between CD8 T cells and CD68 myeloid cells in non-

responding patients to anti-CTLA-4 and anti-PD-1 therapy at pre-treatment CTLA-4 

blockade, pre-treatment PD-1 blockade, and on-treatment PD-1 blockade time 

points. (a) Immunofluorescence staining showing nuclei by DAPI (blue), CD8 (red) and 

CD68 (yellow) cells in a responder and non-responder. (b) Semi-quantitative 

pathological assessment of percentage of CD8 and CD68 cells in contact in responders 

and non-responders pre-treatment and on treatment with anti-CTLA-4 and anti-PD-1 

therapy.  

(The experiment and analysis were done by Dr. Pei-Ling Chen. This figure was used 

with permission from Dr. Pei-Ling Chen.) 
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3.2.3 Immune Profiling in Early On-Treatment Biopsies Is Highly Predictive 

of Response to PD-1 Blockade 

        We next used our 12-marker IHC panel to interrogate the profiles and 

kinetics of immune cell subsets in tumor samples from patients on anti–PD-1 

therapy. Forty-six patients were included who were initially treated with CTLA4 

blockade, as well as 11 additional patients who had not received prior CTLA4 

blockade to control for possible prior CTLA4 blockade exposure effects. In these 

studies, we observed a modest but statistically significant difference in the 

density of CD8+, CD3+, and CD45RO+ T cells in pretreatment samples of 

responders compared with nonresponders (Figure 6; P = 0.03, 0.03, 0.02, 

respectively), though the values between these two groups were largely 

overlapping, consistent with prior published data (106). There was also a trend 

toward higher pretreatment expression of CD4 and PD-1 in responders versus 

nonresponders, though these did not reach statistical significance (Figure 6; P = 

0.06, P = 0.08, respectively). 
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Figure 6. Immune profiling of pre-treatment, on-treatment and progression PD-1 

blockade samples by immunohistochemistry. Longitudinal tumor biopsies were per- 

formed (at pretreatment, early on-treatment, and late on-treatment/progression time 

points) in patients undergoing treatment with PD-1 blockade (n = 47). The profile and 
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kinetics of immune cell infiltrates in the tumor microenvironment were compared 

between responders (R) and nonresponders (NR) to PD-1 blockade. Tumor samples 

available for immune profiling by IHC included pretreatment anti–PD-1 (n = 24; 7 

responders and 17 nonresponders), on-treatment anti–PD-1 (doses 2–3; n = 11; 5 

responders and 6 nonresponders), and progression anti–PD-1 (n = 12) biopsies. CD8, 

CD4, CD3, PD-1, PD-L1 (H-score), LAG3, CD45RO, CD20, CD57, CD68, FoxP3, and 

Granzyme B density are shown in responders versus nonresponders. 

(The experiment and analysis were done by Dr. Pei-Ling Chen. This figure was used 

with permission from Dr. Pei-Ling Chen.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   55	
  

        In contrast, there was a profound and highly statistically significant 

difference in the expression of markers for T-cell subsets—CD8 (P = 0.001), CD4 

(P = 0.001), and CD3 (P < 0.001)— and immunomodulatory molecules PD-1 (P < 

0.001), PD-L1 (P = 0.007), and LAG3 (P < 0.0001) in responders versus non- 

responders to therapy in early on-treatment tumor samples, with little to no 

overlap between groups (Figure 6). Of note, a significantly higher level of 

expression of FOXP3 (P < 0.001) and granzyme B (P = 0.02) was observed in 

responders compared with nonresponders to therapy, likely relating to an 

enhanced activation status of infiltrating T cells in responding patients (Figure 6). 

Importantly, these changes were observed in responders as early as 2 to 3 

doses following initiation of PD-1–based therapy. Representative IHC images for 

these markers are shown in Figure 7. Specific analysis performed on longitudinal 

samples also demonstrated an increase in CD8, PD-1, and PD-L1 in responders 

compared with nonresponders to PD-1–based therapy (Figure 8). 
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Figure 7. Representative immunohistochemistry images of selected markers at 

pretreatment and early on-treatment time points. Representative images at 

pretreatment and early on-treatment time points are shown in responders versus 

nonresponders to PD-1 blockade (20× magnification). Error bars, SEM. *, P ≤ 0.05; **, P 

≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001; n.s., not significant. Scale bars, 200 µm. 

(The experiment was done by Dr. Pei-Ling Chen. This figure was used with permission 

from Dr. Pei-Ling Chen.) 
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Figure 8. Longitudinal increase in CD8, PD-1, and PD-L1 expression in responders 

to anti-PD-1 therapy. Five paired responder (a, c, e) and 14 paired non-responder (b, 

d, f) samples were evaluated for changes in CD8 (a-b) and PD-1 (c-d) counts/mm2 and 

PD-L1 (e-f) H-Score at pre/on-treatment and on/post-treatment time points by 

immunohistochemistry. Lines link paired samples.  

(The analysis was done by Dr. Pei-Ling Chen. This figure was used with permission from 

Dr. Pei-Ling Chen.) 
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        In light of previous studies demonstrating the importance of the invasive 

tumor margin in predicting responses to PD-1 blockade (48), we quantified CD8+ 

T-cell density at the tumor margin in 41 samples with discernible tumor margins. 

In these studies, we did not observe significant differences in CD8+ T cells at the 

tumor margin between responders and non- responders to PD-1–based therapy 

at all time points examined, though sample size was admittedly limited. However, 

when we compared the ratio of CD8+ T cells at tumor center versus the margin in 

early on-treatment biopsies, we observed significantly higher ratios of CD8+ T 

cells at the tumor center versus the margin within responders compared with 

nonresponders (Figure 9A–9H), suggesting possible infiltrate from margin to 

center of the tumor in the context of therapy. 
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Figure 9. Relative increase in CD8 T cell infiltrate at tumor center in responders to 

anti-PD-1 on treatment. Pie charts depicting the CD8 counts/mm2 at pre-treatment 

anti-CTLA-4 (a-b), pre-treatment anti-PD-1 (c, d), and on treatment anti-PD-1 (e, f) time 
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points in responders and non-responders at tumor margin (g) and center (h). Numbers 

represent average counts per treatment time point. Blue = Tumor margin, Red = Tumor 

center. Pre-treatment anti-CTLA-4: Responders (n=3), Non-responders (n=15); Pre-

treatment anti-PD-1: Responders (n=2), Non-responders (n=8); On treatment anti-PD-1: 

Responders (n=2), Non-responders (n=2).  

(The experiment and analysis were done by Dr. Pei-Ling Chen. This figure was used 

with permission from Dr. Pei-Ling Chen.) 
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        To augment these studies, we performed immune profiling in the separate 

cohort of patients who received PD-1 blockade in the absence of prior CTLA4 

exposure, and observed no significant differences in our prior observations when 

these patients were included in the analysis (Figure 10A–10H). As observed 

previously with CTLA4 blockade, we saw no clear quantitative difference in any 

of the myeloid subsets in responders and nonresponders to PD-1 blockade 

(Figure 11A–11I). However, we observed a significantly higher proximity of 

CD68+ myeloid cells to CD8+ T cells in nonresponders at the pretreatment and 

on-treatment time points for patients on PD-1 blockade (Figure 5, P < 0.05). 
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Figure 10. Significant increase in immune infiltrate between responders and non-

responders to PD-1 blockade in absence of prior anti-CTLA-4 therapy. (a) Timeline 

illustrating breakdown of anti-CTLA-4-naïve patient samples by response and treatment 

time point and planned analyses. CD4 (b), CD8 (c), FoxP3 (d), GzmB (e), PD-1 (f), PD-

L1 (g), and LAG-3 (h) were assessed for density by quantitative IHC. Error bars 

represent standard error mean. n.s.= not significant. Black dots depict anti-CTLA-4-naïve 

patients. *= p≤0.05, **= p≤0.01, ***= p≤0.001, n.s.= not significant.  

(The experiment and analysis were done by Dr. Pei-Ling Chen. This figure was used 

with permission from Dr. Pei-Ling Chen.) 
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Figure 11. Immune profiling of myeloid cells atpre-treatment and on-treatment PD-

1 blockade time points by immunohistochemistry. CD14 (a), CD33 (b), CD163 (c), 

and CD206 (d) were assessed for density by quantitative IHC. Shown in (e-h) and (i-l) 

are representative IHC images in responders and non-responders at the pre-treatment 

and on treatment timepoints, respectively. Error bars represent standard error mean. 

n.s.= not significant.  

(The experiment and analysis were done by Dr. Pei-Ling Chen. This figure was used 

with permission from Dr. Pei-Ling Chen.) 
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3.2.4 Gene Expression Profiling in Longitudinal Tumor Biopsies Is 

Predictive of Response in Patients Treated with Sequential CTLA4 and PD-

1 Blockade 

        To further dissect the tumor microenvironment–mediated response and 

resistance to immune checkpoint blockade and to identify potential mechanisms 

of therapeutic resistance, we performed targeted gene expression profiling (GEP) 

via a custom 795-gene NanoString panel composed of immune-related genes 

and genes pertaining to common cancer signaling pathways in samples with 

available tissue. When comparing GEP results between responders and non- 

responders at each individual biopsy time point, no significant differences were 

found at pretreatment CTLA4 blockade, on- treatment CTLA4 blockade, and 

pretreatment PD-1 blockade. However, early on-treatment tumor samples of 

patients on anti– PD-1 therapy showed 411 significantly differentially expressed 

genes (DEG) in responders (FDR-adjusted P < 0.05), mostly upregulated as 

compared with nonresponders (Figure 12A–D and Figure 13), including IHC 

markers represented in the NanoString code- set, cytolytic markers, HLA 

molecules, IFNγ pathway effectors, chemokines and select adhesion molecules. 

Notably, a small number of DEGs (n = 6) were lower in responders than in non- 

responders on PD-1 blockade and included vascular endothelial growth factor 

(VEGFA), suggesting a mechanism of therapeutic resistance and a potential 

target for therapy, which is corroborated by data from others implicating 

angiogenesis in resistance to immunotherapy (107-109). Notably, though only 10 

of the 12 IHC markers were represented in the NanoString codeset, all 10 



	
   66	
  

overlapping probes showed concordance with our IHC findings (Figure 14A–14J 

and Figure 15). 
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Figure 12.  Gene expression profiling in longitudinal tumor biopsies is predictive 

of response in a unique cohort of patients treated with sequential CTLA4 and PD-1 

blockade. Gene expression profiling was performed via NanoString in longitudinal tumor 

biopsies from patients treated with sequential CTLA4 and PD-1 blockade (n = 54), 

including pretreatment anti–CTLA4 [n = 16; 5 responders (R) and 11 nonresponders 

(NR)], on-treatment anti-CTLA4 (n = 5; 3 responders and 2 nonresponders), and 

progression anti–CTLA4 biopsies (n = 15), pretreatment anti–PD-1 (n = 16; 7 responders 

and 9 nonresponders), on-treatment anti–PD-1 (doses 2–3; n = 10; 5 responders and 5 

nonresponders), and progression anti–PD-1 (n = 7) biopsies. Volcano plots illustrate the 

log2 fold change (FC) in gene expression (responders vs. nonresponders) on the x-axis 

and unadjusted P values from Student t tests between responders and nonresponders 

on the y-axis. Differentially expressed genes (FDR-adjusted P < 0.05 and FC >2 or 
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<−1/2) between responders and nonresponders were highlighted in green at the time of 

pretreatment (A) and on-treatment (B) CTLA4 blockade, pretreatment (C) and on-

treatment (D) PD-1 blockade. Interaction of time covariate (pretreatment, on-treatment) 

and response covariate (responders, nonresponders) was illustrated in volcano plots. 

Genes with significant interaction were highlighted in green (FDR-adjusted P < 0.05 and 

interaction >1.5 or <−1.5) for CTLA4 blockade (E) and PD-1 blockade (F). Venn diagram 

illustrates shared and unique genes upregulated and downregulated in CTLA4 (red) and 

PD-1 (blue) blockade over treatment time course (G).  
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Figure 13. Heatmap of 54 NanoString samples. Values are log2-transformed 

normalized mRNA count. Samples are ordered by treatment time point and by 

responsiveness to anti-CTLA-4 or anti-PD-1 therapy. Color pattern is relative with 

respect to the row within each time point, with red indicating gene up-regulation and 

green indicating gene down-regulation. 
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Figure 14. Gene-specific NanoString concordance with immune profiling by IHC in 

pre-treatment, on-treatment and progression CTLA-4 blockade samples. Gene 

expression profiling was performed via NanoString on 54 tumor biopsies. Of the custom-

designed 795 probe code set, 10 probes were represented in our immune profiling 

analysis by IHC, namely CD3, CD4, CD8, CD45RO, CD68, FoxP3, Granzyme B, LAG-3, 
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PD-1 and PD-L1. All values represented by box and whisker plots. *= p≤0.05, **= 

p≤0.01, ***= p≤0.001, n.s.= not significant.  

(The analysis was done by Dr. Pei-Ling Chen. This figure was used with permission from 

Dr. Pei-Ling Chen.) 
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Figure 15. Gene-specific NanoString concordance with immune profiling by IHC in 

pre-treatment, on-treatment and progression PD-1 blockade samples. Gene 

expression profiling was performed via NanoString on 54 tumor biopsies. Of the custom-
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designed 795 probe code set, 10 probes were represented in our immune profiling 

analysis by IHC, namely CD3, CD4, CD8, CD45RO, CD68, FoxP3, Granzyme B, LAG-3, 

PD-1 and PD-L1. All values represented by box and whisker plots. 

*= p≤0.05, **= p≤0.01, ***= p≤0.001, n.s.= not significant.  

(The analysis was done by Dr. Pei-Ling Chen. This figure was used with permission from 

Dr. Pei-Ling Chen.) 
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        We next compared GEPs between pretreatment and on- treatment time 

points to identify dynamic changes in the tumor microenvironment associated 

with each form of immune checkpoint therapy. To do this, I used the linear 

mixed-effects model to test time trend of gene expression from pretreatment to 

on-treatment and its interaction with response status for CTLA4 and PD-1 

blockade, respectively. With CTLA4 blockade, 173 upregulated DEGs and 101 

downregulated DEGs were identified in responders versus nonresponders to 

therapy (Figure 12E), with upregulated DEGs similar to those described in 

previously published datasets (102). With PD-1 blockade, 370 upregulated DEGs 

and 6 downregulated DEGs were identified in responders versus nonresponders 

(Figure 12F). Upregulated DEGs related to processes such as antigen 

presentation, T-cell activation, and T-cell homing. Importantly, we did not observe 

significant differences in GEPs in PD-1–treated patients regardless of prior 

treatment with CTLA4 blockade (Figure 16); however, the cohort was admittedly 

small and we cannot exclude the possibility that these GEPs may in part be due 

to prior treatment with CTLA4 blockade. 



	
   75	
  

 

Figure 16. Prior CTLA-4 blockade is not required for PD-1 early on-treatment 

profile. Heatmap of 28 anti-PD-1 samples, which included 7 pre-treatment samples (4 

responders, 3 non-responders) and 8 on-treatment samples (3 responders, 5 non-

responders) with prior CTLA-4 exposure, as well as 8 pre-treatment samples (6 

responders, 2 non-responders) and 5 on-treatment samples (2 responders and 3 non-

responders) that were CTLA-4 blockade-naïve. Values are median-centered and log2-
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transformed. Hierarchical clustering was performed on gene expression (higher 

expression in dark blue, lower expression in light blue).  
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        To investigate mechanistic differences between the two forms of immune 

checkpoint blockade, we next compared the response-associated DEGs (from 

pretreatment to on-treatment) in tumor biopsies of CTLA4- versus PD-1–treated 

patients. In this comparison, only 117 shared DEGs were upregulated for both 

CTLA4 and PD-1 blockade (Figure 12G), with 56 upregulated DEGs unique to 

CTLA4 blockade, and 253 unique to PD-1 blockade (FDR-adjusted P < 0.05). 

Analysis of shared downregulated DEGs revealed 99 that were unique to CTLA4 

blockade and 4 that were unique to PD-1 blockade (FDR-adjusted P < 0.05), with 

only two common DEGs in responders versus non- responders across both 

forms of therapy, including dual serine/threonine and tyrosine protein kinase 

(DSTYK) and S100 Calcium Binding Protein A1 (S100A1). 

 

3.3 Discussion 

        Immune checkpoint blockade therapies have revolutionized the treatment of 

advanced melanoma and other cancer types; however, only a fraction of patients 

benefit from these treatments as monotherapy, and robust predictors of response 

and mechanisms of therapeutic resistance are currently lacking. Though data 

suggest a correlation among clinical response, preexisting tumor-infiltrating 

lymphocytes, T-cell repertoire, tumor-intrinsic mutational load, and neoantigens, 

the demonstrated biomarker profiles between responders and nonresponders are 

often overlapping and not very robust (97, 100). 

        Together, the studies presented herein build on collective efforts to identify 

biomarkers of response and resistance to immune checkpoint blockade (39, 48, 
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100), and provide novel evidence that assessment of adaptive immune 

responses early in the course of therapy is highly predictive of response—with 

nonoverlapping immune signatures in responders versus nonresponders, 

particularly to PD-1 blockade. These data have important clinical implications and 

suggest that immune signatures in tumor biopsies should be evaluated early after 

initiation of treatment with immune checkpoint blockade rather than in 

pretreatment tumor samples—at least until better predictive markers in 

pretreatment tissue and blood samples may be identified. This is highly relevant, 

as many clinical trials of immune checkpoint inhibitors currently mandate 

assessment of immune markers only in pretreatment tumor tissue; however, our 

findings suggest that we should reconsider this approach and assess adaptive 

immune responses in patients on therapy. Of note, we recognize the immune 

signatures observed in early on-treatment samples may simply be a 

consequence of the immune response to checkpoint inhibitors, and may not 

represent bona fide mechanisms of therapeutic response. Additional studies are 

needed to fully delineate whether these immune signatures are responsible for, 

or a product of, the mechanisms underlying the response—though are admittedly 

out of the context of the current study. Importantly, similar observations have 

been made in other tumor types (110), suggesting that such an approach could 

be applicable to other solid tumors—though this hypothesis needs to be tested 

more broadly. 

        These data also offer mechanistic insight into response to immune 

checkpoint blockade, suggesting that response to PD-1 blockade is related to 
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enhanced cytolytic activity, antigen processing, and IFNγ pathway components 

(25, 101). Interestingly, VEGFA was decreased in responders and increased in 

nonresponders to therapy, suggesting a mechanism of therapeutic resistance as 

observed by others (107-109) and a potential target for therapy. The 

antiangiogenesis pathway has been shown to interact with antitumor immunity 

through multiple mechanisms. Previous studies demonstrate that increased 

VEGF secretion decreases T-cell effector function and trafficking to tumor (111, 

112) and correlates with increased PD-1 expression on CD8 T cells (108). In 

addition to direct effect on T cells, VEGF also decreases the number of immature 

dendritic cells as well as T-cell priming ability of mature dendritic cells (113), 

further contributing to decreased effector T-cell function. Angiogenic factors have 

also been shown to expand T regulatory cell (114) and myeloid-derived 

suppressor cell populations. Based on these findings and preclinical and 

translational data supporting synergy between angiogenesis inhibitors and 

immunotherapies, multiple trials of combination therapy are under way, including 

bevacizumab with anti–PD-1 therapy (109). Phase I trial data from patients with 

advanced melanoma of bevacizumab and ipilimumab support synergy with this 

combination therapy, showing a 67% disease control rate, increased CD8 T-cell 

tumor infiltration, and circulating memory CD4 and CD8 T cells with combination 

therapy (109, 115). Our data are in line with these studies and reinforce the value 

in these combination anti-VEGF/anti–PD-1 clinical trials. 

        In addition, these data provide strong evidence regarding differential effects 

of distinct forms of immune checkpoint blockade on the tumor microenvironment, 
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with insight into distinct mechanisms of response and of therapeutic resistance, 

which is in line with prior published reports in mice (102) and in humans (103). 

These differences have important clinical implications and may help guide 

rational therapeutic combinations of distinct immune checkpoint inhibitors and 

immunomodulatory agents depending on the desired treatment effect. 

        An important consideration is that the differences in immune infiltrates 

observed in responders versus nonresponders to PD-1–based therapy could be 

related to prior treatment with CTLA4 blockade, though gene expression 

analyses and IHC results in CTLA4-naïve versus CTLA4-experienced patients 

did not differ significantly. This cohort is admittedly small and results need to be 

validated in larger cohorts and in other histologies. Based on available data from 

this and other groups, biopsies should be performed early on treatment (i.e., 

within 2 to 3 cycles of therapy) to validate these studies. In addition, though these 

novel findings are provocative, they may be difficult to validate in other solid 

tumor types where acquisition of early on-treatment biopsies may be less 

feasible. Nonetheless, there is a critical need to study this phenomenon in other 

solid tumors, as results from such studies may help usher in a new paradigm for 

immune monitoring in the setting of immune checkpoint blockade—with 

emphasis placed on assessment of an adaptive immune response in an early on- 

treatment biopsy rather than in pretreatment markers. 
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Chapter 4 GENOMIC PROFILING  

Content of this chapter is based on:  
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Chang, Wei-Shen Chen, Khalida Wani, Mariana Petaccia De Macedo, Eveline 

Chen, Jacob L. Austin-Breneman, Hong Jiang, Jason Roszik, Michael T. Tetzlaff, 

Michael A. Davies, Jeffrey E. Gershenwald, Hussein Tawbi, Alexander J. Lazar, 

Patrick Hwu, Wen-Jen Hwu, Adi Diab, Isabella C. Glitza, Sapna P. Patel, Scott E. 

Woodman, Rodabe N. Amaria, Victor G. Prieto, Jianhua Hu, Padmanee Sharma, 

James P. Allison, Lynda Chin, Jianhua Zhang, Jennifer A. Wargo, and P. Andrew 

Futreal, "Integrated molecular analysis of tumor biopsies on sequential CTLA-4 

and PD-1 blockade reveals markers of response and resistance." Science 

translational medicine 9.379 (2017): eaah3560. 

Reprinted with permission from AAAS. 

 

4.1 Introductions and Rationale 

        Immune checkpoint blockade represents a major advancement in cancer 

therapy for advanced melanoma. However, durable clinical responses are seen 

in only a minority of patients treated with single-agent CTLA-4 (116) or PD-1 

blockade (116, 117). Although higher response rates are achieved when CTLA-4 

and PD-1 inhibitors are administered concurrently, this regimen also has greatly 
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increased toxicity (116, 118). There is a clinical need to predict who will benefit 

from immunotherapy and to understand mechanisms of therapeutic resistance to 

improve patient management and outcomes. Recently, evidence has pointed to a 

role of tumor molecular features (such as mutational load) (25, 41, 75, 119) and 

host immune infiltrates (40, 59, 86, 120) in response to therapy, though 

complexities exist with the predictive power of these markers (121). Studies have 

also begun to uncover mechanisms of resistance, including expression of 

immune checkpoint molecules (86, 122-129), insufficient infiltration of CD8+ T 

cells (86, 120), oncogenic pathways (43, 44, 130), transcriptomic resistance 

signatures (131), lack of sensitivity to interferon signaling (47, 132-135), defects 

in antigen processing and presentation (40, 47, 136, 137), diversity and 

abundance of bacteria within the gut microbiome (53, 138), and metabolism of 

cancer cells and T cells (139-141). However, additional insights are clearly 

needed for a more comprehensive understanding of resistance. 

        To further refine both host and tumor genomic contributions to resistance to 

checkpoint blockade, we assembled a cohort of longitudinal tissue samples from 

metastatic melanoma patients treated with sequential immune checkpoint 

blockade (CTLA-4 blockade followed by PD-1 blockade at time of progression). 

We previously performed deep immune profiling studies on these samples (via 

immunohistochemistry and gene expression profiling) and identified immune 

biomarkers of response and mechanisms of therapeutic resistance (87). To 

complement these studies, we report here the results of in-depth molecular 

analysis (via whole exome sequencing and T cell receptor sequencing) of these 
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longitudinal samples. These studies have identified putative genomic and 

molecular biomarkers of response and resistance to immune checkpoint 

blockade, demonstrating the complex interplay of host and tumor in treatment 

response. 

 

4.2 Results 

4.2.1 T cell clonality predicts response to PD-1 blockade but not CTLA-4 

blockade 

        We studied a cohort of 56 patients who were first treated with CTLA-4 

blockade, and then subsequently treated with PD-1 blockade at the time of 

progression, with longitudinal tumor samples collected as described in section 

3.2.1 (Patient Cohort, Checkpoint Blockade Treatment, and Longitudinal Tumor 

Biopsies) (Figure 17A, Table 5) by performing whole exome sequencing (WES) 

and TCR sequencing (TCR-seq) on DNA from available tumor samples (Figure 

17A, 18, 19, and Table 6). Responders were defined as patients who had 

complete resolution or partial reduction in the size of tumors by CAT scan-based 

imaging (by at least 30%), or who had prolonged stable disease (for at least 6 

months). Non-responders were defined as patients who had tumor growth of at 

least 20% on CAT scan, or had stable disease lasting less than 6 months. I first 

compared the mutation status of common melanoma driver genes (78, 142) in 

pre-treatment samples, and also assessed interferon-gamma pathway genes, 

given the importance of defects in interferon-gamma signaling in resistance to 

immune checkpoint blockade (45, 47, 143, 144), and found no significant 
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differences between responders and non-responders to therapy with regard to 

somatic point mutations or indels (Fisher’s exact test with a false discovery rate 

threshold of 0.05) (Figure 17B). Next, I compared the frequency of HLA somatic 

mutations (32) in pre-treatment samples and found that HLA somatic mutations 

were found in only one pre-treatment biopsy from a CTLA-4 blockade non-

responder.  
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Figure 17. Patient cohort diagram and genomic landscape of serial tumor 

biopsies. (A) Patients with metastatic melanoma were initially treated with CTLA-4 

blockade (n=56*: * indicates that two of the 56 patients were CTLA-4 blockade naïve. 

Both responded to PD-1 blockade, and only pre-treatment samples were available for 

WES and TCR-seq). Non-responders to CTLA-4 blockade (n=47) were then treated with 

PD-1 blockade. Double non-responders progressed on CTLA-4 blockade first and then 

progressed on PD-1 blockade. Serial tumor biopsies were collected at multiple time 

points (pre-treatment, early on-treatment, and progression on CTLA-4 blockade and PD-

1 blockade, respectively) when feasible. Whole exome sequencing and TCR sequencing 

were performed on these serial tumor biopsies. The numbers in parentheses indicate the 
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number of samples available for responders and non-responders after quality control of 

WES and TCR-seq data. R: responders, NR: non-responders, DNR: double non-

responders. (B) For each sample (columns), genomic profiles (rows) were characterized. 

Column annotations represent biopsy time (Pre-αCTLA4: pre-CTLA-4 blockade samples, 

Pre-αPD1: pre-PD-1 blockade samples, Post-αPD1: post-PD-1 blockade samples) and 

response status (red: responders indicated as R, blue: non-responders indicated as NR, 

*: failed CTLA-4 blockade but responded to PD-1 blockade) for each sample (Sample ID 

denotes patient ID followed by biopsy time: A=pre-αCTLA-4, C=post-CTLA-4/pre-PD-1, 

and E=post-PD-1). Shown at the top of the panel is mutational burden and neoantigen 

burden for each sample. Neoantigens were defined as having an IC50<500nM. Color 

scale shows the range of IC50 from 500nM to 50nM. Synonymous (light) and non-

synonymous (dark) mutations are shown in different shades of blue. Additional genomic 

profiles included selected somatic point mutations, and indels. No indels were found 

among melanoma driver genes. When multiple mutations were found in one gene, the 

following precedence rule was applied: Nonsense mutation > Frame-shift indel > Splice 

site mutation > Missense mutation > In-frame indel.  
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sample patient time aCTLA4_response aPD1_response tumor_purity n_nonsynonymous n_neoantigen n_clones_by_expands n_clones_by_sciclone n_copy_gain n_copy_loss
31A 31 preCTLA4 response NA 0.85 819 997 9 2 88 0
34A 34 preCTLA4 nonresponse response 0.85 3123 5628 17 6 917 1129
50A 50 preCTLA4 nonresponse nonresponse 0.95 3445 6037 17 2 1008 1581
9A 9 preCTLA4 nonresponse response 0.85 84 117 5 3 674 2400
5A 5 preCTLA4 response NA 0.95 404 296 6 3 0 0
7A 7 preCTLA4 nonresponse response 0.85 67 115 4 2 38 0
25A 25 preCTLA4 nonresponse nonresponse 0.95 273 477 12 3 33 1675
32A 32 preCTLA4 nonresponse nonresponse 0.75 77 72 5 2 359 2051
47A 47 preCTLA4 nonresponse response 0.85 2047 2958 9 3 3 0
41A 41 preCTLA4 nonresponse nonresponse 0.95 172 176 8 4 579 2285
20A 20 preCTLA4 nonresponse nonresponse 0.9 2520 3982 14 2 0 161
33A 33 preCTLA4 nonresponse nonresponse 0.9 232 266 5 1 31 0
12A 12 preCTLA4 response NA 0.95 242 311 9 6 453 171
54A 54 preCTLA4 nonresponse nonresponse 0.85 514 686 14 10 283 1012
18A 18 preCTLA4 nonresponse nonresponse 0.95 71 124 7 2 715 110
28A 28 preCTLA4 nonresponse nonresponse 0.6 596 372 12 5 0 993
53A 53 preCTLA4 nonresponse nonresponse 0.9 555 1114 17 8 325 1481
22A 22 preCTLA4 response NA 0.85 589 901 8 3 699 130
23A 23 preCTLA4 nonresponse nonresponse 0.95 69 75 4 2 442 1326
6B 6 onCTLA4 nonresponse response 0.85 63 52 6 2 14 45
22B 22 onCTLA4 response NA 0.95 52 74 6 2 32 938
37B 37 onCTLA4 response NA 0.5 78 155 3 1 62 0
18C 18 postCTLA4_prePD1 nonresponse nonresponse 0.4 64 103 3 1 209 119
24C 24 postCTLA4_prePD1 nonresponse response 0.95 1101 1110 17 5 1 0
33C 33 postCTLA4_prePD1 nonresponse nonresponse 0.9 611 627 13 4 208 1106
50C 50 postCTLA4_prePD1 nonresponse nonresponse 0.8 3388 5961 12 3 0 7
15C 15 postCTLA4_prePD1 NA response 0.9 842 1453 11 5 827 995
9C 9 postCTLA4_prePD1 nonresponse response 0.9 90 122 5 3 458 41
26C 26 postCTLA4_prePD1 nonresponse nonresponse 0.85 1365 2852 15 5 56 4149
29C 29 postCTLA4_prePD1 nonresponse nonresponse 0.95 316 161 10 6 362 0
25C 25 postCTLA4_prePD1 nonresponse nonresponse 0.95 266 551 11 5 146 2716
16C 16 postCTLA4_prePD1 nonresponse nonresponse 0.95 883 1286 15 6 1101 2194
21C 21 postCTLA4_prePD1 nonresponse nonresponse 0.9 647 1039 12 4 464 0
54C 54 postCTLA4_prePD1 nonresponse nonresponse 0.8 484 608 11 3 101 0
3C 3 postCTLA4_prePD1 nonresponse nonresponse 0.8 328 499 11 6 0 217
4D 4 onPD1 nonresponse nonresponse 0.85 128 301 9 5 6 1111
7D 7 onPD1 nonresponse response 0.1 18 25 3 1 0 0
9D 9 onPD1 nonresponse response 0.2 63 103 4 1 0 0
1D 1 onPD1 nonresponse nonresponse 0.85 108 144 10 6 964 4919
16D 16 onPD1 nonresponse nonresponse 0.95 895 1562 14 4 574 2
28D 28 onPD1 nonresponse nonresponse 0.95 610 371 13 4 646 698
47D 47 onPD1 nonresponse response 0.2 299 438 3 2 0 0
3D1 3 onPD1 nonresponse response 0.45 119 144 3 2 4 0
3D2 3 onPD1 nonresponse nonresponse 0.3 137 176 3 1 0 0
53D 53 onPD1 nonresponse nonresponse 0.75 631 1416 13 8 402 1458
26E 26 postPD1 nonresponse nonresponse 0.95 1259 2619 15 5 60 3665
49E 49 postPD1 nonresponse nonresponse 0.9 1439 2473 16 3 158 2979
20E 20 postPD1 nonresponse nonresponse 0.85 2484 3950 10 5 NA NA
42E 42 postPD1 nonresponse nonresponse 0.95 212 287 10 6 688 2989
45E 45 postPD1 nonresponse nonresponse 0.85 499 184 12 1 NA NA
2E 2 postPD1 nonresponse nonresponse 0.9 211 172 11 3 1570 2815

 

Table 5. Sample information, tumor purity, mutational load, neoantigen load, 

number of clones per tumor, and burden of copy number alterations 
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Figure 18. Workflow diagram of multidimensional profiling analysis. Peripheral 

blood and serial tumor biopsies were collected from patients (n=56). Using DNA and 

RNA extracted from formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, we 

performed whole exome sequencing and TCR sequencing. NanoString gene expression 

profiling data were obtained from immune profiling. Genomic profiles (red) were 

characterized from whole exome sequencing data. Immune profiles (blue) were 

characterized from TCR sequencing data and NanoString gene expression data. 

Characterized genomic profiles included somatic point mutations, indels, HLA somatic 

mutations, copy number alterations, neoantigens, and intratumor heterogeneity 

measures (number of clones per tumor). TCR clonality was derived from enumeration of 

identified TCR clonotypes. Immune scores were calculated from gene expression of 

selected immune-related genes (cytolytic markers, HLA molecules, IFN-γ pathway, 

chemokines, and adhesion molecules). Bolded text shows the variables analyzed. Italics 

show the software used to generate the associated variables 
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Figure 19. Distribution of sequencing coverage and tumor purities across 

samples. (A) The difference of mean sequencing coverage across groups stratified by 

five biopsy time points and response status (NR: non-responders, R: responders). (B) 

The difference of tumor purities across groups stratified by five biopsy time points and 

response status. Tumor purity was assessed by two pathologists. 
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Timepoint Pre+CTLA+4 Pre+CTLA+4 On+CTLA+4 On+CTLA+4
Response response nonresponse response nonresponse
Mutational7load 513$(248) 923$(1209) 65$(18) 63$(0)
Neoantigen7load 626$(374) 1479$(2106) 114$(57) 52$(0)
Burden7of7copy7number7loss 75$(88) 1080$(856) 469$(663) 45$(0)
Immune7scores 7$(0.6) 8$(0.54) 9.1$(0.98) 7.1$(0.85)
TCR7clonality 0.013$(0.008) 0.02$(0.02) 0.158$(0.118) 0.044$(0.03)

Timepoint Post+CTLA+4/Pre+PD+1 Post+CTLA+4/Pre+PD+1 On+PD+1 On+PD+1 Post+PD+1
Response response nonresponse response nonresponse nonresponse
Mutational7load 677$(525) 835$(969) 124$(123) 418$(337) 1017$(889)
Neoantigen7load 895$(691) 1368$(1795) 177$(180) 661$(647) 1614$(1618)
Burden7of7copy7number7loss 345$(563) 1050$(1477) 0$(0) 1364$(1836) 3112$(377)
Immune7scores 8$(1.5) 8.4$(1.3) 10.5$(0.48) 6.7$(0.94) 7.8$(1.2)
TCR7clonality 0.11$(0.09) 0.041$(0.046) 0.145$(0.08) 0.015$(0.01) 0.074$(0.055)

*$Mean$value$(standard$deviation)  

Table 6. Summary measure of the data across clinical subgroups 
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        In our cohort, we did not observe any statistically significant differences in 

mutational load or predicted neoantigen load in pre-treatment samples from 

responders versus non-responders to therapy by either CTLA-4 or PD-1 

blockade (Figure 20A-20B) (mutational load: P = 0.597 in pre-CTLA-4 blockade 

samples, P = 0.937 in pre-PD-1 blockade samples; neoantigen load: P = 0.736 in 

pre-CTLA-4 blockade samples, P = 0.937 in pre-PD-1 blockade samples), which 

is in contrast to published literature (25, 41, 75, 119) and may be due to limited 

sample size. Further, no significant differences were observed in intratumor 

heterogeneity (ITH), estimated as the number of clones per tumor, between 

responders and non-responders to immune checkpoint blockade (Figure 21). 
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Figure 20. Mutational load, neoantigen load, and clinical response. Boxplots 

summarize mutational load (A) and neoantigen load (B) by response status (blue: non-

responders, red: responders) in pre-CTLA-4 blockade samples and pre-PD-1 blockade 

samples; median values (lines) and interquartile range (whiskers) are indicated. P values 

were calculated using a two-sided Mann-Whitney U test (P = 0.597 in pre-CTLA-4 

blockade samples, P = 0.937 in pre-PD-1 blockade samples for mutational load; P = 

0.736 in pre-CTLA-4 blockade samples, P = 0.937 in pre-PD-1 blockade samples for 

neoantigen load). 
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Figure 21. Intratumor heterogeneity and clinical response. Intratumor heterogeneity 

was estimated as the number of clones per tumor for each sample. The number of 

clones per tumor was estimated by EXPANDS and SciClone independently. There was 

moderate correlation between the estimated number of clones per tumor from two 

algorithms (correlation coefficient = 0.59; Spearman rank correlation, P = 0.00037). 

Boxplots summarize the number of clones per tumor estimated from each software by 

response status (blue: non-responders, red: responders) in pre-CTLA-4 blockade 

samples and pre-PD-1 blockade samples; median values (lines) and interquartile range 

(whiskers) are indicated. P values were calculated using a two-sided Mann-Whitney U 

test (P > 0.05 for all). 
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        We next performed sequencing of the CDR3 variable region of the β-chain 

of the T cell receptor (TCR-seq) to understand the role of the T cell repertoire in 

response and resistance to checkpoint blockade (Table 7). Although no 

significant differences were observed in TCR clonality when comparing 

responders to non-responders in the context of CTLA-4 blockade at the pre-

treatment (P = 0.96) and on-treatment time points (P = 0.2) (Figure 22), an 

increase in clonality was noted in a subset of patients treated with CTLA-4 

blockade (Figure 23). Among 8 patients with matched longitudinal tumor samples 

(pre-CTLA-4 and pre-PD-1, n=8) available, all three PD-1 blockade responders 

showed an increase in TCR clonality on CTLA-4 blockade, whereas this was the 

case in only 1 out of 5 non-responders to PD-1 blockade (Figure 23). The one 

patient (Patient 50) classified as a non-responder in the context of the trial criteria 

who demonstrated an increase in clonality appeared to have some clinical benefit 

from treatment with PD-1 blockade, as he continued on PD-1 blockade therapy 

for a total of 24 doses and had no evidence of disease at last follow up. Higher 

TCR clonality was observed in responders to PD-1 blockade at both pre- (P = 

0.037) and on-treatment (P = 0.032) time points (Figure 22).  
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sample patient time aCTLA4_response aPD1_response Clonality
10A 10 preCTLA4 response NA 0.05527087
10B 10 onCTLA4 response NA 0.04997955
12A 12 preCTLA4 response NA 0.01794051
15C 15 postCTLA4_prePD1 NA response 0.00582951
16C 16 postCTLA4_prePD1 nonresponse nonresponse 0.01731895
16D 16 onPD1 nonresponse nonresponse 0.01817108
18A 18 preCTLA4 nonresponse nonresponse 0.0544221
18B 18 onCTLA4 nonresponse nonresponse 0.01083352
18C 18 postCTLA4_prePD1 nonresponse nonresponse 0.05261548
19D 19 onPD1 nonresponse nonresponse 0.00829378
19E 19 postPD1 nonresponse nonresponse 0.0546851
1B 1 onCTLA4 nonresponse nonresponse 0.05518331
1D 1 onPD1 nonresponse nonresponse 0.02867525
22B 22 onCTLA4 response nonresponse 0.07514578
23A 23 preCTLA4 nonresponse nonresponse 0.02615795
23B 23 onCTLA4 nonresponse nonresponse 0.08747733
24A 24 preCTLA4 nonresponse response 0.08637499
24C 24 postCTLA4_prePD1 nonresponse response 0.14294231
24D 24 onPD1 nonresponse response 0.23178676
25A 25 preCTLA4 nonresponse nonresponse 0.02639377
25C 25 postCTLA4_prePD1 nonresponse nonresponse 0.01237117
25E 25 postPD1 nonresponse nonresponse 0.00649915
26E 26 postPD1 nonresponse nonresponse 0.1357679
27B 27 onCTLA4 response nonresponse 0.1382599
2A 2 preCTLA4 nonresponse nonresponse 0.00428925
2E 2 postPD1 nonresponse nonresponse 0.03395957
31A 31 preCTLA4 response nonresponse 0.01887839
33C 33 postCTLA4_prePD1 nonresponse nonresponse 0.07783938
37A 37 preCTLA4 response NA 0.03382181
37B 37 onCTLA4 response NA 0.24256822
3A 3 preCTLA4 nonresponse nonresponse 0.01494006
3C 3 postCTLA4_prePD1 nonresponse nonresponse 0.01626247
3D1 3 onPD1 nonresponse response 0.02786906
40C 40 postCTLA4_prePD1 nonresponse nonresponse 0.00144045
42C 42 postCTLA4_prePD1 nonresponse nonresponse 0.04860959
42E 42 postPD1 nonresponse nonresponse 0.02891788
45E 45 postPD1 nonresponse nonresponse 0.05604353
47A 47 preCTLA4 nonresponse response 0.01718291
47D 47 onPD1 nonresponse response 0.17340681
49C 49 postCTLA4_prePD1 nonresponse nonresponse 0.02107852
49E 49 postPD1 nonresponse nonresponse 0.03817971
4A 4 preCTLA4 nonresponse nonresponse 0.00437446
4C 4 postCTLA4_prePD1 nonresponse nonresponse 0.0021321
4D 4 onPD1 nonresponse nonresponse 0.00511381
50A 50 preCTLA4 nonresponse nonresponse 0.02263149
50C 50 postCTLA4_prePD1 nonresponse nonresponse 0.16309696
50E 50 postPD1 nonresponse nonresponse 0.17025982
52C 52 postCTLA4_prePD1 nonresponse response 0.17419149
54C 54 postCTLA4_prePD1 nonresponse nonresponse 0.04147743
56D 56 onPD1 nonresponse response 0.21286792
5A 5 preCTLA4 response nonresponse 0.00323339
6B 6 onCTLA4 nonresponse response 0.02449196
6C2 6 postCTLA4_prePD1 nonresponse response 0.07375047
7A 7 preCTLA4 nonresponse nonresponse 0.02885111
7D 7 onPD1 nonresponse response 0.14695446
8A 8 preCTLA4 nonresponse response 0.02901636
8C 8 postCTLA4_prePD1 nonresponse response 0.25088206
9A 9 preCTLA4 nonresponse response 0.02939994
9C 9 postCTLA4_prePD1 nonresponse response 0.23396692  

Table 7. TCR clonality 
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Figure 22. TCR clonality and clinical response. Boxplots summarize TCR clonality by 

response status (blue: non-responders, red: responders) in pre-CTLA-4 blockade 

samples, pre-PD-1 blockade samples, on-CTLA-4 blockade samples, and on-PD-1 

blockade samples, respectively; median values (lines) and interquartile range (whiskers) 

are indicated. P values were calculated using a two-sided Mann-Whitney U test (P > 

0.05 for TCR clonality in pre-CTLA-4 blockade and on-CTLA-4 blockade samples, P = 

0.037 for TCR clonality in pre-PD-1 blockade samples and P = 0.032 for TCR clonality in 

on-PD-1 blockade samples.). 
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Figure 23. The effects of previous CTLA-4 blockade exposure on the baseline TCR 

clonality of pre-PD-1 blockade samples. Data show the patient-matched TCR clonality 

at two time points (pre-CTLA-4 and pre-PD-1) (red line: PD-1 blockade responders, blue 

line: PD-1 blockade non-responders, *: PD-1 blockade non-responder, Patient 50, who 

continued on with pembrolizumab off protocol for a total of 24 doses and had no 

evidence of disease at last follow up). 
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        Next, I sought to investigate the association between TCR clonality and 

immune activation in the tumor microenvironment. To do so, I first calculated the 

immune score from gene expression profiling data in our cohort. The immune 

score was defined as the geometric mean of gene expression in selected genes 

including cytolytic markers, HLA molecules, IFN-γ pathway, selected 

chemokines, and adhesion molecules related to tumor rejection in the context of 

the immunologic constant of rejection (145, 146) (Table 8). Although no 

association was observed between TCR clonality and immune scores in pre-

CTLA-4 blockade samples, a significant positive correlation was observed 

between TCR clonality and immune scores in pre-PD-1 blockade samples (P = 

0.0018, Figure 24).  
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sample immune*score
5A 8.17
7A 8.55
8A 7.76
9A 7.83
10A 7.53
18A 7.82
19A 8.02
22A 6.86
23A 7.54
25A 8.8
31A 8.2
37A 8.23
42A 9.32
43A 7.21
47A 7.54
50A 7.13
6B 7.78
18B 6.57
22B 8.47
27B 10.45
37B 9.86
2C 10.12
3C 8.6
4C 7.59
6C1 7.22
6C2 6.08
8C 10.17
9C 9.84
15C 7.86
16C 7.62
18C 9.72
24C 9.31
25C 6.05
49C 8.3
50C 8.67
52C 9.88
54C 9.14
1D 6.45
3D1 10.04
4D 5.48
7D 10.48
9D 10.04
16D 8.08
19D 6.55
24D 11.22
40D 7.06
47D 10.5
2E 8.11
19E 5.84
26E 7.04
43E 6.03
45E 8.74
49E 9.06
50E 8.46  

Table 8. Immune scores (NanoString) in our cohort 
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Figure 24. The correlation between TCR clonality and immune scores. Data show 

the correlation between TCR clonality and immune scores for the pre-CTLA-4 blockade 

biopsies and the pre-PD-1 blockade biopsies. Spearman rank correlation was used for 

correlation coefficient. 
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4.2.2 High copy number loss burden is associated with poor response to 

immune checkpoint blockade 

        Given the lack of clear differences in point mutation and indel status in 

driver genes between responders and non-responders to CTLA-4 and PD-1 

blockade, I then investigated whether copy number alterations (CNAs) may play 

a role in response and resistance to CTLA-4 and PD-1 blockade. With regards to 

specific genes, I did not find any significant association between copy number 

gain or loss status and response to therapy in pre-treatment biopsies for either 

therapy (Fisher’s exact test with a false discovery rate threshold of 0.05). Given a 

recent report demonstrating the impact of loss of HLA Class I and β2-

microglobulin in resistance to cytolytic activity (40), I next examined the 

relevance of copy number loss in these genes within our cohort. In this study, 

although we observed no significant loss of HLA class I genes, loss of β2-

microglobulin was detected in 4 non-responders to CTLA-4 blockade (with focal 

copy number loss in 2 patients and arm-level copy number loss in 2 patients). 

Focal copy number loss of β2-microglobulin was also observed in 1 pre-

treatment sample from a CTLA-4 blockade naïve PD-1 blockade responder. To 

assess CNAs at the whole genome sample level, I defined burden of CNAs as 

the total number of genes with copy number gain or loss per sample. On testing 

the association between burden of CNAs and response to therapy in pre-

treatment biopsies of patients on CTLA-4 or PD-1 blockade, we observed no 

significant differences in burden of copy number gain or loss (P > 0.05 for all 

comparisons) in the context of individual agent response (Figure 25). However, a 
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trend toward higher burden of copy number loss was observed in pre-CTLA-4 

blockade biopsies from CTLA-4 blockade responders compared to CTLA-4 

blockade non-responders, though statistical significance was not attained (P = 

0.077).  
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Figure 25. Burden of copy number alterations in responders versus non-

responders. Boxplots summarize burden of copy number gain or loss in four groups of 

interest: pre-CTLA-4 blockade responders, pre-CTLA-4 blockade non-responders, pre-

PD-1 blockade responders, and pre-PD-1 blockade non-responders; median values 

(lines) and interquartile range (whiskers) are indicated. P values were calculated using a 

two-sided Mann-Whitney U test. (P = 0.077 for pre-CTLA-4 blockade responders vs. 

non-responders, P = 0.607 for pre-PD-1 blockade responders vs. non-responders, and P 

> 0.05 for all others) NR: non-responders, R: responders. 
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        I next investigated the burden of copy number alterations in pre-CTLA-4 

blockade biopsies from patients who progressed on CTLA-4 blockade first and 

then progressed on PD-1 blockade, termed double non-responders (DNRs) 

because we hypothesized that the association between burden of copy number 

alterations and resistance might be stronger in patients with potentially more 

resistant phenotype (failure on both treatments) than in patients who failed a 

single agent. We observed no significant differences in burden of copy number 

gain but significantly higher burden of copy number loss in pre-CTLA-4 blockade 

biopsies from DNRs compared to pre-CTLA-4 blockade biopsies from CTLA-4 

blockade responders (P = 0.042) (Figure 26 and 27). We noted a strikingly higher 

burden of copy number loss in post-PD-1 blockade biopsies compared to pre-

CTLA-4 blockade biopsies from CTLA-4 blockade responders (P = 0.029) (Fig 

2A, fig. S7). The burden of copy number loss was not correlated with mutational 

load at any of the time points studied (Figure 28), suggesting that the association 

is not readily attributable to decreased mutational burden. 
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Figure 26. Burden of copy number alterations in responders versus double non-

responders. Boxplots summarize burden of copy number gain or loss in five groups of 

interest: responders to CTLA-4 blockade at pre-treatment, pre-CTLA-4 blockade double 

non-responders, responders to PD-1 blockade at pre-treatment, pre-PD-1 blockade 

double non-responders, and post-PD-1 blockade double non-responders; median values 

(lines) and interquartile range (whiskers) are indicated. P values were calculated using a 

two-sided Mann-Whitney U test. (P = 0.042 for pre-CTLA-4 blockade responders vs. 

double non-responders, P = 0.029 for pre-CTLA-4 blockade responders vs. post-PD-1 

blockade double non-responders, and P > 0.05 for all others) DNR: double non-

responders, NR: non-responders, R: responders. In bold are highlighted the Pre-CTLA-4 

blockade and Post-PD-1 blockade double non-responder (DNR) groups.   
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Figure 27. Copy number profiles of responders and double non-responders. Copy 

ratios (tumor/normal) were plotted in genomic coordinates for responders (pre-CTLA-4 

blockade, pre-PD-1 blockade) and double non-responders (post-PD-1 blockade). Red 
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lines indicate copy number segmented values. The dotted lines indicate the copy 

number. 
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Figure 28. Correlation between burden of copy number loss and mutational load. 

Data show the correlation between burden of copy number loss and mutational load. 

Spearman rank correlation was used for correlation coefficient (correlation coefficient = -

0.18; Spearman rank correlation, P = 0.53 for pre-CTLA-4 blockade samples, correlation 

coefficient = 0.07, P = 0.82 for pre-PD-1 blockade samples, correlation coefficient = 0.4, 

P = 0.75 for post-PD-1 blockade double non-responder samples.). 
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        To gain insight into mechanisms through which CNAs could influence 

response to therapy, I next investigated if there were any recurrent regions of 

copy number loss in double non-responders with high burden of copy number 

loss (> 2,000 genes with copy number loss). Recurrent copy number loss was 

observed at the arm level in chromosome 6q and 10q, and recurrent focal copy 

number loss was observed in 8p23.3, 11p15.5, 11q23, 11q24, and 11q25 (Figure 

29, Table 9). In these regions with recurrent copy number loss, tumor suppressor 

genes were located in chromosomes 6q (FOXO3, PRDM1, PTPRK, TNFAIP3, 

and ESR1), 10q (NCOA4, BMPR1A, PTEN, FAS, SUFU, and TCF7L2), and 

11q23.3 (CBL, ARHGEF12). These data suggest that high burden of copy 

number loss in double non-responders is associated with recurrent copy number 

loss in tumor suppressor genes located in chromosomes 6q, 10q, and 11q23.3. 
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Figure 29. Recurrent copy number loss in double non-responders. Segment Gain 

or Loss (SGOL) scores were calculated for each copy number segments as sum of log2 

copy ratios (tumor/normal) of each copy number segment across all double non-

responder samples with burden of copy number loss higher than 2,000 (n=9). Higher 

positive SGOL scores indicate higher copy number gain of copy number segments and 

lower negative SGOL scores indicate higher copy number loss of copy number 

segments. Tumor suppressor genes with recurrent copy number loss are indicated in 

chromosome 6q, 10q, and 11q23.3. 
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Recurrent(Samples Status Chromosome MCR.start MCR.end Cytobands
32A,41A,25C,49E,2E loss chr6 64694354 100061533 q12,q13,q14.1,q14.2,q14.3,q15,q16.1,q16.2
32A,41A,26C,25C,49E,2E loss chr6 100061533 126210395 q16.2,q16.3,q21,q22.1,q22.2,q22.31,q22.32
32A,41A,26C,25C,2E loss chr6 126210395 129722389 q22.32,q22.33
32A,41A,26C,25C,49E,2E loss chr6 129722389 134304023 q22.33,q23.1,q23.2
32A,41A,26C,49E,2E loss chr6 134304023 136359446 q23.2,q23.3
26E,32A,41A,26C,49E loss chr6 137026266 137519127 q23.3
26E,32A,41A,26C,49E,2E loss chr6 137519127 170190200 q23.3,q24.1,q24.2,q24.3,q25.1,q25.2,q25.3,q26,q27
32A,41A,26C,49E,2E loss chr6 170190200 170595317 q27
26E,41A,26C,49E,2E loss chr8 182934 2148771 p23.3
26E,32A,41A,26C,2E gain chr8 144789269 146115367 q24.3
41A,25C,16C,49E,42E,2E loss chr10 42965636 45939136 q11.21
41A,25C,49E,42E,2E loss chr10 45939136 45958881 q11.21
41A,25C,49E,42E,2E loss chr10 46965017 46965018 q11.22
41A,25C,16C,49E,42E,2E loss chr10 46965727 47000146 q11.22
41A,25C,49E,42E,2E loss chr10 47000146 47087609 q11.22
41A,25C,49E,42E,2E loss chr10 48429578 116251686 q11.22,q11.23,q21.1,q21.2,q21.3,q22.1,q22.2,q22.3,q23.1,q23.2,q23.31,q23.32,q23.33,q24.1,q24.2,q24.31,q24.32,q24.33,q25.1,q25.2,q25.3
41A,25C,49E,42E,2E loss chr10 118355695 127436411 q25.3,q26.11,q26.12,q26.13
41A,25C,49E,42E,2E loss chr10 127461154 127530325 q26.13,q26.2
41A,16C,49E,42E,2E loss chr10 127708428 127734716 q26.2
41A,25C,16C,49E,42E,2E loss chr10 127734716 135216340 q26.2,q26.3
41A,25C,16C,49E,42E loss chr10 135216340 135269955 q26.3
26E,26C,25C,49E,42E loss chr11 1021268 1212967 p15.5
26E,26C,25C,49E,42E loss chr11 1213174 1213177 p15.5
26E,26C,25C,49E,42E loss chr11 1213204 1213245 p15.5
26E,41A,26C,25C,49E,42E loss chr11 1213245 1213533 p15.5
26E,26C,25C,49E,42E loss chr11 1215580 1253942 p15.5
26E,26C,25C,49E,42E loss chr11 1255773 1309956 p15.5
26C,25C,16C,42E,2E loss chr11 118765267 134202036 q23.3,q24.1,q24.2,q24.3,q25

*MCR:@Minimum@Common@Regions@(by@cghMCR)  

Table 9. Recurrent copy number alterations in double non-responders with burden 

of copy number loss > 2000 
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4.2.3 An independent patient cohort shows copy number loss as a putative 

resistance mechanism 

        To investigate the impact of higher burden of copy number loss on 

resistance in another cohort of patients on immune checkpoint blockade, we 

obtained WES SAM files from 110 melanoma patients and RNA-seq data from a 

subset of 42 melanoma patients (25) and reanalyzed the data utilizing the same 

informatics pipeline and calling criteria. I then tested the association between the 

burden of CNAs (Table 10) and response to therapy in pre-treatment biopsies on 

CTLA-4 blockade using the same response criteria (clinical benefit, long-term 

survival with no clinical benefit, and minimal or no clinical benefit) as previously 

described (25). Although the burden of copy number gain was not significantly 

associated with clinical benefit from CTLA-4 blockade, a lower burden of copy 

number loss was significantly associated with clinical benefit (P = 0.016) (Figure 

30). As observed in our cohort, the burden of copy number loss once again did 

not correlate with mutational load (Figure 31). When examining the regions 

associated with recurrent copy number loss in the no clinical benefit subgroup, 

recurrent copy number loss was observed at arm level in chromosome 9p and 

10q, and recurrent focal copy number loss was observed in 4q35.2, 6q25, 6q27, 

and 11p15.5 (Figure 32). Among these regions, tumor suppressor genes were 

observed in 6q25.1 (ESR1) and 10q (NCOA4, BMPR1A, PTEN, FAS, and 

SUFU), as seen within our cohort. Of note, no recurrent copy number loss was 

observed in any tumor suppressor gene in the clinical benefit subgroup and long-

term survival subgroup.  
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patient group n_copy_gain n_copy_loss
Pat02 response 27 1471
Pat03 nonresponse 0 865
Pat04 response 164 2971
Pat06 nonresponse NA NA
Pat07 response 820 753
Pat08 nonresponse 162 3976
Pat100 nonresponse 4 1099
Pat101 nonresponse 771 4100
Pat103 response 0 0
Pat104 nonresponse 1070 12
Pat105 response 0 0
Pat106 nonresponse NA NA
Pat109 nonresponse 0 328
Pat11 long8survival 27 0
Pat110 nonresponse 11 1152
Pat113 response 845 4053
Pat115 nonresponse 679 8146
Pat117 response 0 98
Pat118 nonresponse 430 65
Pat119 long8survival 157 2811
Pat121 nonresponse NA NA
Pat123 response 0 0
Pat124 nonresponse 1012 2573
Pat126 response 435 533
Pat127 nonresponse 937 6204
Pat128 nonresponse 1554 118
Pat129 nonresponse 683 1093
Pat13 long8survival 0 264
Pat130 nonresponse 344 6043
Pat131 nonresponse 29 0
Pat132 response NA NA
Pat133 nonresponse 329 695
Pat135 nonresponse 711 2929
Pat138 response 145 217
Pat139 nonresponse 755 4170
Pat14 nonresponse 356 132
Pat140 nonresponse 1076 453
Pat143 nonresponse 869 5385
Pat147 nonresponse 0 18
Pat148 nonresponse 13 1576
Pat15 nonresponse 1466 4970
Pat151 nonresponse 198 1722
Pat157 nonresponse 642 2619
Pat159 long8survival 123 2002
Pat16 long8survival 318 2139
Pat160 nonresponse 2780 2244
Pat162 nonresponse 767 2096
Pat163 long8survival 149 2910
Pat165 nonresponse NA NA
Pat166 nonresponse NA NA
Pat167 nonresponse 884 2319
Pat168 nonresponse 1308 3186
Pat17 nonresponse 155 1948
Pat170 nonresponse 0 1893  
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Pat171 nonresponse NA NA
Pat174 response 0 65
Pat175 nonresponse NA NA
Pat18 long5survival 304 246
Pat19 nonresponse 141 183
Pat21 response 125 0
Pat24 response 367 660
Pat25 nonresponse 0 0
Pat27 long5survival 456 0
Pat28 long5survival 0 0
Pat29 response 84 0
Pat32 nonresponse 451 2
Pat33 nonresponse 122 329
Pat36 nonresponse 34 0
Pat37 nonresponse 1281 3368
Pat38 response 253 72
Pat39 response 12 0
Pat40 nonresponse 177 1779
Pat41 nonresponse 0 1883
Pat43 nonresponse 799 1059
Pat44 nonresponse 0 1310
Pat45 nonresponse 513 5015
Pat46 nonresponse 296 1497
Pat47 response 177 1727
Pat49 response 285 0
Pat50 nonresponse 246 4819
Pat54 nonresponse 7 1861
Pat55 nonresponse 141 1174
Pat56 nonresponse 684 5341
Pat57 nonresponse 669 1403
Pat58 nonresponse 198 4857
Pat59 nonresponse 106 0
Pat60 nonresponse 443 131
Pat62 nonresponse 0 1658
Pat63 response 317 1213
Pat64 nonresponse 1207 1429
Pat66 response 1073 100
Pat67 nonresponse 404 1795
Pat70 nonresponse 452 1502
Pat71 nonresponse 0 10
Pat73 response NA NA
Pat74 nonresponse 267 1468
Pat76 nonresponse 0 84
Pat77 response 0 27
Pat78 nonresponse NA NA
Pat79 response 472 2815
Pat80 response 1211 3403
Pat81 nonresponse NA NA
Pat82 nonresponse 297 2101
Pat83 long5survival 448 0
Pat85 nonresponse 143 0
Pat86 nonresponse 682 3385
Pat88 response 621 2017
Pat90 response 978 6764
Pat92 nonresponse NA NA
Pat98 nonresponse 471 1635  

Table 10. Burden of copy number alterations in the Van Allen cohort 
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Figure 30. Burden of copy number alterations in each clinical response group 

from an independent cohort. Boxplots summarize burden of copy number gain or loss 

in three patient subgroups from the Van Allen cohort: clinical benefit, long-term survival 

with no clinical benefit, and minimal or no clinical benefit; median values (lines) and 

interquartile range (whiskers) are indicated. P values were calculated using a two-sided 

Mann-Whitney U test (P = 0.016 for burden of copy number loss in clinical benefit vs. 

minimal or no clinical benefit, and P > 0.05 for all others). 
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Figure 31. Correlation between burden of copy number loss and mutational load in 

the Van Allen cohort. Data show the correlation between burden of copy number loss 

and mutational load in Van Allen cohort. Spearman rank correlation was used for 

correlation coefficient (correlation coefficient = -0.028, P = 0.79). 
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Figure 32. Segment Gain or Loss (SGOL) scores in three patient subgroups from 

the Van Allen cohort. Plots show the recurrent copy number alterations in genomic 

coordinates. SGOL scores were calculated as sum of log2 copy ratios of copy number 

segment in each group (sample size of each group is indicated in parentheses). In 

minimal or no clinical benefit group, samples with burden of copy number loss lower than 

100 (Pat25, Pat32, Pat36, Pat59, Pat71, Pat76, Pat85, Pat104, Pat118, Pat131, and 

Pat147) were excluded from analysis. Higher positive SGOL scores indicate higher copy 

number gain in copy number segments, and lower negative SGOL scores indicate 

higher copy number loss in copy number segments. Copy number segments with both 

copy number gain and copy number loss present were excluded. Tumor suppressor 

genes with recurrent copy number loss are indicated. 
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        Next, I investigated whether the recurrent region of copy number loss 

identified in our cohort (Table 9) is also associated with CTLA-4 blockade 

resistance in this independent cohort (Van Allen cohort).  To do so, I calculated 

the burden of copy number loss in this independent cohort as the total number of 

genes with copy number loss in the recurrent regions of copy number loss 

identified in our cohort. We observed a significantly higher burden of copy 

number loss in the minimal or no clinical benefit groups compared to the clinical 

benefit group (P = 0.0034) (Figure 33). This result suggests that the recurrent 

regions of copy number loss in our cohort are also associated with CTLA-4 

blockade resistance in this independent cohort.  
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Figure 33. Burden of recurrent CNAs in patients in Van Allen cohort. Boxplots 

summarize burden of copy number gain or loss in recurrent regions of copy number loss 

identified from our cohort in each response group from the Van Allen cohort; median 

values (lines) and interquartile range (whiskers) are indicated. P values were calculated 

using a two-sided Mann-Whitney U test. (P = 0.0034 for clinical benefit group vs. minimal 

or no clinical benefit group, and P > 0.05 for all others)  

 

 

 

 



	
   121	
  

       I next sought to determine the relative contribution of copy number loss 

burden from chromosome 10 in CTLA-4 blockade resistance. I was specifically 

interested in copy number loss from chromosome 10 because a recent study 

(147) showed functional evidence that recurrent loss of the entire chromosome 

10 can result in collective repression of multiple tumor suppressor genes. This is 

also consistent with the observation that chromosome 10 harbored the largest 

number of tumor suppressor genes with recurrent copy number loss in both our 

cohort (Figure 29) and the independent cohort (Figure 32). The logistic 

regression model showed that the odds of resistance to CTLA-4 blockade were 

exp(1.504) = 4.5 (95% CI: 1.56 – 13) times greater in patients with high burden of 

copy number loss in chromosome 10 than in patients with low burden of copy 

number loss in chromosome 10 (Table 11) and the odds of resistance were 

exp(1.069) = 2.91 (95% CI: 1.07 – 7.89) times greater in patients with high 

burden of copy number loss outside chromosome 10 than in patients with low 

burden of copy number loss outside chromosome 10 (Table 12). Therefore, the 

relative contribution of copy number loss burden from chromosome 10 in CTLA-4 

blockade resistance was higher than copy number loss burden outside 

chromosome 10. I further investigated the extent to which PTEN loss in 

chromosome 10 is associated with CTLA-4 blockade resistance (44). In our data, 

the odds of resistance were 5.58 times greater in patients with PTEN loss than in 

patients with no PTEN loss (95% CI: 1.19 - 26.20) (Table 13), suggesting that 

PTEN loss is likely to be one of the driver resistance mechanisms exploited by 

tumors with high burden of copy number loss on chromosome 10.  
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Estimate SE Z*value P*value
Intercept 1.922 1.136 1.691 0.091
Log2(Mutational:load) (0.206 0.135 (1.52 0.128
Burden:of:copy:number:loss:(high:or:low):::chr10:only 1.504 0.541 2.779 0.005  

Table 11. Relative contribution of copy number loss burden by chromosome 10 in 

CTLA-4 blockade resistance 
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Estimate SE Z*value P*value
Intercept 2.448 1.134 2.159 0.031
Log2(Mutational:load) *0.254 0.137 *1.85 0.065
Burden:of:copy:number:loss:(high:or:low):::outside:chr10 1.069 0.509 2.1 0.036  

Table 12. Relative contribution of copy number loss burden outside chromosome 

10 in CTLA-4 blockade resistance 
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Estimate SE Z*value P*value
Intercept 2.227 1.124 1.982 0.048
Log2(Mutational:load) )0.207 0.135 )1.53 0.126
PTEN:loss:(loss:or:no:loss) 1.719 0.789 2.178 0.029  

Table 13. Relative contribution of PTEN loss in CTLA-4 blockade resistance 
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4.2.4 Integrated analysis reveals putative mechanisms through which CNAs 

may influence response to therapy 

        In addition to studying the influence of copy number loss on molecular 

features such as tumor suppressor genes, I sought to study the relationship of 

these alterations with the immune tumor microenvironment. To do so, I examined 

the correlation between burden of copy number loss and immune scores. 

Although we observed no correlation between the burden of copy number loss 

and immune scores in pre-CTLA-4 blockade biopsies in our cohort (correlation 

coefficient = -0.13; Spearman rank correlation, P = 0.79), a moderate negative 

correlation between the burden of copy number loss and immune scores 

calculated by ESTIMATE (88) was identified in the Van Allen cohort (correlation 

coefficient = -0.41; Spearman rank correlation, P = 0.011) (25) (Figure 34A). In 

pre-PD-1 blockade biopsies in our cohort, we also observed a negative 

correlation between the burden of copy number loss and immune scores 

(correlation coefficient = -0.63; Spearman rank correlation, P = 0.091) (Figure 

34B), although this could not be investigated in post-PD-1 blockade biopsies due 

to sample size. Our immune scores and those calculated by ESTIMATE (Table 

14) showed a strong positive correlation (correlation coefficient = 0.91; Spearman 

rank correlation, P < 2.2e-16) in the independent cohort (Figure 34C), suggesting 

concordance between immune scores. 
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Figure 34. Correlation between burden of copy number loss and immune scores. 

Data show (A) the correlation between burden of copy number loss and immune scores 

for the pre-CTLA-4 blockade biopsies in our cohort, and the correlation between burden 

of copy number loss and immune scores calculated by ESTIMATE in patients with 

matched copy number data and RNA-seq data available (n=38) from Van Allen cohort, 

(B) the correlation between burden of copy number loss and immune scores for the pre-

PD-1 blockade biopsies in our cohort, and (C) the correlation between immune scores 
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and immune scores calculated by ESTIMATE in Van Allen cohort. Spearman rank 

correlation was used for correlation coefficient. 
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patient immune_score_ESTIMATE
Pat02 2714.41
Pat03 730.23
Pat04 822.98
Pat06 2731.64
Pat08 1338.68
Pat118 1801.37
Pat119 353.57
Pat123 343.53
Pat126 768.27
Pat14 1238.3
Pat15 3919.35
Pat16 735.31
Pat19 2186.07
Pat20 307.95
Pat25 247.77
Pat27 1394.39
Pat28 1630
Pat29 1759.46
Pat33 368.31
Pat36 3233.77
Pat37 416.22
Pat38 2371.01
Pat39 2177.73
Pat40 752.89
Pat41 263
Pat43 2526.03
Pat44 31105.11
Pat45 3957.69
Pat46 1339.92
Pat47 424.87
Pat49 2730.05
Pat50 252.84
Pat79 197.48
Pat80 1323.28
Pat81 356.89
Pat83 1481.38
Pat85 3198.89
Pat86 601.73
Pat88 2018.3
Pat90 635.76
Pat91 1370.99
Pat98 1035.48  

Table 14. Immune scores (RNA-seq) in the Van Allen cohort 
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I further sought to determine which pathways or gene ontologies (GO) 

were enriched in up/down-regulated genes at the mRNA expression level in the 

high burden of copy number loss (n=10; mean: 4149, range: 2815 to 6764) 

versus low burden of copy number loss (n=10; mean: 0) groups within the Van 

Allen cohort. Gene set enrichment analysis (GSEA) (89) showed that immune-

related pathways were enriched among down-regulated genes, whereas cell 

cycle-related pathways were enriched among up-regulated genes (Figure 35 and 

36A). Similar results were found with GO terms (Figure 36B). Collectively, these 

data suggest that high burden of copy number loss may be associated with 

down-regulation of immune-related pathways.        
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Figure 35. Gene set enrichment analysis of differentially expressed genes between  

tumors with high burden of copy number loss and those with low burden of copy 

number loss. Gene set enrichment analysis (GSEA) results show top enriched KEGG 

pathways from down-regulated genes (blue bars) and up-regulated genes (red bars) in 

high burden of copy number loss group versus low burden of copy number loss group 

(FDR-adjusted P < 0.001). 
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Figure 36. Up and down-regulated pathways in patients with high versus low copy 

number loss in the Van Allen cohort. (A) Data show enrichment plots for top enriched 
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KEGG pathways from down-regulated genes (upper panel) and up-regulated genes 

(lower panel) in high burden of copy number loss group versus low burden of copy 

number loss group (FDR-adjusted P < 0.001). (B) Gene set enrichment analysis (GSEA) 

results show top enriched Gene Ontology (biological process) terms from down-

regulated genes (blue bar) and up-regulated genes (red bar) in high burden of copy 

number loss group versus low burden of copy number loss group (FDR-adjusted P < 

0.001). 
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4.2.5 Mutational load and burden of copy number loss may allow better 

patient stratification for response than either correlate alone 

 Finally, I was interested in determining if the effect of mutational load and 

burden of copy number loss on clinical response was non-redundant. Using the 

reanalyzed data from the Van Allen cohort, I first stratified patients into four 

subgroups based on mutational load (high or low) and burden of copy number 

loss (low or high) (Figure 37). Within each subgroup, I then calculated the 

proportion of patients with clinical benefit, long-term survival, and no clinical 

benefit, respectively (Figure 38). The proportion of patients with clinical benefit 

was higher in the subgroup of patients with high mutational load and low burden 

of copy number loss (11 out of 26) compared to the subgroup of patients with low 

mutational load and high burden of copy number loss (4 out of 26) (P = 0.064, 

Fisher’s exact test). Similarly, the proportion of patients with no clinical benefit 

was significantly higher in the subgroup of patients with low mutational load and 

high burden of copy number loss (21 out of 26) compared to the subgroup of 

patients with high mutational load and low burden of copy number loss (13 out of 

26) (P = 0.04, Fisher’s exact test). I then performed a logistic regression on 

response status (clinical response or no clinical response) with the log2-

transformed mutational load and log2-transformed burden of copy number loss as 

covariates, and found an additive effect of mutational load (coefficient = 0.266, z 

= 1.939, P = 0.053) and burden of copy number loss (coefficient = -0.149, z = -

2.55, P = 0.011) on clinical response (Table 15). This suggests that the effects of 

mutational load and burden of copy number loss on clinical response are likely 
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non-redundant. Collectively, the above data demonstrate the potential utility of a 

combinatorial biomarker using mutational load and copy number loss burden. 
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Figure 37. Patient stratification based on mutational load and burden of copy 

number loss in the Van Allen cohort. Patients were stratified into four subgroups 

based on mutational load and burden of copy number loss: high mutational load 

(>median, 220) and low burden of copy number loss (<=median, 1357) (n=26), high 

mutational load and high burden of copy number loss (n=23), low mutational load and 

low burden of copy number loss (n=23), and low mutational load and high burden of 

copy number loss (n=26). Within each subgroup, response status of each patient is 

color-coded.  
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Figure 38. Clinical response rate in patient subgroups stratified by mutational load 

and burden of copy number loss. Proportions of patients with clinical benefit, long-

term survival with no clinical benefit, and minimal or no clinical benefit were calculated 

within each of the four patient subgroups: high mutational load and low burden of copy 

number loss, high mutational load and high burden of copy number loss, low mutational 

load and low burden of copy number loss, and low mutational load and high burden of 

copy number loss. The numbers in parentheses indicate the number of patients with 

different levels of response (clinical benefit, long-term survival, and no clinical benefit) 

out of the total number of patients in each of the four patient subgroups.  
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Estimate Z)value P)value
Intercept !1.821 !1.556 0.12
Log2(Mutational9load) 0.266 1.939 0.053
Log2(Burden9of9copy9number9loss) !0.149 !2.55 0.011  

 

Table 15. Additive effect of high mutational load and low burden of copy number 

loss on response to CTLA-4 blockade. 
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4.3 Discussion 

        There is now abundant evidence that both tumor- (25, 41, 43, 44, 75, 119) 

and host-related factors (40, 59, 86, 120) can influence heterogeneous response 

and resistance to immune checkpoint blockade. Here, we report genomic 

characterization of tumors from a cohort of metastatic melanoma patients in the 

context of sequential immune checkpoint blockade. This study builds on our prior 

immune profiling of tumors within the same cohort of metastatic melanoma 

patients (87), allowing for a more fully integrated analysis in this particular cohort. 

In tumor compartment-specific analyses, we observed a higher burden of 

copy number loss in non-responders compared to responders on CTLA-4 

blockade. This finding is in line with those in prior studies that have reported that 

the burden of copy number alterations increases in advanced melanoma and is 

implicated in melanoma progression (148-151). The association between burden 

of copy number loss and clinical response observed here suggests that 

melanoma progression may be associated with resistance to immune mediated 

tumor control. Furthermore, investigation of the findings reported here in a first 

line treatment setting will help delineate the value of these potential associations.  

We also identified genomic regions of recurrent copy number loss in 

patients with high burden of copy number loss and determined that several tumor 

suppressor genes were located within these genomic regions. This suggests that 

loss of function in these tumor suppressor genes could potentially influence 

therapeutic resistance. In keeping with this suggestion, previous studies in 

preclinical models of melanoma with PTEN loss showed inhibition of T cell-
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mediated tumor killing and decrease in T cell trafficking into tumors (44). PTEN 

was one of the tumor suppressor genes with recurrent copy number loss from 

patients with high burden of copy number loss in this study as well. A correlation 

between copy number loss burden and down-regulation of immune-related gene 

expression was found, suggesting that there may be gene expression sequelae 

of extensive copy number loss, including PTEN loss. More extensive analyses on 

larger cohorts with matched WES and RNA-seq data are needed to expand on 

these findings and develop an integrated expression/copy number evaluation 

approach to validate and potentially exploit the correlation seen here. 

We also observed that the effects of low copy number loss burden and 

high mutational load on clinical response are non-redundant, suggesting the 

possibility of a combinatorial biomarker using copy number loss burden and 

mutational load. From a clinical perspective, the optimal cutoffs for high or low 

copy number loss burden and mutational load will need to be further validated if 

they are to impact improved patient stratification in the clinical setting.  

Our work also confirms previous reports that TCR clonality is correlated 

with response to PD-1 blockade (86). A combinatorial biomarker approach of 

TCR clonality and genomic correlates such as mutational load and copy number 

loss burden needs to be further tested in a large cohort with pre-PD-1 blockade 

biopsies available.  

Additionally, we observed increased TCR clonality after CTLA-4 blockade 

treatment in all PD-1 blockade responders with paired pre-CTLA-4 and pre-PD-1 

blockade biopsies available. Prior work has shown that TCR clonality at the pre-
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PD-1 time point was not significantly different (P = 0.1604) between anti-CTLA-4-

treated PD-1 blockade responders and anti-CTLA-4-naïve PD-1 blockade 

responders (86). Therefore, CTLA-4 blockade treatment may increase TCR 

clonality to a level high enough to mediate response to subsequent PD-1 

blockade in certain patients. This result suggests that responders to PD-1 

blockade may derive clinical benefit from prior CTLA-4 blockade, substantiating 

the utility of sequential CTLA-4 and PD-1 blockade. From a clinical perspective, 

sequential CTLA-4 and PD-1 blockade treatment might be able to increase the 

number of patients with high baseline TCR clonality prior to PD-1 blockade 

compared with PD-1 blockade monotherapy. 

What emerges from this and other work regarding immune checkpoint 

responder/non-responder identification is a complex picture likely involving the 

interplay of tumor genomic characteristics, tumor modulation of the local 

microenvironment, and the extent of immune surveillance in the tumor milieu at 

the time of initiation of therapy. Furthermore, several intriguing questions emerge 

from this and other work. What is the effect of CTLA-4 blockade on the molecular 

profile of anti-PD-1 responders? Do the data reported hold true when applied to 

CTLA-4 blockade treatment-naïve patients? To what extent do the data emerging 

from melanoma studies apply to other tumor treatment contexts? There will likely 

be a need to develop integrated molecular phenotyping approaches to more 

accurately delineate responders/non-responders and develop tractable predictive 

models for these promising therapies.  
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Chapter 5 DISCUSSION, CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Discussion and Conclusions 

        The recent development of immunotherapy and cancer immunogenomics 

has changed the treatment landscape in metastatic melanoma. Immune 

checkpoint blockade has now become the front-line treatment for melanoma 

demonstrating prolonged survival and durable response. However, the response 

rate and the toxicity vary among individuals. Therefore, biomarkers are needed to 

predict patients who are more likely to respond and experience lower toxicity. In 

addition to biomarker discovery, identifying mechanisms of resistance to immune 

checkpoint blockade can further the development of novel combination therapy 

increasing the response rate. In this dissertation, I attempted to identify novel 

biomarkers and resistance mechanisms of immune checkpoint blockade (CLTA-4 

and PD-1 blockade) by performing multidimensional profiling of longitudinal 

tumor biopsies (pre-, on-, and post-treatment) from metastatic melanoma 

patients treated with sequential immune checkpoint blockade.  

        In Chapter 3, we applied the immune profiling approach by 

immunohistochemistry staining of 12 markers and NanoString Gene Expression 

Profiling of 795 tumor microenvironment gene panels composed of immune-

related genes and common cancer signaling pathway genes. The 

characterization of tumor microenvironment at multiple time points revealed that 

early on-treatment (as early as 2 to 3 doses after PD-1 blockade treatment) 

tumor biopsies show significantly increased expression of adaptive immune 

signature in responders versus nonresponders. This observation suggests that 
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assessment of adaptive immune signatures by early on-treatment biopsies can 

help identify patients who will respond to PD-1 blockade. By predicting response 

at early on-treatment time point, we can reduce the unnecessary burden of 

treatment cost and toxicity in patients who are not likely to respond to PD-1 

blockade. Another major finding of immune profiling was that VEGFA expression 

was significantly higher in nonresponders versus responders in PD-1 blockade 

on-treatment biopsies suggesting the potential mechanism of therapeutic 

resistance mediated by tumor angiogenesis. Our finding is consistent with the 

results from the recent preclinical studies showing the efficacy of combination 

therapy of PD-1 blockade and antiangiogenic therapy (152,	
  153). Several clinical 

trials of combined PD-1 blockade and antiangiogenic therapy are also ongoing, 

and a phase I study combining bevacizumab and ipilimumab showed an 

objective response rate of 19.6% and a median survival of 25.1 months, which is 

roughly twice expectation for ipilimumab monotherapy in metastatic melanoma 

(109,	
   154). Additionally, we observed the increased intratumoral interaction 

between CD8+ T cells and CD68+ myeloid cells in both pre-treatment and on-

treatment biopsies from nonresponders to PD-1 blockade. A recent study 

showed that tumor-associated macrophages (TAMs) physically remove the anti-

PD-1 antibodies from the surface of T cells, which leads to resistance to PD-1 

blockade treatment (51). They also showed that uptake of anti-PD-1 antibodies 

by TAMs depends on the crystallizable fragment (Fc) domain of the anti-PD-1 

monoclonal antibodies and on Fcγ receptors (FcγRs) expressed by TAMs. This 

mechanism might explain why nonresponders to PD-1 blockade have the 
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increased intratumoral interaction between CD8+ T cells and CD68+ myeloid 

cells. This finding suggests that combining PD-1 blockade with blockade of Fcγ 

receptors (FcγRs) might be therapeutically effective in metastatic melanoma 

patients with increased intratumoral interaction between CD8+ T cells and 

CD68+ myeloid cells. 

        However, there are some caveats and biases in interpreting immune 

profiling data in our study. First, identifying an immune cell subset based on the 

staining of one marker using immunohistochemistry can bias the quantification of 

immune cell subset proportion in tumor microenvironment. Multiplexed marker 

imaging approach such as Vectra would provide more unbiased picture of 

immune cell subset representation in a tissue. Second, NanoString tumor 

microenvironment gene panels cannot capture the unbiased genome-wide 

transcriptome profiles in the tumor microenvironment because the composition of 

gene panels is based on immune-related genes. Therefore, RNA-seq data would 

have provided unbiased enrichment of certain pathways in differential gene 

expression analysis and analysis of differential longitudinal gene expression 

change between responders and nonresponders by linear mixed effects model. 

        In Chapter 4, we performed genomic profiling of tumor biopsies from the 

same cohort of patients in Chapter 3. TCR sequencing of tumor biopsies showed 

higher TCR clonality in responders versus nonresponders at pre-/on-PD-1 

blockade time point. This result suggests that pre-existing clonal T clones 

actively suppressed in tumor microenvironment are crucial in mediating antitumor 

response after PD-1 blockade treatment. We also observed increased TCR 
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clonality after CTLA-4 blockade treatment in all PD-1 blockade responders 

whereas this longitudinal TCR clonality pattern could not be observed in 

nonresponders. This data suggest that prior CTLA-4 blockade treatment can be 

beneficial for subset of patients by preparing clonal baseline T cell repertoire in 

tumor microenvironment for the success of subsequent PD-1 blockade treatment.  

        Analysis of whole exome sequencing data revealed the novel tumor-intrinsic 

resistance mechanism driven by high burden of copy number loss in tumors. Of 

note, recurrent copy number loss was observed in certain genomic regions (arm 

level loss in 6q and 10q) contributing to major therapeutic resistance. 

Mechanistically, tumors with high burden of copy number loss showed decreased 

expression of immune-related genes. Our finding is consistent with the result 

from an independent study showing that tumor aneuploidy is associated with 

immune evasion in multiple cancer types (155). Since aneuploidy is associated 

with worse prognosis in general, it would be of interest to investigate the extent to 

which resistance to immune checkpoint blockade leads to worse prognosis in 

patients with high burden of copy number loss (156). Finally, I showed that 

combining burden of copy number loss with mutational load provided better 

predictive power than either alone. 

        However, there were some technical difficulties in the analysis of genome 

profiling data. First, the detection of CNAs in tumors with high level of tumor-

infiltrating lymphocytes is challenging due to low sensitivity to detect CNAs in low 

tumor purity samples by current CNA detection algorithms. Therefore, the 

observation of higher immune cell infiltration in tumors with lower burden of copy 
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number loss might have been confounded by this technical limitation to some 

extent. Single cell exome sequencing of tumor cells with varying degree of 

immune cell infiltration would provide more accurate relationship between tumor 

aneuploidy and immune evasion. Second, it is difficult to extract accurate tumor-

intrinsic transcriptome profiles from the bulk tumor RNA-seq data. Therefore, 

differential gene expression profiles between tumors with high versus low copy 

number loss might have not captured important tumor-intrinsic differentially 

expressed genes. Single-cell RNA-seq of tumor cells would provide more 

accurate tumor-intrinsic differential transcriptome profiles between tumor cells 

with high versus low burden of copy number loss because arm level loss can be 

computationally detected from single-cell RNA-seq data. Differential gene 

expression analysis of single-cell RNA-seq data might shed light on the detailed 

mechanism of immune evasion by tumor aneuploidy.   

        In conclusion, our study is one the first longitudinal studies investigating the 

molecular interplay between immune cells and tumor cells in the context of 

sequential immune checkpoint blockade treatment. First, I could identify 

biomarkers to PD-1 blockade such as early on-treatment adaptive immune 

signatures, clonal T cell repertoire in tumor microenvironment, and increase in 

TCR clonality after CTLA-4 blockade treatment. The combinatory biomarker 

approach of mutational load and burden of copy number loss was also 

suggested. Second, I identified resistance mechanisms such as increased 

VEGFA expression in nonresponders to PD-1 blockade and the association 

between higher burden of copy number loss and immune evasion leading to lack 
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of response. Our study sets the framework for discovery of novel biomarkers and 

resistance mechanisms of immune checkpoint blockade by integrative and 

longitudinal analysis of genomic and immune components. 

         

5.2 Future Directions 

        Immune profiling results showed that early adaptive immune signatures 

could be observed in responders in Chapter 3. Interestingly, previous study 

reported that early on-treatment biopsies (n=21) within 2 months from initiation of 

PD-1 blockade treatment showed a significant infiltration of intratumoral CD3+, 

CD8+, and CD68+ macrophages in responders, but not in nonresponders (157).	
  

Therefore, it would be interesting to determine how early these adaptive immune 

signatures can be observed in responders after treatment, which will allow 

nonresponders to change with other treatment options. This early biomarker will 

reduce the unnecessary treatment cost and toxicity from patients.  

        Additionally, it would be of interest to investigate whether early adaptive 

immune signatures can also be seen in other solid cancers. However, it is often 

more difficult to obtain post-treatment samples in other solid cancers. The recent 

study showed that tumor-infiltrating CD8+ T cells with neoantigen specificity can 

express PD-1 and the same PD-1 expressing T cells can also be found in the 

blood of melanoma patients (158). Therefore, we might be able to use liquid 

biopsy as a post-treatment monitoring tool and investigate whether early adaptive 

immune signatures can be observed in the blood.  
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        In Chapter 3, spatial analysis of immunohistochemistry data revealed 

differential ratio of CD8+ T cells at the tumor center versus margin between 

responders and nonresponders. It might be interesting to compare transcriptional 

state between CD8+ T cells at the tumor center and those at the tumor margin by 

spatially resolved single-cell RNA-seq in intact tissues. 

        From longitudinal analysis of TCR sequencing data, I observed increased 

TCR clonality in subset of patients after CTLA-4 blockade treatment. This 

increase in TCR clonality was high enough to mediate response to subsequent 

PD-1 blockade treatment. From a clinical perspective, it would be useful to know 

which patients will be more likely to experience increase TCR clonality after 

CTLA-4 blockade treatment. Such biomarkers will then be used as a screening 

tool for sequential CTLA-4 and PD-1 blockade treatment.  

        Finally, our study shows that both immune and tumor component plays a 

critical role in response and resistance to immune checkpoint blockade. For 

example, pre-existing clonal T cell clones in tumor microenvironment were 

associated with better response to PD-1 blockade whereas tumors with higher 

burden of copy number loss showed lower immune cell infiltration leading to lack 

of response. The dynamic change in immune component also contributed to 

response and resistance. Increased expression of VEGFA in nonresponders to 

PD-1 blockade at on-treatment time point showed adaptive resistance to PD-1 

blockade. On the other hand, increase in TCR clonality after CTLA-4 blockade 

treatment was associated with response to PD-1 blockade. Therefore, integrative 

analysis of immune and tumor component at both pre-treatment time point and 
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on-/post-treatment time point should be performed for biomarker discovery and 

identification of resistance mechanisms. In future studies, we need to take two 

different integrative analysis approaches for deeper understanding of cancer 

immunology as well as clinical utility of biomarkers. The first approach would be 

to understand mechanistic link between immune and tumor component in the 

context of immune checkpoint blockade. A large number of studies have found 

many potential biomarkers of response and resistance to immune checkpoint 

blockade. However, few studies have investigated the correlation between those 

biomarkers and their mechanistic link. Deeper understanding of relationship 

between biomarkers might provide new insights into cancer immunology. The 

second approach would be to build a predictive model based on immune and 

tumor component in a large cohort. This will allow us to find the most predictive 

combination and relative importance of each immune and tumor component in 

predicting response to immune checkpoint blockade. The predictive model 

trained with all the known biomarkers in a large cohort of patients will provide the 

robust clinical framework for treatment guidance of this therapy. 

 

 

 

 

 

 

 
 



	
   150	
  

References 
 

1.	
   D.	
  Schadendorf,	
  D.	
  E.	
  Fisher,	
  C.	
  Garbe,	
  J.	
  E.	
  Gershenwald,	
  J.-­‐J.	
  Grob,	
  A.	
  Halpern,	
  

M.	
  Herlyn,	
  M.	
  A.	
  Marchetti,	
  G.	
  McArthur,	
  A.	
  Ribas,	
  Melanoma.	
  Nature	
  reviews	
  

Disease	
  primers	
  1,	
  15003	
  (2015).	
  

2.	
   D.	
  Schadendorf,	
  A.	
  Hauschild,	
  Melanoma	
  in	
  2013:	
  Melanoma	
  [mdash]	
  the	
  run	
  

of	
  success	
  continues.	
  Nature	
  Reviews	
  Clinical	
  Oncology	
  11,	
  75-­‐76	
  (2014).	
  

3.	
   M.	
  S.	
  Lawrence,	
  P.	
  Stojanov,	
  P.	
  Polak,	
  G.	
  V.	
  Kryukov,	
  K.	
  Cibulskis,	
  A.	
  

Sivachenko,	
  S.	
  L.	
  Carter,	
  C.	
  Stewart,	
  C.	
  H.	
  Mermel,	
  S.	
  A.	
  Roberts,	
  Mutational	
  

heterogeneity	
  in	
  cancer	
  and	
  the	
  search	
  for	
  new	
  cancer	
  genes.	
  Nature	
  499,	
  

214	
  (2013).	
  

4.	
   M.	
  S.	
  Stark,	
  S.	
  L.	
  Woods,	
  M.	
  G.	
  Gartside,	
  V.	
  F.	
  Bonazzi,	
  K.	
  Dutton-­‐Regester,	
  L.	
  G.	
  

Aoude,	
  D.	
  Chow,	
  C.	
  Sereduk,	
  N.	
  M.	
  Niemi,	
  N.	
  Tang,	
  Frequent	
  somatic	
  

mutations	
  in	
  MAP3K5	
  and	
  MAP3K9	
  in	
  metastatic	
  melanoma	
  identified	
  by	
  

exome	
  sequencing.	
  Nature	
  genetics	
  44,	
  165-­‐169	
  (2012).	
  

5.	
   E.	
  Hodis,	
  I.	
  R.	
  Watson,	
  G.	
  V.	
  Kryukov,	
  S.	
  T.	
  Arold,	
  M.	
  Imielinski,	
  J.-­‐P.	
  Theurillat,	
  

E.	
  Nickerson,	
  D.	
  Auclair,	
  L.	
  Li,	
  C.	
  Place,	
  A	
  landscape	
  of	
  driver	
  mutations	
  in	
  

melanoma.	
  Cell	
  150,	
  251-­‐263	
  (2012).	
  

6.	
   M.	
  Krauthammer,	
  Y.	
  Kong,	
  B.	
  H.	
  Ha,	
  P.	
  Evans,	
  A.	
  Bacchiocchi,	
  J.	
  P.	
  McCusker,	
  E.	
  

Cheng,	
  M.	
  J.	
  Davis,	
  G.	
  Goh,	
  M.	
  Choi,	
  Exome	
  sequencing	
  identifies	
  recurrent	
  

somatic	
  RAC1	
  mutations	
  in	
  melanoma.	
  Nature	
  genetics	
  44,	
  1006-­‐1014	
  

(2012).	
  



	
   151	
  

7.	
   A.	
  P.	
  Albino,	
  R.	
  Le	
  Strange,	
  A.	
  I.	
  Oliff,	
  M.	
  E.	
  Furth,	
  L.	
  J.	
  Old,	
  Transforming	
  ras	
  

genes	
  from	
  human	
  melanoma:	
  a	
  manifestation	
  of	
  tumour	
  heterogeneity?	
  

Nature	
  308,	
  69-­‐72	
  (1984).	
  

8.	
   H.	
  Davies,	
  G.	
  R.	
  Bignell,	
  C.	
  Cox,	
  P.	
  Stephens,	
  Mutations	
  of	
  the	
  BRAF	
  gene	
  in	
  

human	
  cancer.	
  Nature	
  417,	
  949	
  (2002).	
  

9.	
   J.	
  M.	
  Stahl,	
  A.	
  Sharma,	
  M.	
  Cheung,	
  M.	
  Zimmerman,	
  J.	
  Q.	
  Cheng,	
  M.	
  W.	
  

Bosenberg,	
  M.	
  Kester,	
  L.	
  Sandirasegarane,	
  G.	
  P.	
  Robertson,	
  Deregulated	
  Akt3	
  

activity	
  promotes	
  development	
  of	
  malignant	
  melanoma.	
  Cancer	
  research	
  64,	
  

7002-­‐7010	
  (2004).	
  

10.	
   M.	
  Stark,	
  N.	
  Hayward,	
  Genome-­‐wide	
  loss	
  of	
  heterozygosity	
  and	
  copy	
  number	
  

analysis	
  in	
  melanoma	
  using	
  high-­‐density	
  single-­‐nucleotide	
  polymorphism	
  

arrays.	
  Cancer	
  research	
  67,	
  2632-­‐2642	
  (2007).	
  

11.	
   C.	
  G.	
  A.	
  Network,	
  Genomic	
  classification	
  of	
  cutaneous	
  melanoma.	
  Cell	
  161,	
  

1681-­‐1696	
  (2015).	
  

12.	
   P.	
  B.	
  Chapman,	
  A.	
  Hauschild,	
  C.	
  Robert,	
  J.	
  B.	
  Haanen,	
  P.	
  Ascierto,	
  J.	
  Larkin,	
  R.	
  

Dummer,	
  C.	
  Garbe,	
  A.	
  Testori,	
  M.	
  Maio,	
  Improved	
  survival	
  with	
  vemurafenib	
  

in	
  melanoma	
  with	
  BRAF	
  V600E	
  mutation.	
  New	
  England	
  Journal	
  of	
  Medicine	
  

364,	
  2507-­‐2516	
  (2011).	
  

13.	
   A.	
  Hauschild,	
  J.-­‐J.	
  Grob,	
  L.	
  V.	
  Demidov,	
  T.	
  Jouary,	
  R.	
  Gutzmer,	
  M.	
  Millward,	
  P.	
  

Rutkowski,	
  C.	
  U.	
  Blank,	
  W.	
  H.	
  Miller,	
  E.	
  Kaempgen,	
  Dabrafenib	
  in	
  BRAF-­‐

mutated	
  metastatic	
  melanoma:	
  a	
  multicentre,	
  open-­‐label,	
  phase	
  3	
  

randomised	
  controlled	
  trial.	
  The	
  Lancet	
  380,	
  358-­‐365	
  (2012).	
  



	
   152	
  

14.	
   J.	
  A.	
  Lo,	
  D.	
  E.	
  Fisher,	
  The	
  melanoma	
  revolution:	
  from	
  UV	
  carcinogenesis	
  to	
  a	
  

new	
  era	
  in	
  therapeutics.	
  Science	
  346,	
  945-­‐949	
  (2014).	
  

15.	
   G.	
  V.	
  Long,	
  D.	
  Stroyakovskiy,	
  H.	
  Gogas,	
  E.	
  Levchenko,	
  F.	
  de	
  Braud,	
  J.	
  Larkin,	
  C.	
  

Garbe,	
  T.	
  Jouary,	
  A.	
  Hauschild,	
  J.	
  J.	
  Grob,	
  Combined	
  BRAF	
  and	
  MEK	
  inhibition	
  

versus	
  BRAF	
  inhibition	
  alone	
  in	
  melanoma.	
  New	
  England	
  Journal	
  of	
  Medicine	
  

371,	
  1877-­‐1888	
  (2014).	
  

16.	
   D.	
  S.	
  Chen,	
  I.	
  Mellman,	
  Oncology	
  meets	
  immunology:	
  the	
  cancer-­‐immunity	
  

cycle.	
  Immunity	
  39,	
  1-­‐10	
  (2013).	
  

17.	
   D.	
  S.	
  Chen,	
  I.	
  Mellman,	
  Elements	
  of	
  cancer	
  immunity	
  and	
  the	
  cancer-­‐immune	
  

set	
  point.	
  Nature	
  541,	
  321-­‐330	
  (2017).	
  

18.	
   G.	
  P.	
  Dunn,	
  A.	
  T.	
  Bruce,	
  H.	
  Ikeda,	
  L.	
  J.	
  Old,	
  R.	
  D.	
  Schreiber,	
  Cancer	
  

immunoediting:	
  from	
  immunosurveillance	
  to	
  tumor	
  escape.	
  Nature	
  

immunology	
  3,	
  991-­‐998	
  (2002).	
  

19.	
   P.	
  Sharma,	
  J.	
  P.	
  Allison,	
  The	
  future	
  of	
  immune	
  checkpoint	
  therapy.	
  Science	
  

348,	
  56-­‐61	
  (2015).	
  

20.	
   S.	
  L.	
  Topalian,	
  J.	
  M.	
  Taube,	
  R.	
  A.	
  Anders,	
  D.	
  M.	
  Pardoll,	
  Mechanism-­‐driven	
  

biomarkers	
  to	
  guide	
  immune	
  checkpoint	
  blockade	
  in	
  cancer	
  therapy.	
  Nature	
  

reviews.	
  Cancer	
  16,	
  275	
  (2016).	
  

21.	
   F.	
  S.	
  Hodi,	
  S.	
  J.	
  O'day,	
  D.	
  F.	
  McDermott,	
  R.	
  W.	
  Weber,	
  J.	
  A.	
  Sosman,	
  J.	
  B.	
  Haanen,	
  

R.	
  Gonzalez,	
  C.	
  Robert,	
  D.	
  Schadendorf,	
  J.	
  C.	
  Hassel,	
  Improved	
  survival	
  with	
  

ipilimumab	
  in	
  patients	
  with	
  metastatic	
  melanoma.	
  N	
  Engl	
  j	
  Med	
  2010,	
  711-­‐

723	
  (2010).	
  



	
   153	
  

22.	
   C.	
  Robert,	
  G.	
  V.	
  Long,	
  B.	
  Brady,	
  C.	
  Dutriaux,	
  M.	
  Maio,	
  L.	
  Mortier,	
  J.	
  C.	
  Hassel,	
  P.	
  

Rutkowski,	
  C.	
  McNeil,	
  E.	
  Kalinka-­‐Warzocha,	
  Nivolumab	
  in	
  previously	
  

untreated	
  melanoma	
  without	
  BRAF	
  mutation.	
  New	
  England	
  journal	
  of	
  

medicine	
  372,	
  320-­‐330	
  (2015).	
  

23.	
   C.	
  Robert,	
  J.	
  Schachter,	
  G.	
  V.	
  Long,	
  A.	
  Arance,	
  J.	
  J.	
  Grob,	
  L.	
  Mortier,	
  A.	
  Daud,	
  M.	
  

S.	
  Carlino,	
  C.	
  McNeil,	
  M.	
  Lotem,	
  Pembrolizumab	
  versus	
  ipilimumab	
  in	
  

advanced	
  melanoma.	
  New	
  England	
  Journal	
  of	
  Medicine	
  372,	
  2521-­‐2532	
  

(2015).	
  

24.	
   H.	
  Hackl,	
  P.	
  Charoentong,	
  F.	
  Finotello,	
  Z.	
  Trajanoski,	
  Computational	
  genomics	
  

tools	
  for	
  dissecting	
  tumour-­‐immune	
  cell	
  interactions.	
  Nature	
  Reviews	
  

Genetics	
  17,	
  441-­‐458	
  (2016).	
  

25.	
   E.	
  M.	
  Van	
  Allen,	
  D.	
  Miao,	
  B.	
  Schilling,	
  S.	
  A.	
  Shukla,	
  C.	
  Blank,	
  L.	
  Zimmer,	
  A.	
  

Sucker,	
  U.	
  Hillen,	
  M.	
  H.	
  G.	
  Foppen,	
  S.	
  M.	
  Goldinger,	
  Genomic	
  correlates	
  of	
  

response	
  to	
  CTLA-­‐4	
  blockade	
  in	
  metastatic	
  melanoma.	
  Science	
  350,	
  207-­‐211	
  

(2015).	
  

26.	
   W.	
  H.	
  Fridman,	
  F.	
  Pages,	
  C.	
  Sautes-­‐Fridman,	
  J.	
  Galon,	
  The	
  immune	
  contexture	
  

in	
  human	
  tumours:	
  impact	
  on	
  clinical	
  outcome.	
  Nature	
  reviews.	
  Cancer	
  12,	
  

298	
  (2012).	
  

27.	
   B.	
  A.	
  Kidd,	
  L.	
  A.	
  Peters,	
  E.	
  E.	
  Schadt,	
  J.	
  T.	
  Dudley,	
  Unifying	
  immunology	
  with	
  

informatics	
  and	
  multiscale	
  biology.	
  Nature	
  immunology	
  15,	
  118-­‐127	
  (2014).	
  

28.	
   T.	
  Gong,	
  J.	
  D.	
  Szustakowski,	
  DeconRNASeq:	
  a	
  statistical	
  framework	
  for	
  

deconvolution	
  of	
  heterogeneous	
  tissue	
  samples	
  based	
  on	
  mRNA-­‐Seq	
  data.	
  

Bioinformatics	
  29,	
  1083-­‐1085	
  (2013).	
  



	
   154	
  

29.	
   A.	
  M.	
  Newman,	
  C.	
  L.	
  Liu,	
  M.	
  R.	
  Green,	
  A.	
  J.	
  Gentles,	
  W.	
  Feng,	
  Y.	
  Xu,	
  C.	
  D.	
  Hoang,	
  

M.	
  Diehn,	
  A.	
  A.	
  Alizadeh,	
  Robust	
  enumeration	
  of	
  cell	
  subsets	
  from	
  tissue	
  

expression	
  profiles.	
  Nature	
  methods	
  12,	
  453-­‐457	
  (2015).	
  

30.	
   B.	
  Li,	
  E.	
  Severson,	
  J.-­‐C.	
  Pignon,	
  H.	
  Zhao,	
  T.	
  Li,	
  J.	
  Novak,	
  P.	
  Jiang,	
  H.	
  Shen,	
  J.	
  C.	
  

Aster,	
  S.	
  Rodig,	
  Comprehensive	
  analyses	
  of	
  tumor	
  immunity:	
  implications	
  for	
  

cancer	
  immunotherapy.	
  Genome	
  biology	
  17,	
  174	
  (2016).	
  

31.	
   A.	
  Snyder,	
  T.	
  A.	
  Chan,	
  Immunogenic	
  peptide	
  discovery	
  in	
  cancer	
  genomes.	
  

Current	
  opinion	
  in	
  genetics	
  &	
  development	
  30,	
  7-­‐16	
  (2015).	
  

32.	
   S.	
  A.	
  Shukla,	
  M.	
  S.	
  Rooney,	
  M.	
  Rajasagi,	
  G.	
  Tiao,	
  P.	
  M.	
  Dixon,	
  M.	
  S.	
  Lawrence,	
  J.	
  

Stevens,	
  W.	
  J.	
  Lane,	
  J.	
  L.	
  Dellagatta,	
  S.	
  Steelman,	
  C.	
  Sougnez,	
  K.	
  Cibulskis,	
  A.	
  

Kiezun,	
  N.	
  Hacohen,	
  V.	
  Brusic,	
  C.	
  J.	
  Wu,	
  G.	
  Getz,	
  Comprehensive	
  analysis	
  of	
  

cancer-­‐associated	
  somatic	
  mutations	
  in	
  class	
  I	
  HLA	
  genes.	
  Nat	
  Biotechnol	
  33,	
  

1152-­‐1158	
  (2015).	
  

33.	
   A.	
  Szolek,	
  B.	
  Schubert,	
  C.	
  Mohr,	
  M.	
  Sturm,	
  M.	
  Feldhahn,	
  O.	
  Kohlbacher,	
  

OptiType:	
  precision	
  HLA	
  typing	
  from	
  next-­‐generation	
  sequencing	
  data.	
  

Bioinformatics	
  30,	
  3310-­‐3316	
  (2014).	
  

34.	
   R.	
  Vita,	
  L.	
  Zarebski,	
  J.	
  A.	
  Greenbaum,	
  H.	
  Emami,	
  I.	
  Hoof,	
  N.	
  Salimi,	
  R.	
  Damle,	
  A.	
  

Sette,	
  B.	
  Peters,	
  The	
  immune	
  epitope	
  database	
  2.0.	
  Nucleic	
  acids	
  research	
  38,	
  

D854-­‐D862	
  (2009).	
  

35.	
   D.	
  A.	
  Bolotin,	
  S.	
  Poslavsky,	
  I.	
  Mitrophanov,	
  M.	
  Shugay,	
  I.	
  Z.	
  Mamedov,	
  E.	
  V.	
  

Putintseva,	
  D.	
  M.	
  Chudakov,	
  MiXCR:	
  software	
  for	
  comprehensive	
  adaptive	
  

immunity	
  profiling.	
  Nature	
  methods	
  12,	
  380-­‐381	
  (2015).	
  



	
   155	
  

36.	
   B.	
  Li,	
  T.	
  Li,	
  J.-­‐C.	
  Pignon,	
  B.	
  Wang,	
  J.	
  Wang,	
  S.	
  Shukla,	
  R.	
  Dou,	
  Q.	
  Chen,	
  F.	
  S.	
  Hodi,	
  

T.	
  K.	
  Choueiri,	
  Landscape	
  of	
  tumor-­‐infiltrating	
  T	
  cell	
  repertoire	
  of	
  human	
  

cancers.	
  Nature	
  genetics	
  48,	
  725	
  (2016).	
  

37.	
   P.	
  Sharma,	
  S.	
  Hu-­‐Lieskovan,	
  J.	
  A.	
  Wargo,	
  A.	
  Ribas,	
  Primary,	
  adaptive,	
  and	
  

acquired	
  resistance	
  to	
  cancer	
  immunotherapy.	
  Cell	
  168,	
  707-­‐723	
  (2017).	
  

38.	
   A.	
  Snyder	
  Charen,	
  V.	
  Makarov,	
  T.	
  Merghoub,	
  L.	
  Walsh,	
  J.	
  Yuan,	
  M.	
  Miller,	
  K.	
  

Kannan,	
  M.	
  A.	
  Postow,	
  C.	
  Elipenahli,	
  C.	
  Liu.	
  (American	
  Society	
  of	
  Clinical	
  

Oncology,	
  2014).	
  

39.	
   A.	
  Snyder,	
  V.	
  Makarov,	
  T.	
  Merghoub,	
  J.	
  Yuan,	
  J.	
  M.	
  Zaretsky,	
  A.	
  Desrichard,	
  L.	
  A.	
  

Walsh,	
  M.	
  A.	
  Postow,	
  P.	
  Wong,	
  T.	
  S.	
  Ho,	
  Genetic	
  basis	
  for	
  clinical	
  response	
  to	
  

CTLA-­‐4	
  blockade	
  in	
  melanoma.	
  New	
  England	
  Journal	
  of	
  Medicine	
  371,	
  2189-­‐

2199	
  (2014).	
  

40.	
   M.	
  S.	
  Rooney,	
  S.	
  A.	
  Shukla,	
  C.	
  J.	
  Wu,	
  G.	
  Getz,	
  N.	
  Hacohen,	
  Molecular	
  and	
  genetic	
  

properties	
  of	
  tumors	
  associated	
  with	
  local	
  immune	
  cytolytic	
  activity.	
  Cell	
  

160,	
  48-­‐61	
  (2015).	
  

41.	
   N.	
  A.	
  Rizvi,	
  M.	
  D.	
  Hellmann,	
  A.	
  Snyder,	
  P.	
  Kvistborg,	
  V.	
  Makarov,	
  J.	
  J.	
  Havel,	
  W.	
  

Lee,	
  J.	
  Yuan,	
  P.	
  Wong,	
  T.	
  S.	
  Ho,	
  Mutational	
  landscape	
  determines	
  sensitivity	
  to	
  

PD-­‐1	
  blockade	
  in	
  non–small	
  cell	
  lung	
  cancer.	
  Science	
  348,	
  124-­‐128	
  (2015).	
  

42.	
   C.	
  Liu,	
  W.	
  Peng,	
  C.	
  Xu,	
  Y.	
  Lou,	
  M.	
  Zhang,	
  J.	
  A.	
  Wargo,	
  J.	
  Q.	
  Chen,	
  H.	
  S.	
  Li,	
  S.	
  S.	
  

Watowich,	
  Y.	
  Yang,	
  BRAF	
  inhibition	
  increases	
  tumor	
  infiltration	
  by	
  T	
  cells	
  

and	
  enhances	
  the	
  antitumor	
  activity	
  of	
  adoptive	
  immunotherapy	
  in	
  mice.	
  

Clinical	
  cancer	
  research	
  19,	
  393-­‐403	
  (2013).	
  



	
   156	
  

43.	
   S.	
  Spranger,	
  R.	
  Bao,	
  T.	
  F.	
  Gajewski,	
  Melanoma-­‐intrinsic	
  beta-­‐catenin	
  signalling	
  

prevents	
  anti-­‐tumour	
  immunity.	
  Nature	
  523,	
  231-­‐235	
  (2015).	
  

44.	
   W.	
  Peng,	
  J.	
  Q.	
  Chen,	
  C.	
  Liu,	
  S.	
  Malu,	
  C.	
  Creasy,	
  M.	
  T.	
  Tetzlaff,	
  C.	
  Xu,	
  J.	
  A.	
  

McKenzie,	
  C.	
  Zhang,	
  X.	
  Liang,	
  L.	
  J.	
  Williams,	
  W.	
  Deng,	
  G.	
  Chen,	
  R.	
  Mbofung,	
  A.	
  J.	
  

Lazar,	
  C.	
  A.	
  Torres-­‐Cabala,	
  Z.	
  A.	
  Cooper,	
  P.	
  L.	
  Chen,	
  T.	
  N.	
  Tieu,	
  S.	
  Spranger,	
  X.	
  

Yu,	
  C.	
  Bernatchez,	
  M.	
  A.	
  Forget,	
  C.	
  Haymaker,	
  R.	
  Amaria,	
  J.	
  L.	
  McQuade,	
  I.	
  C.	
  

Glitza,	
  T.	
  Cascone,	
  H.	
  S.	
  Li,	
  L.	
  N.	
  Kwong,	
  T.	
  P.	
  Heffernan,	
  J.	
  Hu,	
  R.	
  L.	
  Bassett,	
  Jr.,	
  

M.	
  W.	
  Bosenberg,	
  S.	
  E.	
  Woodman,	
  W.	
  W.	
  Overwijk,	
  G.	
  Lizee,	
  J.	
  Roszik,	
  T.	
  F.	
  

Gajewski,	
  J.	
  A.	
  Wargo,	
  J.	
  E.	
  Gershenwald,	
  L.	
  Radvanyi,	
  M.	
  A.	
  Davies,	
  P.	
  Hwu,	
  

Loss	
  of	
  PTEN	
  Promotes	
  Resistance	
  to	
  T	
  Cell-­‐Mediated	
  Immunotherapy.	
  

Cancer	
  Discov	
  6,	
  202-­‐216	
  (2016).	
  

45.	
   J.	
  Gao,	
  L.	
  Z.	
  Shi,	
  H.	
  Zhao,	
  J.	
  Chen,	
  L.	
  Xiong,	
  Q.	
  He,	
  T.	
  Chen,	
  J.	
  Roszik,	
  C.	
  

Bernatchez,	
  S.	
  E.	
  Woodman,	
  Loss	
  of	
  IFN-­‐γ	
  pathway	
  genes	
  in	
  tumor	
  cells	
  as	
  a	
  

mechanism	
  of	
  resistance	
  to	
  anti-­‐CTLA-­‐4	
  therapy.	
  Cell	
  167,	
  397-­‐404.	
  e399	
  

(2016).	
  

46.	
   D.	
  S.	
  Shin,	
  J.	
  M.	
  Zaretsky,	
  H.	
  Escuin-­‐Ordinas,	
  A.	
  Garcia-­‐Diaz,	
  S.	
  Hu-­‐Lieskovan,	
  

A.	
  Kalbasi,	
  C.	
  S.	
  Grasso,	
  W.	
  Hugo,	
  S.	
  Sandoval,	
  D.	
  Y.	
  Torrejon,	
  Primary	
  

resistance	
  to	
  PD-­‐1	
  blockade	
  mediated	
  by	
  JAK1/2	
  mutations.	
  Cancer	
  discovery	
  

7,	
  188-­‐201	
  (2017).	
  

47.	
   J.	
  M.	
  Zaretsky,	
  A.	
  Garcia-­‐Diaz,	
  D.	
  S.	
  Shin,	
  H.	
  Escuin-­‐Ordinas,	
  W.	
  Hugo,	
  S.	
  Hu-­‐

Lieskovan,	
  D.	
  Y.	
  Torrejon,	
  G.	
  Abril-­‐Rodriguez,	
  S.	
  Sandoval,	
  L.	
  Barthly,	
  

Mutations	
  Associated	
  with	
  Acquired	
  Resistance	
  to	
  PD-­‐1	
  Blockade	
  in	
  

Melanoma.	
  New	
  England	
  Journal	
  of	
  Medicine,	
  	
  (2016).	
  



	
   157	
  

48.	
   P.	
  C.	
  Tumeh,	
  C.	
  L.	
  Harview,	
  J.	
  H.	
  Yearley,	
  I.	
  P.	
  Shintaku,	
  E.	
  J.	
  Taylor,	
  L.	
  Robert,	
  B.	
  

Chmielowski,	
  M.	
  Spasic,	
  G.	
  Henry,	
  V.	
  Ciobanu,	
  PD-­‐1	
  blockade	
  induces	
  

responses	
  by	
  inhibiting	
  adaptive	
  immune	
  resistance.	
  Nature	
  515,	
  568	
  

(2014).	
  

49.	
   J.	
  Gao,	
  J.	
  F.	
  Ward,	
  C.	
  A.	
  Pettaway,	
  L.	
  Z.	
  Shi,	
  S.	
  K.	
  Subudhi,	
  L.	
  M.	
  Vence,	
  H.	
  Zhao,	
  J.	
  

Chen,	
  H.	
  Chen,	
  E.	
  Efstathiou,	
  VISTA	
  is	
  an	
  inhibitory	
  immune	
  checkpoint	
  that	
  is	
  

increased	
  after	
  ipilimumab	
  therapy	
  in	
  patients	
  with	
  prostate	
  cancer.	
  Nature	
  

Medicine	
  23,	
  551-­‐555	
  (2017).	
  

50.	
   S.	
  Koyama,	
  E.	
  A.	
  Akbay,	
  Y.	
  Y.	
  Li,	
  G.	
  S.	
  Herter-­‐Sprie,	
  K.	
  A.	
  Buczkowski,	
  W.	
  G.	
  

Richards,	
  L.	
  Gandhi,	
  A.	
  J.	
  Redig,	
  S.	
  J.	
  Rodig,	
  H.	
  Asahina,	
  Adaptive	
  resistance	
  to	
  

therapeutic	
  PD-­‐1	
  blockade	
  is	
  associated	
  with	
  upregulation	
  of	
  alternative	
  

immune	
  checkpoints.	
  Nature	
  communications	
  7,	
  	
  (2016).	
  

51.	
   S.	
  P.	
  Arlauckas,	
  C.	
  S.	
  Garris,	
  R.	
  H.	
  Kohler,	
  M.	
  Kitaoka,	
  M.	
  F.	
  Cuccarese,	
  K.	
  S.	
  

Yang,	
  M.	
  A.	
  Miller,	
  J.	
  C.	
  Carlson,	
  G.	
  J.	
  Freeman,	
  R.	
  M.	
  Anthony,	
  In	
  vivo	
  imaging	
  

reveals	
  a	
  tumor-­‐associated	
  macrophage–mediated	
  resistance	
  pathway	
  in	
  

anti–PD-­‐1	
  therapy.	
  Science	
  translational	
  medicine	
  9,	
  eaal3604	
  (2017).	
  

52.	
   S.	
  R.	
  Gordon,	
  R.	
  L.	
  Maute,	
  B.	
  W.	
  Dulken,	
  G.	
  Hutter,	
  B.	
  M.	
  George,	
  M.	
  N.	
  

McCracken,	
  R.	
  Gupta,	
  J.	
  M.	
  Tsai,	
  R.	
  Sinha,	
  D.	
  Corey,	
  PD-­‐1	
  expression	
  by	
  

tumour-­‐associated	
  macrophages	
  inhibits	
  phagocytosis	
  and	
  tumour	
  

immunity.	
  Nature	
  545,	
  495-­‐499	
  (2017).	
  

53.	
   M.	
  Vétizou,	
  J.	
  M.	
  Pitt,	
  R.	
  Daillère,	
  P.	
  Lepage,	
  N.	
  Waldschmitt,	
  C.	
  Flament,	
  S.	
  

Rusakiewicz,	
  B.	
  Routy,	
  M.	
  P.	
  Roberti,	
  C.	
  P.	
  Duong,	
  Anticancer	
  immunotherapy	
  



	
   158	
  

by	
  CTLA-­‐4	
  blockade	
  relies	
  on	
  the	
  gut	
  microbiota.	
  Science	
  350,	
  1079-­‐1084	
  

(2015).	
  

54.	
   K.	
  M.	
  Drescher,	
  P.	
  Sharma,	
  P.	
  Watson,	
  Z.	
  Gatalica,	
  S.	
  N.	
  Thibodeau,	
  H.	
  T.	
  Lynch,	
  

Lymphocyte	
  recruitment	
  into	
  the	
  tumor	
  site	
  is	
  altered	
  in	
  patients	
  with	
  MSI-­‐H	
  

colon	
  cancer.	
  Familial	
  cancer	
  8,	
  231-­‐239	
  (2009).	
  

55.	
   D.	
  T.	
  Le,	
  J.	
  N.	
  Uram,	
  H.	
  Wang,	
  B.	
  R.	
  Bartlett,	
  H.	
  Kemberling,	
  A.	
  D.	
  Eyring,	
  A.	
  D.	
  

Skora,	
  B.	
  S.	
  Luber,	
  N.	
  S.	
  Azad,	
  D.	
  Laheru,	
  PD-­‐1	
  blockade	
  in	
  tumors	
  with	
  

mismatch-­‐repair	
  deficiency.	
  New	
  England	
  Journal	
  of	
  Medicine	
  372,	
  2509-­‐

2520	
  (2015).	
  

56.	
   D.	
  A.	
  Landau,	
  S.	
  L.	
  Carter,	
  P.	
  Stojanov,	
  A.	
  McKenna,	
  K.	
  Stevenson,	
  M.	
  S.	
  

Lawrence,	
  C.	
  Sougnez,	
  C.	
  Stewart,	
  A.	
  Sivachenko,	
  L.	
  Wang,	
  Evolution	
  and	
  

impact	
  of	
  subclonal	
  mutations	
  in	
  chronic	
  lymphocytic	
  leukemia.	
  Cell	
  152,	
  

714-­‐726	
  (2013).	
  

57.	
   D.	
  A.	
  Landau,	
  E.	
  Tausch,	
  A.	
  N.	
  Taylor-­‐Weiner,	
  C.	
  Stewart,	
  J.	
  G.	
  Reiter,	
  J.	
  Bahlo,	
  S.	
  

Kluth,	
  I.	
  Bozic,	
  M.	
  Lawrence,	
  S.	
  Böttcher,	
  Mutations	
  driving	
  CLL	
  and	
  their	
  

evolution	
  in	
  progression	
  and	
  relapse.	
  Nature	
  526,	
  525	
  (2015).	
  

58.	
   M.	
  Greaves,	
  Evolutionary	
  determinants	
  of	
  cancer.	
  Cancer	
  discovery	
  5,	
  806-­‐

820	
  (2015).	
  

59.	
   M.	
  Angelova,	
  P.	
  Charoentong,	
  H.	
  Hackl,	
  M.	
  L.	
  Fischer,	
  R.	
  Snajder,	
  A.	
  M.	
  

Krogsdam,	
  M.	
  J.	
  Waldner,	
  G.	
  Bindea,	
  B.	
  Mlecnik,	
  J.	
  Galon,	
  Z.	
  Trajanoski,	
  

Characterization	
  of	
  the	
  immunophenotypes	
  and	
  antigenomes	
  of	
  colorectal	
  

cancers	
  reveals	
  distinct	
  tumor	
  escape	
  mechanisms	
  and	
  novel	
  targets	
  for	
  

immunotherapy.	
  Genome	
  Biol	
  16,	
  64	
  (2015).	
  



	
   159	
  

60.	
   N.	
  McGranahan,	
  A.	
  J.	
  Furness,	
  R.	
  Rosenthal,	
  S.	
  Ramskov,	
  R.	
  Lyngaa,	
  S.	
  K.	
  Saini,	
  

M.	
  Jamal-­‐Hanjani,	
  G.	
  A.	
  Wilson,	
  N.	
  J.	
  Birkbak,	
  C.	
  T.	
  Hiley,	
  Clonal	
  neoantigens	
  

elicit	
  T	
  cell	
  immunoreactivity	
  and	
  sensitivity	
  to	
  immune	
  checkpoint	
  blockade.	
  

Science	
  351,	
  1463-­‐1469	
  (2016).	
  

61.	
   E.	
  Eisenhauer,	
  P.	
  Therasse,	
  J.	
  Bogaerts,	
  L.	
  Schwartz,	
  D.	
  Sargent,	
  R.	
  Ford,	
  J.	
  

Dancey,	
  S.	
  Arbuck,	
  S.	
  Gwyther,	
  M.	
  Mooney,	
  New	
  response	
  evaluation	
  criteria	
  

in	
  solid	
  tumours:	
  revised	
  RECIST	
  guideline	
  (version	
  1.1).	
  European	
  journal	
  of	
  

cancer	
  45,	
  228-­‐247	
  (2009).	
  

62.	
   D.	
  Waggott,	
  K.	
  Chu,	
  S.	
  Yin,	
  B.	
  G.	
  Wouters,	
  F.-­‐F.	
  Liu,	
  P.	
  C.	
  Boutros,	
  

NanoStringNorm:	
  an	
  extensible	
  R	
  package	
  for	
  the	
  pre-­‐processing	
  of	
  

NanoString	
  mRNA	
  and	
  miRNA	
  data.	
  Bioinformatics	
  28,	
  1546-­‐1548	
  (2012).	
  

63.	
   J.	
  Vandesompele,	
  K.	
  De	
  Preter,	
  F.	
  Pattyn,	
  B.	
  Poppe,	
  N.	
  Van	
  Roy,	
  A.	
  De	
  Paepe,	
  F.	
  

Speleman,	
  Accurate	
  normalization	
  of	
  real-­‐time	
  quantitative	
  RT-­‐PCR	
  data	
  by	
  

geometric	
  averaging	
  of	
  multiple	
  internal	
  control	
  genes.	
  Genome	
  biology	
  3,	
  

research0034.	
  0031	
  (2002).	
  

64.	
   Y.	
  Benjamini,	
  Y.	
  Hochberg,	
  Controlling	
  the	
  false	
  discovery	
  rate:	
  a	
  practical	
  and	
  

powerful	
  approach	
  to	
  multiple	
  testing.	
  Journal	
  of	
  the	
  royal	
  statistical	
  society.	
  

Series	
  B	
  (Methodological),	
  289-­‐300	
  (1995).	
  

65.	
   S.	
  Pounds,	
  S.	
  W.	
  Morris,	
  Estimating	
  the	
  occurrence	
  of	
  false	
  positives	
  and	
  false	
  

negatives	
  in	
  microarray	
  studies	
  by	
  approximating	
  and	
  partitioning	
  the	
  

empirical	
  distribution	
  of	
  p-­‐values.	
  Bioinformatics	
  19,	
  1236-­‐1242	
  (2003).	
  

66.	
   D.	
  Bates,	
  M.	
  Mächler,	
  B.	
  Bolker,	
  S.	
  Walker,	
  Fitting	
  linear	
  mixed-­‐effects	
  models	
  

using	
  lme4.	
  arXiv	
  preprint	
  arXiv:1406.5823,	
  	
  (2014).	
  



	
   160	
  

67.	
   H.	
  Li,	
  R.	
  Durbin,	
  Fast	
  and	
  accurate	
  short	
  read	
  alignment	
  with	
  Burrows-­‐

Wheeler	
  transform.	
  Bioinformatics	
  25,	
  1754-­‐1760	
  (2009).	
  

68.	
   A.	
  McKenna,	
  M.	
  Hanna,	
  E.	
  Banks,	
  A.	
  Sivachenko,	
  K.	
  Cibulskis,	
  A.	
  Kernytsky,	
  K.	
  

Garimella,	
  D.	
  Altshuler,	
  S.	
  Gabriel,	
  M.	
  Daly,	
  M.	
  A.	
  DePristo,	
  The	
  Genome	
  

Analysis	
  Toolkit:	
  a	
  MapReduce	
  framework	
  for	
  analyzing	
  next-­‐generation	
  

DNA	
  sequencing	
  data.	
  Genome	
  Res	
  20,	
  1297-­‐1303	
  (2010).	
  

69.	
   M.	
  A.	
  DePristo,	
  E.	
  Banks,	
  R.	
  Poplin,	
  K.	
  V.	
  Garimella,	
  J.	
  R.	
  Maguire,	
  C.	
  Hartl,	
  A.	
  A.	
  

Philippakis,	
  G.	
  del	
  Angel,	
  M.	
  A.	
  Rivas,	
  M.	
  Hanna,	
  A.	
  McKenna,	
  T.	
  J.	
  Fennell,	
  A.	
  M.	
  

Kernytsky,	
  A.	
  Y.	
  Sivachenko,	
  K.	
  Cibulskis,	
  S.	
  B.	
  Gabriel,	
  D.	
  Altshuler,	
  M.	
  J.	
  Daly,	
  

A	
  framework	
  for	
  variation	
  discovery	
  and	
  genotyping	
  using	
  next-­‐generation	
  

DNA	
  sequencing	
  data.	
  Nat	
  Genet	
  43,	
  491-­‐498	
  (2011).	
  

70.	
   G.	
  A.	
  Auwera,	
  M.	
  O.	
  Carneiro,	
  C.	
  Hartl,	
  R.	
  Poplin,	
  G.	
  del	
  Angel,	
  A.	
  Levy‐

Moonshine,	
  T.	
  Jordan,	
  K.	
  Shakir,	
  D.	
  Roazen,	
  J.	
  Thibault,	
  From	
  FastQ	
  data	
  to	
  

high‐confidence	
  variant	
  calls:	
  the	
  genome	
  analysis	
  toolkit	
  best	
  practices	
  

pipeline.	
  Current	
  protocols	
  in	
  bioinformatics,	
  11.10.	
  11-­‐11.10.	
  33	
  (2013).	
  

71.	
   K.	
  Cibulskis,	
  M.	
  S.	
  Lawrence,	
  S.	
  L.	
  Carter,	
  A.	
  Sivachenko,	
  D.	
  Jaffe,	
  C.	
  Sougnez,	
  S.	
  

Gabriel,	
  M.	
  Meyerson,	
  E.	
  S.	
  Lander,	
  G.	
  Getz,	
  Sensitive	
  detection	
  of	
  somatic	
  

point	
  mutations	
  in	
  impure	
  and	
  heterogeneous	
  cancer	
  samples.	
  Nat	
  

Biotechnol	
  31,	
  213-­‐219	
  (2013).	
  

72.	
   K.	
  Ye,	
  M.	
  H.	
  Schulz,	
  Q.	
  Long,	
  R.	
  Apweiler,	
  Z.	
  Ning,	
  Pindel:	
  a	
  pattern	
  growth	
  

approach	
  to	
  detect	
  break	
  points	
  of	
  large	
  deletions	
  and	
  medium	
  sized	
  

insertions	
  from	
  paired-­‐end	
  short	
  reads.	
  Bioinformatics	
  25,	
  2865-­‐2871	
  

(2009).	
  



	
   161	
  

73.	
   N.	
  Andor,	
  J.	
  V.	
  Harness,	
  S.	
  Muller,	
  H.	
  W.	
  Mewes,	
  C.	
  Petritsch,	
  EXPANDS:	
  

expanding	
  ploidy	
  and	
  allele	
  frequency	
  on	
  nested	
  subpopulations.	
  

Bioinformatics	
  30,	
  50-­‐60	
  (2014).	
  

74.	
   C.	
  A.	
  Miller,	
  B.	
  S.	
  White,	
  N.	
  D.	
  Dees,	
  M.	
  Griffith,	
  J.	
  S.	
  Welch,	
  O.	
  L.	
  Griffith,	
  R.	
  Vij,	
  

M.	
  H.	
  Tomasson,	
  T.	
  A.	
  Graubert,	
  M.	
  J.	
  Walter,	
  M.	
  J.	
  Ellis,	
  W.	
  Schierding,	
  J.	
  F.	
  

DiPersio,	
  T.	
  J.	
  Ley,	
  E.	
  R.	
  Mardis,	
  R.	
  K.	
  Wilson,	
  L.	
  Ding,	
  SciClone:	
  inferring	
  clonal	
  

architecture	
  and	
  tracking	
  the	
  spatial	
  and	
  temporal	
  patterns	
  of	
  tumor	
  

evolution.	
  PLoS	
  Comput	
  Biol	
  10,	
  e1003665	
  (2014).	
  

75.	
   A.	
  Snyder,	
  T.	
  A.	
  Chan,	
  Immunogenic	
  peptide	
  discovery	
  in	
  cancer	
  genomes.	
  

Curr	
  Opin	
  Genet	
  Dev	
  30,	
  7-­‐16	
  (2015).	
  

76.	
   C.	
  Liu,	
  X.	
  Yang,	
  B.	
  Duffy,	
  T.	
  Mohanakumar,	
  R.	
  D.	
  Mitra,	
  M.	
  C.	
  Zody,	
  J.	
  D.	
  Pfeifer,	
  

ATHLATES:	
  accurate	
  typing	
  of	
  human	
  leukocyte	
  antigen	
  through	
  exome	
  

sequencing.	
  Nucleic	
  Acids	
  Res	
  41,	
  e142	
  (2013).	
  

77.	
   I.	
  Hoof,	
  B.	
  Peters,	
  J.	
  Sidney,	
  L.	
  E.	
  Pedersen,	
  A.	
  Sette,	
  O.	
  Lund,	
  S.	
  Buus,	
  M.	
  

Nielsen,	
  NetMHCpan,	
  a	
  method	
  for	
  MHC	
  class	
  I	
  binding	
  prediction	
  beyond	
  

humans.	
  Immunogenetics	
  61,	
  1-­‐13	
  (2009).	
  

78.	
   N.	
  Cancer	
  Genome	
  Atlas,	
  Genomic	
  Classification	
  of	
  Cutaneous	
  Melanoma.	
  Cell	
  

161,	
  1681-­‐1696	
  (2015).	
  

79.	
   F.	
  Favero,	
  T.	
  Joshi,	
  A.	
  M.	
  Marquard,	
  N.	
  J.	
  Birkbak,	
  M.	
  Krzystanek,	
  Q.	
  Li,	
  Z.	
  

Szallasi,	
  A.	
  C.	
  Eklund,	
  Sequenza:	
  allele-­‐specific	
  copy	
  number	
  and	
  mutation	
  

profiles	
  from	
  tumor	
  sequencing	
  data.	
  Ann	
  Oncol	
  26,	
  64-­‐70	
  (2015).	
  



	
   162	
  

80.	
   J.	
  Zhang,	
  CNTools:	
  Convert	
  segment	
  data	
  into	
  a	
  region	
  by	
  sample	
  matrix	
  to	
  

allow	
  for	
  other	
  high	
  level	
  computational	
  analyses.	
  R	
  package	
  (Version	
  1.6.	
  0.),	
  	
  

(2014).	
  

81.	
   J.	
  Zhang,	
  B.	
  Feng,	
  M.	
  J.	
  Zhang,	
  C.	
  biocViews	
  Microarray,	
  Package	
  ‘cghMCR’.	
  	
  

(2013).	
  

82.	
   S.	
  A.	
  Forbes,	
  D.	
  Beare,	
  P.	
  Gunasekaran,	
  K.	
  Leung,	
  N.	
  Bindal,	
  H.	
  Boutselakis,	
  M.	
  

Ding,	
  S.	
  Bamford,	
  C.	
  Cole,	
  S.	
  Ward,	
  C.	
  Y.	
  Kok,	
  M.	
  Jia,	
  T.	
  De,	
  J.	
  W.	
  Teague,	
  M.	
  R.	
  

Stratton,	
  U.	
  McDermott,	
  P.	
  J.	
  Campbell,	
  COSMIC:	
  exploring	
  the	
  world's	
  

knowledge	
  of	
  somatic	
  mutations	
  in	
  human	
  cancer.	
  Nucleic	
  Acids	
  Res	
  43,	
  

D805-­‐811	
  (2015).	
  

83.	
   M.	
  Zhao,	
  J.	
  Sun,	
  Z.	
  Zhao,	
  TSGene:	
  a	
  web	
  resource	
  for	
  tumor	
  suppressor	
  genes.	
  

Nucleic	
  Acids	
  Res	
  41,	
  D970-­‐976	
  (2013).	
  

84.	
   H.	
  S.	
  Robins,	
  P.	
  V.	
  Campregher,	
  S.	
  K.	
  Srivastava,	
  A.	
  Wacher,	
  C.	
  J.	
  Turtle,	
  O.	
  

Kahsai,	
  S.	
  R.	
  Riddell,	
  E.	
  H.	
  Warren,	
  C.	
  S.	
  Carlson,	
  Comprehensive	
  assessment	
  of	
  

T-­‐cell	
  receptor	
  beta-­‐chain	
  diversity	
  in	
  alphabeta	
  T	
  cells.	
  Blood	
  114,	
  4099-­‐

4107	
  (2009).	
  

85.	
   C.	
  S.	
  Carlson,	
  R.	
  O.	
  Emerson,	
  A.	
  M.	
  Sherwood,	
  C.	
  Desmarais,	
  M.	
  W.	
  Chung,	
  J.	
  M.	
  

Parsons,	
  M.	
  S.	
  Steen,	
  M.	
  A.	
  LaMadrid-­‐Herrmannsfeldt,	
  D.	
  W.	
  Williamson,	
  R.	
  J.	
  

Livingston,	
  D.	
  Wu,	
  B.	
  L.	
  Wood,	
  M.	
  J.	
  Rieder,	
  H.	
  Robins,	
  Using	
  synthetic	
  

templates	
  to	
  design	
  an	
  unbiased	
  multiplex	
  PCR	
  assay.	
  Nat	
  Commun	
  4,	
  2680	
  

(2013).	
  

86.	
   P.	
  C.	
  Tumeh,	
  C.	
  L.	
  Harview,	
  J.	
  H.	
  Yearley,	
  I.	
  P.	
  Shintaku,	
  E.	
  J.	
  Taylor,	
  L.	
  Robert,	
  B.	
  

Chmielowski,	
  M.	
  Spasic,	
  G.	
  Henry,	
  V.	
  Ciobanu,	
  A.	
  N.	
  West,	
  M.	
  Carmona,	
  C.	
  



	
   163	
  

Kivork,	
  E.	
  Seja,	
  G.	
  Cherry,	
  A.	
  J.	
  Gutierrez,	
  T.	
  R.	
  Grogan,	
  C.	
  Mateus,	
  G.	
  Tomasic,	
  J.	
  

A.	
  Glaspy,	
  R.	
  O.	
  Emerson,	
  H.	
  Robins,	
  R.	
  H.	
  Pierce,	
  D.	
  A.	
  Elashoff,	
  C.	
  Robert,	
  A.	
  

Ribas,	
  PD-­‐1	
  blockade	
  induces	
  responses	
  by	
  inhibiting	
  adaptive	
  immune	
  

resistance.	
  Nature	
  515,	
  568-­‐571	
  (2014).	
  

87.	
   P.-­‐L.	
  Chen,	
  W.	
  Roh,	
  A.	
  Reuben,	
  Z.	
  A.	
  Cooper,	
  C.	
  N.	
  Spencer,	
  P.	
  A.	
  Prieto,	
  J.	
  P.	
  

Miller,	
  R.	
  L.	
  Bassett,	
  V.	
  Gopalakrishnan,	
  K.	
  Wani,	
  Analysis	
  of	
  immune	
  

signatures	
  in	
  longitudinal	
  tumor	
  samples	
  yields	
  insight	
  into	
  biomarkers	
  of	
  

response	
  and	
  mechanisms	
  of	
  resistance	
  to	
  immune	
  checkpoint	
  blockade.	
  

Cancer	
  Discovery	
  6,	
  827-­‐837	
  (2016).	
  

88.	
   K.	
  Yoshihara,	
  M.	
  Shahmoradgoli,	
  E.	
  Martinez,	
  R.	
  Vegesna,	
  H.	
  Kim,	
  W.	
  Torres-­‐

Garcia,	
  V.	
  Trevino,	
  H.	
  Shen,	
  P.	
  W.	
  Laird,	
  D.	
  A.	
  Levine,	
  S.	
  L.	
  Carter,	
  G.	
  Getz,	
  K.	
  

Stemke-­‐Hale,	
  G.	
  B.	
  Mills,	
  R.	
  G.	
  Verhaak,	
  Inferring	
  tumour	
  purity	
  and	
  stromal	
  

and	
  immune	
  cell	
  admixture	
  from	
  expression	
  data.	
  Nat	
  Commun	
  4,	
  2612	
  

(2013).	
  

89.	
   V.	
  K.	
  Mootha,	
  C.	
  M.	
  Lindgren,	
  K.-­‐F.	
  Eriksson,	
  A.	
  Subramanian,	
  S.	
  Sihag,	
  J.	
  Lehar,	
  

P.	
  Puigserver,	
  E.	
  Carlsson,	
  M.	
  Ridderstråle,	
  E.	
  Laurila,	
  PGC-­‐1α-­‐responsive	
  

genes	
  involved	
  in	
  oxidative	
  phosphorylation	
  are	
  coordinately	
  downregulated	
  

in	
  human	
  diabetes.	
  Nature	
  genetics	
  34,	
  267-­‐273	
  (2003).	
  

90.	
   S.	
  L.	
  Topalian,	
  F.	
  S.	
  Hodi,	
  J.	
  R.	
  Brahmer,	
  S.	
  N.	
  Gettinger,	
  D.	
  C.	
  Smith,	
  D.	
  F.	
  

McDermott,	
  J.	
  D.	
  Powderly,	
  R.	
  D.	
  Carvajal,	
  J.	
  A.	
  Sosman,	
  M.	
  B.	
  Atkins,	
  Safety,	
  

activity,	
  and	
  immune	
  correlates	
  of	
  anti–PD-­‐1	
  antibody	
  in	
  cancer.	
  N	
  Engl	
  j	
  Med	
  

2012,	
  2443-­‐2454	
  (2012).	
  



	
   164	
  

91.	
   R.	
  H.	
  Andtbacka,	
  H.	
  L.	
  Kaufman,	
  F.	
  Collichio,	
  T.	
  Amatruda,	
  N.	
  Senzer,	
  J.	
  

Chesney,	
  K.	
  A.	
  Delman,	
  L.	
  E.	
  Spitler,	
  I.	
  Puzanov,	
  S.	
  S.	
  Agarwala,	
  Talimogene	
  

laherparepvec	
  improves	
  durable	
  response	
  rate	
  in	
  patients	
  with	
  advanced	
  

melanoma.	
  Journal	
  of	
  clinical	
  oncology	
  33,	
  2780-­‐2788	
  (2015).	
  

92.	
   J.	
  Larkin,	
  V.	
  Chiarion-­‐Sileni,	
  R.	
  Gonzalez,	
  J.	
  J.	
  Grob,	
  C.	
  L.	
  Cowey,	
  C.	
  D.	
  Lao,	
  D.	
  

Schadendorf,	
  R.	
  Dummer,	
  M.	
  Smylie,	
  P.	
  Rutkowski,	
  Combined	
  nivolumab	
  and	
  

ipilimumab	
  or	
  monotherapy	
  in	
  untreated	
  melanoma.	
  New	
  England	
  journal	
  of	
  

medicine	
  373,	
  23-­‐34	
  (2015).	
  

93.	
   M.	
  A.	
  Postow,	
  J.	
  Chesney,	
  A.	
  C.	
  Pavlick,	
  C.	
  Robert,	
  K.	
  Grossmann,	
  D.	
  McDermott,	
  

G.	
  P.	
  Linette,	
  N.	
  Meyer,	
  J.	
  K.	
  Giguere,	
  S.	
  S.	
  Agarwala,	
  Nivolumab	
  and	
  

ipilimumab	
  versus	
  ipilimumab	
  in	
  untreated	
  melanoma.	
  New	
  England	
  Journal	
  

of	
  Medicine	
  372,	
  2006-­‐2017	
  (2015).	
  

94.	
   J.	
  D.	
  Wolchok,	
  H.	
  Kluger,	
  M.	
  K.	
  Callahan,	
  M.	
  A.	
  Postow,	
  N.	
  A.	
  Rizvi,	
  A.	
  M.	
  

Lesokhin,	
  N.	
  H.	
  Segal,	
  C.	
  E.	
  Ariyan,	
  R.-­‐A.	
  Gordon,	
  K.	
  Reed,	
  Nivolumab	
  plus	
  

ipilimumab	
  in	
  advanced	
  melanoma.	
  New	
  England	
  Journal	
  of	
  Medicine	
  369,	
  

122-­‐133	
  (2013).	
  

95.	
   J.	
  R.	
  Brahmer,	
  S.	
  S.	
  Tykodi,	
  L.	
  Q.	
  Chow,	
  W.-­‐J.	
  Hwu,	
  S.	
  L.	
  Topalian,	
  P.	
  Hwu,	
  C.	
  G.	
  

Drake,	
  L.	
  H.	
  Camacho,	
  J.	
  Kauh,	
  K.	
  Odunsi,	
  Safety	
  and	
  activity	
  of	
  anti–PD-­‐L1	
  

antibody	
  in	
  patients	
  with	
  advanced	
  cancer.	
  N	
  Engl	
  J	
  Med	
  2012,	
  2455-­‐2465	
  

(2012).	
  

96.	
   B.	
  D.	
  Curti,	
  M.	
  Kovacsovics-­‐Bankowski,	
  N.	
  Morris,	
  E.	
  Walker,	
  L.	
  Chisholm,	
  K.	
  

Floyd,	
  J.	
  Walker,	
  I.	
  Gonzalez,	
  T.	
  Meeuwsen,	
  B.	
  A.	
  Fox,	
  OX40	
  is	
  a	
  potent	
  



	
   165	
  

immune-­‐stimulating	
  target	
  in	
  late-­‐stage	
  cancer	
  patients.	
  Cancer	
  research	
  73,	
  

7189-­‐7198	
  (2013).	
  

97.	
   S.	
  L.	
  Topalian,	
  M.	
  Sznol,	
  D.	
  F.	
  McDermott,	
  H.	
  M.	
  Kluger,	
  R.	
  D.	
  Carvajal,	
  W.	
  H.	
  

Sharfman,	
  J.	
  R.	
  Brahmer,	
  D.	
  P.	
  Lawrence,	
  M.	
  B.	
  Atkins,	
  J.	
  D.	
  Powderly,	
  Survival,	
  

durable	
  tumor	
  remission,	
  and	
  long-­‐term	
  safety	
  in	
  patients	
  with	
  advanced	
  

melanoma	
  receiving	
  nivolumab.	
  Journal	
  of	
  clinical	
  oncology	
  32,	
  1020-­‐1030	
  

(2014).	
  

98.	
   J.	
  D.	
  Wolchok,	
  J.	
  S.	
  Weber,	
  M.	
  Maio,	
  B.	
  Neyns,	
  K.	
  Harmankaya,	
  K.	
  Chin,	
  L.	
  

Cykowski,	
  V.	
  de	
  Pril,	
  R.	
  Humphrey,	
  C.	
  Lebbé,	
  Four-­‐year	
  survival	
  rates	
  for	
  

patients	
  with	
  metastatic	
  melanoma	
  who	
  received	
  ipilimumab	
  in	
  phase	
  II	
  

clinical	
  trials.	
  Annals	
  of	
  oncology	
  24,	
  2174-­‐2180	
  (2013).	
  

99.	
   D.	
  Schadendorf,	
  F.	
  S.	
  Hodi,	
  C.	
  Robert,	
  J.	
  S.	
  Weber,	
  K.	
  Margolin,	
  O.	
  Hamid,	
  D.	
  

Patt,	
  T.-­‐T.	
  Chen,	
  D.	
  M.	
  Berman,	
  J.	
  D.	
  Wolchok,	
  Pooled	
  analysis	
  of	
  long-­‐term	
  

survival	
  data	
  from	
  phase	
  II	
  and	
  phase	
  III	
  trials	
  of	
  ipilimumab	
  in	
  unresectable	
  

or	
  metastatic	
  melanoma.	
  Journal	
  of	
  clinical	
  oncology	
  33,	
  1889-­‐1894	
  (2015).	
  

100.	
   J.	
  M.	
  Taube,	
  A.	
  P.	
  Klein,	
  J.	
  R.	
  Brahmer,	
  H.	
  Xu,	
  X.	
  Pan,	
  J.	
  H.	
  Kim,	
  L.	
  Chen,	
  D.	
  M.	
  

Pardoll,	
  S.	
  L.	
  Topalian,	
  R.	
  A.	
  Anders,	
  Association	
  of	
  PD-­‐1,	
  PD-­‐1	
  ligands,	
  and	
  

other	
  features	
  of	
  the	
  tumor	
  immune	
  microenvironment	
  with	
  response	
  to	
  

anti-­‐PD-­‐1	
  therapy.	
  Clinical	
  cancer	
  research,	
  clincanres.	
  3271.2013	
  (2014).	
  

101.	
   W.	
  Hugo,	
  J.	
  M.	
  Zaretsky,	
  L.	
  Sun,	
  C.	
  Song,	
  B.	
  H.	
  Moreno,	
  S.	
  Hu-­‐Lieskovan,	
  B.	
  

Berent-­‐Maoz,	
  J.	
  Pang,	
  B.	
  Chmielowski,	
  G.	
  Cherry,	
  Genomic	
  and	
  transcriptomic	
  

features	
  of	
  response	
  to	
  anti-­‐PD-­‐1	
  therapy	
  in	
  metastatic	
  melanoma.	
  Cell	
  165,	
  

35-­‐44	
  (2016).	
  



	
   166	
  

102.	
   M.	
  M.	
  Gubin,	
  X.	
  Zhang,	
  H.	
  Schuster,	
  E.	
  Caron,	
  J.	
  P.	
  Ward,	
  T.	
  Noguchi,	
  Y.	
  Ivanova,	
  

J.	
  Hundal,	
  C.	
  D.	
  Arthur,	
  W.-­‐J.	
  Krebber,	
  Checkpoint	
  blockade	
  cancer	
  

immunotherapy	
  targets	
  tumour-­‐specific	
  mutant	
  antigens.	
  Nature	
  515,	
  577-­‐

581	
  (2014).	
  

103.	
   R.	
  Das,	
  R.	
  Verma,	
  M.	
  Sznol,	
  C.	
  S.	
  Boddupalli,	
  S.	
  N.	
  Gettinger,	
  H.	
  Kluger,	
  M.	
  

Callahan,	
  J.	
  D.	
  Wolchok,	
  R.	
  Halaban,	
  M.	
  V.	
  Dhodapkar,	
  Combination	
  therapy	
  

with	
  anti–CTLA-­‐4	
  and	
  anti–PD-­‐1	
  leads	
  to	
  distinct	
  immunologic	
  changes	
  in	
  

vivo.	
  The	
  Journal	
  of	
  Immunology	
  194,	
  950-­‐959	
  (2015).	
  

104.	
   M.	
  S.	
  Rooney,	
  S.	
  A.	
  Shukla,	
  C.	
  J.	
  Wu,	
  G.	
  Getz,	
  N.	
  Hacohen,	
  Molecular	
  and	
  genetic	
  

properties	
  of	
  tumors	
  associated	
  with	
  local	
  immune	
  cytolytic	
  activity.	
  Cell	
  

160,	
  48-­‐61	
  (2015).	
  

105.	
   S.	
  Spranger,	
  R.	
  Bao,	
  T.	
  F.	
  Gajewski,	
  Melanoma-­‐intrinsic	
  [beta]-­‐catenin	
  

signalling	
  prevents	
  anti-­‐tumour	
  immunity.	
  Nature	
  523,	
  231	
  (2015).	
  

106.	
   R.	
  R.	
  Huang,	
  J.	
  Jalil,	
  J.	
  S.	
  Economou,	
  B.	
  Chmielowski,	
  R.	
  C.	
  Koya,	
  S.	
  Mok,	
  H.	
  

Sazegar,	
  E.	
  Seja,	
  A.	
  Villanueva,	
  J.	
  Gomez-­‐Navarro,	
  CTLA4	
  blockade	
  induces	
  

frequent	
  tumor	
  infiltration	
  by	
  activated	
  lymphocytes	
  regardless	
  of	
  clinical	
  

responses	
  in	
  humans.	
  Clinical	
  Cancer	
  Research	
  17,	
  4101-­‐4109	
  (2011).	
  

107.	
   N.	
  Ferrara,	
  R.	
  S.	
  Kerbel,	
  Angiogenesis	
  as	
  a	
  therapeutic	
  target.	
  Nature	
  438,	
  967	
  

(2005).	
  

108.	
   T.	
  Voron,	
  O.	
  Colussi,	
  E.	
  Marcheteau,	
  S.	
  Pernot,	
  M.	
  Nizard,	
  A.-­‐L.	
  Pointet,	
  S.	
  

Latreche,	
  S.	
  Bergaya,	
  N.	
  Benhamouda,	
  C.	
  Tanchot,	
  VEGF-­‐A	
  modulates	
  

expression	
  of	
  inhibitory	
  checkpoints	
  on	
  CD8+	
  T	
  cells	
  in	
  tumors.	
  Journal	
  of	
  

Experimental	
  Medicine	
  212,	
  139-­‐148	
  (2015).	
  



	
   167	
  

109.	
   P.	
  A.	
  Ott,	
  F.	
  S.	
  Hodi,	
  E.	
  I.	
  Buchbinder,	
  Inhibition	
  of	
  immune	
  checkpoints	
  and	
  

vascular	
  endothelial	
  growth	
  factor	
  as	
  combination	
  therapy	
  for	
  metastatic	
  

melanoma:	
  an	
  overview	
  of	
  rationale,	
  preclinical	
  evidence,	
  and	
  initial	
  clinical	
  

data.	
  Frontiers	
  in	
  oncology	
  5,	
  	
  (2015).	
  

110.	
   J.	
  R.	
  Westin,	
  F.	
  Chu,	
  M.	
  Zhang,	
  L.	
  E.	
  Fayad,	
  L.	
  W.	
  Kwak,	
  N.	
  Fowler,	
  J.	
  

Romaguera,	
  F.	
  Hagemeister,	
  M.	
  Fanale,	
  F.	
  Samaniego,	
  Safety	
  and	
  activity	
  of	
  

PD1	
  blockade	
  by	
  pidilizumab	
  in	
  combination	
  with	
  rituximab	
  in	
  patients	
  with	
  

relapsed	
  follicular	
  lymphoma:	
  a	
  single	
  group,	
  open-­‐label,	
  phase	
  2	
  trial.	
  The	
  

lancet	
  oncology	
  15,	
  69-­‐77	
  (2014).	
  

111.	
   G.	
  T.	
  Motz,	
  S.	
  P.	
  Santoro,	
  L.-­‐P.	
  Wang,	
  T.	
  Garrabrant,	
  R.	
  R.	
  Lastra,	
  I.	
  S.	
  

Hagemann,	
  P.	
  Lal,	
  M.	
  D.	
  Feldman,	
  F.	
  Benencia,	
  G.	
  Coukos,	
  Tumor	
  endothelium	
  

FasL	
  establishes	
  a	
  selective	
  immune	
  barrier	
  promoting	
  tolerance	
  in	
  tumors.	
  

Nature	
  medicine	
  20,	
  607-­‐615	
  (2014).	
  

112.	
   J.	
  E.	
  Ohm,	
  D.	
  I.	
  Gabrilovich,	
  G.	
  D.	
  Sempowski,	
  E.	
  Kisseleva,	
  K.	
  S.	
  Parman,	
  S.	
  

Nadaf,	
  D.	
  P.	
  Carbone,	
  VEGF	
  inhibits	
  T-­‐cell	
  development	
  and	
  may	
  contribute	
  to	
  

tumor-­‐induced	
  immune	
  suppression.	
  Blood	
  101,	
  4878-­‐4886	
  (2003).	
  

113.	
   D.	
  Gabrilovich,	
  T.	
  Ishida,	
  T.	
  Oyama,	
  S.	
  Ran,	
  V.	
  Kravtsov,	
  S.	
  Nadaf,	
  D.	
  P.	
  Carbone,	
  

Vascular	
  endothelial	
  growth	
  factor	
  inhibits	
  the	
  development	
  of	
  dendritic	
  cells	
  

and	
  dramatically	
  affects	
  the	
  differentiation	
  of	
  multiple	
  hematopoietic	
  

lineages	
  in	
  vivo.	
  Blood	
  92,	
  4150-­‐4166	
  (1998).	
  

114.	
   M.	
  Terme,	
  S.	
  Pernot,	
  E.	
  Marcheteau,	
  F.	
  Sandoval,	
  N.	
  Benhamouda,	
  O.	
  Colussi,	
  

O.	
  Dubreuil,	
  A.	
  F.	
  Carpentier,	
  E.	
  Tartour,	
  J.	
  Taieb,	
  VEGFA-­‐VEGFR	
  pathway	
  



	
   168	
  

blockade	
  inhibits	
  tumor-­‐induced	
  regulatory	
  T-­‐cell	
  proliferation	
  in	
  colorectal	
  

cancer.	
  Cancer	
  research	
  73,	
  539-­‐549	
  (2013).	
  

115.	
   F.	
  S.	
  Hodi,	
  D.	
  Lawrence,	
  C.	
  Lezcano,	
  X.	
  Wu,	
  J.	
  Zhou,	
  T.	
  Sasada,	
  W.	
  Zeng,	
  A.	
  

Giobbie-­‐Hurder,	
  M.	
  B.	
  Atkins,	
  N.	
  Ibrahim,	
  Bevacizumab	
  plus	
  ipilimumab	
  in	
  

patients	
  with	
  metastatic	
  melanoma.	
  Cancer	
  immunology	
  research	
  2,	
  632-­‐642	
  

(2014).	
  

116.	
   J.	
  Larkin,	
  V.	
  Chiarion-­‐Sileni,	
  R.	
  Gonzalez,	
  J.	
  J.	
  Grob,	
  C.	
  L.	
  Cowey,	
  C.	
  D.	
  Lao,	
  D.	
  

Schadendorf,	
  R.	
  Dummer,	
  M.	
  Smylie,	
  P.	
  Rutkowski,	
  P.	
  F.	
  Ferrucci,	
  A.	
  Hill,	
  J.	
  

Wagstaff,	
  M.	
  S.	
  Carlino,	
  J.	
  B.	
  Haanen,	
  M.	
  Maio,	
  I.	
  Marquez-­‐Rodas,	
  G.	
  A.	
  

McArthur,	
  P.	
  A.	
  Ascierto,	
  G.	
  V.	
  Long,	
  M.	
  K.	
  Callahan,	
  M.	
  A.	
  Postow,	
  K.	
  

Grossmann,	
  M.	
  Sznol,	
  B.	
  Dreno,	
  L.	
  Bastholt,	
  A.	
  Yang,	
  L.	
  M.	
  Rollin,	
  C.	
  Horak,	
  F.	
  S.	
  

Hodi,	
  J.	
  D.	
  Wolchok,	
  Combined	
  Nivolumab	
  and	
  Ipilimumab	
  or	
  Monotherapy	
  in	
  

Untreated	
  Melanoma.	
  N	
  Engl	
  J	
  Med	
  373,	
  23-­‐34	
  (2015).	
  

117.	
   S.	
  L.	
  Topalian,	
  F.	
  S.	
  Hodi,	
  J.	
  R.	
  Brahmer,	
  S.	
  N.	
  Gettinger,	
  D.	
  C.	
  Smith,	
  D.	
  F.	
  

McDermott,	
  J.	
  D.	
  Powderly,	
  R.	
  D.	
  Carvajal,	
  J.	
  A.	
  Sosman,	
  M.	
  B.	
  Atkins,	
  Safety,	
  

activity,	
  and	
  immune	
  correlates	
  of	
  anti–PD-­‐1	
  antibody	
  in	
  cancer.	
  New	
  

England	
  Journal	
  of	
  Medicine	
  366,	
  2443-­‐2454	
  (2012).	
  

118.	
   J.	
  D.	
  Wolchok,	
  H.	
  Kluger,	
  M.	
  K.	
  Callahan,	
  M.	
  A.	
  Postow,	
  N.	
  A.	
  Rizvi,	
  A.	
  M.	
  

Lesokhin,	
  N.	
  H.	
  Segal,	
  C.	
  E.	
  Ariyan,	
  R.	
  A.	
  Gordon,	
  K.	
  Reed,	
  M.	
  M.	
  Burke,	
  A.	
  

Caldwell,	
  S.	
  A.	
  Kronenberg,	
  B.	
  U.	
  Agunwamba,	
  X.	
  Zhang,	
  I.	
  Lowy,	
  H.	
  D.	
  Inzunza,	
  

W.	
  Feely,	
  C.	
  E.	
  Horak,	
  Q.	
  Hong,	
  A.	
  J.	
  Korman,	
  J.	
  M.	
  Wigginton,	
  A.	
  Gupta,	
  M.	
  

Sznol,	
  Nivolumab	
  plus	
  ipilimumab	
  in	
  advanced	
  melanoma.	
  N	
  Engl	
  J	
  Med	
  369,	
  

122-­‐133	
  (2013).	
  



	
   169	
  

119.	
   D.	
  T.	
  Le,	
  J.	
  N.	
  Uram,	
  H.	
  Wang,	
  B.	
  R.	
  Bartlett,	
  H.	
  Kemberling,	
  A.	
  D.	
  Eyring,	
  A.	
  D.	
  

Skora,	
  B.	
  S.	
  Luber,	
  N.	
  S.	
  Azad,	
  D.	
  Laheru,	
  B.	
  Biedrzycki,	
  R.	
  C.	
  Donehower,	
  A.	
  

Zaheer,	
  G.	
  A.	
  Fisher,	
  T.	
  S.	
  Crocenzi,	
  J.	
  J.	
  Lee,	
  S.	
  M.	
  Duffy,	
  R.	
  M.	
  Goldberg,	
  A.	
  de	
  la	
  

Chapelle,	
  M.	
  Koshiji,	
  F.	
  Bhaijee,	
  T.	
  Huebner,	
  R.	
  H.	
  Hruban,	
  L.	
  D.	
  Wood,	
  N.	
  Cuka,	
  

D.	
  M.	
  Pardoll,	
  N.	
  Papadopoulos,	
  K.	
  W.	
  Kinzler,	
  S.	
  Zhou,	
  T.	
  C.	
  Cornish,	
  J.	
  M.	
  

Taube,	
  R.	
  A.	
  Anders,	
  J.	
  R.	
  Eshleman,	
  B.	
  Vogelstein,	
  L.	
  A.	
  Diaz,	
  Jr.,	
  PD-­‐1	
  Blockade	
  

in	
  Tumors	
  with	
  Mismatch-­‐Repair	
  Deficiency.	
  N	
  Engl	
  J	
  Med	
  372,	
  2509-­‐2520	
  

(2015).	
  

120.	
   O.	
  Hamid,	
  C.	
  Robert,	
  A.	
  Daud,	
  F.	
  S.	
  Hodi,	
  W.	
  J.	
  Hwu,	
  R.	
  Kefford,	
  J.	
  D.	
  Wolchok,	
  P.	
  

Hersey,	
  R.	
  W.	
  Joseph,	
  J.	
  S.	
  Weber,	
  R.	
  Dronca,	
  T.	
  C.	
  Gangadhar,	
  A.	
  Patnaik,	
  H.	
  

Zarour,	
  A.	
  M.	
  Joshua,	
  K.	
  Gergich,	
  J.	
  Elassaiss-­‐Schaap,	
  A.	
  Algazi,	
  C.	
  Mateus,	
  P.	
  

Boasberg,	
  P.	
  C.	
  Tumeh,	
  B.	
  Chmielowski,	
  S.	
  W.	
  Ebbinghaus,	
  X.	
  N.	
  Li,	
  S.	
  P.	
  Kang,	
  

A.	
  Ribas,	
  Safety	
  and	
  tumor	
  responses	
  with	
  lambrolizumab	
  (anti-­‐PD-­‐1)	
  in	
  

melanoma.	
  N	
  Engl	
  J	
  Med	
  369,	
  134-­‐144	
  (2013).	
  

121.	
   T.	
  N.	
  Schumacher,	
  C.	
  Kesmir,	
  M.	
  M.	
  van	
  Buuren,	
  Biomarkers	
  in	
  cancer	
  

immunotherapy.	
  Cancer	
  Cell	
  27,	
  12-­‐14	
  (2015).	
  

122.	
   J.	
  Matsuzaki,	
  S.	
  Gnjatic,	
  P.	
  Mhawech-­‐Fauceglia,	
  A.	
  Beck,	
  A.	
  Miller,	
  T.	
  Tsuji,	
  C.	
  

Eppolito,	
  F.	
  Qian,	
  S.	
  Lele,	
  P.	
  Shrikant,	
  L.	
  J.	
  Old,	
  K.	
  Odunsi,	
  Tumor-­‐infiltrating	
  

NY-­‐ESO-­‐1-­‐specific	
  CD8+	
  T	
  cells	
  are	
  negatively	
  regulated	
  by	
  LAG-­‐3	
  and	
  PD-­‐1	
  

in	
  human	
  ovarian	
  cancer.	
  Proc	
  Natl	
  Acad	
  Sci	
  U	
  S	
  A	
  107,	
  7875-­‐7880	
  (2010).	
  

123.	
   K.	
  Sakuishi,	
  L.	
  Apetoh,	
  J.	
  M.	
  Sullivan,	
  B.	
  R.	
  Blazar,	
  V.	
  K.	
  Kuchroo,	
  A.	
  C.	
  

Anderson,	
  Targeting	
  Tim-­‐3	
  and	
  PD-­‐1	
  pathways	
  to	
  reverse	
  T	
  cell	
  exhaustion	
  

and	
  restore	
  anti-­‐tumor	
  immunity.	
  J	
  Exp	
  Med	
  207,	
  2187-­‐2194	
  (2010).	
  



	
   170	
  

124.	
   H.	
  Li,	
  K.	
  Wu,	
  K.	
  Tao,	
  L.	
  Chen,	
  Q.	
  Zheng,	
  X.	
  Lu,	
  J.	
  Liu,	
  L.	
  Shi,	
  C.	
  Liu,	
  G.	
  Wang,	
  W.	
  

Zou,	
  Tim-­‐3/galectin-­‐9	
  signaling	
  pathway	
  mediates	
  T-­‐cell	
  dysfunction	
  and	
  

predicts	
  poor	
  prognosis	
  in	
  patients	
  with	
  hepatitis	
  B	
  virus-­‐associated	
  

hepatocellular	
  carcinoma.	
  Hepatology	
  56,	
  1342-­‐1351	
  (2012).	
  

125.	
   S.-­‐R.	
  Woo,	
  M.	
  E.	
  Turnis,	
  M.	
  V.	
  Goldberg,	
  J.	
  Bankoti,	
  M.	
  Selby,	
  C.	
  J.	
  Nirschl,	
  M.	
  L.	
  

Bettini,	
  D.	
  M.	
  Gravano,	
  P.	
  Vogel,	
  C.	
  L.	
  Liu,	
  Immune	
  inhibitory	
  molecules	
  LAG-­‐3	
  

and	
  PD-­‐1	
  synergistically	
  regulate	
  T-­‐cell	
  function	
  to	
  promote	
  tumoral	
  immune	
  

escape.	
  Cancer	
  research	
  72,	
  917-­‐927	
  (2012).	
  

126.	
   T.	
  Powles,	
  J.	
  P.	
  Eder,	
  G.	
  D.	
  Fine,	
  F.	
  S.	
  Braiteh,	
  Y.	
  Loriot,	
  C.	
  Cruz,	
  J.	
  Bellmunt,	
  H.	
  

A.	
  Burris,	
  D.	
  P.	
  Petrylak,	
  S.	
  L.	
  Teng,	
  X.	
  Shen,	
  Z.	
  Boyd,	
  P.	
  S.	
  Hegde,	
  D.	
  S.	
  Chen,	
  N.	
  

J.	
  Vogelzang,	
  MPDL3280A	
  (anti-­‐PD-­‐L1)	
  treatment	
  leads	
  to	
  clinical	
  activity	
  in	
  

metastatic	
  bladder	
  cancer.	
  Nature	
  515,	
  558-­‐562	
  (2014).	
  

127.	
   R.	
  S.	
  Herbst,	
  J.	
  C.	
  Soria,	
  M.	
  Kowanetz,	
  G.	
  D.	
  Fine,	
  O.	
  Hamid,	
  M.	
  S.	
  Gordon,	
  J.	
  A.	
  

Sosman,	
  D.	
  F.	
  McDermott,	
  J.	
  D.	
  Powderly,	
  S.	
  N.	
  Gettinger,	
  H.	
  E.	
  Kohrt,	
  L.	
  Horn,	
  

D.	
  P.	
  Lawrence,	
  S.	
  Rost,	
  M.	
  Leabman,	
  Y.	
  Xiao,	
  A.	
  Mokatrin,	
  H.	
  Koeppen,	
  P.	
  S.	
  

Hegde,	
  I.	
  Mellman,	
  D.	
  S.	
  Chen,	
  F.	
  S.	
  Hodi,	
  Predictive	
  correlates	
  of	
  response	
  to	
  

the	
  anti-­‐PD-­‐L1	
  antibody	
  MPDL3280A	
  in	
  cancer	
  patients.	
  Nature	
  515,	
  563-­‐

567	
  (2014).	
  

128.	
   R.	
  J.	
  Johnston,	
  L.	
  Comps-­‐Agrar,	
  J.	
  Hackney,	
  X.	
  Yu,	
  M.	
  Huseni,	
  Y.	
  Yang,	
  S.	
  Park,	
  V.	
  

Javinal,	
  H.	
  Chiu,	
  B.	
  Irving,	
  D.	
  L.	
  Eaton,	
  J.	
  L.	
  Grogan,	
  The	
  immunoreceptor	
  TIGIT	
  

regulates	
  antitumor	
  and	
  antiviral	
  CD8(+)	
  T	
  cell	
  effector	
  function.	
  Cancer	
  Cell	
  

26,	
  923-­‐937	
  (2014).	
  



	
   171	
  

129.	
   J.	
  M.	
  Chauvin,	
  O.	
  Pagliano,	
  J.	
  Fourcade,	
  Z.	
  Sun,	
  H.	
  Wang,	
  C.	
  Sander,	
  J.	
  M.	
  

Kirkwood,	
  T.	
  H.	
  Chen,	
  M.	
  Maurer,	
  A.	
  J.	
  Korman,	
  H.	
  M.	
  Zarour,	
  TIGIT	
  and	
  PD-­‐1	
  

impair	
  tumor	
  antigen-­‐specific	
  CD8(+)	
  T	
  cells	
  in	
  melanoma	
  patients.	
  J	
  Clin	
  

Invest	
  125,	
  2046-­‐2058	
  (2015).	
  

130.	
   H.	
  Sumimoto,	
  F.	
  Imabayashi,	
  T.	
  Iwata,	
  Y.	
  Kawakami,	
  The	
  BRAF–MAPK	
  

signaling	
  pathway	
  is	
  essential	
  for	
  cancer-­‐immune	
  evasion	
  in	
  human	
  

melanoma	
  cells.	
  The	
  Journal	
  of	
  experimental	
  medicine	
  203,	
  1651-­‐1656	
  

(2006).	
  

131.	
   W.	
  Hugo,	
  J.	
  M.	
  Zaretsky,	
  L.	
  Sun,	
  C.	
  Song,	
  B.	
  H.	
  Moreno,	
  S.	
  Hu-­‐Lieskovan,	
  B.	
  

Berent-­‐Maoz,	
  J.	
  Pang,	
  B.	
  Chmielowski,	
  G.	
  Cherry,	
  E.	
  Seja,	
  S.	
  Lomeli,	
  X.	
  Kong,	
  M.	
  

C.	
  Kelley,	
  J.	
  A.	
  Sosman,	
  D.	
  B.	
  Johnson,	
  A.	
  Ribas,	
  R.	
  S.	
  Lo,	
  Genomic	
  and	
  

Transcriptomic	
  Features	
  of	
  Response	
  to	
  Anti-­‐PD-­‐1	
  Therapy	
  in	
  Metastatic	
  

Melanoma.	
  Cell	
  165,	
  35-­‐44	
  (2016).	
  

132.	
   J.	
  M.	
  Taube,	
  R.	
  A.	
  Anders,	
  G.	
  D.	
  Young,	
  H.	
  Xu,	
  R.	
  Sharma,	
  T.	
  L.	
  McMiller,	
  S.	
  Chen,	
  

A.	
  P.	
  Klein,	
  D.	
  M.	
  Pardoll,	
  S.	
  L.	
  Topalian,	
  Colocalization	
  of	
  inflammatory	
  

response	
  with	
  B7-­‐h1	
  expression	
  in	
  human	
  melanocytic	
  lesions	
  supports	
  an	
  

adaptive	
  resistance	
  mechanism	
  of	
  immune	
  escape.	
  Science	
  translational	
  

medicine	
  4,	
  127ra137-­‐127ra137	
  (2012).	
  

133.	
   J.	
  M.	
  Taube,	
  G.	
  D.	
  Young,	
  T.	
  L.	
  McMiller,	
  S.	
  Chen,	
  J.	
  T.	
  Salas,	
  T.	
  S.	
  Pritchard,	
  H.	
  

Xu,	
  A.	
  K.	
  Meeker,	
  J.	
  Fan,	
  C.	
  Cheadle,	
  A.	
  E.	
  Berger,	
  D.	
  M.	
  Pardoll,	
  S.	
  L.	
  Topalian,	
  

Differential	
  Expression	
  of	
  Immune-­‐Regulatory	
  Genes	
  Associated	
  with	
  PD-­‐L1	
  

Display	
  in	
  Melanoma:	
  Implications	
  for	
  PD-­‐1	
  Pathway	
  Blockade.	
  Clin	
  Cancer	
  

Res	
  21,	
  3969-­‐3976	
  (2015).	
  



	
   172	
  

134.	
   M.	
  D.	
  Ayers,	
  M.	
  Nebozhyn,	
  H.	
  A.	
  Hirsch,	
  R.	
  Cristescu,	
  E.	
  E.	
  Murphy,	
  S.	
  P.	
  Kang,	
  

S.	
  W.	
  Ebbinghaus,	
  T.	
  K.	
  McClanahan,	
  A.	
  Loboda,	
  J.	
  K.	
  Lunceford,	
  Assessment	
  of	
  

gene	
  expression	
  in	
  peripheral	
  blood	
  from	
  patients	
  with	
  advanced	
  melanoma	
  

using	
  RNA-­‐Seq	
  before	
  and	
  after	
  treatment	
  with	
  anti-­‐PD-­‐1	
  therapy	
  with	
  

pembrolizumab	
  (MK-­‐3475).	
  Cancer	
  Research	
  75,	
  1307-­‐1307	
  (2015).	
  

135.	
   A.	
  J.	
  Minn,	
  E.	
  J.	
  Wherry,	
  Combination	
  Cancer	
  Therapies	
  with	
  Immune	
  

Checkpoint	
  Blockade:	
  Convergence	
  on	
  Interferon	
  Signaling.	
  Cell	
  165,	
  272-­‐

275	
  (2016).	
  

136.	
   H.	
  Matsushita,	
  M.	
  D.	
  Vesely,	
  D.	
  C.	
  Koboldt,	
  C.	
  G.	
  Rickert,	
  R.	
  Uppaluri,	
  V.	
  J.	
  

Magrini,	
  C.	
  D.	
  Arthur,	
  J.	
  M.	
  White,	
  Y.	
  S.	
  Chen,	
  L.	
  K.	
  Shea,	
  J.	
  Hundal,	
  M.	
  C.	
  Wendl,	
  

R.	
  Demeter,	
  T.	
  Wylie,	
  J.	
  P.	
  Allison,	
  M.	
  J.	
  Smyth,	
  L.	
  J.	
  Old,	
  E.	
  R.	
  Mardis,	
  R.	
  D.	
  

Schreiber,	
  Cancer	
  exome	
  analysis	
  reveals	
  a	
  T-­‐cell-­‐dependent	
  mechanism	
  of	
  

cancer	
  immunoediting.	
  Nature	
  482,	
  400-­‐404	
  (2012).	
  

137.	
   M.	
  DuPage,	
  C.	
  Mazumdar,	
  L.	
  M.	
  Schmidt,	
  A.	
  F.	
  Cheung,	
  T.	
  Jacks,	
  Expression	
  of	
  

tumour-­‐specific	
  antigens	
  underlies	
  cancer	
  immunoediting.	
  Nature	
  482,	
  405-­‐

409	
  (2012).	
  

138.	
   A.	
  Sivan,	
  L.	
  Corrales,	
  N.	
  Hubert,	
  J.	
  B.	
  Williams,	
  K.	
  Aquino-­‐Michaels,	
  Z.	
  M.	
  

Earley,	
  F.	
  W.	
  Benyamin,	
  Y.	
  M.	
  Lei,	
  B.	
  Jabri,	
  M.-­‐L.	
  Alegre,	
  Commensal	
  

Bifidobacterium	
  promotes	
  antitumor	
  immunity	
  and	
  facilitates	
  anti–PD-­‐L1	
  

efficacy.	
  Science	
  350,	
  1084-­‐1089	
  (2015).	
  

139.	
   C.	
  H.	
  Chang,	
  J.	
  Qiu,	
  D.	
  O'Sullivan,	
  M.	
  D.	
  Buck,	
  T.	
  Noguchi,	
  J.	
  D.	
  Curtis,	
  Q.	
  Chen,	
  M.	
  

Gindin,	
  M.	
  M.	
  Gubin,	
  G.	
  J.	
  van	
  der	
  Windt,	
  E.	
  Tonc,	
  R.	
  D.	
  Schreiber,	
  E.	
  J.	
  Pearce,	
  



	
   173	
  

E.	
  L.	
  Pearce,	
  Metabolic	
  Competition	
  in	
  the	
  Tumor	
  Microenvironment	
  Is	
  a	
  

Driver	
  of	
  Cancer	
  Progression.	
  Cell	
  162,	
  1229-­‐1241	
  (2015).	
  

140.	
   P.	
  C.	
  Ho,	
  J.	
  D.	
  Bihuniak,	
  A.	
  N.	
  Macintyre,	
  M.	
  Staron,	
  X.	
  Liu,	
  R.	
  Amezquita,	
  Y.	
  C.	
  

Tsui,	
  G.	
  Cui,	
  G.	
  Micevic,	
  J.	
  C.	
  Perales,	
  S.	
  H.	
  Kleinstein,	
  E.	
  D.	
  Abel,	
  K.	
  L.	
  Insogna,	
  S.	
  

Feske,	
  J.	
  W.	
  Locasale,	
  M.	
  W.	
  Bosenberg,	
  J.	
  C.	
  Rathmell,	
  S.	
  M.	
  Kaech,	
  

Phosphoenolpyruvate	
  Is	
  a	
  Metabolic	
  Checkpoint	
  of	
  Anti-­‐tumor	
  T	
  Cell	
  

Responses.	
  Cell	
  162,	
  1217-­‐1228	
  (2015).	
  

141.	
   W.	
  Yang,	
  Y.	
  Bai,	
  Y.	
  Xiong,	
  J.	
  Zhang,	
  S.	
  Chen,	
  X.	
  Zheng,	
  X.	
  Meng,	
  L.	
  Li,	
  J.	
  Wang,	
  C.	
  

Xu,	
  C.	
  Yan,	
  L.	
  Wang,	
  C.	
  C.	
  Chang,	
  T.	
  Y.	
  Chang,	
  T.	
  Zhang,	
  P.	
  Zhou,	
  B.	
  L.	
  Song,	
  W.	
  

Liu,	
  S.	
  C.	
  Sun,	
  X.	
  Liu,	
  B.	
  L.	
  Li,	
  C.	
  Xu,	
  Potentiating	
  the	
  antitumour	
  response	
  of	
  

CD8(+)	
  T	
  cells	
  by	
  modulating	
  cholesterol	
  metabolism.	
  Nature	
  531,	
  651-­‐655	
  

(2016).	
  

142.	
   E.	
  Hodis,	
  I.	
  R.	
  Watson,	
  G.	
  V.	
  Kryukov,	
  S.	
  T.	
  Arold,	
  M.	
  Imielinski,	
  J.	
  P.	
  Theurillat,	
  

E.	
  Nickerson,	
  D.	
  Auclair,	
  L.	
  Li,	
  C.	
  Place,	
  D.	
  Dicara,	
  A.	
  H.	
  Ramos,	
  M.	
  S.	
  Lawrence,	
  

K.	
  Cibulskis,	
  A.	
  Sivachenko,	
  D.	
  Voet,	
  G.	
  Saksena,	
  N.	
  Stransky,	
  R.	
  C.	
  Onofrio,	
  W.	
  

Winckler,	
  K.	
  Ardlie,	
  N.	
  Wagle,	
  J.	
  Wargo,	
  K.	
  Chong,	
  D.	
  L.	
  Morton,	
  K.	
  Stemke-­‐

Hale,	
  G.	
  Chen,	
  M.	
  Noble,	
  M.	
  Meyerson,	
  J.	
  E.	
  Ladbury,	
  M.	
  A.	
  Davies,	
  J.	
  E.	
  

Gershenwald,	
  S.	
  N.	
  Wagner,	
  D.	
  S.	
  Hoon,	
  D.	
  Schadendorf,	
  E.	
  S.	
  Lander,	
  S.	
  B.	
  

Gabriel,	
  G.	
  Getz,	
  L.	
  A.	
  Garraway,	
  L.	
  Chin,	
  A	
  landscape	
  of	
  driver	
  mutations	
  in	
  

melanoma.	
  Cell	
  150,	
  251-­‐263	
  (2012).	
  

143.	
   D.	
  H.	
  Kaplan,	
  V.	
  Shankaran,	
  A.	
  S.	
  Dighe,	
  E.	
  Stockert,	
  M.	
  Aguet,	
  L.	
  J.	
  Old,	
  R.	
  D.	
  

Schreiber,	
  Demonstration	
  of	
  an	
  interferon	
  γ-­‐dependent	
  tumor	
  surveillance	
  



	
   174	
  

system	
  in	
  immunocompetent	
  mice.	
  Proceedings	
  of	
  the	
  National	
  Academy	
  of	
  

Sciences	
  95,	
  7556-­‐7561	
  (1998).	
  

144.	
   G.	
  P.	
  Dunn,	
  K.	
  C.	
  Sheehan,	
  L.	
  J.	
  Old,	
  R.	
  D.	
  Schreiber,	
  IFN	
  unresponsiveness	
  in	
  

LNCaP	
  cells	
  due	
  to	
  the	
  lack	
  of	
  JAK1	
  gene	
  expression.	
  Cancer	
  research	
  65,	
  

3447-­‐3453	
  (2005).	
  

145.	
   E.	
  Wang,	
  A.	
  Worschech,	
  F.	
  M.	
  Marincola,	
  The	
  immunologic	
  constant	
  of	
  

rejection.	
  Trends	
  Immunol	
  29,	
  256-­‐262	
  (2008).	
  

146.	
   J.	
  Galon,	
  H.	
  K.	
  Angell,	
  D.	
  Bedognetti,	
  F.	
  M.	
  Marincola,	
  The	
  continuum	
  of	
  cancer	
  

immunosurveillance:	
  prognostic,	
  predictive,	
  and	
  mechanistic	
  signatures.	
  

Immunity	
  39,	
  11-­‐26	
  (2013).	
  

147.	
   L.	
  N.	
  Kwong,	
  L.	
  Chin,	
  Chromosome	
  10,	
  frequently	
  lost	
  in	
  human	
  melanoma,	
  

encodes	
  multiple	
  tumor-­‐suppressive	
  functions.	
  Cancer	
  research	
  74,	
  1814-­‐

1821	
  (2014).	
  

148.	
   B.	
  C.	
  Bastian,	
  P.	
  E.	
  LeBoit,	
  H.	
  Hamm,	
  E.-­‐B.	
  Bröcker,	
  D.	
  Pinkel,	
  Chromosomal	
  

gains	
  and	
  losses	
  in	
  primary	
  cutaneous	
  melanomas	
  detected	
  by	
  comparative	
  

genomic	
  hybridization.	
  Cancer	
  research	
  58,	
  2170-­‐2175	
  (1998).	
  

149.	
   J.	
  Bauer,	
  B.	
  C.	
  Bastian,	
  Distinguishing	
  melanocytic	
  nevi	
  from	
  melanoma	
  by	
  

DNA	
  copy	
  number	
  changes:	
  comparative	
  genomic	
  hybridization	
  as	
  a	
  research	
  

and	
  diagnostic	
  tool.	
  Dermatologic	
  therapy	
  19,	
  40-­‐49	
  (2006).	
  

150.	
   A.	
  H.	
  Shain,	
  I.	
  Yeh,	
  I.	
  Kovalyshyn,	
  A.	
  Sriharan,	
  E.	
  Talevich,	
  A.	
  Gagnon,	
  R.	
  

Dummer,	
  J.	
  North,	
  L.	
  Pincus,	
  B.	
  Ruben,	
  W.	
  Rickaby,	
  C.	
  D'Arrigo,	
  A.	
  Robson,	
  B.	
  

C.	
  Bastian,	
  The	
  Genetic	
  Evolution	
  of	
  Melanoma	
  from	
  Precursor	
  Lesions.	
  N	
  

Engl	
  J	
  Med	
  373,	
  1926-­‐1936	
  (2015).	
  



	
   175	
  

151.	
   A.	
  H.	
  Shain,	
  B.	
  C.	
  Bastian,	
  From	
  melanocytes	
  to	
  melanomas.	
  Nat	
  Rev	
  Cancer	
  

16,	
  345-­‐358	
  (2016).	
  

152.	
   M.	
  Schmittnaegel,	
  N.	
  Rigamonti,	
  E.	
  Kadioglu,	
  A.	
  Cassará,	
  C.	
  W.	
  Rmili,	
  A.	
  

Kiialainen,	
  Y.	
  Kienast,	
  H.-­‐J.	
  Mueller,	
  C.-­‐H.	
  Ooi,	
  D.	
  Laoui,	
  Dual	
  angiopoietin-­‐2	
  

and	
  VEGFA	
  inhibition	
  elicits	
  antitumor	
  immunity	
  that	
  is	
  enhanced	
  by	
  PD-­‐1	
  

checkpoint	
  blockade.	
  Science	
  translational	
  medicine	
  9,	
  eaak9670	
  (2017).	
  

153.	
   E.	
  Allen,	
  A.	
  Jabouille,	
  L.	
  B.	
  Rivera,	
  I.	
  Lodewijckx,	
  R.	
  Missiaen,	
  V.	
  Steri,	
  K.	
  Feyen,	
  

J.	
  Tawney,	
  D.	
  Hanahan,	
  I.	
  P.	
  Michael,	
  Combined	
  antiangiogenic	
  and	
  anti–PD-­‐

L1	
  therapy	
  stimulates	
  tumor	
  immunity	
  through	
  HEV	
  formation.	
  Science	
  

translational	
  medicine	
  9,	
  eaak9679	
  (2017).	
  

154.	
   K.	
  Garber,	
  Promising	
  Early	
  Results	
  for	
  Immunotherapy–Antiangiogenesis	
  

Combination.	
  JNCI:	
  Journal	
  of	
  the	
  National	
  Cancer	
  Institute	
  106,	
  	
  (2014).	
  

155.	
   T.	
  Davoli,	
  H.	
  Uno,	
  E.	
  C.	
  Wooten,	
  S.	
  J.	
  Elledge,	
  Tumor	
  aneuploidy	
  correlates	
  

with	
  markers	
  of	
  immune	
  evasion	
  and	
  with	
  reduced	
  response	
  to	
  

immunotherapy.	
  Science	
  355,	
  eaaf8399	
  (2017).	
  

156.	
   K.	
  W.	
  Mouw,	
  M.	
  S.	
  Goldberg,	
  P.	
  A.	
  Konstantinopoulos,	
  A.	
  D.	
  D'Andrea,	
  DNA	
  

Damage	
  and	
  Repair	
  Biomarkers	
  of	
  Immunotherapy	
  Response.	
  Cancer	
  

Discovery	
  7,	
  675-­‐693	
  (2017).	
  

157.	
   R.	
  Vilain,	
  H.	
  Kakavand,	
  A.	
  Menzies,	
  J.	
  Madore,	
  J.	
  Wilmott,	
  R.	
  Dobney,	
  V.	
  Jakrot,	
  

A.	
  Cooper,	
  B.	
  Kong,	
  S.	
  Lo,	
  3305	
  PD1	
  inhibition-­‐induced	
  changes	
  in	
  melanoma	
  

and	
  its	
  associated	
  immune	
  infiltrate.	
  European	
  Journal	
  of	
  Cancer	
  51,	
  S666	
  

(2015).	
  



	
   176	
  

158.	
   A.	
  Gros,	
  M.	
  R.	
  Parkhurst,	
  E.	
  Tran,	
  A.	
  Pasetto,	
  P.	
  F.	
  Robbins,	
  S.	
  Ilyas,	
  T.	
  D.	
  

Prickett,	
  J.	
  J.	
  Gartner,	
  J.	
  S.	
  Crystal,	
  I.	
  M.	
  Roberts,	
  Prospective	
  identification	
  of	
  

neoantigen-­‐specific	
  lymphocytes	
  in	
  the	
  peripheral	
  blood	
  of	
  melanoma	
  

patients.	
  Nature	
  medicine	
  22,	
  433-­‐438	
  (2016).	
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   177	
  

VITA 
 
Whijae Roh was born in the city of Anyang in South Korea, on 

September 2, 1984, the son of Gab Kyun Roh and Joung Soon Bae. After 

completing his work at Hansung Science High School, Seoul in 2002, he 

entered Korea Advanced Institute of Science and Technology (KAIST) 

in Daejeon, South Korea. He received the degree of Bachelor of Science 

with a major in Bio and Brain Engineering from KAIST in August 2006. In 

a graduate school at the University of Michigan, he received the degree 

of Master of Science in Biomedical Engineering in April 2008 and the 

degree of Master of Science in Biostatistics in April 2010. In next three 

years, he worked as an assistant research scientist in the Bioneer 

corporation and the Genomic Medicine Institute at Seoul National 

University College of Medicine. In August of 2013, he entered The 

University of Texas MD Anderson Cancer Center UTHealth Graduate 

School of Biomedical Sciences.  

 

Permanent address:  

105 Dong 302 Ho, Bangae Art e-Pyunhan Sesang Apt. 
 
101 Hyoryungro 2-gil, Seocho-gu,  
 
Seoul, South Korea 


	Texas Medical Center Library
	DigitalCommons@TMC
	12-2017

	INTEGRATIVE CANCER IMMUNOGENOMIC ANALYSIS OF SERIAL MELANOMA BIOPSIES REVEALS CORRELATES OF RESPONSE AND RESISTANCE TO SEQUENTIAL CTLA-4 AND PD-1 BLOCKADE TREATMENT
	Whijae Roh
	Recommended Citation


	Microsoft Word - Dissertation_Whijae Roh_20170921.docx

