
Approximating Model-based ABox Revision in DL-Lite: Theory and Practice

Guilin Qi1,2 Zhe Wang3 Kewen Wang3 Xuefeng Fu Zhiqiang Zhuang3

1 School of Computer Science and Engineering, Southeast University, China
2 State Key Lab for Novel Software Technology, Nanjing University, Nanjing, China

3 School of Information and Communication Technology, Griffith University, Australia

Abstract

Model-based approaches provide a semantically well
justified way to revise ontologies. However, in gener-
al, model-based revision operators are limited due to
lack of efficient algorithms and inexpressibility of the
revision results. In this paper, we make both theoret-
ical and practical contribution to efficient computation
of model-based revisions in DL-Lite. Specifically, we
show that maximal approximations of two well-known
model-based revisions for DL-LiteR can be computed
using a syntactic algorithm. However, such a coinci-
dence of model-based and syntactic approaches does
not hold when role functionality axioms are allowed.
As a result, we identify conditions that guarantee such
a coincidence for DL-LiteFR. Our result shows that
both model-based and syntactic revisions can co-exist
seamlessly and the advantages of both approaches can
be taken in one revision operator. Based on our theoret-
ical results, we develop a graph-based algorithm for the
revision operators and thus graph database techniques
can be used to compute ontology revisions. Preliminary
evaluation results show that the graph-based algorith-
m can efficiently handle revision of practical ontologies
with large data.

Introduction
The latest version of OWL (Ontology Web Language) rec-
ommended by W3C is OWL 21, which has three profiles
with fine-tuned expressive power to support tractable rea-
soning. OWL 2 QL, one of the three profiles, is designed for
ontology-based data access. The logic that underpins OWL
2 QL is DL-Lite, which is a family of tractable description
logics2. With the development of the Semantic Web, more
and more data are published as linked data, and the data is
often accompanied with lightweight ontologies3 which pro-
vide extended vocabularies and logical constraints for the
data. With new data published and incorporated into the ex-
isting data, one typical problem is how to deal with logi-
cal inconsistencies caused by the violation of the constraints

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.w3.org/TR/owl2-profiles/
2http://dl.kr.org/
3Here we take ontologies as schema of the data.

posed by the ontologies. This problem can be formalized as
the problem of ABox revision in description logics, which
deals with the removal of assertions in the old ABox to ac-
commodate the new ABox and to resolve inconsistencies,
under the assumption that the new ABox is more reliable.

Recently, there has been an increasing interest in ontolo-
gy revision in DL-Lite. Some model-based revision opera-
tors in DL-Lite are proposed (Qi and Du 2009; Kharlamov
and Zheleznyakov 2011), which select models of newly re-
ceived ontology that are ‘closest’ to the existing ontology.
However, model-based operators for ontology revision of-
ten suffer from two drawbacks: the inexpressibility problem,
i.e., in general, the result of revision cannot be expressed in
the same DL, and the computation problem, i.e., the com-
putation of revision is inefficient except for some special
cases. In (Calvanese et al. 2010), the authors propose a
syntactic algorithm for ABox revision in DL-LiteFR which
runs in polynomial time. It has been shown in (Kharlam-
ov, Zheleznyakov, and Calvanese 2013) that for a fragment
of DL-Litecore, the core language of DL-Lite, this algorith-
m outputs the result of two model-based revision operators.
However, this result is only shown to hold for the restricted
language. An open problem is whether the equivalence of
model-based and syntactic revisions still holds in more ex-
pressive languages, such as DL-LiteFR, and whether similar
result holds for other model-based revision operators.

In this paper, we present the first theoretical work on ap-
proximation of two well-known model-based revision oper-
ators in DL-LiteFR, as well as a practical graph-based algo-
rithm and some experimental results. We first show that the
result of the syntactic revision algorithm given in (Kharlam-
ov, Zheleznyakov, and Calvanese 2013) can be used to ap-
proximate two model-based revision operators in DL-LiteR.
While both revision operators suffer from the inexpressibili-
ty problem, their approximations can be computed efficient-
ly. We then give a counterexample to illustrate that our re-
sults on approximation breaks down when role functionality
axioms are included. In order to accommodate role func-
tionality axioms, we propose to either disallow the appear-
ance of some role names or modify the syntactic algorithm
by removing some axioms. On the practical aspect, we pro-
pose a way of implementing the algorithm by transforming
a DL-LiteFR ontology to a graph, and making use of graph
database techniques to compute ontology revisions. Prelim-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Griffith Research Online

https://core.ac.uk/display/151740897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

inary evaluation results show that the graph-based revision
algorithm is able to deal with practical ontologies with large
data efficiently.

Preliminaries
In this section, we first briefly recall some basics of DL-Lite
and then introduce two model-based revision operators.

DL-Lite
We start with the introduction of DL-Litecore, the core lan-
guage for the DL-Lite family. The complex concepts and
roles of DL-Litecore are defined as follows: (1) B ::= A |
∃R, (2) R ::= P | P−, (3) C ::= B | ¬B, where A denotes
an atomic concept, P an atomic role, B a basic concept, and
C a general concept.

In DL-Litecore, an ontology O = 〈T , A〉 consists of a
TBox T and an ABox A, where T is a finite set of concept
inclusion assertions of the form: B v C; and A is a finite
set of membership assertions of the form: A(a), P (a, b).
DL-LiteFR extends DL-Litecore with inclusion assertion-
s between roles of the form R v E where E is a role or
its inverse and functionality on roles or on their inverses of
the form (Func R). To keep the logic tractable, whenever
a role inclusion R1 v R2 logically follows from T , neither
(Func R2) nor (Func R−2) can appear in it. We call as-
sertions of the form B1 v ¬B2 as negative inclusions (NIs).
We use adom(O) to denote the set of all constants occurring
in O.

The semantics of DL-Lite is defined in a standard way.
Following the work given in (Calvanese et al. 2010), we as-
sume that all interpretations are defined over the same infi-
nite countable domain ∆. Given an interpretation I and an
assertion α, I � α denotes that I is a model of α. An inter-
pretation is called a model of an ontologyO, iff it is a model
for each assertion inO. We use Mod(O) to denote the set of
all models of O. An ontology is satisfiable if it has at least
one model. An ontology O logically implies an assertion α,
writtenO |= α, if all models ofO are also models of α. The
deductive closure of an ABox A, denoted clT (A), is the set
of all ABox assertions α such that T ∪ A |= α.

Model-based revision operators in DL-Lite
Given an ontology O = 〈T , A〉 and a new ABox N , sup-
pose O is consistent and T ∪ N is consistent. The problem
of ABox revision is, how to modify A (by deletion or in-
sertion of assertions) such that T ∪ N is consistent with the
modified ABox? We reformulate the definition of model-
based revision operators given in (Calvanese et al. 2010;
Kharlamov, Zheleznyakov, and Calvanese 2013). Since we
have assumed that all the interpretations are defined over
the same domain ∆, we can consider an interpretation as
a set of atoms. Given two interpretations I and J , the set of
atoms that are assigned different truth values is denoted as
diff(I,J) = I 	 J , where I 	 J = (I \ J) ∪ (J \ I) is
the symmetric difference between I and J . diff(I,J) can
be extended to two ontologies O and O′ as diff(O,O′) =
{diff(I,J)|I |= O, J |= O′}.

We introduce two well-known distance functions given
in the literature (see (Katsuno and Mendelzon 1992) and
(Kharlamov, Zheleznyakov, and Calvanese 2013)).

dist⊆(I,J) = diff(I,J) and dist#(I,J) = |diff(I,J)|.

Furthermore, let dist⊆(O,O′) be the set of minimal
elements in diff(O,O′) w.r.t. the set inclusion and
dist#(O,O′) = minI|=O,J |=O′dist#(I,J).

Based on these two distance functions, we can define two
revision operators in a model-theoretic way as follows.

Definition 1. Given an ontology O and an ABox N , define
Mod(O ◦⊆ N) = {J ∈ Mod(〈T ,N〉) | there exists I ∈

Mod(O) s.t. dist⊆(I,J) ∈ dist⊆(O, 〈T ,N〉)}.
Mod(O ◦#N) = {J ∈ Mod(〈T ,N〉) | there exists I ∈

Mod(O) s.t. dist#(I,J) = dist#(O, 〈T ,N〉)}.
In DL-Lite, for any setM of interpretations, we may not

be able to find an ontology whose models are exactly those
interpretations in M. Therefore, the notion of sound ap-
proximation is defined in (Kharlamov, Zheleznyakov, and
Calvanese 2013).

Definition 2. (Kharlamov, Zheleznyakov, and Calvanese
2013) Let M be a set of models and D a DL. We say
that a D ontology O is a sound D-approximation of M
if M ⊆ Mod(O). Furthermore, such an ontology O is
a maximal sound D-approximation if for every sound D-
approximation O′ ofM it holds that Mod(O′) 6⊂ Mod(O).

Approximating Model-based ABox Revision in
DL-LiteR

In this section we show that the approximations of two
model-based revision operators ◦⊆ and ◦# coincide with
the syntactic revision operator introduced in (Kharlamov,
Zheleznyakov, and Calvanese 2013) for DL-LiteR. Giv-
en a DL-LiteFR ontology O = 〈T ,A〉 and ABox N ,
an algorithm, denoted as AtAlg, is given in (Kharlamov,
Zheleznyakov, and Calvanese 2013) (see Algorithm 1). The
algorithm AtAlg determines a syntactic ABox revision oper-
ator defined as O ◦MCS N = T ∪ N ∪AtAlg(O,N).

Algorithm 1: AtAlg(O,N))
Data: DL-LiteFR ontology O = 〈T ,A〉 and ABox N
Result: A set of ABox assertions
begin1
A′ = ∅; X := clT (A);2
repeat3

choose some g ∈ X; X:= X \ {g};4
if {g} ∪ N 6|=T ⊥ then5
A′ := A′ ∪ {g};6

until X=∅ ;7
return A′;8

end9

The following theorem shows that O ◦MCS N is a maxi-
mal sound approximation ofO◦N in DL-LiteR, for ◦ = ◦#
and ◦ = ◦⊆.

Theorem 1. Let O = 〈T , A〉 be an ontology in DL-LiteR
and N a new ABox. O ◦MCS N is a maximal sound DL-
LiteR-approximation of both O ◦⊆ N and O ◦# N .

Proof. (Sketch) Let M⊆ = Mod(O ◦⊆ N) and MMCS =
Mod(O ◦MCS N). For any J ∈M⊆, clearly J |= T ∪N .
We only need to show that J |= AtAlg(O,N). We show
this by absurdity. Suppose there exists f∗ ∈ AtAlg(O,N)
such that J 6|= f∗. Since J ∈ M⊆, there exists I |=
O (thus I |= f∗) such that dist⊆(I,J) is minimal a-
mong all pairs of models of T ∪ N and O. We con-
struct a model I ′ of O and a model J ′ of T ∪ N such
that diff⊆(I ′,J ′) ⊂ diff⊆(I,J). In DL-Lite, a standard
method to construct a model is to use the notion of a chase.
If we take I ′ = chaseT (A) and J ′ = chaseT (N), where
chaseT (A) is the chase of A w.r.t. T , then we may not
have diff⊆(I ′,J ′) ⊂ diff⊆(I,J). Let us look at an ex-
ample: let O = 〈T ,A〉, T = {A v ∃R,B v ¬∃R−}
and A = {A(c), R(c, d)}, and an ABox N = {B(d)}.
Clearly, chaseT (A) = A and chaseT (N) = N . How-
ever, we can find I = {A(c), R(c, d), R(c, e)} and J =
{B(d), A(c), R(c, e)} and we can check that diff⊆(I,J)
is minimal w.r.t. the set inclusion. That is, we should add
R(c, e) to the model of A ∪ T and we should add A(c) and
R(c, e) to the model of N ∪ T . Based on this intuition, we
propose the following method to construct I ′ and J ′. We
first take I1 = chaseT (A) and J1 = chaseT (N), we then
update J1 using I1 by adding those A(c) and P (c, d) in I1
that are not in conflict withN w.r.t. T toJ1. Suppose we get
J2. We then update I1 by J2, and so on, until we get a fixed
point. We can check that diff⊆(I ′,J ′) ⊂ diff⊆(I,J),
which is a contradiction.

One may wonder ifO◦MCSN is the syntactic counterpart
of Mod(O ◦ N), for ◦ = ◦⊆ or ◦ = ◦#. The following
example shows that this is not the case.

Example 1. Given an ontology O = 〈T ,A〉, where T =
{A v ¬∃P} andA = {A(c)}, and an ABoxN = {∃P (c)}.
Then clT (A) = {A(c)} and AtAlg(O,N) = ∅. SoO◦MCS

N = T ∪N . It is easy to check that J = {P (c, d), P (c, e)}
and J ′ = {P (c, d)} are two models of T ∪ N . Thus they
are both models of O ◦MCS N . The chase of A w.r.t. T
is I = {A(c)}. We have diff(I,J ′) ⊂ diff(I,J) (re-
sp. |diff(I,J ′)| < |diff(I,J)|). Since J or J ′ cannot
be expanded with A(c) and any model of T ∪ A must con-
tain A(c) and can be expanded with neither P (c, d) nor
P (c, e), diff(Ii,J ′) ⊂ diff(Ii,J) (resp. |diff(Ii,J ′)| <
|diff(Ii,J)|) for any model Ii of T ∪A. Thus, J cannot be
a model of O ◦ N , for ◦ = ◦⊆ or ◦ = ◦#.

According to Theorem 1 and Example 1, we can show that
operators ◦⊆ and ◦# suffer from the problem of inexpress-
ibility, i.e., Mod(O ◦ N) is not axiomatizable in DL-LiteR.

Approximating model-based revision in
DL-LiteFR

We consider the question if Theorem 1 still holds when func-
tionality axioms are included. Unfortunately, the following
example gives a negative answer to this question.

Example 2. Given an ontology O = 〈T ,A〉, where
T = {A v ∃R,B v ¬∃R−, (Func R)} and
A = {A(c), B(e), R(c, d)}, and an ABox N =
{B(d)}. Then clT (A) = {A(c), B(e), R(c, d),∃R(c)} and
AtAlg(O,N) = {A(c), B(e),∃R(c)}. So O ◦MCS N =
T ∪{A(c), B(d), B(e),∃R(c)}. Consider the following four
interpretations:
I = {A(c), R(c, d), B(e)};
J1 = {(B(d), B(e), A(c), R(c, f)};
J2 = {B(d), B(e)};
J3 = {B(d), A(c), R(c, e)}.
It is easy to check that I is a model of T ∪ A

and Ji (i = 1, 2, 3) are models of T ∪ N .
We have diff(I,J1) = {B(d), R(c, d), R(c, f)},
diff(I,J2) = {A(c), B(d), R(c, d)} and diff(I,J3) =
{B(d), B(e), R(c, d), R(c, e)}. Thus, dist#(I,J1) =
dist#(I,J2) = 3. Any model of T ∪ A must contain A(c),
R(c, d) and B(e) and any model of T ∪ N must contain
B(d). Since R(c, d) and B(d) are in conflict w.r.t. T , any
model I of T ∪ A and any model J of T ∪ N will not
contain both of them. For any such J , suppose it contains
A(c), then it will contain R(c, ynew) where ynew is a fresh
individual. Since (Func R) ∈ T , R(c, ynew) cannot exist
in any model I of T ∪ A. Thus, diff(I,J) must contain
R(c, d), B(d) and R(c, ynew). If J does not contain A(c),
then diff(I,J) must contain R(c, d), B(d) and A(c).
Therefore, J2 and J3 are models of O ◦# N . Clearly, J3
is not a model of AtAlg(O,N). So it is not a model of
O ◦MCS N . Since J2 is not a model of A(c), A(c) cannot
be inferred from O ◦# N . Similarly, we can show that J1,
J2 and J3 are models of O ◦⊆ N . Since J1 is not a model
of B(e) and J3 is not a model of A(c), neither A(c) nor
B(e) can be inferred from O ◦⊆ N . Thus, Theorem 1 does
not hold for DL-LiteFR.

To see why adding functionalities on roles or their invers-
es causes the inexpressibility problem, we analyze Example
2 again. Since (Func R) exists, when applying the model
construction method given in the proof of Theorem 1, we
cannot update models ofO and T ∪N successfully because
of the functionality constraints. For example, when con-
structing the chase ofA w.r.t. T , we need to add R(c, xnew)
to the chase ofN w.r.t. T . However, since (FuncR)) exist-
s, we may not be able to do that. Based on this analysis, we
define a notion called triggered roles, which are role names
that causes the inexpressibility problem.

Definition 3. (Set of triggered roles). Let O = 〈T , A〉 be
an ontology in DL-LiteFR and N a new ABox. The set of
triggered roles in O, denoted as TR[O,N], is the set of all
roles that satisfy one of the following conditions:

• Condition 1: (1) (Func P) ∈ T , (2) P (c, d) ∈ clT (A),
andA\{P (c, d)} |=T ∃P (c), and (3)N ∪{∃P (c)} 6|=T
⊥ and N ∪ {∃P−(d)} |=T ⊥, where c, d ∈ adom(O).

• Condition 2: (1) (Func P) ∈ T , (2) P (c, d) ∈
clT (A), and A \ {P (c, d)} |=T ∃P−(d), and (3) N ∪
{∃P−(d)} 6|=T ⊥ and N ∪ {∃P (c)} |=T ⊥, where
c, d ∈ adom(O).

We show that if the set of triggered roles is empty, then

O ◦MCS N is an approximation of O ◦ N , for ◦ = ◦⊆ or
◦ = ◦#.
Theorem 2. Let O = 〈T , A〉 be an ontology in DL-
LiteFR and N a new ABox. If TR[O,N] = ∅, then we
have Mod(O ◦ N) ⊆ Mod(O ◦MCS N), for ◦ = ◦⊆
or ◦ = ◦#. Otherwise, we cannot have Mod(O ◦ N) ⊆
Mod(O ◦MCS N), for ◦ = ◦⊆ or ◦ = ◦#.

If the set of triggered roles is not empty, then we can mod-
ify O ◦MCS N such that it is an approximation of O ◦ N ,
for ◦ = ◦⊆ or ◦ = ◦#. Consider Example 2, J2 is a model
of O ◦ N , but it may not be a model of A(c) and R(c, d),
where R is a triggered role. However, it is easy to check
that J2 is a model of AtAlg(O,N) \ {A(c), R(c, d)}. This
inspired us to give a method to compute the maximal ap-
proximation of O ◦ N , for ◦ = ◦⊆ or ◦ = ◦#. The idea is
to remove ∃P (c) and those assertions that can infer it from
AtAlg(O,N) for each triggered role P . We need a lem-
ma that generalizes Proposition A.1 given in (Kharlamov,
Zheleznyakov, and Calvanese 2013).
Lemma 1. Let T ∪ A be a consistent DL-LiteFR ontology
and let g = ∃R(c). If A |=T ∃R(c), then there exists a
membership assertion f ∈ A such that f |=T ∃R(c).

Lemma 1 infers that each justification for ∃R(c) contain-
s only one membership assertion, where a justification for
∃R(c) is the minimal subset of A that can entail R(c). We
define the notion of removing set of an assertion of the for-
m ∃R(c), which consists of all membership assertions that
infer ∃R(c).
Definition 4. (Removing set) Let O = 〈T , A〉 be an
ontology and N be an ABox in DL-LiteFR. Suppose
A |=T ∃R(c). The removing set of ∃R(c), denoted as
removeT (∃R(c)), is defined as

removeT (∃R(c)) = {f ∈ AtAlg(O,N)|{f} |=T ∃R(c)}.
In Example 2, we have removeT (∃R(c)) =

{A(c), R(c, d),∃R(c)}.
Theorem 3. Let O = 〈T , A〉 be an ontolo-
gy in DL-LiteFR and N a new ABox. Suppose
TR[O,N] 6= ∅. Let AtAlg(O,N)new = AtAlg(O,N) \
∪R∈TR[O,N]removeT (∃R(c)) and O′ = T ∪ N ∪
AtAlg(O,N)new. Then O′ is a maximal approximation of
O ◦# N but it is not an approximation of O ◦⊆ N .

Proof. (Sketch) We cannot apply the same method to con-
struct models of T ∪ A and T ∪ N as in the proof of The-
orem 1. We give a new method to construct models as fol-
lows. The construction of I1 and J1 is the same as the proof
of Theorem 1. However, when updating J1 using I1, we
need to exclude those role assertions where the role is in
TR[O,N].

A Graph-based Algorithm for ABox Revision
in DL-Lite

In the previous section, we have shown that the result of the
revision operator given in (Kharlamov, Zheleznyakov, and
Calvanese 2013) can be used to approximate the result of t-
wo model-based revision operators in DL-LiteFR. A variant

of this operator is given in (Calvanese et al. 2010), which is
defined by a more practical algorithm called FastEvo. This
algorithm runs in polynomial time. However, as Algorith-
m AtAlg, it needs to compute the ABox closure w.r.t. the
TBox, which will hinder their applicability for ontologies
with large ABoxes. In this section, we propose a revision
algorithm that does not compute the ABox closure before-
hand and it can utilize state of the art graph databases to
compute the result of revision. Before we give the algorith-
m, we present a revision operator that removes one assertion
from each minimal inconsistent subset of A w.r.t. N and T .
Definition 5. Given an ontology O = 〈T , A〉 and an ABox
N . A minimal inconsistent subset (MIS) D of A w.r.t. N
and T is a sub-ABox of A which satisfies (1) D ∪ T ∪ N is
inconsistent; (2) ∀D′ ⊂ D, D′ ∪ T ∪ N is consistent. We
denote the set of all the MISs ofA w.r.t. N by MISN (A) (we
omit T to simplify the notation).
Example 3. (originally from (Giacomo et al. 2009)) Given
an ontology O = 〈T , A〉 and a new ABox N , where T =
{∃WillP lay v AvailableP layer, AvailableP layer v
Player, Injured v ¬AvailableP layer}, A =
{WillP lay(Peter, game06)}, N = {Injured(Peter)}.
It is easy to check that there exists one MIS of A w.r.t.
N : {WillP lay(Peter, game06)}.

According to (Calvanese et al. 2010), every MIS of
MISN (A) contains only one assertion. Thus, to restore con-
sistency, we can simply remove ∪Di∈MISN (A)Di. Howev-
er, this may delete much more information than necessary.
Consider Example 1 again, we can find that Peter is injured
implies that he is not an available player anymore, but he
remains a player, and this would not be captured by sim-
ply removing ∪Di∈MISN (A)Di. Consequently, we will add
Player(Peter) to the result of revision as it does not contra-
dictN∪T and it can be inferred from ∪Di∈MISN (A)Di∪T .

Definition 6. Given an ontology O = 〈T , A〉 and an ABox
N , a maximal consistent set S of clT (∪Di∈MISN (A)Di)
w.r.t. N is a sub-ABox of clT (∪Di∈MISN (A)Di) which
satisfies (1) S ∪ T ∪ N is consistent; (2) ∀α ∈
clT (∪Di∈MISN (A)Di) and α /∈ S, S ∪ {α} ∪ T ∪ N is
inconsistent.
Definition 7. Given an ontology O = 〈T , A〉 and an ABox
N . The revision operator ◦MIS for O is defined as follows:
O ◦MIS N=T ∪ (A\ ∪Di∈MISN (A) Di) ∪ S ∪N

We can show that the deductive closure of the resulting
ABox of our operator is the same as the ABox obtained by
operator ◦MCS and the revision operator defined by algo-
rithm FastEvo given in (Calvanese et al. 2010).
Theorem 4. Given an ontology O = 〈T ,A〉 and an ABox
N in DL-LiteFR, supposeO ◦MIS N = (T ,A′,N), where
A′ = (A\∪Di∈MISN (A)Di)∪S, then T ∪ clT (A′)∪N =
O ◦MCS N .

A Graph-based Algorithm
Given a DL-Lite ontology O over a signature Σ, which
can be partitioned into two disjoint signatures, ΣP , con-
taining symbols for atomic elements, i.e., atomic concept

and atomic roles, and ΣC , containing symbols for individ-
uals, the digraph GO = 〈N,E〉 constructed from ontology
O = 〈T ,A〉 over the signature Σ as follows:

(1) for each atomic conceptB in ΣP ,N contains the nodeB;
(2) for each atomic role P in ΣP , N contains the node

P, P−,∃P,∃P−;
(3) for each concept inclusion B1 v B2 ∈ T , E contains the

arc(B1, B2);
(4) for each role inclusion P1 v P2 ∈ T , E con-

tains the arc(P1, P2), arc(P−1 , P
−
2), arc(∃P1,∃P2), arc

(∃P−1 ,∃P
−
2);

(5) for each individual c in ΣC , N contains leaf node c;
(6) for each concept membership assertionB(c) ∈ A,E con-

tains arc(c,B);
(7) for each role membership assertion P (a, b), N

contains node (a, b), (b, a), and E contains the
arc((a, b), P), arc((b, a), P−), arc(a,∃P), arc(b,∃P−);

In our graph, each node represents a basic concept or a ba-
sic role, while each arc represents an inclusion assertion or
a membership assertion, i.e. the start node of the arc corre-
sponds to the left-hand side of the inclusion assertion (resp.
individual or individual-pair of the membership assertion)
and the end node of the arc corresponds to the right-hand
side of the inclusion assertion (resp. concept or role of the
membership assertion). Items (4) and (7) are used to ensure
that the information represented in the ontology is preserved
by the graph.

Algorithm 2: GraphRevi(T , A, N)
Input: TBox T and ABoxes A, N , each consistent

with T
Output: T ∪ (A\D) ∪M ∪N
begin1

D = ∅;2
M = ∅;3
Aall = A ∪N ;4
for each (functR) ∈ T do5

if {R(a, b), R(a, c)} ⊆ Aall then6
if R(a, b) /∈ N then7

D = D ∪ {R(a, b)};8

else9
D = D ∪ {R(a, c)};10

construct G〈T ,Aall\D〉 = 〈V,E〉;11

D = D ∪ Search(G〈T ,Aall\D〉,A);12

M = clT (D)\D;13
construct HG G〈T ,M∪A1〉 = 〈V,E〉;14

M = M\Search(G〈T ,M∪A1〉,M);15

return T ∪ (A\D) ∪M ∪N ;16

end17

We now introduce algorithm GraphRevi (see Algorithm
2), which takes O = 〈T ,A〉 and N as its input. The al-
gorithm can be explained as follows. Let Aall = A ∪ N

Algorithm 3: Search(G, A)
Data: Graph:G; ABox:A
Result: finite set of membership assertions N
begin1

N = ∅;2
for each ¬X ∈ V do3

U = leafChild(X) ∩ leafChild(¬X);4
for each a ∈ U do5

for each v ∈6
(Children(X) ∪ Children(¬X) ∪ {X})
do

if v(a) ∈ A then7
if v(a) = ∃R(a) then8

for each R(a, b) ∈ A do9
N = N ∪ {R(a, b)};10

else11
N = N ∪ {v(a)};12

return N ;13

end14

(line 4). It first computes the set D of all the membership
assertions in A that are in conflict with functionality ax-
ioms and N (lines 5-10). It then constructs a digraph from
〈T ,Aall\D〉 and uses function Search to compute the set of
all the membership assertions in A that are in conflict with
some negative inclusion assertions of the form B v ¬B′
and some assertions in N , and use this set to update D (see
Algorithm 3). Thus, D is actually ∪Ai∈MISN (A)Ai. Let
M = clT (D)\D (lines 11-12). The algorithm deletes all
the membership assertions in M that are in conflict with NI
assertions andN (lines 13-15). Finally, T ∪(A\D)∪M∪N
is the result of revision (line 16).
Example 4. Given an ontology O = 〈T , A〉 and a new
ABox N , where T = {(Func R), R v R1, ∃R− v B,
A v C, C v ¬D, B v ¬C}, A = {R(a, b), C(d), A(e)},
N = {R(a, f), A(b), D(d)}.
1. Aall = A ∪ N = {R(a, b), C(d), A(e), R(a, f), A(b),
D(d)} (see Algorithm 2 line 4);

2. D = {R(a, b)} (see Algorithm 1 lines 5-10);
3. By constructing digraph G〈T ,Aall\D〉 (see Figure 1), we

can obtain that D = {R(a, b), C(d)}(see Algorithm 2
lines 11-12);

4. M = clT (D)\D = {R1(a, b), B(b), A(e), C(e)} (see
Algorithm 2 line 13);

5. By constructing digraphG〈T ,M∪N〉 (similar to Figure 1),
then we can know that M = {R1(a, b), A(e), C(e)}(see
Algorithm 2 lines 14-15);

6. The result is: T ∪ {R(a, f), A(b), D(d), R1(a, b), A(e),
c(e)} (see Algorithm 2 line 16).

Theorem 5. Algorithm 2 runs in polynomial time. Given an
ontology O = 〈T ,A〉 and an ABox N , we have O ◦MIS

N = GraphRevi(T ,A,N).

Figure 1: Digraph G〈T ,Aall\D〉 of Example 4

Table 1: Generated ABoxes
Data univ4-1 univ4-2 univ6-1 univ6-2

#axiom 636086 635581 876342 879631
Data univ8-1 univ8-2 univ10-1 univ10-2

#axiom 1139949 1138337 1415102 1416326

Experimental Results
We have implemented our graph-based algorithm for ABox
revision in Java. We first transform a DL-Lite ontology into
a graph and store it in a Neo4j graph database, which is an
open-source and high-performance graph database support-
ed by Neo Technology. We also implemented the revision
algorithm presented in (Calvanese et al. 2010) using Neo4j,
which we denote as FastEvo.

We conducted some experiments on a data set constructed
from UOBM benchmark ontology4 (see Table 1 for details
of the data set). We generated ABoxes by using the UOBM
generator. We divided each generated ABox into two parts.
We used the Random class of Java to control the dividing
procedure. Since the original UOBM ontologies are consis-
tent, we modified them by inserting some ”inconsistency-
generating” axioms, such as disjointness axioms. We gen-
erated different percentage of the disjoint classes for each
university ontology. After that, for each pair of disjoint con-
cepts or roles, we generated a common instance or pair of
instances and added the two conflicting assertions to two
ABoxes partitioned from an ABox.

All experiments have been performed on a PC with Intel
Corei5-2400 3.1 GHz CPU and 6GB of RAM, running Mi-
crosoft window 7 operating system, and Java 1.7 with 6GB
of heap space.

We did four experiments to compare the execution time
of GraphRevi and FastEvo. The results of our experiments
are shown in Table 2. According to Table 2, GraphRevi out-
performs FastEvo when the number of universities and the
percentage of disjointness axioms are increasing. In many
cases, GraphRevi is 4 to 5 times faster than FastEvo. When
the percentage of the disjointness axioms is low, GraphRevi
runs very efficiently, i.e., in less than 30 seconds. Anoth-

4http://www.cs.ox.ac.uk/isg/tools/
UOBMGenerator/

Table 2: Execution Time (s) of ABox Revision
#univ Disjointness(%) GraphRevi FastEvo

20 17.693 51.66
30 26.591 68.702

4 40 41.423 110.251
20 19.802 69.001
30 27.874 86.685

6 40 44.833 135.518
20 23.353 89.606
30 31.070 105.483

8 40 49.313 167.695
20 26.309 119.781
30 33.945 133.852

10 40 59.798 201.149

er observation is that with the increasing percentage of dis-
jointness axioms, GraphRevi becomes less efficient, this is
because it takes more time to find the membership assertions
in A that are in conflict with N w.r.t. T . We also observe
that in almost all the test cases, GraphRevi can finish the
computation in less than 60 seconds (even when 10 univer-
sities are considered). Furthermore, GraphRevis performs
well for ontologies with 12 universities, but FastEvol cannot
handle them.

Related Work
This work is closely related to the work presented in (Cal-
vanese et al. 2010) and (Kharlamov, Zheleznyakov, and Cal-
vanese 2013). In (Calvanese et al. 2010), the authors pro-
pose an ABox revision algorithm FastEvol for DL-LiteFR
ontologies, but no implementation is provided. Our exper-
imental results show that our graph-based algorithm signif-
icantly outperforms FastEvol. It is proven in (Kharlamov,
Zheleznyakov, and Calvanese 2013) that Mod(O ◦MCS N)
and Mod(O ◦# N) coincide on a fragment of DL-Litecore.
In this paper, we show that while this result does not hold in
the full DL-Litecore,O◦MCSN is a maximal approximation
of the model-based revision O ◦# N in DL-LiteR.

Revision of DL-based ontologies has been widely dis-
cussed in the literature. Most of the work on model-based
revision in DLs is devoted to proving the inexpressibility
of model-based revision operators (see (Qi and Du 2009),
(Calvanese et al. 2010) and (Grau et al. 2012) for example).
However, very few of them discuss the approximation of
model-based revision. One exception is the work in (Wang,
Wang, and Topor 2010), where a revision operator is defined
by a new semantics called features. However, feature-based
revision also suffers from the inexpressibility problem and
the algorithm to approximating the result of revision is in-
tractable and is inefficient to deal with large ABoxes. Re-
cently, there are some works on TBox revision based on
a new semantics, called type semantics (see (Zhuang et al.
2014) and (Wang et al. 2015)).

Another line of work is to adapt the well-known AGM
(Alchourrón, Gärdenfors and Markinson) framework to DL-
s (see (Flouris, Plexousakis, and Antoniou 2005), (Flouris

et al. 2006) and (Ribeiro et al. 2013)) and adapt Hansson’s
postulates for revision (see (Hansson 1999)) to DLs (Ribeiro
and Wassermann 2007). However, model-based revision op-
erators are not discussed.

Most of practical revision operators proposed in the liter-
ature are syntax dependant, i.e., if two logically dependant
ontologies are revised by another ontology, the results of re-
vision may not be logically equivalent. Representative work
on syntax-based revision operators can be found in (Haase
et al. 2005), (Halaschek-Wiener, Katz, and Parsia 2006) and
(Qi et al. 2008). Syntax-based revision operators are not
fine-grained because an axiom is removed even if only part
of it is involved in the inconsistencies. In this work, we
prove that a syntactic revision operator can be used to ap-
proximate two model-based revision operators in DL-LiteR,
and fill the gap between syntax-based revision and model-
based revision.

Conclusion
In this paper, we presented some theoretical work on ap-
proximation of model-based ABox revision operators in DL-
LiteFR and proposed an algorithm for computing the result
of approximation efficiently. On the theoretical aspect, we
discussed whether the result of the syntactic revision algo-
rithm given in (Kharlamov, Zheleznyakov, and Calvanese
2013) can be used to approximate the result of two model-
based revision operators. We showed that this property holds
in DL-LiteR but fails in DL-LiteFR when role functionality
axioms are included. In the failure case, we showed that the
property still holds if we disallow “triggering roles” in the T-
Box. We also showed that the result of a modification of the
syntactic algorithm can be used to approximate the result of
one of the model-based revision operators. On the practical
aspect, we proposed a graph-based algorithm that can out-
put the same result as algorithm FastEvol but does not need
to compute the ABox closure w.r.t. the TBox beforehand.
Our algorithm applies new methodology to perform revision
using graph databases. We implemented a revision system
based on the graph-based algorithm, called GraphRevi, and
conducted experiments over a benchmark dataset. Prelimi-
nary experimental results show that our system can handle
the revision of large DL-Lite ABoxes efficiently and outper-
forms FastEvol.

As a future work, we will optimize our system by explor-
ing distributed index. As another future work, we will work
on approximation of ABox revision in other DL-Lite lan-
guages, such as DL-LiteNbool.

Acknowledgement
This work was partially supported by NSFC grant
61272378 and Australian Research Council (ARC) under D-
P130102302 and DP1093652.

References
Calvanese, D.; Kharlamov, E.; Nutt, W.; and Zheleznyakov,
D. 2010. Evolution of dl-lite knowledge bases. In Proc. of
ISWC, 112–128.

Flouris, G.; Huang, Z.; Pan, J.; Plexousakis, D.; and Wache,
H. 2006. Inconsistencies, negations and changes in ontolo-
gies. In Proc. of AAAI, 1295–1300.
Flouris, G.; Plexousakis, D.; and Antoniou, G. 2005. On
applying the AGM theory to DLs and OWL. In Proc. of
ISWC, 216–231.
Giacomo, G. D.; Lenzerini, M.; Poggi, A.; and Rosati, R.
2009. On instance-level update and erasure in description
logic ontologies. J. Log. Comput. 19(5):745–770.
Grau, B. C.; Ruiz, E. J.; Kharlamov, E.; and Zhelenyakov,
D. 2012. Ontology evolution under semantic constraints. In
Proc.of KR, 137–147.
Haase, P.; van Harmelen, F.; Huang, Z.; Stuckenschmidt, H.;
and Sure, Y. 2005. A framework for handling inconsistency
in changing ontologies. In Proc. of ISWC, 353–367.
Halaschek-Wiener, C.; Katz, Y.; and Parsia, B. 2006. Belief
base revision for expressive description logics. In Proc. of
OWL-ED.
Hansson, S. 1999. A Textbook of Belief Dynamics: Theory
Change and Database Updating. Kluwer Academic Pub-
lishers.
Katsuno, H., and Mendelzon, A. 1992. Propositional
knowledge base revision and minimal change. Artif. Intell.
52(3):263–294.
Kharlamov, E., and Zheleznyakov, D. 2011. Capturing
instance level ontology evolution for DL-Lite. In Proc. of
ISWC, 321–337.
Kharlamov, E.; Zheleznyakov, D.; and Calvanese, D. 2013.
Capturing model-based ontology evolution at the instance
level: The case of dl-lite. J. Comput. Syst. Sci. 79(6):835–
872.
Qi, G., and Du, J. 2009. Model-based revision operators
for terminologies in description logics. In Proc. of IJCAI,
891–897.
Qi, G.; Haase, P.; Huang, Z.; Ji, Q.; Pan, J.; and Völker,
J. 2008. A kernel revision operator for terminologies–
algorithms and evaluation. In Proc. of ISWC. 419–434.
Ribeiro, M. M., and Wassermann, R. 2007. Base revision in
description logics - preliminary results. In Proc. of IWOD,
69–82.
Ribeiro, M. M.; Wassermann, R.; Flouris, G.; and Antoniou,
G. 2013. Minimal change: Relevance and recovery revisit-
ed. Artificial Intelligence 201:59–80.
Wang, Z.; Wang, K.; Zhuang, Z.; and Qi, G. 2015. Instance-
driven ontology evolution in DL-Lite. In Proc. of AAAI, to
appear.
Wang, Z.; Wang, K.; and Topor, R. W. 2010. A new ap-
proach to knowledge base revision in DL-Lite. In Proc. of
AAAI, 369–374.
Zhuang, Z.; Wang, Z.; Wang, K.; and Qi, G. 2014. Con-
traction and revision over DL-Lite tboxes. In Proc. of AAAI,
1149–1156.

