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ABSTRACT OF THE DISSERTATION 

PAS Signaling Mechanisms in Aer and Aer2 

by 

Darysbel Garcia 

Doctor of Philosophy, Graduate Program in Microbiology and Molecular Genetics 
Loma Linda University, California USA, June 2017 

Dr. Barry L Taylor and Dr. Kylie J. Watts, Co-Chairpersons 
 

PAS domains are widespread signal sensors that share a conserved 

three-dimensional αβ fold that consists of a central β-sheet flanked by several α-

helices. The aerotaxis receptor Aer from Escherichia coli and the Aer2 

chemoreceptor from Pseudomonas aeruginosa both contain PAS domains. Aer 

senses oxygen (O2) indirectly via an FAD cofactor bound to its PAS domain, 

while Aer2 directly binds O2 to its PAS b-type heme cofactor. The Aer and Aer2 

PAS domains both interact with a signal transduction domain known as a HAMP 

domain. The PAS-HAMP arrangement differs between Aer and Aer2, with Aer-

PAS residing adjacent to its HAMP domain, and Aer2-PAS being sandwiched 

linearly between three N-terminal and two C-terminal HAMP domains. The 

differences between these PAS-HAMP architectures raise the possibility of two 

different PAS-HAMP signaling mechanisms: a lateral PAS-HAMP signaling 

mechanism for Aer, and a linear PAS-HAMP signaling mechanism for Aer2. This 

dissertation focuses on uncovering the PAS-HAMP transduction mechanisms 

and clarifying the signaling of conserved residues in Aer and Aer2 PAS. In Aer, I 

determined that a region on the PAS β-scaffold was sequestered by direct 

interaction with the HAMP domain. These data support a novel lateral PAS-
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HAMP arrangement that is crucial for Aer signaling. In Aer2, I demonstrated that 

unique PAS domain residues are involved in heme-binding, oxygen-binding and 

PAS signal initiation. My data provide the first functional corroboration of the Aer2 

PAS signaling mechanism previously proposed from structure. 

 The work presented in this dissertation demonstrates two variations of 

PAS-HAMP signaling mechanisms, both involving a global conformational 

change of the PAS domain that is transmitted from the PAS β-scaffold to the 

HAMP domain. My Aer and Aer2 studies provide the first direct evidence that 

HAMP domains can be activated by either linear or lateral interaction with a 

sensor module. Studying PAS-HAMP signaling mechanisms will help in 

understanding how sensing domains activate chemosensory systems that are 

involved in the survival of both commensal and pathogenic bacteria. 



 

1 

CHAPTER ONE 

INTRODUCTION 

 
Bacterial Chemosensory Systems 

Bacterial chemosensory systems are found in 58% of prokaryotes 

(Wuichet et al., 2010) and grant bacteria the ability to sense and respond to both 

external and internal signals. The best understood chemosensory system is the 

chemotaxis system of Escherichia coli whose main purpose is to navigate cells 

towards an optimal nutritional environment. Contrary to the simplicity of the E. 

coli chemotaxis system, Pseudomonas aeruginosa contains four chemosensory 

systems, and each system has a different function (Kato et al., 2008, Wuichet et 

al., 2010). Chemosensory systems consist of chemoreceptors and effector 

proteins. Chemoreceptors are capable of detecting chemoeffectors (e.g., 

environmental pH and temperature) or ligands (e.g., sugars, amino acids, and 

O2), while effector proteins help translate sensory signals into cellular behaviors 

such as biofilm formation, directed motility, and gene modification (Bi et al., 

2015). The research described in this dissertation investigates the signaling 

mechanisms of both Aer-directed aerotaxis in E. coli and Aer2-directed excitation 

signaling in P. aeruginosa. These comparatively simple behavioral systems occur 

in a single cell and can be dissected by biochemical and genetic techniques. 

 

Chemoreceptors 

There are two main classes of chemoreceptors: membrane-bound and 

soluble cytoplasmic chemoreceptors (Collins et al., 2014) (Fig. 1). In Gram-
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negative bacteria like E. coli and P. aeruginosa, membrane-bound 

chemoreceptors are anchored to the inner membrane of cells by a 

transmembrane (TM) domain. Membrane-bound chemoreceptors are the most 

abundant and most studied type of chemoreceptor, accounting for 86% of 

bacterial chemoreceptors (Collins et al., 2014). Membrane-bound 

chemoreceptors usually bind their ligands in the periplasmic space, allowing 

them to transmit information from the environment into the cell interior (Fig. 1). 

However, some membrane-bound receptors like Aer have an intracellular 

sensing domain that monitors the internal state. 

 The recent discovery of soluble cytoplasmic chemoreceptors has 

expanded the field of signal recognition and transduction. Sequenced genomes 

in the SMART database (http://smart.embl-heidelberg.de) revealed that out of 

8,384 chemoreceptors, 14% (1,129 chemoreceptors) were cytoplasmic 

chemoreceptors (Collins et al., 2014). Little is known about the function of 

cytoplasmic chemoreceptors, but the cytoplasmic chemoreceptors in 

Rhodobacter sphaeroides and Sinorhizobium meliloti have been speculated to 

monitor internal stimuli and modulate chemotactic responses (Alexandre et al., 

2001, Porter et al., 2008, Armitage et al., 1997). Although the functions of most 

soluble cytoplasmic chemoreceptors remain to be elucidated, cytoplasmic and 

membrane-bound chemoreceptors share similarities in their structural 

composition, making it easier to study their signal transduction mechanisms. 

Both cytoplasmic and membrane-bound chemoreceptors consist of a signal 

sensor domain, a signal transduction domain, and an output domain, which 
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allows the receptor to elicit a response by interacting with cytoplasmic proteins 

(Fig. 1).  

 

Figure 1. Comparison of transmembrane and cytoplasmic chemoreceptors. 
Transmembrane and cytoplasmic chemoreceptors are composed of a signal input 
domain such as a PAS domain, a signal transducer domain such as a HAMP 
domain, and a signal output domain or kinase control module. Abbreviation: IM, 
inner membrane. 

 

Chemosensory Arrays 

Higher-order structures of chemoreceptors, called chemosensory arrays, 

are critical in receptor function (Ames et al., 2002). Both membrane-bound and 

cytoplasmic receptor chemosensory arrays consist of chemoreceptor 
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homodimers, clustered into trimers-of-dimers (Ames et al., 2002, Studdert et al., 

2005) and stabilized by the chemotaxis proteins CheA and CheW (Studdert et al., 

2005). Transmembrane and cytoplasmic chemoreceptors both form 12-nm 

hexagonal arrays (Briegel et al., 2009). However, some cytoplasmic receptors 

have a sandwiched architecture consisting of two CheA and CheW baseplates 

sandwiched between two opposing receptor arrays (Briegel et al., 2014). In 

addition, chemosensory arrays are found at cell poles and at sites of future cell 

division known as lateral patches (Maddock et al., 1993, Kentner et al., 2006). 

Polar patches move along the curvature of the cell pole while lateral patches 

remained fixed (Kentner et al., 2006). 

 

Chemotaxis 

Bacteria respond to changes in chemical gradients in their surrounding 

environment (Adler, 1966). For both E. coli and P. aeruginosa, chemotaxis 

involves modulation of their swimming patterns. E. coli has a peritrichous flagellar 

arrangement, whereas P. aeruginosa has a single polar flagellum. Bacterial 

swimming patterns result from the direction in which the individual flagella rotate, 

which itself is dependent on the stimuli the bacteria sense. In an isotropic 

environment, E. coli’s swimming pattern is known as a “random walk” in which 

cells swim smoothly and then tumble for ~0.1 sec (Berg et al., 1972). If the 

concentration of an attractant increases, bacteria swim smoothly by suppressing 

tumbling. When a repellent stimulus is encountered, bacteria tumble frequently to 

change swimming direction in search of a more favorable environment (Berg, 
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2003). In monotrichous bacteria such as P. aeruginosa, there is a brief reversal in 

direction instead of tumbling (Taylor et al., 1974). The ability of E. coli and P. 

aeruginosa to change swimming direction is due to the interaction of chemotaxis 

proteins with the flagellar motor/s of the cell.  

 

Chemotaxis Proteins 

The output domain in all chemoreceptors is known as the kinase control 

module (Fig. 2) (Alexander et al., 2007). The kinase control module is highly 

conserved in sequence and protein structure, consisting of two monomers with 

antiparallel helices and a hairpin tip or “U-turn” that forms a supercoiled, four 

helix bundle (Fig. 2). The kinase control module can be divided into three 

regions: i) the adaptation region, which contains four to six glutamine or glutamic 

acid residues that are methylation sites for adaptational modification in methyl-

accepting chemoreceptors (Terwilliger et al., 1983, Terwilliger et al., 1984), ii) the 

flexible region that contains a glycine hinge (Alexander et al., 2007), and iii) the 

protein interaction region where the kinase control module interacts with 

downstream chemotaxis proteins (Fig. 2). Chemotaxis proteins CheA (histidine 

kinase), CheW (docking protein), CheB and CheD (methylesterase and 

deamidase), and CheR (methyltransferase) all interact with the kinase control 

module (Hazelbauer et al., 2008).   

 Structurally, CheA is a homodimer with each dimer consisting of five 

structural subunits (P1, P2, P3, P4, and P5) that have different functions (Jahreis 

et al., 2004, Morrison et al., 1994, Swanson et al., 1993). 
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Figure 2. Subregions of the kinase control module. The kinase control module 
consists of i) an adaptation region containing methylation sites, ii) a flexible 
region, and iii) a protein interaction region (PIR). The circles in the adaptation 
region represent glutamine (black circles) and glutamic acid residues (white 
circles). Glutamine residues must be deaminated before they can be 
methylated. The black lines in the flexible region represent the glycine hinge. 
The U-turn allows the kinase control module to form a supercoiled four-helix 
bundle. Refer to Fig. 1 for the location of the kinase control region in the context 
of a complete chemoreceptor. 
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The P1 subunit has autokinase activity. The P2 subunit binds either CheB or the 

response regulator CheY and transfers phosphoryl groups from the P1 subunit to 

specific aspartate residues in CheB and CheY (McEvoy et al., 1996, Stewart et 

al., 2000, Jahreis et al., 2004). Dimerization of CheA occurs at the P3 subunit 

(Park et al., 2004), and the P4 subunit catalyzes the transfer of phosphate from 

adenosine triphosphate (ATP) to a histidine residue on the P1 subunit (His48 in 

E. coli CheA) (Garzon et al., 1996, Bilwes et al., 2001). Together, the P3 and P4 

subunits provide sites for contact with chemoreceptors (Miller et al., 2006). The 

fifth subunit, P5, binds to both CheW and chemoreceptors, and is necessary for 

CheA activation by receptors (Bourret et al., 1993, Zhao et al., 2006b, Zhao et 

al., 2006a). Although the exact docking mechanism of CheW remains to be 

elucidated, it is crucial for CheA activation (Fig. 3). Chemoreceptor signaling 

activates CheA autophosphorylation, with subsequent transfer of the phosphate 

to CheY (Fig. 3). The phosphorylation site on E. coli CheY is Asp57, and this 

triggers a conformational change in CheY that promotes binding to the flagellar 

motor protein FliM (Formaneck et al., 2006, Stock et al., 2006). When 

phosphorylated CheY (CheY-P) binds to FliM, this changes the direction of 

flagellar rotation from counterclockwise (CCW; the default direction) to clockwise 

(CW), causing the cell to tumble (Fig. 3) (Formaneck et al., 2006, Stock et al., 

2006). In order to stop the cell tumbling, the CheZ phosphatase rapidly moves 

from the membrane to the cytoplasm to dephosphorylate CheY (Zhao et al., 

2002) (Fig. 3). 
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Figure 3. Chemotaxis sensing and protein phosphorylation cascade as observed 
in E. coli and P. aeruginosa chemotaxis. When a receptor encounters a repellent, 
it activates CheA (magenta), which autophosphorylates by catalyzing phosphate 
transfer from ATP. Phosphorylated CheA transfers a phosphate group to CheY 
(yellow). Phosphorylated CheY binds to the flagellar motor (brown), changing the 
direction of flagellar rotation from counterclockwise (CCW) to clockwise (CW), 
resulting in cell tumbling. Phosphorylated CheA also transfers a phosphate group 
to CheB (green), activating it to demethylate the receptor, countering the repellent 
signal and reseting the receptor to the prestimulus state. In the presence of an 
attractant, CheA, CheY and CheB are not phosphorylated and flagellar motor 
rotation remains CCW, producing smooth swimming. S-adenosyl-methionine 
(SAM) provides methyl groups for CheR (red) to methylate glutamic acid residues 
in the adaptation region of the kinase control module, countering the attractant 
signal and reseting the receptor to the prestimulus state. The lifetime of CheY-P is 
inversely proportional to the activity of the CheZ (white) phosphatase. The circles 
in the receptors represent glutamine (black circles) and glutamic acid residues 
(white circles). Abbreviations: IM, inner membrane; SAM, S-adenosyl methionine; 
CCW, counterclockwise; CW, clockwise.   
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P. aeruginosa has a chemotaxis system containing homologous protein 

components to that of the E. coli chemotaxis system.  

 

Adaptation 

 Chemoreceptors detect minuscule changes in stimulus concentration by 

comparing a stimulus change against a constant background (Borroni et al., 

1988). The adaptation state of E. coli chemoreceptors are controlled by CheB 

and CheR, whereas P. aeruginosa has the additional controller, CheD. In E. coli, 

CheB and CheR bind to a C-terminal pentapeptide sequence that enhances the 

catalytic reactions of CheR and CheB in the adaptation region of the kinase 

control module (Fig. 2) (Barnakov et al., 1999, Wu et al., 1996). In the presence 

of an attractant, S-adenosyl-methionine (SAM) provides methyl groups for CheR 

to methylate the glutamic acid residues in the adaptation region, forming glutamyl 

methyl esters (Fig. 3) (Boyd et al., 1980, Terwilliger et al., 1983). The addition of 

methyl groups to the adaptation region renders the chemoreceptor more signal-

on (CW) biased (Starrett et al., 2005), countering the smooth (signal-off) signal 

sent by the attractant, and reseting cellular behavior to that of a random-walk 

(Hazelbauer et al., 2008, Macnab et al., 1972). In the presence of a repellent, 

activated CheA phosphorylates CheB (CheB-P) and CheB-P catalyzes the 

hydrolysis of the methyl ester bond on the glutamyl methyl esters (Fig. 3) (Boyd 

et al., 1980). Demethylation of the receptor triggers a conformational change in 

the receptor that inactivates bound CheA and makes the receptor more signal-off 

(CCW) biased; this counters the tumbling (signal-on) signal sent by the repellent, 
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and resets cellular behavior to that of a random-walk. Thus, receptor methylation 

establishes a bacterial short-term memory (of a few seconds) that keeps a record 

of the stimuli concentration (Berg et al., 1975). By continually resetting the 

behavior to a random walk, small changes in stimuli can be monitored over a 

large range of concentrations (Macnab et al., 1972, Hazelbauer et al., 2008). 

Notably, P. aeruginosa has an alternative adaptation system that also 

incorporates CheD. Although the role of CheD in P. aeruginosa has not been 

demonstrated, studies on Bacillus subtilis CheD indicate that CheD is involved in 

the deamination of chemoreceptors (Glekas et al., 2012). In B. subtilis this 

increases receptor-mediated kinase activity, but in P. aeruginosa, this decreases 

Aer2-mediated kinase activity.  

 

E. coli Chemotaxis System 

 The chemotaxis system of E. coli is a well-studied chemosensory system 

that serves as a model for signal transduction. The E. coli chemotaxis system 

consists of five transmembrane chemoreceptors (Tsr, Tar, Trg, Tap, and Aer) that 

guide the cells toward optimal concentrations of life-sustaining nutrients and 

energy-generating environments (Fig. 4). The Tar and Tsr receptors are high 

abundance chemoreceptors making up 90% of chemoreceptors in the cell, while 

Trg, Tap, and Aer are low abundance chemoreceptors (Li et al., 2004, Springer et 

al., 1977). E. coli chemoreceptors are homodimers with similar structures. Tsr, 

Tar, Trg, and Tap all contain a periplasmic sensing domain, a TM region that 

anchors the receptor to the inner membrane, a cytoplasmic signal transduction 
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domain known as a HAMP domain, and a kinase control module (see Fig. 1). Tsr 

senses the attractants serine and proton motive force (Clarke et al., 1979, 

Edwards et al., 2006), Tar senses the attractants aspartate and maltose (Clarke 

et al., 1979), Trg senses the attractants ribose, glucose, and galactose (Kondoh 

et al., 1979), whereas Tap senses attractant peptides (Grebe et al., 1998) (Fig. 

4). Aer is different from the other chemoreceptors in that it has a cytoplasmic 

sensor that is an FAD-containing PAS domain (Figs. 4 and 5). Aer is anchored to 

the inner membrane by a TM domain, and is preceded by an F1 domain that 

links the TM domain with the N-terminal PAS domain (Bibikov et al., 1997a, 

Bibikov et al., 2000, Repik et al., 2000b). The HAMP domain is C-terminal to the 

TM domain and is connected to the kinase control module (Fig. 5). Aer is a redox 

detector that indirectly senses O2 by the reduction or oxidation of FAD bound to 

the PAS domain (Rebbapragada et al., 1997b, Bibikov et al., 2000, Edwards et 

al., 2006).  
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Figure 4. The five E. coli chemoreceptors. Serine and aspartate are the only E. coli 
attractants that do not require a binding protein to bind chemoreceptor ligand 
binding sites. Aer is the only E. coli chemoreceptor that infers ligand concentraction 
indirectly and lacks methylation sites. Reversible methylation of specific glutamic 
acid residues on the chemoreceptors is represented by black and white circles. 
Abbreviations: PMF, proton motive force. 

 

 Because the Tsr, Tar, Trg, and Tap receptors are methylated and 

demethylated by the adaptation enzymes CheB and CheR, they are also called 

methyl-accepting chemoreceptors, or MCPs (Grebe et al., 1998). The high 

abundance receptors Tar and Tsr are the only E. coli receptors that have a C-

terminal pentapeptide (NWETF) for binding CheR and CheB (Grebe et al., 1998). 

Thus, E. coli’s low-abundance chemoreceptors are unable to directly bind 

CheR/B (Weerasuriya et al., 1998, Feng et al., 1997). Aer does not have a C-

terminal pentapeptide or an adaptation region with methylatable residues. To 

compensate for this, Aer has a methylation-independent adaptation mechanism 

that has not been convincingly explained (Bibikov et al., 2004, Niwano et al., 

1982). Aer signals may be dampened by the biasing influence of the MCPs, as 
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well as by unknown cellular compensatory changes in cellular redox (Bibikov et 

al., 2004). In order for Trg and Tap to detect minuscule changes in attractants or 

repellents, they need adaptational assistance. Tar and Tsr provide such 

assistance by forming “assistance neighborhoods,” (Hazelbauer et al., 2008). 

Assistance neighborhoods are achieved through trimers of receptor dimers. The 

close proximity of the receptors in the trimer-of-dimers enables CheR and CheB 

to interact with the adaptation region of low-abundance chemoreceptors (Li et al., 

2005). Tar and Tsr contributes to the mobility of CheR within receptor clusters by 

allowing receptors lacking a pentapeptide to be methylated. The methylation 

sites are found within the adaptation region of the kinase control module with a 

sequence of Glu-Glu-X-X-Ala-Ser/Thr, with the second G residue being able to 

be methylated by CheR (Terwilliger et al., 1986). CheR moves through receptor 

clusters like a “gibbon swinging through the branches of a tree” which is known 

as molecular brachiation (Levin et al., 2002). Instead of moving through receptor 

clusters like CheR, the close proximity of the receptor units allows CheB to dock 

onto the pentapeptide of a high abundance receptor, resulting in an increased 

local CheB concentration that enables CheB to demethylate low abundance 

receptors. (Barnakov et al., 1999).  

 

E. coli Aerotaxis 

 Aerotaxis is the movement of microorganisms towards an optimal 

concentration of O2 (Taylor, 1983). Aerotaxis in E. coli is mediated by both the 

Aer and Tsr chemoreceptors (Bibikov et al., 1997a, Rebbapragada et al., 1997a). 
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Aer and Tsr both require the electron transport system (ETS), and detect external 

O2 gradients either via changes in electron transport and redox (Aer) or by 

changes in proton motive force (PMF) (Tsr) (Edwards et al., 2006). In E. coli, a 

substrate specific dehydrogenase accepts electrons from organic matter and 

transfers them onto quinones. The quinones shuttle electrons through the 

membrane, which are then passed to an electron acceptor by a terminal 

reductase (Gennis et al., 1996). As electrons move across the membrane via the 

ETS, protons are translocated to the periplasmic space, which generates an 

electrochemical gradient of protons (PMF) across the membrane (Krulwich et al., 

2011). 
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Figure 5. Comparison of the cellular location and structures of the Aer and Aer2 
chemoreceptors. Aer consists of i) a transmembrane region (TM) that tethers the 
receptor to the inner membrane of the cell, ii) an F1 linker that connects the PAS 
domain to the transmembrane region, iii) a PAS domain with an associated FAD 
cofactor, iv) a HAMP domain, v) proximal signaling domain, and vi) a kinase control 
module. Aer2 consists of: i) three N-terminal and two C-terminal HAMP domains, 
ii) a PAS domain with a b-type heme cofactor, and iii) a kinase control module with 
methylation sites (QEEE) and a C-terminal pentapeptide (GWEEF) for binding 
adaptation enzymes. Abbreviations: TM, transmembrane; FAD, flavin adenine 
dinucleotide.  
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The terminal acceptor of electrons in aerobic respiration is O2. Tsr mediates 

aerotaxis by monitoring changes in PMF while Aer mediates aerotaxis by 

responding to changes in redox (Edwards et al., 2006). Notably, strong Aer 

responses have been linked to redox changes in NADH dehydrogenase I, 

although there is no absolute requirement (Edwards et al., 2006). 

 

P. aeruginosa Chemosensory Systems 

 Unlike E. coli, which has one chemosensory system and five 

chemoreceptors, P. aeruginosa contains four chemosensory systems (gene 

Clusters I-V) and 26 chemoreceptors. The four chemosensory systems include: i) 

the Che system (gene Clusters I and V), which is involved in flagellar-mediated 

chemotaxis (Kato et al., 1999, Masduki et al., 1995), ii) the Che2 system (Cluster 

II), who's function remains to be elucidated (Guvener et al., 2006, Hong et al., 

2004a, Ferrandez et al., 2002), iii) the Wsp system (Cluster III), which regulates 

biofilm formation (Kato et al., 2008, Sampedro et al., 2015), and the Pil-Chp 

system (gene Cluster IV), which regulates pilus-mediated twitching motility 

(Darzins, 1994, Kearns et al., 2001). Although the function of the Che2 system 

remains unknown, it contains a set of genes (cheY2, A2, W2, R2, B2, D) whose 

products are expressed in stationary phase and are held together by the Che2 

chemoreceptor, Aer2 (also known as McpB), at the cell pole (Guvener et al., 

2006, Hong et al., 2005, Schuster et al., 2004). With the exception of CheD, the 

Che2 system proteins CheY2, CheA2, CheW2, CheR2, and CheB2 are 

homologs of the E. coli chemotaxis proteins (Fig. 6).  
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 The kinase control module of P. aeruginosa Aer2 is predicted to have four 

methylation sites (QEEE) and a C-terminal pentapeptide (GWEEF) (Fig. 5) 

(Watts et al., 2011b). The Aer2 C-terminal pentapeptide sequence is speculated 

to bind the Che2 adaptation enzymes CheD, CheB2 and CheR2, which catalyze 

Aer2 deamidation, demethylation and methylation, respectively. The 

methyltransferase CheR2 has been shown to specifically methylate Aer2 

(Garcia-Fontana et al., 2014).The Che2 proteins do not interact with Che 

(chemotaxis) proteins, suggesting that the Che2 proteins form different signal 

transduction complexes (Guvener et al., 2006).  

 Aer2 is a cytoplasmic receptor (Fig. 5) that was initially reported to be an 

aerotaxis receptor, but no aerotaxis response has been confirmed (Guvener et 

al., 2006, Watts et al., 2011b, Ferrandez et al., 2002). The PAS sensing domain 

of Aer2 binds b-type heme, and the receptor can both bind and respond to oxy-

gases like O2, carbon monoxide (CO) and nitroc oxide (NO) (Watts et al., 2011b). 

Interestingly, CheB2, which demethylates Aer2, is crucial to the virulence of P. 

aeruginosa in both a Caenorhabditis elegans infection model and a mouse lung 

infection model (Garvis et al., 2009). Specifically, a deletion in CheB2 lowered 

the pathogenesis of P. aeruginosa. Thus, Aer2 may alter the virulence and in vivo 

survival of P. aeruginosa.  
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Figure 6. The Aer2 receptor and its associated Che2 proteins. The Che2 proteins 
CheR2, CheD, and CheB2 bind to the C-terminal pentapeptide sequence of Aer2 
(GWEEF) for additional modification of specific glutamine and glutamic acid 
residues (QEEE). CheW2 docks CheA2 to the receptor. CheA2 transfers ATP-
derived phosphate to CheY2. Phosphorylated CheY2 leads to a cellular response 
that remains to be elucidated. Abbreviations: SAM, S-adenosyl methionine. 
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PAS Domains: Signal Input Domains 

 Chemoreceptors sense chemoeffectors via their signal input domain. One 

signal input domain in chemoreceptors is the PAS (Per-Arnt-Sim) domain. The 

PAS acronym was created for the first three proteins in which PAS domains were 

discovered: a sensory protein in the fly clock protein Period (PER, involved in 

circadian rhythms) (Crews et al., 1988), the mammalian transcription factor Aryl-

hydrocarbon receptor nuclear translocator protein (ARNT, which participates in 

the activation of the xenobiotic response) (Hoffman et al., 1991), and the Single-

minded protein in insects (SIM, involved in cell fate determination) (Crews et al., 

1988). Currently, ~99,300 PAS domain containing proteins have been discovered 

in archaea, bacteria, eukaryotes, and viruses (http://smart.embl-heidelberg.de). 

PAS domains function as initiators of cellular signaling responses by monitoring 

changes in light, redox potential, gas molecules, small ligands, or the overall 

energy of the cell. PAS domains have been found in proteins such as 

transcriptional activators, histidine kinase sensor proteins, photoreceptors, clock 

proteins, and ion channels (Taylor et al., 1999). 

 

PAS Domains have a Conserved Structure 

 The prototype for the three-dimensional fold of the PAS domain superfamily 

is based on the crystal structures of five proteins: i) the full length photoactive 

yellow protein (PYP) of Halorhodospira halophila (Brudler et al., 2000), ii) the 

heme domain of the FixL proteins from Bradyrhizobium japonicum (BjFixL) (Gong 

et al., 2000, Gong et al., 1998, Hao et al., 2002) and Rhizobium meliloti (RmFixL) 
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(Miyatake et al., 2000), iii) the N-terminal domain of the human ether-a-go-go 

related gene (hERG) voltage-dependent potassium channel (Morais Cabral et al., 

1998), and iv) the flavin mononucleotide (FMN) containing LOV2 domain from 

the plant blue-light receptor phy3 (Crosson et al., 2001). Structural  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Aer PAS domain model based on the structure of Azotobacter vinelandii 
NifL [pdb 2GJ3, (Key et al., 2007)]. D-helices in purple, β-strands in green, loops 
in grey, and FAD in yellow. 
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comparisons of resolved PAS domains reveal a conserved three-dimensional 

PAS fold that consists of: i) a β-scaffold that is comprised of five antiparallel β-

strands, denoted Aβ, Bβ, Gβ, Hβ, and Iβ, and are in the topological order B-A-I-

H-G or 2-1-5-4-3, ii) α-helices, denoted Cα, Dα, Eα, and Fα, that flank the β-

sheet, iii) and a helical linker that connects the PAS core to the β-scaffold 

(Moglich et al., 2009b, Taylor et al., 1999) (Fig. 7). The PAS core creates a 

hydrophobic pocket on the β-sheet within which ligand or cofactor binding can 

occur. The PAS domain structure can be visualized as a left-handed glove. PAS 

domains can also have an N-terminal cap (N-cap) that is a helical lariat (helix-

turn-helix) that is necessary for the stability and/or signaling of the PAS domain 

(Watts et al., 2006b, Ke et al., 2014). 

 

PAS Domains Bind Diverse Cofactors and Ligands 

 Sequence alignments of PAS domains reveal variations in the structure and 

length of the PAS core region (Zhulin et al., 1997, Zhulin & Taylor, 1998). These 

variations give PAS domains the ability to bind a wide range of ligands or 

cofactors (Moglich et al., 2009b) (Fig. 8). PAS domains can have cofactors that 

act as sensors through cofactor modifications; for example, (FAD) in the Aer PAS 

domain is oxidized and reduced (Rebbapragada et al., 1997a, Bibikov et al., 

1997a). PAS domains can also act as sensors through cofactors that bind 

ligands; for example, heme in the Aer2 PAS domain senses the binding of oxy-

gases (Sawai et al., 2012, Watts et al., 2011b). Some PAS domains sense via the 

direct binding of ligands; for example, the PAS domain of the citrate sensor, CitA, 
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senses the binding of its ligand citrate (Reinelt et al., 2003). However, many PAS 

domains do not bind ligands or cofactors and are instead involved in signal 

transduction and protein-protein interactions (Lindebro et al., 1995).  

 

 

Figure 8. PAS domains accommodate diverse cofactors. The cofactors shown in 
this figure are FMN (green) from Adiantum Phy3 LOV2 PAS, heme (red) from 
Sinorhizobium FixL PAS, 4-hydroxycinnamic acid (yellow) from Halorhodospira 
PYP PAS, citrate (purple) from Klebsiella CitA PAS, and FAD (orange) from 
Azotobacter NifL PAS. Figure kindly provided by Dr. Sean Crosson, University of 
Chicago.  

 

PAS Domain Localization 

 In bacterial proteins, PAS domains can be found in the cytoplasm, 

periplasm, or extracytoplasmic locations (Henry et al., 2011). However, 

classifying extracytoplasmic PAS domains remains controversial due to slight 
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differences in their structure. Being localized in diverse places allows PAS 

proteins to sense changes in intracellular or extracellular environments. 

Approximately one third of PAS proteins contain multiple PAS domains (Henry et 

al., 2011). Multiple PAS domains in a chemoreceptor can function as signal 

sensors or serve as linkers to an effector region, another PAS domain, or to a 

signaling domain (Little et al., 2012). An example of a protein with multiple PAS 

domains is plant phytochrome B. This photochrome contains one PAS domain in 

the N-terminus and one in the C-terminus of the protein. The N-terminal PAS 

domain is involved in light sensing (Oka et al., 2008), whereas the C-terminal 

PAS domain provides a nuclear localization signal where it is involved in 

photoregulation of gene expression (Ni et al., 1999). 

 

PAS Domain Signaling Mechanisms 

 The signaling mechanisms used by PAS domains are thought to be 

conserved among PAS domains. In general, PAS sensing domains sense a 

stimulus and undergo global conformational changes in order to accommodate 

and stabilize the ligand or cofactor modification (Rajagopal et al., 2003, Key et 

al., 2005). The conformational changes usually propagate to the E-sheet, and are 

ultimately transmitted to other modules or domains (Moglich et al., 2009b). The 

transmission of the conformational changes acts as a signal to activate the 

receptor and elicit a response to the stimulus. 
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Aer PAS Domain  

Aer Binds FAD and Indirectly Senses O2 

 The acronym for the aerotaxis receptor, Aer, stands for air, energy, and 

redox. Aer guides E. coli cells to O2 and energy rich niches. The Aer PAS domain 

senses redox changes via its non-covalently bound FAD cofactor (Bibikov et al., 

1997a, Rebbapragada et al., 1997b, Edwards et al., 2006). In PAS domains that 

contain FAD as a cofactor, the FAD is involved in sensing cellular redox and 

energy. The Azotobacter vinelandii NifL (AvNifL) PAS domain was the first FAD-

bound PAS structure to be resolved (Key et al., 2007). More recently, the crystal 

structure of the PAS-FAD domain from Methylococcus capsulatus MmoS was 

likewise solved (Ukaegbu et al., 2009a). Despite the fact that the PAS structure 

of Aer has not yet been resolved, a series of conserved residues between Aer, 

NifL, and MmoS provide insight into possible Aer PAS residue interaction with 

FAD and signal transduction from FAD to the E-scaffold of the PAS domain. 

 

Aer PAS Structure 

 The crystal structure of NifL and sequence similarities between the PAS 

domains of NifL and Aer has allowed a homology model to be created for the Aer 

PAS domain (Fig. 7). Based on this structural model, and sequence similarities 

between the Aer, NifL, and MmoS PAS domains, critical residues for FAD binding 

and signaling have been proposed. For Aer, this includes residues that bind FAD 

such as Asn85 (equivalent to NifL-N102 and MmoS-N164), which hydrogen 

bonds to the N3 and O4 atoms of the isoalloxazine ring of FAD (Zoltowski et al., 
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2007, Key et al., 2007, Ukaegbu et al., 2009a), and Trp70 (equivalent to NifL-

W87 and MmoS-W149), which forms stacking interactions with FAD and is used 

to predict whether a PAS domain binds FAD (Xie et al., 2010, Key et al., 2007, 

Ukaegbu et al., 2009b). The residues that contact the isoalloxazine ring of FAD 

such as Arg57, His58, Asp60, and Asp68 are proposed to not only bind FAD, but 

participate in converting the redox state of FAD into conformational changes 

within the PAS domain (Repik et al., 2000b). 

 

Different States of FAD and the Aer Output Response 

 It is unknown how the FAD bound to Aer is reduced, but there are two 

possible scenarios in which a redox change could occur. The first possibility is 

that the Aer PAS domain is reduced by a cytoplasmic electron donor such as 

NADH. The second possibility is that the Aer PAS domain is reduced via direct 

interactions with the ETS (Edwards et al., 2006). It is theoretically possible that 

the Aer FAD cofactor has three different redox states: an oxidized or quinone 

(FAD) state that occurs during starvation or high O2 concentrations, ii) a 

semiquinone (FADH·) state which occurs when there is an electron donor and an 

electron acceptor such as O2, and iii) a hydroquinone (FADH2) state that occurs 

in anaerobic conditions (Fig. 9) (Repik et al., 2000b). In one proposed model, the 

oxidized and fully reduced state of FAD renders the receptor kinase-on, which 

activates CheA; this results in CW flagellar rotation, causing cells to tumble (Fig. 

3). The semiquinone state of FAD favors a kinase-off receptor leading to the 

inactivation of CheA, which results in CCW flagellar rotation and smooth 



 

26 

swimming. The three state model was used to explain why E. coli mutants with 

wild-type behavior were signal-off in response to increased O2 levels, whereas an 

Aer-Y111C mutant had an inverted signal-on response (Repik et al., 2000a). The 

Tyr111 side chain projects into the FAD pocket and might alter the redox potential 

of the FAD cofactor so that it is fully oxidized during maximal electron transport. 

Recently, the existence of the quinone and semiquinone states of the Aer FAD 

cofactor were biochemically confirmed in vitro (Fig. 9) (Samanta et al., 2016); 

they were kinase-on and kinase-off respectively. However, the authors could not 

fully reduce Aer-FAD to the hydroquinone state, even though it must be formed in 

vivo. This conclusion is based on the fact that the in vivo receptor cycles between 

the kinase-off state aerobically (consistent with the semiquinone, not the quinone 

state), and the kinase-on state anaerobically (further reduction from the 

semiquinone state). Thus, other in vivo factors are most likely necessary to 

stabilize the fully reduced state of FAD. 

 

 

Figure 9. The different possible states of FAD in the Aer PAS domain. The quinone 
(FAD) and semiquinone (FAD·−/ FADH·) state of FAD have been biochemically 
confirmed to exist in Aer in vitro. The hydroquinone state (FADH−/FADH2) has not 
been confirmed (Samanta et al., 2016).  
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Aer PAS Signaling Mechanism  

In the Aer PAS domain, changes between the different redox states of 

FAD cause conformational changes. It is proposed that in the absence of O2, 

FAD is in the hydroquinone state and the hydrogen bond network surrounding 

the FAD pocket is reorganized to allow a conformational signal to be propagated 

to the Aβ, Iβ, and Hβ strands that are located directly behind the FAD pocket 

(Key et al., 2007, Zoltowski et al., 2007). Genetic, biochemical, and behavioral 

studies have supported a role for the N-terminal (N-cap) helix in signaling (Watts 

et al., 2006b). A similar N-cap displacement that is proposed for Aer is seen in 

PYP (Pellequer et al., 1998), and in the LOV2 protein (Harper et al., 2003), 

where a C-terminal helix displacement is involved in PAS signal transmission. In 

Aer, signal-on lesions have been discovered on the PAS Hβ and Iβ strands 

(Campbell et al., 2010). Residues within the signal-on cluster could be 

crosslinked to the downstream HAMP domain, which transduces signals from the 

PAS domain to the kinase control module (Campbell et al., 2010). This suggests 

that the PAS β-scaffold is the site that communicates with the downstream 

regions of Aer. 

 

Aer2 PAS Domain  

Aer2 PAS Cofactor and Ligand 

PAS domains that bind b-type heme are most often O2 sensors. Two well-

known b-type heme binding PAS domains are found in the FixL protein from 

Bradyrhizobium japonicum (BjFixL) and the E. coli direct O2 sensor DOS 



 

28 

(EcDos). FixL is a signal-transducing protein that shuts down nitrogen fixation in 

response to the presence of O2. DOS senses O2 availability within biofilms and 

catalyzes the conversion of cyclic-di-GMP to linear di-GMP when there is an 

increase in O2 (Shimizu, 2013), resulting in the repression of genes involved in 

biofilm formation (Tuckerman et al., 2009). The PAS domain of Aer2 binds b-type 

heme (Fig. 10) and detects O2, CO and NO (Watts et al., 2011b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Structure of the Aer2 PAS domain [with cyanomet heme; pdb 3VOL, 
(Sawai et al., 2012)]. D-helices in purple, β-strands in green, loops in grey, and 
heme in red. 

 

Aer2 PAS Structure 

Two crystal structures have been solved for the Aer2 PAS domain. One of 
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the structures is ligand-bound [cyanomet (Fe3+- CN), Fig. 10] and the other is 

unliganded [ferric (Fe3+)] (Fig. 11) (Sawai et al., 2012, Airola et al., 2013a). The 

composition of the Aer2 PAS domain is somewhat unique compared with other 

PAS-heme domains. Unlike FixL or DOS, structures of the Aer2 PAS domain 

revealed an extended Cα/Dα helix and a short 310 helix called Eƞ in place of the 

ED helix (Fig. 10). The heme-binding pocket of Aer2 is a hydrophobic cavity 

surrounded by several helices. Although the Aer2 PAS domain has unique 

features, it also shares similar structural features with the Aer PAS domain, e.g., 

a PAS β-scaffold that is predicted to relay signals from PAS to the downstream 

domains of the receptor.  

 

Aer2 PAS Heme Coordination 

Heme coordination in PAS domains can be penta-coordinate (five 

coordinate bonds to the heme iron) or hexa-coordinate (six coordinate bonds to 

the heme iron) (Table 1). Heme coordination usually involves endogenous axial 

ligands such as a proximal coordinating residue for penta-coordinated heme or 

proximal and distal coordinating residues for hexa-coordinated heme. Heme 

coordination usually involves a conserved histidine or cysteine residue (Rao et 

al., 2011). In the reduced state of Aer2, the heme is penta-coordinate (Watts et 

al., 2011b). In DOS and FixL, a histidine residue on the PAS Fα helix coordinates 

heme-binding, and the same histidine is conserved in Aer2 (His239). However, in  
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Table 1. PAS domains with b-type heme. 
 

Protein Coordinating 
Residue 

Gas Sensed Coordination 
of Reduced 

Heme 

O2-
Stabilizing 

Residue 

Proximal Distal 

Aer2 Eη His  N/A O2 Penta-coordinate Iβ Trp  

FixL Fα His  N/A O2 Penta-coordinate Gβ Arg 

PDEA-1 
Fα His  

N/A O2 Penta-coordinate 
Gβ Arg 

DOS 
Fα His  

FG loop Met O2 Hexa-coordinate 
Gβ Arg 

RcoM 
Fα His 

FG loop Met CO Hexa-coordinate N/A 

NPAS2-A Cα loop
His  

Gβ His/Cysb CO Hexa-coordinate N/A 

YybT N/A N/A NO N/A N/A 

BdlA 
PAS-A 

N/A N/A NO N/A N/A 

 
aData collected from (Gilles-Gonzalez et al., 1994, Delgado-Nixon et al., 2000b, 
Chang et al., 2001, Gonzalez et al., 2002, Kerby et al., 2008, He et al., 2009, Airola 
et al., 2010a, Rao et al., 2011, Watts et al., 2011b, Petrova & Sauer, 2012, Sawai 
et al., 2012, Uchida et al., 2012, Airola et al., 2013a). 

bThe distal coordinating residue for NPAS2-A is His in the ferrous state and Cys 
in the ferric state.  

 

contrast to DOS and FixL, Aer2 PAS structures revealed a possible heme-

coordinating residue on the short Eƞ helix (His234). There are several PAS 

domains that coordinate b-type heme differently to that of DOS and FixL (Table 

1). The heme binding PAS domain of the YybT family of proteins lack a potential 
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proximal ligand for heme coordination and are proposed to coordinate b-type 

heme via bulky hydrophobic residues in the heme pocket (Rao et al., 2011). 

Thus, an uncommon heme-binding mode exists for PAS domains besides the 

canonical heme-binding PAS domains of DOS and FixL. 

 

Aer2 PAS O2 Stabilization and Signaling 

Overlaying the two Aer2-PAS structures revealed two highly conserved 

residues, Leu264 and Trp283, that appear to change orientations between 

liganded and unliganded PAS (Fig. 11). These residues are proposed to be 

involved in both ligand binding and PAS signaling (Airola et al., 2013a, Sawai et 

al., 2012). In the ligand bound state, Leu264 on the Hβ-strand is suspended over 

the heme, occupying the position where ligand will bind. Upon ligand binding, 

Leu264 shifts away from the heme, and Trp283 on Iβ rotates 90° to stabilize O2 

by forming a hydrogen bond. The suggestion that Trp283 stabilizes O2 is 

completely novel to heme-binding PAS domains, as well as to non-PAS 

containing heme proteins. Other amino acids have been shown to stabilize O2 in 

heme-binding PAS domains. For example, DOS and FixL use an arginine 

residue on FD to stabilize O2 (Table 1). Some non-PAS containing heme proteins 

including both the truncated hemoglobin (HbN) and DosT of Mycobacterium 

tuberculosis, as well as hemoglobin (Hb) of Ascaris suum, stabilize O2 with a 

distal tyrosine residue (Huang et al., 1996, Yeh et al., 2000). In the vertebrate 

Hbs and myoglobin (Mb), a distal histidine residue stabilizes O2 binding 

(Martinkova et al., 2013). 
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HAMP domains: Signal Transducer Domains 

In chemoreceptors, PAS domains often interact with a signal transducer 

known as a HAMP domain (Aravind et al., 1999, Williams et al., 1999). The 

HAMP acronym stands for Histidine kinases, Adenylate cyclases, Methyl 

accepting proteins of chemotaxis, and Phosphatases (Williams & Stewart, 1999, 

Aravind & Ponting, 1999), which were the first protein types discovered to contain 

HAMP domains. HAMP domains have been identified in ~93,500 proteins from 

bacteria, archaea and lower eukaryotes (http://smart.embl-heidelberg.de), where 

they mediate signal transduction between signal input and output domains.  

 

 

Figure 11. Overlay of unliganded (ferric heme, yellow) and liganded (cyanomet, 
grey) Aer2 PAS structures demonstrating a global conformational change with 
Trp283 rotating 90° for ligand stabilization and Leu264 moving away from the heme 
iron (Sawai et al., 2012, Airola et al., 2013a). 
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HAMP Structure 

The first HAMP structure was solved for the Archaeoglobus fulgidus 

Af1503 protein (Hulko et al., 2006). HAMP monomers contain two amphipathic α-

helices (AS1 and AS2) that dimerize to form a parallel four-helix bundle (Fig. 12). 

HAMP domains can be classified into canonical or divergent groups according to 

their structure (Dunin-Horkawicz et al., 2010). The canonical HAMP group 

includes Aer and consists of a coiled coil structure with a DExG capping motif. 

The DExG motif is located at the beginning of AS2 and is required for receiving 

signals from the TM region (Dunin-Horkawicz et al., 2010). In contrast, HAMP 

domains from the divergent HAMP group, like those in Aer2, contain glycine 

residues at the end of the AS1 helix and at the start of the AS2 helix (Dunin-

Horkawicz et al., 2010). These conserved glycine residues enable HAMP 

domains to associate and interact with each other as exemplified by 

Debaryomyces hansenii Nik1 (DhNik1) histidine kinase, which has nine 

successive HAMP domains (Meena et al., 2010, Airola et al., 2010d). In proteins 

where there are successive HAMP domains, the HAMP domain that is proximal 

to the membrane is usually from the canonical group and the distal ones are from 

the divergent group (Natarajan et al., 2014). 

 

HAMP Signaling Mechanism 

In membrane-bound chemoreceptors whose signal input domains are 

periplasmic (Fig. 1), a conformational change is transduced through the TM 

domain to cause a change in HAMP structure, thus allowing the signal from the 
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periplasm to be delivered to the output domain (Falke et al., 2001). Biochemical 

and structural studies of HAMP domains from different proteins suggest that 

different signal transduction mechanisms may occur in HAMP domains. Models 

proposing how the on and off states of the receptor alter the dynamics and 

conformation of HAMP domains include: i) the gear-box model in which the 

signaling state depends on rotation of the helices (Hulko et al., 2006), ii) scissors-

like movement of the helices (Swain et al., 2007), iii) tilting with rotation of the 

helices (Airola et al., 2013b, Matamouros et al., 2015), and iv) a biphasic static-

dynamic signaling model in which the signaling state depends on four-helix 

bundle stability (Zhou et al., 2009). In chemoreceptors, the signaling state of the 

HAMP domain is transmitted to the kinase control module where it modulates the 

phosphorylation of bound CheA (Fig. 3). 

  

 

 

 

 

 

 
Figure 12. Model of the Aer HAMP domain based on the structure of Af1503 HAMP 
[pdb 2L7H, (Hulko et al., 2006)]. The HAMP dimer is a parallel four-helix bundle 
with two amphipathic α-helices labeled AS-1 and AS-2 that are linked by a 
connector. 
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Aer and Aer2 HAMP Domains 

Aer and Aer2 HAMP Structure 

The HAMP domains of Aer and Aer2 differ in structure and number. Aer 

contains one canonical HAMP domain that follows the second transmembrane 

helix (Fig. 5). Although crystal structures have not been solved for the Aer HAMP 

domain, biochemical studies and in silico HAMP modeling indicate that the 

structure of the Aer HAMP domain is a four-helix bundle that is similar to the 

structure of Af1503-HAMP (Watts et al., 2008, Hulko et al., 2006) (Fig. 12). The 

Aer HAMP domain is also crucial for the folding and stability of the Aer PAS 

domain (Herrmann et al., 2004, Ma et al., 2005). 

 Aer2 contains three N-terminal HAMP domains (HAMP 1 through HAMP 

3) and two C-terminal HAMP domains (HAMP 4 and HAMP 5)  (Fig. 5) (Watts et 

al., 2011a). Crystal structures of the three N-terminal HAMP domains revealed 

that HAMP 1 and HAMP 2 are separated by a helical linker, whereas HAMP 2 

and 3 form an integrated di-HAMP structure (Airola et al., 2010c). The HAMP 1 

and HAMP 3 domains are structurally similar to Af1503-HAMP and appear to 

represent the structure of the signal-on state (Airola et al., 2013a). HAMP 2 has 

an unusual trapezoidal four-helix bundle that represents the signal-off state 

(Airola et al., 2010c, Airola et al., 2013a). HAMP 4 and 5 share sequence 

similarities with HAMP 2 and 3, suggesting that they are likewise an integrated di-

HAMP unit (Watts et al., 2011b). In Aer2, the HAMP 4-5 unit precedes the kinase 

control module (Fig. 5). Unlike Aer, the HAMP domains of Aer2 are not needed 

for proper PAS folding and do not alter the heme environment (Airola et al., 
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2013a).  

 The localization of the HAMP domains with respect to the PAS domain 

differs between Aer and Aer2. The Aer PAS domain is separated from HAMP by 

the intervening F1 and transmembrane domains (Fig. 5). In contrast, the Aer2 

PAS domain is sandwiched between the three N-terminal and two C-terminal 

HAMP domains in a linear arrangement (Fig. 5). However, in both receptors, 

PAS sensing affects the structure of the C-terminal HAMP domain/s.  

 

Aer and Aer2 PAS-HAMP Signaling Mechanisms 

Aer Signaling Mechanism 

Differences in the architectures of Aer and Aer2 may provide insight into 

different signaling mechanisms between PAS and HAMP domains. In Aer, 

signaling is initiated by the reduction of the PAS-FAD cofactor in the absence of 

O2 (Bibikov et al., 1997b, Bibikov et al., 2000, Repik et al., 2000b). The PAS 

domain then undergoes a global conformational change involving movement of 

the N-cap, FAD binding cleft, and β-scaffold (Campbell et al., 2011). This results 

in a proposed lateral signaling mechanism involving residues on the β-scaffold 

and HAMP residues on the AS2 helix (Watts et al., 2004b, Ma et al., 2005, 

Campbell et al., 2010). In the signal-on state, the HAMP domain undergoes a 

conformational change that propagates to the kinase control module. In turn, 

CheA transfers a phosphate group from ATP to CheY. Phosphorylated CheY 

diffuses and binds to the flagella motor switch protein, FliM, resulting in a change 

in flagellar rotation from CCW to CW. This change in flagella rotation allows the 
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cell to move away from the anaerobic environment and seek an aerobic 

environment. 

 

Aer2 Signaling Mechanism 

Aer signaling is inhibited by the presence of O2, whereas Aer2 signaling is 

activated by O2. The signaling mechanism of Aer2 is also different in that PAS 

and HAMP interactions involve a linear pathway with limited PAS-HAMP 

interaction (Fig. 5). In Aer2, an oxy-gas directly binds to the PAS heme cofactor 

(Watts et al., 2011b). Just like the PAS domain of Aer, the PAS domain of Aer2 

undergoes a global conformational change that propagates from the ligand 

binding cleft to the β-scaffold (Airola et al., 2013a). Ligand binding may also 

cause the PAS domain to transition from a dimer to a monomer (Airola et al., 

2013a). These PAS rearrangements allow the PAS domain to relay signals from 

the C-terminal DxT motif to the AS1 helix of HAMP 4. Once the signal is received 

by HAMP 4 and 5, it is then relayed to the kinase control module. The multiple 

HAMP domains of Aer2 have distinct roles when it comes to signal transduction. 

The role of HAMP 4 and 5 is to override the kinase-on state of the kinase control 

module (Watts et al., 2011b). In the presence of PAS ligand, HAMP 4 and 5 no 

longer inhibits the kinase control module, resulting in a signal-on output. In 

contrast, HAMP 2 and 3 do not directly transmit signals, but alter their 

conformations to allow conformational changes of the PAS domain upon ligand 

binding (Watts et al., 2011b, Airola et al., 2013a). In the presence of O2, the 

kinase control module of Aer2 increases the rate of CheA2 phosphorylation, with 
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subsequent phospho-transfer to CheY2. The output response of phosphorylated 

CheY2 has not yet been elucidated.  

 

Purpose and Approach of this Dissertation 

Studies on PAS domain sensing and signaling in chemoreceptors have 

been limited due to the difficulty of working in vitro with unstable membrane 

bound chemoreceptors like Aer. Therefore, molecular studies on Aer have 

required in vivo analyses. However, studies on the soluble Aer2 receptor 

overcome such limitations and also provide novel insights into PAS signaling 

mechanisms. The FAD-binding PAS domain of Aer is separated from its HAMP 

domain by a membrane anchor, while the heme-binding PAS domain of Aer2 is 

sandwiched between five HAMP domains. Due to their different domain 

arrangements, I propose that Aer utilizes a lateral PAS-HAMP signaling 

mechanism while the Aer2 receptor utilizes a linear PAS-HAMP signaling 

mechanism. In addition, since the PAS domains of Aer and Aer2 have related 

structure, I hypothesized that both PAS domains use similar signaling 

mechanisms involving residues on the β-scaffold to relay ligand binding to the 

HAMP domain.  

 The aim of the work in this dissertation is to define the PAS signaling 

mechanisms used by Aer and Aer2. To achieve this goal, I performed 

mutagenesis, biochemical and behavioral assays; to identifed PAS residues that 

are critical for lateral PAS-HAMP signaling in Aer, and characterized conserved 

residues that are needed for linear PAS-HAMP signaling in Aer2.  
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This manuscript is based on experimental data acquired by  Dr. Watts and 

myself. My contributions to this manuscript are listed below. 

1) I mapped the accessibility of the PAS domain. I substituted 59 PAS 

residues with cysteine by site-directed mutagenesis. These residues were 

predicted to have surface-exposed side-chains (57 residues) or internal-

facing side-chains (2 residues). The two interior residues (Ala97 and 

Ser113) served as inaccessible controls. The Cys codons were confirmed 

by DNA sequencing. The aerotaxis phenotypes of the Cys mutants were 

determined by measuring their expansion rates and ring formation in 

minimal soft agar plates. I then determined the accessibility of each PAS 

Cys mutant after permeabilizing cells with toluene/ethanol and treating 

with methoxypolyethylene glycol-maleimide 5000 PEG-mal. Aer and Aer 

PEG-mal adducts were analyzed by Western blot using anti-Aer2-166 

antisera. Cys mutants that reacted with PEG-mal were identified by an 

~10kDa size increase on SDS-PAGE. I determined the extent of 

pegylation for each mutant by calculating the average PEGylation of the 

native sample and dividing it by the average PEGylation of the denatured 

samples.  

2) I revealed possible PAS-HAMP interaction surfaces. I identified PAS-

PAS’ and PAS-HAMP interacting surfaces in vivo. To determine PAS-

PAS’ interaction surfaces, each of the PAS Cys mutants were crosslinked 

in vivo using copper phenanthroline (CuPhe). Crosslinked dimers were 

identified by their migration on Western blots using anti-Aer2-166  antisera.  
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PAS-PAS’ interaction surfaces were determined to be inter-dimeric by 

titrating cells with Tar chemoreceptor. To determine PAS-HAMP 

interaction surfaces I created di-Cys mutants by site-directed mutagenesis 

and crosslinked the receptor with CuPhe. Di-Cys combinations that 

crosslinked were retested after adding chloramphenicol to determine if 

crosslinking ocurred during protein folding.  
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Figure 13. Graphical Abstract. Aer-PAS space-filled model overlaying a region of 
kinase-on lesions (within the red line) with residues shown in the current study to 
be either solvent-inaccessible (dotted yellow line), or preferentially crosslinked 
with the HAMP domain (blue).  
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Summary 

The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and 

redox potential via FAD bound to a cytosolic PAS domain. Here we show that 

Aer-PAS controls aerotaxis through direct, lateral interactions with a HAMP 

domain. This contrasts with most chemoreceptors where signals propagate along 

the protein backbone from an N-terminal sensor to HAMP. We mapped the 

interaction surfaces of the Aer PAS, HAMP and proximal signaling domains in 

the kinase-off state by probing the solvent accessibility of 129 cysteine 

substitutions. Inaccessible PAS-HAMP surfaces overlapped with a cluster of PAS 

kinase-on lesions and with cysteine substitutions that crosslinked the PAS β-

scaffold to the HAMP AS-2 helix. A refined Aer PAS-HAMP interaction model is 

presented. Compared to the kinase-off state, the kinase-on state increased the 

accessibility of HAMP residues (apparently relaxing PAS-HAMP interactions), but 

decreased the accessibility of proximal signaling domain residues. These data 

are consistent with an alternating static-dynamic model in which oxidized Aer-

PAS interacts directly with HAMP AS-2, enforcing a static HAMP domain that in 

turn promotes a dynamic proximal signaling domain, resulting in a kinase-off 

output. When PAS-FAD is reduced, PAS interaction with HAMP is relaxed and a 

dynamic HAMP and static proximal signaling domain convey a kinase-on output.  
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Introduction 

Microbial sensory systems include numerous combinations of common 

modular domains, enabling microbes to respond to a remarkable variety of 

environmental stimuli (Zhulin, 2001, Wuichet et al., 2007). This has been likened 

to assembling sensory pathways from ‘Lego®’-like modules (Schultz & 

Natarajan, 2013) that can be arranged into endless possible constructions, each 

maintaining function and a fine-tuned response. One of the best-characterized 

sensory systems is E. coli chemotaxis, where stimuli are integrated to modulate 

flagella rotation via a common phosphorylation cascade (Krell et al., 2011, 

Parkinson et al., 2015, Hazelbauer & Lai, 2010). Chemoreceptors regulate the 

cascade by controlling the autophosphorylation of the histidine kinase, CheA. 

Phospho-CheA in turn phosphorylates the response regulator, CheY, and 

phospho-CheY binds to the flagellar motor, thus altering the direction of flagella 

rotation and changing the direction of bacterial swimming. This is a versatile 

strategy that enables bacteria to collectively respond to numerous and diverse 

stimuli using variations on common mechanisms of intra-protein and inter-protein 

signaling. 

Here we investigate another variation on the chemotaxis paradigm in the 

modular aerotaxis receptor, Aer (Fig. 14A), and examine common signaling 

mechanisms that underlie the different signaling pathways in aerotaxis and 

chemotaxis. The sensor for the aerotaxis receptor is an N-terminal PAS [Per-

Arnt-Sim (Nambu et al., 1991)] domain, which monitors cellular redox potential 

via a flavin adenine dinucleotide (FAD) cofactor [(Rebbapragada et al., 1997a, 
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Bibikov et al., 1997a, Taylor & Zhulin, 1999, Taylor, 2007), Fig. 14B]. PAS-FAD is 

reduced under hypoxic conditions, eliciting a conformational cascade that 

promotes the kinase-on state. We previously showed that the PAS sensor can 

interact directly (Campbell et al., 2010) with the Aer HAMP domain [HAMP is 

found in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis 

proteins, phosphatases, diguanylate cyclases and phosphodiesterases (Aravind 

& Ponting, 1999, Dunin-Horkawicz & Lupas, 2010)]. From that study and 

previous work we postulated that PAS modulates HAMP by direct PAS-HAMP 

interactions. 

In Aer, the PAS and HAMP domains are separated by the F1 linker 

(Bibikov et al., 2000, Campbell et al., 2011) and the hairpin membrane anchor 

[(Amin et al., 2006), Fig. 14A]. This intervening sequence is not directly involved 

in signaling, but the F1 linker supports maturation of the PAS and HAMP 

domains (Buron-Barral et al., 2006, Campbell et al., 2011), and the membrane 

anchor localizes Aer with other chemoreceptors (Amin et al., 2006). The proximal 

signaling domain [following HAMP; (Ma et al., 2005), Fig. 14A] corresponds to 

the adaptation region in methyl-accepting chemoreceptors. Although the proximal 

signaling domain has no adaptation function in Aer (Bibikov et al., 2004), it does 

serve a critical role in Aer signaling (Bibikov et al., 2004, Ma et al., 2005, Buron-

Barral et al., 2006b). Lastly, the C-terminal kinase control module controls the 

rate of CheA phosphorylation. Here, each monomer forms antiparallel helices 
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 Figure 14. Models of the aerotaxis receptor, Aer, and the Aer PAS and HAMP 
domains. A. Cartoon of the domain organization of an Aer dimer. The PAS sensing 
domain is proposed to contact the downstream HAMP and proximal signaling 
domains (arrows). B. Aer PAS homology model (res. 5-122) based on the co-
ordinates of the Azotobacter vinelandi NifL PAS domain (Key et al., 2007) showing 
FAD (yellow) and the location of N85 (red spheres), which was substituted with 
serine to generate the kinase-on state of Aer. C. Aer-HAMP dimer model (res. 204-
258) based on the co-ordinates of the Archaeoglobus fulgidus Af1503 HAMP 
domain (Hulko et al., 2006). Each monomer is composed of two helices, AS-1 and 
AS-2, which are separated by a non-helical connector and arranged as a parallel 
four-helix bundle. Helical positions ‘a’ through ‘g’, and their proposed arrangement 
in the bundle are indicated. Abbreviations: FAD, flavin adenine dinucleotide; AS, 
amphipathic sequence.  
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with a U-turn at the tip, and together the two monomers form a long, supercoiled, 

four-helix bundle that extends into the proximal signaling domain (Fig. 14A). 

 In E. coli chemoreceptors, the HAMP domain is positioned in the cytosol 

between the cytoplasmic membrane and the kinase control module. Here it acts 

as a central processing unit, receiving input from an N-terminal sensor domain 

and relaying this information to the C-terminal kinase control domain (Parkinson, 

2010). Each HAMP monomer is made up of two amphipathic α-helices (AS-1 and 

AS-2) (Butler & Falke, 1998, Watts et al., 2008), and two HAMP monomers fold 

into a parallel four-helix coiled-coil [(Hulko et al., 2006, Airola et al., 2010b, Wang 

et al., 2013, Mechaly et al., 2014, Watts et al., 2011a, Swain & Falke, 2007), Fig. 

14C]. Our studies on Aer have shown that signals received by HAMP domains 

can be of two types. In many chemoreceptors, the HAMP domain is controlled by 

a periplasmic sensor domain, which transmits signals through the membrane to 

the HAMP domain [reviewed by (Parkinson, 2010)]; but in the aerotaxis receptor, 

Aer, the HAMP domain is controlled via direct lateral interactions with the 

cytosolic PAS sensing domain [(Herrmann et al., 2004, Watts et al., 2006a, Watts 

et al., 2004a, Ma et al., 2005, Buron-Barral et al., 2006b, Campbell et al., 2010), 

Fig. 14A]. HAMP domains are therefore able to convert two disparate 

conformational inputs into similar output controls. 

 Models to explain HAMP signaling range from those with static kinase-on 

and kinase-off conformations, such as the gearbox rotation model (Hulko et al., 

2006, Ferris et al., 2011, Mondejar et al., 2012), helix tilting models (Swain & 

Falke, 2007, Watts et al., 2011a), and combined helix rotation with tilting models 
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(Airola et al., 2010b, Wang et al., 2012), to a biphasic static-dynamic signaling 

model in which the signaling state depends on the structural stability of the 

HAMP four-helix bundle (Zhou et al., 2009, Zhou et al., 2011, Airola et al., 2013c, 

Ames et al., 2014, Lai & Parkinson, 2014, Klose et al., 2014). In the static-

dynamic signaling model, the kinase-off conformation of the receptor is 

associated with stable HAMP packing, in contrast to the kinase-on conformation, 

which is associated with a more dynamic HAMP bundle. A loosely packed HAMP 

domain (the kinase-on state) appears to be associated with a tightly packed 

adaptation region in methyl-accepting chemoreceptors (regionally equivalent to 

the Aer proximal signaling domain), causing a concomitant destabilization of the 

distal kinase control region (the protein-interaction region; Fig. 14A) and 

subsequent phosphorylation of CheA (Swain et al., 2009, Parkinson, 2010, Zhou 

et al., 2011, Falke & Piasta, 2014). 

  In this study, we investigate the signaling pathway from the PAS domain 

to the HAMP and proximal signaling domains of Aer. Several previous studies 

argued for direct signaling from the PAS to the HAMP domain: i) HAMP AS-2 is 

required for PAS folding and for PAS FAD-binding (Herrmann et al., 2004, 

Bibikov et al., 2000, Ma et al., 2005, Buron-Barral et al., 2006b), ii) PAS-N34D is 

an allele-specific suppressor of HAMP-C253R, implying close proximity between 

PAS-N34 and AS-2-C253 (Watts et al., 2004a), and iii) specific cysteine 

substitutions in the PAS β-scaffold crosslink with a cysteine substitution in the 

HAMP domain, confirming close proximity of the PAS β-scaffold and HAMP 

domain (Campbell et al., 2010). Here, we extend previous studies by defining the 
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interacting surfaces of the Aer PAS, HAMP and proximal signaling domains. We 

first map the in vivo solvent accessibility of residues in these regions to identify 

hidden (contact) surfaces, and use cysteine crosslinking to uncover the 

orientation between the PAS and HAMP domains. We compare accessibilities in 

the kinase-on and kinase-off states and find signal-induced changes in the 

HAMP and proximal signaling domains that support the alternating static-

dynamic signaling model. Our results suggest that HAMP domains employ a 

common signaling mechanism that can be modulated by either a lateral or linear 

sensory input. 

 

Results 

Mapping the in vivo Accessibility of Residues in Aer 

We previously showed that under aerobic conditions the PAS and HAMP 

domains of Aer can physically interact (Campbell et al., 2010). Under these 

conditions PAS-FAD remains oxidized and the output is kinase-off. Here, we 

examined the pathway through which the oxidized PAS domain controls the 

HAMP domain and stabilizes the kinase-off state. If PAS-HAMP interactions are 

stable, the contact surfaces should be sequestered and less accessible to 

solvent than non-contact surfaces. To identify putative contact regions on the 

PAS, HAMP and proximal signaling domains, we made single cysteine 

replacements throughout these domains, and then probed each protein under 

aerobic conditions with methoxypolyethylene glycol-maleimide 5000 (PEG-mal). 

PEG-mal is a bulky sulfhydryl-reactive reagent that preferentially reacts with 
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sulfhydryl residues that are accessible to solvent at the protein surface (Lu & 

Deutsch, 2001). The E. coli cells used for these experiments lacked both the Aer 

and Tsr aerotaxis receptors [BT3312 (aer tsr)]. BT3312 cells expressing each 

plasmid-encoded Aer-Cys protein were made permeable to PEG-mal by 

treatment with toluene and ethanol, and then incubated with 5 mM PEG-mal at 

25°C for 15 min (see Experimental Procedures). To measure the PEGylation of 

native samples, reactions were stopped with excess β-mercaptoethanol before 

being boiled in sample buffer. To measure the maximum PEGylation of 

denatured samples, parallel reactions were continued by boiling in sample buffer 

without β-mercaptoethanol. The PEGylated samples were separated by SDS-

PAGE, and a mobility shift of approximately 10 kDa on Western blots readily 

differentiated PEGylated from un-PEGylated Aer [Fig. 15, (Amin et al., 2006)]. 

Under these conditions, the average chemical reactivity relative to denatured 

protein was below 50% and spanned a large dynamic range, ensuring that most 

reactions did not approach completion (compare Figs. 16A and 17B).  

 

Accessibility of HAMP and Proximal Signaling Domain Residues in Aer 

A library with serial cysteine replacements at each of 70 HAMP and 

proximal signaling domain residues was previously constructed [res. 206 to 276], 

and all but three of these cysteine mutants retained function (Watts et al., 2008, 

Amin et al., 2006). In the current study, the extent to which each residue reacted 

with PEG-mal was used as a measure of solvent accessibility (Fig. 16). In the 

first HAMP region, AS-1 (res. 207-223), the PEGylation pattern was inversely 
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related to previously determined disulfide crosslinking results (Watts et al., 2008). 

Thus, PEGylation of the substituted cysteines increased as the extent of 

crosslinking decreased, and vice versa, which is consistent with prior conclusions 

that AS-1 is an α-helix. The most accessible AS-1 residues were located at the ‘c’ 

and ‘f’ positions of a helical wheel, where each position of the heptad repeat was 

designated by the letters a to g (Fig. 16B). In the membrane-proximal end of AS-

1 (res. 206-211), PEGylation ratios were lower than the remainder of AS-1 (res. 

212-223, located within the four-helix bundle) (Fig. 16A). This may be due to a 

local membrane effect, as this region precedes the HAMP four-helix bundle and 

anchors HAMP to the membrane at or near residue 206 (Amin et al., 2006). The 

non-helical HAMP connector, which follows AS-1, generally showed greater 

PEGylation compared to AS-1 (Fig. 16A), but there was no discernible 

periodicity, nor did the data correlate well with the extent of disulfide formation 

previously determined in this region (Watts et al., 2008).  

Following the HAMP connector, HAMP AS-2 (res. 238-253) forms an α-

helix with a crosslinking periodicity of 3.5 residues per turn, and ‘a’ and ‘d’ 

positions on the interior of the four-helix bundle (Watts et al., 2008). In the current 

study, PEGylation was low for most of AS-2. This area is shaded yellow in 

Fig.16B and has a calculated surface area of 1180 Å2. 
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Figure 15. Western blots of Aer-Cys proteins showing examples of low (Aer-
V246C), intermediate (Aer-L220C), and high (Aer-S265C) PEGylation under 
native (N) conditions. PEGylated Aer (Aer-PEG) has an apparent mass increase 
of ~10 kDa. Samples denatured (D) without β-mercaptoethanol quencher were 
PEGylated to apparent completion; samples pretreated with β-mercaptoethanol 
(before PEG-mal) were not PEGylated (see Aer-V260C, βMe lane). Faint bands 
migrating faster than an Aer monomer represent PEGylated Aer break-down 
product (Ma et al., 2004). Abbreviations: D, denatured; N, native; β-Me, β-
mercaptoethanol.  
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Figure 16. Accessibility of residues in the HAMP and proximal signaling domains as inferred from 
reactivity with PEG-mal. A. Extent of PEGylation for substituted cysteines at each residue of the 
Aer HAMP and proximal signaling domains. Error bars represent the standard deviation from 
multiple experiments. B. Sequestered AS-2 surface residues mapped onto a HAMP dimer model 
and a helical wheel. The hidden region was inferred by low accessibility to PEG-mal (A), and 
included residues 238 to 250 (shaded yellow). Helical wheels use the standard heptad repeat 
nomenclature (see Fig. 1), and include HAMP AS-1 (right panel), AS-2 (left panel) and the proximal 
signaling domain (Prox. SD). The proximal signaling domain is divided between two helical wheels 
due to the presence of a helical phase shift after residue 259, and the resumption of a helical 
accessibility pattern (with maximum accessibility every third and forth residue), at residue 262 
(Watts et al., 2008). AS-2 residues that are shielded by the connector in the HAMP model are 
indicated within a dotted box. Color code: bold and underlined, the most accessible residues in 
each region; italicized, the least accessible residues in each region; yellow boxes, residues 
predicted to be accessible but found to have low accessibility. C. Accessibility of HAMP and 
proximal signaling domain residues in the presence (black bars, full length Aer) and absence (gray 
bars, PAS-less Aer Δ[1-111]) of the Aer-PAS domain. Error bars represent standard deviations 
from multiple experiments. Asterisks indicate statistically significant differences in the absence of 
the PAS domain (p <0.05). The dotted line indicates the average accessibility of exposed AS-1 
residues (the underlined residues in the AS-1 helical wheel shown in B).  
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The low accessibility was not likely caused by a membrane effect because AS-2 

begins approximately 10 Å from the membrane. Of note, the interior facing ‘a’ 

and ‘d’ positions of AS-2 were not always the least accessible residues. This was 

because the ‘b’, ‘c’, ‘e’ and ‘g’ positions also had low accessibility (Fig.16). The 

HAMP connector is predicted to shield the ‘b’ and ‘e’ positions of AS-2, but the 

low accessibility of the ‘c’ and ‘g’ positions (and one ‘f’ position) suggested that 

this face was relatively hidden from solvent and may be shielded by another 

protein surface. In contrast, residues at the C-terminal end of AS-2 (res. 251-253) 

had PEGylation values that, like those in AS-1, inversely correlated with the 

extent of disulfide formation determined previously (Watts et al., 2008). 

 The region immediately following HAMP AS-2 is the proximal signaling 

domain (res. 254-271), which links Aer-HAMP to the kinase control module (Ma 

et al., 2005). The proximal end of this region showed a sequential  

increase in PEGylation values that did not inversely correlate with previously 

determined disulfide crosslinking results (residues 254 to 261, Fig. 16A). This 

was notable because we previously found a high extent of crosslinking in this 

region (Watts et al., 2008). Specifically, Cys replacements at residues 256 and 

260 had the greatest extents of disulfide bond formation of any cytosolic cysteine 

replacement in Aer (Watts et al., 2008). Together these data raise the possibility 

that this segment is both accessible and flexible. Flexibility could result from the 

helical phase shift previously identified by disulfide crosslinking (Watts et al., 

2008) and narrowed to residues 259-262 in the current study. This 

experimentally determined phase shift represents a discontinuity in the heptad 
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repeat sequence and is five residues downstream of the HAMP-proximal 

signaling juncture. These junctures are notable because sequence analyses 

have revealed a phase stutter (a change in coiled-coil registry) at HAMP-output-

helix connections (Parkinson, 2010). In this study, the Aer phase shift did not 

occur at the phase stutter (residues 254-256) but occurred between residues 259 

and 262. Residue S262 is predicted to be in a ‘c’ position on the AS-2/proximal 

signaling domain helix (Fig. 16B, left helical wheel), but actually fits the 

accessibility pattern of an accessible ‘b’ position in the proximal signaling domain 

helix (Fig. 16B, bottom wheel). For the remainder of the proximal signaling 

domain and beyond (res. 262-275), PEGylation efficiency remained high, but the 

profile was inversely related to previously determined disulfide crosslinking 

values (Watts et al., 2008). Therefore, residues following the putative phase shift 

appeared to form a 3.5 residue-per-turn α-helix, with the least accessible 

residues in the ‘a’ and ‘d’ positions and the most accessible residues in the ‘b’ 

and ‘e’ positions (Fig. 16B).  

 

Comparison of HAMP Accessibility in the Presence and Absence of the 

PAS Domain 

The simplest explanation for the sequestered surface of AS-2 (Fig. 16B, 

yellow residues) is that this region is shielded by another part of Aer. To 

determine whether the PAS domain shields HAMP AS-2, accessibility 

measurements were repeated in the presence (full-length Aer) or absence (Aer 

Δ[1-111]) of the PAS domain. Aer Δ[1-111] lacks all but eight C-terminal PAS 
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residues and forms a stable product (J. S. Parkinson, personal communication) 

that maintains near-normal steady-state levels under low induction (data not 

shown). Without the PAS domain, ‘inaccessible’ AS-2 residues became 

significantly more PEGylated, reaching levels routinely observed for surface-

exposed AS-1 residues in full-length Aer (Fig. 16C). Control residues in AS-1 and 

the proximal signaling domain (with the exception of Aer-S271C at the interface 

of the proximal signaling domain) were not significantly more accessible in PAS-

less Aer. Taken together, these data both provide evidence that the PAS domain 

shields HAMP AS-2, and potentially define a PAS-HAMP contact surface.  

 

Mapping Inaccessible Surfaces of the PAS Domain 

To identify surfaces on the PAS domain that may form stable interactions 

with HAMP or other domains, we probed predicted PAS surface residues with 

PEG-mal. Using an Aer-PAS homology model (Fig. 14B), we selected 57 

surface-exposed PAS residues and two interior-facing PAS residues as 

inaccessible controls (A97 and S113, Fig. 17A). Each residue was individually 

replaced with cysteine, expressed in BT3312 and screened for phenotype in 

succinate minimal soft agar. Of the 59 Aer-PAS Cys mutants constructed, only 

Aer-W94C did not support aerotaxis in semi-solid agar at each expression level 

(see Fig. S1 for details).  

 The extent of PEGylation for each PAS cysteine replacement is shown in 

Fig. 17B. To search for inaccessible PAS surfaces, we first sorted the PAS 

PEGylation values into one of three categories: low accessibility (0-30% 
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PEGylation), intermediate accessibility (31-50% PEGylation) or high accessibility 

(> 50% PEGylation). Each category was then mapped onto the Aer-PAS model 

(Fig. 17D). As anticipated for residues shielded from PEG-mal, the two interior-

facing controls, A97C and S113C, had low accessibility (16% and 27% 

PEGylation, respectively). Residues with high accessibility were scattered over 

the PAS surface. A notable region of high accessibility was the PAS N-terminal 

cap (N-cap, res. 1-19), where all residues tested (except T18C and T19C) had 

high accessibility (Figs. 17B and D). This suggests that the PAS N-cap is 

dynamic and does not stably interact with other domains in Aer, a conclusion that 

is compatible with our previous finding that the N-cap can collide with 

neighboring dimers (Watts et al., 2006b). In contrast, a large area of low 

accessibility measuring 1,370 Å2 was present on the PAS β-scaffold (Fig. 20D, 

yellow region outlined in black). This area was surrounded by residues with 

intermediate accessibility (Fig. 17D), perhaps delineating the boundary of a PAS 

contact surface.  
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Figure 17. Probing the PAS domain for solvent accessibility and PAS-PAS 
proximity using PEGylation and disulfide crosslinking. A. Residues selected for 
cysteine replacement mapped onto the secondary structure of the Aer PAS 
domain. Residues in black font are predicted to be accessible on the surface of the 
Aer-PAS homology model; those in red font are predicted to face inwards towards 
the PAS interior, and were selected as surface-inaccessible controls.  
B. Extent of PEGylation for substituted cysteines in the Aer PAS core and N-
terminal cap (N-cap). Red asterisks identify the surface-inaccessible controls.  
C. Extent of disulfide crosslinking between neighboring PAS domains. Error bars 
in B and C represent the standard deviation from multiple experiments. 
D. Aer-PAS homology model showing the distribution of the tested residues based 
on whether they had low (yellow shading, 0-30% PEGylation), intermediate (light 
orange, 31-50% PEGylation) or high (orange, > 50% PEGylation) accessibility.   
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PAS-PAS Crosslinking 

To determine if the area of low accessibility on the PAS β-scaffold was 

due to PAS-PAS interactions, each of the 59 PAS Cys substitutions that 

circumscribed the PAS domain was crosslinked in vivo by treating whole cells 

with 600 μM Cu(II)(1,10-phenanthroline)3 (CuPhe) for 20 min. Crosslinked 

products were identified by their migration on SDS-PAGE and detected with anti-

Aer2-166 antisera. As anticipated, the interior-facing controls, A97C and S113C, 

did not crosslink (Fig. 17C). Notably, residues that clustered on the inaccessible 

PAS β-scaffold did not crosslink substantially (<8% dimers). This suggests that 

PAS-PAS interactions do not contribute to the inaccessible surface. The eight 

cysteine mutants that formed more than 10% dimers (Fig. 17C) also had high or 

intermediate accessibility to PEG-mal (Fig. 17B), indicating that some of these 

PAS-PAS interactions may have been transient, rather than stable. These 

residues included several in the flexible N-cap (V7C, Q9C, N11C, D16C and 

T18C), R86C in the β-scaffold, E105C in the PAS H-I loop, and E121C in the F1 

loop (Fig. 17C).  

In the PAS core, the greatest extent of PAS-PAS crosslinking was 

observed for E105C. Our previous studies predict that only flexible regions of 

PAS can form PAS-PAS crosslinks within an Aer dimer because the PAS 

domains are separated by the HAMP four-helix bundle. Non-flexible PAS regions 

are more likely to contact another dimer within the trimer-of-dimers hexameric 

structure of Aer (Campbell et al., 2011). To differentiate intra- from inter-dimeric 

contacts for E105C, the aspartate receptor, Tar, was over-expressed from a 
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compatible plasmid to form mixed trimers-of-dimers with Aer (Gosink et al., 

2006). In the presence of over-expressed Tar, Aer-E105C crosslinking 

decreased from 24% to 11%. This suggests that Aer-E105C crosslinking occurs 

between Aer dimers, a result that was also shown for E121C (Campbell et al., 

2011).  

 

PAS-HAMP Interactions Defined by Disulfide Crosslinking 

We previously demonstrated crosslinking between Cys replacements in 

the PAS and HAMP domains of Aer (Campbell et al., 2010). For those 

experiments, Q248C was selected as the HAMP Cys probe because Q248C i) is 

located on the sequestered face of AS-2 (Figs. 16A and B), ii) is significantly 

more accessible in the absence of the PAS domain (Fig. 16C), and iii) does not 

significantly crosslink with itself within or between dimers [≤1% dimers, (Watts et 

al., 2008)]. Those initial studies demonstrated in vivo PAS-HAMP crosslinking 

between HAMP-Q248C and PAS-N98C or PAS-I114C (Campbell et al., 2010). 

The findings were possible because PAS-HAMP crosslinks can be differentiated 

from PAS-PAS and HAMP-HAMP crosslinks by their migration on SDS-PAGE. 

The different mobility is based on the N-terminal location of the PAS domain: Aer 

PAS-PAS crosslinked dimers migrate faster on SDS-PAGE than HAMP-HAMP 

crosslinked dimers, and PAS-HAMP crosslinked dimers have an intermediate 

mobility (Fig. 18A). Note that the latter point is only true if the PAS-HAMP 

crosslink forms between subunits, not within a subunit. An intra-subunit crosslink 

will migrate as a compact monomer (Bass et al., 2007). In the current study, we 
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identify additional PAS-HAMP pairs that can crosslink and use these data to 

define the PAS-HAMP interaction surface. Q248C was paired with 25 different 

PAS Cys residues at sites circumscribing the PAS domain (see Experimental 

Procedures for details). The 25 di-Cys Aer constructs supported BT3312 

aerotaxis in succinate minimal soft agar, with migration rates within the aerotactic 

range shown in Fig. S1.  The Aer-Cys proteins were oxidized by treating whole 

cells with CuPhe as described above. Many of the substitutions produced small 

quantities of PAS-PAS and PAS-HAMP crosslinked dimers. However several 

residues preferentially produced PAS-HAMP crosslinked dimers: I82C, R96C, 

N98C, V100C, M112C and I114C on the PAS β-scaffold (Fig. 18A, right panel 

and Fig. 18B, left panel, gray bars) and V38C, in the N-cap hinge region. All of 

the PAS-HAMP crosslinks formed between, and not within, monomeric subunits. 
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Figure 18. Disulfide crosslinking between the Aer PAS and HAMP domains.  
A. Representative examples comparing SDS-PAGE mobilities for Aer dimers 
crosslinked between PAS-PAS, PAS-HAMP and HAMP-HAMP. The left panel 
illustrates the separation of the three crosslinked bands for a di-Cys mutant with 
similar band densities at each position (Aer-I82C/A245C). The right panel 
illustrates the separation of these bands for a di-Cys mutant with preferential PAS-
HAMP crosslinking (Aer-N98C/Q248C). In all cases, uncrosslinked monomer 
bands are near the bottom of the gels. B. Extent of disulfide formation for PAS 
residues that preferentially crosslinked with HAMP-Q248C (left panel) and -L251C 
(right panel). PAS-PAS crosslinking is indicated by black fill, PAS-HAMP 
crosslinking by gray fill, PAS-Q248C crosslinking after treatment with 
chloramphenicol in blue fill and PAS-L251C crosslinking after treatment with 
chloramphenicol in purple fill. Dark blue or dark purple fill indicates that the extent 
of PAS-HAMP crosslinking did not significantly decrease after chloramphenicol 
treatment, whereas lighter blue or purple fill indicates a decreased extent of PAS-
HAMP crosslinking after chloramphenicol treatment. HAMP-Q248C and -L251C 
controls routinely produced ≤1% dimers and are not shown. Error bars represent 
the standard deviation from multiple experiments. C. HAMP homology model 
showing the location of HAMP-Q248 and -L251, which crosslinked with PAS, in 
relation to the region that was sequestered from PEG-mal (Fig. 16B, yellow 
shading). D. PAS homology model showing the β-scaffold positions of the PAS 
residues that preferentially crosslinked with HAMP-Q248C in relation to the region 
that was sequestered from PEG-mal (Fig. 17D, yellow shading). Residue colors 
match those used in the left panel of B. E. PAS-HAMP dimer model showing the 
proposed orientation of the PAS and HAMP domains based on PEGylation and 
PAS-HAMP crosslinking data. For clarity, the model includes the PAS domain from 
just one subunit (res. 5-119) and a HAMP dimer (monomers from both subunits, 
res. 204-258). The PAS model was manually oriented relative to the HAMP AS-2 
helix of the cognate monomer to account for the crosslinking (B) and sequestration 
(C and D) data. Residue colors match those used in B, C and D. The locations of 
PAS-N34D and HAMP-C253R, which were previously identified as site-specific 
suppressors (Watts et al., 2004a), are shown in orange. Abbreviation: CAM, 
chloramphenicol. 
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Several of the residues, e.g., I82C, exhibited some PAS-PAS crosslinking, but 

the extent consistently decreased in the presence of HAMP-Q248C (Fig. 18B). 

This indicated that the side chains of the PAS residues collided more often with a 

HAMP domain than with another PAS domain. The PAS residues that 

preferentially crosslinked with HAMP-Q248C resided almost exclusively within 

the inaccessible region of the PAS β-scaffold (Fig. 18D). This region is notable 

because it includes the cluster of kinase-on lesions that we previously identified 

as components of the signaling pathway [(Campbell et al., 2010), and the red 

area in Fig. 20].  

 Aer undergoes a complex maturation process in which proper folding of 

the Aer PAS domain requires the presence of the HAMP domain (Herrmann et 

al., 2004). This process is easily destabilized by key mutations in either the PAS 

or HAMP domains (Buron-Barral et al., 2006b, Campbell et al., 2010). In the 

current study, we considered the possibility that some PAS-HAMP crosslinking 

occurred during the folding process before a mature Aer product was formed. To 

increase the fraction of mature Aer protein before crosslinking, new protein 

synthesis was inhibited with 500 µg ml-1 chloramphenicol for 15 min before 

adding CuPhe. After chloramphenicol treatment, three of the di-Cys mutants 

containing Q248C (N98C/Q248C, V100C/Q248C and I114C/Q248C) had an 

equivalent or increased proportion of PAS-HAMP crosslinked dimers (Fig. 18B, 

dark blue bars). This indicates that N98, V100 and I114, which are located on the 

PAS H and I β-strands (Fig. 18D), are each proximal to HAMP AS-2 in the folded 

protein. To test whether PAS-HAMP disulfide crosslinks formed within or 
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between dimers, Aer-I114C/Q248C was expressed with increasing 

concentrations of Tar. The amount of crosslinked I114C-Q248C product was 

unaffected by increased Tar expression (not shown), indicating that PAS-HAMP 

disulfide bonds most likely occurred between cognate monomers of the same 

dimer.  

 To identify HAMP residues other than Q248C that can crosslink with the 

PAS β-scaffold, we tested di-Cys combinations with several other HAMP 

residues (see Experimental Procedures for details). Of these, only HAMP-L251C 

(Fig. 18C) showed preferential PAS-HAMP crosslinking (Fig. 18B, right panel). 

Like Q248C, L251C has favorable properties in that it does not significantly 

crosslink with cognate L251C either within or between dimers [≤1% dimers, 

(Watts et al., 2008)]. In the presence of chloramphenicol, HAMP-L251C 

preferentially crosslinked with PAS-N98C, -M112C, and -I114C, but not with -

V100C (Fig. 18B, purple bars). The extent of crosslinking between HAMP-L251C 

and either PAS-N98C or PAS-I114C was higher than that between HAMP-

Q248C and these PAS residues (Fig. 18B). This indicates that these PAS 

residues are closer to HAMP-L251C than they are to HAMP-Q248C. In contrast, 

crosslinking between HAMP-Q248C and either PAS-V100C or PAS-M112C was 

higher than that between HAMP-L251C and these PAS residues (Fig. 18B). This 

suggests that these PAS residues are closer to Q248C than they are to L251C. 

Using this information, homology models of the Aer PAS and HAMP domains 

were manually manipulated to obtain the best fit (Fig. 18E). To fit the data, the 

PAS domain was rotated ~180° around the PAS-HAMP interface such that the 
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PAS-HAMP interaction surfaces are now flipped relative to our previous PAS-

HAMP models [e.g., in (Campbell et al., 2011, Watts et al., 2008)]. The revised 

PAS-HAMP orientation resolves an unexplained anomaly that was present in 

previous models. Pseudoreversion analysis previously identified PAS-N34D as 

an allele-specific suppressor of HAMP-C253R (Watts et al., 2004a). This implies 

close proximity between N34 and C253, but the previous PAS-HAMP models 

separated them. In the revised PAS-HAMP model, HAMP-C253 is in close 

proximity to PAS-N34 (Fig. 18E), resolving the anomaly.  

 

Comparison of the Kinase-on and Kinase-off States 

The solvent accessibility measurements in Figs. 19 and 20 were obtained 

under aerobic conditions and are expected to represent the kinase-off state of 

Aer (Repik et al., 2000a). To gain insight into changes that might occur on HAMP 

surfaces as a result of signaling, we re-measured PEG-mal reactivities for 34 

HAMP residues in the presence of the PAS kinase-on lesion N85S [(Campbell et 

al., 2010), Fig. 19A]. N85 is located on the PAS Gβ strand, and its side chain is 

predicted to face the interior of the PAS domain, contacting the isoalloxazine ring 

of FAD [(Campbell et al., 2010), Fig. 14B]. N85 is a possible link from the bound 

FAD to the β-scaffold, and the N85S substitution results in a kinase-on output.  

Residues that were significantly more accessible in the presence of N85S formed 

a patch on the HAMP surface that included both AS-1 and cognate AS-2′ 

residues (Fig. 19B, purple residues). This patch overlapped with AS-2 residues 

that were sequestered by the PAS domain in the kinase-off state (Fig. 16), 
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suggesting that the N85S lesion disrupts the interaction of PAS with HAMP. In 

contrast to the AS-1 and AS-2′ residues with increased accessibility, residues 

with decreased accessibility in this region were located on a different face from 

the more accessible patch (Fig. 19B). The decrease in accessibility was greatest 

at the phase shift, where the PEGylation of D259C decreased from 

approximately 45% in the unstimulated state to approximately 3% in the 

presence of PAS-N85S. However, the face on which residues after N258 were 

located could not be determined because the three-dimensional structure of the 

phase shift is unknown.  

Notably, all residues that were significantly more accessible in the kinase-

on state preceded the end of the HAMP domain (C253), while residues after the 

HAMP domain in the proximal signaling domain showed decreased accessibility. 

The proximal signaling and C-terminal kinase control domains are predicted to 

form an elongated antiparallel four-helix bundle in Aer (Fig. 14) that is analogous 

to the adaptation and protein interaction regions of other chemoreceptors (Falke 

& Piasta, 2014). Crosslinking studies of the proximal signaling domain indicate 

that this four-helix extends through the phase shift (res. 259-262). Our model 

pairs proximal signaling residue I257 with L505, and ends with H506 (aligned 

with L256) at the C-terminus of Aer [inferred from (Alexander & Zhulin, 2007), 

see Fig. 21]. Therefore, it is possible that residues following I257 that are less 

accessible in the kinase-on state form a more compact four-helix bundle. 

Conversely, increased accessibility in the HAMP domain in the kinase-on state 

may be associated with a more dynamic four-helix bundle. 
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Discussion 

The Aer PAS-HAMP Interaction Surface 

In this study, we investigated an unusual signaling mechanism in which a 

cytosolic PAS domain controls signaling by direct lateral interaction with a HAMP 

domain (Fig. 21). This differs from the prototypical membrane-bound 

chemoreceptor, in which HAMP is directly tethered through the membrane to a 

periplasmic sensor domain (Parkinson, 2010). 

 

 

 
Figure 19. Influence of the PAS kinase-on lesion, N85S, on the accessibility of residues in 
the HAMP and proximal signaling domains to PEG-mal.  
A. Histogram showing the average percent change in PEGylation for 34 Cys substitutions 
in Aer-N85S. Bars projecting to the right of the origin denote residues that became more 
accessible in the presence of N85S (significant increases are colored purple; p <0.05). 
Bars projecting to the left denote residues that became less accessible (significant 
decreases are colored red; p <0.05). Residues in gray had statistically insignificant 
changes.  
B. Location of residues from A that showed significant changes in accessibility (in the 
kinase-on state) when mapped onto models of the Aer-HAMP domain and part of the 
proximal signaling domain. The models include residues 204-258 and 262-269. Residues 
259-261 were omitted because of the phase shift in this region. Residues 262-269 are 
modeled onto a 3.5 residue per turn coiled coil α-helix; the precise orientation of this region 
relative to HAMP is unknown. 
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Fiure 20. PAS space-filled model overlaying a region of previously determined 
kinase-on lesions [(Campbell et al., 2010), within the red line] with residues shown 
in the current study to be sequestered (dotted yellow line), or that preferentially 
crosslinked with the HAMP domain (blue).   
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Figure 21. Working model of Aer showing the relationship between PAS and 
HAMP in the kinase-off and kinase-on states, based on current and previous data. 
Colors match those of Fig. 18. The reduction of PAS-bound FAD elicits a 
conformational change that decreases interaction between the PAS domain and 
the HAMP domain. The relative orientation between the N-cap and PAS core also 
changes, perhaps altering the stability of PAS-HAMP interactions. Decreased 
PAS-HAMP interactions are accompanied by tilting of the HAMP helices and a 
more relaxed, dynamic HAMP structure. The HAMP, proximal signaling domain 
and protein interaction regions are in opposition across contiguous boundaries 
such that a relaxed HAMP domain results in a static proximal signaling domain 
and a dynamic protein interaction region. Relevant residues: N34D, C253R, allele-
specific suppressors; 259-262, phase shift; pairs 262/500 and 256/506 are 
highlighted to show their relative latitudes on descending and ascending helices. 
See Results and Discussion for details.  
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In Aer, the measured solvent accessibilities of the PAS, HAMP and 

proximal signaling domains (Figs. 16 and 17) defined potential PAS-HAMP 

interaction surfaces. Data from PAS surface residues showed a hidden region on 

the PAS β-scaffold (1,370 Å2, Fig. 17D) that was consistent with a HAMP 

footprint rather than the footprint of a cognate PAS domain. Specifically, none of 

the sequestered residues crosslinked substantially with another PAS domain 

(Fig. 17C) and any such interactions may be transient rather than stable. 

Notably, the hidden region overlapped both with a cluster of PAS kinase-on 

lesions that we previously identified as part of the aerotaxis signaling pathway 

(Campbell et al., 2010), and with PAS residues in this study that crosslinked with 

the HAMP domain (Fig. 17). Together, the data strongly support the hypothesis 

that the inaccessible PAS region forms the PAS component of the PAS-HAMP 

interface.  

Of the 70 HAMP and proximal signaling domain replacements tested, 

accessibilities inversely correlated with disulfide crosslinking in two regions: 

HAMP AS-1 and the proximal signaling domain region that followed the phase-

shift. In contrast, most of HAMP AS-2 and the N-terminal proximal signaling 

domain did not inversely correlate with crosslinking. Notably, 10 of 11 AS-2 

residues residing on the HAMP exterior had low accessibility to PEG-mal (Fig. 

16). Four of these were likely shielded by the HAMP connector (Fig. 16B), but 

five of the remaining residues were sequestered by the PAS domain (Fig. 16B, 

boxed residues shaded yellow) and are proposed to form the HAMP component 

of the PAS-HAMP interface (Fig. 21). In support of this, HAMP AS-2 substitutions 
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Q248C and L251C crosslinked with residues on the cognate PAS β-scaffold (Fig. 

18). A best fit of the crosslinking data required that the PAS domain be rotated 

~180° relative to a previous model (Campbell et al., 2011, Watts et al., 2008). 

The location of allele-specific suppressors PAS-N34D and HAMP-C253R are 

now shown in close proximity (Fig. 18E) and in harmony with genetic studies 

(Watts et al., 2004a). PAS-HAMP crosslinking occurred between cognate 

subunits within dimers rather than between adjacent dimers because crosslinking 

was unaffected when collisions between Aer dimers were decreased by the 

presence of a second receptor (Tar). This is consistent with previous work 

indicating that HAMP dimers are centrally positioned, flanked by two PAS 

monomers (Campbell et al., 2011), and are required for PAS folding and FAD 

binding (Herrmann et al., 2004, Bibikov et al., 2000, Ma et al., 2005, Buron-Barral 

et al., 2006b). Interestingly, an arrangement similar to the Aer PAS β-scaffold-

HAMP AS-2 α-helix interface (Fig. 18E) has been described for several proteins 

including the periplasmic sensing domain of the Sinorhizobium meliloti C4-

dicarboxylate sensor DctB (Zhou et al., 2008) and the Vibrio harveyi quorum 

sensor LuxQ (Neiditch et al., 2006), where in both cases the β-scaffold of two 

PAS domains abuts a long α-helical spine. 

 

Changes in PAS N-cap Orientation During Signaling 

The PAS N-cap and the loop connecting the N-cap to the PAS core were highly 

accessible (Fig. 17) yet appear to be part of the Aer signaling pathway. Kinase-

on lesions that define the Aer signaling pathway cluster not only on the PAS β-
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scaffold and in the FAD cleft, but also in the N-cap (Campbell et al., 2010, Watts 

et al., 2006b). Truncating the first six N-cap residues bestows a kinase-on 

phenotype, while deleting the first 14 residues yields an inverted response 

phenotype (Watts et al., 2006b). Aer-L14 is significant in that it likely hydrogen 

bonds to N34, forming an unusual extended helix that is unbroken in structure, 

but discontinuous in sequence (Etzkorn et al., 2008, Key et al., 2007, Campbell 

et al., 2010, Watts et al., 2006b). In DcuS-PASc, an N248D substitution that is 

equivalent to Aer-N34D reorients the N-cap and activates the protein (Etzkorn et 

al., 2008). Notably, an N34D substitution in Aer is both kinase-on and an allele-

specific suppressor of HAMP-C253R (Watts et al., 2004a). The crosslinking data 

from the current study indicate that N34 and C253 are in close proximity (Fig. 

18E), and by homology to DcuS-PASc, the N-cap may reorient when PAS is in 

the kinase-on state (Fig. 21). In this scenario, N-cap reorientation would help 

destabilize PAS-HAMP interactions (Fig. 21), giving the HAMP domain more 

degrees of freedom and dynamic movement. 

 

Changes in HAMP Conformation and PAS-HAMP Interactions During 

Signaling 

We previously found that the kinase-on substitution, PAS-N85S, altered 

rates of crosslinking between HAMP AS-1 and AS-2′ helices (Watts et al., 

2011a). Rates decreased at the proximal end of HAMP, and increased at the 

distal end of HAMP. This was interpreted as either i) tilting of AS-2 with respect 

to AS-1′, or ii) a more relaxed HAMP structure [Fig. 21, (Watts et al., 2011a)]. 
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The data from the current study reveal changes in PAS-HAMP interactions that 

are correlated with these states: the kinase-on substitution (PAS-N85S) exposed 

a patch of HAMP residues that had been hidden in the kinase-off state by the 

PAS domain (Fig. 19). This is consistent with a decrease in the strength of the 

PAS-HAMP AS-2 interaction in the kinase-on state, and a less compact, more 

dynamic conformation of HAMP. The dynamic conformation is likely to be 

favored by Aer-HAMP because it lacks strong hydrophobic residues at several 

key packing positions in the HAMP bundle (Watts et al., 2008, Parkinson, 2010). 

Still, some HAMP residues apparently remained in contact with PAS in the 

kinase-on state, because residues in the exposed patch remained less solvent 

accessible than they were in the PAS-less mutant (compare res. 241, 244 and 

245 in Figs. 16C and 19A). However, PAS is effectively tethered to HAMP in the 

Aer dimer, so some collisional contacts are also expected. 

The impact of PAS-N85S on AS-2 accessibility was not uniform. In 

contrast to AS-2 residues that exhibited increased accessibility with N85S, a 

patch of residues at the distal end of AS-2 through the proximal signaling domain 

had decreased accessibility (Fig. 19). The proximal signaling domain links HAMP 

AS-2 to the kinase control domain and has a helical phase shift between 

residues 259 and 262; the shift is five residues downstream of the phase stutter 

at the HAMP-output junction (Brown et al., 1996, Parkinson, 2010). In Aer, the 

residues with decreased accessibility included not only residues throughout the 

proximal signaling domain toward the kinase control junction (N269), but also 

residues upstream, extending to the HAMP junction (C253) (Fig. 19). The 
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proximal signaling domain is also functionally distinguishable from the HAMP 

domain: missense mutations in the proximal signaling domain do not influence 

PAS-FAD binding (Ma et al., 2005, Buron-Barral et al., 2006b), nor are they 

suppressed by PAS suppressor lesions that rescue HAMP defects (Watts et al., 

2004a). This suggests that the proximal signaling domain, unlike HAMP, does 

not associate with the PAS domain. 

The data from the current study are consistent with the dynamic bundle 

model (Parkinson, 2010, Zhou et al., 2009), although they are not definitive. The 

broad changes in accessibility associated with signaling (Fig. 19) are more easily 

explained by dynamics [regulated unfolding, (Schultz & Natarajan, 2013)] than by 

conformational changes in semi-rigid structures that mimic a specific pattern of 

changes propagated by the transmembrane helix of a chemoreceptor. In Aer, 

signaling caused opposite accessibility changes in the HAMP and proximal 

signaling domains (Figs. 19 and 21). This suggests an inverse structural 

relationship between these domains, such that when one is compact the other is 

dynamic. Inverted shifting between compact and dynamic structures has been 

proposed for the other E. coli chemoreceptors, whereby three contiguous 

segments have opposite structural transitions: the HAMP domain, the adaptation 

region and the protein interaction region of the kinase control module (Falke & 

Piasta, 2014, Parkinson, 2010). The first inversion is associated with a helical 

phase shift at the juncture between HAMP AS-2 and the adaptation region. This 

shift couples the helical bundles in opposition, so that increasing the packing 

stability of one bundle decreases the stability of the other. The second inversion 
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may occur at a glycine hinge that is equivalent to Aer residues G330, G331 and 

G429. The behavioral output for Aer indicates that the structural state of the 

protein interaction region is similar to the state of HAMP, as it is in other 

chemoreceptors (Fig. 21B). Switching to a more static HAMP domain would 

reverse the states of the other two regions, so the HAMP and protein interaction 

regions continue to share the same conformational profile [(Falke & Piasta, 

2014), Fig. 21].  

Recent studies on the Tsr receptor suggest that the HAMP domain acts as 

a brake that inhibits the default kinase-on state of the receptor. Thus, the HAMP-

independent output state of the Tsr kinase control module is kinase-on, and 

HAMP must actively override this state in response to attractant stimuli (Ames et 

al., 2014). Given the homology among the Tsr, Tar, and Aer kinase-control 

modules, the default output for Aer is also likely to be kinase-on, although similar 

definitive analyses of Aer-HAMP deletions would be confounded by the 

requirement of HAMP for PAS maturation [(Herrmann et al., 2004, Buron-Barral 

et al., 2006b), J. S. Parkinson, personal communication]. 

 

Aer Signaling Model 

From the present and previous studies, we propose a complete pathway 

for Aer-mediated aerotaxis. When E. coli swims into a region where the ambient 

oxygen concentration cannot maintain the electron transport system, FAD bound 

to the Aer-PAS domain is reduced and protonated. A hydrogen-bond network 

linked to FAD is reorganized, resulting in a conformational change in the PAS β-
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scaffold at the PAS-HAMP AS-2 interface [(Campbell et al., 2010); see also 

(Campbell et al., 2010, Key et al., 2007, Ukaegbu & Rosenzweig, 2009b)]. 

Altered PAS-HAMP interactions switch a patch of HAMP surface residues from 

low accessibility to high accessibility, consistent with decreased affinity between 

the PAS and HAMP domains. We propose that interactions between oxidized 

PAS and HAMP AS-2 promote a more ordered (static) HAMP structure and an 

active kinase-off output, whereas weaker PAS-HAMP interactions in the reduced 

state allow a more dynamic HAMP structure and kinase-on output (Fig. 21). Aer-

HAMP controls the proximal signaling domain, and in turn, the kinase control 

domain. The tip of the kinase control domain is the protein interaction region, 

which shares the same relative state as HAMP (dynamic or static) [reviewed by 

(Falke & Piasta, 2014)]. After the bacteria approach the hypoxic region and FAD 

is reduced, the cells tumble briefly and swim in a different direction. This avoids 

anaerobiosis and ensures that cells move towards a higher oxygen 

concentration. It is the movement up the oxygen gradient that is dominant in 

determining net migration. In an aerobic environment, FAD becomes oxidized 

and PAS-HAMP interactions strengthen, resulting in a static HAMP domain and a 

kinase-off output. The static HAMP domain shifts the bias of the protein 

interaction region, which inhibits CheA kinase and suppresses changes in 

swimming direction. 

The model for direct signaling between the PAS and HAMP domains of 

Aer presents a new paradigm for controlling HAMP states. The paradigm 

suggests that signal-sensitive, intra-dimeric contacts between PAS and HAMP 
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AS-2 controls the static or dynamic nature of HAMP. This mechanism likely 

occurs in other proteins that have laterally interacting PAS and HAMP domains, 

and may be the mechanism by which other sensing domains can control HAMP 

activity in a wide variety of systems.  
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Figure S1. Influence of PAS-Cys substitutions on Aer-mediated behavior in E. coli 
BT3312 (aer tsr). Aer-Cys mutants were tested in succinate minimal soft agar 
containing 50 μg. ml-1 ampicillin. Colony expansion was determined after 15-20 
hours of growth at 30°C and compared with wild-type Aer [as expressed from 
pGH1, (Rebbapragada et al., 1997a)]. Mutants with average colony diameters 
greater than 130% of WT Aer were designated as ‘superswarmers’. Mutants with 
average colony diameters less than 40% of WT have impaired behavior or are non-
aerotactic (Watts et al., 2008). Only cells expressing Aer-W94C fell in this category 
and were non-aerotactic in minimal soft agar. In a temporal aerotaxis assay (Taylor 
et al., 2007), BT3312 cells expressing Aer-W94C were tumbly-biased in air, had a 
delayed response to nitrogen, and a showed a brief smooth-swimming response 
to oxygen.  
 
 

 

Experimental Procedures 

Bacterial Strains and Plasmids 

Cysteine-less (C-less) Aer (Aer-C193S/C203A/C253A) was expressed 

from pMB1 (Ma et al., 2004, Watts et al., 2006b), a pTrc99A-derivative that 

expresses Aer under the control of an IPTG-inducible ptrc promoter. All Aer-Cys 
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mutants in this study were derived from pMB1. The WT Tar expression plasmid, 

pLC113, was a gift from John S. Parkinson and is a pACYC184-based plasmid 

that confers chloramphenicol resistance and carries a sodium salicylate-inducible 

promoter (Ames & Parkinson, 2006). Plasmids were expressed in E. coli 

BT3312, a strain that lacks the two aerotaxis receptors, Aer and Tsr [Δaer-1 Δtsr-

7021, (Repik et al., 2000] or in chemoreceptor-less BT3388 [aer::erm ∆tsr-7021 

∆tar-tap-5201 trg::Tn10) (Yu et al., 2002)].  

 

Mutant Construction 

A library of Aer mutants with single cysteine substitutions between 

residues 206 and 275 was previously constructed in pMB1 (Watts et al., 2008, 

Amin et al., 2006). Aer-N85S and additional Aer-Cys mutants were constructed 

by site-directed mutagenesis of pMB1 or pMB1-derived plasmids according to 

the instructions of the QuikChange® II site-directed mutagenesis kit (Agilent 

Technologies, Santa Clara, CA). The N85S codon was introduced into plasmids 

that contained a single Cys codon substitution, whereas di-Cys mutants were 

created from a pMB1-derivative that expressed either Aer-Q248C or Aer-L251C. 

Aer[112-506] mutants were created by amplifying the coding region for residues 

112-506 from individual pMB1-derived plasmids using primers containing 

recognition sequences for AflIII and SalI, and ligating the products into pTrc99A 

with the NcoI-SalI DNA segment removed. Mutations were confirmed by 

sequencing the entire aer gene of each plasmid. 
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Expression and Aerotaxis Assays 

Plasmids were introduced into BT3312 (aer tsr) and Aer expression was 

confirmed by Western blotting with a 1 in 133,000 dilution of anti-Aer2-166 antisera 

(Repik et al., 2000a). Aer[112-506] mutants express stable protein (K.K. Gosink 

and J.S. Parkinson, personal communication), but have fewer epitopes than full-

length Aer, so were detected with a 1 in 50,000 dilution of anti-Aer2-166 antisera. 

For Aer/Tar co-expression assays, Aer and Tar expression plasmids were 

introduced into BT3388 (aer tsr tar trg tap) and expressed as described 

(Campbell et al., 2011). Tar expression was confirmed using a 1 in 10,000 

dilution of anti-Tsr290-470 antisera [a gift from J. S. Parkinson, (Ames & Parkinson, 

1994)]. Aerotaxis phenotypes were determined for each Aer mutant by 

inoculating cells into succinate minimal soft agar containing 50 μg ml-1 ampicillin, 

incubating the plates at 30°C for 15-20 hours, and then observing colony 

morphologies (Taylor et al., 2007).  

  

In vivo Accessibility Assays using PEG-mal 

In vivo PEGylation assays were performed using an unpublished 

permeabilized cell protocol developed by Claudia A. Studdert at the Universidad 

Nacional de Mar del Plata, Argentina, but modified in this study to work optimally 

for Aer. BT3312 cells expressing each of the Aer-Cys mutants were grown at 

30°C to mid-log phase in tryptone broth containing 100 μg ml-1 ampicillin, and 

induced for 3 hours with 50 μM IPTG. Aer-P211C, Aer-R235C and Aer-G240C 

have lower steady-state accumulation levels (Watts et al., 2008), as did Aer-
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R57C, Aer-D60C and Aer-A97C (this study) and were induced with 100 μM 

IPTG. Two milliliters of each culture was centrifuged at 10,000 x g in each of two 

tubes (corresponding to denatured and native samples), then washed twice with 

20 mM potassium phosphate [pH 7.0], 0.1 mM EDTA, and 0.1 mM MgCl2 buffer. 

The cells in each tube were resuspended in 1 ml of wash buffer and 

permeabilized by adding 50 μl of 1:4 toluene:ethanol. After 15 min of vigorous 

mixing at room temperature on an Eppendorf mixer (Eppendorf model 5432, 

Hauppauge, NY), the cells were centrifuged, the supernatant and excess fluid 

were removed, and the pellets were resuspended in 50 μl of wash buffer. Five 

mM PEG-mal (Laysan Bio, Arab, AL) was thoroughly mixed with the cells, and 

the tubes were incubated at 25°C for 15 min. PEGylation reactions were stopped 

by adding 100 μl of sample buffer with excess β-mercaptoethanol (native 

samples, 1.43 M β-mercaptoethanol) or with no reducing agent (denatured 

samples). The samples were then boiled for four min and analyzed by SDS-

PAGE. A quenching control, in which 1.43 M β-mercaptoethanol was added 

before PEG-mal, efficiently quenched the PEGylation reaction (see Fig. 2). 

Bands were visualized on Western blots and quantified on a BioSpectrum® 

digital imager (UVP, Upland, CA). For each residue, the proportion of PEGylated 

product was calculated by dividing the average density of the PEGylated band by 

the average densities of the non-PEGylated plus PEGylated fractions from 

duplicate lanes. Reactions were repeated on at least two, but usually three or 

more, occasions. To compare extents of PEGylation in the presence and 

absence of the PAS domain or PAS-N85S, statistical analyses were carried out 
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using a two-tailed Student’s t-test. A p value of less than 0.05 was considered 

statistically significant. 

 

In vivo Disulfide Crosslinking 

BT3312 cells expressing each of the di-Cys and corresponding single-Cys 

mutants were grown to mid-log phase in H1 minimal salts medium supplemented 

with 30 mM succinate, 0.1% (w/v) casamino acids and 100 μg ml-1 ampicillin, 

before being induced for 3 hours with 50 μM IPTG. Crosslinking was performed 

at 25°C by exposing whole cells to 600 μM Cu(II)(1,10-phenanthroline)3 (CuPhe) 

for 20 min, similar to that described previously (Amin et al., 2006, Hughson & 

Hazelbauer, 1996, Watts et al., 2008), but with modifications as described in (Lai 

& Hazelbauer, 2007, Taylor et al., 2007). The following 25 PAS-Cys mutants 

were tested for crosslinking with Q248C in di-Cys receptors: T19C, M21C, T23C, 

H32C, N34C, D35C, T36C, V38C, L45C, M55C, K75C, P78C, S80C, I82C, 

K88C, N89C, R96C, N98C, V100C, V103C, I108C, M112C, I114C, A118C and 

E121C. PAS-Cys subsets were also tested for their ability to crosslink with 

R244C, G250C, M252C, C253, R254C and D259C. Aer-I114C/Q248C and Aer-

E105C were also analyzed in BT3388, with Aer as the sole receptor, or in the 

presence of WT Tar (as expressed from pLC113) with no induction or with 1.2 

μM sodium salicylate induction. Crosslinked products were separated from 

monomers by SDS-PAGE and quantified on the UVP digital imager after Western 

blotting. Percent crosslinking was calculated by dividing the intensity of the 

crosslinked dimer band by the sum of the intensities of the monomer and dimer 
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bands, multiplied by 100. Aer-V260C (Watts et al., 2008) and C-less Aer (Ma et 

al., 2004) were used as positive and negative crosslinking controls, respectively. 

Dimer bands were never evident with C-less Aer, whereas the extent of 

dimerization for Aer-V260C was routinely ≈65% after 20 min. Reactions were 

repeated on two or more occasions. 

 

In silico Modeling 

Aer PAS and HAMP domain models were previously created from the 

coordinates of NifL PAS (2GJ3) and Af1503 HAMP (2ASX), respectively 

(Campbell et al., 2010, Watts et al., 2008). PyMOL viewer (The PyMOL 

Molecular Graphics System, Version 1.0, Schrödinger, LLC) was used to 

manipulate models, map experimental data and determine surface areas. The 

experimental results were used as a guide to manually manipulate the positions 

of the PAS and HAMP domains in an Aer dimer to obtain the best fit (Figs. 5 and 

8).    
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Abstract 

The Aer2 chemoreceptor from Pseudomonas aeruginosa contains a PAS 

sensing domain that coordinates b-type heme and signals in response to the 

binding of O2, CO or NO. PAS-heme structures suggest that Aer2 uniquely 

coordinates heme via a His residue on a 310 helix (H234 on EK), stabilizes O2 

binding via a Trp residue (W283), and signals via both W283 and an adjacent 

Leu residue (L264). Ligand binding may displace L264 and reorient W283 for 

hydrogen-bonding to the ligand. Here we clarified the mechanisms by which 

Aer2-PAS binds heme, regulates ligand-binding, and initiates conformational 

signaling. H234 coordinated heme, but additional hydrophobic residues in the 

heme cleft were also critical for stable heme-binding. O2 appeared to be the 

native Aer2 ligand (Kd of 16 PM). With one exception, mutants that bound O2 

could signal, whereas many mutants that bound CO could not. W283 stabilized 

O2-binding, but not CO-binding, and was required for signal initiation; W283 

mutants that could not stabilize O2 were rapidly oxidized to Fe(III). W283F was 

the only Trp mutant that bound O2 with WT affinity. The size and nature of 

residue 264 was important for gas binding and signaling: L264W blocked O2 

binding, L264A and L264G caused O2-mediated oxidation, and L264K formed a 

hexa-coordinate heme. Our data suggest that when O2 binds to Aer2, L264 may 

move concomitantly with W283 to initiate the conformational signal. The signal 

then propagates from the PAS domain to regulate the C-terminal HAMP and 

kinase control domains, ultimately modulating a cellular response.  
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Importance 

Pseudomonas aeruginosa is a ubiquitous environmental bacterium and 

opportunistic pathogen that infects multiple body sites including the lungs of 

cystic fibrosis patients. P. aeruginosa senses and responds to its environment via 

four chemosensory systems. Three of these systems regulate biofilm formation, 

twitching motility and chemotaxis. The role of the fourth system, Che2, is unclear 

but has been implicated in virulence. The Che2 system contains a 

chemoreceptor called Aer2, which contains a PAS sensing domain that binds 

heme and senses oxygen. Here we show that Aer2 uses unprecedented 

mechanisms to bind O2 and initiate signaling. These studies provide both the first 

functional corroboration of the Aer2-PAS signaling mechanism previously 

proposed from structure, as well as a signaling model for Aer2-PAS receptors. 

 

Introduction 

Pseudomonas aeruginosa is a common environmental bacterium and a 

significant cause of opportunistic human disease. It survives in complex 

environments with the aid of 26 chemoreceptors and four chemosensory systems 

that collectively sense environmental conditions and modify bacterial behavior. 

The roles of three of these chemosensory systems are known: one modulates 

type IV pili production and twitching motility (Pil-Chp system), another controls 

biofilm formation (Wsp system), and a third regulates flagella-mediated 

chemotaxis (Che system) (Kato et al., 2008, Sampedro et al., 2014). The role of 

the fourth chemosensory system, Che2 (PA0173-PA0179), is currently unknown. 
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Che2 expresses a complete set of chemosensory proteins (CheY2, CheA2, 

CheW2, CheR2, CheD and CheB2), including a chemoreceptor (PA0176) called 

Aer2 (previously called McpB). Aer2 was so named because it, along with 

classical Aer, was observed to mediate aerotaxis by P. aeruginosa (Hong et al., 

2004b). However, we, and others, have not observed Aer2-mediated chemotaxis 

or aerotaxis in P. aeruginosa (Watts et al., 2011b, Guvener et al., 2006). 

Moreover, it is now understood that the response regulators (CheY proteins) of 

Che2-like systems do not bind to the bacterial flagella motor protein, FliM, to 

modulate swimming behavior [(Biswas et al., 2013, Hyakutake et al., 2005, 

Dasgupta & Dattagupta, 2008) and Watts et al., unpublished data]. This suggests 

that the primary role of Che2 is something other than the control of chemotaxis or 

aerotaxis. Notably, a role for Che2 in virulence has been suggested (Garvis et 

al., 2009, Schuster et al., 2004). 

 The Che2 chemoreceptor, Aer2, has no membrane-spanning segments. 

However, during the early stationary phase of P. aeruginosa growth, Che2 

proteins form a cluster at the cell pole that is held together solely by Aer2 

(Guvener et al., 2006, Schuster et al., 2004). Importantly, Che2 proteins do not 

co-localize with Che (chemotaxis system) proteins (Guvener et al., 2006). Aer2 

has an unusual architecture with a PAS sensory domain sandwiched between 

three N-terminal and two C-terminal HAMP domains (Fig. 22a). These domains 

precede a kinase control module that is typical of methyl-accepting 

chemoreceptors. The kinase control module has four predicted methylation sites 

(QEEE) and a C-terminal pentapeptide (GWEEF) for binding the adaptation 



 

99 

enzymes CheR2, CheB2 and CheD [Fig. 22a, (Garcia-Fontana et al., 2014)]. In 

P. aeruginosa, receptor deamidation/demethylation by CheB2 (and possibly 

CheD), as well as methylation by CheR2, is expected to fine-tune Aer2-mediated 

responses. The kinase control module of Aer2 has significant sequence identity 

with the kinase control modules of the major Escherichia coli chemoreceptors. 

Thus, Aer2 is able to control the E. coli chemotaxis pathway through direct 

interactions with the E. coli adapter protein, CheW, and the histidine kinase, 

CheA (Watts et al., 2011b). When Aer2 is expressed in otherwise 

chemoreceptor-less E. coli, it mediates repellent tumbling (signal-on) responses 

to O2, CO and NO (Watts et al., 2011b). Gas-bound Aer2 causes rapid 

autophosphorylation of bound CheA with subsequent  

phospho-transfer to CheY. Phospho-CheY in turn binds to the E. coli flagellar 

switch protein, FliM, causing a directional change in flagellar rotation from 

counterclockwise to clockwise, resulting in E. coli tumbling.  

The Aer2 gas response is initiated in the PAS (Per-ARNT-Sim) domain, 

which itself binds penta-coordinate b-type heme (Watts et al., 2011b). PAS 

domains are common sensing and signaling domains in nature. They have a 

broadly conserved structure that consists of a central antiparallel E-sheet with 

five E-strands (AE, BE, GE, HE, and IE) flanked by several D-helices (CD, DD, ED, 

and FD) (Moglich et al., 2009b). 
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Figure 22. P. aeruginosa Aer2 and the structure of its PAS domain. (a) Model of 
an Aer2 dimer showing the PAS domain sandwiched between three N-terminal 
and two C-terminal HAMP domains. The C-terminal kinase control domain has four 
predicted methylation sites (QEEE) and a C-terminal pentapeptide (GWEEF) for 
binding adaptation enzymes. (b) Crystal structure of the Aer2 PAS domain in 
cartoon form with heme cofactor (shown as red sticks) and bound cyanide (shown 
as spheres) (PDB: 3VOL, (Sawai et al., 2012)). The Fe-CN bond angle is 137q 
(Sawai et al., 2012). The side chains of three amino acids relevant to this study, 
H234, L264 and W283 are shown as sticks. For clarity, the PAS structure is shown 
rotated 180 degrees around the x-axis compared with the orientation in Fig. 22a. 
(c) Cyanide-bound heme and a structural overlay showing the locations of the L264 
and W283 side chains in both the unliganded (Fe3+ heme, grey side chains, PDB: 
4HI4, (Airola et al., 2013a)) and liganded (Fe3+-CN heme, colored side chains 
(Sawai et al., 2012)) Aer2 PAS domain. The position of the W283 nitrogen, which 
is predicted to bond with O2, is shown in blue. Abbreviations: res, residue; CN, 
cyanide. 
 

 

There are currently two structures for the Aer2 PAS domain: one contains 

cyanide bound to ferric heme [cyanomet, Fe3+-CN, PDB: 3VOL, (Sawai et al., 

2012), Fig. 22b], and the other contains unliganded ferric heme [Fe3+, PDB: 4HI4, 

(Airola et al., 2013a)]. These structures revealed several unusual PAS features, 

including an extended CD/DD helix, a short 310 helix called EK (that replaces ED), 
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heme coordination via a His residue on EK, and potential O2 stabilization via the 

indole group of a Trp residue on IE (Fig. 22b). In contrast, other PAS domains 

with b-type heme, like those in E. coli DOS (EcDOS) or Sinorhizobium meliloti 

FixL (RmFixL), coordinate heme with a His residue on the FD helix, and stabilize 

O2-binding via an Arg residue on GE (Gilles-Gonzalez & Gonzalez, 2005). The 

two Aer2 PAS structures represent non-physiological heme states (cyanomet 

and ferric heme), but they do represent structures with and without ligand, and 

overlaying these two structures highlights several residues that may be important 

for conformational signaling. In the absence of ligand, the IE Trp residue W283 

appears to rotate ~90q, and an adjacent Leu residue, L264 on Hβ, contracts 

towards the heme iron center to occupy the position where CN- was bound [Fig. 

25c, (Airola et al., 2013a)]. The heme itself appears to shift ~2.0 Å upon ligand 

binding and the heme pocket adjusts accordingly (Airola et al., 2013a).  

The Aer2 PAS domain is flanked on either side by poly-HAMP units (Fig. 

22a). Individual HAMP domains form parallel four-helix bundles that are 

commonly found in prokaryotic proteins as signal-transducing modules (Dunin-

Horkawicz & Lupas, 2010). In Aer2, there appears to be minimal PAS-HAMP 

interactions and, overall, Aer2 assumes a linear domain arrangement [Fig. 22a, 

(Airola et al., 2013a)]. This contrasts with the aerotaxis receptor, Aer, where side-

on PAS-HAMP interactions allow PAS to control HAMP signaling state through 

direct interactions (Garcia et al., 2016). For Aer2, several structures have been 

solved for the N-terminal HAMP domains (Airola et al., 2013c, Airola et al., 

2010b). Those structures show that HAMP 1 is separated from HAMP 2-3 by a 
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helical extension (Airola et al., 2010b, Airola et al., 2013c). HAMP 1 is also 

largely dispensable for Aer2 function (Watts et al., 2011b). In contrast, N-terminal 

HAMP 2-3, and C-terminal HAMP4-5, each form integrated di-HAMP units that 

are indispensable for Aer2 function (Airola et al., 2010b, Watts et al., 2011b). The 

HAMP 1 and HAMP 2 structures represent signal-on and signal-off states, 

respectively (Airola et al., 2013c), lending support to the hypothesis that poly-

HAMP chains relay signals by inter-converting HAMP signaling states along the 

HAMP chain.   

Based on experimental evidence, our current signaling model for Aer2 

includes the following features: Aer2 PAS-heme binds O2, generating a 

conformational signal that is transmitted to the PAS IE strand (Airola et al., 

2013a, Watts et al., 2011b, Sawai et al., 2012). N-terminal HAMP 2-3 do not 

transmit signals, but function to stabilize the PAS signaling state by altering their 

conformations in response to PAS ligand binding (Watts et al., 2011b, Airola et 

al., 2013c). The PAS conformational signal is transmitted to C-terminal HAMP 4-

5, which together function as a unit to inhibit signaling from the kinase control 

module (Watts et al., 2011b). Therefore, without a PAS ligand, the kinase control 

module conveys the signal-off state; but in the presence of PAS ligand, HAMP 4-

5 no longer inhibits the kinase control module, resulting in a signal-on output and 

the autophosphorylation of bound CheA2. Without HAMP 4-5, the default state of 

the isolated kinase control module is signal-on (Watts et al., 2011b). The purpose 

of the current study is to clarify the mechanisms used by the Aer2 PAS domain to 

bind heme, regulate ligand binding, and initiate conformational signaling. We 
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provide evidence that i) the EK His coordinates heme binding, ii) the hydrophobic 

heme pocket is crucial for stable heme binding, iii) O2 is the native ligand of the 

Aer2 PAS domain, iv) the unprecedented IE Trp stabilizes O2-binding but not CO-

binding, and plays a pivotal role in signal initiation, and v) the Hβ Leu and other 

conserved PAS residues are important for heme binding, stable gas binding and 

signal transduction.  

 

Results 

Aer2 PAS Coordinates Heme with a Uniquely Positioned Histidine Residue  

Structural studies suggest that the Aer2 PAS domain from P. aeruginosa 

coordinates b-type heme via a His residue (H234) that resides on a short EK 

helix [Fig. 22b, (Sawai et al., 2012, Airola et al., 2013a)]. In contrast, other PAS 

domains coordinate b-type heme with a His residue on the PAS FD helix (Gilles-

Gonzalez & Gonzalez, 2005, Kerby et al., 2008). Notably, EK and FD His 

residues are both highly conserved in Aer2-PAS homologs (Figs. 23a and S2). 

To test the contributions of each histidine to heme binding in P. aeruginosa Aer2, 

H234A (EK His), H239A (FD His) and H234A/H239A, were introduced into the 

PAS peptide, Aer2[173-289]. Aer2[173-289] is expressed with an N-terminal 6x-

His tag and contains all necessary PAS heme-binding components (Watts et al., 

2011b). The purified PAS-H234A peptide showed a significant heme-binding 

defect, whereas PAS-H239A retained wild-type (WT) heme content (Figs. 23b 

and c). This confirms that the EK His is the predominant means of coordinating 

heme in Aer2. However, 20% of PAS-H234A molecules retained heme, and 
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PAS-H234A/H239A exhibited a significant decrease in heme content versus 

H234A alone (Fig. 23c, 6% heme, p <0.05). The dual His replacement peptide 

thus has a lower heme affinity, suggesting that H239 might contribute to heme 

coordination in the absence of H234.  

To determine the effect of the His substitutions on Aer2 signaling, 

mutations encoding H234A and H239A were introduced separately into full-

length aer2 in an E. coli expression plasmid. Both Aer2 mutants had steady-state 

expression levels comparable with WT Aer2 (Fig. 24a). When WT Aer2[1-679] is 

expressed in chemoreceptorless E. coli BT3388, it directs E. coli to tumble in the 

presence of O2 because Aer2 signaling activates the E. coli chemotaxis cascade 

(Watts et al., 2011b). When O2 is replaced with N2, Aer2 no longer signals, and 

after 5-10 sec, BT3388 cells resume smooth-swimming behavior (~2% of the 

cells tumble at any time) (Watts et al., 2011b). BT3388 cells expressing Aer2-

H239A behaved like cells expressing WT Aer2: cells tumbled in air (20.9% O2) 

and had smooth-swimming behavior in N2. In contrast, Aer2-H234A orchestrated 

tumbling in air like WT Aer2, but cells remained tumbling-biased in N2 (~60% of 

cells tumbled in N2 versus ~2% for WT Aer2). Aer2-H234A therefore has a 

signal-on bias (Fig. 25a). The partial response may reflect the ability of a small 

proportion of heme-retaining molecules to respond to O2 changes. 
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Figure 23. Heme coordination in the Aer2 PAS domain. (a) Location of the EK 
(H234) and FD His (H239) side chains in the cyanomet structure of the Aer2 PAS 
domain (Sawai et al., 2012). Aer2-PAS structures indicate that the EK His 
coordinates heme (Sawai et al., 2012, Airola et al., 2013a), whereas the FD His 
coordinates heme in other PAS-heme proteins (Gilles-Gonzalez & Gonzalez, 
2005, Kerby et al., 2008). Both His residues are highly conserved in Aer2-PAS 
homologs (see Fig. S2). (b) Purified Aer2 PAS[173-289] peptides (imidazole 
bound, 2.6 to 4 mg ml-1) showing less red color in Aer2-H234A and Aer2-
H234A/H239A compared with WT Aer2 and Aer2-H239A. (c) Heme content of PAS 
peptides with EK and FD His replacements, given as a percentage of WT PAS 
heme content, corrected for peptide concentration (see Materials and Methods). 
Abbreviations: CN, cyanide; WT, wild-type. 
 

 
When WT Aer2 is expressed in E. coli, cells respond to both O2 and CO (Watts et 

al., 2011b). To test for a CO response, E. coli BT3388 cells expressing Aer2 are 

monitored in CO temporal assays. In these assays, cells are perfused with N2 (to 

remove O2) until they resume smooth swimming, after which CO is perfused for 

10 seconds. If the receptor can respond to CO, cells tumble, and continue to 

tumble for up to 30 sec after CO has been removed (Watts et al., 2011b). To 
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determine if Aer2-H239A can respond to CO, cells expressing Aer2-H239A were 

perfused with CO under anaerobic conditions. Similar to WT Aer2, cells 

expressing Aer2-H239A responded to CO by tumbling, and the tumbling 

persisted for ~30 seconds after CO was removed. However, a CO response 

could not be determined for Aer2-H234A, because cells expressing Aer2-H234A 

tumbled too extensively in the absence of O2.  

 

 PAS Structures Suggest a Possible Signaling Mechanism 

Two PAS domain structures currently exist for Aer2, one with cyanide 

bound to ferric heme [cyanomet, Fe3+-CN (Sawai et al., 2012)], and another 

containing ferric heme without ligand [ferric heme, Fe3+ (Airola et al., 2013a)]. 

The ligand-bound structure suggests that Aer2 stabilizes O2 binding via a Trp 

residue on the PAS IE strand [W283, Fig. 23, (Sawai et al., 2012)]. Moreover, an 

overlay of the two PAS structures suggests that both the Iβ Trp and an adjacent 

Leu residue on Hβ (L264) reorient in response to ligand binding. In the absence 

of ligand, the indole group of the IE Trp may rotate ~90q, whereas the adjacent 

Hβ Leu residue contracts towards the heme iron center to occupy the position 

where CN- was bound [Fig. 23c, (Airola et al., 2013a)]. To determine the 

importance of W283 and L264 for Aer2 sensing and signaling, we performed site-

directed random mutagenesis on each residue and analyzed the effects on 

receptor function, heme binding and ligand binding.  
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Figure 24. Steady-state cellular levels of full-length Aer2 proteins and PAS 
peptides in E. coli. (a) Steady-state levels of full-length Aer2 proteins compared 
with WT Aer2[1-679] in E. coli BT3388. Aer2 expression was induced with 50 μM 
IPTG and protein levels were determined from Western blots, an example of which 
is shown in the inset box. Lanes are from the same gel; intervening lanes are 
represented by white space. (b) Steady-state levels of PAS peptides compared 
with WT PAS[173-289] in E. coli BL21(DE3). Aer2 peptide expression was induced 
with 100 μM IPTG and protein levels were determined from Western blots (see the 
example in the inset box. Lanes are from the same gel; intervening lanes are 
represented by white space). Error bars represent the standard deviation from 
multiple experiments. 
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Figure S2. WebLogo sequence alignment of 100 Aer2 PAS domain-like 
sequences. Sequence homologs were acquired by performing an NCBI protein 
BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) against P. 
aeruginosa PAO1 Aer2 residues 175-290, and the top 100 sequences were 
aligned to create a WebLogo (http://weblogo.berkeley.edu (Crooks et al., 2004)). 
The overall height of each letter stack indicates the sequence conservation at that 
position (measured in bits), while the height of each letter within the stack indicates 
the relative frequency of each amino acid at that position. Error bars are provided 
at twice the height of sample correction for positions with limited sequence 
information. Asterisks indicate the 16 conserved residues that were selected for 
site-directed alanine mutagenesis.  
 
 
 

The IE Trp is Important for Gas Binding and Signal Initiation 

The PAS IE Trp is 100% conserved in 100 Aer2 PAS-like sequences (Fig. 

S2) and may be essential for stabilizing heme-O2 binding. To determine the role 

of the IE Trp in P. aeruginosa Aer2, we performed site-directed random 

mutagenesis on the W283 codon in the construct that expresses full-length Aer2. 
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Expression was induced in E. coli BT3388 with 200 PM IPTG and individual 

mutants were screened under the microscope for behavioral defects. Mutants 

with non-WT behavior were sequenced to determine the amino acid substitution 

at W283. After several rounds of mutagenesis and screening, 12 amino acid 

changes were identified at W283 that altered behavior (Fig. 25a). W283H and 

W283Y were not identified during the screen, but they were specifically 

engineered since these amino acids stabilize O2-binding in other heme proteins 

(Podust et al., 2008, Kloek et al., 1994, Olson et al., 1988). W283A was similarly 

not identified during screening, but was created as part of the PAS alanine 

mutagenesis described below. All 15 of the W283 mutant proteins were stably 

expressed in E. coli BT3388 (Fig. 24a), but 12 of the receptors were signal-off 

receptors that did not respond to the addition or removal of O2 (Fig. 25a). Cells 

expressing these receptors swam smoothly in both the presence and absence of 

O2, even after induction with 1 mM IPTG to produce high cellular levels of Aer2. 

In contrast, cells expressing Aer2-W283F, L or I retained some functionality (Fig. 

25a). Aer2-W283F and Aer2-W283L were signal-on biased mutants that 

orchestrated tumbling in air like cells expressing WT Aer2, but when air was 

removed, 50-80% of the cells continued to tumble (Fig. 25a). Cells expressing 

Aer2-W283I had an inverted phenotype where ~50% of the cells tumbled in N2, 

but became smooth swimming after ~30 seconds in air. Heme-CO binding does 

not require amino acid stabilization and should not require W283. However, only 

two of the 15 W283 mutants, Aer2-W283I and Aer2-W283V, responded to CO 

(Fig. 25a).Cells expressing these mutants tumbled when CO was added in either 
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N2 or air. It was not possible to determine whether cells expressing Aer2-W283F 

or Aer2-W283L responded to CO, because cells expressing these mutants 

tumbled too extensively to determine a CO response.  

 

 

Figure 25. Aer2 mutant phenotypes in temporal assays. (a) Effects of amino acid 
substitutions on Aer2-mediated behavior in E. coli BT3388. Signal-off mutants 
exhibited random swimming behavior (~2% tumbling) in both air and N2, whereas 
signal-on mutants tumbled constantly in both air and N2. Neither signal-off nor 
signal-on mutants responded to the introduction or removal of O2. Signal-off biased 
mutants responded to the introduction of O2 but adapted, unlike WT Aer2 in 
BT3388, which remains signal-on in the presence of O2. Signal-on biased mutants 
responded to the removal of O2, but at least 50% of the cells continued to tumble 
in N2. Residue substitutions marked by an asterisk resulted in receptors that could 
respond to CO, i.e., they directed cell tumbling in the presence of CO. CO 
responses could not be determined for signal-on biased and signal-on mutants. (b) 
Alanine mutants mapped onto the cyanomet structure of Aer2. Original side chains 
are shown as color-coded sticks based on the O2 responses listed in Fig. 25a.   
 

 

 To determine the O2 and CO binding affinities of W283 mutants, W283-

encoding mutations were transferred into the Aer2-PAS expression construct, 
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Aer2[173-289], and the PAS peptides were purified on Ni-NTA agarose. W283 

mutants that were analyzed included those that responded to O2 or CO, and 11 

of the signal-off mutants; these were compared with WT Aer2 (which was 

determined to have an O2 Kd of 16 PM, and a CO Kd of 2 PM; see Fig. S3 for WT 

O2 and CO titrations). Unexpectedly, PAS peptides for nine of the 11 W283 

signal-off mutants exhibited very low heme content when purified (3-37.5% of WT 

heme levels, Fig. 26a) and gas-binding affinities could not be determined. To test 

whether these heme-binding defects were also present in full-length receptors, 

we purified full-length Aer2-W283Y and Aer2-L264N (see below), both of which 

had PAS peptides with heme-binding defects (Fig. 26a). Neither of the purified 

full-length receptors showed heme binding (data not shown). The other signal-off 

mutants, W283C and W283V, had sufficient heme content to analyze (Fig. 26a). 

Aer2-W283C and Aer2-W283V did not respond to O2 and did not bind it; during 

O2 titrations, both mutants exhibited met-heme spectra with rapid oxidation from 

Fe(II) to Fe(III) heme (Fig. S3c; met-heme spectra were independently verified by 

oxidizing proteins with potassium ferricyanide and comparing with the spectra 

from O2 titrations). However, both mutants bound CO with WT affinity, and Aer2-

W283V was able to respond to it (Figs. 25a and 26b). Of the three W283 mutants 

that responded to O2 in the behavioral assay (Aer2-W283F, L and I), only Aer2-

W283F appeared to bind O2, and its O2 affinity was similar to that of WT Aer2-

PAS (Fig. 26b). In contrast, Aer2-W283L and Aer2-W283I both responded to O2, 

but purified PAS peptides with these substitutions did not bind O2 (Figs. 25 and 

26b) and were rapidly oxidized from Fe(II) to Fe(III) heme. Sawai et al. similarly 
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reported that purified full-length Aer2-W283L does not bind O2 (Sawai et al., 

2012). 

 

 

Fig. 26. PAS peptide heme content and gas binding affinities. (a) Heme content of 
PAS peptides with amino acid substitutions, given as a percentage of WT PAS 
heme content, corrected for peptide concentration (see Materials and Methods). 
Values below 40% indicate a substantial heme-binding defect. Aer2[173-289]-
L264P contained no measureable heme. (b) PAS peptide O2 and CO binding 
affinities. A dash (-) indicates that O2- or CO-bound spectra were not observed, so 
binding affinities could not be determined. 
 
 
 
It is possible that O2 binding to these mutants is too transient to observe during in 

vitro O2 titrations, but sufficiently stable in vivo to generate a behavioral 

response. All of the W283 mutants tested bound CO, and with similar affinities to 

WT Aer2 (Fig. 26b), irrespective of whether the corresponding full-length 

receptors responded to CO or not (Fig. 25). Overall, these data indicate that the 

IE Trp is important for stable heme- and O2-, but not CO-binding, and is important 

for signal initiation in the Aer2 PAS domain.  
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Figure S3. Examples of gas titrations using 10 PM purified Aer2[173-289] PAS 
peptides. (a-b) WT deoxy PAS peptide titrated with O2 (a) and CO (b). (c) Deoxy 
PAS-W283V peptide titrated with O2, showing rapid met-heme formation. The 
designation of met-heme instead of oxy-heme was verified spectrophotometrically 
after oxidizing PAS peptides with potassium ferricyanide and comparing the 
spectra. (d) Deoxy spectra of WT Aer2-PAS and Aer2-L264K. Aer2-L264K exhibits 
E and D bands (526 and 558 nm, respectively), which is indicative of hexa-
coordinate heme, whereas WT Aer2 has a single broad band with a 558 nm 
maxima (see enlarged inset), which is indicative of penta-coordinate heme.  
 

 

Substitutions at the Hβ Leu Alter Gas Binding and Signaling 

Aer2 PAS structures suggest that the Hβ Leu residue, L264, may be 

involved in initiating PAS signaling (Airola et al., 2013a). The L264 side chain 

appears to occupy the PAS ligand-binding site but swings out of the site when 

ligand binds [Fig. 22c, (Airola et al., 2013a)]. The Hβ Leu is well conserved in 
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Aer2 PAS-like sequences, but other hydrophobic amino acids are also found at 

the same position, primarily Val and, to a lesser extent, Ile (Fig. S2). To 

determine if Aer2 can function with Val at 264, Aer2-L264V was engineered by 

site-directed mutagenesis. Full-length Aer2-L264V mediated an O2 response, but 

exhibited a 30 second delayed smooth-swimming response in N2, and did not 

respond to CO. Therefore, Aer2 can function with Val at 264, but the behavioral 

response is restricted to O2. Notably, PAS-L264V bound O2 and CO with affinities 

that were similar to WT (Fig. 26b).  

To determine whether other replacements at L264 affect the O2 response, 

we performed site-specific random mutagenesis on the L264 codon and 

screened for defective mutants as outlined for W283 above. L264A was not 

identified during the screen, but was created as part of the PAS alanine 

mutagenesis described below. After several rounds of mutagenesis and 

screening, 12 amino acid substitutions were identified at L264 that altered the O2 

response (Fig. 25a). All of these mutants were stably expressed in E. coli 

BT3388 (Fig. 24a). Eight of the mutants were non-functional, signal-off mutants 

(Fig. 25a), even after induction with 1 mM IPTG. In contrast, Aer2-L264A was 

locked signal-on, causing cells to tumble constantly in air and in N2 (Fig. 25a). 

The remaining three mutants, Aer2-L264F, I and Q, were signal-off biased 

mutants that responded to O2 (Fig. 25a; Ile shows some conservation at this 

position, see Fig. S2). Cells expressing Aer2-L264I and Aer2-L264Q had WT O2 

responses, whereas cells expressing Aer2-L264F had a reduced tumble 

response to O2 (~60% of cells tumbled). However, all three mutants adapted to 
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O2 (cells became less tumble-biased) over the course of several minutes. Only 

one of the L264 mutants, Aer2-L264F, tumbled in response to the addition of CO 

(Fig. 25a; this mutant also responded to O2). A CO response could not be 

determined for Aer2-L264A because cells expressing this Aer2 variant tumbled 

constantly in the presence and absence of O2.  

To determine the O2 and CO binding affinities of the L264 mutants, L264-

encoding mutations were transferred to the Aer2 PAS peptide Aer2[173-289] and 

the peptides were purified on Ni-NTA agarose. L264 mutants that were analyzed 

included those that responded to O2 or CO, the signal-on mutant Aer2-L264A, 

and five of the signal-off mutants; these were compared with WT Aer2-PAS (Fig. 

26). Four of the mutants expressed PAS peptides that contained very low heme 

content when purified. This included three of the signal-off mutants, L264N, P 

and W, and one of the functional mutants, L264Q (0-37% of WT heme levels, 

Fig. 26a). Gas-binding affinities could not be determined for PAS-L264N, P and 

Q, but were determined for PAS-L264W, due to higher peptide purity. PAS-

L264P showed no detectable heme spectra, even after scanning concentrated 

(135 PM) protein. There was no defect in the steady-state cellular expression 

level of PAS-L264P (Fig. 24b). Of the remaining L264 mutants, three bound O2 

and CO (L264F, I and V), three bound CO but not O2 (L264A, G and W), and one 

bound neither gas (L264K) (Fig. 26b). The three L264 mutants that bound O2 

(L264F, I and V) also responded to it. In contrast, PAS-L264G, I, V, and W all 

bound CO, but did not respond to it. Of the L264 mutants that did not stably bind 

O2, PAS-L264A and PAS-L264G were rapidly oxidized by O2, and PAS-L264K 
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was slowly oxidized by O2. In contrast, PAS-L264W showed no shift in its soret 

maxima during O2 titrations, suggesting the absence of heme-O2 interactions. 

This finding lends support to the hypothesis that L264 must move out of the 

ligand-binding site to allow for O2 binding. However, L264W still allowed CO-

binding, indicating that the CO-binding angle (perpendicular to the plane of the 

heme) was permitted (Fig. 26b). 

Of all the mutants in this study, the signal-off mutant, Aer2-L264K, was the 

only mutant that did not bind either O2 or CO. Moreover, the deoxy spectra of 

PAS-L264K contained a E band and a prominent D band (Fig. S3d), suggesting 

the formation of a hexa-coordinate heme. This would entail coordination to H234 

on the proximal side of the heme, as well as coordination on the distal side, quite 

possibly by the amino group of lysine [e.g., Lys can coordinate heme in place of 

Met in cytochrome c-550 (Worrall et al., 2005)]. This differs from WT deoxy-Aer2, 

which contains penta-coordinate heme [Fig. S3d, (Watts et al., 2011b)].  

 

Aer2 Signaling is Disrupted by Alanine Replacements at Conserved 

Residues 

To complement the mutagenesis experiments on W283 and L264, 16 

residues that are highly conserved in Aer2 homologs (Fig. S2, marked by 

asterisks), were selected for site-directed alanine mutagenesis (A178 was 

instead substituted with Val). Conserved Gly residues that are structural 

elements at turns were excluded. The results for L264A and W283A were 

discussed above. Most of the mutants exhibited stable steady-state expression 
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levels in E. coli BT3388 (Fig. 24a). However, 10 of the 16 Ala mutants were 

signal-off mutants and did not respond to either O2 or CO (Fig. 25). This included 

the four heme cleft mutants that were tested: M187A, I195A, F220A, and F233A. 

In contrast, Aer2-A178V, Aer2-P237A, and Aer2-Q240A mediated WT responses 

to both O2 and CO (Fig. 25). Aer2-D231A similarly orchestrated WT-like 

responses to O2 and CO, but had a 30 second delayed smooth-swimming 

response in N2 after O2 was removed. Overall, the Ala mutants that had WT or 

signal-on biased behavior congregated on the EK and FD helices (Fig. 25b, 

orange and yellow residues). Very few signal-on mutants were identified in this 

study. Aer2-T287A, like Aer2-L264A, was a signal-on mutant that caused cells to 

tumble constantly in both air and N2. Because of this, a CO response could not 

be determined for Aer2-T287A. L264 and T287 both reside on the PAS E-sheet, 

which is the signal-output surface of the PAS domain (Airola et al., 2013a, 

Moglich et al., 2009b).  

 To determine gas-binding affinities for the four heme-pocket mutants 

(M187A, I195A, F220A, and F233A), relevant mutations were transferred to the 

construct expressing Aer2[173-289] and the PAS peptides were purified. PAS 

peptides with I195A and F233A had severe heme-binding defects (Fig. 26a), 

even though neither of these mutants had steady-state expression defects (Fig. 

24b). In contrast, PAS peptides with M187A and F220A both bound heme (Fig. 

26a), and could bind CO (Fig. 26b), yet neither mutant responded to CO. Aer2-

F220A neither bound nor responded to O2, whereas Aer2-M187A bound O2 with 

WT affinity, but was also rapidly oxidized by O2 (Fig. 26A). Sawai et al. similarly 
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reported that full-length Aer2-M187A binds O2 (Sawai et al., 2012). Aer2-M187A 

was the only mutant in this study that bound, but did not respond, to O2.  

 

Signal-on Behavior is Independent of Aer2 Methylation 

When WT Aer2 is expressed in E. coli, it does not adapt to O2. This is 

because Aer2 is methylated by the E. coli methyltransferase, CheR, but it is not 

demethylated by the E. coli methylesterase, CheB (Watts et al., 2011b). When 

WT Aer2 is expressed in an E. coli strain lacking CheR and CheB, Aer2 remains 

unmethylated and the cells have a low tumbling frequency [~5% of cells tumble in 

O2, (Watts et al., 2011b)]. Hence, robust signal-on behavior requires receptor 

methylation. In this study, two locked signal-on mutants (L264A and T287A) and 

three signal-on biased mutants (H234A, W283F and W283L) were identified. To 

determine if their phenotypes were dependent on receptor methylation, full-length 

receptors containing each of these amino acid substitutions were expressed in E. 

coli UU2610, which lacks all E. coli chemoreceptors, as well as CheR and CheB 

(Zhou et al., 2011). In UU2610, the tumbling bias of Aer2-L264A decreased 

~20% in both air and in N2. However, the tumbling biases of the other four 

mutants were not diminished by the lack of receptor methylation in UU2610. This 

suggests that the signal-on biases of these receptors are primarily due to the 

amino acid changes in the PAS domain and not receptor methylation status.  
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Discussion 

The EK Histidine Coordinates Heme in the Aer2 PAS Domain 

Crystal structures of the Aer2 PAS domain identify the EK His (H234) as 

the proximal heme coordinating ligand (Sawai et al., 2012, Airola et al., 2013a). 

This differs from the PAS domains of RmFixL, EcDOS, Acetobacter xylinium 

PDEA-1 (AxPDEA-1), and Burkholderia xenovorans RcoM, where, in each case, 

an FD His residue coordinates b-type heme (Gilles-Gonzalez & Gonzalez, 2005, 

Kerby et al., 2008). Although the FD His is well conserved in Aer2-PAS homologs 

(Fig. S2), in P. aeruginosa Aer2 it resides ~10 Å from the heme Fe, in contrast to 

the EK His, which lies ~2 Å away. In the current study, the FD His substitution, 

H239A, did not affect PAS heme content or behavioral responses. In contrast, 

the EK His substitution, H234A, imposed substantial heme-binding and 

behavioral defects (Fig. 23), confirming that it is the proximal coordinating His of 

Aer2. However, Aer2-H234A had a signal-on bias, unlike all other heme-binding 

mutants in this study, which were signal-off or signal-off biased. In addition, the 

80% heme-loss in PAS-H234A is less than that observed for other PAS-heme 

domains when the proximal coordinating His is replaced. For example, His 

substitutions in RcoM result in <1% heme (Kerby et al., 2008) and a His to Ala 

substitution in the Aer2 PAS-2 domain from Vibrio cholerae results in 2% heme 

(Watts et al., unpublished). In Aer2-PAS, it is unclear how heme might be 

coordinated in the absence of H234, particularly since H239 lies at a more 

remote location at the entrance of the heme cleft. A dual PAS-H234A/H239A 

mutant had significantly less heme than PAS-H234A (Fig. 23), suggesting that 
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FD-H239 might contribute to heme coordination in the absence EK-H234. 

Alternatively, the dual His replacements might distort the heme pocket in a way 

that prevents heme retention. Heme might instead be retained by PAS-H234A 

through hydrophobic pocket interactions. Hydrophobic interactions are sufficient 

to bind b-type hemes in the YybY family proteins from Bacillus and Geobacillus, 

which have no natural proximal heme-coordinating residue in their PAS domains 

(Tan et al., 2013, Rao et al., 2011).  

 

The Hydrophobic Heme Cleft is Critical for Stabilizing Heme Binding in 

Aer2 

  In Aer2-PAS, the heme cleft is a hydrophobic pocket in which the 

imidazole ring of H234 coordinates the heme-Fe, and H251 hydrogen-bonds to 

the heme-7-proprionate (Sawai et al., 2012). In this study, replacing heme-

coordinating H234 caused a substantial heme-binding defect (PAS-H234A 

retained 20% heme, Fig. 23). However, other amino acid substitutions in both the 

proximal (I195A and F233A) and distal (L264N, P, Q and W; W283A, G, H, K, P, 

Q, S, T and Y) heme cleft likewise caused substantial heme-binding defects (0-

37.5% of WT heme content, Fig. 26a). Remarkably, some of these defects were 

greater than that caused by H234A. This suggests that hydrophobic heme cleft 

interactions are critical for stabilizing heme binding in Aer2. On the proximal side 

of the cleft, I195 and F233 both reside ~4Å from, and parallel to, the heme; the 

severe defects caused by Ala substitutions at these residues (0.6-3% heme 

content) shows that moderate perturbations in the PAS heme pocket can alter 
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heme binding. Moreover, perturbations in O2-stabilizing and signaling residues, 

W283 and L264, also affected heme binding. In Bradyrhizobium japonicum FixL, 

replacing the distal O2-stabilizing Arg residue with Ala relaxes heme-protein 

coupling (Dunham et al., 2003); a similar event could be responsible for heme-

loss in PAS-W283 mutants. 

 

Oxygen is the Native Ligand of the Aer2 PAS Domain 

In the absence of imidazole, P. aeruginosa Aer2 purifies in the oxy-bound 

state (Sawai et al., 2012). However, Aer can signal in response to the binding of 

O2, CO and NO (Watts et al., 2011b). This is atypical for heme sensors; they 

often bind all three gases, but typically respond to only one. For example, the 

histidine kinase FixL is inhibited by O2, but not by CO or NO, even though it binds 

these two more tightly (Gilles-Gonzalez et al., 2008). Protohemes generally bind 

O2, CO and NO with relative affinities of 1:103:106 (Tsai et al., 2012a, Tsai et al., 

2012b). In this study, we determined that the O2 and CO affinities of the isolated 

Aer2 PAS domain are 16 PM and 2 PM, respectively (Fig. 26b). The O2 affinity of 

Aer2-PAS is comparable with the O2 affinities of the PAS-heme O2 sensors 

EcDOS (13 PM), AxPDEA-1 (~10 PM), and RmFixL (31 PM) (Delgado-Nixon et 

al., 2000a, Gilles-Gonzalez & Gonzalez, 2005). In the DOS, PDEA-1 and FixL 

PAS domains, a GE Arg residue interacts directly with bound O2: substitutions at 

this residue substantially lower O2 but not CO affinities and affect O2-regulated 

behavior (Tanaka et al., 2007, Dunham et al., 2003). In Aer2, substitutions at the 

IE Trp likewise prevented O2 but not CO binding (Fig. 29b, W283C, I, L and V). 
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Because changes in highly conserved residues predominately affect O2 binding 

properties and responses, these data suggest that O2 is the native ligand of the 

Aer2 PAS domain. We did not test NO binding in this study. However, unlike 

Aer2, heme-NO sensors usually exclude O2-binding; e.g., H-NOX (Heme-Nitric 

oxide/OXygen) proteins that lack hydrogen-bond donors bind NO instead of O2 

(Karow et al., 2004, Kosowicz & Boon, 2013), the PAS-heme domain of YybY is 

rapidly oxidized by O2 (Rao et al., 2011), and nitrophorins exclude O2 by 

maintaining their heme in the Fe(III) state (Jain & Chan, 2003).  

 

The Role of Aer2 PAS Residues in Ligand Binding and Signal Transduction  

The data from this study indicate that the IE Trp, W283, stabilizes O2 

binding to the Aer2 PAS-heme domain. Twelve of 15 W283 mutants, including 

those with amino acids that commonly stabilize O2 binding to other heme 

proteins [His, Tyr and Arg, (Martinkova et al., 2013)], resulted in signal-off Aer2 

receptors that did not respond to O2. For W283 mutants that did not stably bind 

O2 in vitro (W283C, I, L and V), the heme cofactor was rapidly oxidized upon 

exposure to O2 (see Fig. S3c). This has similarly been observed for EcDOS GE 

Arg mutants (Tanaka et al., 2007). Our data also indicate that W283 is critical for 

initiating conformational signaling from the PAS domain. This is perhaps not 

surprising given that the PAS IE strand connects directly to the C-terminal HAMP 

4 domain, and W283 resides close to the PAS “DxT” motif, which has been 

proposed to be involved in conformational signaling (Airola et al., 2013a, Moglich 

et al., 2009b). None of the 15 W283 mutants in this study retained WT function 
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(Fig. 25a) and PAS-W283F was the only Trp mutant that preserved a WT O2 

affinity (Fig. 26b). The side chain of Phe is similar in size to the nitrogen-

containing Trp pyrrole ring that is predicted to hydrogen-bond with heme-bound 

O2. However, Phe lacks a hydrogen-bonding moiety. One possibility is that O2 

binding is supported by a solvent molecule in the distal pocket that acts as a 

hydrogen bond donor; this scenario was observed in a DevS mutant from 

Mycobacterium tuberculosis when the O2-stabilizing Tyr residue was replaced 

with Phe (Yukl et al., 2008). In this study, Aer2-W283F retained partial 

functionality (as a signal-on biased mutant), but Aer2 is clearly fine-tuned to use 

Trp for O2 binding and signal initiation.  

The hypothesis that the Hβ Leu, L264, moves out of the ligand-binding site 

when O2 binds to heme [Fig 22c, (Airola et al., 2013a)], was supported by the 

results of this study. Notably, the bulky Trp substitution, L264W, appeared to 

block O2 binding, and L264K formed a hexa-coordinate heme that did not bind 

O2. However, the Hβ Leu itself was not specifically required for function: Aer2-

L264F and Aer2-L264Q retained some functionality, and L264 substitutions that 

occur in other Aer2 PAS-like homologs, Val and Ile (Fig. S2), resulted in Aer2 

receptors that bound and responded to O2 (Figs. 25 and 26). Interestingly, 

smaller hydrophobic replacements, L264A and L264G, resulted in non-

responsive Aer2 receptors that did not bind O2, and furthermore, were rapidly 

oxidized by it. This suggests that, i) the size of the amino acid at the Hβ Leu is 

important, and ii) Hβ Leu may be choreographed to move concomitantly with the 

IE Trp so that Trp can rotate into place and bond with O2 (see Fig. 22c). Notably, 
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O2 binding alone was not sufficient for PAS signaling. Aer2-M187A bound O2 but 

was unable to respond to it. M187 resides on the Aβ strand, adjacent to W283 on 

Iβ, but it does not exhibit a significant conformational shift between the cyanomet 

and ferric PAS-heme structures. Still, the distortion caused by the Ala 

replacement at residue 187 could feasibly block PAS β-sheet signaling 

rearrangements that are required for downstream signaling.  

Like Aer2-M187A, most of the mutants in this study were signal-off 

mutants that did not respond to O2 or CO (Fig. 25a). The amino acid changes in 

these mutants most likely disengage PAS control of the downstream HAMP 4-5 

unit so that HAMP 4-5 continues to inhibit the activity of the kinase control 

module. D285A specifically disrupts the conserved “DxT” motif that has a 

proposed role in conformational signaling between the PAS and C-terminal 

HAMP domains (Airola et al., 2013a, Moglich et al., 2009b). In Aer2-N199A, the 

Ala substitution could also disrupt interactions between the PAS N-terminal cap 

(N-cap, ADc helix, Fig. 22b) and the PAS core (CD helix); these interactions are 

required for both structural stability (Fig. 24a, N199A was the least stable 

receptor in this study) and for N-cap reorientation during signaling (Key et al., 

2007, Airola et al., 2013a).  

All of the PAS peptides tested in this study (with the exception of PAS-

L264K) bound CO with an affinity that was the same as the WT peptide or better 

(M187A and L264G bound CO in the nanomolar range, Fig. 26b). This is not 

surprising since heme-CO binding does not require amino acid stabilization due 

to its high inherent affinity for heme (Tsai et al., 2012a). However, heme-CO 
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binding did not predict function. Mutants that responded to CO bound it with WT 

affinity (W283I and V, and L264F), but so did many of the mutants that did not 

respond to CO (Figs. 25 and 26). In these latter instances, CO binding apparently 

could not induce the conformational changes required for signal transduction.  

These studies provide insight into the mechanisms used by the Aer2 PAS 

domain to regulate heme-binding, ligand-binding, and initiate conformational 

signaling. The results support the model based on differences between the 

cyanomet and ferric PAS-heme structures, corroborating the roles of W283 and 

L264 in O2-stabilization and PAS signaling [Fig. 22, (Airola et al., 2013a)]. When 

O2 binds to Aer2-PAS, it generates a conformational signal that is transmitted via 

the PAS IE strand to modulate the activity of the C-terminal HAMP and kinase 

control domains. Future studies will test an expanded model whereby O2-

mediated signaling evokes a PAS dimer-to-monomer transition (Airola et al., 

2013a), resulting in the signal-off conformation of HAMP 4, the signal-on 

conformation of HAMP 5 (Airola et al., 2013c), and de-inhibition of the kinase 

control module (Watts et al., 2011b).  

 

Materials and Methods 

Bacterial Plasmids and Strains 

Full-length P. aeruginosa PAO1 Aer2[1-679] (PA0176) was expressed 

from pLH1, a pProEX-derived plasmid that expresses Aer2 with an N-terminal 

His6 tag (Watts et al., 2011b). The Aer2 PAS domain, Aer2[173-289], was 

likewise expressed from pProEX with an N-terminal His6 tag (Watts et al., 
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2011b). Full-length Aer2 was expressed in chemoreceptorless E. coli strains 

BT3388 [tar, tsr, trg, tap, aer (Yu et al., 2002)] and UU2610 [tar, tsr, trg, tap, aer, 

cheR, cheB (Zhou et al., 2011)]. UU2610 also lacks the E. coli adaptation 

enzymes CheR and CheB. Aer2 PAS peptides were expressed in E. coli 

BL21(DE3).  

 

Mutagenesis and Cloning 

Site-directed mutagenesis was performed on pLH1 using site-specific 

primers and PfuUltra II Fusion DNA polymerase (Agilent Technologies, Santa 

Clara, CA). To replace native codons with Ala or Val codons, 30 amplification 

cycles were performed with an annealing temperature of 55 °C. For site-directed 

random mutagenesis, primers containing an equimolar mix of all four nucleotides 

at the L264 or W283 codons were used; however, the amplification conditions 

above consistently created DNA insertions following the primer site. To solve this 

problem, we tested stepwise annealing temperatures from 55 °C to 68 °C and 

analyzed the constructs created. The lowest proportion of DNA inserts occurred 

when 68 °C was used as the annealing temperature and 20 amplification cycles 

were performed. These conditions yielded no obvious bias for codon 

replacements with one, two or three nucleotide changes and were subsequently 

used to create most of the site-specific random mutants identified in this study. 

Site-specific mutagenesis products were treated with DpnI (New England 

Biolabs, Ipswich, MA) to remove template strands and then electroporated into E. 

coli. Aer2 expression was induced with 600 PM IPTG and products of the correct 
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size were confirmed by Western blotting with HisProbe™-HRP (Thermo 

Scientific, Rockford, IL). All mutations were confirmed by sequencing the entire 

coding sequence of aer2.  

To create Aer2-PAS peptides expressing specific amino acid changes in 

the PAS domain, the PAS coding region (residues 173-289) was PCR-amplified 

from pLH1-derived plasmids using PfuUltra II Fusion DNA polymerase. PCR 

products were ligated into the NcoI and SalI sites of pProEX. Peptide expression 

and DNA sequencing was performed as described above.  

 

Steady-State Cellular Aer2 Levels 

The steady-state cellular levels of the full-length Aer2 mutants were 

compared with that of WT Aer2 after inducing BT3388 cells with 50 PM IPTG. In 

contrast, the cellular levels of the PAS peptides were compared with that of WT 

Aer2[173-289] after inducing BL21(DE3) cells with 100 PM IPTG. Samples were 

electrophoresed in duplicate and experiments were repeated on two-four 

separate days. Bands were visualized on HisProbe Western blots and quantified 

on a BioSpectrum® digital imager (UVP, Upland, CA).  

 

Behavioral Assays 

BT3388 cells were grown at 30 °C in tryptone broth containing 0.5 μg ml-1 

thiamine and induced with 200 μM IPTG. At this induction level, the number of 

Aer2 receptors in E. coli is comparable with the total number of chemoreceptors 

in WT E. coli cells (Watts et al., 2011b). Cells were placed into a gas perfusion 
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chamber where the gas was toggled between air (20.9% O2) and N2, and cell 

behavior was analyzed (Rebbapragada et al., 1997a, Taylor et al., 2007). 

Mutants that were signal-off (smooth swimming in air and in N2) were retested 

after induction with 1 mM IPTG to produce higher cellular levels of Aer2. 

Behavioral responses to O2 were repeated two or more times on at least two 

separate days. To determine CO responses, BT3388 cells (induced with 200 μM 

IPTG) were perfused with N2 for 30 sec prior to perfusing with CO gas (>99% 

purity, Sigma-Aldrich, St. Louis, MO), which was added through the open end of 

the chamber for 10 sec. For Aer2-W283I and Aer2-W283V, CO responses were 

also tested while air was being perfused.  

 

Protein Purification 

WT Aer2[173-289]/BL21(DE3) and relevant mutants were grown in LB 

broth, Lennox, containing 25 μg ml-1 5-aminolevulinic acid (Sigma-Aldrich) to 

enhance heme synthesis and incorporation. After 3-5 hours of induction with 600 

μM IPTG, cells were centrifuged at 10,000 x g for 15 minutes and resuspended 

to 1% of their original volume in lysis buffer (50 mM Tris, pH 7.5, 500 mM NaCl 

and 10 mM imidazole) containing 0.3 mg ml-1 lysozyme, 1 μg ml-1 DNase I and 

100 μl of Protease Inhibitor Cocktail for His-tagged proteins (Sigma-Aldrich). The 

cells were lysed by freeze-thawing five times, followed by sonication. Soluble 

protein was acquired by removing cellular debris at low speed (10,000 x g for 20 

min) and the membrane fraction at high speed (485,000 x g for 1 h). The high-

speed supernatant was applied to a Ni-NTA agarose column (Qiagen, Valencia, 
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CA) and allowed to empty by gravity flow. The column was washed with 10 

column volumes of wash buffer 1 (50 mM Tris, pH 7.5, 500 mM NaCl and 20 mM 

imidazole), followed by 8-10 column volumes of wash buffer 2 (50 mM Tris, pH 

7.5, 500 mM NaCl and 50 mM imidazole). Aer2 peptides were eluted by adding 1 

ml of elution buffer (50 mM Tris, pH 7.5, 500 mM NaCl and 250 mM imidazole) to 

the column, but only the red colored fraction was collected. For proteins with no 

obvious red color, two ~0.4 ml elution fractions were collected. Aer2 peptides 

were usually most concentrated in the second eluted fraction. The concentration 

of eluted protein was determined using a BCATM Protein Assay (Thermo 

Scientific) and the quality of the sample was determined by staining SDS-PAGE 

gels with Coomassie Brilliant Blue.  

 

Heme Binding 

The proportion of heme bound to the WT Aer2[173-289] PAS domain was 

determined using a pyridine hemochrome assay [(Appleby & Bergersen, 1980), 

with modifications communicated by M. Gilles-Gonzalez]. Briefly, WT PAS 

peptide and hemin standards (10 to 50 µM) were added to an alkaline pyridine 

solution and scanned from 350 to 700 nm under both dithionite-reduced and 

ferricyanide-oxidized conditions. Heme concentrations were determined from the 

reduced minus oxidized spectra, using an extinction coefficient of 23.4 mM-1cm-1 

for the absorbance difference of A556nm(red) minus A539nm(ox). The heme content 

determined from the pyridine hemochrome assay was used to standardize PAS-

heme concentrations used in ligand-binding assays.  
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To determine whether purified PAS peptides had heme-binding defects, 

10 μM imidazole-bound PAS peptides were scanned from 300 nm to 700 nm in a 

BioMate™ 3S spectrophotometer (Thermo Scientific). Samples were overlaid by 

zeroing at 700 nm and the maximum absorbance of each soret peak was 

determined. Maximum soret absorbances were divided by the maximum soret 

absorbance of the WT PAS peptide. Peptide concentrations were determined by 

electrophoresing 2.5 μg of each purified protein in duplicate on SDS-PAGE as 

outlined above, staining gels with Coomassie Brilliant Blue and quantifying the 

density of each PAS peptide on a BioSpectrum® digital imager. The average 

density of each PAS peptide was divided by the average density of the WT PAS 

peptide (which itself was usually 85-90% pure). The heme-content/peptide ratio 

was then calculated for each mutant and averaged from multiple purifications. 

Ratios below 40% indicated a substantial heme-binding defect from which gas 

affinity constants were generally not determined.  

 

Gas Binding Affinities 

Deoxy-heme was created by adding 0.5 mM dithionite to 4-10 μM 

anaerobic PAS-heme in an anaerobic hood (Coy Laboratory Products, Grass 

Lake, MI). Deoxy-PAS was added to a quartz septum-sealed cuvette (Starna 

Cells, Atascadero, CA) and used directly for CO-binding. For O2 affinities, 

sufficient O2 was added to the cuvette to oxidize the dithionite (as determined 

spectrophotometrically). To create gas-saturated buffers, buffer (50 mM Tris, pH 

8.0, 50 mM KCl and 5% v/v ethylene glycol) was perfused with either CO (Sigma-
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Aldrich) or air. To create 50% CO-saturated buffer, a volume of N2-saturated 

buffer was added to an equal volume of CO-saturated buffer in a Reacti-Vial� 

(Thermo Scientific) and used immediately. Gas solutions were transferred to gas-

tight Hamilton syringes (Hamilton, Reno, NV) and titrated into the deoxy protein 

solution. Stepwise spectra were recorded on a Beckman DU® 650 

spectrophotometer (Beckman Coulter, Brea, CA) after each addition of buffer. 

The amount of bound gas was estimated from the UV/Vis spectrum by linear 

interpolation of the unliganded (Fe2+) and liganded (Fe2+-O2, Fe2+-CO) spectra. 

For WT PAS and most of the PAS mutants, the soret maxima occurred at 428-

432 nm for deoxy heme, 414-416 nm for oxy heme, and 421-422 nm for 

carbonmonoxy heme. After O2 titrations were complete, CO was perfused directly 

into the cuvette to differentiate O2-bound protein from met-heme protein. O2-

bound or ferrous protein, but not ferric protein, showed CO-bound spectra after 

the addition of CO.  

 

Met-Heme Absorption Spectra 

To create met-heme, 50 μM purified PAS peptide was oxidized with 50 μM 

potassium ferricyanide at room temperature for 15 min. To evaluate met-heme 

spectra, samples were purified on a Micro Bio-Spin® column (Bio-Rad, Hercules, 

CA) and scanned spectrophotometrically.  
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CHAPTER 4 

ADDITIONAL FINDINGS 

 
Investigating Aer PAS-HAMP and PAS-Proximal Signaling Domain 

Interactions in Kinase-off and Kinase-on Signaling States 

Early evidence for PAS-HAMP interactions in the E. coli Aer receptor 

included the requirement of the HAMP domain for proper PAS folding, stability, 

and FAD binding (Rebbapragada et al., 1997a, Herrmann et al., 2004, Buron-

Barral et al., 2006a). In Chapter 2 of this dissertation, residues that were solvent 

inaccessible overlapped with signal-on lesions in the PAS domain (Garcia et al., 

2016, Campbell et al., 2010). Four PAS residues (N98C, V100C, M112C, and 

I114C) were located within the inaccessible region on the PAS E-scaffold, and 

these residues were able to crosslink with HAMP residues (Q284C and L251C) 

located on the inaccessible surface on HAMP-AS2 (Campbell et al., 2010, Garcia 

et al., 2016). These data confirmed that the PAS and HAMP domains are in close 

proximity and suggest that this PAS-HAMP interaction surface relays signals. In 

this chapter, I will present unpublished work wherein I investigated potential 

contacts between PAS-HAMP and PAS-Proximal signaling regions in each 

signaling state.  

PAS-HAMP crosslinking was previously demonstrated using cysteine 

replacements at HAMP residues Gln248 and Leu251 (see Chapter 2). Additional 

crosslinking data were obtained using L251C in the HAMP domain, and D259C 

in the proximal signaling domain. PAS residues selected for cysteine 

replacement included Thr23, Val100, Val103, Met112, and Ill114. Val100 is 
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located on the PAS Hβ strand and Met112 and Ill114 are located on the PAS Iβ 

strand. The23 is located on the Aβ strand following the N-cap. 

 To simulate the activated state of Aer, N85S was engineered into the di-

Cys mutants. PAS residue Asn85 is located on the Gβ strand and may be a link 

between the bound FAD and the β-scaffold (Campbell et al., 2010). Replacing 

Asn85 with serine results in a kinase-on output (Campbell et al., 2010). Aer di-

Cys mutants were created from a pMB1 derivative that expressed either Aer-

L251C or Aer-D259C. The N85S codon was then introduced into plasmids that 

contained the di-Cys mutants. Protein expression was determined after induction 

with 50 PM IPTG. However, expression was so low for di-Cys and N85S-di-Cys 

mutants containing D259C that Western blots had to be overexposed to detect 

protein bands. Moreover, increasing protein induction levels with 100 PM IPTG 

did not improve protein expression. 

 The di-Cys construct, Aer-V103C/L251C, was stable, but produced only 

2% crosslinked dimers. This is in contrast to Aer-V100C/L251C, which produced 

33% crosslinked dimers (Garcia et al., 2016). This supports our interaction 

model, which predicts that Val103 is located further from Leu251 than is Val100. 

PAS-V103 begins a loop at the end of the Hβ strand, on which Val100 is located; 

the Hβ strand is proposed to be involved in PAS-HAMP signaling (Garcia et al., 

2016). 

 Residues in the proximal signaling domain change their accessibility as 

Aer alternates between kinase-on and kinase-off states (Garcia et al., 2016). Aer-

D259 lies within the proximal signaling domain, and was the only surface-
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exposed residue in which a Cys-replacement both did not crosslink with itself in a 

dimer and was inaccessible to solvent in the kinase-on state of the receptor. 

Remarkably, the accessibility changed from 45% in the kinase-off state to only 

3% in the kinase-on state. Thus, I investigated whether PAS residues might be 

contributing to this drop in accessibility by direct interactions. To simulate the 

kinase-on state, Aer-N85S was introduced into the Aer-D259C di-Cys mutants. 

 After crosslinking, Aer-V100C/D259C produced faint monomer and dimer 

bands, and 53% of the density was that of a crosslinked dimer, suggesting that 

these residues can collide. However, these results should be treated with 

caution, because faint banding usually indicates protein instability, and instability 

can be due to aberrant folding and a non-native conformation. The Aer- 

N85S/V100C/D259C protein was unstable. In addition, breakdown products were 

the only bands evident for the di-Cys N85S mutants Aer-T23C/N85S/D259C and 

Aer-N85S/M112C/D259C. Aer-N85S/I114C/D259C and Aer-N85S/V103C/D259C 

produced 41% and 60% crosslinked dimers respectively, but they were also 

highly unstable; breakdown products were detected for both mutants, with 47% 

breakdown product for Aer-N85S/I114C/D259C and 14% breakdown product for 

Aer-N85S/V103C/D259C. Notably, the previous work showed that both Aer-

D259C and Aer-N85S/D259C were stable [Chapter 2, (Garcia et al., 2016)], but 

as described here, the addition of another cysteine in the PAS domain leads to 

proteolysis. Thus, a definitive answer as to whether the PAS domain contributes 

to the drop in accessibility in the proximal signaling domain remains to be 

determined.  
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CHAPTER 5  
 

GENERAL DISCUSSION 
 
 

The purpose of this dissertation was to investigate PAS domain signaling 

mechanisms in the E. coli Aer and P. aeruginosa Aer2 receptors. Before the work 

presented in this dissertation, multiple studies had demonstrated that PAS 

domains have a conserved three-dimensional fold and are capable of 

accommodating diverse cofactors and ligands (Taylor et al., 1999). Due to their 

structural similarities, a common signaling pathway among PAS domains had 

been proposed involving ligand induced structural changes on the PAS β-

scaffold, the cofactor pocket, and in the N-terminus (Moglich et al., 2009b). The 

findings described in Chapters 2, 3, and 4 support this hypothesis. More 

importantly, these data helped us to identify two distinct PAS signaling 

mechanisms in Aer and Aer2. We identified a lateral PAS-HAMP signaling 

mechanism in Aer, and obtained data supporting a linear PAS-HAMP signaling 

mechanism in Aer2. The signaling mechanisms in Aer and Aer2 provide two 

different signaling pathways that can be used as prototypes for membrane bound 

or cytoplasmic chemoreceptors that contain both PAS and HAMP domains. 

 

Aer PAS Domain Study Conclusion 

My studies on the Aer receptor have provided insight into a novel PAS 

signaling pathway. In Aer, the PAS signaling pathway involves the transmission 

of FAD redox changes from the PAS domain to the HAMP domain. It was 

hypothesized that FAD redox changes are transmitted to the HAMP domain via 
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an interaction between the PAS β-scaffold and the AS2 helix of the HAMP 

domain (Campbell et al., 2010). This was based on a region of kinase-on lesions 

that were identified on the PAS β-scaffold (Campbell et al., 2010). The work in 

Chapter 2 defined the interacting surfaces. After probing the Aer PAS surface 

with PEG-mal, the kinase-on lesions that were previously discovered overlapped 

with the region that was inaccessible to solvent. The inaccessible region on the 

β-scaffold of the PAS domain was not due to PAS-PAS interaction, suggesting 

the possibility that inaccessible residues were sequestered by the HAMP domain. 

Lesions with intermediate accessibility surrounded the inaccessible region on the 

β-scaffold. The N-cap was highly accessible suggesting that it is dynamic and 

does not interact with other domains. This conclusion agrees with previous 

findings that have shown that the N-cap collides with neighboring dimers (Watts 

et al., 2006b). 

 Incorporating an N85S replacement renders Aer signal-on (Campbell et 

al., 2010). This allowed us to compare accessibility changes in the HAMP 

domain when the receptor was kinase-off or kinase-on. In the kinase-off state 

(without PAS-N85S), residues on AS2 were inaccessible to solvent, suggesting 

that they were sequestered by the PAS domain. In the kinase-on state (with 

PAS-N85S), the same inaccessible region on AS2 became more accessible. In 

the kinase-on state, the proximal signaling domain had decreased accessibility 

while an increase in accessibility was seen at the end of the HAMP domain. 

 Overall, 25 separate PAS residues were tested for PAS-Q248C 

interaction. Seven of those 25 PAS residues (6 on the β-scaffold and 1 on the N-
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cap) were able to form PAS-HAMP crosslinked dimers. Since protein crosslinking 

can occur during protein synthesis, chloramphenicol was added to PAS-HAMP 

di-Cys mutants to inhibit new protein synthesis. Only three PAS residues [N98C 

(Hβ), V100C (Hβ), and I114C (Iβ)] had an equivalent or increased proportion of 

PAS-Q248C crosslinked dimers. These results suggested that these PAS-HAMP 

residue combinations are in close proximity in the folded protein. To test for 

additional HAMP residues that could crosslink with PAS residues, HAMP-L251C 

was crosslinked with PAS-N98C, -V100C, -M112C, and -I114C. HAMP- L251C 

preferentially crosslinked with PAS-N98C, -M112C, and -I114C, while HAMP-

Q248C showed greater crosslinking with either PAS-V100C and PAS-M112C 

than with L251C and these PAS residues. These results allowed us to adjust the 

previous Aer PAS-HAMP interaction model by rotating it ~180° (Campbell et al., 

2010, Watts et al., 2008). Once the model was rotated, the inaccessible residues 

on the PAS and HAMP domains and the PAS-HAMP crosslinking data 

complimented each other. For example, HAMP-Q248C and HAMP-L251C are 

now located closer to the PAS residues that they preferentially crosslinked with. 

These results overwhelmingly demonstrate that PAS and HAMP are in close 

proximity and reveal the surface through which PAS controls HAMP signaling. 

 The surface accessibility study along with the crosslinking study revealed 

a novel lateral PAS-HAMP signal transmission mechanism. The results from 

Chapter 2 suggested that the proximity of the PAS domain controls the dynamics 

of the HAMP domain, which is in congruence with the biphasic static-dynamic 

signaling model. The biphasic static-dynamic signaling model states that the 
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signaling state of a receptor is dependent on the stability of the HAMP domain 

(Zhou et al., 2009). We propose that when PAS-FAD is oxidized, a close PAS-

HAMP interaction results in a static HAMP domain, a more dynamic proximal 

signaling domain, a static kinase control module, and lower CheA kinase activity. 

In contrast, when PAS-FAD is reduced, conformational changes in the PAS 

domain decrease PAS-HAMP interactions. This results in a more dynamic HAMP 

structure, resulting in a static proximal signaling domain, a more dynamic kinase 

control module and increased CheA kinase activity. This model implies that 

anything that alters the static-dynamic balance could produce a HAMP signal. 

This would allow for lateral as well as linear signaling to the HAMP domain.  

 

Aer2 PAS Domain Study Conclusion  

Heme-based PAS domains are a unique subclass of signal sensors that 

are capable of sensing O2, CO, NO, and cellular redox state. They are involved 

in the regulation of gene transcription, control of iron concentration via heme 

uptake, and biofilm formation. The work presented in Chapter 3 focuses on the b-

type heme binding PAS domain of Aer2. Several b-type heme binding PAS 

domains (e.g., FixL, DOS, RcoM, and PDEA-1) have a conserved proximal 

coordinating Fα histidine residue (Kerby et al., 2008, Gilles-Gonzalez et al., 

2005). Although the PAS domain of Aer2 also contains an Fα histidine residue, 

the true proximal coordinating residue for Aer2 is actually the Eƞ histidine 

residue, His234 (Garcia et al., 2016, Sawai et al., 2012, Airola et al., 2013a). The 

H234A substitution caused a substantial heme-binding defect (80% heme loss). 
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Alanine substitutions in residues located in the distal and proximal heme cleft 

(M187A, I195A, F220A, and F233A) also caused heme-binding defects. 

 I used alanine mutagenesis to study the importance of 16 conserved 

residues in the Aer2 PAS domain. Ten out of the 16 conserved residues did not 

bind or respond to O2 or CO (this included the four heme pocket residues that 

were discussed above). Three alanine mutants (Aer2-A178V, Aer2-P237A, and 

Aer2-Q240A) had WT responses to both O2 and CO. Aer2-D231A mediated WT 

behavior, but had a 30 second delayed smooth swimming response in anaerobic 

conditions. These mutants were located on the Eƞ and Fα helices. Aer2-D285 is 

located within the “DxT” motif that is proposed to transmit conformational 

changes from the PAS domain to HAMP 4 (Airola et al., 2013a, Moglich et al., 

2009a). D285A caused the receptor to be signal-off, suggesting that the amino 

acid substitution disrupted the “DxT” motif and did not permit signal transmission. 

Leu264 and Thr287 are located on the PAS β-sheet. Substituting these residues 

with Ala resulted in locked signal-on receptors. The side chain of Aer2-L264 is 

suspended over the heme iron and is proposed to move out of the way to let O2 

bind to the heme iron. Aer2-T287 is located on the Iβ strand that is proposed to 

be involved in direct signal transmission to the HAMP 4 domain. Overall, many of 

the Aer2-PAS mutants had heme-binding defects and resulted in signal-off 

receptors. This suggests that in Aer2, conserved PAS residues are critical for 

stabilizing the heme cleft, which is also crucial for signal transmission. 

 A structural comparison between the unliganded (ferric) and ligand bound 

(cyanomet) structures of the Aer2 PAS domain revealed global conformational 
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changes (Sawai et al., 2012, Airola et al., 2013a). Leu264 on Hβ may move away 

from the heme-Fe center to allow O2 binding and Trp283 on Iβ may rotate 90° to 

stabilize O2 binding via its indole group. 

 In Aer2, smaller hydrophobic substitutions at Leu264 (L264A and L264G), 

resulted in a non-responsive receptors that did not bind O2, and were rapidly 

oxidized. These results indicate the Leu264 is not only involved in PAS signaling 

but also plays a role in preventing heme iron oxidation. In addition, Trp283 is 

important for preventing dissociation of bound O2, which also suggests that O2 is 

the native ligand of the Aer2 PAS domain. The distal residues in myoglobin 

similarly play crucial roles in inhibition of heme iron autoxidation and also prevent 

dissociation and protonation of bound O2 (Brantley et al., 1993). 

 Although O2 is thought to be the native ligand of Aer2, Aer2 can also bind 

other oxy-gases like CO (Watts et al., 2011b). We analyzed Aer2 mutants that 

had WT, signal-off, or signal-off biased responses to O2 for their response to CO. 

Most of the PAS mutants that bound CO could not signal. In addition, Aer2-

L264K was found to be in an unusual hexa-coordinated state, which did not allow 

the binding of any gas. Overall, the work in Chapter 3 provides insight into the 

importance and function of conserved PAS residues in Aer2, and demonstrates 

the vital role of Leu264 and Trp283 in the ligand stabilization and PAS signaling. 

My data also supports the linear PAS-HAMP signaling mechanism that has been 

proposed from structural studies (Sawai et al., 2012, Airola et al., 2013a). 
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Future Directions  

Aer PAS Domain 

The Aer PAS domain study revealed lateral interaction surfaces between 

the PAS β-scaffold and the HAMP AS2 helix. However, questions remain as to 

exactly how the kinase-off and kinase-on states of the receptor affects PAS-

HAMP interactions. Probing locked kinase-on and kinase-off Aer mutants with a 

spin label to identify PAS domain dynamics could reveal PAS domain 

movements between different signaling states. In addition, site-directed spin 

labeling can be used to specifically study the movement of residues on the Hβ 

and Iβ strands that have been shown to interact with HAMP residues, e.g., PAS 

residues Asn98, Val100, Met112 and I114. Performing these experiments will not 

only increase our understanding of the structural dynamics between different 

signaling states, but will also provide a detailed insight into the domain dynamics 

involved in lateral PAS-HAMP signaling that could be applied to other proteins. 

 

Aer2 PAS Domain  

The work performed on Aer2 showed that the majority of conserved amino 

acids in the Aer2 PAS domain are crucial for protein stability, heme-binding, 

ligand binding, and signaling. Many of the Aer2 mutants in the study were found 

to be locked in either signal-on or signal-off signaling state. Solving structures for 

locked signaling mutants should reveal PAS conformational changes between 

the two states of the receptor. In addition, the Aer2 mutants that were created 

can be studied in a biological system like that of Caenorhabditis elegans. By 
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doing so, PAS mutants can be used to evaluate the significance and role of Aer2 

in P. aeruginosa. Work is currently underway in our laboratory to: i) show that the 

signal-off state favors PAS dimerization and that the signal-on state favors PAS 

monomerization, and ii) elucidate the role of Aer2 in P. aeruginosa virulence by 

investigating the interacting partners of CheY2. 

 

Impact of this Work  

The work presented in this dissertation is the first to reveal two variations 

of PAS-HAMP signaling mechanisms that can serve as models for other proteins 

containing PAS and HAMP domains. Studies on the Aer and Aer2 PAS domains 

revealed a common signaling pathway involving residues on the PAS β-scaffold, 

specifically the Hβ and Iβ strands. Understanding PAS domain signaling and 

sensing will potentially lead to targeting these domains for therapeutic and 

antimicrobial applications.  
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