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ABSTRACT OF THE THESIS 

Effects of Proton Radiation on Behavior  

in a Mouse Model of Alzheimer’s Disease  

by 

John A. Bellone 

Doctor of Philosophy, Graduate Program in Clinical Psychology 

Loma Linda University, September 2014 

Dr. Richard E. Hartman, Chairperson 

 

Astronauts venturing outside Earth’s magnetosphere risk exposure to charged 

particle radiation that has been shown to cause neurological deficits in rodents via 

oxidative stress, neuroinflammation, altered neurogenesis, and synaptic changes.  Since 

these responses are similar to those observed in age-related neurodegenerative diseases, 

we hypothesized that individuals with a propensity toward developing Alzheimer’s 

disease (AD) would be more adversely affected by such exposure.  To test this 

hypothesis, we exposed young double transgenic APP/PSEN1 mice (a commercially 

available strain engineered to develop AD-like neuropathology) and their wild-type (non-

transgenic) counterparts to low doses of 150 MeV proton particle radiation and assessed 

the effects on hippocampus-dependent behaviors.  Spatial learning ability, a sensitive 

behavioral marker of hippocampal damage, was assessed using the water maze and 

Barnes maze 3 and 6 months after irradiation.  Transgenic mice performed worse than 

wild-type mice on both behavioral measures, and wild-type mice exposed to 0.5 Gy 

performed worse than the 0 Gy wild-type mice at 6 months post-irradiation.  However, 

radiation doses up to 1 Gy had no effect on transgenic spatial learning performance.  

These findings suggest that low doses of proton radiation cause deficits in normal 
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individuals, but may not exacerbate or accelerate learning and memory deficits in 

individuals predisposed toward age-related neurological disease. 

 



 

1 

CHAPTER ONE 

INTRODUCTION 

 

 NASA has recently been investing in programs and research to assess “the risk of 

acute or late central nervous system effects from radiation exposure” (from the Human 

Research Program’s Integrated Research Plan, 2011, p. 26; see also Cucinotta, Wang, & 

Huff, 2009).  Much of the funding is being allocated to animal research focusing on the 

behavioral effects of prolonged exposure to low doses of radiation.  These types of 

studies attempt to mimic the environment astronauts will be travelling in on extended 

missions outside the magnetosphere. 

 The White House’s 2010 national space policy release called for NASA to 

prepare for a manned mission to an asteroid and Mars within the next two decades (June 

28, available through: http://www.whitehouse.gov/the-press-office/fact-sheet-national-

space-policy).  Since the roundtrip journey to Mars will take approximately 2.5 years 

(Simonsen, Wilson, Kim, & Cucinotta, 2000), astronauts will be exposed to different 

types and doses of radiation for an extended period.  It is estimated that a large number of 

brain cells (as much as 91% of hippocampal cells and 25% of cell nuclei per year) would 

be impacted by the particles that make up this radiation environment (Yasuda, 

Komiyama, & Fujitaka, 2001).  These particles collide with other nuclei in the shielding 

material of the ship or in biological systems and generate secondary particles such as 

neutrons, α- particles, and electrons.  Within the central nervous system, such impacts on 

neurons and other brain cells can lead to structural and functional changes that may 

ultimately manifest in cognitive and behavioral dysfunction. 

The vast majority of space radiation consists of high-energy protons that originate 
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from solar activity and galactic cosmic rays (NCRPM, 2006; Zeitlin et al., 2013).  These 

particles are known to cause damage to the central nervous system (CNS) at high doses 

despite their relatively low mass and low linear energy transfer (LET).  Though a large 

portion of the space radiation environment is represented by protons, little has been 

investigated as to their effects on cellular mechanisms of learning and memory.  Most of 

the published research has focused on the effects of high charge (Z), high-energy (E) 

particle radiation (HZE) characterized by high-LET particles, and the research that has 

been conducted using protons has focused on higher doses than astronauts are likely to 

receive (Cucinotta, Kim, & Chappell, 2012; Cucinotta, Kim, Chappell, & Huff, 2013). 

The present study seeks to determine the effects of low, space-like doses of proton 

particles on behavior in mice.  Additionally, it seeks to determine whether proton 

radiation affects mice with a predisposition toward developing Alzheimer’s disease-like 

pathology differently than mice without this predisposition.  Since radiation exposure and 

Alzheimer’s disease (AD) share many neuropathological similarities, the interaction of 

radiation dose and genotype may be especially interesting. 

Relatively few studies have assessed the effects of low doses of proton radiation 

on learning and memory function in normal mice, and no known study has measured 

behavior past 3.5 months post-irradiation or assessed the effects on mice with AD-like 

pathology.  Gaining such an understanding is imperative, being that protons are the 

dominant ions in the space environment and potential radiation-induced cognitive 

impairments could jeopardize the astronauts’ ability to perform mission objectives and 

compromise their quality of life. 
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Specific Aims and Hypotheses 

In the present study, we sought to discover the behavioral effects of a low dose of 

proton radiation on normal mice, as well as the effects of varying doses on transgenic (tg) 

mice engineered to develop AD-like neuropathology. 

 

Aim 1: To Determine whether a Low Dose of Proton Radiation 

Affects Behavior in Normal, Wild-type Mice 

Though the results of previous investigation into the behavioral effects of proton 

radiation has been mixed, data suggest that proton radiation can increase oxidative stress, 

inhibit neurogenesis, prompt neuroinflammation, cause DNA damage, and activate 

apoptosis-related genes.  Since these can ultimately result in cognitive deficits, it was 

hypothesized that mice exposed to proton radiation would demonstrate spatial learning 

and memory deficits in comparison to controls. 

 

 

Specific Hypothesis 

Mice receiving a low dose (0.5 Gy) of proton radiation would perform worse on 

tests of spatial learning and memory relative to non-irradiated controls (see Figure 1). 
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Figure 1. Hypothesized effects of proton radiation on normal mice. 

 

Aim 2: To Determine whether Radiation Affects Behavior in Mice 

Predisposed to Developing AD-like Pathology Differently than Wild-type 

Mice, and whether this Effect is Dose-dependent 

Due to the similarities between the neurological effects of radiation exposure and 

AD-like processes, it was hypothesized that there would be an additive effect that results 

in greater behavioral deficits for tg mice.  Transgenic mice were hypothesized to have an 

increased sensitivity to radiation injury compared to wild-type (wt) mice, meaning they 

would experience greater learning and memory deficits than their irradiated, wt 

counterparts.  Mice receiving higher doses (up to 1 Gy) of proton radiation were 

hypothesized to exhibit an earlier onset of AD symptomatology and to demonstrate more 

spatial learning and memory deficits than controls or mice receiving lower doses (e.g., 

0.1 or 0.5 Gy). 
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Specific Hypothesis 1 

Irradiated tg mice would perform worse on tests of spatial learning and memory 

than irradiated wt mice (see Figure 2). 

 

 

Specific Hypothesis 2 

Higher doses of radiation would lead to more severe spatial learning and memory 

deficits in tg mice compared to non-irradiated mice or those exposed to lower doses (see 

Figure 2). 

 

 

Figure 2. Hypothesized effects of various doses of proton radiation  

on tg mice compared to wt mice. 
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CHAPTER TWO 

REVIEW OF THE LITERATURE 

 

 Various types of radiation have been shown to cause deleterious neurological 

effects in rodents.  Much of the literature on low-dose effects has focused on high-LET 

iron (56Fe) particles, since they make up a relatively large portion of galactic cosmic rays.  

Doses of 56Fe radiation at 1 Gy and higher can produce hippocampal changes that result 

in behavioral deficits (Shukitt-Hale, Szprengiel, Pluhar, Rabin, & Joseph, 2004; Haerich, 

Nelson, & Pecaut, 2005), and one study even showed impairment at doses as low as 0.1 

Gy (Shukitt-Hale, Casadesus, McEwen, Rabin, & Joseph, 2000).  Other studies have used 

X-rays (Rola et al., 2004) and gamma radiation (Pellmar & Lepinski, 1993) to show 

similar results, though typically at higher doses. 

 Though the symptoms of radiation exposure may partially remit following the 

acute period, long-lasting changes have been noted.  For example, mutations can occur 

for several generations in DNA-damaged cells (a process termed “genomic instability”), 

leading to an accumulation of genetic abnormalities (Bassing et al., 2002).  Additionally, 

reduced immune functioning has been identified several months following radiation 

exposure in mice (Gridley, Pecaut, & Nelson, 2002). 

Interestingly, some research has focused on the effects of low doses of radiation 

on humans.  Though the doses of radiation that adult cancer patients often receive are too 

high and localized to pertain to the space environment (Nelson, 2011), cognitive deficits 

have been found in children exposed to radiation.  For example, one cohort of children 

around 1 year of age received X-ray treatment to diminish the appearance of facial 

birthmarks.  Doses above 0.1 Gy contributed to cognitive impairment and decreased 
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school attendance later in life (Hall et al., 2004).  Another cohort of children in Israel 

received an average of 1.3 Gy of X-radiation to treat fungal infections.  These children 

later had lower IQs and lower high school aptitude scores than peers who did not receive 

such treatment (Ron, Modan, Floro, Harkedar, & Gurewitz, 1982).  Findings from these 

studies suggest that humans can be cognitively and behaviorally affected by low doses of 

radiation. 

There are relatively few studies that have investigated the effects of proton 

radiation on behavior, and the results of those studies have been mixed.  Shukitt-Hale and 

colleagues (2004) showed that rats given proton radiation at doses of 1.5, 3, and 4 Gy did 

not differ from the control group at 1.5 months post-irradiation.  As a result, the authors 

suggested that proton radiation may not be as deleterious as high-LET particles.  Dulcich 

and Hartman (2013) also found no spatial learning and memory deficits by 2 months after 

exposure to 2 Gy.  Another study observed no differences between control rats and those 

given 4 Gy of proton radiation in a bar press task that assesses changes in reinforcement 

contingencies (Rabin et al., 2002). These findings indicate that proton radiation may not 

affect a rat’s ability to respond appropriately in response to increased work demands. 

In contrast to these studies, Pecaut and colleagues (2002) found that mice 

irradiated with 3 and 4 Gy of protons showed reduced habituation to an acoustic startle 

stimulus and acute learning and memory deficits in an object recognition test.  Findings 

from another study showed that protons at doses of 2 and 5 Gy acutely attenuated startle 

reactivity (Haerich et al., 2012).  While most of these studies have primarily focused on 

relatively high doses (up to 5 Gy) to maximize potential effects, doses at or below 1 Gy 

are more applicable to space travel under normal circumstances (Cucinotta et al., 2012; 

Cucinotta et al., 2013), and their effects need to be examined in detail. 
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Though the behavioral effects of proton radiation are still largely unknown, 

evidence suggests that molecular changes can occur.  For example, Hada and Sutherland 

(2006) showed that proton radiation induced complex DNA damage (e.g., oxidized base 

and abasic clusters) in-vitro.  A similar study found that the number of double-strand 

breaks increased with increasing doses of radiation (Friedland, Jacob, Bernhardt, 

Paretzke, & Dingfelder, 2003). 

Discovering the neuropathological and behavioral effects of proton radiation is 

vital, since astronauts may not be safe even in their spacecraft.  For example, reports of 

astronauts being impacted by particles while in their ship are well documented (Pinsky, 

Osborne, Bailey, Benson, & Thompson, 1974).  The stimulation of retinal cells by 

radiation has been described as “flashes of light,” and is termed “anomalous phosphene 

perception.”  Some studies have shown that shielding may even exacerbate the damage 

since the particles collide with the atoms of the shielding material to scatter other ions, a 

phenomenon referred to as “secondary radiation.”  For example, one study assessed 

physiological changes following proton radiation exposure and found that aluminum 

shielding enhanced the detrimental effects in shielded animals (Pecaut et al., 2003).  

Another study found that shielding increased the average LET of the particles, and 

showed that shielding did not offer any protection when mice were measured 

behaviorally by the open-field and acoustic startle habituation tests (Pecaut et al., 2002). 

Radiation produces effects similar to those seen in neurodegenerative disorders 

and aging (Casadesus et al., 2005), such as AD.  Several studies have used the 

APP/PSEN1 tg mouse to demonstrate behavioral deficits related to spatial learning and 

memory.  For example, 7-month-old APP/PSEN1 mice show impairments in the Barnes 

maze (BM; Reiserer, Harrison, Syverud, & McDonald, 2007), a task that involves 
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learning spatial association rules.  Spatial learning and memory deficits are also observed 

in the water maze (WM).  Though one study did not find such impairments in 6-month-

old mice, deficits were apparent when the animals were re-tested at 18 months of age 

(Savonenko et al., 2005).  In that study, deficits found in APP/PSEN1 mice were worse 

than those found in just APP or PSEN1 strains. 

 

Neurological Mechanisms 

Alzheimer’s Disease Model 

 The APP/PSEN1 tg mice have neurological characteristics that lead to behavioral 

deficits similar to those seen in human AD.  One of the hallmarks of AD is the presence 

of extracellular senile (neuritic) plaques (Zubenko, 1997) containing amyloid-beta (Aβ) 

that aggregate (into oligomers) and impair synaptic transmission (Walsh et al., 2002).  

The increased accumulation of these Aβ plaques is largely a consequence of the altered 

metabolism of the amyloid precursor protein (APP; a string of amino acids embedded in 

the cellular membrane) being clipped at a certain point in its amino acid chain. 

APP, a protein that is prevalent in nearly all mammalian tissue, is metabolized by 

gamma-secretase and either alpha- or beta-secretase.  It is typically processed by one of 

two pathways: the non-amyloidogenic pathway (cleaved by gamma- and alpha-secretase) 

that has neuroprotective properties, and the amyloidogenic pathway (cleaved by gamma- 

and beta-secretase) that often results in the production of Aβ peptides.  In the 

amyloidogenic processing of APP, beta-secretase cleaves APP further along its amino 

acid chain than alpha-secretase typically cleaves it.  The resulting fragment, Aβ, is longer 

and more prone to clinging together to form the plaques pathognomonic of AD.  An 

abnormality in the functioning of a sub-component of the gamma-secretase enzyme 
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(presenilin) can also result in this undesired fragmentation of APP (Zubenko, 1997).  

Refer to Hartman (2008) and Hartman (2009) for a more in-depth explanation of APP 

processing. 

Three identified genetic mutations can lead to altered APP metabolism, ultimately 

resulting in increased Aβ (specifically, the “long form” typically consisting of a 42 amino 

acid chain) and early-onset AD pathology (Hardy, 1997).  The APP/PSEN1 tg mice 

contain two of these predispositions: the over-expression of both the APP gene (located 

on chromosome 21) and the presenilin-1 gene (located on chromosome 14).  Together, 

these genes act as a “double hit,” increasing the likelihood of developing relatively large 

amounts of Aβ plaque and subsequent behavioral deficits (Jankowsky et al., 2004). 

Though the mechanisms involved in Aβ’s toxicity remain uncertain, there are 

several well-supported processes by which it occurs.  For example, free radicals are often 

produced when intracellular Aβ enters mitochondria (Reddy, 2006), resulting in oxidative 

stress.  Oxidative damage is also triggered by extracellular complexes forming within 

plaques and can damage muscarinic acetylcholine receptors (Fawcett et al., 2002).  

Inflammation generally occurs as a result of the plaque deposition and degeneration of 

tissue (Akiyama et al., 2000).  The role of oxidative stress and inflammation in AD 

pathology is further substantiated by studies demonstrating that antioxidant intake can 

decrease plaque deposition and ameliorate behavioral deficits (Hartman et al., 2006; 

Fawcett et al., 2002).  Synaptic loss (Hamos, DeGennaro, & Drachman, 1989), altered 

neurogenesis (Ziabreva et al., 2006), and necrosis (Smale, Nichols, Brady, Finch, & 

Horton, 1995) also frequently occur. 
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As will be further discussed (see Chapter 3), the APP/PSEN1 tg mice do not 

develop the neurofibrillary tangles or neuronal loss also characteristic of AD, but do 

develop the amyloid plaques, synaptic loss, and cognitive deficits. 

 

Proton Particle Radiation 

The traversal of high-energy protons through biological matter has been 

hypothesized to accelerate the onset of neurological dysfunction via multiple cellular and 

molecular processes.  This triggers the formation of reactive oxygen species (ROS) that 

may lead to acute and/or chronic oxidative stress.  While the production of ROS by 

irradiated cells is adaptive at low levels (e.g., triggers DNA repair and secretion of 

growth factors; Spitz, Dornfeld, Krishnan, & Gius, 2012), its persistence can lead to 

impairments in hippocampal synaptic transmission (Pellmar, 1995).  Giedzinski and 

colleagues (2005) showed that low doses of proton radiation (1 and 2 Gy) increase ROS 

levels in neuronal precursor cells in the acute post-irradiation phase (6-12 hours).  

Another study (Baluchamy et al., 2012) demonstrated that doses as low as 0.1 Gy can 

increase ROS levels. 

The increase in ROS can inhibit neurogenesis (Limoli et al., 2004) and result in 

impaired long-term potentiation (LTP; Serrano & Klann, 2004), which has been 

associated with cognitive impairment (Raber et al., 2004; Snyder, Hong, McDonald, & 

Wojtowicz, 2005).  Other potential mechanisms of neurological dysfunction include 

neuroinflammation (Monje, Toda, & Palmer, 2003; Rola et al., 2005), DNA damage 

(Hada & Sutherland, 2006; Baluchamy et al., 2010a), and the activation of apoptosis-

related genes (Baluchamy et al., 2010b). 
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Even cells that are not directly impacted can be affected by the release of 

bioactive molecules from damaged cells (called the “bystander effect”; Kobayashi et al., 

2004), furthering the neurological impairment by way of inflammation (Hein & 

O'Banion, 2009) and possibly by the mechanism involved in glutamate-mediated 

excitotoxicity (Rothman & Olney, 1987; Waxman & Lynch, 2005).  Increased cytokine 

and prostaglandin expression (from the inflammation) can also promote 

neurodegeneration by preventing the integration of new neurons (Jakubs et al., 2008). 
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CHAPTER THREE 

METHODS 

 

Subjects 

A total of 80 male mice (64 APP/PSEN1 tg and 16 wt) were purchased from 

Jackson Laboratories at 2.5 months of age and housed individually.  Seven batches of 

approximately 12 mice each were delivered at one-month intervals over the course of the 

year.  Half of the wt mice were randomly assigned to receive 0.5 Gy of proton radiation 

and the remaining half comprised the control group.  Similarly, tg animals were randomly 

assigned to one of 4 radiation groups (0-1 Gy).  Table 1 shows the breakdown of sample 

size by radiation dose and genotype.  The mice were kept on a 12:12 hour light-dark 

cycle, given clean bedding once per week, provided water and chow ad libitum, and kept 

in a temperature and humidity-controlled room.  Using only males avoided any potential 

differences brought about by females’ estrous cycles.  We chose a smaller sample size for 

wt mice as compared to tg mice, as well as only using 2 radiation groups, because 

funding was limited and NASA’s interest mainly lay in the tg mice for aforementioned 

reasons (see Chapters 1 and 2). 
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Table 1 

Total sample size of group by radiation dose and genotype. 

 

 

Genotype 

 

 

tg wt 

Radiation 

Dose 

(Gy) 

0 16 8 

0.1 16 -- 

0.5 16 8 

1 16 -- 

 

 

Genetic Background 

Double tg mice that express a mutant mouse/human amyloid precursor protein 

(Mo/HuAPP695swe) and a mutant human presenilin-1 (PSEN1-ΔE9) were used in the 

present study (Jackson Laboratories stock # 004462).  Such tg animal models are often 

used for studying AD, since they closely mimic the pathological processes involved, 

including the early onset of amyloidosis in the cortex and the hippocampus.  As 

aforementioned, this APP/PSEN1 tg model acquires hippocampal plaque deposition, 

synaptic loss, and behavioral deficits characteristic of AD.  This pathology typically 

begins developing at 6 months of age, with an abundance of deposits found at 9 months 

of age (Jankowsky et al., 2004).  Double tg mice were preferred to other single tg strains 

(e.g., APP or PSEN1 alone) since the pathology typically develops earlier and is more 

pronounced (Savonenko et al., 2005). 

While the APP/PSEN1 strain of mice is considered to be an appropriate model of 

AD-like pathology, mice of this strain do not develop the neurofibrillary tangles or 
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neuronal loss associated with AD.  While there is currently no available murine AD 

model that develops all of the pathognomonic signs of AD, the APP/PSEN1 tg mice were 

chosen as a relatively good animal model (e.g., presence of plaque, synaptic loss, 

neuroinflammatory changes, and electrophysiological and cognitive deficits).  

Additionally, the strain is commercially available and is widely used by other laboratories 

(Cherry et al., 2012; Harrison, Hosseini, & McDonald, 2009; Jankowsky et al., 2004).  

The mice were a strain of B6C3F1/J (Jackson, Stock# 100010), where female 

C57BL/6J (Stock#000664) were crossed with male C3H/HeJ (Stock#000659) mice.  This 

strain has typically been used as the wt strain to generate APP/PSEN1 double tg mice 

provided by Jackson Laboratories. We used these wt mice to determine baseline 

behavioral performance and electrophysiological data for the APP/PSEN1 tg mice. 

 

Relevance of Using an Animal Model 

In vivo rodent models are used very frequently in scientific experiments to study 

various disease processes and conditions.  Though they do not translate perfectly, rodent 

brains are structurally and functionally similar to humans, with comparable neurological 

correlates of memory impairment.  Also, they are relatively easy to manipulate 

genetically (e.g., double transgenic APP/PSEN1), and researchers have the ability to 

control extraneous variables (e.g., gender, strain, experience, etc.) that would not be 

realistically attainable in clinical trials.  Additionally, many behavioral measures have 

been developed for rodents. 
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Procedures 
 

Mice arrived at Loma Linda University’s Behavioral Neuroscience Laboratory 

(BNL).  On the day following arrival, the experimenter held each mouse for two minutes 

to decrease anxiety brought about by the transfer process and facilitate acclimation of the 

mice to the experimenter.  Over the course of the following 2 weeks, the experimenter 

assessed baseline spatial learning and memory ability with the water maze.  Upon 

completion of these tests, animals were transferred to a different site on campus for 

irradiation and then re-transferred to the BNL for testing at the 3 and 6 month post 

irradiation time-points.  Anxiety levels were assessed using the zero maze following 

water maze and Barnes maze testing for these last 2 time-points (see Figure 3).  The 

experimenter was blind to the group breakdown. 

 All procedures were conducted in accordance with the Loma Linda University 

Institutional Animal Care and Use Committee’s (IACUC) guidelines and approval, and 

animals were handled by individuals who have received certification from the 

university’s Animal Care Facility. 

 

 

Figure 3. Timeline and sequence of behavioral testing.  WM: water maze; BM: Barnes 

maze; ZM: zero maze. 

 

 

Baseline Testing  Radiation 3 mo Testing 6 mo Testing 

 

WM 

   

WM 

 

WM 

   BM BM 

   ZM ZM 



 

17 

Irradiation 

Mice were irradiated at Loma Linda University Medical Center’s Proton 

Treatment and Research Center (Coutrakon et al., 1997; see Figure 4 for a picture of the 

irradiation room).  They were placed in ventilated acrylic boxes (3 x 3 x 8cm) to 

minimize movement (see Figure 5).  They were aligned with the beam line with their 

heads located in the center of the trajectory.  Those mice set to receive 0.1, 0.5, and 1 Gy 

of whole-body proton radiation were then given the appropriate dose at a rate (amount of 

joules deposited) of 1.5-2.5 Gy/min.  The energy of the beam was 150 MeV.  The entire 

procedure lasted approximately 10 min.  Control mice were also placed in the clear 

acrylic boxes for approximately the same amount of time as the irradiated mice to control 

for any potential effects of constraint-induced stress. 

 

 

Figure 4. LLUMC’s Proton Treatment and Research Center. 
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Figure 5. Mice placed in ventilated acrylic  

boxes to limit movement. 

 

 

Dose and Energy Justification 

NASA has recently been hesitant to fund anything above 1 Gy, since higher doses 

do not realistically model the radiation levels astronauts will be exposed to (Cucinotta et 

al., 2012; Cucinotta et al., 2013).  Therefore, doses between 0.1 and 1 Gy were chosen.  

A single, as opposed to fractionated, dose was used because of the limited access to the 

Proton Treatment Center and recent findings demonstrating that acute and fractionated 

exposures cause similar decrements (Rivera et al., 2013).  An energy level of 150 MeV/n 

has been chosen since it is one of the most common energy levels in the space 

environment and particles travelling at this speed will homogenously traverse the brain. 

 

Head vs. Whole Body Radiation 

In addition to the practical limitations of only irradiating the head of each mouse 

to isolate radiation-induced effects, exposing the mouse’s entire body relates more 

closely to the type of exposure astronauts will experience.  The effects of peripheral 

tissue response (e.g., carcinogenesis, loss of bone and muscle density, etc.) and radiation 

sickness were not expected at the doses being administered. 
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Behavioral Tests 

Water Maze 

The WM is one of the most widely used tests of spatial learning and memory 

ability in rodents (Morris, 1981; Klapdor & Van Der Staay, 1997).  The WM was 

comprised of three tests: cued (day 1), spatial (days 2 and 3), and probe (days 2 and 3).  

The maze consisted of a metal tub (110 cm diameter) filled with water made opaque 

using white, non-toxic paint (see Figure 6 for a depiction).  A circular platform (11 cm 

diameter) onto which mice could step to escape the water was located in one of four 

quadrants.  Mice were released into the water with their noses facing the wall at one of 

four release points.  Each mouse was given 60 s to find the platform.  The experimenter 

manually guided mice to the correct location if the time elapsed and they had not found 

the platform.  Once on the platform, mice were allowed to remain there for 5 s.  Swim 

path was recorded by a computerized tracking system (Noldus Ethovision, Wageningen, 

The Netherlands) that uses an overhead camera to quantify distance moved and other 

parameters.  Ten trials were given in blocks of 5 each day (2 trials per block), with an 

interval of approximately 20 minutes between blocks.  Less distance moved generally 

indicates better performance. 
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Figure 6. Picture of the water maze used to assess  

spatial learning and memory. 

 

 

The water maze consisted of three tests: 

 

 

Cued (Day 1) 

The cued test is a control task that assesses sensorimotor (e.g., locomotion and 

vision) and motivational deficits that could alter performance on the spatial and probe 

tests (see below).  For this task, the escape platform was visible just above the surface of 

the water and a pole sticking off the top made its location even more salient.  Mice were 

released into the pool opposite the location of the platform, which was moved to a 

different quadrant after each block. 

 

Spatial (Days 2-3) 

The spatial test is a measure of spatial learning ability.  During this test the escape 

platform was submerged just below the surface of the opaque water and mice relied on 

spatial cues to find the platform, since they could not directly see it.  The platform 

location changed to a different quadrant each day.  The second spatial day is considered 
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the “reversal learning phase” since it requires that the mice disregard previously learned 

information (i.e., that the platform is in one location) and re-learn a new platform 

location. 

 

Probe (Days 2-3) 

The probe test is a measure of memory consolidation.  We conducted the probe 

trial one hour after the completion of block 5 of each spatial test.  For these trials, the 

platform was removed from the tub and mice were allowed to search the pool for 60 s.  

We measured the amount of time mice spent searching the quadrant where the platform 

was previously located, as well as the total number of times they crossed over the former 

location of the platform. 

Our lab has successfully used the WM in many studies over the past several years 

to assess functional/behavioral differences and impaired hippocampal functions using a 

variety of brain injury models: Ashwal et al., 2014; Kamper et al., 2013; Fukuda et al., 

2013; Pop et al., 2013; Ajao, Pop, Kamper, Hartman, & Badaut, 2012; Hartman, Kamper, 

Goyal, Stewart, & Longo, 2012; Lekic et al., 2011; Chen et al., 2009. 

 

Barnes Maze 

The BM also assesses spatial learning and memory ability (Barnes, 1979), and is 

used as the land version of the WM.  The test consists of a dry, circular table with 20 

holes along the outer surface and a hidden box located under one of the holes (see Figure 

7 for a depiction).  Mice were placed in the center of the table and were motivated to find 

the hole with the box to escape exposure.  The entire table is wiped with a 70% alcohol 

solution after each trial to remove any remnant olfactory cues.  We conducted the test 
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over 3 days, with each mouse receiving 5 trials per day.  A trial was completed when a 

mouse either found the escape box or 5 minutes elapsed, after which the experimenter 

manually guided the mouse to the hole with the escape box.  Like the WM, an overhead 

camera recorded the mouse’s movements, allowing for quantification of distance moved 

and other parameters.  Cued, spatial, and probe tests were conducted in a manner very 

similar to the WM. 

 

 

Figure 7. Picture of the Barnes maze used to assess  

spatial learning and memory. 

 

 

Though this test measures the same construct as the WM, it had been added to the 

battery because it is another widely used measure of spatial learning and memory ability 

in mice.  Some authors have indicated that neither test is superior to the other, but that 

each uses a different motivational technique and may produce varying results (Gerlai & 

Clayton, 1999; Patil, Sunyer, Höger, & Lubec, 2009).  For this reason, they recommend 

that the tests be used as parallel measures of spatial learning and memory. 

 



 

23 

Elevated Zero Maze 

The ZM consisted of a thin, horizontal ring (100 cm outer diameter, 10 cm wide) 

half exposed and half partially enclosed by walls (35 cm high).  Halogen lights directly 

illuminated the exposed areas of the maze.  Mice were placed in the center of one of the 

exposed areas at the start of the test, and were given five minutes to explore the maze.  

The amount of time a mouse spends in the dark, enclosed space was measured.  Since 

mice typically explore novel environments, spending relatively more time in the dark part 

of the test is associated with greater levels of anxiety (Shepherd, Grewal, Fletcher, Bill, & 

Dourish, 1994; refer to Figure 8 for a depiction of the test). 

 

 

Figure 8. Picture of the zero maze used to assess  

anxiety-like behavior. 

 

Statistical Analysis 

 

We used a number of statistical techniques to discover significant differences or 

trends in the data.  For Aim 1, we used a mixed design ANOVA with 1 between-subjects 
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factor (radiation group) and 1 repeated measure (block) to assess main effects in the WM 

and BM.  For Aim 2, we used a mixed design ANOVA with 2 between-subjects factors 

(radiation and genotype group) and 1 repeated measure (block) to assess main effects in 

the WM and BM.  The Greenhouse-Geiser correction to the degrees of freedom was used 

for both Aim 1 and 2 analyses to control for sphericity and compound symmetry since 

there were repeated measures (5 blocks).  We used a one-way ANOVA to assess main 

effects in the ZM.  An ANCOVA technique was used to control for confounding 

variables where appropriate.  Radiation groups were pooled when assessing genotype 

effects.  Alpha level was set at 0.05 for all tests of statistical significance.  Error bars 

represent ± standard error of the mean, unless otherwise stated. 

Only the comparisons of interest were analyzed to limit the experiment-wise error 

probability (alpha).  Data were screened for potential outliers by generating scatterplots 

and observing whether any subject’s data consistently and significantly (± 2 standard 

deviations) deviated from the group’s data.  No data met these criteria and thus no 

subjects were excluded from any analysis.  Only the last 30 s of the 60 s probe trials were 

used for the wt mice, since floating behavior was observed during the first half of the 

trials.  No other alterations were made.  The statistical program Statistica was used for all 

analyses, and Prism was used to create the figures. 
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CHAPTER FOUR 

RESULTS 

 

Mortality 

Eight mice died over the course of the experiment.  All 8 mice were tg and were 

from batches 1-4 of 7.  Table 2 shows the breakdown of mortality per radiation dose. 

 

Table 2 

Breakdown of mortality by 

radiation dose. 

Radiation 

Dose (Gy) 

Number 

Deceased 

 

0 

 

1 

0.1 1 

0.5 3 

1 3 

 

 

Aim 1 

Aim 1 sought to determine whether a low dose of proton radiation affects 

behavior in normal, wt mice.  The specific hypothesis held that mice receiving a low dose 

(0.5 Gy) of proton radiation would perform worse on tests of spatial learning and 

memory relative to non-irradiated controls.  Wild-type mice were tested in the WM prior 

to being irradiated.  They were then tested in the WM, BM, and ZM 3 and 6 months post-

irradiation.  Figures 9-12 depict WM data, Figures 13-14 depict the BM data, and Figure 

15 depicts the ZM data. 
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No significant differences were observed at the pre-irradiation or 3-month time-

point on any spatial test.  However, at 6 months post-irradiation, the group that received 

0.5 Gy performed significantly worse than the control group (swim distance, Mean [cm] 

± SEM: 294.44 ± 35.75 vs. 188.08 ± 13.40) in the WM during the second spatial test 

(F1,14 = 7.76, p < .02; see Figure 11).  Figure 12 shows a representative swim path from 

an irradiated mouse that perseverated on the previous platform location as compared to 

the path of a control mouse during the first trial of the reversal learning phase.  Further 

analysis showed that irradiated mice spent a larger percentage of their time in the 

previous platform quadrant (93.89% in the 1st 15 s of the 1st trial vs. 69.73% for controls) 

and crossed the previous platform location more frequently (1.5 vs. 0.38 crosses) during 

the first trial of this phase.  However, these differences were not significant. 

Irradiated mice also traveled a longer distance to find the escape box in the BM 

than controls (468.91±50.31 vs. 382.93±40.72 cm) during the second day of spatial 

testing (reversal learning) 6 months after irradiation.  However, the differences in BM 

performance were not significant.  Probe data for both the WM and BM also trended in 

the same direction (worse spatial memory performance for irradiated mice), but they 

were not significantly different.  No differences were observed during the cued test in 

either the WM or BM, suggesting that there were no differences in vision, locomotion, or 

motivation between the control and irradiated mice. 

There were no differences among radiation groups in the amount of time spent in 

the dark on the ZM.  However, there was a significant change across time, where both 

groups spent more time in the dark area the second time they were tested.  This finding 

was expected, since the mice have already explored the open section of the maze, 
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detracting from its novelty.  Additionally, while a greater degree of change over time was 

observed in the wt mice relative to the tg mice, the effect was not significant (p = .059). 
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   Water Maze Figures 

 

 

 

 

 

 

 

Figure 9. WM wt pre-irradiation behavior.  Panel A shows performance on each of the 5 

blocks, while panel B shows performance averaged over the blocks.  Panel C shows 

percentage of time spent in the platform quadrant for probe trials.  The probe data are for 

the last 30 s of the 60 s trial (to account for initial floating behavior).  No significant 

differences were observed on any test during the pre-irradiation time period.  Error bars 

represent ± SEM for A and B, 95% confidence interval for C. 
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Figure 10. WM wt 3-month post-irradiation behavior.  Panel A shows performance on 

each of the 5 blocks, while panel B shows performance averaged over the blocks.  Panel 

C shows percentage of time spent in the platform quadrant for probe trials.  The probe 

data are for the last 30 s of the 60 s trial (to account for initial floating behavior). No 

significant differences were observed on any test during the 3-month post-irradiation time 

period.  Error bars represent ± SEM for A and B, 95% confidence interval for C. 
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Figure 11. WM wt 6-month post-irradiation behavior.  Panel A shows performance on 

each of the 5 blocks, while panel B shows performance averaged over the blocks.  Panel 

C shows percentage of time spent in the platform quadrant for probe trials.  The probe 

data are for the last 30 s of the 60 s trial (to account for initial floating behavior).  No 

differences were observed during the cued or spatial 1 tests. However, non-irradiated 

controls swam significantly less distance to the hidden platform than mice exposed to 0.5 

Gy during the spatial 2 (reversal learning) test. Error bars represent ± SEM for A and B, 

95% confidence interval for C. * represents p < .02.  
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Figure 12. Representative trials of reversal learning at 6 months in the WM. The control 

mouse first swam to where the platform was located on the previous day, and then 

searched for the new location upon discovering that the platform was no longer where it 

previously had been. The irradiated mouse perseverated on searching for the platform at 

its previous location, indicating an impaired ability to find the new location. 
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  Barnes Maze Figures 

 

 
 

 

 

 

 

 

 

Figure 13. BM wt 3-month post-irradiation behavior.  Panel A shows performance on 

each of the 5 blocks, while panel B shows performance averaged over the blocks.  Panel 

C shows percent time spent in the quadrant where the escape box (EB) was previously 

located.  No significant differences were observed on any test during the 3-month post-

irradiation time period. Error bars represent ± SEM for A and B, 95% confidence interval 

for C. 
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Figure 14. BM wt 6-month post-irradiation behavior.  Panel A shows performance on 

each of the 5 blocks, while panel B shows performance averaged over the blocks.  Panel 

C shows percent time spent in the quadrant where the EB was previously located.  No 

significant differences were observed on any test during the 6-month post-irradiation time 

period.  Error bars represent ± SEM for A and B, 95% confidence interval for C. 
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Zero Maze Figure 

 

Figure 15. ZM wt behavior.  No significant differences were observed at either the 3 or 

6-month post-irradiation time-point.  However, a significant change over time was 

observed in both groups.  Error bars represent ± SEM. 
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Aim 2 sought to determine whether radiation affects behavior in mice predisposed 

to AD-like pathology differently than wt mice, and whether this effect is dose-dependent.  

The first specific hypothesis was that irradiated tg mice would perform worse on tests of 

spatial learning and memory than irradiated wt mice.  The second hypothesis held that 

higher doses of radiation would lead to more severe spatial learning and memory deficits 

in tg mice compared to non-irradiated tg mice or those exposed to lower doses.  

Transgenic mice were given the same battery as wt mice, where they were tested in the 
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Figure 23 depicts the ZM data.  The wt data that was previously shown (under the “Aim 

1” section of this Chapter) was added to most of these figures for comparison. 

Genotype effects were the first to be analyzed in order to confirm that the double 

tg mice elicited the behavioral deficits expected.  As hypothesized, the tg mice performed 

significantly worse than the wt mice at 3 and 6 months post-irradiation on the WM and 

BM (see Figures 17, 18, 20, and 21, respectively).  There were even genotype differences 

at the pre-irradiation time-point on the more difficult spatial 2 (reversal learning) test, and 

on the cued WM test at 3 and 6 months post-irradiation.  To ensure that the differences 

observed in the spatial tests were not due to visual, locomotor, or motivational factors, an 

ANCOVA technique was used to vary out cued differences from the spatial analyses.  All 

but the 6-month spatial 1 genotype effect remained statistically significant after 

controlling for these cued differences.  No genotype differences were observed at the pre-

irradiation time-point, most likely because the neuropathological processes in the tg mice 

had not yet had time to present phenotypically. 

Transgenic mice spent significantly less time in the exposed section of the ZM 

compared to wt mice at both the 3 and 6 month time-points, demonstrating reduced 

anxiety-like behavior (see Figure 23).  Additionally, wt mice were significantly heavier, 

on average, than tg mice (31.61 grams compared to 28.44 grams, respectively; see Figure 

24). 

Once deficits in tg mice were confirmed relative to wt mice, attention was shifted 

to the effects of radiation dose among tg mice.  No significant differences were observed 

at any time-point in the WM among these mice.  However, all groups showed a 

significant learning curve across repeated blocks on most tests.  In the BM, the only 

significant difference was observed during the spatial 1 test of the 6 month time-point, 
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where the 0 and 0.5 Gy group performed significantly better than the 1 Gy group (F3,52 = 

2.85, P < .05; see Figure 21).  While no differences were found between groups on any 

probe test, it was found that the 1 Gy group was the only group that spent a less-than-

chance percentage of time in the platform quadrant during probe 1 at 6 months post-

irradiation in the WM (Mean = 29.12 ± 6.45 CI).  In the BM, it was found that tg controls 

were the only group that spent a greater-than-chance percentage of time in the platform 

quadrant during probe 1 at 3 months post-irradiation (Mean = 38.32 ± 12.63 CI).  No 

significant differences were observed during the cued test at any time-point on either the 

WM or BM, suggesting that there were no differences in vision, locomotion, or 

motivation between the control and irradiated tg mice. 

For tg mice, there were no differences among radiation groups in the amount of 

time spent in the dark on the ZM.  However, there was a significant change across time, 

where all groups spent more time in the dark area the second time they were tested.  This 

finding was expected, since the mice have already explored the open section of the maze, 

detracting from its novelty.  There were no differences in the degree of change over time 

by radiation dose. 
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Water Maze Figures 

 

 
 

 

 

 

 

 

 

Figure 16. WM tg and wt pre-irradiation behavior.  Panel A shows performance on each 

of the 5 blocks, while panel B shows performance averaged over the blocks.  Genotype 

effects were observed on the spatial 2 test.  Panel C shows percentage of time spent in the 

platform quadrant for probe trials.  No significant differences were observed among the 

tg mice on any test during the pre-irradiation time period. Error bars represent ± SEM for 

A and B, 95% confidence interval for C. 
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Figure 17. WM tg and wt 3-month post-irradiation behavior.  Panel A shows 

performance on each of the 5 blocks, while panel B shows performance averaged over 

the blocks.  Genotype effects were observed on all three tests.  Panel C shows percentage 

of time spent in the platform quadrant for probe trials.  No significant differences were 

observed among the tg mice on any test during the 3-month post-irradiation time period.  

Error bars represent ± SEM for A and B, 95% confidence interval for C. 
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Figure 18. WM tg and wt 6-month post-irradiation behavior.  Panel A shows 

performance on each of the 5 blocks, while panel B shows performance averaged over 

the blocks.  Genotype effects were observed on the cued and spatial 2 tests.  Panel C 

shows percentage of time spent in the platform quadrant for probe trials.  No significant 

differences were observed among the tg mice on any test during the 6-month post-

irradiation time period.  Error bars represent ± SEM for A and B, 95% confidence 

interval for C. 
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Figure 19. WM tg and wt behavior across all time-points.  All groups showed significant improvement from the pre-irradiation to 

3 month post-irradiation time-points for the cued and spatial 1 tests, but only wt animals showed significant improvement on the 

spatial 2 test.  This improvement over time is likely due to practice effects.  No significant improvement was seen across time-

points on the probe tests. 
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Figure 20. BM tg and wt 3-month post-irradiation behavior.  Panel A shows performance 

on each of the 5 blocks, while panel B shows performance averaged over the blocks.  

Genotype effects were observed on the spatial 2 test.  Panel C shows percent time spent 

in the quadrant where the EB was previously located.  No significant differences were 

observed among the tg mice on any test during the 3-month post-irradiation time period.  

However, tg controls were the only group that spent a greater-than-chance percentage of 

time in the platform quadrant during probe 1.  Error bars represent ± SEM for A and B, 

95% confidence interval for C. 
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Figure 21. BM tg and wt 6-month post-irradiation behavior.  Panel A shows performance 

on each of the 5 blocks, while panel B shows performance averaged over the blocks.  

Genotype effects were observed on all three tests.  Panel C shows percent time spent in 

the quadrant where the EB was previously located. No significant differences were 

observed among the tg mice on any test during the 6-month post-irradiation time period.  

Error bars represent ± SEM for A and B, 95% confidence interval for C.  * represents p < 

.05. 
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Figure 22. BM tg and wt behavior across all time-points.  No significant improvement was seen across time-points on any test 

for the tg mice. Wild-type mice showed significant improvement across time on the cued test only. 
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Zero Maze Figure 

Figure 23. ZM tg and wt behavior.  No significant differences were observed among the 

tg mice at either the 3 or 6 month post-irradiation time point.  However, a significant 

change over time was observed in all groups.  Transgenic mice demonstrated reduced 

anxiety-like behavior compared to wt mice.  Error bars represent ± SEM. 

 

 

Weights Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Weights for tg and wt mice at 3 months post-irradiation.  Results show that wt 

mice were significantly heavier than tg mice.  
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Comparison to Electrophysiology 

Upon completion of behavioral testing, the mice were sent to a collaborator’s lab 

(Roman Vlkolinský) where synaptic transmission and plasticity in hippocampal slices 

was evaluated electrophysiologically in order to help determine the cellular mechanisms 

underlying the behavioral decrements.  This procedure was conducted 9 months post-

irradiation.  Hippocampal slices were placed in magnesium-free artificial cerebrospinal 

fluid to evoke spontaneous activity, which was recorded in the CA3 and CA1 regions.  

Incidence of spontaneous activity was expressed as the inter-event interval between 

spontaneous oscillations in 5 min recordings. 

The reason for including electrophysiological data in the present study is because 

the incidence of certain types of spontaneous activity in the hippocampus, such as sharp-

waves/ripple complexes, is associated with memory consolidation processes (Behrens, 

van den Boom, de Hoz, Friedman, & Heinemann, 2005; Girardeau, Benchenane, Wiener, 

Buzsáki, & Zugaro, 2009).  The memory consolidation process is dependent on the 

spread of these oscillations from the hippocampus to the cortical mantel, so any activity 

that impedes this process can impair recall ability.  Thus, it was hypothesized that 

radiation would interfere with this process and lead to memory impairment. 

There was found to be a significant increase in the inter-event interval (i.e., less 

sharp waves per unit of time) after 0.5 Gy proton radiation in wt mice at 9 months post-

irradiation, pointing to decreased hippocampal activity (see Figure 25).  However, no 

differences in activity were observed among tg mice (see Figure 26).  The slightly 

smaller sample size relative to behavioral data is due to the inability to assess the 

waveforms in several mice during the complex electrophysiological recordings. 
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We used a Pearson product-moment correlation to compare behavioral and 

electrophysiological outcomes.  The 6-month WM reversal learning data (i.e., Spatial 2) 

positively correlated with the spontaneous activity data (Pearson’s r10 = –0.72, p < .01).  

Specifically, as the distance moved increased (meaning poorer performance) the interval 

between waves of activity increased (see Figure 27).  However, no significant correlation 

was found among the tg mice (see Figure 28). 

 

 

 
 

Figure 25. Spontaneous activity in CA1 region of 

hippocampus in wt mice.  Results showed that irradiated 

mice exhibited a greater interval between waves, meaning 

less spontaneous activity compared to controls. 
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Figure 26. Spontaneous activity in CA1 region of hippocampus 

in tg mice.  Results showed that there were no radiation-

induced differences in spontaneous activity, or the average 

interval between waves, among tg mice. 
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Figure 27. Correlation between spontaneous activity and 6-month WM reversal 

learning data in wt mice. The inter-wave interval significantly correlated with swim 

distance in the WM, meaning that mice that performed better (less swim distance) 

showed more hippocampal activity. 
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Figure 28. Correlation between spontaneous activity and 6-month WM reversal 

learning data in tg mice. Results showed that there was no significant 

correlation between inter-wave interval and swim distance. 
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CHAPTER FIVE 

CONCLUSION 

 

Discussion/Implications of the Findings 

In the present study, we exposed young male wt and tg mice to 0.5 Gy of proton 

radiation and measured the effects on behavior up to 6 months after irradiation.  Few 

studies have assessed the effects of a low dose of proton radiation on learning and 

memory function despite evidence that this is the major type of radiation astronauts are 

likely to receive on extended missions planned for the near future (Cucinotta et al., 2012; 

Cucinotta et al., 2013).  Similarly, no known study has looked at the effects of such 

exposure past 3.5 months post-irradiation or assessed the effects on mice with AD-like 

neuropathology.  Here we show evidence that such exposure induces behavioral 

impairments in wild-type mice, but may not exacerbate or accelerate deficits in mice with 

a predisposition to developing age-related, AD-like pathology. 

 

 

Aim 1 

 

Although the behavioral testing was assessed repeatedly before irradiation and 3 

and 6 months post-irradiation, significant behavioral decrements were identified only at 6 

months post-irradiation, where we observed impaired reversal learning in the WM.  Such 

decrement is suggestive of an inability to remain cognitively flexible in novel situations 

and has been shown to be particularly indicative of dysfunction in the prefrontal cortex 

and hippocampal memory system (Altafaj et al., 2001).  Cognitive flexibility involves the 

ability to inhibit a previously learned platform-finding strategy in order to acquire a new 

navigation approach (Clapcote & Roder, 2004; Nasir et al., 1995).  Animals with 
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hippocampal damage can often learn an initial task, but are unable to adapt to changing 

conditions, such as platform relocation (e.g., day 2 of spatial testing; Whishaw et al., 

1995; Whishaw & Jarrard, 1996; Wishaw & Tomie, 1997).  In the present study, the 

irradiated mice were unable to make a strategic switch, and often perseverated on the 

previous platform location (see Figure 12), demonstrating their cognitive inflexibility and 

reduced problem-solving ability. 

Finding behavioral deficits at 6 months, but not at 3 months, after irradiation 

suggests that the effects of a low dose of proton radiation may have a relatively late 

onset.  One potential explanation for this delay is that the radiation exposure decreased 

neurogenesis.  Since new neurons can take weeks to months to come to full maturation 

(Praag et al., 2002; Raber et al., 2004), reduced neurogenesis may have caused a gradual 

depletion of new neurons in the dentate gyrus (and/or other mitotically active brain 

regions), which would have given the irradiated mice a disadvantage in a task of learning 

and memory at 6, but not 3, months after irradiation.  Although other rodent studies using 

proton radiation have not found radiation-induced behavioral effects on learning and 

memory (Dulcich & Hartman, 2013; Rabin et al., 2002; Shukitt-Hale et al., 2004), none 

of them assessed behavior past 2.5 months after exposure. 

Data from the BM trended to the same patterns as the results from the WM, but 

did not show significant differences. Although some authors suggest that mice may 

perform worse in the WM than the BM due to its aquatic nature (which may be more 

suitable for rats; Whishaw & Tomie, 1996), others have indicated that neither test is 

superior to the other, each using a different motivational technique that may produce 

varying results (Gerlai & Clayton, 1999; Patil, Sunyer, Höger, & Lubec, 2009).  For this 
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reason, it is often recommended that the tests be used as parallel measures of spatial 

learning and memory ability.  Our group, however, has found the WM to be quite 

sensitive for determing behavioral deficits in a number of mouse models (Fukuda et al., 

2013; Hartman et al., 2012; Lekic et al., 2011; Pop et al., 2013). 

Regarding the comparison to electrophysiological data, the inter-wave interval 

was measured to assess hippocampal activity levels.  The increased inter-wave interval 

among the irradiated mice suggests that radiation inhibits the memory consolidation 

process associated with the spread of oscillations from the hippocampus to the cortical 

mantel, as was hypothesized.  Such a reduction has been shown to be associated with 

memory impairments (Behrens et al., 2005; Girardeau et al., 2009), and offers a 

mechanism to explain our behavioral findings.  Indeed, the electrophysiological data 

significantly correlated with our behavioral data from the Spatial 2 test, demonstrating 

that as the frequency of spontaneous activity increased the performance on a spatial 

learning task improved (see Figure 27). 

 

 

Aim 2 

 

 Transgenic mice performed significantly worse than wt mice on most behavioral 

measures and at most time-points, confirming that tg mice developed AD-like pathology 

observed in other studies using this model (Cherry et al., 2012; Harrison et al., 2009; 

Jankowsky et al, 2004).  Among tg mice, the only difference found was at 6 months post-

irradiation on the spatial 1 test of the BM, where the 0 and 0.5 Gy group performed 

significantly better than the 1 Gy group (see Figure 21).  However, due to the lack of a 

learning curve, large degree of variance, and no differences on the more difficult spatial 2 
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test, these results are likely spurious.  No other differences were observed among tg mice 

that were exposed to radiation at doses up to 1 Gy as compared to non-irradiated tg 

controls.  The findings suggest that exposure to low doses of proton radiation do not 

accelerate or exacerbate AD-like pathology. 

It is likely that the learning and memory deficits from the AD-like pathology were 

overshadowing any potential radiation effects.  Though higher doses may have resulted in 

a noticeable effect, doses above 1 Gy may not be applicable to space travel under normal 

circumstances (Cucinotta et al., 2012; Cucinotta et al., 2013).  The data indicate that 

individuals with an AD predisposition may not be further affected by low doses of proton 

radiation.  Such findings infer that it may not be necessary to screen astronauts for an AD 

predisposition and potentially preclude them from service based on such a discovery. 

Regarding the comparison to electrophysiological data, the inter-wave interval 

was measured to assess hippocampal activity levels.  Unlike the wt results, there were no 

differences among tg mice and the data did not correlate with our behavioral data.  These 

findings add further support to the behavioral results, suggesting that radiation does not 

exacerbate impairment in tg mice. 

 

 

Conclusions 

 

Understanding the potential risks of exposure to low doses of proton particle 

radiation on cognitive functioning is imperative to the success of future space missions, 

as well as to ensure quality of life for our astronauts.  In the present study, we used 

behavioral measures to demonstrate that low doses of 150 MeV proton radiation impaired 

learning and memory in wt mice but did not exacerbate deficits in tg mice.  The data 
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suggest that astronauts traveling outside the magnetosphere are at risk of developing 

long-term, radiation-induced learning and memory deficits.  However, radiation exposure 

is not likely to interact with an AD predisposition in a deleterious manner.  These 

findings highlight the need for improved shielding and/or compensatory strategies to 

decrease radiation-induced risks. 

 

Limitations 

We acknowledge several limitations in the present study: 

 

1. Proton particle radiation doses up to 1 Gy may not have been large enough to 

result in detectable effects.  However, this amount of radiation was the most 

appropriate to use since it most accurately models the space environment. 

2. Repeated behavioral testing resulted in practice effects that could have attenuated 

the detection of subtle deficits.  However, all groups received the same number 

and sequence of behavioral tests to avoid any differences in practice effects by 

group. 

3. It may have been beneficial to include wt groups exposed to 0.1 and 1 Gy to be 

able to directly compare to the tg mice given those doses.  Only the 0 and 0.5 Gy 

wt groups were originally included since NASA was mainly interested in the tg 

mice and resources were limited. 

4. It is possible that using a single tg mouse model of AD, rather than the double tg 

model we used, may have led to less AD pathology, allowing the effects of 

radiation exposure to be observable.  However, results from other labs using the 

double tg model have shown that iron radiation exacerbates AD pathology 
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(Cherry et al., 2013), which led us to hypothesize that this model would be 

appropriate for the present study. 

5. Repeated, fractionated radiation exposure (e.g., exposing the mice to four separate 

doses of 0.25 Gy) may have elicited different results than giving mice a dose of 1 

Gy all at once.  However, the logistics of repeatedly exposing the mice (e.g., the 

time, money, and radiation beam access involved in doing so) precluded us from 

pursuing this option.  Additionally, recent findings suggest that a fractionated 

dose does not affect the outcome (Rivera et al., 2013). 

6. Immunohistochemical analysis of various biological markers of AD (e.g., plaque 

load) would have aided in the determination of a mechanism of the effects.  This 

data is forthcoming. 

 

Future Directions 

 

The present findings lead way to many more questions regarding the effects of 

low doses of radiation.  Since this study was the first to look at low doses of proton 

radiation on mice with a genetic predisposition for developing AD-like pathology, 

replication studies are needed to ensure the validity of the present findings.  Additionally, 

subsequent studies could use other measures to test different behavioral constructs (e.g., 

activity level, depression, fine and gross motor ability, etc.), as well as different time-

points.  It may also be informative to assess various biomarkers to better understand 

potential mechanisms, such as ROS, inflammation, or reduced neurogenesis. 

Though protons are the most abundant particles future astronauts are likely to be 

exposed to, other particles may be present as a result of galactic cosmic rays and solar 
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activity.  Our lab has already begun testing the effects of these heavier, larger particles on 

behavior in APP/PSEN1 mice.  The literature suggests that such particles (e.g., iron or 

silicon) may cause more damage than less massive ones, such as protons (Cherry et al., 

2012).  Preliminary data from our lab’s follow-up studies suggests that both iron and 

silicon particle radiation cause significant cognitive changes. 

Once an adequate understanding of radiation effects is achieved, the next step is 

to construct interventions to ameliorate such deficits.  One study from our lab has already 

demonstrated that pomegranate juice rescued some detrimental effects of proton radiation 

(Dulcich & Hartman, 2013).  Other studies are needed to assess the effects of 

antioxidants on different types of radiation, or to discover other kinds of potential 

interventions.  
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