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Abstract

The development and maintenance of large and complex on-
tologies are often time-consuming and error-prone. Thus, au-
tomated ontology learning and evolution have attracted in-
tensive research interest. In data-centric applications where
ontologies are designed from the data or automatically learnt
from it, when new data instances are added that contradict
the ontology, it is often desirable to incrementally revise the
ontology according to the added data. In description logics,
this problem can be intuitively formulated as the operation
of TBox contraction, i.e., rational elimination of certain ax-
ioms from the logical consequences of a TBox, and it is w.r.t.
an ABox. In this paper we introduce a model-theoretic ap-
proach to such a contraction problem by using an alternative
semantic characterisation of DL-Lite TBoxes. We show that
entailment checking (without necessarily first computing the
contraction result) is in coNP, which does not shift the corre-
sponding complexity in propositional logic, and the problem
is tractable when the size of the new data is bounded.

Introduction
With the Web Ontology Language (OWL) and its latest
version OWL 2 being standardised by the WWW Consor-
tium (W3C), a large number of professional and compre-
hensive ontologies have been developed for data modelling
and access. Existing large ontologies like NCI (Hartel et
al. 2005) are mostly hand-crafted by human experts. The
development and maintenance of such large ontologies are
often time-consuming and error-prone. Recently, automated
ontology learning (Baader et al. 2007; Lehmann and Hit-
zler 2010; Konev, Lutz, and Wolter 2013) and evolution
(Qi and Yang 2008; Qi et al. 2008; Ribeiro and Wasser-
mann 2009; Qi and Du 2009; Wang, Wang, and Topor 2010;
Zheleznyakov et al. 2010; Cuenca Grau et al. 2012; Qi et al.
2014) have attracted intensive interest.

Although it is often conceived that ontologies, once es-
tablished, are more stable and reliable than data, it is shown
in (Pesquita and Couto 2012) that automated ontology en-
richment and refinement are desired in applications such
as biomedical ontologies, which are constant evolving due
to new understandings of the domain. One typical ap-
proach to the automation of the process is ontology learn-
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ing (Lehmann and Hitzler 2010), where terminological re-
lations are learnt from example data provided by domain
experts. The development of biomedicine ontologies is de-
scribed as an evolution process (Pesquita and Couto 2012)—
as new knowledge is discovered daily, the initial ontology
needs to be enriched with or refined by the new knowl-
edge continuously. Hence, automated learning and incre-
mental revision techniques can largely benefit the ontol-
ogy engineering. Several ontology learning approaches
have been proposed in the literature and effective learn-
ing tools have been developed (Lehmann and Hitzler 2010;
Ma and Distel 2013). An obvious requirement in ontology
learning is that the learnt ontology must be consistent with
the example data. However, when new data instances be-
come available, it is possible that the new data contradicts
some previously learnt axioms, which indicates that mis-
takes were made in previous learning processes. Thus, a
challenge is how to revise the existing ontology according
to the new data. In DLs, it amounts to the question of how
to effectively revise a TBox w.r.t. an ABox.

TBox debugging (Kalyanpur et al. 2006; Schlobach et
al. 2007) and interactive revision approaches (Nikitina,
Rudolph, and Glimm 2012) can pinpoint the problem-
atic axioms, and most of TBox repair approaches seek
to eliminate a minimal number of axioms to restore con-
sistency. Similar syntax-based approaches were adopted
in revision (Haase and Stojanovic 2005; Qi et al. 2008;
Ribeiro and Wassermann 2009). However, most syntax-
based approaches to TBox change lack of a suitable seman-
tic justification, which is partially reflected in their inabil-
ity of preserving implicit knowledge. For example, given
T = {Bird v CanFly,Mammal v ¬CanFly}, the re-
vision of T by A = {CanFly(bat),Mammal(bat)} using
syntax-based approaches in (Haase and Stojanovic 2005;
Ribeiro and Wassermann 2009) will discard implicit infor-
mation Bird v ¬Mammal, though it is not involved in the
contradiction. To resolve this issue, some more recent works
(Horridge, Parsia, and Sattler 2008; Calvanese et al. 2010;
Cuenca Grau et al. 2012) advocate to apply syntax-based
TBox change on the deductive closure cl(T ) of the initial
TBox T instead of T itself. However, there may not exist
a unique optimal solution to such change (Calvanese et al.
2010), since often multiple minimal sets of axioms in T (or
cl(T )) exist that are responsible for the inconsistency.
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Seeing the TBox as a formalisation of the conceptual
model of the ABox, which is a common perspective in on-
tology learning, the TBox essentially represents a collection
of possible DL models. Taking this perspective, one can
argue that in TBox evolution, it is critical to ensure mini-
mal changes to the prospective models. Hence, we adopt
the classical model-based belief change approach in defining
our TBox change operator, with the aim of fulfilling the min-
imal change principle in a model-theoretic manner. In clas-
sical belief change, the operation of eliminating problematic
axioms from the logical consequences of a knowledge base
is formalised as contraction, and that of consistently incor-
porating newly formed axioms is formalised as revision. Ex-
tant model-based TBox change literature only cover the revi-
sion and/or contraction w.r.t. TBox axioms (Qi and Du 2009;
Zheleznyakov et al. 2010; Zhuang et al. 2014), with a few
exceptions on revision w.r.t. a combination of a TBox and
an ABox (Wang, Wang, and Topor 2010).

In this paper, we develop a novel approach to TBox re-
vision w.r.t. an ABox through TBox contraction, that is, by
first contracting the “negation” of the ABox and then incor-
porating the ABox. To the best of our knowledge, it is the
first work in this direction, and this is challenging due to
the fact that negation of an ABox was previously undefined.
Moreover, as witnessed by previous model-based TBox revi-
sion approaches, working directly with classical DL models
is difficult. Thus, we adopt the type semantics for DL-Lite,
a family of logics underlying the OWL 2 QL profile. We
define the negation of an ABox as a DL-Lite TBox, and pro-
vide a concrete TBox contraction operator based on type se-
mantics. We show that our operator possesses desired prop-
erties. In particular, our operator is fine-grained in that it
supports modification of axioms, and the result of contrac-
tion is uniquely defined and thus solves the problem of non-
determinism. For the computational aspects, we transform
the entailment problem of TBox contraction in DL-Lite into
a corresponding problem in propositional logic. We show
that entailment checking in DL-Lite does not shift the corre-
sponding complexity in propositional logic. We also provide
a tractable algorithm for contraction.

Preliminaries
DL-Litehorn
A signature is a union of three disjoint (possibly infinite) sets
NC , NR, and NI , where NC is the set of atomic concepts,
NR is the set of atomic roles, andNI is the set of individuals.
Concepts and roles in DL-Litehorn are built on atomic ones
as follows (Calvanese et al. 2007; Artale et al. 2009):

B → A | ∃R C → B | ¬B | ⊥ R→ P | P−

where A ∈ NC and P ∈ NR. B is a basic concept, C is a
general concept, and R is a basic role. In what follows, we
often use A for an atomic concept, B for a basic concept,
C for a general concept, P for an atomic role, and R for a
basic role. B and R denote the sets of basic concepts and
basic roles, respectively. We write R− for P if R = P−.
A DL-Litehorn concept is of the form

d
k Bk or C. An ax-

iom in DL-Litehorn is of the form
d
k Bk v C, whereas

in DL-Litecore it is of the form B v C. A DL-Litehorn
(DL-Litecore) TBox is a finite set of axioms in the logic. An
ABox is a finite set of assertions of the formA(a) or P (a, b),
where a, b ∈ NI . For the convenience of presentation, we
sometimes write P−(a, b) ∈ A meaning P (b, a) ∈ A. A
knowledge base (KB) K = T ∪A consists of a TBox T and
an ABox A. In this paper, an ontology is a DL-Lite TBox.

The semantics of DL-Litehorn is defined as usual using
interpretations I = (∆I , ·I), and we refer to (Calvanese et
al. 2007) for the details. I is a model of T (A, or T ∪ A)
if I satisfies T (resp., A, or both T and A). T ∪ A is
consistent if it has at least one model. We also say that
T is consistent with A. A concept or role E is satisfiable
w.r.t. T if a model I of T exists such that EI 6= ∅; other-
wise, E is unsatisfiable. T is coherent if all atomic concepts
and all atomic roles in T are satisfiable. T entails an ax-
iom α, written T |= α, if all models of T ∪ A satisfy α.
cl(T ) denotes the set of axioms entailed by T . Two TBoxes
T1, T2 (two ABoxesA1,A2) are equivalent, written T1 ≡ T2
(A1 ≡ A2), if they have the same models.

Type Semantics
To develop a model-theoretic approach to TBox change in
DL-Lite, we note that DL models may have complex struc-
tures and the number of models is always infinite. This
makes it hard to handle TBox change directly through clas-
sical DL models. Hence, we use the type semantics in-
troduced for DL-Lite TBoxes in (Kontchakov, Wolter, and
Zakharyaschev 2010; Zhuang et al. 2014), which provides
an alternative semantic characterisation using structures that
are finite and much simpler than classical DL models. We
first introduce the definition and then shows that the nice
properties of the type semantics extend to DL-Litehorn. In
TBox change, it suffices to consider a finite signature that
covers the initial TBox and the new ABox. In this case, B
andR are both finite.

Formally, a type τ ⊆ B is a (possibly empty) set of ba-
sic concepts. For a DL-Litehorn TBox T (or concept E),
PM(T ) (PM(E)) denotes the set of types corresponding
to the propositional models of T (E), i.e., by seeing a type τ
as a propositional interpretation (with basic concepts seen as
propositional atoms) and T (or E) as a propositional theory.

Definition 1 (Zhuang et al. 2014) A type τ satisfies a DL-
Litecore TBox T if both of the following conditions hold:

1. τ ∈ PM(T ), and
2. if T |= ∃R v ⊥ then ∃R− 6∈ τ .

In this case, τ is a type model (T-model) of T . The set of
T-models of T is denoted as TM(T ).

For example, let T = {∃P v ⊥} and τ = {∃P−}. Then,
τ ∈ PM(T ) and τ 6∈ TM(T ). For brevity, we write
TM(α) for singleton TBox T = {α}.

The definition of T-models extends directly to DL-
Litehorn, and type semantics characterise the semantics of
DL-Litehorn TBoxes.

Proposition 1 Given TBoxes T , T ′, a concept E, and an
axiom α in DL-Litehorn, the following results hold:



1. T is consistent iff there exists a T-model of T .
2. E is satisfiable w.r.t. T iff TM(T ) ∩ PM(E) 6= ∅.
3. T |= α iff TM(T ) ⊆ TM(α).
4. T ≡ T ′ iff TM(T ) = TM(T ′).

An arbitrary set M of types may not be always ex-
pressible in DL-Litehorn, that is, M may not be the
set of T-models of any DL-Litehorn TBox. Let L ∈
{DL-Litecore,DL-Litehorn}, a L-TBox T corresponds to
M in L if M ⊆ TM(T ) and there is no L-TBox T ′ such
that M ⊆ TM(T ′) ⊂ TM(T ). In general, there may be
multiple TBoxes that correspond to M in L. The following
proposition shows a sufficient condition for the uniqueness.
Proposition 2 Let L ∈ {DL-Litecore,DL-Litehorn} and M
be a set of types. A unique TBox exists that corresponds to
M in L (up to semantic equivalence) if M includes a type
containing ∃R whenever it includes a type containing ∃R−
for all R ∈ R.

When a unique corresponding TBox exists, TL(M) de-
notes the TBox corresponding to M in L. TL(M) has the
same set of logical consequences in L as M .
Corollary 1 Let L ∈ {DL-Litecore,DL-Litehorn} and M
be a set of types. If TL(M) exists then for each axiom α in
L, M ⊆ TM(α) iff TL(M) |= α.

Expressing Negation of ABoxes
When a setA of new assertions contradict the existing TBox
T , we want to change T to a new TBox T ′, such that T ′ is
consistent with A and that T ′ preserves as much termino-
logical knowledge as possible from T . In classical belief
change, revision of a propositional knowledge base K by
a formula φ can be achieved through contraction via the
Levi identity (Levi 1991). In particular, let .− be a con-
traction operator, the revision of K by φ can be defined
as (K

.−¬φ) ∪ {φ}. However, DL-Lite (and other com-
mon DLs) does not permit negation of ABoxes. Although
negation of assertions are allowed in DL-Lite, the nega-
tion of an ABox would require expressing the disjunction
of negated assertions and would be an unnatural extension
to DL-Lite. For example, the ABox {A(a), A(b)} corre-
sponds to first-order formula A(a) ∧ A(b), whose negation
is ¬A(a) ∨ ¬A(b). Even if disjunction is allowed, it re-
mains unclear how to define contraction of assertions from
a TBox. On the other hand, it is natural to contract TBox
axioms (that are conflicting with the new ABox) from the
TBox before adding the new ABox. To define such TBox
contraction, we first show how to define the negation of an
ABox as a DL-Litehorn TBox.

As suggested in (Flouris et al. 2006), negation can be de-
fined through inconsistency. That is, we define the negation
of an ABox A, denoted T¬(A), to be a TBox that is incon-
sistent with A. Yet different from (Flouris et al. 2006), our
negation is over sets of assertions instead of single axioms.
Also, the following conditions should be satisfied:

(i) For each TBox T , the result of contracting T¬(A) from
T must be consistent with A; that is informally, T¬(A)
contains all potential contradictions towardsA that would
need to be removed from TBoxes.

(ii) T¬(A) should represent potential contradictions without
any redundancy.

To formalise “the contradictions” to be removed from
TBoxes, we adapt the notion of (fine-grained) justifications
(Horridge, Parsia, and Sattler 2008) for inconsistency.

Definition 2 For a TBox T that is inconsistent with an ABox
A, a TBox justification for the inconsistency is a TBox T ′ ⊆
cl(T ) such that T ′ is inconsistent withA and no strict subset
of T ′ is inconsistent with A.

Intuitively, a TBox justification is a minimal set of logical
consequences of the TBox that contradicts the ABox. A
TBox justification contains only TBox axioms from cl(T )
that are involved in a contradiction, and can be seen as a
projection of a fine-grained justification on cl(T )1. The fol-
lowing definition resembles the notion of hitting sets of jus-
tifications but quantifies over all TBoxes.

Definition 3 For an ABox A, a TBox is a negation of A,
denoted T¬(A), if

1. for each TBox that is inconsistent with A, there exists
a TBox justification T ′ for the inconsistency such that
T¬(A) ∩ T ′ 6= ∅; and

2. any strict subset of T¬(A) does not satisfy condition 1.

Condition 1 in the definition corresponds to the pre-
specified condition (i), and condition 2 is the minimality
condition corresponding to (ii). For example, let A =
{A(a), B(a)}, then T = {A v ¬B} is a negation of
A, as informally any TBox that contradicts A implies A
and B are disjoint (including the cases where A or B is
empty). If the disjointness is contracted from a given TBox,
the TBox will be consistent with A. On the other hand,
T ′ = {A v ⊥, B v ⊥} is not a negation of A, as it does
not intersect with a TBox justification for the inconsistency
between T and A. Intuitively, contracting T ′ makes both A
and B satisfiable but cannot remove disjointness.

In what follows, we show that a negation of an ABox
always exists in DL-Litehorn, which is unique (up to se-
mantic equivalence) and can be computed efficiently. In
particular, although a negation of an ABox is defined via
TBox justifications, it can be computed directly without
first computing justifications. For an ABox A and an in-
dividual a in A, define the type of a in A as τ(a,A) =
{A | A(a) ∈ A} ∪ {∃R | R(a, b) ∈ A, b ∈ NI}. Let
Γ(A) = max⊆({τ(a,A) | a ∈ NI in A}) be the set of
maximal types (w.r.t. set containment) of individuals in A.
Before showing the construction of ABox negation in DL-
Litehorn, we first show how the consistency between a TBox
and an ABox can be characterised by type semantics.

Lemma 1 Given a TBox T and an ABoxA in DL-Litehorn,
T ∪ A is consistent iff for each type τ ∈ Γ(A), a T-model
τ ′ ∈ TM(T ) exists such that τ ⊆ τ ′.

Based on the above characterisation, we can establish the
following construction of ABox negation in DL-Litehorn.

1Note that a fine-grained justification is also required to be min-
imal in size and be logically weakest (Horridge, Parsia, and Sattler
2008), which are not enforced in our definition.



Proposition 3 LetA be a DL-Litehorn ABox. Then a unique
negation of A exists (up to semantic equivalence) T¬(A) ≡{d

B∈τ B v ⊥ | τ ∈ Γ(A)
}

.

Proof We first show that T¬(A) satisfies the two con-
ditions in Definition 3. For each TBox T that is inconsis-
tent with A, by Lemma 1, there exists a type τ ∈ Γ(A)
such that no T-model τ ′ ∈ TM(T ) exists such that τ ⊆ τ ′.
Let α be the axiom

d
B∈τ B v ⊥. Then, it is clear that

TM(T ) ⊆ TM(α). From Proposition 1, T |= α. Also,
from the definition of Γ(A), there is an individual a occur-
ring in A such that τ(a,A) = τ . Then, {α} ∪ A is incon-
sistent. Hence, {α} is a TBox justification for T . By the
construction of T¬(A), α ∈ T¬(A). That is, T¬(A) satisfies
condition 1 in Definition 3. For condition 2, consider an ar-
bitrary axiom α ∈ T¬(A) and the TBox T = {α}, then T
is inconsistent withA. It is not hard to see that T¬(A) \ {α}
does not contain any axiom from cl(T ). That is, T¬(A)\{α}
does not satisfy condition 1, and hence T¬(A) is minimal.

We have shown that T¬(A) is a negation of A, and now
we show that a negation of A must be equivalent to T¬(A).
Let T be a negation of A. For each axiom α ∈ T¬(A), con-
sider TBox {α} that is inconsistent with A. By condition 1,
T must intersect with a TBox justification for {α}. From
the deductive closure of α and Lemma 1, it is not hard to see
that such a TBox justification is a singleton TBox equivalent
to {α}. Thus, T contains axiom equivalent to α. By the
minimality condition of T , T is equivalent to T¬(A).

In the following sections, we use T¬(A) to denote the
TBox in Proposition 3. It is clear that T¬(A) can be com-
puted in linear time to the size of A. The following result
shows that T¬(A) consists of exactly the axioms to be con-
tracted in order to consistently incorporate A.

Proposition 4 Given a TBox T and an ABox A in DL-
Litehorn, T ∪A is consistent iff T 6|= α for each α ∈ T¬(A).

TBox Contraction
In order to incorporate an ABox A into a TBox T in a
consistent manner, each axiom in T¬(A) needs to be con-
tracted from T . We adapt the TBox contraction approach in
(Zhuang et al. 2014), and characterise minimal change from
a model-theoretic perspective, that is, the T-models of the re-
sult of contraction can be obtained from the T-models of the
initial TBox with minimal change. In contrast to (Zhuang et
al. 2014), which introduces a generic approach for contract-
ing single and conjunctions of axioms, we define a concrete
TBox contraction operator for contracting a set of axioms.
In classical belief contraction literature, multiple contraction
(Fuhrmann and Hansson 1993), that is contracting a set S of
formulas, is shown to have distinct nature from contracting
the conjunction of the formulas in S and from iterated con-
traction of each formula in S—contracting the conjunction
is insufficient for contracting all the conjuncts, and iterated
contraction is sensitive to the order of contraction. Also, to
show how our contraction operator can resolve incoherence
in TBoxes, we relax the coherence assumption in (Zhuang et
al. 2014) and assume the initial TBox is possibly incoherent.

A classical model-based contraction operator contracts a
propositional formula φ from knowledge base K by (i) ex-
tending the models of K with counter-models of φ that
have minimal distances to the models of K, and (ii) defin-
ing the knowledge base corresponding to the extended set
of models to be the result of contraction. To contract a
set S of formulas, one needs to extend the models of K
with counter-models of each formula in S. Inspired by
classical belief change, we first introduce a notion of dis-
tance between T-models, and then define a selection func-
tion that selects from a set of types those having minimal
distances to the T-models of the initial TBox. We adopt
Satoh’s distance (Satoh 1988), that is the symmetric dif-
ference between two (propositional) models. The distance
between two types τ and τ ′ is their symmetric difference
sd(τ, τ ′) = (τ \ τ ′) ∪ (τ ′ \ τ). Intuitively, a pair of types
τ1, τ

′
1 are considered to be (strictly) closer than another pair

τ2, τ
′
2 if sd(τ1, τ

′
1) ⊂ sd(τ2, τ

′
2). While we adopt Satoh’s

distance, we note that other notions of distance can also
be applied in our contraction framework. Note that while
contraction has been studied for (propositional) Horn logic
(Zhuang and Pagnucco 2012; Delgrande and Peppas 2015),
none of these works focused on defining a concrete opera-
tor. Further, given two sets M and M ′ of types, a selection
function γ selects the types in M that are closest to those in
M ′. In particular,

γ(M,M ′) = {τ0 ∈M | τ ′0 ∈M ′ exists s.t.

for all τ ∈M and τ ′ ∈M ′, sd(τ, τ ′) 6⊂ sd(τ0, τ
′
0)}

Let Ω be the set of all types (which is finite as B is finite).
For an axiom α, TM(α) = Ω\TM(α) is the set of counter-
models of α. For a TBox T and an ABox A, to contract
T¬(A) from T , we could simply add γ(TM(α), TM(T ))
to TM(T ) for each axiom α ∈ T¬(A). However, a result of
contraction defined this way may not be coherent. A simple
case is when T is incoherent and A is empty. In general,
suppose concept A is unsatisfiable in T , i.e., T |= A v ⊥,
if A(a) ∈ A for some a then contracting T¬(A) is sufficient
to make A satisfiable (as otherwise the result of contraction
is inconsistent with A). Otherwise, to make A satisfiable
it suffices to contract additionally A v ⊥ from T . Simi-
larly, to resolve an unsatisfiable role P , one only needs to
contract ∃P v ⊥. Based on this intuition, we introduce the
coherence closure T ∗¬ (A) of T¬(A), which extends T¬(A)
with A v ⊥ for each A ∈ NC not occurring in A and with
∃P v ⊥ and ∃P− v ⊥ for each P ∈ NR not occurring
in A. Note that if A (or P ) is satisfiable in T , contracting
A v ⊥ (∃P v ⊥) has no effect, as we will see later. Also,
∃P− v ⊥ is added to guarantee uniqueness of contraction.

We define our TBox contraction as follows.
Definition 4 Let L ∈ {DL-Litecore,DL-Litehorn}, T be a
TBox and A be an ABox in L. The (coherent) contraction of
T¬(A) from T is T .−T¬(A) = TL(TM(T ) ∪M∗A) where

M∗A =
⋃

α∈T ∗¬ (A)

γ(TM(α), TM(T )).

Intuitively, M∗A is constituted by, for each axiom α in
T ∗¬ (A), a set of counter-models of α that are closest to the



T-models of T—it is constructed in a way that the result of
contraction is coherent and is consistent with A; and the re-
sult of contraction is defined to be the TBox corresponding
to TM(T )∪M∗A. T .−T¬(A) is well defined and unique (up
to semantic equivalence), as TM(T )∪M∗A satisfies the con-
dition in Proposition 2: For each P ∈ NR, either P (b, c) oc-
curs in A for some b, c or {∃P v ⊥,∃P− v ⊥} ⊆ T ∗¬ (A),
and as a result, a type containing ∃P and a type containing
∃P− are contained in M∗A.

Consider the following example adapted from the NCI on-
tology (Hartel et al. 2005).
Example 1 Let TBox T consists of the following axioms

Heart Disease v ∃has Site, (1)

∃has Site− v Cardiovascular System, (2)

∃has Site− v Respiratory System, (3)
Respiratory System v Organ System, (4)

Cardiovascular System v Organ System, (5)
Respiratory System v ¬Cardiovascular System, (6)

Heart Disease v ¬Organ System. (7)

The TBox T is incoherent, as both concept Heart Disease
and role has Site are unsatisfiable.

Let ABox A = {Heart Disease(hd1), has Site(hd1, s1),
Organ System(s1)}, by Definition 4, T .−T¬(A) consists of
axioms (1), (4)–(7), and the following axiom

∃has Site− v Organ System, (8)

which can be seen as a revision from axioms (2)–(5).
The example shows that our TBox contraction operator al-
lows modification of axioms, in contrast to most existing
TBox repair approaches that only support axiom removal.

Furthermore, the contraction operator satisfies the follow-
ing desired properties presented as AGM-style postulates
(Katsuno and Mendelzon 1991), specially tailored to TBox
contraction w.r.t. ABoxes.
Proposition 5 Let L ∈ {DL-Litecore,DL-Litehorn}, T be a
TBox and A an ABox in L. The following properties hold.
(C1) T |= T .−T¬(A).
(C2) T .−T¬(A) ≡ T if T is coherent and T ∪A is consis-

tent.
(C3) T .−T¬(A) 6|= α for each α ∈ T¬(A).
(C4) If T1 ≡ T2 and A1 ≡ A2 then T1

.−T¬(A1) ≡
T2

.−T¬(A2).
(C5) T .−T¬(A) is coherent.
(C6) (T .−T¬(A)) ∪ A is consistent.
Proof (Sketch) (C1) and (C3)–(C6) are not hard to see,
and we only show the proof for (C2). For (C2), we only need
to show that in this case M∗A ⊆ TM(T ). For each axiom α,
if α is in T¬(A) then it is of the form

d
k Bk v ⊥. By the

construction of T¬(A), there is an individual a occurring in
A such that τ(a,A) = {Bk}. Since T is consistent with A,
by Lemma 1, there exists a T-model τ ∈ TM(T ) such that
τ(a,A) ⊆ τ , that is, {Bk} ⊆ τ . Hence, τ ∈ TM(α) and
thus TM(T ) ∩ TM(α) 6= ∅. Thus, γ(TM(α), TM(T )) =

TM(T )∩TM(α) ⊆ TM(T ). If α is not in T¬(A) then it is
of the formB v ⊥ added for the coherence closure. Since T
is coherent, T 6|= B v ⊥. By Proposition 1, there is at least
one T-model of T containing B. Let MB be the set of T-
models of T that contain B. Then, γ(TM(α), TM(T )) =
MB ⊆ TM(T ). We have shown that M∗A ⊆ TM(T ).

Properties (C1)–(C4) are adapted from the first four AGM
postulates for belief contraction, whereas a meaningful
adaptation of the fifth (namely the recovery) postulate is
missing in our scenario. (C1) states that the contraction is a
weakening of the initial TBox, and (C2) says that no change
is needed if the initial TBox is already coherent and is con-
sistent with the new ABox. Then, (C3) corresponds to the
success postulate for multiple contraction (note that T¬(A)
does not contain a tautology axiom), and (C4) shows that the
contraction operator is syntax-independent, i.e., contracting
the negations of equivalent ABoxes from equivalent TBoxes
have equivalent results. Finally, the last two properties (C5)
and (C6) connect contraction to revision, showing that the
result of contraction is coherent and is consistent with the
new ABox as required.

As an additional evidence for the rationality of our TBox
contraction, we show a connection to the KB revision ap-
proach introduced in (Wang, Wang, and Topor 2010), where
a more complex (but finite) structure is used as the model-
theoretic characterisation of revision. Let ∗f be the second
revision operator (namely f-revision) in (Wang, Wang, and
Topor 2010).
Proposition 6 Let L ∈ {DL-Litecore,DL-Litehorn}, T be a
coherent TBox and A be an ABox in L. If T ∗f A can be
expressed in L then T ∗f A ≡ (T .−T¬(A)) ∪ A.

Computational Aspects
In this section, we first look into the computational complex-
ity of the entailment problem for contraction, i.e., the prob-
lem of deciding whether T .−T¬(A) entails a given TBox
axiom. We show that the entailment can be checked without
first computing T .−T¬(A), and is achieved through a reduc-
tion to propositional belief revision. When the size of A is
bounded, the reasoning can be done in polynomial time. Af-
ter that, we will provide a tractable algorithm to compute
T .−T¬(A) in DL-Litecore through entailment checking.

Firstly, the entailment problem in DL-Lite can be reduced
to a corresponding one in propositional logic. To this end,
we assign each basic concept in B a distinct propositional
atom. Function φ(·) maps each basic concept in B to its
corresponding propositional atom, and a concept description
or an axiom to a propositional formula as follows.

φ(⊥) = ⊥, φ(¬B) = ¬φ(B), φ(
l

k

Bk) =
∧
k

φ(Bk)

φ(
l

k

Bk v C) = φ(
l

k

Bk)→ φ(C).

Then, φ(·) can be extended to map a DL-Litehorn TBox
T to a propositional horn formula as follows

φ(T ) =
∧
α∈T

φ(α)∧
∧

R∈R,T |=∃Rv⊥

(
¬φ(∃R)∧¬φ(∃R−)

)
.



Further, to encode the counter-models of axioms in
T ∗¬ (A), note that each axiom in T ∗¬ (A) is of the formd
k Bk v ⊥. Intuitively, a counter model of the axiom must

(and only needs to) satisfy each Bk. Formally, for each ax-
iom β of the above form, define φ¬(β) =

∧
k φ(Bk).

Let ∗s be Satoh’s revision operator in propositional logic.
The following connection between our contraction operator
and Satoh’s revision holds.

Proposition 7 Let L ∈ {DL-Litecore,DL-Litehorn}, T be a
TBox and A be an ABox in L. Given a TBox axiom α in L,
T .−T¬(A) |= α iff φ(T ) ∨

∨
β∈T ∗¬ (A)

(
φ(T ) ∗s φ¬(β)

)
|=

φ(α).

Proof (Sketch) First, we can show that the models of
φ(T ) correspond exactly to the T-models of T , and the mod-
els of φ¬(β) to the types in TM(β). Let ωτ = {φ(B) | B ∈
τ} for a type τ . mod(φ) denotes the set of models of formula
φ. Then, from the correspondence between our selection
function and that of Satoh’s, it is clear that

mod(φ(T ) ∗s φ¬(β)) = {ωτ | τ ∈ γ(TM(β), TM(T ))}.

Let ϕ =
∨
β∈T ∗¬ (A)

(
φ(T ) ∗s φ¬(β)

)
. Then, mod(ϕ) =

{ωτ | τ ∈ M∗A}. If α is of the form ∃R v ⊥ then nei-
ther entailment holds, as from the construction of M∗A, there
must exist a type in M∗A containing ∃R; and similarly, there
exists a model of ϕ containing φ(∃R). If α is not of the form
∃R v ⊥, by Corollary 1, T .−T¬(A) |= α iff each type in
TM(T ) and each type in M∗A satisfies α, iff each model of
φ(T ) ∨ ϕ satisfies φ(α).

Proposition 7 reduces the entailment problem of TBox
contraction in DL-Lite to that of propositional belief re-
vision, and in particular, to checking φ(T ) |= φ(α) and
φ(T ) ∗s φ¬(β) |= φ(α) for each β ∈ T ∗¬ (A). Note that
φ(T ), φ(α) and φ¬(β) are all Horn propositional formulas
and in sizes polynomial to the size of T ∪A. From the com-
plexity results in (Eiter and Gottlob 1992), we can conclude
the following results, showing that our contraction does not
shift the complexity of the propositional case.

Theorem 1 For a TBox T , an ABox A, and a TBox axiom
α in DL-Litehorn, deciding T .−T¬(A) |= α is in coNP.

If the size of A is bounded, i.e., a constant k exists
s.t. |A| ≤ k, then deciding T .−T¬(A) |= α is in PTIME.

Having a bound on the size ofA and the PTIME complexity
are practically relevant, as in ontology learning, the newly
added example data is often small. Indeed, the PTIME com-
plexity result holds as long as the number of assertions about
each individual in A is bounded.

For a practical algorithm to decide the entailment prob-
lem, we can further encode it to SAT. The main idea is to
first encode the entailment problem of propositional revision
as a Horn 2-QBF, and then eliminate universal quantifiers by
encoding unit propagation of Horn-SAT into a SAT formula.

In what follows, we provide an algorithm to compute
T .−T¬(A) in DL-Litecore using entailment checking as a
sub-method. The algorithm verifies each possible entailment
and add those entailed axioms to the result.

Algorithm 1: Contraction
Input: TBox T and ABox A in DL-Litecore
Output: a DL-Litecore TBox T ′
T ′ := ∅;
foreach B1, B2 ∈ B s.t. B1 6= B2 do

if T .−T¬(A) |= B1 v B2 then
T ′ := T ′ ∪ {B1 v B2} ;

end
if T .−T¬(A) |= B1 v ¬B2 then
T ′ := T ′ ∪ {B1 v ¬B2} ;

end
end
return T ′;

Proposition 8 Let T be a TBox, A be an ABox in DL-
Litecore, and T ′ be the TBox returned by the algorithm Con-
traction. Then, T ′ ≡ T .−T¬(A).

If the size ofA is bounded, the algorithm Contraction runs
in polynomial time in the size of T ∪ A. In particular, the
number of possible axioms in DL-Litecore is quadratic to the
number of basic concepts in T ∪A, and the entailment check
is tractable as discussed before.

Conclusion

We have presented a novel approach for instance-driven on-
tology evolution in DL-Lite through TBox contraction ac-
cording to newly added ABox instances, and the contrac-
tion incurs minimal change to the initial TBox measured in
a model-theoretic manner. To the best of our knowledge,
our work is the first attempt to address particularly the TBox
contraction w.r.t. ABox assertions. To tackle this problem,
we introduced the notion of ABox negation, which is defined
as a TBox. Based on type semantics, we have developed an
operator for TBox contraction. We showed that the proposed
operator possesses several desired properties and have also
developed efficient algorithms for reasoning with and com-
puting the contraction.

We are currently working on a graph-based algorithm for
entailment checking and computation of contraction in DL-
Litecore with unbounded inputs. We have also obtained
some preliminary results in extending our approach to DL-
LiteR. For the latter, a key task is to extend the type se-
mantics to DL-LiteR, which needs to take into account the
additional non-propositional inferences introduced by role
inclusions. Finally, it would be also interesting to look into
practical applications of our approach in ontology learning.
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