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Abstract

Background: Biological data comprises various topologies or a mixture of forms, which makes its analysis
extremely complicated. With this data increasing in a daily basis, the design and development of efficient and
accurate statistical methods has become absolutely necessary. Specific analyses, such as those related to genome-
wide association studies and multi-omics information, are often aimed at clustering sub-conditions of cancers and
other diseases. Hierarchical clustering methods, which can be categorized into agglomerative and divisive, have
been widely used in such situations. However, unlike agglomerative methods divisive clustering approaches have
consistently proved to be computationally expensive.

Results: The proposed clustering algorithm (DRAGON) was verified on mutation and microarray data, and was
gauged against standard clustering methods in the literature. Its validation included synthetic and significant
biological data. When validated on mixed-lineage leukemia data, DRAGON achieved the highest clustering accuracy
with data of four different dimensions. Consequently, DRAGON outperformed previous methods with 3-,4- and
5-dimensional acute leukemia data. When tested on mutation data, DRAGON achieved the best performance with
2-dimensional information.

Conclusions: This work proposes a computationally efficient divisive hierarchical clustering method, which can
compete equally with agglomerative approaches. The proposed method turned out to correctly cluster data with
distinct topologies. A MATLAB implementation can be extraced from http://www.riken.jp/en/research/labs/ims/
med_sci_math/ or http://www.alok-ai-lab.com

Keywords: Divisive approach, Hierarchical clustering, Maximum likelihood

Background
In unsupervised clustering algorithms, the class label or
the state of nature of a sample is unknown. The partition-
ing of data is then driven by considering similarity or
distance measures. In some applications (e.g. genome-
wide association studies, multi-omics data analyses), the
number of clusters also remains unknown. Because such
biological information usually tends to follow a normal

distribution, the distribution of samples of each cluster
can be assumed to be Gaussian.
Hierarchical clustering methods, which can be mainly

categorized into agglomerative (bottom-up) and divisive
(top-down) procedures, are well known [1–20]. In ag-
glomerative procedures, each sample is initially assumed
to be a cluster. The two nearest clusters (based on a
distance measure or criterion function) are then merged
at a time. This merger continues until all the samples
are clustered into one group. Consequently, a tree like
structure known as dendrogram is yielded. If the num-
ber of clusters is provided, the process of amalgamation
of clusters can be terminated when the desired number
of clusters is obtained. The first step of an agglomerative
procedure considers all the possible mergers of two
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samples, which requires n(n − 1)/2 combinations (where
n depicts the number of samples). Divisive procedures,
on the other hand, perform clustering in an inverse way
as compared to their agglomerative counterparts. They
begin by considering a group (having all the samples)
and divide it into two groups at each stage until all the
groups comprise of only a single sample [21, 22]. In the
first step of a divisive procedure all the partitions of a
sample set are considered, which amounts to 2n − 1 − 1
combinations. This number of combinations grows
exponentially and practically makes divisive clustering a
difficult procedure to implement. However, there are a
few divisive approaches which do not necessarily con-
sider all the divisions [21]. In hierarchical classifications,
each subcluster can be formed from one larger cluster
split into two, or the union of two smaller clusters. In
either case, false decisions made in early stages cannot
be corrected later on. For this reason, divisive proce-
dures, which start with the entire dataset, are in general
considered safer than agglomerative approaches [21, 23].
Therefore, the accuracy of a divisive procedure is
envisaged to be higher than that of an agglomerative
procedure [24]. However, the high computational de-
mand (O(2n)~O(n5)) of divisive procedures has severely
restricted their usage [24, 25] (though for special cases
the complexity can be further reduced [26]). Therefore,
the divisive procedure has not been generally used for
hierarchical clustering, remaining largely ignored in the
literature.
Hierarchical approaches do not require initial param-

eter settings and generally employed either linear or
non-linear regression models [27–29]. Over the last few
decades, a number of hierarchical approaches have been
proposed. Some of these popular schemes are summa-
rized below. The single linkage or link agglomerative
hierarchical approach (SLink) [30] merges two adjacent
neighbour groups. Euclidean distance for computing the
proximity between two clusters. SLink is very sensitive
to data location and occasionally generates groups in a
long chain (called as chaining effect). This chaining
effect can be reduced developing a method based on
farthest distance. This was achieved by the complete
linkage (CLink) hierarchical approach [2]. Nevertheless,
CLink is also sensitive to outliers. Sensitiveness could be
further decreased by the average linkage (ALink) hier-
archical approach [31, 32]. ALink implements linking by
using the average distance between two groups. In a
similar way, the median linkage (MLink) hierarchical
approach [33] regards median distance for linking. In
Ward’s linkage (Wa-Link), clusters are merged based on
the optimal value of an objective function [34]. In
weighted average distance linkage (Wt-Link) hierarchical
clustering [35, 36], the group sizes are not considered
when computing average distances. Consequently,

smaller groups will be assigned larger weights during the
clustering process [35]. Similarly, model-based hierarch-
ical clustering [4, 8] uses an objective function. Whereas
the method in [8] follows a Bayesian analysis and uses
both Dirichlet priors and multinomial likelihood func-
tion, the approach in [4] optimizes the distance between
two GMMs. The number of group is previously defined.
Most of these approaches are constructed using the
agglomerative procedure, though their construction
(with higher computational demand) is equally possible
using the divisive procedure. Although divisive cluster-
ing is generally disregarded, some approaches like
DIANA (DIvisive ANAlysis) program has been recently
established [21]. In spite of well-established methods (i.e.
EM algorithm [37, 38]) for estimating the parameters of
a Gaussian mixture model, it is worth noting that hier-
archical and expectation-maximization (EM) algorithms
are very different in nature. The EM algorithm is an
iterative optimization method, which requires prior
knowledge of the number of clusters. It begins with a
random choice of cluster centers and therefore returns
different sets of clusters for distinct runs of the algo-
rithm. Hierarchical clustering algorithms, on the other
hand, do not require such prior knowledge and return a
unique set of clusters. These advantages often make
hierarchical clustering methods preferable to the EM
algorithm for dealing with biological datasets where
unique solutions are of utmost importance [39–41].
In this work, we described a new Divisive hieRArchical

maximum likelihOod clusteriNg approach, abbreviated
as DRAGON hereafter. This is a top-down procedure
which does not find pairs. Instead, it takes out one
sample at a time, maximally increasing the likelihood
function. This process continues until the first cluster is
obtained. This cluster is not further subdivided but
removed from the sample set. In the remaining sample
set, the same procedure is repeated for obtaining all the
possible clusters. The removal of one sample out of n
samples requires n search. This reduces the total search
complexity to O(n2c) (where c is the number of clusters),
which represents a significant reduction of the top-down
procedure. The following sections present the mathem-
atical derivation of the proposed model, and the analyses
carried over on synthetic as well as on biological data to
illustrate its usefulness.

Methods
Maximum likelihood clustering: an overview
This section summarizes an overview of the maximum
likelihood method for clustering [22]. Here we are not
introducing our method, instead we are proving a brief
description of conventional maximum likelihood ap-
proach for clustering applications. It is possible to learn
from an unlabeled data if some assumptions are taken.
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We will begin the section with an assumption that prob-
ability densities are known and it is required to estimate
unknown parametric vector θ. The solution comes out
to be similar to supervised learning case of maximum
likelihood estimation. However, in the supervised learn-
ing case, the topology of groups of data is known. But in
an unsupervised learning case one has to assume para-
metric form of data to reach to the solution. Here we
describe how to estimate of maximum likelihood of clus-
ters of a given sample set χ. The label of cluster of the
sample sets is defined as ω. Assuming there are c clus-
ters in the sample set (c ≥ 1), we define Ω = {ωj} (for j =
1, 2, …, c) as the cluster label for jth cluster χj (In many
clustering problems, the number of c is unknown, this
issue we will deal in detail in later section and in
Additional file 1). In this paper, we followed the nota-
tions from Duda et al. [22] for the convenience of
readers. Let a sample set χ = {x1, x2,…, xn} be defined in
a d-dimensional space (It is assumed that d < n. For d≫
n, dimensionality reduction techniques can be first
applied for supervised or unsupervised learning tasks
[42–47]). Let an unknown parameter vector be θ
consisting of mean μ as well as covariance Σ. This will
specify the mixture density as

p xkjθð Þ ¼
Xc

j¼1
p xkjωj; θj
� �

P ωj
� � ð1Þ

where p(xk|ωj, θj) (for j = 1, …, c) is the conditional dens-
ity, P(ωj) is the a priori probability and θ = {θj}. The joint
density is further defined using the log likelihood as

L ¼ logp χjθð Þ ¼ log
Yn

k¼1
p xk jθð Þ

¼
Xn

k¼1
logp xk jθð Þ ð2Þ

Assuming the joint density p(χ|θ) is differentiable w.r.t
to θ then from Eqs. (1) to (2)

∇ θi L ¼
Xn

k¼1

1
p xk jθð Þ∇ θi

Xc

j¼1
p xk jωj; θj
� �

P ωj
� �h i

ð3Þ
where ∇ θi L is the gradient of L w.r.t. θi. Assuming θi
and θj are independent, and supposing a posteriori prob-
ability is

P ωijxk ; θð Þ ¼ p xk jωi; θið ÞP ωið Þ
p xk jθð Þ ð4Þ

then from Eq. (4) we can observe that 1
p xk jθð Þ ¼

P ωijxk ;θð Þ
p xk jωi;θið ÞP ωið Þ. Substituting this value in Eq. (3), we obtain

∇ θi L ¼
Xn

k¼1
P ωijxk ; θð Þ∇ θi logp xk jωi; θið Þ ð5Þ

Note that in Eq. (5), (1/f(z))∇zf(z) is arranged as ∇z log
f(z). Equation (5) can be equated to 0 (∇ θi L ¼ 0 ) for

obtaining maximum likelihood estimate θ̂i. This will give

us the solution as (interested readers may refer to Duda
et al. [22] for further details.)

P ωið Þ ¼ 1
n

Xn

k¼1
P ωijxk ; θ̂
� �

ð6Þ
Xn

k¼1
P ωijxk ; θ̂
� �

∇ θi logp xk jωi; θ̂i

� �
¼ 0 ð7Þ

P ωijxk ; θ̂
� �

¼
p xk jωi; θ̂i

� �
P ωið Þ

Pc
j¼1p xk jωj; θ̂j

� �
P ωj
� � ð8Þ

In the case of normal distribution, the unknown mean
and covariance {μ, Σ} parameters are replaced in θ in the
Eqs. 6, 7 and 8 for yielding maximum likelihood esti-
mates. The parameter θ is usually updated in an iterative

fashion to attain θ̂ by EM algorithms or hill climbing
schemes.

DRAGON method: concept
Here we illustrate the clustering method DRAGON. In
brief, the proposed procedure is top-down in nature. It
initially considers the sample set as one cluster from
which one sample is removed at a time. This increases
the likelihood function and continues until the max-
imum likelihood is reached as depicted in Fig. 1 (where
L1 is the cluster likelihood at the beginning of the
process and L3 is the maximum likelihood after remov-
ing two samples). Once the first cluster is obtained it is
removed from the sample set and the procedure is then
repeated for attaining the subsequent clusters. Conse-
quently, only one cluster will be retrieved from a sample
set. It is assumed that samples are multinomial distrib-
uted, however, the number of clusters is not known at
the beginning of the process.

Fig. 1 An illustration of the DRAGON method. This procedure results
in the formation of one cluster. One sample is removed at a time,
which maximally increases the likelihood function. At the beginning,
the likelihood was L1 and after two iterations the likelihood became
L3, where L3 > L2 > L1
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To establish the maximum likelihood estimate in the
divisive hierarchical context, we investigate the criterion
function and the distance measure that satisfy it.

DRAGON method: algorithm
To find the distance measure, we first define the log-
likelihood function of a cluster χs, where χs is a subset of
χ. At the beginning, χs is the same as χ, however, in every
subsequent iteration a sample x is removed from χs such
that the likelihood function

L ¼
X

x∈χs
log p xjω; θð ÞP ωð Þ½ � ð9Þ

is maximized.
Since we are finding only one cluster in the sample set

χ, a priori probability P(ω) can be ignored. We would
like to explore how function L changes when a sample x̂
is taken out. Let us suppose centroid μ and covariance Σ
of χs are defined as

μ ¼ 1
n

X
x∈χs

x ð10Þ

Σ ¼ 1
n

X
x∈χs

x−μð Þ x−μð ÞT ð11Þ

where the number of samples in χs is depicted as n.
Assuming that the component density is normal then
Eq. (9) can be simplified as

L ¼ P
x∈χs

log
1

2πð Þd=2 Σj j1=2 exp −
1
2

x−μð ÞTΣ−1 x−μð Þ
2
4

3
5

2
664

3
775

¼ −
1
2
tr Σ−1

X
x∈χs

x−μð Þ x−μð ÞT
h i

−
nd
2

log2π−
n
2
log Σj j

where trace function is denoted by tr(). Since tr
Σ−1P

x∈χs
x−μð Þ x−μð ÞT

h i
¼ tr nId�dð Þ ¼ nd , we can write

L as

L ¼ −
1
2
nd−

nd
2

log2π−
n
2
log Σj j ð12Þ

If a sample x̂ is removed from χs then centroid and
covariance (Eqs. (10) and (11)) will change as follows

μ� ¼ μ−
x̂−μ
n−1

ð13Þ

Σ� ¼ n
n−1

Σ−
n

n−1ð Þ2 x̂−μð Þ x̂−μð ÞT ð14Þ

In order to observe the alteration in the likelihood
function (of Eq. (12)), we provide the following Lemma.
Lemma 1 Assume point x̂ is taken out of a set χs and

this changes the centroid and covariance (as Eqs. (13)

and (14) described). Thereby the determinant of Σ* is
defined as

Σ�j j ¼ n
n−1

� �d
Σj j 1−

1
n−1

x̂−μð ÞTΣ−1 x̂−μð Þ
� �

Proof From Eq. (14), the determinant of Σ* will be

Σ�j j ¼ n
n−1

Σ−
n

n−1ð Þ2 x̂−μð Þ x̂−μð ÞT
�����

����� ðL1Þ

For any square matrix of size m ×m, we can write
|AB| = |A||B|, and |cA| = cm|A| where c is any scalar,
This would enable us to write Eq. (L1) in the following
manner

Σ�j j ¼ n
n−1

� �d
Σj j Id�d−

1
n−1

x̂−μð Þ x̂−μð ÞTΣ−1

����
���� ðL2Þ

Im�m þ ABj j can be proved to be |In × n + BA| by
Sylvester’s determinant theorem (where A ∈ℝm × n and
B ∈ℝn ×m are rectangular matrices). This would allow us
to write

Id�d−
1

n−1
x̂−μð Þ x̂−μð ÞTΣ−1

����
����

¼ 1−
1

n−1
x̂−μð ÞTΣ−1 x̂−μð Þ

����
����

For any scalar |c| = c, the Lemma is then proved by
substituting this term in Eq. (L1). □
It is now possible to define the change in L as

L� ¼ L−ΔL ð15Þ
where ΔL is defined as

ΔL ¼ −
1
2
log Σj j þ n−1

2
log 1−

P
n−1

� �

þ n−1
2

d log
n

n−1
−
d
2
−
d
2
log2π

ð16Þ
and P is expressed as

P ¼ x̂−μð ÞTΣ−1 x̂−μð Þ ð17Þ
It can be observed from Eqs. (15) to (17) that when a

sample x̂ is taken out of cluster χs, the change in L
mainly depends on the term P as all the other terms are
not changing. If we want to select x such that L* > L, this
requires to solve the following maximization problem

x̂ ¼ argmaxx∈χsP ð18Þ
Therefore, by removing x̂ the likelihood should

increase until the maximum value is reached.
This procedure can track the location of the cluster

having the highest density or likelihood. Because one
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sample is taken out at a time, it could be sensitive to
data positions around the center of the cluster. Thereby,
it is possible to locate the center of the cluster whereas
its complete topology can be missed. In order to reduce
such sensitiveness additional processing for tuning the
cluster would be useful.
By taking out one sample at a time, we can obtain a

cluster χs that provides maximum likelihood. All the
samples taken out can be collated in a set defined as χ�s ,
where χs∪χ

�
s ¼ χ . The centroid of cluster χs can be

obtained by μs = E[χs]. It can be then employed to com-
pute the distance of all the samples from μs; i.e. dx = δ(x,
μs) ∀ x ∈ χ, where δ denotes a distance measure (in this
case the Euclidean metric) and dx is a 1-dimensional
sample or point corresponding to x. Thereafter, a
centroid-based clustering scheme can be applied on this
distance metric or inner product space (by considering
1-dimensional data and partitioning it into 2 groups) to
readjust the cluster χs. Here clustering is applied on a
distance metric, which can be either the Euclidean norm
or any form of kernel (as it is derived from dot product).
This procedure can be repeated if μs is changing dramat-
ically. The overall method is summarized in Table 1 and
illustrated in Additional file 1 (slides 1–6).
The next issue is the estimation of the number of clus-

ters (c). If the value of c were given, it is then easier to
find the locations. However, in some applications, c is
unknown. In such situations, a range of values of c can
be inserted to the procedure so that the best value in the
range can be estimated. If no clue about c were given,
the maximum number of possible clusters C can be
investigated and the best among them (c ≤ C) can be
chosen. In order to estimate c, we first define the total
likelihood function as

Lt cð Þ ¼
Xc

i¼1
Li ð19Þ

where Li is the likelihood of ith cluster. The total likeli-
hood function Lt can be computed for different values of

c. If for a particular number of clusters (k), the variation
between two successive total likelihood functions were
not significant, then we can estimate c to be k. Let the dif-
ference between two successive total likelihoods be δLt(k)
= Lt(k + 1) − Lt(k), this quantity can be normalized as

δLt←
δLt−min δLtð Þ

max δLtð Þ−min δLtð Þ ð20Þ

where δLt is normalized over all the possible values of k.
Figure S5 in Additional file 1 illustrates the above

explanation with a dataset of 4 clusters.

DRAGON method: search complexity
In this section, we briefly discuss the search complexity of
the DRAGON method. As explained above the proposed
method begins by taking one sample out of the sample set,
which increases the likelihood function and requires n
search. However, in the second iteration the search reduces
to n − 1. Finding a cluster having n1 samples requires (1/
2)(n − n1)(n + n1 + 1) total search (see Additional file 2 for
details). Therefore, the search for c clusters results O(n2c).
It should be noted here that this search in conventional
divisive hierarchical approaches is quite expensive, in the
order of O(2n). However, the search of DRAGON is in the
order of O(n2c), which indicates a considerable reduction.
Furthermore, DRAGON employs the k-means clustering
algorithm in the dot product space as an intermediate step.
The computational complexity of k-means is considered to
be linear (e.g. using Lloyd’s algorithm this is O(2nt) because
dimensionality is 1 in an intermediate step, and the number
of classes is 2. Here, t represents the number of iterations).

Results and discussion
To validate the DRAGON method, we performed
analyses using synthetic and biological data. We further
compared its clustering accuracy with that of existing
hierarchical methods.

Analysis on synthetic data
For the analysis on synthetic data, we generated Gauss-
ian data of dimensionality d with 4 clusters. This data
consisted of 400 samples with similar topology to that
described in Figure S1 of Additional file 1). With the
help of different random seeds we produced the data 20
times, and for on each occasion we calculated the clus-
tering accuracy. We then computed the average or mean
of clustering accuracy over 20 attempts to have a statisti-
cally stable value. The dimension of the generated data
was increased from 2 to 30. For evaluation purposes, we
also used other agglomerative hierarchical methods such
as SLink, CLink, MLink, ALink, Wa-Link, and Wt-Link.
The average clustering accuracies of these approaches
over dimensionality d are shown in Fig. 2a. For all the

Table 1 DRAGON Method

1. Given a sample set χs (at the beginning χs = χ), compute likelihood
L (Eq. (12)).

2. Until L* > L, remove one sample x̂∈χs (Eq. (18)), compute new
likelihood L*, update χs and L.

3. Find centroid μs = E[χs] and dx = δ(x, μs) ∀ x ∈ χ.
4. Partition {dx} into two groups, for example using k-means algorithm
(or divide into two groups based on their values). One of these
groups will have lower dx values (representing closeness to μs)
whereas the other will have higher dx values (representing distance
from μs). Update χs by replacing it with the samples with the lower
dx values.

5. If required repeat steps 3 and 4. Take out the cluster χs from χ.
Update χ accordingly (the updated χ would contain all the samples
except χs; i.e. χ ∩ χs = Φ).

6. Repeat all the steps until all the possible clusters (or desired
number of clusters) are obtained.
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above methods, we provided the number of clusters; i.e.
c = 4. For the DRAGON method (of Table 1), we iterated
two times (step 5 of Table 1) in all the experiments.
Additionally, we assessed seven previously compared
divisive hierarchical methods [24]: ALink (average link),
SLink (single link), CLink (complete link), DunnsOrg
(Dunn’s original), DunnsVar (Dunn’s variant), Mac-Smith
(Macnaughton-Smith) and PDDP (Principal Direction).
The average clustering accuracies of these divisive
methods are summarized in Fig. 2b. As Fig. 2b shows
when the dimensionality of data increases, Mac-Smith
performs poorly whereas ALink, SLink and DunnsOrg
slightly improve their performances. The data dimension
did not affect the accuracy of DunnsVar whatsoever,
which remains around 50%. The highest accuracy is
achieved by the PDDP method (roughly 80%), however,
this accuracy is still lower than that of DRAGON.
It can be observed from Fig. 2 that on Gaussian data,

the DRAGON method provides promising results over
other hierarchical methods either agglomerative or
divisive. The Wa-Link hierarchical method also shows
good results after the DRAGON method over dimen-
sionality d = 2, …, 30.
To avoid limiting our validation to Gaussian datasets,

we carried out additional analyses on synthetic data that
included Pathbased [48], Flame [49] and Aggregation
[50] datasets. The results are summarized in Tables S1.1,
S1.2 and S1.3 of Additional file 1.

Analysis on biological data
We also utilized biological datasets, namely acute
leukemia [51], mixed-lineage leukemia (MLL) [52] and
mutation data from The Cancer Genome Atlas for
assessing clustering accuracy of several hierarchical
approaches studied in this paper. A summary of datasets
can be found below:
Acute leukemia dataset –comprises DNA microarray

gene expressions. The samples belong to acute leukemias

of humans. Two kinds are available: acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL).
The dataset has 25 AML and 47 ALL bone marrow sam-
ples with a dimension of 7129.
MLL dataset –has three ALL, MLL and AML classes.

It contains 72 leukemia samples where 24 belong to
ALL, 20 belong to MLL and 28 belong to AML with
dimensionality 12,582.
Mutation dataset – this dataset is derived from The

Cancer Genome Atlas project (https://tcga-data.nci.nih.-
gov/docs/publications/tcga/?). It includes mutation data
for breast cancer, glioblastoma, kidney cancer and ovar-
ian cancer. The data is divided into two groups of 416
samples and 90 samples, which contain 1636 genes.
To vary its number of features or dimensions, we

employed the Chi-squared method for ranking the genes
(the InfoGain feature selection method was also

Fig. 2 Average clustering accuracy (over 20 attempts) on synthetic data with four clusters for (a) DRAGON and various agglomerative hierarchical
methods, and (b) divisive hierarchical methods

Table 2 Clustering accuracy (%) on acute leukemia dataset

Methods Dim 2 Dim 3 Dim 4 Dim 5

SLINK 66.7 66.7 66.7 66.7

CLINK 84.7 81.9 81.9 81.9

ALINK 76.4 81.9 84.7 84.7

Wa-LINK 94.4 81.9 81.9 81.9

Wt-LINK 94.4 81.9 81.9 81.9

MLINK 94.4 81.9 81.9 81.9

SLINK (Divisive) 66.7 66.7 66.7 66.7

CLINK (Divisive) 80.6 80.6 80.6 80.6

ALINK (Divisive) 66.7 66.7 66.7 66.7

Dunn’s original (Divisive) 76.4 80.6 80.6 80.6

Dunn’s variant (Divisive) 72.2 70.8 70.8 72.2

Macnaughton-Smith (Divisive) 86.1 81.9 81.9 81.9

Principal Direction (Divisive) 89.4 88.9 88.9 88.9

K-means 90.3 89.5 81.9 81.9

DRAGON 93.1 97.2 97.2 94.4
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employed, see Additional file 3). We then performed
clustering on samples and computed the clustering
accuracy on dimensionality d = 2, …, 5. The clustering
accuracies (was measured with the package AccMeasure
2011: http://www.mathworks.com/matlabcentral/fileex-
change/32197-clustering-results-measurement/content/
AccMeasure.m) on acute leukemia, MLL and muta-
tion datasets are depicted in Tables 2, 3 and 4, respect-
ively. The best outcomes are highlighted in bold faces.
It is noticed from Table 2 that Wa-Link, Wt-Link and

MLink achieve the highest performance when d = 2. For
the other dimensions (d = 3, 4 and 5), DRAGON shows

the highest performance. From Table 3, it can be seen
that DRAGON achieves reasonable performance for all
the dimensions. On mutation data (Table 4), DRAGON
is showing the highest performance for d = 2 and slightly
low performance (82.2%) for the other dimensions.
Dunn’s original and Macnaughton-Smith provide the
highest performance when d = 3. Despite the reasonable
performance of divisive clustering methods in Table 4, it
is worth noting that their running times were extremely
slow, specially when the number of samples increases as
it is the case with mutation data. In general, it can be
summarized that the DRAGON method exhibited prom-
ising results in terms of clustering accuracy over other
hierarchical methods. Also its search complexity is
O(n2c), which is significantly lower than that of conven-
tional divisive approaches.

Conclusions
In this work, we proposed a divisive hierarchical
maximum likelihood clustering method whose search
complexity was reduced to O(n2c). Its overall clustering
accuracy showed a significant improvement over that of
agglomerative hierarchical clustering methods when
compared on both synthetic and biological datasets.

Additional files

Additional file 1: Divisive hierarchical maximum likelihood clustering. In this
file an illustration of DRAGON method is given. Additionally, performance (in
terms of Rand index) is given for synthetic data (Flame, Pathbased and
Aggregation). (PDF 963 kb)

Additional file 2: Computational consideration of DRAGON search. In
this file derivation of computational complexity of DRAGON search is
given. (PDF 84 kb)

Additional file 3: Clustering accuracy using InfoGain feature selection
method. In this file, InfoGain filtering method was used to perform feature
selection. Thereafter, various clustering methods were used to evaluate the
performance of DRAGON method. (PDF 68 kb)
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Table 3 Clustering accuracy (%) on MLL dataset

Methods Dim 2 Dim 3 Dim 4 Dim 5

SLINK 40.3 40.3 43.1 43.1

CLINK 45.8 50.0 54.2 72.2

ALINK 50.0 50.0 50.0 72.2

Wa-LINK 62.5 62.5 62.5 84.7

Wt-LINK 45.8 50.0 43.1 69.4

MLINK 45.8 50.0 43.1 69.4

SLINK (Divisive) 41.7 41.7 43.1 43.1

CLINK (Divisive) 54.2 45.8 56.9 72.2

ALINK (Divisive) 41.7 41.7 43.1 72.2

Dunn’s original (Divisive) 44.4 44.4 45.8 72.2

Dunn’s variant (Divisive) 41.7 41.7 43.1 73.6

Macnaughton-Smith (Divisive) 54.2 48.6 50.0 72.2

Principal Direction (Divisive) 62.5 62.5 62.5 81.9

K-means 56.0 57.0 58.1 61.6

DRAGON 65.3 62.5 68.1 84.7

Table 4 Clustering accuracy (%) on mutation dataset

Methods Dim 2 Dim 3 Dim 4 Dim 5

SLINK 77.9 77.9 77.9 82.4

CLINK 77.3 82.0 82.8 83.2

ALINK 77.3 77.3 82.8 82.4

Wa-LINK 77.3 77.7 77.9 77.9

Wt-LINK 77.3 82.0 82.8 54.6

MLINK 54.6 54.6 54.6 82.4

SLINK (Divisive) 54.5 54.5 54.5 82.2

CLINK (Divisive) 54.4 54.5 77.3 77.3

ALINK (Divisive) 77.9 82.6 82.6 82.4

Dunn’s original (Divisive) 77.3 83.0 77.3 82.4

Dunn’s variant (Divisive) 54.5 54.5 54.5 77.3

Macnaughton-Smith (Divisive) 77.9 83.0 82.8 82.4

Principal Direction (Divisive) 54.5 54.5 54.5 54.5

K-means 64.9 67.1 65.7 63.3

DRAGON 77.9 82.2 82.2 82.2
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