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ABSTRACT OF THE THESIS 

 
Interpreting Southern California Arc Geochemistry 

by Multivariate and Spatial Methods 
 

by 

Lance R. Pompe 

Master of Science, Graduate Program in Geology 
Loma Linda University, September 2016 
Dr. Benjamin L. Clausen, Chairperson 

 

Exploratory data analysis methods of multivariate statistical techniques and 

spatial visualization are emerging trends in understanding big datasets. In this project, 

these techniques are applied to a large igneous geochemical dataset from the southern 

California segment of the Mesozoic Cordilleran arc to better understand magmatic and 

plate tectonic processes at a subduction zone. A set of 287 granitic samples collected by 

Baird and Miesch (1984) from the Peninsular Ranges batholith is analyzed for 38 

geochemical elements. Patterns in both the geochemical variation and the spatial 

variation of this dataset are explored.  

Since geochemical data are compositional in nature, special treatment is needed in 

analyzing them. Robust principal component analysis for compositional data is used to 

summarize the 38 geochemical variables into three principal components that are 

visualized using biplots. The first three principal components appear to be related to 

extent of differentiation, magma source depth, and possibly solubility, respectively. The 

first principal component (PC1) accounting for 56.7% of the explained variance, arranges 

the elements in order of incompatibility. The main associations of PC2 (17.3% of 
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explained variance) are groupings of rare earth elements, along with Y and Sr – 

suggesting the effect of deep garnet and shallow plagioclase fractionation in response to 

pressure and therefore depth. A weak association of soluble elements is found in PC3 

(6.7% of explained variance). 

Spatial geochemical variation is explored by mapping the standard geochemical 

parameters related to the principal component interpretations as well as the three 

principal components, and then comparing them. Extent of differentiation is mapped 

using SiO2 and PC1 and resulting maps show similar patterns. Magma source depth is 

mapped using Sr/Y, La/Yb and PC2 and similar patterns are found. Alkalinity and 

possibly solubility and mobility is mapped using K2O/SiO2 and PC3, but these maps do 

not share similar patterns. Using the exploratory data analysis methods of multivariate 

analysis and spatial visualization is helpful in understanding geochemical patterns and 

trends in subduction zones.



	

1	

CHAPTER ONE 

INTRODUCTION AND BACKGROUND 

Overview 

“I want to know how God created this world. I am not 
interested in this or that phenomenon, in the spectrum 
of this or that element. I want to know his thoughts, 
the rest are details.”  

            Albert Einstein 

	
An understanding of the Earth’s large continental batholiths is essential for 

developing models for the nature and history of plate tectonics and the continental crust 

(Hill, 1984). The Cordilleran arc of western North America is characterized by Mesozoic 

batholiths comprising extensive belts of granitic plutons that are interpreted to have been 

emplaced during episodes of convergence between oceanic plates to the west and the 

North American plate (Figure 1). These continental arc batholiths contributed 

extensively to the growth of the North American continental crust. Numerous large 

geochemical datasets from these batholiths have been collected over the past few decades 

and typically contain hundreds to thousands of samples of as many as 50 elemental and 

isotopic variables. These data contain a wealth of information about magmatic conditions 

and processes, justifying the effort and expense required to collect them.  

Many studies have linked specific geochemical variables to subduction zone 

magmatic properties, such as differentiation extent, magma source depth and crustal 

contamination (Gromet and Silver, 1987; Kistler, 2003; Tulloch and Kimbrough, 2003). 

Traditional methods of interpreting these large datasets rely on analyzing relationships 

among the many geochemical variables using variation diagrams, with some of the most 

popular being bivariate plots and spider diagrams.  
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Figure 1. Cretaceous granitic batholiths along the western margin of North America. 
After Paterson et al. (2011) and Miller (2014).	
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In addition to these diagrams, geoscientists have a number of powerful data 

mining tools. Data mining uses various methods to evaluate data for associations, 

structures, and patterns. This approach has been used successfully in mineral exploration 

and environmental geochemistry, as well as in the fields of social, medical and biological 

sciences. Data mining tools include multivariate statistical analysis and machine learning 

techniques combined with spatial analysis to explore patterns in both the variable 

(element or isotope) and spatial (geographic location) domains. Exploratory multivariate 

data analysis techniques in combination with a spatial analysis approach like geographic 

information system (GIS) interpolation can greatly improve the visualization and 

interpretation of a geochemical dataset. Visualization is an effective way of recognizing 

patterns in data since the human eye is far more effective at discerning patterns from 

pictures than from tables of numbers (Grunsky, 2010; Pawlowsky-Glahn and Buccianti, 

2011). 

Multivariate analysis is the appropriate approach to investigate relationships and 

potential interactions among all variables in a dataset simultaneously, allowing a more 

comprehensive understanding than would be possible when considering variables in 

isolation or in pairs. Principal component analysis (PCA) is an exploratory multivariate 

method that is very effective at reducing a large number of variables into a small number 

of more easily interpretable components.  

Virtually all geochemical data are compositional in nature, with the measured 

elemental concentrations being parts of a whole. These data sum to a constant, known as 

the constant-sum constraint (Kucera and Malmgren, 1998). Compositional data have a 

restricted sample space (since they do not vary independently) with the result that the 



	

4	

standard multivariate analysis techniques that operate in the Euclidean real sample space 

are not appropriate. Fortunately, transformations can be applied to “open up” 

compositional data to enable classical statistical multivariate analyses such as principal 

component analysis.  

The northern Peninsular Ranges batholith (PRB) forms part of the southern 

California Cordilleran arc. This batholith has been extensively studied for decades, 

beginning with pluton descriptions and chemical analyses by Larsen (1948) and 

culminating in a 2014 GSA memoir, “Peninsular Ranges Batholith, Baja California and 

Southern California” edited by D. M. Morton and F. K. Miller. Many analyses in this 

volume are based on one of the most systematically sampled batholithic geochemical 

datasets in existence, assembled by A.K. Baird and his student E.E. Welday (Baird et al., 

1979; Baird and Miesch, 1984). Baird and Welday also sampled the Transverse Ranges 

to the north of the Peninsular Ranges batholith, providing an additional dataset that can 

be used to explore the across-arc variation in igneous geochemistry after removing San 

Andreas Fault displacement. 

The purpose of this project is summarized by considering several goals and aims: 

• Goal 1: To demonstrate the usefulness of multivariate analysis for igneous 

petrology by identifying patterns of geochemical variation using a comprehensive 

dataset from the northern Peninsular Ranges batholith. 

• Goal 2: To better understand the geochemical variation across a subduction zone 

arc in terms of varying magma production processes. 

• Aim: Compare multivariate analysis results with the standard bivariate approach 

in order to explain magmatism in the northern Peninsular Ranges batholith by: 
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o Finding statistical groupings of variables and linking each of them to an 

appropriate geochemical interpretation. 

o Graphically comparing principal components with standard geochemical 

parameters. 

In addition to these objectives, it is hoped that insights gained from applying these 

techniques to geochemical data from a relatively well-studied area like the southern 

California arc can be useful in understanding other less well-understood batholiths. 

 

Geologic Setting 

Most Cordilleran batholiths of western North America are composite elongate 

belts aligned parallel to the past Cordilleran margin. The emplacement patterns are 

typically complex and likely resulted from changes in plate orientation and motion over 

time. In contrast to these complex emplacement patterns, the Cretaceous Peninsular 

Ranges batholith displays a relatively simple, monotonically varying pattern having little 

overlap with older plutonic arcs (Gromet and Silver, 1987). It is considered a classic 

example of subduction-related magmatism (Hill, 1984; Morton et al., 2014). The 

Peninsular Ranges batholith extends as a narrow (120 km wide) belt for approximately 

1000 km from southern California into Baja California in Mexico. The northern boundary 

of the Peninsular Ranges batholith is defined by the east-west striking Malibu Coast-

Cucamonga fault, the San Andreas fault, and the Banning fault (Baird and Miesch, 1984) 

(Figure 2). Emplacement proceeded from west to east (younging eastward) over a period 

of 51 m.y. from 126 Ma to 75 Ma (Morton et al., 2014). 
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Figure 2. Pluton map of the northern Peninsular Ranges batholith showing sample 
locations and rock type. Sample and pluton data from Baird and Miesch (1984). Granite 
and tonalite categories approximately correspond to Baird’s quartz monzonite and 
quartz diorite respectively, which were based on the igneous rock classification of 
Bateman et al. (1963). 

	
The northern Peninsular Ranges batholith consists of Cretaceous and some 

Jurassic plutonic rocks emplaced into meta-sedimentary and meta-volcanic rocks. It is 
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made up of more than 100 predominantly tonalite plutons, but compositions range from 

gabbro to granite (Larsen, 1948; Silver and Chappell, 1988).  

The right lateral San Andreas fault zone strikes northwestward from the northern 

margin of the Peninsular Ranges, separating the northern Peninsular Ranges batholith 

from the Transverse Ranges. The magnitude of movement of the strike-slip component 

along the associated Elsinore and San Jacinto fault zones has been determined to be 

relatively small (Baird and Miesch, 1984). Miller et al. (2014) demonstrated that age 

contours show the best alignment after restoration of an offset of 12 km for the right 

lateral Elsinore fault zone and 29 km for the right lateral San Jacinto fault zone. This San 

Jacinto offset is in agreement with 29 km of total offset calculated from contact offsets of 

distinctive rock types across the San Jacinto fault system by Sharp (1967). 

 

Geologic Background 

Subduction zones are an important source of information about plate tectonic and 

continental crust forming processes. The analysis of large geochemical and 

geochronological datasets provides important clues about magma chamber conditions and 

plate tectonic processes, such as amount of magma melting, partial melting/fractional 

crystallization cycles, pressure, temperature, and magma water content. Today, southern 

California is no longer an active subduction zone as in the Cretaceous when the oceanic 

Farallon plate was subducting beneath the continental North American plate. However, 

through geochemical data analysis, we can reconstruct, to a degree, the subduction 

environment and processes as they were in the Cretaceous.  
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This section firstly introduces basic characteristics of larger scale arc systems, 

including geomorphic features and temporal variation. Next, differentiation processes are 

discussed, followed by four important features of subduction zones that have been 

characterized using geochemistry, namely extent of differentiation, magma source depth, 

crustal contamination and alkalinity. Then, exploratory data analysis is introduced, 

including principal component analysis, cluster analysis, the analysis of compositional 

data, and spatial visualization. Finally, PRB subdivisions, W-E variation and some 

previous work done in the PRB using multivariate and spatial analysis is briefly 

described. 

 

Arc Processes 

Arc Systems and Subduction 

Arc systems can be subdivided into island arcs and continental-margin arcs and 

are found above active or previously active subduction zones. Island arcs are formed on 

oceanic crust where an oceanic plate subducts beneath another oceanic plate, forming 

arcuate island chains, such as the Mariana and Lesser Antilles arcs. Continental margin 

arcs form above subduction zones where oceanic plates plunge beneath continental 

plates, for example the Andean and North America Cordillera and Japan arcs (Condie, 

2013). 

At subduction zones, the higher density subducting oceanic slab carries ocean 

water down with it into the mantle. As the subducting slab moves through increasing 

temperature and pressure zones, it dehydrates and the water enters the mantle wedge and 

lower crust. This water has the effect of lowering the melting temperature of the 

surrounding rocks, creating batches of magma through partial melting. The magma 
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ascends through the mantle and continental crust to form intrusive magma bodies creating 

plutons and batholiths, or erupts at the surface as volcanoes. Successive cycles of partial 

melting, crustal assimilation, and fractional crystallization tend to increasingly 

differentiate a lithosphere assumed to be originally homogeneous, creating the felsic 

granitic rocks common on continents, from the mafic mantle rocks. As a result of these 

processes, subduction zone geochemistry is more complex than in any other igneous 

environment (Condie, 2013; Winter, 2010).  

 

Temporal Variation in Arc Magmatism 

Using large geochronological datasets (categorized by U-Pb bedrock and detrital 

zircons) from eight segments of the American Cordillera, Paterson and Ducea (2015) 

showed that magmatism in arcs is clearly episodic. Periods with a high magma addition 

rate are called “flare-ups” and periods of little magmatic activity are termed “lulls.” They 

noted that flare-ups and lulls exhibit “apparent wavelike patterns of waxing and waning 

magmatism.” An active area of research is concerned with linking external factors such 

as changes in mantle flow, plate reconfigurations and collisions to magmatic flare-ups. 

 

Differentiation 

Chemical Fractionation 

Trace elements are defined as elements that occur in quantities of < 0.1 wt. %. The 

interest in trace elements in igneous processes is focused on the elements located in the 

lower left part of the periodic table (K, Rb, Cs, Sr, Ba, the rare earth elements, Y, Zr, Nb, 

Hf and Ta). One of the reasons for this interest is because these elements are lithophile, 

and therefore are found in relatively high abundance in the Earth’s crust and mantle. 
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Another reason is that their chemical behavior is relatively simple, being mainly a 

function of ionic size and charge. Other trace elements that are of interest are the first 

transition series elements. Although their chemical behaviors are a lot more complex, 

charge and size are still important. Many of these elements are preferentially incorporated 

into the solid in Mg-Fe silicate minerals and are called “compatible elements” 

(Goldschmidt, 1937; White, 2013; Winter, 2010). Figure 3 plots the elements analyzed 

for the PRB by ionic size and charge.  

Chemical fractionation is the uneven distribution of an ion between two 

competing equilibrium phases. The partitioning of elements between the melt and solid 

phases results in incompatible elements being concentrated in the melt and compatible 

elements being concentrated in the solid. The manner in which elements are partitioned 

between the solid and melt can be better understood by considering Goldschmidt’s rules 

of element distribution (Goldschmidt, 1937; Ringwood, 1955): 

1. Two ions with the same valence and similar radius (radii differing by less than 

approximately 15%) should exchange easily and enter a solid solution in amounts 

equal to their overall proportions. 

2. If two ions have a similar radius and the same valence, the smaller ion is 

preferentially incorporated into the solid over the liquid. 

3. If two ions have a similar radius but different valence, the ion with the higher 

charge is preferentially incorporated into the solid over the liquid. 
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Figure 3. Ionic radius plotted against ionic charge for the geochemical variables 
of interest in the northern Peninsular Ranges batholith data. Compatible 
elements are towards the low ionic charge, small ionic radius corner. The 
incompatible elements are subdivided into low field strength (LFS) and high 
field strength (HFS) elements by a charge/size ratio of 2.0. Although Si and Al 
plot in the compatible area, they are unique and display their own relationships. 
Adapted from Rollinson (1993) with ionic radii from Railsback (2012).		
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Incompatible elements can be divided into two subgroups (Rollinson, 1993), see 

Figure 3: 

1. Smaller, highly charged high field strength (HFS) elements (rare earth elements 

(REE), Th, U, Ce, Pb4+, Zr, Hf, Ti, Nb, Ta). 

2. Low field strength large ion lithophile (LIL) elements (K, Rb, Cs, Ba, Sr, Eu), 

which are more mobile, particularly if a fluid phase is involved. 

 

Partial Melting 

Rocks in the upper mantle region known as the asthenosphere or seismic low 

velocity zone are close to the point of partial melting and behave in a ductile fashion. The 

ductile nature of the asthenosphere facilitates the movement of tectonic plates above and 

the asthenosphere is in turn impacted by tectonic plates through subduction. 

Asthenosphere rocks begin to melt in specific circumstances – in response to increased 

temperature, decreased pressure or compositional change, such as the introduction of 

volatiles, especially water. Water introduced into the mantle wedge in subduction zones 

by the dehydration of descending slabs triggers partial melting.	Since rocks are composed 

of different rock-forming minerals, minerals with lower melting temperatures begin to 

melt first.  

Partial melting occurs when a rock has different solidus (temperature at which 

melting begins) and liquidus (temperature above which a rock is completely liquid) 

temperatures. The resulting magma is squeezed out of the parent rock and begins to move 

toward the surface since it has a lower density than the surrounding rocks. The 
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composition of this melt is not the same as the bulk composition of the parent rock, due 

to the effect of chemical fractionation.  

During partial melting, the degree of fractionation between compatible elements 

in the solid and incompatible elements in the melt is a function of the amount of melting. 

If the amount of partial melting is slight (only a few percent, for example) a higher 

degree of fractionation will occur than if the amount of partial melting is greater (Grove 

et al., 2012; Winter, 2010). 

 

Fractional Crystallization 

As ascending melts cool and interact with country rock, minerals with the highest 

melting points or lowest solubilities, such as olivine and pyroxene, crystalize out of the 

melt first. The last minerals to crystalize are those with the lowest melting points or 

highest solubilities, with silica content in the melt increasing over time. Bowen (1922) 

experimented on the order in which minerals crystalized from a melt to determine this 

reaction series. During the process of fractional crystallization, the melt becomes 

increasingly enriched in incompatible elements by the same mechanism operating in 

partial melting – chemical fractionation. 

 

Subduction Zone Geochemistry 

Extent of Differentiation: SiO2  

Felsic rocks of the continental crust with higher SiO2 concentrations are evolved 

or differentiated from the more mafic mantle which has a lower SiO2 concentration. As 

these rocks have undergone one or more cycles of partial melting and fractional 

crystallization, they are enriched in the incompatible elements. Although the volume of 
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the continental crust is equivalent to only about 0.6% of the volume of the mantle, it 

contains 30 – 50% of the earth’s highly incompatible trace elements. A complementary 

pattern of depletion in these elements is found in the upper mantle, which suggests 

extraction of these elements through partial melting-fractional crystallization cycles 

(Hofmann, 1988). The extent of differentiation is typified by the SiO2 concentration. 

 

Crustal Contamination: Sri 

A mafic mantle-derived magma that moves through more felsic continental crust 

will become enriched in incompatible elements as it melts surrounding crustal rock and 

mixes with it (crustal enrichment or contamination). This enrichment also occurs when 

rocks undergo cycles of partial melting and fractional crystallization. Isotopic methods 

can be used to distinguish between crustal and mantle derived enrichment signatures 

since isotopes are not affected by the fractionating processes of partial melting and 

fractional crystallization that elements experience during magma ascent and emplacement 

(Faure and Powell, 2012). However, mantle plumes may produce isotopic signatures 

similar to the crust and it is suggested that crustal or mantle contributions to magmatism 

can be recognized by observing the products of processes such as magma mixing or 

crustal assimilation (Hawkesworth et al., 1984; Thirlwall and Jones, 1983).  

It is generally accepted that initial strontium (87Sr/86Sr | i or Sri) values are an 

indicator of the continental crustal component in magma (Faure and Powell, 2012). Initial 

strontium values greater than 0.706 are thought to indicate a predominantly continental 

crust magma source while values below 0.706 suggest a largely mantle source. For 

example, Langenheim et al. (2004) looked at the preexisting structure within the 
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Peninsular Ranges batholith by analyzing geophysical (gravity and magnetic field) 

anomalies and Sri data. A correspondence was found between the geophysical and Sri 

data, suggesting different prebatholithic geologic blocks underlying the batholith, with 

the west being denser, more mafic, and yielding Sri values generally lower than 0.706, 

and the east being less dense, more felsic, and yielding Sri values generally higher than 

0.706. 

 

Magma Source Depth: REE and Sr/Y 

Researchers have recognized that arc magmatic geochemistry is sensitive to Moho 

depth (Chapman et al., 2015). Globally, the Moho defines the crust-mantle boundary; 

however in subduction zones the Moho is associated with both the subducting slab and 

the overriding plate and approximately coincides with Wadati-Benioff seismicity (a 

planar zone of seismicity corresponding to the down-going slab in subduction zones) 

(Bostock, 2013).  

Some major oxides of mafic arc rocks, such as Na2O and CaO, correlate with 

crustal thickness at global scales; however these correlations break down where crustal 

thickness exceeds 45 km. MnO is likely the only major element that correlates well with 

crustal thickness, but it has a small variation in the calc-alkaline rocks typical of 

continental arcs, resulting in a weak correlation (Leeman, 1983; Profeta et al., 2015).  

Various light rare earth element (LREE) and heavy rare earth element (HREE) 

ratios have been used to quantitatively infer the depth of magma fractionating processes. 

By plotting REE spider diagrams, the differences in partition coefficients between light 

and heavy REEs can be compared. For crystallization below the garnet stability pressure 
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of 10 - 12 kbar (or depth > 33 – 40 km), there is a variation of three orders of magnitude 

in the partition coefficient of garnet between the lightest and heaviest REEs (see Figure 

4) (Carrol and Wyllie, 1990; Morton et al., 2014; Rollinson, 1993). 

 

	

Figure 4: Partition coefficient plotted against atomic 
number for REE in garnet and plagioclase in basaltic 
melts. After Rollinson (1993). 

	
  

Depth can be estimated from all the rare earth elements (La/Yb) or separately for 

the LREE ratio La/Sm and HREE ratio Gd/Yb. As magma source depth increases, La/Sm 

and Gd/Yb increase with fractionation (Morton et al., 2014).  
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The Sr/Y ratio has also been used to distinguish between fractionation processes 

occurring at depth and those at shallow levels due to differences in the partition 

coefficient between those elements for the residual (solid) and melt phases (Lee et al., 

2007). At depth, in the high pressure garnet stability zone, Y and the HREEs are 

separated out of the melt during partial melting and fractional crystallization into garnet 

(Y has behavior similar to Yb, but is more convenient to measure due to higher 

concentrations). Thus, the melt is strongly depleted in yttrium and the HREEs. At shallow 

depth, yttrium and the HREEs are not depleted in the melt, since garnet is not stable here. 

In the shallow plagioclase stability zone (< ~3 kbar pressure or depth of < ~10 km), 

strontium strongly partitions into plagioclase, substituting for calcium. Note the relatively 

flat partition coefficient curve for plagioclase in Figure 4 (except for Eu which 

substitutes for Ca). At greater depths, plagioclase is unstable and strontium preferentially 

enters the liquid phase (Morton et al., 2014; Profeta et al., 2015). 

Chapman et al. (2015) suggest that Sr/Y is a viable parameter for reconstructing 

crustal thickness through time in calc-alkaline convergent orogenic systems. Profeta et al. 

(2015) correlated whole rock concentrations of Sr/Y and La/Yb from global and regional 

samples taken from modern Pacific subduction zone magmatic arcs with the purpose of 

estimating crustal thickness. Using a large global geochemical database of geologically 

young arc rocks, knowledge of global crustal thickness, and a regional dataset from the 

southern Andean zone where crustal thickness varies greatly over a short distance, they 

found Sr/Y and La/Yb values correlated well with Moho depth (R2 = 0.9 and 0.72 

respectively). The relationship between Sr/Y (y) and the Moho depth (x) in kilometers 

was defined by the equation y = (0.9 ± 0.06)x – (7.25 ± 1.89). 
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Alkalinity: K2O 

A mafic magma from a mantle source high in iron and magnesium evolves 

through a series of compositions in an alkaline or subalkaline magma series to produce a 

basalt or gabbro which further differentiates to become a felsic magma. Two subdivisions 

of the subalkaline magma series are the tholeiitic and calc-alkaline series (Le Maitre et 

al., 2005; Tilley, 1950). Tholeiitic magmas are produced from 20-40% partial melting at 

a depth of 30-40 km while calc-alkaline magmas result from ≤ 20% partial melting at a 

depth of ≥ 40 km. Although both series produce gabbro, tonalite, granodiorite, and 

granite (as well as their extrusive counterparts: basalt, andesite, dacite and rhyolite), there 

are distinct mineralogical and chemical differences between them. Tholeiitic magmas are 

associated with divergent boundaries, such as mid ocean ridge basalts (MORBs), while 

calc-alkaline magmas are restricted to subduction-related plate tectonic processes. 

Magma series are an important part of understanding petrogenesis and the historic 

tectonic framework of an area (Winter, 2010). 

Spatial and temporal trends in magma series of island arcs have been noted by 

Kuno (1959). Although several processes are known to increase K2O concentrations, the 

concentration of K2O in volcanic lava was found to be related to the depth from the 

volcano to the Wadati-Benioff zone. This has been called the K-h relationship (Kuno, 

1959). Low potassium tholeiites occur close to the trench while higher potassium calc-

alkaline magmas are found further from the trench, corresponding to a deeper source. The 

same trend has been found for continental arcs (Tatsumi and Eggins, 1995; Winter, 

2010). 
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Exploratory Data Analysis (EDA) Background 

Exploratory data analysis (EDA) applied to granitic geochemistry datasets 

involves analyzing multivariate geochemical data to detect trends that can give insights 

into geochemical processes. EDA methods include, amongst others, principal component 

analysis, cluster analysis, and spatial interpolation. Grunsky (2010) provides a detailed 

review of these and other EDA techniques. 

 

Principal Component Analysis 

Geochemical data are typically composed of a large number of geochemical 

variables measured over a large number of samples. These data are arranged in tabular 

form called a data matrix, with each sample representing a row of the data matrix and 

each variable a column. Factor analysis is a class of analysis methods, which includes 

principal component analysis, that aims to achieve a parsimonious description of the data 

matrix, in other words to simplify it (Klovan, 1975).  

Principal component analysis is a very popular exploratory multivariate statistical 

technique that aims to reduce the number of variables necessary to describe the observed 

variation into a small number of principal components (Abdi and Williams, 2010; 

Jolliffe, 2014).  Frequently used in the social sciences, the technique is also often used in 

engineering, computer vision, and many other applied science applications that involve 

large volumes of high-dimensional data (Chavez Jr and Kwarteng, 1989; De la Torre and 

Black, 2001). PCA algorithms implement mathematical dimensionality-reduction using 

singular value decomposition of a data matrix (Van den Boogaart and Tolosana-Delgado, 

2013). The underlying mathematical objective is to represent as much of the total 

variation as possible by forming uncorrelated (orthogonal) linear combinations of the 
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original variables—the principal components. Principal components are ordered in terms 

of decreasing amount of variance represented. The first principal component, PC1 

represents the maximum amount of variance and is defined by: 

PC1 = 	𝑎''𝑥' + 𝑎'*𝑥* +	𝑎'+𝑥++ … + 𝑎',𝑥, 

where 𝑥- is the ith original variable, 𝑎'- is the weight assigned to the variable for the first 

principal component and p is the total number of original variables.  

The amount of total variance explained by a principal component is termed the 

eigenvalue, with the total amount of variability equal to the number of original variables 

and each original variable contributing one unit of variability to the total. PCA output 

includes a matrix of factor loadings and a list of communalities. A factor loading is the 

Pearson correlation coefficient between an original variable and a principal component 

(aij in the equation above). The sum of squared factor loadings indicates the percentage of 

the variance in an original variable that is explained by a factor. Examining factor 

loadings is the key to understanding the underlying nature of a particular principal 

component. Variables typically have a large loading on only one factor, and much 

smaller loadings on all the other factors. Each variable has an associated communality 

representing the proportion of variability explained by the principal components for that 

variable. Principal component scores can be computed from the factor loadings to enable 

the original data to be expressed in terms of the calculated principal components. PC 

scores are the scores of each case (row) on each principal component (column). The PC 

score for a given case for a given principal component is computed by taking the case's 

standardized score on each variable, multiplying by the corresponding factor loading of 

the variable for the given factor, and summing these products. 
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Other important PCA outputs are eigenvalues and eigenvectors. An eigenvalue is 

the column sum of squared loadings for a principal component, conceptually representing 

the amount of variance accounted for by a principal component. A principal component is 

described by an eigenvector made up of the coefficients of the variables related to it 

(Davis and Sampson, 1986; Joreskog et al., 1976; Mertler and Vannatta, 2002). 

Although for PCA it is not necessary to test the assumptions of multivariate 

normality and linearity as with some other multivariate techniques, the technique does 

work best on normal distributions with linear relationships amongst the variables. It is 

often helpful to apply a transformation to a non-normal or non-linear distribution (Mertler 

and Vannatta, 2002). Since PCA is based on the mean and sample covariance matrix of 

the data, it is very sensitive to outliers. The usual approach is to identify and remove 

multivariate outliers using a technique like Mahalanobis distance. An alternative 

approach is to use robust PCA to reduce the sensitivity of PCA to outliers. A construct 

known as the MCD (minimum covariance determinant) estimator has a high resistance to 

outliers and is commonly used to implement robust PCA (Filzmoser et al., 2009; Hubert 

and Engelen, 2004).  

The first decision to make when interpreting PCA results is determining the 

number of principal components to retain. Several methods can be used to do this. One of 

the most widely used criteria, known as Kaiser’s rule, recommends retaining principal 

components that have an eigenvalue greater than one. Another method for determining 

the number of principal components to retain is known as the scree test. A scree plot 

depicts the magnitude of each eigenvalue plotted against its ordinal number. The 

appropriate number of principal components to retain is determined by looking for the 
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knee in the curve, the point at which it appears to level off. This is usually after the first 

two to four principal components. Principal components after the knee have relatively 

small and similar-sized eigenvalues, and should be ignored (Mertler and Vannatta, 2002). 

Ideally, each principal component would be interpreted as describing a geological 

process or be related to a geological condition. Usually the first two or three principal 

components that account for most of the variation have good correlation with the 

interpreted process, and then successive principal components show increasing mixtures 

of several processes and are more difficult to interpret (Grunsky, 2010). 

 

Cluster Analysis 

Cluster analysis methods can be used to detect groups of multivariate data that 

cannot easily be observed in simple scatter plots or through methods like PCA. Clustering 

algorithms such as K-means clustering aim to find natural groupings within multivariate 

data (Alférez et al., 2015; Ding and He, 2004). The correlation coefficient (R-mode) is 

usually used as the measure of similarity for performing cluster analysis. K-means cluster 

analysis begins with a ‘guess’ at the cluster centers, and then each sample is assigned to 

the cluster center that it is closest to. New cluster centers are created based on the 

previous ones and the process iterates until stable centers are found. Less than optimal 

clustering can occur if the guess at the initial number of centers is too low or too high. 

Cluster analysis methods like K-means clustering can be applied to principal 

component scores created from PCA. The application of cluster analysis can give 

additional insight into how the interpreted principal component processes are related 

(Grunsky, 2010). 
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Compositional Data 

Almost all geochemistry data are compositional in nature, meaning they sum to a 

constant, such as 1% or 100%, a mathematical property known as the constant-sum 

constraint (CSC) (Kucera and Malmgren, 1998). Due to the CSC, compositional data 

have a strongly negative-biased correlation structure, resulting in many multivariate 

techniques, such as PCA, being unreliable. This problem was first recognized by Pearson 

(1897), who noticed the presence of spurious correlations that affect all data that measure 

some part of the same whole, such as parts per million (ppm), percentages or proportions. 

In addition to being confined to the non-negative numbers (ℝ/
0, variables that only range 

in the positive part of real space), compositional data are further restricted by being 

scaled by the total of the parts of the composition. 

Due to these restrictions, Chayes (1971) described these data as being ‘closed.’ 

Variables in closed datasets are not able to vary independently of each other, and this is 

particularly noticeable in a variance-covariance structure such as is used in PCA 

(Aitchison, 1986). Compositional data can be mathematically represented for D parts as 

restricted to a sample space called the simplex, S2 (also known as the Aitchison 

geometry): 

𝑆0 = 	 𝑥 = (𝑥'𝑥* …	𝑥0):	𝑥- > 0	 𝑖 = 1,2…𝐷 , 𝑥-	

0

->'

= 𝐾 	

	

where K is a defined positive constant that depends on how the parts are measured.  

Standard statistical analyses assume that the sample space is ℝ0 with D 

dimensions that have values that can range to ±∞, which is not the case with 

compositional data (Buccianti, 2013; Pawlowsky-Glahn et al., 2007). With compositional 

data, only statements about ratios of parts are meaningful. However, if the same 
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denominator is used in ratios, such as a/x and b/x, the compositional problem remains. 

This has been indirectly recognized in geochemistry through the use of ratio diagrams 

such as ternary diagrams, showing one part decreasing as another increases (Butler et al., 

2005).  

The problem of the statistical analysis of compositional data remained unsolved 

until Aitchison (1986) introduced the log-ratio approach. Since then, compositional data 

analysis (CODA) has been a hot topic in statistical circles, with many researchers 

adopting this new approach to solve analysis problems that were recognized to have been 

previously tackled in the wrong manner (Butler et al., 2005; Carranza, 2011; Egozcue et 

al., 2003; Engle and Blondes, 2014; Filzmoser and Hron, 2008; Filzmoser et al., 2009; 

Flood et al., 2015; Grunsky et al., 2014; Neocleous et al., 2011; Reimann et al., 2012).  

The log-ratio transformations that Aitchison (1986) proposed move compositional 

data from the simplex (Aitchison geometry) into the Euclidean real space (Euclidean 

geometry) by capturing difference in the data. For example, the difference between 5% 

and 15% and between 20% and 30% is 10 in both cases in the real space. The log-ratio 

transformation can be said to ‘open up’ the compositional data to allow classical 

statistical methods to be used in the same way they are used for standard data. The 

inverse transformation can then be used to interpret the results in the simplex (Aitchison, 

1986; Buccianti, 2013). Aitchison (1986) originally introduced the additive log-ratio (alr) 

and centered log-ratio (clr) transformations as solutions. Although these transformations 

from the simplex into multidimensional real space solved the compositional problem, 

they have some shortcomings that make interpretation difficult.  
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The alr transformation is defined as the log of the ratio of parts over a chosen part. 

A composition with D parts is transformed into D-1 real components and changing the 

part used for the denominator will create a different alr transformation. This is known as 

asymmetry. In addition, the alr transformation is not an isometric transformation from the 

simplex, due to the loss of the part used as the denominator, making interpretation of 

results difficult. 

The clr transformation transforms D compositional parts into D real components 

that add up to 0 ( 𝑦-0
->' = 0 where 𝑦 ∈ ℝ0), by dividing each sample by the geometric 

mean of its parts and taking the logarithm. It is symmetric with respect to the 

compositional parts since it divides all parts by the geometric mean. It also has the benefit 

of being an isometric transformation (Aitchison, 1986). However, the clr transformation 

has the shortcoming of the transformed data being collinear, since all components add up 

to 0, and therefore still succumb to the constant sum constraint (Egozcue et al., 2003). 

Also, this transformation is not appropriate for use in robust PCA since the transformed 

data do not have full rank, and robust covariance estimators like the MCD estimator need 

a full rank data matrix (Filzmoser et al., 2009). 

The isometric log-ratio (ilr) transformation preserves all the advantageous 

properties of the clr transformation, solves the collinearity problem, and allows for a 

robust covariance estimator such as the MCD (Egozcue et al., 2003; Filzmoser et al., 

2009). It is based on a choice of an orthonormal basis on the hyperplane (subspace of one 

dimension less than its ambient space). Since the transformed data are in the hyperplane, 

there are problems with interpretation as the new D-1 variables have no direct connection 

to the original variables, being combinations of those variables. To enable interpretation, 
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Filzmoser et al. (2009) showed how to back-transform the resultant loadings and scores 

from PCA based on ilr transformed data to the clr space. 

 

Spatial Visualization using GIS 

GIS is useful for visualizing spatial data on a map using both the location and 

characteristics of spatial features. GIS is also a powerful tool for storing, organizing, and 

managing spatially referenced data linked to other georeferenced datasets. Increasing 

volumes of geoscience data are being placed into GIS and integrated with other 

geoscience data. Vector spatial data in the form of points, lines, and polygons, as well as 

raster data can be overlain, merged, and analyzed through GIS tools and database queries 

(Chang, 2013; Clemmer, 2013; Grunsky, 2010).  

Geochemical spatial variation can be visualized by creating a statistical surface 

through GIS spatial interpolation. Spatial interpolation approximates the values of the 

discrete sample points over the whole study region, attempting to recreate the continuous 

geochemical variation that was discretely sampled in the field. The sample points have 

known values that are used to estimate values at other points to create a raster statistical 

surface. This can then be displayed in various ways, such as smooth or contoured. 

Particularly useful spatial interpolation techniques for geochemical data visualization are 

trend surface models which are a form of global interpolation, and kriging which is a 

local interpolation method.  

Trend surface models are useful if a smoothed visualization of larger scale trends 

is desired; this smooths over local variation. A polynomial equation approximates the 

known points and this equation is used to estimate the unknown areas. Higher order 
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polynomials are needed to approximate more complex surfaces and involve more 

computation. Esri’s ArcGIS offers up to 12th order trend surface models.  

Kriging is an advanced geostatistical procedure that generates an estimated 

surface from a scattered set of points. Chang (2013) provides a good overview of this 

technique. Kriging originated as a tool to assist in spatially modeling ore bodies in 

mining and geologic engineering. Spatial variation is assumed to be neither totally 

random (stochastic), nor deterministic. This assumption has resulted in different kriging 

methods being developed. All methods use semivariance or spatial autocorrelation to 

construct a semivariogram cloud containing all pairs of all points. The semivariogram is 

fitted with a mathematical function or model, which is then used for estimating the 

semivariance at a given distance. The next part of the procedure depends on which type 

of kriging is selected. Three basic kriging methods are: ordinary kriging, universal 

kriging, and simple kriging. Ordinary kriging is usually the most useful as it focuses on 

the spatial correlation. Values for unknown points are estimated by solving a set of 

simultaneous equations based on the fitted semivariogram values for a chosen set of 

sample points to use. A benefit of kriging is the inclusion of a variance measure 

(prediction error) for each estimated point that gives an indication of the quality of 

prediction. 

 

Peninsular Ranges Batholith (PRB), Trends and Previous EDA Work 

Northern PRB Subdivisions 

The part of the Peninsular Ranges batholith located north of latitude 33˚ N has 

historically been subdivided in various ways. The most basic subdivision is a batholith-

wide separation into eastern and western parts based on criteria such as the 
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magnetite/ilmenite line, oxygen isotopes and the Sri  (initial strontium) 0.706 line (Miller 

et al., 2014; Morton et al., 2014; Ortega-Rivera, 2003; Symons et al., 2003).  

Baird et al. (1979) divided the batholith into three post-batholith (Tertiary) 

structural blocks: the Santa Ana block, the Perris block, and the San Jacinto block. The 

Elsinore fault zone separates the Santa Ana and Perris blocks, whereas the San Jacinto 

fault zone separates the Perris and San Jacinto blocks (Figure 5). This subdivision is 

supported by Gromet and Silver (1987), who noted a systematic west/east variation in 

rare earth element (REE) patterns that suggested a division of the batholith into three 

distinct parallel longitudinal regions approximately corresponding to Baird’s structural 

blocks. 

Morton et al. (2014) created five distinctive longitudinal batholith zones based on 

field characteristics, geochemistry, age, stable isotopes, and geophysical parameters. The 

zones are: western zone (WZ), western transition zone (WTZ), eastern transition zone 

(ETZ), eastern zone (EZ), and upper plate zone (UPZ). The UPZ is allochthonous 

whereas the other zones are autochthonous. Although the zones are distinct from each 

other, there is some overlap and gradation between them due to batholith emplacement 

processes being transitional in nature.  
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Figure 5. Map of subdivisions of the northern Peninsular Ranges batholith of southern 
California showing sample locations, structural blocks (Baird and Miesch, 1984) and 
zones (Morton et al., 2014). A west/east transition zone is placed at the boundary between 
the WTZ and ETZ to subdivide the batholith into western and eastern parts. 

 

Northern PRB West/East Variation 

The northern Peninsular Ranges batholith is laterally zoned, with plutonic rocks 

differing compositionally between the west and east. The west is more mafic and 

heterogeneous, and plutons were generally emplaced at a shallower depth than those in 

the east (Langenheim et al., 2014; Morton et al., 2014). Western rocks are the product of 
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magmatic activity that formed numerous individual plutons with compositions and 

internal structures consistent with mixing of granodiorite and gabbro magmas (Clausen et 

al., 2014). Gabbroic rocks are found mostly southwest of the San Jacinto Fault. The 

western part of the northern Peninsular Ranges batholith is interpreted to have been 

emplaced into oceanic crust created from the accretion of an island arc onto an active 

continental margin, whereas the east is interpreted to have been emplaced into continental 

crust (Morton et al., 2014). 

A distinctive feature of plutons in the east is that they tend to be larger in size than 

in the west and often display concentric zoning. They are known as “La Posta-type 

plutons” after the La Posta pluton straddling southern California and Mexico 

(Clinkenbeard and Walawender, 1989). Walawender et al. (1990) found these plutons to 

be inwardly zoned from hornblende-bearing tonalite margins to muscovite-bearing 

monzogranite cores. The San Jacinto mountains in the north-eastern part of the 

Peninsular Ranges batholith are described by Hill (1984) as having three major tonalite 

intrusions that he named units I, II, and III. Although they are similar compositionally, 

being composed of tonalite gradational to K-feldspar-poor granodiorite, they can be 

differentiated using structural features of a zoned pluton. 

 

Previous Exploratory Data Analysis in the Northern PRB 

The use of factor and principal component analysis in batholithic geochemical 

datasets has been limited to date, but some work has been done using factor analysis in 

the northern PRB. A few studies have also included geochemical spatial contouring. 

Morton et al. (1969) sampled 162 locations over the Lakeview mountains pluton. 

Computerized trend surface analysis was done at a time that hand contouring was still 
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common. Surfaces of increasing complexity up to eighth order were computed to contour 

large-scale patterns that were partly obscured by small-scale heterogeneity in the pluton. 

The goal was to create a surface that captured the large-scale systematic trends but not 

the small-scale variability. Systematic concentric zoning was identified with 5th order 

trend surface analysis showing a mafic core and felsic margin – the inverse of typical 

zoned plutons. 

 In a study of spatial trends of major elements over the northern PRB and 

Transverse Ranges, Baird et al. (1979) used third order trend surface analysis to smooth 

local noise and create contour maps. They describe a strong SW to NE mafic to felsic 

gradient, with decreasing Mg, Ca, Fe and density to the NE. They noted that regional 

chemical gradients, especially for Si and K, varied in a smooth fashion; however at a 

smaller pluton scale, temporal overlaps interrupt this pattern for parts of the batholith. 

They also noticed a tendency for the youngest and furthest east rocks in the batholith to 

be less mafic than earlier rocks. 

Baird and Miesch (1984) examined the northern PRB and Transverse Ranges 

samples using Q-mode factor analysis to create a mixing model for their source materials 

which suggested 4 possible end members (two magmas and two differentiates) from 8 

measured major element oxides (see also Miesch (1976)). Q-mode factor analysis looks 

at correlations between the samples across a number of variables (sample-based factor 

analysis), instead of looking at correlations between variables across a number of samples 

(variable-based factor analysis) which is known as R-mode factor analysis (Klovan, 

1975).  
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CHAPTER TWO 

DATA AND METHODS 

Northern PRB Dataset 

In the mid-1970s, Alex K. Baird and his graduate students Edward Welday and 

Kathleen White of Pomona College collected regional geochemical and isotope data for 

the northern PRB and Transverse Ranges. According to Morton et al. (1985), this work 

culminated in the first accurate assessment of the systematic chemical variation across a 

composite batholith, and is likely the best dataset in existence for any batholith. They 

collected the samples on a predesigned grid using a strategy to mitigate the effects of 

heterogeneity and sampling bias at each sample site. The high quality of the dataset based 

on these systematically collected samples allows an accurate estimation of the 

composition of the northern PRB and Transverse Ranges. The Baird-Welday collection 

includes 480 composite samples collected over an area of 45,000 km2 with 287 samples 

falling within the northern PRB and 193 within the Transverse Ranges. Data from these 

samples include 10 major and 29 trace and rare earth elements (REE), and 4 isotopes and 

isotope ratios as follows: 

• Major elements, analyzed by Baird and Miesch (1984) and Morton et al. (2014): 

Si, Al, Fe, Mg, Ca, Na, K, Ti, P, Mn. 

• Trace elements, analyzed by Morton et al. (2014): Rb, Cs, Sr, Ba, Zr, Hf, Nb, Ta, 

Th, U, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Sc, V, Cr, Co, Ni. 

• Isotopes and isotope ratios (for some samples), analyzed by Kistler (2003), Kistler 

et al. (2014) and Silver et al. (1988): 18/16O, (87Sr/ 86Sr)o, (143Nd/144Nd)o, 

(206Pb/204Pb)o. 
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Since this dataset is comprehensive, no additional sampling was needed, however 

relevant field and lab experience is described in Appendix 1 and 2. 

 

Methods 

Data Preparation 

The PRB geochemical data were first checked for missing values. Although 

missing data was not a problem, a small number of values were below the detection limit. 

For P2O5, 10 values were below the detection limit of 0.05 ppm, and MgO had six values 

below the detection limit of 0.1 ppm. Since the number of values below the detection 

limit was relatively small, censoring was not an issue and they were substituted with 

values at half the detection limit (Helsel, 1990; Templ et al., 2009). Ni was excluded due 

to contamination concerns from the milling process. 

Since the 10 major oxide values are given in units of weight percent while the 28 

trace and rare earth elements are in ppm, standardization was done by representing all 

values in terms of elemental ppm, excluding the oxygen component from the major 

elements. 

 

Multivariate and Univariate Assumptions 

In the case of compositional data, standard descriptive statistics are not very 

informative, since the mean, variance, and standard deviation do not fit with the 

Aitchison geometry as measures of central tendency and dispersion (Pawlowsky-Glahn et 

al., 2007). As noted, PCA is particularly sensitive to outliers which are commonly 

handled by detection and removal or by applying a transformation. However, in the case 

of compositional data, outlier detection is not trivial, making a robust approach preferable 
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(Filzmoser and Hron, 2008). Spatial interpolation is also sensitive to outliers, requiring 

their identification and removal. This was done using boxplots. 

 

Principal Component Analysis (PCA) 

PCA was run using the R statistical package version 3.2.4 (R-development-core-

team, 2016). The “RobCompositions” package (Templ et al., 2016) was used to perform 

robust PCA for compositional data. This was done using the following steps as 

implemented in the “pcaCoDa” function: 

1. Transform the raw data using the ilr transformation. 

2. Perform robust PCA. 

3. Back-transform the resulting loadings and scores to clr space. 

When displaying PCA results, it is useful to include both the variable loadings 

and sample scores (known as observations) together on the same plot, called a biplot, as 

first described by Gabriel (1971). To effectively view both the variables and observations 

at the same time, centering and scaling is done. For the interpretation of biplots for 

compositional data analysis, see Aitchison and Greenacre (2002) and Pawlowsky-Glahn 

et al. (2007). Some of the main features important in interpreting biplots are: 

• The choice of scale for the loadings and scores. 

• Variables are represented as vectors with the length representing the relative 

strength of the variable’s loadings for the principal components plotted. 

• Orientation of vectors represents the correlation with respect to other variables 

and to the observations. 

• Vectors oriented close to each other are highly correlated. 



	

35	

• Vectors oriented 180° from each other are negatively correlated. 

• Vectors oriented 90° from each other are uncorrelated (orthogonal). 

• Observations close to variables are strongly related to them. 

In the R implementation of robust compositional PCA, the “pcaCoDa” function 

creates an object of class “pcaCoDa” which includes an object of the standard PCA 

routine “princomp.” The benefit of having the “princomp” object available is that it can 

be passed to any R function designed to plot the standard PCA output of this class. With 

this object, the “ggbiplot” package (Vu, 2016) was used to plot the screeplot as well as 

biplots for the principal components. 

 

Spatial Variation Plots and Maps 

West/east variation plots were created using MS Excel with distance from the 

transition zone calculated using Esri ArcGIS 10.3 for Desktop (Esri, 2016). Spatial 

interpolation maps were generated using the kriging and trend surface analysis tools in 

Esri ArcGIS 10.3 for Desktop. Fault data used is from USGS GIS fault data for 

California (USGS, 2016). The boundaries of the five PRB zones are from Morton et al. 

(2014).  

Spatial interpolation was restricted to the convex hull of the sample locations to 

ensure the resulting statistical surface is based as much as possible on the data points and 

is not an extrapolation outside the area sampled. A convex hull may be visualized as the 

shape created when a rubber band is stretched around a set of points. For more on convex 

hulls, see Eddy (1977).  
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CHAPTER THREE 

RESULTS 

	
In this section, the results of the multivariate statistical analysis of the PRB 

geochemistry are presented first as a series of tables and charts, followed by spatial 

analysis as a series of charts and maps. Discussions and interpretations are given together 

with the resulting charts and maps instead of in a separate section to improve readability 

and clarity. Relevant previous work is considered where appropriate as an aid for the 

interpretation. These prior studies can often be applied to more than one part of the 

results due to the similarity that exists when exploring geochemical variation both 

statistically and spatially. 

    

Geochemical Statistical Variation: Principal Component Analysis 

Selecting Principal Components (PC) to Retain 

Robust PCA for compositional data was run to determine the underlying structure 

for the 38 geochemical variables for the samples from the northern PRB. Two criteria 

were used to evaluate the appropriate number of components to retain: eigenvalues and 

scree plot (Figure 6). Examining the eigenvalues and scree plot indicated that retaining 

two and possibly three components should be investigated. The first principal component 

(PC1) accounted for 56.7% of the total variance, the second (PC2) 17.3%, and the third 

(PC3) 6.7%. Therefore, PC1 is more than three times as significant as PC2, while PC2 is 

almost three times as significant as PC3. Table 1 gives the variable loadings sorted from 

low to high for the first three principal components. Table 2 gives the variable loadings 

sorted by absolute value for the first three principal components to show the relative 



	

37	

significance of each variable in each principal component. The most significant variables 

are highlighted for each principal component. 

 

 

Figure 6. Scree plot for robust compositional PCA suggests 
retaining two or possibly three principal components.	
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Table 1. Variable loadings for PC1, PC2 and PC3, ordered from low to high.		

	PC1	 	 PC2	 	 PC3	
Th	 -0.27	 	 Yb	 -0.34	 	 Cr	 -0.49	
La	 -0.22	 	 Tm	 -0.33	 	 Th	 -0.41	
Ta	 -0.22	 	 Er	 -0.28	 	 Cs	 -0.39	
Ce	 -0.21	 	 Ho	 -0.25	 	 Rb	 -0.23	
Nb	 -0.19	 	 Y	 -0.21	 	 U	 -0.21	
Rb	 -0.19	 	 Dy	 -0.20	 	 Mg	 -0.14	
Ba	 -0.18	 	 Tb	 -0.16	 	 V	 -0.13	
Pr	 -0.18	 	 U	 -0.13	 	 Co	 -0.11	
U	 -0.17	 	 Cs	 -0.13	 	 Sc	 -0.08	
K	 -0.16	 	 Th	 -0.12	 	 La	 -0.08	
Nd	 -0.14	 	 Gd	 -0.09	 	 K	 -0.08	
Zr	 -0.11	 	 Cr	 -0.07	 	 Ce	 -0.04	
Hf	 -0.10	 	 Rb	 -0.06	 	 Pr	 0.01	
Sm	 -0.08	 	 K	 -0.06	 	 Fe	 0.01	
Cs	 -0.08	 	 Hf	 -0.05	 	 Mn	 0.03	
Sr	 -0.05	 	 Sm	 -0.01	 	 Zr	 0.03	
Eu	 -0.02	 	 Sc	 -0.01	 	 Ca	 0.04	
Gd	 -0.01	 	 Zr	 0.01	 	 Ti	 0.04	
Si	 0.00	 	 Si	 0.03	 	 Hf	 0.04	
P	 0.00	 	 Mn	 0.03	 	 Nd	 0.05	
Na	 0.00	 	 Ta	 0.03	 	 P	 0.07	
Tb	 0.02	 	 Na	 0.05	 	 Si	 0.07	
Al	 0.05	 	 Nd	 0.06	 	 Al	 0.08	
Dy	 0.06	 	 Eu	 0.08	 	 Nb	 0.09	
Ho	 0.07	 	 Pr	 0.08	 	 Sm	 0.10	
Y	 0.09	 	 Ce	 0.08	 	 Ba	 0.11	
Ti	 0.09	 	 Ba	 0.08	 	 Er	 0.11	
Er	 0.10	 	 La	 0.10	 	 Gd	 0.11	
Tm	 0.10	 	 Al	 0.11	 	 Yb	 0.11	
Yb	 0.11	 	 Fe	 0.12	 	 Y	 0.12	
Ca	 0.16	 	 V	 0.12	 	 Ta	 0.12	
Fe	 0.17	 	 Co	 0.12	 	 Dy	 0.13	
Mn	 0.19	 	 Nb	 0.14	 	 Na	 0.13	
Cr	 0.25	 	 Mg	 0.21	 	 Sr	 0.14	
Mg	 0.26	 	 Ca	 0.21	 	 Eu	 0.14	
Co	 0.27	 	 P	 0.23	 	 Ho	 0.16	
V	 0.30	 	 Ti	 0.24	 	 Tb	 0.16	
Sc	 0.31	 	 Sr	 0.37	 	 Tm	 0.18	
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Table 2.	Variable loadings for PC1, PC2 and 
PC3, ordered by absolute value with more 
significant values highlighted. Values are in 
clr coordinate space.	

	
		 PC1	 PC2	 PC3	
Sc	 0.31	 -0.01	 -0.08	
V	 0.30	 0.12	 -0.13	
Th	 -0.27	 -0.12	 -0.41	
Co	 0.27	 0.12	 -0.11	
Mg	 0.26	 0.21	 -0.14	
Cr	 0.25	 -0.07	 -0.49	
La	 -0.22	 0.10	 -0.08	
Ta	 -0.22	 0.03	 0.12	
Ce	 -0.21	 0.08	 -0.04	
Nb	 -0.19	 0.14	 0.09	
Mn	 0.19	 0.03	 0.03	
Rb	 -0.19	 -0.06	 -0.23	
Ba	 -0.18	 0.08	 0.11	
Pr	 -0.18	 0.08	 0.01	
U	 -0.17	 -0.13	 -0.21	
Fe	 0.17	 0.12	 0.01	
K	 -0.16	 -0.06	 -0.08	
Ca	 0.16	 0.21	 0.04	
Nd	 -0.14	 0.06	 0.05	
Zr	 -0.11	 0.01	 0.03	
Sr	 -0.05	 0.37	 0.14	
Yb	 0.11	 -0.34	 0.11	
Tm	 0.10	 -0.33	 0.18	
Er	 0.10	 -0.28	 0.11	
Ho	 0.07	 -0.25	 0.16	
Ti	 0.09	 0.24	 0.04	
P	 0.00	 0.23	 0.07	
Y	 0.09	 -0.21	 0.12	
Dy	 0.06	 -0.20	 0.13	
Cs	 -0.08	 -0.13	 -0.39	
Tb	 0.02	 -0.16	 0.16	
Eu	 -0.02	 0.08	 0.14	
Na	 0.00	 0.05	 0.13	
Gd	 -0.01	 -0.09	 0.11	
Sm	 -0.08	 -0.01	 0.10	
Al	 0.05	 0.11	 0.08	
Si	 0.00	 0.03	 0.07	
Hf	 -0.10	 -0.05	 0.04	
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Biplot of PC1 vs. PC2 

Geochemical variables and samples (also called observations) are visualized 

together in a biplot for the first and second principal components with the samples 

grouped by lithology (Figure 7) as well as by PRB structural block (Figure 8). Ellipses 

capture one standard deviation of the variation in each group (68.27%). 

 

 

Figure 7. PC biplot of PC2 vs. PC1 with samples grouped by rock type. After performing 
robust PCA of ilr-transformed data, the resulting PC1 and PC2 variable loadings as well as 
sample scores were back-transformed to clr space for biplot representation. Variables are 
represented by vectors and samples by points classified by rock type. Ellipses depict one 
standard deviation of rock type distribution. A monotonic trend from mafic (high PC1) to 
felsic (low PC1) is seen. 
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For the samples in Figure 7, the most noticeable effect is a monotonic trend from 

mafic to felsic, with gabbros at high PC1 transitioning through tonalite, granodiorite and  

granite at low PC1. Both the gabbro and granite groups minimally overlap in 2-D space 

with their closest neighbors (tonalite and granodiorite respectively) while the 

intermediate groups of tonalite and granodiorite overlap more extensively with each 

other. However when considering only PC1, only gabbro does not overlap with its 

neighbors considerably. This mafic to felsic trend is reflected most strongly in PC1, 

which explains 56.7% of the total variation. 

Grouping the samples by PRB block (Figure 8) reveals a weak trend explained 

mainly by PC2. The three block subdivisions are used instead of the five zone 

subdivisions in order to visualize general west/east trends without too much detail being 

presented in biplots and to facilitate comparison with previous studies. The western Santa 

Ana block samples, central Perris block samples and eastern San Jacinto block samples 

are oriented in a general west/east trend with some overlap.  
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Figure 8. PC biplot of PC2 vs. PC1 with samples grouped by PRB block. After performing 
robust PCA of ilr-transformed data, the resulting PC1 and PC2 variable loadings as well as 
sample scores were back-transformed to clr space for biplot representation. Variables are 
represented by vectors and samples by points classified by rock type. Ellipses depict one 
standard deviation of PRB block distribution. A weak monotonic predominantly PC2 trend 
from the Santa Ana block to the San Jacinto block is seen. 

 

The vectors representing geochemical variables show similar trends, with 

compatible elements at high PC1 (Ti, Ca, Mg, Fe, Co, V, Mn, Sc, Cr) found in greater 

abundance in mafic minerals oriented toward higher PC1 and the mafic gabbro samples 

(see Figure 7 and Figure 9 for a zoomed view of the variables). The compatible elements 

consist mainly of the transition elements in Figure 3. They are not tightly clustered, 

varying with respect to each other in terms of PC1 and PC2. Most other elements display 
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incompatible behavior to varying degrees (low PC1), with strongly incompatible 

elements (Rb, K, Th, U, Cs) found in the opposite direction from the compatible 

elements, showing a negative correlation. 

	
	

	
  
Figure 9. PC biplot of PC2 vs. PC1 – zoomed view of variables.	

 

Although Si comprises a higher ratio of the composition of samples than any 

other element (42-76 wt. %), it is close to zero in the biplot, being slightly positive in 

PC2. This is because it occurs in both shallow and deep, and felsic and mafic samples and 

shows relatively low variation among samples when compared to the other elements. 
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Order of Incompatibility 

According to Sun and McDonough (1989), the order of incompatibility of trace 

elements in mid-ocean ridge basalts (MORBs) and ocean island basalts (OIB) follows the 

sequence: Cs ≈ Rb ≈ Ba > Th > U ≈ Nb = Ta ≈ K > La > Ce > Pr ≈ Mo ≈ Sr > P ≈ Nd > 

Zr = Hf ≈ Sm > Eu ≈ Ti > Dy ≈ Li > Ho = Y > Yb. They state that the rule works in 

general, suggesting relatively simple overall fractionation processes of partial melting 

and fractional crystallization (PM/FC) and no significant change in the environment of 

formation of MORBs and OIBs. 

The variable loadings for PC1 (see Table 1) suggest that the order of 

incompatibility for the PRB samples, and by implication for felsic crustal rocks, is as 

follows: Th > La = Ta ≈ Ce > Nb = Rb ≈ Ba = Pr ≈ U ≈ K > Nd > Zr > Hf > Sm = Cs > 

Sr > Eu ≈ Gd ≈ Si = P = Na > Tb> Al ≈ Dy ≈ Ho > Y = Ti ≈ Er = Tm ≈ Yb > Ca ≈ Fe > 

Mn > Cr ≈ Mg ≈ Co > V ≈ Sc. This ordering is a progression from the most incompatible 

element (Th) to the most compatible (Sc). 

The variables and samples both suggest an interpretation for PC1 of extent of 

differentiation, a result of cycles of partial melting and fractional crystallization. This 

principal component is also related to crustal contamination of magma (and therefore to 

initial strontium), since elements that are more compatible remain in the mantle while 

incompatible elements migrate into the crust. 

 

Depth effect of Garnet and Plagioclase  

The heavy rare earth elements, Tb, Dy, Ho, Er, Tm, Yb as well as Y are clustered 

and oriented along the PC2 trend and toward the western Santa Ana block samples in 
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Figure 8. Several LREEs (La, Pr, Nd, Sm) are clustered toward low PC1, oriented 

mainly along PC1 and towards the eastern San Jacinto block. In the plot of ionic radius 

vs. ionic charge (Figure 3) the rare earth elements are grouped closely together, 

suggesting similar behavior is expected in the way they fit into a crystal lattice and 

substitute for other elements. 

Garnet is a major high pressure rock-forming mineral, is stable and could be 

volumetrically important across a broad range of compositions at high pressure (Gromet 

and Silver, 1987). It is abundant in the deeper garnet stability zone (> 33-40 km depth), 

occurring for example in eclogite and high pressure garnet amphiboles (Otamendi et al., 

2002). As noted earlier, garnet acts as a sink for the heavy and middle REEs as well as 

for Y, causing fractionation. Recall from Figure 4 the partition coefficients of the 

heaviest REEs are about three orders of magnitude greater than for the lightest REEs, so 

at the depth of the garnet stability zone, concentrations of HREEs in garnet crystals are 

about one thousand times greater than LREE concentrations. Similarly, HREEs in the 

melt derived from garnet fractionation will be about one thousand times lower in 

abundance than LREEs (Morton et al., 2014). 

A melt derived from the shallower depth plagioclase stability zone (< ~10 km 

depth), where garnet is not stable, will not show the depletion in heavy REEs. However, 

crystallization of plagioclase at this level depletes the melt of Sr and Eu. Feldspars are the 

only major rock unit capable of storing Sr (Gromet and Silver, 1987). Although 

plagioclase and garnet are not the only minerals crystalizing at their respective depths, 

they are volumetrically important enough to dominate the behavior of the REE, Sr and Y.  
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Figure 10 shows clusters of elements that are relatively depleted in near surface 

granitoids due to removal by garnet and plagioclase differentiation at depth. The near 

surface granitoids are a complement of the deeper more mafic rocks containing garnet 

and higher plagioclase. The alkali elements are enriched in these final stage high K-

feldspar granitoids. 

 

 

Figure 10: PC Biplot of PC2 vs. PC1 showing the effect of deep garnet differentiation on 
HREE, Y and possibly LREE and the effect of intermediate level plagioclase 
differentiation on Sr, Eu and Ca. K-feldspar influences K, Rb and Cs close to the surface. 
Compatible elements are clustered at high PC1. The LREE are affected more by PC1 than 
by PC2, indicating differentiation extent. 

	
	

Thus, PC2 is similar to the standard geochemical parameter Sr/Y as a measure of 

magma source depth, but it includes more elements that are partitioned in a similar 
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manner by the effect of pressure and therefore depth. These relationships suggest that a 

reasonable interpretation for PC2 would be magma source depth. 

Looking at the fractionating effect of garnet in more detail, a direct relationship 

between the order of PC2 loadings and ionic size for the REEs is seen. In order of 

increasing ionic size and PC2 loading, the sequence is: Yb, Tm, Er, Ho, Dy, Tb, Gd, Sm, 

Nd, Pr, Ce and La. In Figure 11, red arrows show the direction of increasing 

concentration for the solid and melt phases. Elements with larger ionic radii tend to be 

partitioned more into the melt since they do not fit well into the solid crystal lattice – an 

effect which increases as pressure increases.	This observation indicates that the upper 

crust PRB granitoids come from melt depleted in garnet and plagioclase elements that 

have been fractionated out in the mantle and lower crust, but enriched in the K-feldspar 

elements that remained after emplacement into the upper crust. Since K-feldspar is stable 

close to the surface, its effect is likely to be due to sampling the solid. Elements related to 

garnet, plagioclase, K-feldspar fractionation as well as the most compatible elements are 

similarly highlighted for comparison between Figures 10 and 11. 
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Figure 11: Plot of ionic radius vs. ionic charge with arrows showing direction of 
increase in abundance of elements with respect to the melt and solid phases. Elements 
fractionated by garnet, plagioclase and K-feldspar are highlighted. The transition 
elements tend to be more compatible. 
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A systematic west/east variation in REE patterns led Gromet and Silver (1987) to 

divide the batholith into three distinct parallel longitudinal regions, which would roughly 

correspond to Baird’s three structural blocks in Figure 8. They proposed a deepening 

magma source trend to the east with western source rock dominated by a plagioclase-

bearing (gabbroic) assemblage while the source rock in the east is dominated by a garnet-

bearing plagioclase poor (eclogitic or garnet amphibolitic) assemblage. This idea was 

supported by observing a strong enrichment in LREEs in rocks in the east, implying a 

garnet-rich source; and higher Sr in central and eastern rocks, reflecting lower abundance 

of plagioclase in the source rock. The appearance of garnet and disappearance of 

plagioclase in sources of the central region were said to be complementary – both are 

needed to explain REE and Sr patterns.  

The west/central transition is correlated with a change in the emplacement style of 

the batholith from a stationary oceanic island arc in the west to an eastward-migrating 

arc. The change in REE patterns is attributed to the partial melting of a mafic source to 

produce a plagioclase-rich gabbro residue at shallow depth in the west, rapidly changing 

to a deeper, higher-pressure partial melting process producing a garnet-bearing residue in 

the central and eastern regions. Gromet and Silver (1987) note that the REE geochemistry 

in the west is consistent with that of an ocean island arc basement, whereas in the central 

and eastern region, the strong heavy REE fractionation is evidence that it is from a deeper 

source, possibly due to a basaltic underplate thickening of the continental crust. The 

west-east contrast is visualized in Figure 12. A steep slope indicates a large difference in 

partition coefficients between the light and heavy REEs, and is interpreted to be the result 

of garnet fractionation at depth, as evidenced in the eastern San Jacinto block. The 
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western region of the PRB in the Santa Ana block is characterized by rocks having a 

more gentle REE slope indicating little effect from garnet fractionation. The REE 

fractionation pattern in the central Perris region is intermediate between the other two 

regions. 

 
 

	

Figure 12. Rare earth multi-element spider diagram for the Santa Ana, Perris, and San 
Jacinto blocks. REE data are from the 287 samples collected by Baird and Miesch 
(1984) and analyzed by Morton et al. (2014). Lines represent mean values for all 
samples, shaded areas represent one standard deviation. 
	

 

PCA analysis has shown the variation of elements relating to fractionation of 

garnet and plagioclase can be explained by considering the effect of pressure (and depth). 

If PC2 relates to magma source depth, it can be used as a geobarometer, reflecting the 

average depth at which magma originated. 
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Biplot of PC2 vs. PC3 

When the influence of PC1 is removed, the impact of PC2 on the variables and 

samples is more clearly seen (Figure 13). Grouping by rock type, the trend from mafic to 

felsic reflects the fact that western granitoids from a shallower source are more mafic and 

eastern granitoids from a deeper source are more felsic, with the most overlap occurring 

between the intermediate tonalite and granodiorite.  

 

	
 
Figure 13. PC biplot of PC3 vs. PC2 with samples grouped by rock type. 

	
	
When grouping by PRB block, a very weak west/east trend is noticed (Figure 14).	
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Figure 14.	PC biplot of PC3 vs. PC2 with samples grouped by PRB block. 

	
	

Since PC3 represents only 6.7% of the total variation, an interpretation is not 

likely to be very meaningful. However, examining the effect of PC3 on the variables in 

the zoomed view of the biplot of PC2 and PC3 (Figure 15), a grouping of elements (K, 

Sc, Cr, Th, Rb, Cs, U) is noticed oriented toward negative PC3 that have highly water-

soluble forms. Nb and Ta, known to be water insoluble are oriented toward positive PC3. 

The alkali metals are known to be particularly water-soluble, represented here by K, Rb, 

and Cs. Uranium is water soluble in the form of many of its salts (U6+). Scandium is 

highly soluble in the form of scandium chloride and other salts. Thorium is mobile in 

water. Chromium (VI) is highly water soluble (Greenwood and Earnshaw, 2012; Hobbs 

and Edwards, 1994; James, 1996). Water-soluble elements tend to be more mobile and an 

increase in the concentration of these elements in rocks could be an indication of the 

involvement of slab fluids. Higher alkalinity is associated with distance from the trench 
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as noted by Tatsumi and Eggins (1995). As the subducting slab moves through 

progressively deeper zones, dehydration melting occurs and water is driven off, carrying 

water-soluble elements as it ascends with the melt.  

A tentative interpretation for PC3 would therefore be solubility and mobility 

associated with alkaline variation. However as noted, PC3 only accounts for 6.7% of 

explained variance, so a mix of several processes is likely being represented here. 

	
	

 

Figure 15.	PC biplot of PC3 vs. PC2 – zoomed view of variables. 

	
	

Geochemical Spatial Variation: Distance Plots and Interpolation Maps 

Understanding the spatial distribution of geochemical patterns (the spatial 

domain) is a fundamental part of geochemical exploratory data analysis. Visualization of 

spatial variation aids in data interpretation and subsequent model building. First, the 
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standard geochemical parameters for extent of differentiation, magma source depth, 

crustal contamination and alkalinity are considered in terms of one-dimensional west/east 

variation across the northern Peninsular Ranges batholith and then in two-dimensions 

using spatial interpolation. Second, the principal components are spatially interpolated 

and compared to the standard geochemical parameters. 

 

West/East Variation (1-D) 

Mesozoic magmatism is interpreted to have progressed from west to east in the 

PRB, traversing a basement of oceanic crust in the west to continental crust in the east 

(Morton et al., 2014). Between the western and eastern zones, the western and eastern 

transitional zones are thought to reflect a transition from oceanic to continental crust. An 

understanding of the shift in geochemical patterns from west to east can shed new light 

on subduction-zone processes of interest. The five zones of Morton et al. (2014) are 

compared using bivariate diagrams of standard geochemical parameters associated with 

subduction zone processes plotted against the distance from the line dividing the western 

and eastern transition zones. Distance from transition zone was measured as the closest 

distance from each sample location to the transition zone line, found using GIS. This 

gives a 1-D or first order variation view of patterns. 

For SiO2 (Figure 16) the main difference between the west and east is the degree 

of variation, with a sharp change being observed across the transition zone. West of the 

transition zone, SiO2 varies widely and evenly, especially in the western zone. This is due 

to the wide range of rocks found in the west, from gabbros to granites. In the east, SiO2 is 

confined mainly to the more felsic values and is uniformly high except for a few gabbro 

samples in the eastern transition zone. The western granitoids are interpreted to have been 
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emplaced in an extensional plate tectonic regime with a shallow source (Morton et al., 

2014). This would allow for relatively fast magma ascent and less time for mixing 

between mafic and felsic magmas. 

 

 

Figure 16. SiO2 concentration (wt. %) vs. W-E distance from the transition zone dividing 
line, with samples grouped by PRB zone (WZ - western zone, WTZ – western transition 
zone, ETZ – eastern transition zone, EZ – eastern zone, UPZ – upper plate zone). The west 
is characterized by wide variation while the east is high and less variable. 

  

As subduction moved through the transition zone continent-ward, the extensional 

tectonic regime rapidly changed to a compressional tectonic regime and a deeper source 

(Gromet and Silver, 1987; Morton et al., 2014). This slowed the magma ascent rate, 

allowing more time for mixing between magmas with extreme compositions.  

Similar to SiO2, a sharp distinction is noticed between the east and west for initial 

strontium (Figure 17). West of the transition zone, Sri shows a slightly increasing trend 



	

56	

with little variation while in the east the degree of variation is greater and a strongly 

increasing trend is observed, with the highest average values in the transition and upper 

plate zone. 

 

 

Figure 17.	Initial strontium (Sri) vs. W-E distance from the transition zone dividing line 
with samples grouped by PRB zone. In the west Sri is low, while in the east it is higher and 
increases eastward. 

 
If Sri records the amount of continental crust contamination, a picture emerges of 

magmatism proceeding through different basements. Initially magma ascended through 

oceanic crust in the west with relatively uniformly low contamination, (or high 

contamination with low Sri crust), increasing slightly as the continental influence 

increases to the east. As subduction moved under the North American craton, crustal 

contamination rapidly increased. This coincides with a transition from an extensional to a 

compressional tectonic environment, slowing magma ascent rates. Magma movement is 
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more constrained, allowing more time for interaction with the continental crust, resulting 

in a higher degree of crustal assimilation. 

The Sr/Y ratio shows an increasing trend from west to east (Figure 18). The west 

has relatively low Sr/Y ratios with little variation while the samples east of the transition 

zone are more widely dispersed and higher overall. This trend shows source depth to be 

increasing to the east, with a relatively uniform shallow source in the west and a more 

variable deeper source in the east. As subduction advanced eastward from where the 

magma source was in the shallow plagioclase stability zone where strontium was left 

behind at depth, it encountered the thick continental crust. The increased depth and 

pressure pushed partial melting into the garnet stability zone, removing yttrium (and 

HREE) from the melt, but not lowering strontium concentrations from plagioclase 

fractionation at depth. The greater variation in the east helps to explain the weak trend 

seen in PRB blocks in Figures 8 and 14. Since Sr/Y values are both low and high in the 

central Perris and eastern San Jacinto blocks, there is a lot of overlap with each other and 

with the western Santa Ana block. 
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Figure 18.	Sr/Y vs. W-E distance from the transition zone dividing line with samples 
grouped by PRB zone. The west shows a trend of Sr/Y increasing in value and becoming 
more variable while the east is higher and more variable. 

 

The K2O/SiO2 ratio has a dispersed pattern in the west with a less dispersed 

increasing trend seen in the east (Figure 19). As distance east of the trench increases 

inboard of the subducting slab, an increase in K2O is seen, as predicted by the K-h 

relationship of Kuno (1959). 
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Figure 19.	K2O/SiO2 vs. W-E distance from the transition zone dividing line with samples 
grouped by PRB zone. The west is characterized by wide variation while the east shows an 
increasing trend and is less variable. 

 

Geochemical Interpolation Maps (2-D) 

Interpolation maps capture more than simple west/east patterns, allowing 

visualization of second order geochemical spatial variation and revealing additional 

information about subduction zone processes not visible otherwise; in other words, they 

provide a 2-D or higher order variation view of patterns. In this section, ordinary kriging 

spatial interpolation is used to visualize detailed local variation, and trend surface 

analysis is used when visualization of large scale trends is not clear due to a high level of 

local heterogeneity (used for SiO2 here). Interpolation output is a raster statistical surface 

that is displayed as contoured for Sri and smoothed for all the other maps. 
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It is important to note that interpolation introduces some averaging, resulting in a 

certain amount of contraction in the range of values. For example, the lowest SiO2 

interpolated value is 56 wt. % even though some gabbro samples have SiO2 values as low 

as 43 wt. %. 

 

Maps of Standard Geochemical Parameters 

In this section, the four subduction zone geochemical processes are visualized 

spatially using their associated standard geochemical parameters, and the patterns are 

interpreted in terms of the subduction zone environment. 

Visualization of SiO2 spatial variation (Figure 20 and 21) reveals some 

interesting patterns. Generally, SiO2 is bimodal in the west and moderately high in the 

east (best seen in Figure 21). Relatively high SiO2 values in the western margin of the 

batholith corresponds to areas where sampling occurred at more felsic upper parts of 

plutons – near the pluton roof (Doug Morton, personal communication). A band of low 

values is found west of the transition line, corresponding to the region in which most 

gabbros are found. The eastern zone is characterized by relatively high SiO2 composition 

in a part of the batholith interpreted to have been emplaced through continental crust in a 

compressional tectonic regime. This area is dominated by intermediate composition 

granodiorite and tonalite La Posta-style zoned plutons, such as the San Jacinto plutons. 

Recycling or reprocessing of existing continental material could be contributing to the 

increase in felsic composition of these rocks. In a model developed by Lee et al. (2007), a 

hydrated mantle wedge-derived basaltic melt rose and caused underplating and melting of 

the lower continental crust. The basaltic magma mixed with felsic continental material 
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and rose through thicker continental lithosphere in the east, producing the more felsic 

plutons. In the western PRB, the ascending magma rose through a thinner oceanic 

lithosphere with less mixing occurring. 

 

	
	

Figure 20. Spatial interpolation map of SiO2 using kriging to indicate extent of 
differentiation; values in wt. %. 

	
In comparison with the kriging interpolation,	Figure 21	uses trend surface 

analysis to focus visualization on the smoothed large scale trend for SiO2 variation. A 

choice of 5th order polynomial is a trade-off between being too general (lower order 
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polynomials) and showing too much detail (higher order polynomials). The general trend 

seen for the kriging interpolation of SiO2 is nicely visualized without showing local 

heterogeneity. 

 

	

Figure 21. Spatial interpolation map of SiO2 using trend surface analysis (5th order 
polynomial) to indicate extent of differentiation; values in weight percent. 

	
Initial strontium ranging from 0.703 in the west to 0.709 in the east is mapped in 

Figure 22 and in Langenheim et al. (2004). Contouring is used here to show discrete 
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steps in the Sri trend. Increasing Sri from west to east suggests an increasing continental 

crust content, or crustal contamination. High Sri in the east (> 0.706) requires some 

degree of re-melting and assimilation of much older continental crust, meaning plutons in 

this region must have been emplaced through the ancient North American continental 

margin (Kistler, 1990; Kistler, 2003). 

 

	
	

Figure 22. Spatial interpolation map of Sri to indicate crustal contamination. 
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Particularly low Sri (< 0.704) values in the Escondido plutons in the western zone 

indicate a lack of contamination from older continental crust since the basement is 

oceanic crust (Clausen et al., 2014). 

The main Sri patterns to note are the low Sri values in the west, a gradual increase 

through the central transition zone and an abrupt increase at the San Jacinto fault zone. 

Several researchers have investigated the San Jacinto fault zone anomaly. Langenheim et 

al. (2004) looked at the prebatholithic environment of the PRB to try understand the 

development of the San Jacinto fault zone. A boundary running 1000 km along the 

batholith separates more mafic, higher density rocks on the west from relatively felsic 

lower density rocks in the east, strikes north-northwest towards the San Jacinto fault zone 

in the north and extends down to the mid-crust. The 0.706 initial strontium isopleth 

approximately follows the San Jacinto fault zone, with lower values in the west and 

higher values in the east. Sri values across the batholith are mostly independent of rock 

type, being geographically controlled and thus suggesting a prebatholithic origin. 

Langenheim et al. (2004) proposed an explanation for the steep initial strontium gradient 

across the San Jacinto fault zone as being due to the existence of separate blocks with 

differing geologic evolution before the emplacement of the batholith. Batholith 

emplacement then stitched across these preexisting features and magma contained their 

respective isotopic signatures. 

Baird and Miesch (1984) noted that although chemical variation maps show 

continuous change from the southwest to the continental interior, the major discontinuity 

in modeled plutonic rock magma composition is located near the San Jacinto fault zone, 

in the Perris block.  
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Mapping Sr/Y variation reveals a spatial pattern of lower values in the west and higher 

values in the east, with the highest values occurring in the central part of the eastern 

transition zone and the northern part of the eastern zone, in the area of Mt. San Jacinto 

(Figure 23). A low region is found just south of the high values of Mt. San Jacinto, in the 

Palm Canyon area in the San Jacinto block, possibly relating to contamination by country 

rock.  

 

 

Figure 23. Spatial interpolation map of Sr/Y ratio to indicate magma source depth. 
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In the continental crust formation model of Lee et al. (2007), the mixture created 

by mantle wedge-derived melts mixing with lower continental crust, encountered thick 

continental lithosphere in the east, leaving behind a mafic garnet pyroxenite cumulate by 

fractional crystallization in the deep garnet stability zone. The effect of this garnet 

pyroxenite is reflected in the higher Sr/Y ratios in the plutons created by the 

complementary melts that ascended through the continental crust in parts of the east. The 

higher density mafic cumulates eventually delaminated and sank into the mantle, leaving 

behind a relatively felsic crust. In the west, shallower fractional crystallization did not 

develop the garnet pyroxenite cumulate, instead, olivine gabbros were fractionated. 

The ratio of light to heavy REEs, represented by La/Yb, is another indicator of 

magma source depth (Figure 24). Higher values show a melt that is derived from the 

deeper garnet stability zone. Although this ratio only considers the fractionating effect of 

garnet on the REEs, a pattern similar to that of Sr/Y is seen. 
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Figure 24. Spatial interpolation map of La/Yb ratio to indicate magma source depth. 

 

The K2O/SiO2 ratio is associated with the level of magma alkalinity (Kuno, 1959). 

In Figure 25, the highest K2O/SiO2 concentrations are seen in the upper plate zone and 

eastern part of the eastern zone, possibly reflecting the K-h relationship of Kuno (1959). 

Another possible explanation for the far eastern areas of high alkalinity is greater 

mobility due to slab fluids transporting the water soluble potassium. Moderately high 

ratios observed in the north-west may be due to sampling the batholith at relatively high 
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positions – the pluton roof, similar to the pattern seen in the SiO2 maps. The trough of 

low K2O/SiO2 ratios correspond roughly to the low SiO2 values seen in Figure 20 –

locations with more mafic compositions and lower concentrations of incompatible 

potassium. 

	

	
	

Figure 25. Spatial interpolation map of K2O/SiO2 to indicate alkalinity. 
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Maps of Principal Components 

Principal components can be visualized spatially by mapping their scores. Spatial 

patterns in the three principal components described above are investigated here and 

compared visually to the standard geochemical parameter maps.  

The first principal component as mapped in Figure 26 accounts for 56.7% of 

explained variance and is interpreted as relating to extent of differentiation. Compared to 

the map of SiO2 in Figure 20, some similarities can be seen. A trough of low values runs 

west of the transition line, coinciding with an area more mafic in composition with more 

gabbros. Values increase in the west where the batholith has been sampled at higher 

levels. The main difference is seen in the far east, where high values are seen east of the 

west/east transition line. This region has the highest concentration of incompatible 

elements, which is expected as it is interpreted to overlie the margin of the ancient North 

American craton. Ascending magma became increasingly felsic due to it having more 

more time for mixing with continental crust in the compressional tectonic environment 

and thicker lithosphere.  
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Figure 26. Spatial interpolation map of PC1 scores indicating the spatial variation of 
the interpreted extent of differentiation. The PC1 scores were inverted by multiplying 
with -1 for better comparison with Figure 20. 

	
PC2, interpreted to be related to magma source depth, is mapped in Figure 27. 

Similar patterns to those found in the Sr/Y map in Figure 23 can be seen, with high 

values indicating a deeper source in the central part of the eastern and western transition 

zones and along the northeastern margin of the batholith. In contrast to the Sr/Y map, 

higher values are seen in the northern and southern parts of the western and western 
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transition zones. The same low region seen in the Sr/Y map in the Palm Canyon area 

south of Mt. San Jacinto is found, possibly related to contamination by country rock. 

 

	

Figure 27. Spatial interpolation map of PC2 scores related to the spatial variation of the 
interpreted magma source depth.		

	

Similar to the Sr/Y map a general trend of deepening magma source from west to 

east is visualized. This trend is also similar to that of the map of Sri in Figure 22. Local 

variation, especially in the Perris and San Jacinto blocks shows a much more complex 
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picture of magma source depth than a simple west-east trend. The weak west-east trends 

seen in Figure 8 and Figure 14 can be better understood when looking at the 2-D spatial 

variation. 

The third principal component is mapped in Figure 28. 

 

 

Figure 28. Spatial interpolation map of PC3 scores, with uncertain interpretation but 
possibly relating to element solubility/mobility. 
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A weak association with solubility was suggested from the biplot of PC2 vs. PC3 

in Figure 15. Alkalinity is associated with highly water soluble and therefore mobile 

elements such as the alkali elements but is also a lot more complex. The pattern observed 

for PC3 does not resemble that observed for K2O/SiO2 and does not suggest a west/east 

trend. Therefore, PC3 representing only 6.7% of explained variance is possibly related to 

solubility and mobility, but it is not apparent that it is related to alkalinity. It possibly 

represents a combination of minor geological processes, including element solubility and 

mobility. 
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CHAPTER FOUR 

CONCLUSIONS 

	
Large igneous geochemical datasets have been assembled for subduction zone 

batholiths, especially along the American Cordilleran arc. One of the best such datasets, 

systematically sampled by Baird and Welday in the 1970s, has led to many new insights 

not only about the Peninsular Ranges batholith and Transverse Ranges, but about arc 

systems in general. 

Since geochemical data are compositional in nature, they require special handling. 

In this case, the isometric log-ratio transformation was used to eliminate spurious 

relationships between variables. The opened geochemical data were analyzed using 

robust principal component analysis and the resulting three principal components were 

interpreted using biplots. 

 Looking at the arrangement of variables and samples with an understanding of 

magmatic geochemical principals led to the interpretation of the principal components as 

follows. The first principal component accounting for 56.7% of explained variance was 

interpreted to represent the extent of differentiation. The second principal component 

accounting for 17.3% of explained variance was interpreted to relate to magma source 

depth. The third principal component accounting for only 6.7% of explained variance 

possibly refers to solubility and mobility, but this is not clear. Altogether, the three 

principal components account for almost 81% of explained variance. A summary of the 

interpretations of PC1, PC2 and PC3 and the related standard parameters used to quantify 

the interpreted subduction zone process is given in Table 3.	
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Table 3. Interpretations of principal components and the relevant standard geochemical 
parameters. 

	
Principal 

component Interpretation Standard Parameter 

1 Extent of differentiation 
and crustal contamination 

SiO2 and Sri (Baird and Miesch, 1984; 
Faure and Powell, 2012; Kistler, 2003) 

2 Magma source depth Sr/Y and La/Yb (Profeta et al., 2015)  

3 Solubility and mobility 
(weak) K2O/SiO2 (Kuno, 1959; Winter, 2010)  

 

If differentiation index is the extent to which felsic and mafic elements or 

minerals are separated from each other, then PC1 may be the best such index because it 

uses all of the elements rather than just some of them in the calculation. 

Clusters of rare earth elements, along with Y and Sr in the PC1 vs. PC2 biplot 

show the fractionating effects of garnet and plagioclase at deep and intermediate shallow 

depths respectively. The heavy rare earth elements and Y are strongly fractionated into 

the solid at depth by garnet, while Sr is strongly fractionated into the solid at shallower 

levels by plagioclase. These fractionations result in the melt complement being depleted 

in those elements. Consequently, Sr/Y and the REEs can be used as geobarometers that 

reflect the average depth of magma generation. Likewise for PC2, however it has the 

benefit of considering relationships among all elements simultaneously, possibly being a 

more comprehensive index of magma source depth.  

The standard geochemical parameters for several subduction zone processes were 

visualized spatially over the northern Peninsular Ranges batholith using 1-D west/east 

plots and 2-D interpolation maps. Multiple systematic west/east variation trends were 

noted and related to previous studies. 
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A bimodal pattern in the west was found for SiO2 and extent of differentiation, 

while the east was generally higher and unimodal. Mapping the principal components 

showed similar patterns between PC1 and SiO2. The dominant trend observed in the PC1 

map is of the incompatible elements increasing from west to east and of the compatible 

elements decreasing in the same direction.  

Magma source depth was visualized by mapping Sr/Y. Very similar spatial 

variation patterns were seen in the map of PC2, supporting the PC2 interpretation of 

magma source depth. A systematic deepening trend is noticed from a shallow, primitive 

source emplaced through oceanic crust in the west to a more evolved, deeper source 

emplaced through continental crust in the east. A similar trend is noticed by mapping Sri, 

that of increasing continental influence towards the east, with an abrupt increase near the 

San Jacinto fault zone. 

The standard methods of analysis include bivariate plots and spider diagrams 

where subsets of geochemical elements are analyzed in isolation. The exploratory data 

analysis tools of multivariate analysis and spatial visualization open up new possibilities 

in understanding subduction zone geochemical datasets by giving a more holistic view of 

the data. Multivariate analysis allows all geochemical variables to be analyzed 

simultaneously, revealing relationships and interactions between all variables. Mapping 

of geochemistry parameters provides a way to explore the spatial variation of important 

subduction zone processes. Mapping of principal component scores assists in 

interpretation of PCA results and reveals spatial patterns that can help in identifying 

geochemical processes that are not otherwise visible. 
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APPENDIX ONE 

RELATED FIELD WORK 

Since this analysis uses a comprehensive systematically sampled geochemical 

dataset, not much value would be added by collecting more samples in the northern 

Peninsular Ranges batholith. I was able to gain relevant fieldwork experience by joining a 

month long field trip to sample the Cretaceous Peruvian Coastal batholith in the Peruvian 

Andean section of the Cordilleran arc. This arc segment has several characteristics in 

common with the northern Peninsular Ranges batholith as well as differences (Clausen et 

al., 2013; Clausen et al., 2010; Martinez et al., 2013). Similar to the Peninsular Ranges 

batholith, subduction progressed from west to east with an increasing depth trend to the 

east. The younging trend is also towards the east, approximately similar to the Peninsular 

Ranges batholith. 

Two main goals for sampling were firstly to establish a baseline for stable oxygen 

isotopes by sampling unaltered rock over three transects, and secondly to estimate the 

amount and origin of hydrothermal fluid involved in potentially cooling the batholith. 

Sampling was done over three transects of the Peruvian Coastal batholith, in the north 

near Huacho (approximately 200 km north of Lima), in the Ica central area 

(approximately 300 km south of Lima) and in the south around Arequipa (approximately 

1000 km south of Lima). The sampling strategy involved firstly planning from which 

units to collect samples using geological maps and papers detailing work previously done 

in the area. Outcrops were identified that offered relatively fresh exposures of the units 

required, accessed by roads or trails in the mountains or river valleys. Major river valleys 

with roads cutting into the Peruvian Coastal batholith and up into the Andes offered the 
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most convenient access. A sample of about 1 kg in weight was chipped off using a rock 

hammer and trimmed to fit in a sample bag. Both the bag and rock sample were labeled. 

Similar to the sampling done in the PRB, rock types collected included gabbro, tonalite, 

granodiorite and granite. Some monzogabbro and volcanic units were also sampled. 

The altered samples were collected in the region of the central transect near Ica. A 

total of 106 mostly granitic and several volcanic samples were collected. The same 

sampling method was used; however areas of alteration were specifically targeted. 
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APPENDIX TWO 

RELATED LAB WORK 

The PRB geochemical data were originally analyzed by Baird and Miesch (1984). 

The samples were subsequently re-analyzed in the USGS lab in Denver, Colorado using 

X-ray fluorescence (XRF) analysis for major elements and inductively coupled plasma 

mass spectrometry (ICP-MS) analysis for trace elements (Morton et al., 2014). Isotopes 

were analyzed by R.W. Kistler and J. L. Wooden (Kistler, 2003).  

The Peru samples were analyzed for elemental geochemistry at SGS labs in 

Canada. I assisted with laboratory analysis of stable oxygen and hydrogen isotopes. This 

involved first separating minerals from the sample and then analyzing each mineral 

containing oxygen or hydrogen at the stable isotope laboratory at California State 

University, Long Beach. Samples that contained larger mineral grains were separated by 

hand, while samples that contained very small crystals were sent to a lab in China for 

mineral separation. The lab analysis for oxygen stable isotopes involved equipment based 

on the laser fluorination method (Sharp, 1990). A small amount of sample (2-3 mg) is 

placed in a nickel sample holder and completely vaporized in a reaction chamber with a 

laser in the presence of bromine pentafluoride. After a few more processing steps, the 

oxygen isotopes ratios are measured using a mass spectrometer.  

Zircons were analyzed for uranium-lead geochronology at the Arizona 

LaserChron Center at the University of Arizona, Tucson. A Laser Ablation Inductively 

Coupled Plasma Mass Spectrometry (LA-ICPMS) instrument was used to date samples 

from the Peruvian Coastal batholith over the course of several days. Before 

geochronological analysis could be undertaken, samples were sent to China for zircon 
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separation and then imaging of the zircons was done using cathodoluminescence at 

California State University, Northridge. 
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