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Pancreatic cancer is currently one of the most difficult diseases to treat due to 

difficulty of detection and the aggressive nature of the disease. In addition, pancreatic 

cancer has the highest mortality rates compared to other cancer types. These mortality 

rates are attributable in part to increasing resistance to cancer therapy. Cancer therapy 

resistance is caused by adaptations that favor survival within cancer cells and their 

environment, termed the tumor microenvironment. Intracellular adaptations include the 

overexpression of resistance-linked genes, such as the inhibitor of apoptosis (IAP) family 

of proteins and overall resistance to cell death. Adaptations in the tumor 

microenvironment include altered intercellular vesicular signaling through exosomes, 

resulting in tumor growth and progression. However, recent studies have shown that 

exosomes can also be used as a delivery mechanism for drugs with poor bioavailability, 

thus providing a therapeutic advantage for these compounds. Currently, researchers are 

moving toward a multi-dimensional approach to pancreatic cancer therapy that 

incorporates compounds that target crucial players in chemotherapy resistance and in the 

tumor microenvironment, such as exosomes. Our studies are centered on the anti-cancer 

properties of curcumin, a turmeric derivative, on these intracellular and intercellular 
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resistance mechanisms. The long term goal of this research is to determine the 

mechanisms by which curcumin modulates intracellular pathways related to pancreatic 

cancer survival and therapy resistance and exosome composition and release to improve 

the understanding of pancreatic cancer pathology and support the development of novel 

therapeutic approaches for pancreatic cancer patients. The specific objective of this 

research was to determine curcumin’s role in modulating intracellular proteins imperative 

for pancreatic cancer chemotherapy resistance such as the IAP proteins. Moreover, this 

research addressed the effects of curcumin on exosome release and function, specifically 

in the context of delivery to recipient pancreatic cancer cells. We have established that 

curcumin reduces expression of the IAPs in pancreatic cancer cells, inhibiting their 

survival and growth. Furthermore, curcumin not only attenuates pro-survival signaling 

through exosomes, but also itself carried within the nanovesicles and delivered to 

recipient pancreatic cancer cells, resulting in pancreatic cancer cell death. 
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CHAPTER ONE 

CURCUMIN AND PANCREATIC CANCER: A RESEARCH AND CLINICAL 

UPDATE 
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Abstract 

Pancreatic cancer is currently one of the most deadly types of cancer. Poor patient 

prognosis is linked to the lack of effective early detection techniques and emerging 

resistance to current therapeutic strategies. Thus, current research efforts are focusing on 

overcoming drug resistance. One branch of this field of study is the use of natural 

compounds to combat pancreatic cancer and drug resistance. Curcumin, a turmeric 

derivative, is one such compound that has been shown to have potent anti-cancer 

properties in the context of pancreatic cancer. However, curcumin’s poor bioavailability 

limits its clinical utility. Multiple approaches have been taken to overcome this problem, 

including curcumin modifications, curcumin combination therapy with other natural and 

synthetic therapeutic agents and the use of nano-formulations. This review is intended to 

provide a compendium of the cutting-edge investigations related to preclinical and 

clinical uses of curcumin, including its analogues and nano-formulations, in the context 

of pancreatic cancer. 
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Introduction 

Pancreatic cancer is one of the most devastating types of cancer. The American 

Cancer Society has estimated that 48,960 individuals will be diagnosed with pancreatic 

cancer in the United States this year. Furthermore, approximately 40,560 of these patients 

(83%) will perish from this disease this year and only 7% of patients will survive at least 

five years [1]. Inadequate detection techniques, the aggressive nature of the disease, and 

the emerging resistance to the current treatment approaches have contributed to these 

unacceptably high mortality rates [2]. Tumor removal in combination with post-surgical 

chemotherapy treatment is considered the most effective treatment approach to date. 

Unfortunately, the early detection of pancreatic cancer, which is an eligibility 

requirement for surgery, is challenging due to the lack of accurate and reliable detection 

methods. However, patients that are ineligible for surgery still have the option to receive 

a battery of chemotherapeutic agents in combination with radiation therapy. Most 

combinational therapies consist of using anti-metabolites, DNA damage inducers, 

tyrosine kinase inhibitors and topoisomerase inhibitors, with the gold standard 

chemotherapeutic agent for pancreatic cancer being Gemcitabine, an anti-metabolite and 

inducer of DNA damage. However, despite clinical responses in some cases, overall 

patient survival and quality of life are not improved by these therapies [3-8]. The chemo- 

or radiation-therapy resistance developed by most patients with pancreatic cancer has 

hindered the efficacy of combinational chemotherapeutic and radiation-based treatment 

strategies [9]. Thus, a better understanding of the mechanisms of therapeutic resistance 

and the development of novel therapeutic approaches are of paramount importance to the 

eradication of this disease. 
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A low incidence of cancer has been documented in countries that incorporate high 

consumption of turmeric root into their diets [10, 11]. This association has been 

extensively investigated, particularly in the context of the biological roles of turmeric 

root derivatives. Curcumin is a derivative of the turmeric root that has been extensively 

investigated because of its low toxicity in normal tissues and capacity to hinder multiple 

signaling pathways that are crucial for the initiation and progression of various cancers, 

including pancreatic cancer [12]. Additionally, curcumin has been shown to 

synergistically enhance the anti-cancer effects of standard chemotherapeutic agents, 

including Gemcitabine, in pancreatic cancer [13]. Due to curcumin’s poor bioavailability 

in clinical trials involving pancreatic cancer patients [14-17], novel approaches such as 

curcumin analogues and nano-particle formulations of curcumin have been developed 

[14, 18, 19] and are currently under investigation in various cancers [20-25], including 

pancreatic cancer [18, 26-28].  Currently, the literature concerning the pre-clinical and 

clinical anti-cancer properties of curcumin in various cancer types has been eloquently 

reviewed [12, 29, 30]; however, a comprehensive review addressing the current state of 

curcumin research in the context of pancreatic cancer is lacking. Therefore, the purpose 

of this review is to provide a compilation of cutting-edge studies involving the pre-

clinical and clinical utility of curcumin and its analogues and nano-formulations in 

pancreatic cancer. 

 

Curcumin: Molecular Mechanisms in Pancreatic Cancer 

Vogel and Pelletier were the pioneers in obtaining the yellow crystalline form of 

curcumin from the turmeric root in 1818 [31]. Nevertheless, it was not until 1870 that 
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Daube elucidated the structure of curcumin as 1,6-heptadiene-3,5-dione-1,7-bis(4-

hydroxy-3-methoxyphenyl)-(1E,6E) or diferuloylmethane (Fig. 1) [31]. The discovery of 

the structure of curcumin paved the way for the investigation of its remarkable anticancer 

properties. In particular, curcumin’s effects in pancreatic cancer have been widely 

studied. It has been shown to influence a range of cellular functions including 

proliferation, survival, angiogenesis, and invasion and metastasis. For instance, curcumin 

causes G2/M cell cycle arrest in pancreatic cancer cells following DNA damage and 

ATM-Chk1-dependent inhibition of CDK-1 and Cyclin B1 activity [32]. Interestingly, 

this study also demonstrated that curcumin showed lower cytotoxic effects and no DNA 

damage or cell cycle arrest in normal human pancreatic ductal epithelial cells [32]. 

Curcumin also has potent effects on cell survival, most notably through regulation of the 

inhibitor of apoptosis (IAP) family, which includes Survivin, cellular IAPs 1 and 2 

(cIAP1 and cIAP2) and X-chromosome linked IAP (XIAP). One of the key roles of the 

IAP proteins in normal cells is to modulate the balance between cell survival and cell 

death. The unbalanced regulation of IAP proteins can drive cells to a more pro-survival 

phenotype. Indeed, pancreatic cancer cells overexpress IAP proteins and the 

overexpression of these proteins is associated with poor patient outcomes in pancreatic 

cancer [33-36]. In addition, studies have demonstrated that resistance to radiation and 

chemotherapy are also related to the overexpression of the IAP proteins [37-44]. Studies 

from our laboratory have demonstrated that although other standard chemotherapeutic 

agents are ineffective at reducing these IAP family members [45], curcumin abolishes 

Survivin, cIAPs 1 and 2, and XIAP protein and mRNA expression in pancreatic cancer 

cells [46]. This is consistent with previous reports that Survivin expression is reduced 



 

6 

following curcumin treatment in pancreatic cancer cells as a result of inhibition of 

upstream STAT3 signaling [47] or reduction in NF-κB activity [48]. The importance of 

STAT3 and NF-κB signaling in pancreatic cancer has been well established [49, 50]. 

Interestingly, Jutooru et al. also demonstrated that curcumin reduces Sp1 and NF-κB 

activity, resulting in downregulation of downstream genes including Survivin, MMP-9, 

VEGF and Cyclin D1. Furthermore, these studies demonstrated that reduction in NF-κB 

activity was dependent on Sp1 reduction following curcumin treatment, suggesting that 

curcumin’s effects on Sp1 represent an upstream event in pancreatic cancer cells [51]. 

Studies by Sun et al. complement these findings by demonstrating that curcumin 

modulates microRNA (miRNA) expression profiles in pancreatic cancer cells [52]. 

MiRNAs are small non-coding RNAs [53-55] that have recently gained increased 

attention in the literature due to their involvement in important biological processes via 

post-transcriptional modulation of gene expression [54-57]. Altered post-transcriptional 

gene regulation conferred by miRNAs has been linked to pancreatic cancer [58]. One 

miRNA that is altered after curcumin treatment is miRNA-22, whose increased 

expression after treatment results in downregulation of target transcripts for Sp1 and 

estrogen receptor 1 (ESR1) [52]. Another study concluded that curcumin inhibits 

pancreatic cancer cell growth and invasion via upregulation of miRNA-7 and subsequent 

downregulation of SET8, which is known to promote tumorigenesis [59], and activation 

of p53 [60]. This is consistent with studies demonstrating the essential role of miRNA-7 

in the regulation of tumor growth and metastasis in chemoresistant cancer cells [61]. 

 



 

7 

In addition to miRNA-mediated regulation, curcumin has also been shown to 

modulate gene expression at the post-transcriptional level by altering the expression RNA 

binding protein CELF2 (CUGBP, Elav-like family member 2), a known regulator of 

RNA splicing, editing, and translation [62-65]. Curcumin induces CELF2 expression in 

pancreatic cancer cells, resulting in decreased translation of VEGF and COX-2 and 

overall reduction in tumor growth and angiogenesis in a pancreatic cancer xenograft 

model [66]. 

Finally, curcumin has been shown to combat chemotherapeutic resistance through 

reduction IAP expression, as described above, as well as via inhibition of the ATP-

dependent multidrug resistance protein-5 (MRP5), an efflux pump notorious for 

promoting the export of chemotherapeutic drugs [67]. Interestingly, curcumin has been 

shown to suppress the activity of MRP5 and enhance the effects of 5-fluorouracil (5-FU) 

in pancreatic cancer [68]. In summary, curcumin’s effects in pancreatic cancer are truly 

multi-dimensional, regulating miRNA expression, transcription factor activity and gene 

expression resulting in increased cell death and reduced pro-angiogenic, metastatic, and 

chemoresistant signaling. It is important to note that although several STAT3 inhibitors 

(NCT00955812, NCT02058017, NCT01423903, NCT01867073, NCT01563302, 

NCT01839604) and IAP antisense compounds (NCT000882869, NCT00557596, 

NCT00558545, NCT01018069, NCT00372736, NCT01186328, NCT00620321) have 

been studied in various phase I/II clinical trials, the majority of curcumin’s targets have 

yet to be addressed in clinical trials. Furthermore, no compound has been demonstrated to 

possess the vast arsenal of anti-cancer mechanisms displayed by curcumin. 
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Curcumin: Analogues and Nano-formulations in Pancreatic Cancer 

Curcumin Analogues in Pancreatic Cancer 

The metabolism of curcumin involves hepatic enzymes such as glucuronidases 

and sulfotransferases, which are responsible for conjugating glucuronic acid or sulfate, 

respectively, to the hydroxyl groups on the ketone or enol forms of curcumin [69, 70]. 

These reactions enhance the hydrophilic potential of curcumin, facilitating its elimination 

[69, 70].  Unfortunately, these systemic clearance mechanisms are responsible for 

hindering curcumin’s delivery to tumors [69]. Thus, the development of analogues of 

curcumin has focused on modifying the hydroxyl and other functional groups on the 

ketone or enol forms of curcumin to ensure greater stability and longevity of the 

compound in circulation (Fig. 1). 

Early studies by Aggarwal et al. investigated the anti-cancer activity of a [Dlys6]-

LHRH-curcumin conjugate. This compound was developed with the rationale that 

luteinizing hormone releasing hormone (LHRH) and its corresponding receptor, LHRHR, 

are important regulators of cellular proliferation in human tumors in an autocrine and 

paracrine fashion [71]. Pancreatic cancer cells express higher levels of LHRH receptors 

than normal cells and the importance of these receptors is highlighted by the finding that 

the proliferation of cancerous cells may be interrupted in vitro using antagonists of 

LHRH receptors [71-74]. The [Dlys6]-LHRH-curcumin conjugate was found to suppress 

pancreatic cancer growth in xenograft mice with higher efficacy compared to unmodified 

curcumin [73]. 

  



 

9 

 
 
 

 
 
 
Figure 1. Curcumin and its analogues. Chemical structures of curcumin (blue box) and 
its analogues are shown. PEGylated curcumin = polyethylene glycol-conjugated 
curcumin, [Dlys6]-LHRH-curcumin = luteinizing hormone releasing hormone-conjugated 
curcumin, CDF = difluorinated curcumin. 
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Curcumin has also been conjugated to a water-soluble polyethylene glycol 

compound (PEGylated curcumin), which was found to enhance curcumin’s ability to 

suppress pancreatic cancer growth via inactivation of Jab1 [75], a protein that has been 

shown to promote pancreatic cancer cell proliferation and survival [76, 77]. In addition, 

PEGylated curcumin was able to sensitize pancreatic cancer cells to Gemcitabine, 

inducing apoptosis [75]. 

Curcumin has been modified through the addition of methyl or cyclohexyl 

functional groups, yielding analogues FLLL31 and FLLL32. These compounds have 

been demonstrated to have anti-proliferative and anti-angiogenic effects in addition to 

their ability to attenuate STAT3 activity in vitro. Interestingly, FLLL32 also exerts anti-

tumor effects in vivo [78]. Analogues FLLL11 and FLLL12, characterized by ketone 

elimination and ether modifications, have also been investigated in the context of STAT3 

and pancreatic cancer; these compounds are more effective than curcumin at inducing 

apoptosis via inhibition of STAT3 and AKT phosphorylation [18]. A similar analogue, 

GO-Y030, also inhibits phosphorylation and activation of STAT3 in pancreatic cancer 

cells, inducing apoptosis [79]. 

The addition of pyridine and piperidine moieties has yielded novel curcumin 

analogues UBS109 and EF31. These compounds have also been tested in pancreatic 

cancer and have been shown to influence DNA methylation patterns through modulation 

of DNA methyltransferase (DNMT)-1 expression [80]. Furthermore, these analogues 

have increased anti-angiogenic effects in in vitro and in vivo models of pancreatic cancer 

through inhibition of NF-κB activity and reduction of HIF-1α and VEGF expression [26]. 
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Difluorinated curcumin (CDF) has been shown to sensitize pancreatic cancer cell 

lines to Gemcitabine through inhibition of NF-κB and COX-2 [81]. CDF is also a 

suppressor of tumor growth via the reduction of histone methyltransferase EZH2, Notch-

1, CD44, EpCAM and Nanog in an orthotropic xenograft pancreatic cancer model [82]. 

Furthermore, CDF has been demonstrated to influence miRNA expression profiles in 

pancreatic cancer. In particular, CDF upregulates miRNA-146a and downregulates 

miRNAs -21 and -221 in pancreatic cancer. MiRNA-146a has gained attention in 

pancreatic cancer because its downregulation is associated with high levels of EGFR and 

induction of NF-κB [83]. Recently, CDF has been shown to increase the expression of 

miRNA-146a resulting in a reduction in EGFR protein levels in a pancreatic cancer 

xenograft mouse model [84]. It has been previously demonstrated that miRNA-21 

upregulation in pancreatic cancer cells is linked to inactivation of the tumor suppressor 

gene PTEN following the induction of the PI3K/Akt/mTOR pathway [85, 86]. 

Interestingly, CDF has been reported to decrease miRNA-21 expression, resulting in 

restoration of PTEN activity in vitro and in vivo [81, 82]. Moreover, this study concluded 

that CDF is able to stall tumor progression in a pancreatic cancer xenograft mouse model 

via modulation of COX-2, PTEN, miRNA-21, miRNA-200 and NF-κB [82, 87]. 

MiRNA-221 is present in high levels in pancreatic cancer cell lines and tumor tissues in 

contrast to normal pancreatic duct epithelial cells and normal pancreas tissues [88, 89]. 

CDF decreases the expression of miR-221 and activates PTEN, p27kip1, p57kip2 and 

PUMA leading to suppression of pancreatic cancer cell proliferation and migration [89]. 

Taken together, these studies demonstrate that curcumin analogues have 

significant anti-tumor effects in pancreatic cancer, suggesting that they are promising 
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candidates for evaluation in clinical trials. To date, however, there have been no clinical 

trials involving these compounds, though most curcumin analogues have shown clear 

benefits in preclinical modes of pancreatic cancer. Thus, these analogues represent a 

promising “next step” in the incorporation of curcumin into the clinical treatment 

regiment for pancreatic cancer patients. 
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Table 1. Enhancement of curcumin bioavailability and stability: curcumin analogues. 

Name Preclinical Data Ref. 

[Dlys6]-LHRH-curcumin Decreases tumor growth in vivo [73] 

GO-Y030 Inhibits STAT3 activation and induces apoptosis in vitro [79] 
FLLL11 and FLLL12 Inhibit STAT3 and AKT phosphorylation and activation and 

induce apoptosis in vitro 
[18] 

FLLL31 and FLLL32 Anti-proliferative and anti-angiogenic effects 
 

Attenuate STAT3 activity in vitro (both compounds) 
 

Anti-tumor effects in vivo (only FLLL32) 

[78] 

PEGylated-curcumin Suppresses cancer growth via inactivation of Jab1 and enhances 
Gemcitabine in vitro 

[75] 

EF31 and UBS109 Anti-angiogenic 
 

Enhance oxiplatin and 5FU efficacy 
 

Modulate DNMT-1 expression 

[26, 80] 

CDF Decreases the expression of miR-21 leading to PTEN activation 
in vitro and in vivo 

 
Stop tumor progression in vivo via modulation of COX-2, 

PTEN, miR-21, miR-200 and NF-κB 
 

Enhances Gemcitabine efficacy in vitro 
 

Increases miR-146a leading to a decrease of EGFR expression 
in vivo 

 
Decreases miR-221 and increases expression of PTEN, p22, 
p57 and PUMA leading to a decrease in cell proliferation ad 

migration in vitro 
 

Decreases tumor growth via down-regulation of EZH2, Notch-
1, CD44, EpCAM and Nanog in vivo 

 
Increases the expression of miR-26a, miR-143 and miR-101 

and decreases let-7 levels in vitro 
 

Down-regulates Ras and reduces tumor growth 

[81, 82, 84, 87, 
89, 90] 
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Curcumin Nano-formulations in Pancreatic Cancer 

Early studies by Li et al. demonstrated that liposomal preparations of curcumin 

involving lipids 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-

dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DMPG) reduced cell 

viability in six pancreatic cancer cell lines as well as tumor volume in a pancreatic cancer 

xenograft model. Like curcumin, liposomal curcumin abolishes NF-κB binding in 

pancreatic cell lines, resulting in reduced expression of downstream target genes such as 

COX-2, IL-8 and VEGF in vitro and in vivo [91]. Mach et al. built on this work by 

establishing a putative dosing regimen for preclinical and clinical trials based on the 

minimum effective dose of liposomal curcumin in a MIA PaCa-2-derived xenograft 

model [28]. Another study involving lipid-based curcumin found that combination with 

nano-encapsulated aspirin and free sulforaphane was more efficient than curcumin alone 

at inducing apoptosis in human pancreatic cancer cell lines [92]. Curcumin nano-

formulations can be also prepared using sugar molecules instead of lipids arranged in a 

cyclic fashion [93]. A recent example is rubusoside-solubilized curcumin, thought to 

form nanomicelles in water, that has improved water solubility and equivalent 

cytotoxicity in various cancer cell lines, including the pancreatic cancer cell line PANC-

1, compared to free curcumin [94]. A separate study showed that the curcumin analogue 

CDF may be packaged within sugar structures termed cyclodextrins and retain its anti-

cancer properties upon delivery to pancreatic cancer cells [93]. Furthermore, this study 

reported that the serum levels of nano-CDF were 10 times higher than CDF alone [93].  

In 2007, Bisht et al. developed a micelle-based polymeric nanoparticle 

encapsulation of curcumin called nanocurcumin, or NanoCurc. In early studies, the in 
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vitro cytotoxicity of nanocurcumin was tested against eight pancreatic cancer cell lines, 

demonstrating comparable efficacy to free curcumin in most cell lines. Like free 

curcumin, nanocurcumin blocks NF-κB activity and reduces the expression of NF-κB-

regulated genes including IL-6, IL-8, and TNF-α, which are known pro-inflammatory 

cytokines [95]. These studies were later expanded to include combination therapy 

involving NanoCurc and Gemcitabine in a preclinical xenograft pancreatic cancer model, 

resulting in suppression of tumor growth via reduction of NF-κB activity as well as 

MMP-9 and Cyclin D1 expression [96].  

Recently, magnetic particles have been used to encapsulate curcumin to prolong 

curcumin’s delivery to tumor tissues in a pancreatic cancer xenograft model. These 

curcumin-loaded magnetic particles were found to suppress pancreatic tumor growth, 

improving survival by downregulating pro-survival proteins such as BCL-XL, MCL-1 

and PCNA. Importantly, increased β-catenin and reduced collagen I expression were 

detected following treatment with magnetic nanoparticle-based curcumin, suggesting 

possible effects on metastatic activity in this model [97]. 

Another recent nano-formulation was developed by Wei et al., involving the 

ester-mediated conjugation of curcumin to cholesteryl-hyaluronic acid (CHA) nanogel 

that targets curcumin to CD44 (a cell surface receptor for hyaluronic acid)-expressing 

cells. This formulation was tested in a MIA PaCa-2-based xenograft model, 

demonstrating significant reduction in tumor growth compared to free curcumin. In 

addition, CHA-nanogel curcumin also reduced the mRNA expression of NF-κB and 

target genes TNF-α and COX-2 compared to control [98]. 
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Although these nano-formulations of curcumin have shown strong promise for 

integration into therapeutic approaches to pancreatic cancer, they have yet to be tested in 

clinical trials. Of the nano-formulations developed to date, Theracurmin, a colloidal 

nano-formulation using gum ghatti derived from ghatti trees, has shown the most 

progress and translatability. First described in 2011 by Sasaki et al., Theracurmin was 

found to significantly increase curcumin’s bioavailability in healthy human volunteers 

[99]. In 2014, Kanai reported the results of a phase I clinical trial of Theracurmin in 

patients with pancreatic cancer in combination with Gemcitabine. This study reported 

that curcumin did not cause any unexpected adverse effects aside from abdominal pain in 

a subset of patients with peritonitis carcinomatosa. Furthermore, quality of life scores 

were significantly improved following Theracurmin incorporation as part of the 

therapeutic strategy [100].  

Most recently, nano-scale extracellular vesicles called exosomes have been shown 

to target intercellular transporters of bioactive molecules that can modulate cancer growth 

[101-106]. In addition, studies have shown that exosomal transport between cancer cells 

can be used as a therapeutic advantage. Specifically, Aspe et al. have shown that 

exosomes isolated from melanoma cell lines overexpressing the pro-apoptotic Survivin-

T34A mutant carry the mutant Survivin into the pancreatic adenocarcinoma cell line MIA 

PaCa-2, inducing apoptotic cell death [107]. Furthermore, the exosomal uptake of 

Survivin-T34A mutant by pancreatic cancer cells enhanced their sensitivity to 

Gemcitabine [107]. In the context of curcumin, our studies have shown that exosomes 

extend the anti-cancer properties of curcumin from treated to naïve pancreatic 

adenocarcinoma cells [108]. Specifically, exosomes isolated from PANC-1 cells treated 
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with curcumin were found to contain curcumin. Furthermore, these curcumin-containing 

exosomes reduced the viability of naïve PANC-1 cells [108]. The exosomal ability to 

carry functional curcumin between cells represents an exciting new direction in curcumin 

research: the extension of curcumin’s effects to other cellular components of tumors via 

exosomal delivery. In summary, nano- and microvesicular formulations of curcumin may 

represent a gateway to translating the known anti-cancer properties of curcumin to patient 

care by overcoming key obstacles such as biodistribution and compound stability. 

 

 

Table 2. Enhancement of curcumin using nano-formulations. 

Nano-formulation Preclinical or Clinical Data Ref. 

Rubusoside-based Enhances curcumin’s water solubility and anti-cancer 
abilities in vitro [94] 

Liposome-based Decreases tumor volume with no toxicity at a dose of 20 
mg/kg in vivo 

 
Exhibits anti-angiogenic properties and decreases CD31 and 

IL-8 in vivo 

[28, 91] 

NanoCurc In combination with Gemcitabine, suppresses tumor growth 
substantially via reduction of NF-κB, MMP-9 and Cyclin D1 

expression in vivo 

[96] 

Magnetic-based Promotes enhancement of curcumin delivery for up to 2-3 
weeks and suppression of tumor growth via down-regulation 

of BCL-XL, MCL-1, PCNA and collagen 1 

[97] 

CHA-Nanogel Provides superior curcumin biodistribution and slower 
elimination and suppresses tumor growth in vivo 

[98] 

Theracurmin Increases curcumin’s plasma levels in patients with minimal 
toxicity 

[14, 109] 
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Curcumin: Clinical Utility Against Pancreatic Cancer 

 Currently, there are several studies with the impetus to apply curcumin’s anti-

cancer properties in pancreatic cancer patients. Phase I studies of curcumin in pancreatic 

cancer patients have demonstrated low toxicity and high consumption tolerance, up to 12 

grams per day, with minimal secondary effects (diarrhea and nausea) [14, 15, 17, 110, 

111]. Phase II clinical trials involving curcumin treatment in patients with advanced 

pancreatic cancer consisted of 25 patients, of which 21 could be evaluated. One patient 

presented 18 months of disease without progression, two other patients showed partial 

response and another patient exhibited brief tumor regression [112]. Consistent with 

preclinical data, decreased expression of NF-κB, COX-2 and phosphorylated STAT3 was 

detected in the peripheral blood mononuclear cells of patients treated with curcumin in 

this study [112]. Furthermore, peak plasma delivery of curcumin in these patients was 22 

to 41 ng/mL with no significant toxicity observed in patients [112]. Another phase I/II 

clinical trial was designed to treat pancreatic cancer patients resistant to Gemcitabine 

with curcumin [16]. This study involved 21 patients and concluded that a dose of 8 grams 

of curcumin per day was appropriate since it did not induce toxicity after co-treatment 

with Gemcitabine. Curcumin levels detected in the plasma of five tested patients ranged 

from 29 to 412 ng/mL [16]. Furthermore, the median survival time was approximately 

5.4 months and the one-year survival rate was 19% [16]. The combinational therapy 

presented in this study was non-toxic and feasible; however, its efficacy remains to be 

elucidated. In a similar phase II study, the feasibility and efficacy of 8 grams of curcumin 

per day in combination with 1,000 mg/m2 of Gemcitabine was investigated in 17 patients 

with advanced pancreatic cancer [113]. In this clinical trial the efficacy of curcumin and 
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Gemcitabine treatment could be only analyzed in 11 patients because the individual and 

combinational treatments were toxic to five patients and another unfortunately 

succumbed to their disease [113]. At the end of the study one patient exhibited partial 

response, four patients had no disease progression and six patients had disease 

progression [113]. Based on these data, the study concluded that the time of disease 

progression was 1-12 months and the overall survival was 1-24 months [113]. The 

authors discussed that in their study 8 grams per day of curcumin is not well tolerated in 

combination with Gemcitabine; however, in the light of the other studies mentioned 

previously, further studies are needed to validate this conclusion [113]. In clinical trials, 

curcumin has been shown to have relatively low toxicity. However, its use is still 

challenged by poor biodistribution in spite of administration at high doses [14-17]. As 

described above, a recent study that evaluated the bioavailability of Theracurmin, a 

colloidal nano-formulation of curcumin [99], in human subjects concluded that curcumin 

plasma levels were higher in patients treated with Theracurmin compared with the 

patients treated with free curcumin [14]. For this reason Theracurmin has been considered 

a promising treatment agent for cancer clinical trials. A phase I study involving treatment 

of 14 pancreatic cancer patients with Theracurmin containing 200 and 400 mg of 

curcumin in combination with Gemcitabine demonstrated that the curcumin peak plasma 

levels ranged between 324 and 440 ng/mL, respectively [109]. It is note-worthy to 

mention that the plasma curcumin levels using Theracurmin are higher than the curcumin 

peak plasma levels, approximately 85 ng/mL, reported after 8 grams per day of free 

curcumin [16]. This study showed that the efficacy of curcumin after Theracurmin 

delivery in pancreatic cancer patients induced no response in general, a median survival 
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time of 4.4 months for 14 patients and more than 12 months survival in three patients 

[109].  

 

Conclusion 

This review summarizes a wide range of preclinical studies that have 

demonstrated that curcumin is a potent anti-cancer agent alone and in combination with 

standard chemotherapeutic agents. In addition, curcumin analogues and nano-

formulations have shown promising effects against pancreatic cancer growth and survival 

while improving curcumin bioavailability. Interestingly, curcumin’s anti-cancer effects 

have recently been demonstrated to extend beyond direct intracellular effects to other 

cancer cells through exosomes, suggesting that these nano-scale vesicular transporters 

may play a key role in curcumin’s effects within the tumor microenvironment. In clinical 

trials, curcumin alone and in combination with Gemcitabine have exhibited general 

tolerability with low toxicity in pancreatic cancer patients. However, the efficacy of 

curcumin in patients with pancreatic cancer requires further investigation due to 

curcumin’s poor bioavailability. Several attempts using Theracurmin have been 

performed to overcome this treatment obstacle, demonstrating promising results in 

pancreatic cancer patients. Nevertheless, the anti-cancer effects of Theracurmin with 

Gemcitabine or other chemotherapeutic agents still require attention. With significant 

advances in curcumin modulation at the cellular and preclinical levels, it is the hope of 

the authors that these findings will soon be translated to clinical trials, potentially 

improving pancreatic cancer patient outcomes and quality of life. 
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Abstract 

The inhibitor of apoptosis (IAP) proteins are critical modulators of 

chemotherapeutic resistance in various cancers. To address the alarming emergence of 

chemotherapeutic resistance in pancreatic cancer, we investigated the efficacy of the 

turmeric derivative curcumin at reducing IAP protein and mRNA expression resulting in 

pancreatic cancer cell death. The pancreatic adenocarcinoma cell line PANC-1 was used 

to assess curcumin’s effects in pancreatic cancer. Curcumin uptake was measured by 

spectral analysis and fluorescence microscopy. AlamarBlue and Trypan blue exclusion 

assays were used to determine PANC-1 cell viability following curcumin treatment. 

Visualization of PANC-1 cell death was performed using Hoffman modulation contrast 

microscopy. Western blot and PCR analyses were used to evaluate curcumin’s effects on 

IAP protein and mRNA expression. Curcumin enters PANC-1 cells and is ubiquitously 

present within the cell following treatment. Furthermore, curcumin reduces cell viability 

and induces morphological changes characteristic of cell death. Additionally, curcumin 

decreases IAP protein and mRNA expression in PANC-1 cells. These data demonstrate 

that PANC-1 cells are sensitive to curcumin treatment. Furthermore, this work supports a 

role for curcumin as part of the therapeutic approach for overcoming chemotherapeutic 

resistance mediated by the IAPs in pancreatic cancer. 
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Introduction 

Pancreatic cancer is an aggressive and devastating disease responsible for the 

highest mortality rates among cancer types with 94% of patients dying within five years 

of diagnosis. Pancreatic tumor resection remains the most efficacious treatment with 20 

to 25% of the patients surviving five years post-surgery. However, early diagnosis, a 

prerequisite for the surgery, is made difficult by the absence of early signs or symptoms 

[2, 3, 114]. As a result, most patients are ineligible for the surgery at the time of diagnosis 

and are offered chemotherapy [3, 114, 115]. The gold standard chemotherapeutic for 

pancreatic cancer is Gemcitabine, which has shown significant clinical benefits, with 

survival rates ranging from six to fifteen months when resection is not an option and the 

patients exhibit either non-metastatic or metastatic disease [8, 116-118]. Unfortunately, 

emerging resistance to chemotherapy has hindered the efficacy of chemotherapeutics 

including Gemcitabine [9], highlighting the need for novel therapeutic approaches that 

address this rising resistance to therapy. 

The inhibitor of apoptosis (IAP) proteins, including Survivin, cellular IAP 1 and 2 

(cIAP1 and cIAP2), and X-chromosome linked IAP (XIAP), belong to a family of anti-

apoptotic proteins known to confer resistance to treatment modalities such as radiation 

therapy and chemotherapy [33-36]. Additionally, the overexpression of these IAP 

proteins has been positively correlated with the progression of a variety of cancer types, 

including pancreatic cancer, resulting in a decline in patient survival after 

chemotherapeutic treatment [37-44]. Pre-clinical and clinical trials aimed at reducing IAP 

expression via antisense oligonucleotides and/or second mitochondria-derived activator 

of caspases (Smac) mimetics have yielded promising results in various cancers [37, 119-
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124]; however, such studies have remained inconclusive in pancreatic cancer [125]. This 

may be due to a compensatory effect of IAPs to targeted therapies. Further studies 

involving agents that cause simultaneous reduction in multiple IAPs are needed to 

investigate this notion. 

Curcumin, a turmeric derivative, has been considered as a potential anti-cancer 

therapy due to its capacity to interrupt signaling pathways that are crucial for the 

initiation and progression of cancer [12]. For instance, studies have demonstrated that 

curcumin inhibits the progression of various cancers by modulating the expression of 

anti-apoptotic factors [126-131]. Furthermore, curcumin induces apoptosis in pancreatic 

cancer [18] and regulates IAP expression in a variety of other cancer types [132, 133]. 

Preclinical studies involving curcumin in pancreatic cancer have shown that curcumin 

enhances Gemcitabine sensitivity in vitro and in vivo [48, 134, 135]. Moreover, Phase I 

and II clinical trials have yielded promising results on the use of curcumin as part of 

pancreatic cancer therapeutic strategies [16, 109, 112, 113, 136, 137]. This recent 

progress emphasizes the need for a better understanding of the mechanisms by which 

curcumin counteracts chemotherapeutic resistance. Therefore, the objective of this study 

was to determine curcumin’s impact alone on IAP expression in pancreatic cancer cells. 

 

Materials and Methods 

Cells and Culture Conditions 

 The pancreatic adenocarcinoma cell line PANC-1 was acquired from the 

American Type Culture Collection (ATCC, Manassas, VA) and maintained in 

Dulbecco’s modified Eagle medium (DMEM; ATCC, Manassas, VA) supplemented with 
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Normocin at a final concentration of 100 µg/mL (InvivoGen, San Diego, CA), 100 units 

of penicillin, 100 µg/mL of streptomycin, 300 µg/mL of L-glutamine and 10% USDA-

sourced heat-inactivated fetal bovine serum (Mediatech, Manassas, VA). In all 

experiments, cells were cultured at 37°C in a humidified atmosphere containing 5% CO2 

to 70-80% confluency prior to use. 

 

Preparation of Curcumin Solutions 

 Curcumin (Sigma-Aldrich, St. Louis, MO) stock solutions were prepared using 

DMSO and ethanol as solvents. Subsequent dilutions were made from this stock solution 

in DMEM. The final concentrations of DMSO and ethanol did not exceed 0.04% and 

0.6%, respectively, and cell viability was not affected at these concentrations (data not 

shown).  

 

Cell Viability Assays 

 Cell viability following curcumin treatment was estimated using AlamarBlue and 

Trypan blue exclusion assays. For AlamarBlue assays, PANC-1 cells were cultured in 96-

well plates at 1.0 x 104 cells per well and treated with 10, 50 and 100 µM curcumin for 

24, 48 and 72 hours. Subsequently, the AlamarBlue reagent (Life Technologies, Grand 

Island, NY) was added to each sample (10% final concentration) and incubated at 

37°C/5% CO2 for two hours. Viability was analyzed by detection of absorbance at 570 

nm using 600 nm as a reference wavelength in a µQuant spectrophotometer (Bio-Tek, 

Winooski, VT). For Trypan blue exclusion assays, cells were cultured in 6-well plates at 

3.0 x 105 cells per well and treated with 10, 50 and 100 µM curcumin for 24, 48 and 72 
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hours. Cells were then trypsinized and combined with the Trypan blue reagent (Life 

Technologies, Grand Island, NY) to calculate viability by counting the cells on a 

hemacytometer. The results presented are representative of three independent 

experiments. Data from curcumin-treated samples are normalized to the untreated 

control. 

 

Hoffman Modulation Contrast Microscopy 

 PANC-1 cells were cultured in T25 flasks at 7.0 x 105 cells per flask and treated 

with 10, 50 and 100 µM curcumin for 24 and 48 hours. Cells were then imaged using an 

Olympus IX70 microscope with Hoffman modulation and an Insight Spot 2 Mega 

Sample camera and software. Three independent experiments were performed and within 

each experiment three images were captured in different sections of the T25 flasks to 

obtain a representative image. 

 

Spectral Studies and Fluorescence Imaging 

 Spectral analysis of PANC-1 cell curcumin content post-treatment was performed 

as previously described [138-140]. Briefly, cells were cultured in T75 flasks at 1.5 x 106 

cells per flask and treated with 50 µM curcumin for 24 hours. Cells were then trypsinized, 

washed three times with 1X PBS, and resuspended in 1mL of 100% methanol and 

sonicated to disrupt the cell membrane integrity. The samples were then centrifuged at 

10,000 rpm for 5 minutes at 4°C and the supernatant fraction collected for absorbance 

analysis at 420 nm using a µQuant spectrophotometer and KC Junior software (Bio-Tek, 

Winooski, VT). Untreated cells were also lysed in methanol and subjected to spectral 
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analysis to determine baseline auto-fluorescence of PANC-1 cells. Methanol-only, cell-

free samples were used as blank controls. Data are representative of three independent 

experiments. For fluorescence microscopy of PANC-1 cell curcumin content post-

treatment, PANC-1 cells were cultured in 6-well plates containing sterile cover slips at 

3.0 x 105 cells per well and treated with 50 µM curcumin for 24 hours. Subsequently, 

cells were fixed with 4% paraformaldehyde and incubated at -20°C overnight. The 

following day, the samples were permeabilized using 0.1% Igepal in 1X PBS for 10 

minutes at room temperature. The cover slips were then washed three times with 1X PBS 

and placed onto slides with the nuclear stain DAPI in mounting media for 5 minutes. 

Stained slides were imaged using a BZ-9000 BIOREVO fluorescence microscope 

(Keyence, Itasca, IL) with a 40X magnification objective. Results are representative of 

three independent experiments; within each experiment, three images were acquired from 

different portions of each slide to obtain a representative image. 

 

Western Blot Analysis 

 PANC-1 cells were cultured in T25 flasks at 7.0 x 105 cells per flask and treated 

with 10, 50 and 100 µM curcumin for 24 and 48 hours. After treatment, lysates were 

prepared using a lysis buffer composed of 50 mM Tris-HCl pH 7.5, 1% Triton-X, 0.25% 

DOC, 150 mM sodium chloride, 1mM sodium orthovanadate, 20 mM sodium fluoride, 

0.2 mM EGTA, 1 mM EDTA, 1 mM PMSF, 1X protease inhibitor cocktail (Roche Life 

Science, Indianapolis, IN) and sonicated. To remove cell debris, samples were 

centrifuged at 13,000 rpm for 20 minutes at 4°C. Protein concentration was determined 

using the Pierce BCA protein assay (Thermo Scientific, Waltham, MA) according to the 
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manufacturer’s protocol. Proteins (50 µg) were heated to 95°C for 5 minutes and 

fractionated using 10, 12 and 15% Bis-Tris polyacrylamide gels. Proteins were 

transferred onto nitrocellulose membranes (BioRad, Hercules, CA) and blocked for 1 

hour at room temperature in 5% milk (w/v in 1X PBS-0.1% Tween). Subsequently, 

membranes were incubated overnight at 4°C in the following primary antibody solutions 

(final dilution 1:1000): rabbit polyclonal anti-Survivin (Novus, Littleton, CO), rabbit 

monoclonal anti-XIAP, rabbit monocloncal anti-CIAP1, rabbit monoclonal anti-cIAP2, 

and rabbit monoclonal anti-β-actin (Cell Signaling Technology, Beverly, MA). 

Membranes were washed with 1X PBST three times for 15 minutes each then probed for 

1 hour at room temperature with goat anti-rabbit secondary antibodies labeled with 

IRDye680 LT (LI-COR Biosciences, Lincoln, Nebraska), followed by three 15-minute 

washes in 1X PBST and imaging using the ODYSSEY infrared imaging system (LI-

COR, Biosciences, Lincoln, Nebraska). β-actin was utilized as a loading control. Data are 

representative of 3-4 independent experiments. Densitometry analyses were performed 

using ImageJ software (http://imagej.nih.gov/ij/). 

 

PCR Analysis 

 PANC-1 cells were cultured in T25 flasks at 7.0 x 105 cells per flask and treated 

with 10, 50 and 100 µM for 24 and 36 hours. Cells were then trypsinized and RNA 

isolation and purification was performed using the Tri-Reagent (Sigma-Aldrich, St. 

Louis, MO) following the manufacturer’s protocol. cDNA conversion was performed 

using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Grand 

Island, NY). These cDNA products were used in combination with forward and reverse 
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primers (IDT Technologies, San Diego, CA) designated for IAP mRNA (Table 1) and 

Platinum Taq DNA Polymerase (Life Technologies, Grand Island, NY) for PCR in a 

MasterCycler Gradient Thermo Cycler (Eppendorf, Hamburg, Germany). The PCR 

products were detected using a 1% agarose gel containing ethidium bromide and 

visualized using an Alpha Innotech imager (Protein Simple, Santa Clara, CA). Data are 

representative of three independent experiments. Densitometry analyses were performed 

using ImageJ software. 

 

Statistical Analysis 

 All statistical analyses in this study were performed using one-way ANOVA 

analysis and a probability of less than an 85% confidence limit (p < 0.05) was considered 

to be significant. Data are presented as mean + SEM. Statistical analyses were performed 

using the Prism (Graphpad, La Jolla, CA) software. 

 

Results 

Effect of Curcumin on PANC-1 Cell Viability 

 PANC-1 cells were cultured in increasing concentrations of curcumin for 24-72 

hours and analyzed by AlamarBlue (Fig. 2A) and Trypan blue exclusion (Fig. 2B) 

viability assays. Curcumin demonstrated a significant dose- and time-dependent 

inhibitory effect on PANC-1 cell viability when compared with untreated controls. 

Curcumin concentrations (10 and 50 µM) flanking the IC50 were chosen for further 

experiments.  
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Primer sequences targeting IAPs. IAP = inhibitor of apoptosis, cIAP1 = cellular inhibitor 
of apoptosis 1, cIAP2 = cellular inhibitor of apoptosis 2, XIAP = X-chromosome linked 
inhibitor of apoptosis, GAPDH = glyceraldehyde 3-phosphate dehydrogenase, Fwd = 
forward primer, Rev = reverse primer.

Table 3. Primer sequences targeting IAPs 

Name  Primer Sequence 

Survivin Fwd  5’ – GCA TGG GTG CCC CGA CGT TG – 3’ 

Survivin Rev  5’ – GCT CCG GCC AGA GGC CTC AA – 3’ 

cIAP1 Fwd  5’ – ATT GTG TCA GCA CTT CTT AAT G – 3’ 

cIAP1 Rev  5’ – TTA AGA GAG AAA TGT ACG AAC AGT – 3’ 

cIAP2 Fwd  5’ – TGG AGA AGA CCA TTC AGA AGA T – 3’ 

cIAP2 Rev  5’ – TCA TGA AAG AAA TGT ACG AAC TGT – 3’ 

XIAP Fwd  5’ – ATG ACT TTT AAC AGT TTT GAA GGA – 3’ 

XIAP Rev  5’ – TTA AGA CAT AAA AAT TTT TTG CTT – 3’ 

GAPDH Fwd  5’ – ACG GAT TTG GTC GTA TTG GGC G – 3’ 

GAPDH Rev  5’ – CTC CTG GAA GAT GGT GAT GG – 3’ 
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Figure 2. Curcumin induces PANC-1 cell death, analyzed by AlamarBlue and Trypan 
blue exclusion assays. PANC-1 cells were cultured in medium supplemented with 
curcumin at increasing doses for 24, 48, and 72 hours followed by (A) AlamarBlue and 
(B) Trypan blue exclusion viability assays. Data are presented as mean (+SEM). * p < 
0.05, ◊ p < 0.01, § p < 0.001, ‡ p  < 0.0001, curcumin treatment versus untreated control. 
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Effect of Curcumin on PANC-1 Cell Morphology 

Apoptosis is a type of cell death with distinctive morphological features. To 

qualitatively evaluate the effects of curcumin treatment on PANC-1 cellular morphology, 

images were acquired using Hoffmann modulation contrast microscopy (Fig. 3). These 

images illustrate an increase in cell death in a dose- and time-dependent manner. The 

presence of membrane blebs and cell shrinkage, which are main morphological hallmarks 

of apoptotic cells, were observed following 50 and 100 µM curcumin treatment for 24 

and 48 hours. 

 

Curcumin Detection within Treated PANC-1 Cells 

 It has been reported previously that curcumin has excitation and emission spectra 

of 420 and 470 nm, respectively [138-140]. These spectral properties of curcumin were 

used to detect its presence within PANC-1 cells using spectrophotometric studies and 

fluorescence microscopy. PANC-1 cells were cultured in the presence of 50 µM 

curcumin for 24 hours and subsequently washed, trypsinized, and lysed in 100% 

methanol. The emission peak of curcumin-treated cell lysates at 420 nm (red) was 

detected compared to cells not treated with curcumin (green) or blank/methanol-only 

samples (blue) (Fig. 4A). This peak is identical to the emission spectrum of 50 µM 

curcumin in methanol (data not shown). The intrinsic fluorescence of curcumin was also 

exploited using fluorescence microscopy to visualize curcumin content in treated versus 

untreated PANC-1 cells (Fig. 4B). The DNA dye DAPI was used to visualize nuclei 

(blue). Curcumin demonstrates a pan-cellular staining pattern (green), within  
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Figure 3. Morphology of curcumin-treated PANC-1 cells, visualized by Hoffman modulation contrast microscopy. PANC-1 cells 

were cultured in medium supplemented with curcumin at increasing doses for 24 and 48 hours followed by imaging via Hoffman 

modulation contrast microscopy. White arrows indicate membrane blebs and cell shrinkage, morphological hallmarks of 

apoptosis. Results depicted in the figure are representative of findings from 3 independent experiments. 
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Figure 4. Curcumin in pancreatic cancer cells, analyzed by spectral analysis and 
fluorescent microscopy. (A) PANC-1 cells were cultured in medium supplemented with 
50 µM curcumin for 24 hours, trypsinized, lysed in 100% methanol and subjected to 
spectral analysis on a µQuant spectrophotometer at a 300-540 nm wavelength range. Red 
= curcumin-treated cells; green = untreated cells; blue = methanol as a vehicle control. 
(B) PANC-1 cells were cultured in medium supplemented with 50 µM curcumin (green) 
for 24 hours and stained with the DNA dye DAPI to show nuclei (blue) followed by 
imaging via fluorescence microscopy at 40X magnification. Results depicted in the figure 
are representative of findings from 3 independent experiments.  
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cytoplasmic, nuclear, and nucleolar pools visible by fluorescence microscopy. These 

results indicate that curcumin is capable of entering PANC-1 cells in vitro and is non-

specific in its localization, suggesting multiple mechanisms of cytotoxicity. 

 

Curcumin Decreases IAP protein and mRNA Expression 

 To determine the effects of curcumin on Survivin, cIAP1, cIAP2 and XIAP 

expression, Western blot (Fig. 5A) and reverse-transcription PCR (Fig. 6A) were 

performed following treatment with 10, 50 and 100 µM curcumin. Protein expression of 

cIAP1, cIAP2 and XIAP were significantly decreased at 50 and 100 µM curcumin 

treatment compared to untreated controls at 24 and 48 hours (Fig. 5B). In addition, 

Survivin protein expression was significantly decreased after 50 µM curcumin treatment 

for 24 hours and after 50 or 100 µM curcumin treatment for 48 hours. Moreover, 10 µM 

curcumin was sufficient to significantly reduce cIAP2 expression after 48 hours of 

treatment. Similarly, significant reduction in Survivin, cIAP1, cIAP2 and XIAP mRNA 

expression was observed at 50 and 100 µM curcumin compared to untreated controls at 

24 and 36 hours (Fig. 6B). 

 

Discussion 

 Pancreatic cancer is a deadly disease that causes higher mortality rates annually 

than other cancer types. Currently, surgical resection is one of the most effective 

therapeutic approaches for pancreatic cancer. However, pancreatic cancer does not 

exhibit notable signs or symptoms during early stages of development, making an early  
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Figure 5. Expression of IAP proteins in PANC-1 cells following curcumin treatment. (A) Cells were cultured in medium 

supplemented with 10-100 M curcumin for 24 and 48 hours. Whole-cell lysates were prepared and expression levels of Survivin, 

cIAP1, cIAP2, XIAP and actin proteins were analyzed by Western blot as described in the Materials and Methods. Data are 

representative of 3-4 independent experiments. (B) Protein levels of IAPs are presented as relative ratios to control cells without 

curcumin treatment after normalization to -actin levels. Data are presented as mean (+ SEM). * p < 0.05, ** p < 0.01, *** p < 

0.001, **** p  < 0.0001, curcumin treatment versus untreated control.  
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Figure 6. Expression of IAP mRNA following curcumin treatment in PANC-1 cells. (A) Cells were cultured in medium 

supplemented with 10-100 M curcumin for 24 and 36 hours. RNA was extracted using the Trizol-chloroform extraction method 

then converted to cDNA and probed using primers for Survivin, cIAP1, cIAP2, XIAP and GAPDH (Table 1). Data are 

representative of 3 independent experiments. (B) mRNA levels of IAPs are presented as relative ratios to control cells without 

curcumin treatment after normalization to GAPDH levels. Data are presented as mean (+ SEM). * p < 0.05, ** p < 0.01, *** p < 

0.001, **** p  < 0.0001, curcumin treatment versus untreated control. 
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diagnosis difficult. For this reason, most patients with advanced non-metastatic or 

metastatic disease are ineligible for surgery and receive chemotherapy. Unfortunately, the 

efficacy of chemotherapeutic agents is limited by emerging drug resistance [2, 3, 114, 

115]. Therefore, the pancreatic cancer field is moving toward investigating therapeutic 

approaches that target crucial mediators of chemoresistance. It has been well established 

that evasion of cell death is a required event in the development of resistance to 

chemotherapy [141, 142], with this resistance linked to the upregulation of anti-apoptotic 

proteins such as the inhibitor of apoptosis (IAP) family members [143, 144]. 

Apoptosis is a type of cell death highly dependent on the activation of caspases 

(cysteine-aspartic proteases) that cause endonuclease-mediated fragmentation of DNA 

and cellular demise. This series of events is a prerequisite for progressive cellular 

disassembly into apoptotic bodies that are subsequently consumed by phagocytic cells 

[145]. The IAP family, particularly Survivin, cIAP1, cIAP2 and XIAP, are proteins that 

have substantial roles in modulating the inactivation of apoptosis [120]. While the IAPs 

have been shown to bind caspases, only XIAP directly inhibits caspases [146]. In 

addition to its role in cell cycle regulation, Survivin is thought to bind active caspases 

through cofactor proteins such as hepatitis B X-interacting protein (HBXIP) to prevent 

amplification by cleavage of other pro-caspase isoforms [147, 148]. cIAP1 and cIAP2, 

though capable of binding caspases, have been shown to inhibit apoptosis by interrupting 

caspase activation through their E3 ubiquitin ligase function [149-151]. 

 The nuclear factor-kappa B (NF-κB) transcription factor has been found to be 

constitutively activated in pancreatic cancer [152, 153] and is known to regulate key 

mediators of cancer cell survival, proliferation, angiogenesis, and metastasis [154-157]. 
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NF-κB has been shown to regulate the production of certain IAPs, including Survivin, 

cIAP1, and XIAP [13, 154-157]. Furthermore, NF-κB activity and IAP expression have 

been implicated in resistance to Gemcitabine [13, 158]. Gemcitabine induces an increase 

in IAP expression in pancreatic cancer cells, particularly Survivin and XIAP, as well as 

cIAP1 in lung cancer cells [159-162]. 

 Indeed, studies targeting NF-κB [158, 160, 163, 164] or IAPs [161, 165, 166] 

have demonstrated increased sensitivity to Gemcitabine. The increased sensitivity to 

Gemcitabine following IAP reduction is the rationale for the use of second mitochondria-

derived activator of caspases (Smac) mimetics. Smac is an endogenous pro-apoptotic 

protein transcribed by the DIABLO gene. This protein promotes apoptosis by direct 

interaction and inhibition of XIAP and Survivin proteins. Several Smac mimetics are 

currently under investigation in clinical trials [37]. While these Smac mimetics have 

shown promising results in preclinical trials in vitro and in vivo, both in the reduction of 

IAP expression and in re-sensitization to Gemcitabine [167], they have no known effects 

on NF-κB expression or activity. Recent studies have demonstrated that dual inhibition of 

NF-κB activity and IAP expression may have superior benefits than reducing IAP 

expression alone. Indeed, dual targeting of NF-κB and XIAP was more effective in re-

sensitizing pancreatic adenocarcinoma cells to Gemcitabine therapy than XIAP 

knockdown alone [161]. Thus, the optimal “next step” in the development of a 

therapeutic strategy for pancreatic cancer involves compounds that target upstream 

mediators of IAP expression, such as NF-κB, as well as multiple IAPs simultaneously. 

 Curcumin, a turmeric derivative, is a candidate for such a therapeutic agent. It has 

been shown to inhibit pancreatic adenocarcinoma cell proliferation, survival, invasion 
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and angiogenesis in vitro and in vivo [48, 168]. In addition, studies by Kunnumakkara et 

al. have demonstrated that curcumin attenuates NF-κB activation, resulting in decreased 

production of anti-apoptotic factors, including Survivin and cIAP1, as well as pro-

angiogenic and metastatic factors, in MIA PaCa-2-derived xenograft tumors [13]. 

Multiple studies have demonstrated synergistic activity between curcumin and 

Gemcitabine in pancreatic adenocarcinoma cells [48, 134, 135]. Interestingly, while 

XIAP is considered to be the most potent regulator of apoptosis in humans, its levels 

following curcumin treatment remain to be elucidated. Furthermore, the effect of 

curcumin on mRNA expression of the IAPs remains to be investigated. This information 

is essential to understanding whether curcumin’s effects on IAP expression are due to 

transcriptional regulation or post-translational mechanisms. In this study, we explore 

curcumin’s effects on protein and mRNA expression of a panel of key IAPs, including 

Survivin, cIAP1, cIAP2 and XIAP in the pancreatic adenocarcinoma cell line PANC-1. 

Phase I and II clinical trials have been conducted to evaluate the safety and efficacy of 

curcumin alone and in combination with standard Gemcitabine-based chemotherapy [16, 

109, 112, 113]. The major challenge to curcumin’s clinical use is poor bioavailability. A 

recent Phase I clinical trial was conducted using a novel microparticle-based form of 

curcumin called Theracurmin in combination with standard Gemcitabine-based 

chemotherapy [109]. This study reported promising results, increasing plasma levels over 

those reported in previous clinical trials, despite using approximately 5% of the dose of 

curcumin used in earlier studies (400mg vs. 8g/day) while inducing minimal toxicity in 

patients. 
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 While some controversy exists as to the Gemcitabine-sensitivity of the pancreatic 

adenocarcinoma cell line MIA PaCa-2 [161, 163], PANC-1 cells are generally considered 

to be resistant to Gemcitabine. Therefore, we investigated the sensitivity of these cells to 

curcumin in vitro using AlamarBlue and Trypan blue exclusion viability assays. Our 

results are consistent with those published using other viability assays in PANC-1 cells 

[169-171], demonstrating dose- and time-dependent reduction in cell viability following 

curcumin treatment (Fig. 2). In addition, Hoffmann modulation contrast microscopy 

illustrates the morphology of PANC-1 cells following curcumin treatment (Fig. 3). Cells 

treated with curcumin exhibit features characteristic of apoptotic cell death, including cell 

shrinkage and membrane blebbing. 

 To further elucidate the possible mechanisms of action of curcumin in PANC-1 

cells, the spectral properties of curcumin (Fig. 4A) were used to determine the 

intracellular localization of the compound as analyzed by fluorescence microscopy (Fig. 

4B). Consistent with the notion that curcumin exerts effects on multiple intracellular 

signaling pathways [172-175], our results demonstrate that curcumin displays a pan-

cellular localization. 

 To determine the effects of curcumin on IAP protein and mRNA expression, we 

performed Western blot and RT-PCR analyses on curcumin-treated PANC-1 cells. Our 

data demonstrate that curcumin reduces protein and mRNA levels of Survivin, cIAP1, 

cIAP2 and XIAP (Fig. 5 and 6), with the most marked effects on IAP expression 

demonstrated by cIAPS 1 and 2 and XIAP. Interestingly, while mRNA expression of 

Survivin diminishes with increasing curcumin concentrations and incubation times, 

Survivin’s protein level appears to be relatively stable at the highest dose (100 µM) and 
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time (48 hours) evaluated, remaining at approximately 50% of the level in untreated 

PANC-1 cells. These data suggest that mechanisms exist to stabilize Survivin protein 

under conditions of curcumin treatment, despite a reduction in Survivin mRNA 

production. This finding carries heavy implications for resistance to therapy, since 

Survivin itself has been found to bind and stabilize XIAP, enhancing the latter’s caspase-

9 inhibiting activity [176]. Thus, while curcumin exerts potent effects on upstream (NF-

κB-mediated) signaling leading to reduced IAP expression, residual Survivin may 

represent a key mechanisms for evasion of cell death in the context of this therapeutic 

strategy. 

 In summary, our data demonstrate for the first time that curcumin is effective in 

reducing expression of multiple IAPs critical to chemoresistance, both at the mRNA and 

protein level, resulting in increased cell death in vitro. The ability to modulate multiple 

members of the IAP family may prove to be a key factor in selecting compounds for 

further study as selection of individual IAP-specific targeting has been less than effective. 

Furthermore, we demonstrate that, of these IAPs, Survivin shows the least sensitivity to 

curcumin-mediated downregulation, suggesting a possible role in resistance to curcumin 

treatment, a phenomenon that we are currently investigating in our laboratory. 
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Abstract 

 Pancreatic cancer has the highest mortality rates of all cancer types. One potential 

explanation for the aggressiveness of this disease is that cancer cells have been found to 

communicate with one another using membrane-bound vesicles known as exosomes. 

These exosomes carry pro-survival molecules and increase the proliferation, survival, and 

metastatic potential of recipient cells, suggesting that tumor-derived exosomes are 

powerful drivers of tumor progression. Thus, to successfully address and eradicate 

pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer 

cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been 

shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. 

Recent studies have suggested that exosomal curcumin exerts anti-inflammatory 

properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor 

function have yet to be determined. We hypothesized that curcumin alters the pro-

survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting 

in reduced cell viability of recipient pancreatic cancer cells. The main objective of this 

study was to determine the functional alterations of exosomes released by pancreatic 

cancer cells exposed to curcumin compared to exosomes from untreated pancreatic 

cancer cells. We demonstrate, using an in vitro cell culture model, that curcumin is 

incorporated into exosomes derived from curcumin-treated pancreatic cancer cells, and 

that these exosomes reduce the viability of recipient pancreatic cancer cells. Collectively, 

these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer 

cells through exosomal facilitation. 
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Introduction 

 Currently, pancreatic cancer is one of the most devastating diagnoses to receive. It 

is responsible for one of the highest mortality rates among cancer types [2]. It is 

anticipated that 48,960 people will be diagnosed with pancreatic cancer and 40,560 

people will die from pancreatic cancer in the United States this year [1].  These 

unacceptably high mortality rates are linked to inadequate screening tools and therapeutic 

options, as well as the aggressive nature of the disease [4, 177]. This aggressiveness is 

correlated with the influence of the tumor microenvironment, which is composed of 

blood vessels, immune cells, fibroblasts, extracellular matrix and cancer cells [178].  The 

signaling networks between the components of the tumor microenvironment are 

important drivers of tumor growth. Investigations have shown that tumor-derived 

extracellular vesicles such as exosomes are key modulators of this communication due to 

their capacity to transport cancer-promoting material [103-106]. In order to successfully 

treat pancreatic cancer, it is crucial to develop novel therapeutic strategies that 

concomitantly target tumor cells and important mediators of the tumor microenvironment 

such as exosomes. 

 Curcumin is a turmeric root constituent that has been considered as a potential 

pancreatic cancer therapeutic agent. Studies have demonstrated lower cancer incidence in 

countries with high curcumin consumption [10, 11] and preclinical studies have shown 

that curcumin exhibits anti-cancer [12, 32, 47, 51, 133, 168, 179-186] and anti-

inflammatory [187-191] properties in different cancer types in vitro and in vivo. 

Additionally, curcumin has synergistic effects with Gemcitabine, the gold standard 

treatment for pancreatic cancer [48, 134, 135]. These encouraging results have prompted 
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researchers to assess the efficacy of curcumin in the treatment of pancreatic cancer. Phase 

I and II clinical trials have yielded promising results on the use of curcumin as part of 

pancreatic cancer therapeutic strategies [16, 109, 112, 113, 136, 137]. However, 

curcumin has low bioavailability and this is one of the major obstacles to its application 

in the clinical setting. To overcome this, investigations have moved toward the 

development of innovative delivery approaches for curcumin, such as liposomes and 

nanoparticles, to enhance its bioavailability and efficacy [14, 91, 95, 97, 99, 100, 109, 

192-208]. It has been demonstrated in various cancer types, including pancreatic cancer, 

that curcumin’s solubility and efficacy is enhanced by liposomal delivery in vitro and in 

vivo with minimal toxicity, providing promising evidence for clinical application [206-

209]. Studies performed with nanoparticle-based curcumin, Theracurmin, have indicated 

that membrane encapsulation can improve the bioavailability of hydrophobic compounds 

such as curcumin by increasing water solubility [14, 99]. Furthermore, phase I studies 

with Theracurmin demonstrated that this treatment approach is non-toxic and results in 

higher curcumin bio-distribution compared to non-encapsulated curcumin in patients with 

pancreatic cancer [14, 100, 109]. In addition to being encapsulated in synthetic 

nanoparticles, curcumin is able to be packaged in lymphoma-derived exosomes and retain 

its anti-inflammatory function after delivery to recipient cells [210]. 

 Collectively, these data suggest that curcumin is a suitable candidate for 

pancreatic cancer therapy due to its anti-cancer and anti-inflammatory properties. 

Moreover, curcumin has the potential to influence the role of exosomes in the tumor 

microenvironment. Thus, the objective of this study was to evaluate the impact of 

exosomal curcumin on recipient pancreatic cancer cells. The present study demonstrates, 
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for the first time, that exosomes from curcumin-treated pancreatic cancer cells carry 

curcumin and that these curcumin-containing exosomes reduce the viability of recipient 

pancreatic cancer cells. These findings suggest that the effects of curcumin may extend to 

other components of the tumor microenvironment through exosomes. 

 

Materials and Methods 

Cells and Culture Conditions 

 The pancreatic adenocarcinoma cell line PANC-1 was acquired from the 

American Type Culture Collection (ATCC, catalog no. CRL-1469, Manassas, VA) and 

maintained in Dulbecco’s modified Eagle medium (DMEM; ATCC, Manassas, VA) 

supplemented with Normocin at a final concentration of 100 µg/mL (InvivoGen, San 

Diego, CA), 100 units of penicillin, 100 µg/mL of streptomycin, 300 µg/mL of L-

glutamine and 10% USDA-sourced heat-inactivated fetal bovine serum (Mediatech, 

Manassas, VA). In all the experiments, cells were cultured at 37°C in a humidified 

atmosphere containing 5% CO2 to 70-80% confluency prior to use. 

 

Preparation of Solutions 

 Curcumin (Sigma Aldrich, St. Louis, MO) stock solutions (13.5 mM) were 

prepared using DMSO and ethanol as solvents. Subsequent dilutions were made from this 

stock solution in fully supplemented DMEM to a final concentration of 50 µM. Heparin 

sodium salt (Sigma Aldrich, St. Louis, MO) was used to prepare a 50 mg/mL stock 

solution in sterile water and used at a final concentration of 10 µg/mL. Recipient PANC-

1 cells were pre-treated with 10 µg/mL heparin in fully supplemented DMEM for 30 
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minutes at 37°C, 5% CO2 prior to incubation with exosomes. Of note, 10 µg/mL heparin 

was also added during the subsequent incubation with exosomes as well. 

 

Exosome Isolation 

 Exosomes were isolated from conditioned media as previously described by 

Savina et al. [211, 212] with minor modifications. Briefly, PANC-1 cells were cultured in 

fifteen T75 flasks at 1.5 x 106 cells per flask and conditioned media (CM) was collected 

following 24 hours of treatment with fully supplemented DMEM (for isolation of 

curcumin-negative exosomes) or 50 µM of curcumin (for curcumin-positive exosome 

isolation). The cellular debris and other impurities in the CM were eliminated by three 

consecutive cycles of centrifugation. First, the CM was centrifuged in a Beckman Coulter 

Allegra X-15R centrifuge (SX475OA rotor) at 400 x g for 10 minutes, then at 2000 x g 

for 20 minutes, followed by centrifugation in a Thermo Scientific Sorvall Legend X1R 

centrifuge (F15-8X50Y rotor) at 10,000 x g for 30 minutes. Subsequently exosomes were 

isolated from the CM by ultracentrifugation in a Beckman XL-90 centrifuge equipped 

with a SW-27 rotor at 24,000rpm for 16 hours at 4°C over a 30% sucrose cushion. The 

exosomes within the sucrose cushion were washed with 1X PBS and centrifuged in a 

Beckman XL-90 centrifuge equipped with a 70-Ti rotor at 31,000 rpm for 2 hours at 4°C. 

The remaining pellet, the exosomal fraction, was resuspended in 500 µL of 1X PBS, 

transferred to a microcentrifuge tube, and immediately used in subsequent assays. 
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Exosome Detection and Validation 

 Acetylcholinesterase activity assays were performed to detect exosome presence 

based on the protocols described by Savina et al. and Lancaster and Febbrario [211, 213] 

with minor modifications. Briefly, 37.5 µL of the exosomal fraction were transferred into 

each of three wells of a 96-well flat-bottom plate. 112.5 µL of 1.25 mM acetylthiocholine 

(Sigma) and 150 µL of 0.1 mM 5,5’-dithio-bis(2-nitrobenzoic acid) (Sigma) were then 

added to each well. The samples were immediately analyzed using a µQuant 

spectrophotometer (Bio-Tek Inc., Winooski, VT) and changes in absorbance at 412 nm 

were monitored every 5 minutes for 30 minutes. The exosome absorbance data were 

analyzed using the KC Junior software (Bio-Tek Inc.). The results presented represent 

acetylcholinesterase enzymatic activity after 30 minutes compared to control (reagents in 

assay diluent, 1X PBS). 

 Nicomp 380 ZLS analysis (Particle Sizing Systems, Port Richey, FL) was used to 

assess the size of the particles present in the exosome isolation fraction. Briefly, the 

exosomal fraction was diluted 1:30 with 1X PBS in a 4 mL (1 cm x 1 cm) plastic cuvette 

at 23°C and the size dispersion was measured using Nicomp 380 ZLS dynamic light 

scattering (DLS) with a display range of 0.6 to 6000 nm. The sample was exposed to a 

HeNe 5 mW laser using a wavelength of 639 nm. The data were analyzed using the 

Nicomp Fit Model Type and PSS zpw 388 Nicomp software. Finally, real-time detection, 

sizing, and quantification were performed using a NanoSight NS300 following the 

manufacturer’s protocols (Malvern Instruments, Malvern, UK). Briefly, exosome isolates 

were diluted 1:1000 in 1X PBS and sonicated in a water bath sonicator for 30 seconds to 

prevent exosome aggregation. Samples were then loaded into the NS300 instrument and 
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subjected to nanoparticle tracking analysis (NTA) yielding size distribution and 

concentration (particles/mL). Acetylcholinesterase activity assays and NanoSight NTA 

were performed in three independent experiments, while Nicomp DLS analysis was 

performed in two independent experiments. 

 

Spectral Studies 

 The spectral properties of curcumin, particularly a characteristic absorbance peak 

at 420 nm, have been utilized in detecting the compound under experimental conditions. 

These spectral analyses of exosomal curcumin were designed, with minor modifications, 

based on studies detecting curcumin within cells [138-140]. Briefly, exosomes were 

isolated as described above. To determine whether curcumin was coating the exterior 

surface of exosomes, exosomal fractions were subjected to spectral analysis prior to 

methanol-sonication disruption of exosomal membranes. To determine whether curcumin 

was located in the interior of the exosomes, the exosomal fraction was resuspended in 1 

mL of 100% methanol and sonicated to disrupt exosome membrane integrity. The 

samples were then centrifuged at 10,000 rpm for 5 minutes at 4°C and the supernatant 

was collected for absorbance analysis at 420 nm using a µQuant spectrophotometer 

equipped with KC Junior software. Exosomes from untreated cells (curcumin-negative 

exosomes) were also isolated and lysed in methanol and subjected to spectral analysis to 

determine baseline auto-fluorescence of exosomes without curcumin. 1X PBS (for non-

lysed exosome samples) or methanol (for lysed exosome samples) were used as negative 

controls for this assay. Data are representative of three independent experiments. 
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Fluorescence Imaging 

 Fluorescence microscopy was performed to detect the entry of exosomal 

curcumin into recipient PANC-1 cells. Briefly, PANC-1 cells were cultured in 6-well 

plates containing sterile cover slips at 3.0 x 105 cells per well and exposed for 24 hours to 

curcumin-negative or curcumin-positive exosomes. Subsequently, cells were washed 

three times with 1X PBS, followed by fixation with 4% paraformaldehyde overnight at -

20°C and permeabilization using 0.1% Igepal in 1X PBS for 10 minutes at room 

temperature. The cover slips were then washed three times with 1X PBS and placed onto 

slides with the nuclear stain DAPI in mounting medium for 5 minutes. Stained slides 

were imaged using a BZ-9000 BIOREVO fluorescence microscope (Keyence, Itasca, IL) 

with a 40X magnification objective. In a separate experiment, PANC-1 cells were 

incubated with 10 µg/mL of heparin for 30 minutes prior to exposure to curcumin-

positive exosomes to determine exosomal curcumin delivery in the presence of heparin, 

an inhibitor of exosomal uptake by recipient cells [214-216]. Results are representative of 

three independent experiments; within each experiment, three images were acquired from 

different portions of each slide to obtain a representative image. Quantification of 

curcumin fluorescence per cell was performed using the BZ II analyzer software 

(Keyence, Itasca, IL). For each image acquired (three per independent experiment, three 

independent experiments), the hybrid cell count and adjust extension area software 

features were used to calculate cell number based on DAPI staining, followed by 

quantification of curcumin fluorescence. For each image acquired, curcumin fluorescence 

was divided by cell number and multiplied by 100 and the averages of these values were 
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obtained for three independent experiments. Graphs were generated using the Prism 

(Graphpad, La Jolla, CA) software. 

 

Cell Viability 

 Cell viability following exosomal curcumin entry was detected using the 

AlamarBlue assay. Briefly, PANC-1 cells were cultured in 96-well flat-bottom plates at 

1.0 x 104 cells per well in the presence of fully supplemented DMEM (untreated), 

curcumin-negative exosomes, or curcumin-positive exosomes for 24, 48 and 72 hours. 

Subsequently, the AlamarBlue reagent (Life Technologies, Grand Island, NY) was added 

to each sample at a 10% final concentration and incubated at 37°C/5% CO2 for 2 hours. 

Viability was analyzed by detection of absorbance at 570 nm using 600 nm as a reference 

wavelength in a µQuant spectrophotometer. To determine whether any observed changes 

in viability were due to exosome-mediated effects, a separate sample was pre-treated with 

10 µg/mL heparin for 30 minutes prior to addition of curcumin-positive exosomes; 

heparin was maintained during subsequent treatment with curcumin-positive exosomes. 

Results presented are representative of three independent experiments and each treatment 

(curcumin-negative exosomes, curcumin-positive exosomes, and heparin + curcumin-

positive exosomes) is normalized to the untreated control. 

 

Statistical Analysis 

 All statistical analyses in this study were performed using either one-way 

ANOVA or Students’ t-test analyses using the Prism (Graphpad) software. Statistical 

analysis of acetylcholinesterase activity assays was performed using Kruskal-Wallis one-
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way ANOVA with a post-hoc Dunn’s multiple comparison test. Analysis of curcumin 

fluorescence was performed using an unpaired one-tailed Students’ t-test. Statistical 

analysis of viability assays was performed using one-way ANOVA with a post-hoc 

uncorrected Fisher’s LSD test. A probability of less than a 95% confidence limit (p < 

0.05) was considered to be significant. Data are presented as mean + standard error of the 

mean (SEM). 

 

Results 

Detection, Size Distribution and Quantification of Exosomal Particles 

 To confirm exosome isolation, known methods of exosome detection, sizing and 

quantification were employed. Since it has previously been established that the 

acetylcholinesterase enzyme is enriched in exosomes [217], an acetylcholinesterase 

activity assay was used to detect the presence of exosomes in our isolates. Our data 

demonstrate significantly increased acetylcholinesterase activity in exosome isolates 

compared to control (assay reagents in 1X PBS) (Fig. 7A). No significant difference was 

observed in acetylcholinesterase activity between exosomes derived from untreated 

PANC-1 cells (curcumin-negative exosomes) and exosomes derived from PANC-1 cells 

treated with 50 µM of curcumin (curcumin-positive exosomes). To further validate 

exosome isolation, particle size was measured using two separate methods: Nicomp 

dynamic light scattering (DLS) analysis and NanoSight nanoparticle tracking analysis 

(NTA). Our data demonstrate that both exosome isolates (curcumin-negative exosomes 

and curcumin-positive exosomes) contain particles within the established size range for 

exosomes, 40-150 nm [218] (Fig. 7B-C). Finally, NanoSight NTA was utilized to  
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Figure 7. Validation of exosome isolation. (A) Acetylcholinesterase activity assays were 
used to detect exosomes in isolates from untreated PANC-1 cells (curcumin-negative 
exosomes) or PANC-1 cells treated with 50 µM of curcumin for 24 hours (curcumin-
positive exosomes) and compared to assay diluent, 1X PBS (control). (B) Nicomp 
dynamic light scattering (DLS) analysis was used to measure size distribution of particles 
in exosome isolates. (C) NanoSight nanoparticle tracking analysis (NTA) was used to 
confirm size distribution of particles in exosome isolates. (D) Particle concentration 
(particles/mL) was measured using NanoSight NTA. No significant differences were 
observed in acetylcholinesterase activity, size distribution, or particle concentration 
between curcumin-negative exosomes and curcumin-positive exosomes. Data are 
represented as mean + SEM of three independent experiments, * p < 0.05, ** p < 0.01, 
exosome fraction versus control. 
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quantify exosome isolates (particles/mL). The amount of exosomes released from 

curcumin-treated PANC-1 cells was not statistically different from the amount of 

exosomes released from untreated PANC-1 cells (Fig. 7D). 

 

Curcumin Detection within Exosomes 

 It has been previously reported that curcumin has an absorbance spectrum with a 

peak at 420 nm [138-140]. This was used to detect its presence within exosomes using 

spectrophotometric studies. To determine whether curcumin coats the exterior of 

exosomes, whole exosomes isolated from curcumin-treated PANC-1 cells were subjected 

to spectral analysis and compared to assay diluent (1X PBS) (Fig. 8A). These studies 

demonstrate a lack of the characteristic absorbance peak corresponding to curcumin at 

420 nm. To determine whether curcumin is incorporated into exosomes, exosomes 

isolated from PANC-1 cells untreated or treated with 50 µM of curcumin for 24 hours 

were isolated and lysed in 100% methanol. The absorbance peak of exosomes isolated 

from curcumin-treated PANC-1 cells at 420 nm (lysed curcumin-positive exosomes; 

green) was compared to exosomes isolated form PANC-1 cells not treated with curcumin 

(lysed curcumin-negative exosomes; blue) or methanol-only blank samples (red) (Fig. 

8B). Collectively, these data demonstrate that curcumin is not detectable in the exterior 

surface of the exosomes but is rather located within the lumen of the exosomes. 
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Figure 8. Spectrophotometric detection of curcumin within exosomes from PANC-1 
cells. Exosomes were isolated from untreated PANC-1 cells (curcumin-negative 
exosomes) or PANC-1 cells treated with 50 µM of curcumin for 24 hours (curcumin-
positive exosomes). (A). Whole (non-lysed, blue) exosomes from curcumin-treated 
PANC-1 cells were subjected to spectral analysis compared to vehicle (1X PBS blank, 
red), in which optical density (OD) at 420 nm was measured. No peak in absorbance was 
detected at 420 nm from whole (non-lysed) exosomes. (B) Methanol and sonication were 
used to lyse exosomes from curcumin-treated PANC-1 cells (lysed curcumin-positive 
exosomes, green) or exosomes from untreated PANC-1 cells (lysed curcumin-negative 
exosomes, blue). A methanol-only blank (red) was used as a negative control for this 
assay. A characteristic peak in OD at 420 nm was detected in lysed curcumin-positive 
exosomes, but not in lysed curcumin-negative exosomes or the methanol-only blank. 
Data are representative of three independent experiments. 
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Entry of Exosomal Curcumin into Recipient PANC-1 Cells 

 To determine whether exosomal curcumin can be delivered into recipient PANC-

1 cells, the intrinsic fluorescence capacity of curcumin, with approximate excitation and 

emission spectra of 420 and 520 nm, respectively [139, 140], was exploited using  

fluorescence microscopy. Naïve PANC-1 cells were incubated with either curcumin-

negative exosomes or curcumin-positive exosomes for 24 hours and subjected to 

fluorescence microscopy. The DNA dye DAPI was used to visualize cell nuclei (blue). 

Curcumin content (green) in recipient PANC-1 cells demonstrates a cytoplasmic pattern 

excluding the nucleus (Fig. 9A). Interestingly, if recipient PANC-1 cells were pre-treated 

with 10 µg/mL heparin, the cytoplasmic detection of curcumin is markedly reduced, 

validating exosomal transfer of curcumin in these studies (Fig. 9A-B).  

 

Exosomal Curcumin Reduces Recipient PANC-1 Cell Viability 

 The effects of exosomal curcumin on recipient PANC-1 cell viability were 

assessed using AlamarBlue viability assays (Fig. 10). After exosome-mediated entry, 

curcumin demonstrates inhibitory effects on recipient PANC-1 cell viability compared to 

untreated controls. Furthermore, our data demonstrate that PANC-1 cell viability is 

restored upon pre-treatment with 10 µg/mL heparin, an inhibitor of exosome binding 

[214-216], implicating exosomal transfer of curcumin as a crucial mediator of reduced 

cell viability in this system. Interestingly, an increase in PANC-1 cell viability after 

exposure to curcumin-negative exosomes was noted. This is consistent with the notion 

that tumor-derived exosomes have been shown to deliver cancer-driving factors to 

recipient cells, promoting aggressive behavior [101, 102]. Our data indicate that  
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Figure 9. Exosomal curcumin in recipient PANC-1 cells. Naïve PANC-1 cells were co-
incubated with exosomes from untreated PANC-1 cells (curcumin-negative exosomes) or 
exosomes from PANC-1 cells treated with 50 µM of curcumin for 24 hours (curcumin-
positive exosomes). In a separate culture, naïve recipient PANC-1 cells were treated with 
10 µg/mL heparin to inhibit exosomal binding 30 minutes prior to and during co-
incubation with curcumin-positive exosomes (heparin + curcumin-positive exosomes). 
After 24 hours, cells were washed and stained with DAPI for visualization of nuclei. (A) 
Curcumin fluorescence (green) and DAPI (blue) were detected by fluorescence 
microscopy at 40X magnification. (B) Quantification of curcumin fluorescence was 
performed using the BZ II analyzer software. Data were collected in three separate 
images per independent experiment, three independent experiments. ND = not detectable. 
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Figure 10. Exosomal curcumin reduces recipient PANC-1 cell viability. Naïve recipient 
PANC-1 cells were cultured for the indicated times with exosomes isolated from 
untreated PANC-1 cells (curcumin-negative exosomes) or exosomes isolated from 
PANC-1 cells treated with 50 µM of curcumin (curcumin-positive exosomes). In a 
separate experiment, naïve recipient cells were treated with 10 µg/mL heparin prior to 
and during incubation with curcumin-positive exosomes (heparin + curcumin-positive 
exosomes). Viability was determined via AlamarBlue viability assays and exosome 
treatments were compared to naïve PANC-1 cells not exposed to exosomes or heparin 
(untreated). Data are represented as mean + SEM of three independent experiments, * p < 
0.05, ** p < 0.01, *** p < 0.001 treatment versus untreated control. 
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curcumin conserves its cytotoxic effects on recipient pancreatic cancer cells after 

exosomal trafficking. 

 

Discussion 

 Patients diagnosed with pancreatic cancer have abysmal survival rates because the 

current treatment options are not sufficient to completely eradicate the disease. The most 

effective available therapeutic approach is to resect the pancreas; however, only a 

minimal percent of patients meet the criteria for surgery due to the lack of effective early 

detection tools. Additionally, most patients relapse despite intensive post-surgery 

treatment regimens [219]. The resistance to therapy and tumor aggressiveness observed 

in pancreatic cancer are related to the effects of the components of the tumor 

microenvironment [178]. Moreover, these effects are highly dependent on signaling 

networks driven in part by tumor-derived extracellular vesicles such as exosomes [103-

106]. For instance, our group has previously shown that Survivin, a protein highly 

expressed in cancers and essential for carcinogenesis, is localized in intra-cellular an 

extracellular pools, and that extracellular Survivin enters cancer cells, increasing 

proliferation, resistance, and invasive potential [101]. These results are consistent with 

another study conducted by our laboratory that demonstrated that Survivin is transported 

out of cancer cells via exosomes [102]. Exosomes have also been shown to transport 

mutant KRAS proteins to colon cancer cells, increasing tumor growth [220, 221]. These 

results suggest that exosomes have the ability to modulate the components of the tumor 

microenvironment via the transfer of bioactive molecules that modulate cancer growth. In 

addition to transporting cancer-promoting material within the tumor microenvironment, 
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exosomes released from primary tumors have been demonstrated to aid in the formation 

of a suitable metastatic environment that promotes the transition of non-cancerous cells 

into pre-cancerous cells [222]. For instance, pancreatic cancer cell-derived exosomes 

have been shown to prepare pre-metastatic organs for population with cancer cells in vivo 

[223]. These results demonstrate the imperative role of exosomes in metastasis in various 

cancer types including pancreatic cancer. 

 Curcumin has been considered a promising therapeutic agent for cancer treatment 

due to its multi-dimensional anti-cancer properties. For instance, curcumin has been 

shown to modulate signaling molecules essential for the progression of most cancer types 

including pancreatic cancer [12, 48, 168]. Additionally, curcumin exhibits synergetic 

effects with Gemcitabine in vitro and in vivo. In the context of the clinic, curcumin has a 

tolerable consumption profile as demonstrated by phase I and II clinical trials [16, 109, 

112]. One of the main obstacles to curcumin’s utility in the clinic is low biodistribution 

[224]. In response to this, numerous investigations have developed alternative approaches 

to enhance curcumin delivery [14, 91, 95, 97, 99, 100, 109, 192-208]. These studies 

demonstrate the potential role of curcumin in pancreatic cancer therapy. However, it is 

imperative to determine the role of curcumin in the pancreatic cancer microenvironment, 

particularly in the context of exosomes. 

 Previous studies have shown that curcumin has a pan-cellular distribution in 

breast cancer cells [139]. This finding may offer an explanation for curcumin’s multi-

dimensional regulatory roles and its capacity to influence various cell signaling pathways. 

Remarkably, our results indicate that curcumin is able to be packaged into exosomes 

derived from pancreatic cancer cells treated with curcumin. Furthermore, our work shows 
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exosomal curcumin enters recipient pancreatic cancer and is able to cause significant 

cytotoxic effects on recipient pancreatic cancer cells. This is consistent with other studies 

that demonstrated that curcumin’s cytotoxic effects on cancer cells are enhanced upon 

encapsulation of curcumin in synthetic nanoparticles and micelles in vitro and in vivo [91, 

95, 97, 99, 100, 192, 193, 195-208]. Our results demonstrate an approximate 50% 

decrease in PANC-1 cell viability 72 hours after exosomal curcumin uptake. It is also 

important to note that PANC-1 cell-derived exosomes devoid of curcumin increased 

viability of recipient PANC-1 cells. This is consistent with the notion that tumor-derived 

exosomes have a cancer-supportive role in the tumor microenvironment [101, 102]. It is 

also noteworthy to mention that regardless of exosomal curcumin content, tumor-derived 

exosomes carry pro-cancerous material [103-106]. However, our results demonstrate that 

these exosomal components were not an impediment to curcumin’s cytotoxic function 

after exosomal delivery into recipient pancreatic cancer cells. 

 In summary, our results provide new evidence of curcumin’s ability to expand its 

anti-cancer functions from one pancreatic cancer cell to a recipient pancreatic cancer cell 

with the aid of exosome transportation. These findings reveal that curcumin’s function 

may not be restricted to individual tumor cells, but may also be extended to components 

of the tumor microenvironment such as other tumor cells through exosomes. Exosomes 

represent a crucial mechanism of communication between the components of the tumor 

microenvironment and also for preparing future metastatic sites [222]. Thus, our results 

contribute to a better understanding of the role of curcumin in intercellular 

communication between pancreatic cancer cells and other components of the tumor 

microenvironment (vascular smooth muscle, stromal cells or fibroblasts, and immune 
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cells). Collectively, these discoveries highlight the promising role of curcumin as a 

therapeutic agent for the treatment of pancreatic cancer due to its multi-dimensional anti-

cancer properties. 
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CHAPTER FOUR 

DISCUSSION 

Due to the minimal possibility of survival and devastating effects of treatment on 

the quality of life of pancreatic cancer patients, it is essential to contribute scientific 

efforts to the development of therapeutic strategies that circumvent barriers to the 

eradication of this disease. This thesis is intended to provide insight into the mechanisms 

of action underlying curcumin’s anti-cancer properties. It is our hope that, with the 

contributions of others, this work will promote further progress in the future eradication 

of pancreatic cancer. 

This work began with the purpose of determining the mechanisms by which 

natural agents such as curcumin can cause pancreatic cancer cell death and perhaps be 

used to treat pancreatic cancer patients. Low incidence of cancer has been reported in 

countries with high consumption of natural agents with anti-cancer properties, such as 

curcumin, in contrast with those countries lacking such agents as part of the dietary 

regimen [11]. These findings paved the way for our laboratory to consider curcumin as a 

possible therapeutic agent for pancreatic cancer.  

Thus, in conjunction with an established foundation of literature confirming 

curcumin’s anti-cancer properties and its potential role in the modulation of the tumor 

microenvironment, we developed aims to investigate the mechanisms by which curcumin 

triggers cell death in pancreatic cancer. These studies were expanded to include 

curcumin’s ability to be packaged in exosomes and carried to recipient pancreatic cancer 

cells to induce further cell death. 
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Our work began by demonstrating that curcumin is able to enter and cause 

cytotoxic effects in pancreatic cancer cells. Indeed, our fluorescence microscopy and 

spectral analyses demonstrated that curcumin enters PANC-1 cells and is distributed in a 

ubiquitous pattern within these cells. Furthermore, curcumin significantly reduced 

PANC-1 cell viability in a time- and dose-dependent manner. Interestingly, cellular 

morphology following curcumin treatment, as observed by Hoffman modulation contrast 

microscopy, demonstrated hallmarks of apoptosis including cell shrinkage and the 

formation of blebs. 

To effectively address chemotherapy resistance in pancreatic cancer, known 

drivers of chemotherapy resistance were investigated in the context of curcumin 

treatment. The inhibitor of apoptosis (IAP) proteins, which include Survivin, cIAP1, 

cIAP2 and XIAP, are promising targets due to their key roles in cancer resistance [37-

44]. Thus, we investigated the effects of curcumin treatment on IAP protein and mRNA 

expression in pancreatic cancer cells. Our data reveal that curcumin decreased both the 

protein and mRNA expression of Survivin, cIAP1, cIAP2 and XIAP in PANC-1 cells in a 

time- and dose-dependent manner. Therefore, together with our results from studies on 

cell viability, we conclude that curcumin reduces pancreatic cancer cell viability in part 

through reduction of pro-survival and chemo-resistance factors such as the IAP family.  

 Pancreatic cancer therapy resistance has also been strongly linked to the tumor 

microenvironment, which is composed of blood vessels, stromal cells, immune cells, and 

cancer cells [178]. For effective operation, these components require regulated 

communication via biological signals including soluble factors and exosomes. Exosomes 

are extracellular membrane-bound vesicles ranging from 40-150 nm that have been 
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linked with cancer progression and metastasis due to their ability to transport important 

oncoproteins that promote a suitable growth environment for cancer cells.  

 Due to the importance of exosomes in cancer [103-106], we chose to investigate 

curcumin’s effects on this component of the tumor microenvironment. Exosomes were 

isolated via the sucrose cushion-ultracentrifugation technique from PANC-1 cells treated 

or untreated with curcumin. Exosome isolation was validated using acetylcholinesterase 

activity assays and nanoparticle tracking analysis (NTA) and dynamic light scattering 

(DLS) were used to determine particle size (NTA, DLS) and concentration (NTA). 

Results from these studies demonstrated that there was no significant difference between 

untreated and curcumin-treated conditions in terms of the size distribution or 

concentration of particles released from these cells. Using spectral studies, curcumin’s 

presence was detected within exosomes, but not on the surface of the exosomes, 

providing valuable insight into the packaging of curcumin into exosomes from pancreatic 

cancer cells treated with curcumin. Further investigation of the functional role of 

curcumin within exosomes revealed that exosomal curcumin is delivered to recipient 

pancreatic cancer cells and retains its cytotoxic effects upon delivery. Exosomal 

curcumin delivery to recipient pancreatic cancer cells was demonstrated using 

fluorescence microscopy, while cellular outcomes were assessed using the AlamarBlue 

viability assay. Interestingly, a significant reduction in recipient PANC-1 cell viability 

was observed following exposure to exosomal curcumin; this effect was reversed with a 

blockade of exosomal binding to recipient cells using heparin.  

 The novelty and significance of these findings is highlighted by previous studies 

by our lab and others that demonstrate that tumor-derived exosomes carry oncoproteins 
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important for tumor progression, thus increasing viability and proliferation of recipient 

pancreatic cancer cells [101, 102]. These findings are supported by our results, which 

demonstrate that exosomes from untreated PANC-1 cells increase the viability of 

recipient PANC-1 cells. In contrast, however, our findings demonstrate that the presence 

of curcumin within tumor-derived exosomes is sufficient to reverse this pro-survival 

signaling, leading to a reduction in recipient cell viability. Finally, the essential role of 

exosomal delivery of curcumin in the reduction of recipient cell viability was 

demonstrated using heparin, an inhibitor of exosome to recipient cell binding. In the 

presence of heparin, the reduction of recipient cell viability was abolished, suggesting 

that the previously observed cytotoxic effects were dependent upon exosome binding and 

delivery into recipient cells. 

 In summary, the results presented in this thesis provide a significant contribution 

to pancreatic cancer research by elucidating curcumin’s effects on IAP expression, thus 

addressing key mediators of chemoresistance, as well as exosome composition and 

function, expanding our knowledge of curcumin’s multi-dimensional nature (Fig. 11 and 

Fig. 12). Collectively, these benefits pave the way for future research on multi-

dimensional therapeutic approaches to pancreatic cancer including combinatorial 

strategies incorporating standard chemotherapies as well as natural compounds such as 

curcumin, offering the promise of overcoming resistance to chemotherapy and improving 

chemoresistant patient outcomes. Finally, these findings on curcumin’s role in pancreatic 

cancer have the potential to be extended to other types of cancer, ultimately contributing 

to the eradication of cancer. 
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Figure 11. Curcumin’s effects on IAP expression and exosomal function. (A) Curcumin 
enters PANC-1 cells and decreases the protein and mRNA expression of IAPs, 
culminating in apoptotic cell death. (B) Curcumin is packaged within exosomes and 
released from PANC-1 cells. These curcumin-containing exosomes induce cytotoxic 
effects in recipient PANC-1 cells. MVB = multi-vesicular bodies.     
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Figure 12. Possible roles of curcumin in chemoresistance, the modulation of the tumor 
microenvironment, and exosomal composition. (A) Curcumin has the potential to 
overcome pancreatic cancer chemotherapy resistance due to its capacity to decrease 
protein and mRNA expression of key mediators of resistance such as the IAPs. (B) 
Curcumin may have the ability to modulate different components of the tumor 
microenvironment via exosomal transport. (C) Curcumin’s presence within pancreatic 
cancer cell-derived exosomes may interfere with the exosomal packaging of oncoproteins 
essential for metastatic niche formation. C = curcumin, MVB = multi-vesicular bodies.  
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APPENDIX A 

FUTURE DIRECTIONS 

 
Part 1: To determine the mechanism of action by which curcumin induces caspase-

independent apoptosis 

Currently, therapy for pancreatic cancer consists of anti-metabolite drugs 

(Gemcitabine), topoisomerase inhibitors (Irinotecan) and mitotic spindle stabilizers 

(Paclitaxel). While these agents target different intracellular processes, all converge upon 

induction of cell death by apoptosis, leading to the activation of caspases (cysteine-

asparic proteases) that cause endonuclease-mediated fragmentation of DNA and cellular 

demise. Pre-clinical and clinical studies have extensively demonstrated that pancreatic 

cancer cells acquire resistance to these therapies by up-regulating anti-apoptotic proteins, 

such as the inhibitor of apoptosis (IAP) protein family, that prevent the activation of 

caspases. Based on this thesis, curcumin effectively reduces the protein and mRNA 

expression of the IAPs. However, IAP protein function is closely related to the inhibition 

of caspase-dependent apoptosis; it is still unclear how curcumin may affect caspase-

independent apoptotic cell death to prevent cancer propagation. Hence, it is imperative to 

conduct experiments to investigate curcumin’s capabilities to induce caspase-independent 

cell death in the event that caspase-dependent cell death is circumvented by pancreatic 

cancer cells. Since circumvention of caspase-dependent cell death is a common event in 

the development of chemotherapy resistance, these studies will address one of the crucial 

obstacles to the eradication of pancreatic cancer, which is the persistent resistance to 

therapy. The objective of this study is to determine curcumin’s effects on intracellular 

proteins crucial for activation of caspase-independent apoptosis in vitro and in vivo. 
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Using an in vitro cell-based model, the expression levels of proteins essential for the 

activation of caspase-independent apoposis, including apoptosis inducing factor (AIF), 

endonuclease G (Endo G) and calpains, will be determined in the cytoplasm, 

mitochondria, lysosomes and nucleus of pancreatic cancer cells (PANC-1, MIA PaCa-2, 

Capan-1 and Capan-2) following curcumin treatment. Furthermore, studies using siRNAs 

and Isothermal Titration Calorimetry (ITC) will be performed to confirm that the 

modulation of these proteins is directly related to curcumin treatment. Using an in vivo 

orthotopic PANC-1-derived xenograft model, tumor growth and expression of AIF, Endo 

G and calpains will be determined following curcumin treatment. 

 

Part 2: To investigate the effects of pancreatic adenocarcinoma cell-derived 

exosomal curcumin on T regulatory cells (Tregs) in vitro 

In the context of pancreatic cancer, components of the tumor microenvironment 

including cancer cells, stromal cells and immune cells, have been linked to the aggressive 

phenotype and chemoresistant nature of the disease. In particular, investigation of the 

function of the immunosuppressive T regulatory cell, Treg, has gained increased attention 

due to the ability of these cells to repress immune surveillance and immune targeting of 

tumors. Associated with this, tumor-derived exosomes, which are present in the tumor 

microenvironment, have been shown to have the ability to transport material between 

components of the tumor microenvironment, including immune cells. Furthermore, 

tumor-derived exosomes have been shown to suppress the anti-cancer functions of 

recipient immune cells. For these reasons, exosomes have been considered significant 

mediators of the tumor microenvironment. Interestingly, studies have shown that 



 

99 

therapeutic compounds conserve their properties after being packaged into exosomes and 

are capable of affecting recipient cells. Therefore, the release of exosomes can be used as 

a therapeutic advantage, particularly in situations where low bioavailability of drugs 

hinders their success. This thesis demonstrates that curcumin is able to be packaged 

within exosomes and retain its anti-cancer function upon delivery to recipient pancreatic 

cancer cells. Additionally, other studies have confirmed that curcumin retains its 

immunomodulatory properties following exosomal trafficking, suggesting that exosomal 

curcumin may aid in the reprogramming of immune system toward a cancer-targeting 

profile. In this context, studies involving exosomal curcumin’s effects on Tregs may 

provide significant insight into the role of curcumin on the immune component of the 

tumor microenvironment. The objective of this study is to determine the effects of 

exosomal curcumin on the immunosuppressive function of Tregs in vitro. To accomplish 

this objective, exosomes isolated from PANC-1 cells cultured in the presence or absence 

of curcumin will be used to treat Tregs from pancreatic cancer patients or healthy donors. 

Subsequently, activation or suppression of Treg cells will be assayed using real-time PCR 

(RT-PCR), enzyme-linked immunosorbent assays (ELISA) and flow cytometry profiling. 
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