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Brain microbleeds (BMB), often present in cerebrovascular and 

neurodegenerative diseases and neurotrauma, are associated with both chronic and acute 

illness of significant social and economic impact. Because BMB present a source of 

potentially cyctotoxic iron to the brain proportional to the amount of extravasated blood, 

non-invasive quantification of this iron pool is potentially valuable both to assess tissue 

risk and as a biomarker to monitor disease progression, treatment efficacy, and inform 

treatment. 

Past efforts to quantify brain iron have focused on distributed (e.g. , anatomical) 

brain regions. However, BMB represent localized sources of iron deposition. In 

addition, conventional "magnitude" MR images have significant limitations, especially 

for localized iron quantification. Moreover, due to susceptibility etJects, the localized 

hypointensities in gradient recalled T2* magnitude images associated with BMB typically 

appear larger than the actual tissue lesion (the blooming effect) and obscure the true 

dimensions of an iron susceptibility source. In the present research, we proposed a 

family of techniques that use magnetic resonance phase images (instead of magnitude 

images) to quantify the iron content and dimensions oflocalized iron sources such as 

BMB. 
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The techniques were tested in four systems: 1) magnetic resonance agarose 

phantom and 2) postmortem rat brain, using a ferric iron oxy-hydroxide mimic for 

hemosiderin, 3) the living rat brain, using collagenase-induced bleeds, and 4) with actual 

BMB in postmortem cerebral amyloid angiopathy brain. Measurements of geometric 

features in phase images were related to source iron content and diameter using 

mathematical models. Iron samples and BMB lesions were assayed for iron content 

using atomic absorption spectrometry. 

Results from experiments 1 and 3 in particular showed very good agreement with 

predictions of the theory underlying the techniques, providing validation for the methods 

and demonstrating that prominent phase image features can potentially be used to 

measure localized iron content including iron in real BMB. Our methods potentially 

allow the calculation of brain iron load indices based on BMB iron content as well as 

classification of BMB by size unobscured by the blooming effect. These results represent 

significant steps toward the use of similar localized iron quantification methods in 

experimental and clinical settings. 
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CHAPTER 1 

INTRODUCTION 

Brain Microbleeds 

Brain micro bleeds (BMB) are often present in cerebrovascular and 

neurodegenerative diseases as well as neurotrauma and are increasing in clinical 

importance (Cordonnier et a!., 2007, Greenburg et a!., 2009, Tong et a!., 2003, Tong et 

a!., 2004). BMB are detected as focal signal losses in gradient recalled echo (GRE) T2* 

magnetic resonance (MR) imaging and have been histopathologically related mainly to 

hemosiderin (Fazekas et a!., 1999, Tanaka et a!., 1999, Schrag et a!., 2010). 

Hemosiderin, the iron-protein complex associated with pathologic iron storage following 

hemorrhage (Bizzi et a!., 1990) and ferritin breakdown (Schenk et a!., 2004), is visible in 

MR images due to it paramagnetic iron content and serves as a marker for BMB (Atlas et 

a!., 1988, Viswanathan and Chabriat 2006). 

BMB in Cerebrovascular Disease 

BMB have mostly been studied in the context of stroke medicine. Using data 

extracted from a systematic review of 54 studies involving a total of9,073 participants 

(Cordonnier et a!., 2007), BMB were reported present in 34% of study subjects with 

ischemic stroke and 60% with non-traumatic intracerebral hemorrhage (ICH) 

(Cordonnier et a!., 2007). Based on two studies, the prevalence in stroke sub-types was 
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repOlied to be 54% among lacunar strokes, 36% among atherothrombotic strokes, and 

19% among cardioembolic strokes. The association of micro bleeding pathology (ie, 

BMB) with ischemic pathology was recently augmented by the following four studies: A 

serial case study found new silent lacunes in FLAIR (fluid attenuated inversion recovery) 

and DWI (diffusion weighted imaging) MR imaging two and 30 days following ICH in a 

subject with a classic neuroimaging picture of CAA (cerebral amyloid angiopathy) 

(Menon et aI., 2009). Kimberly et aI., reported 12/78 (15%) of CAA subjects had 

diffusion weighted imaging (DWI) hyperintense lesions consistent with subacute cerebral 

infarctions, significantly more than 0/55 subjects with Alzheimer's disease/mild cognitive 

impairment (Kimberly et aI., 2009). The CAA subjects with DWI lesions had a higher 

median of number of BMB and total (micro plus macro) hemorrhages. The authors 

suggest that advanced CAA predisposes to ischemic infarction in addition to TCH 

(Kimberly et aI., 2009). Igase et aI., found BMB in 21.1% subjects with silent lacunar 

infarcts compared with BMB in 3.8% of subjects without silent lacunar infarcts 

(considered a predictor of stroke) (Igase et aI., 2009). Jeon et aI., reported new BMB 

seen after ischemic stroke in 13% of subjects (median 1, range: 1 - 5), and baseline BMB 

and small vessel disease predicted future BMB (Jeon et al., 2009). The Cordonnier 

review reports recurrent stroke patients had more BMB than those with first time stroke 

(Cordonnier et al., 2007), and in memory clinic subjects the presence of BMB was 

associated with the presence of lacunar infarcts in addition to large infarct and 

hemorrhages. These studies highlight that there is "cross talk" between "red and white" 

cerebrovascular disease (Kidwell and Greenburg 2009). 
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Alzheimer's Disease and Cerebral Amyloid Angiopathy 

Late onset Alzheimer's disease (AD) is the most common form of dementia. 

Over 35 million people are affected worldwide including 5.5 million in the United States. 

The risk of developing AD increases with age doubling every five years after 65 with the 

odds of AD after 85 greater than one in three (Querfurth and LaFerla, 2010). Because of 

the aging population, the prevalence is projected to increase dramatically reaching to 13.2 

million in the US by 2050 (Hebert et a!., 2003). However, one hundred years after it was 

first described, the cause of AD is still unknown and effective treatments are not 

available. Conventional thinking implicates the amyloid ~ peptide (A~) as central to the 

disease process (Hardy and Higgins, 1992). However, A~ plaques are not specific to AD 

(Bennett et a!., 2006), and a cerebral vascular component to the disease is increasingly 

being recognized (Zlokovic, 2005, Dickstein et a!., 2010). Finally, redox-active iron has 

a toxic effect on brain cells, and oxidative damage, iron accumulation and changes in iron 

metabolism are suspect in AD (Smith et a!., 1997, Smith et a!., 2010). 

CAA is a cerebrovascular disease where A~ is deposited in the media and 

adventitia of small cerebral arteries. It is characterized by lobar hemorrhages including 

BMB, subcortical white matter lesions, and cognitive impairment. It is believed that this 

deposition weakens the vessel wall and/or reduces vessel reactivity leading to the 

predisposition for micro and macro hemorrhages (Zhang-Nunes et a!., 2006, Smith and 

Greenberg, 2009). CAA is present in up to - 95% of AD cases (Jellinger et a!., 2007). 

Thus, CAA presents a condition where A~, vascular compromise and pathologic iron 

deposition (e.g., following BMB) are juxtaposed in the context of late onset dementia 

including AD. 
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BMB and Cognitive Decline 

Recently in our prospective study we have observed that a subset of subjects with 

progressing dementia show brain micro bleeds in iron-sensitive susceptibility weighted 

magnetic resonance images (SWI) (Kirsch et aI., 2010). The spatial pattern of the BMB 

is reminiscent ofCAA (Rosand et aI., 2005, Kirsch et aI., 2010). This raises the question 

whether cytotoxic and inflammatory sequelae following cerebral amyloid vasculopathy, 

BMB, and extravasated iron contribute significantly to the dementia in AD and CAA, and 

whether iron can be used as a biomarker in this context (see below). 

While many BMB studies have focused on CAA, which is associated with late 

onset dementia, several studies have looked at cognitive decline in particular. Prevalence 

in AD has been reported to be 26.8% (Cordonnier et aI., 2007) based on two studies 

which showed 32% (Hanyu et aI., 2003) and 18% (Nakata et aI., 2002) respectively. In 

memory clinic subjects BMB were found in 10% of those with subjective complaints, 

20% with mild cognitive impairment (MCI), 18% of AD, and 65% with vascular 

dementia. The number of BMB was an independent predictor of cognitive impairments 

in attention, verbal memory, visual memory, language (marginally significant: p=0.06l), 

visuospatial function, and frontal executive function, and also of dementia severity 

assessed by Mini Mental State Examination and Clinical Dementia Rating (marginally 

significant: p=0.OS2), in subjects with subcortical vascular dementia (Seo et aI., 2007). 

BMB presence and number is associated with poorer performance on standard tests of 

global cognitive function (Yakushihi 2008), and there is a significant risk of converting 

from MCI status to dementia with 2 or more BMB at baseline (Kirsch et aI., 20 I 0). 
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Risk Factors 

BMB prevalence was shown in the Rotterdam Scan Study to increase with age 

(Vemooij et aI. , 2008) and though the Cordonnier systematic review could not report 

pooled results, the authors do mention that several individual studies showed an increased 

prevalence with age (Cordonnier et aI., 2007). The presence ofBMB predicts new BMB 

(Gregoire et aI., 2009, Jeon et aI., 2009). In healthy adults, BMB were associated with 

hypertension and diabetes; in adults with cerebrovascular disease, BMB are associated 

with hypertension (Cordonnier et aI. , 2007). 

eAA and Hypertension 

BMB are considered to appear in spatial distributions associated with distinct 

etiologies: deep brain BMB are associated with hypertensive vasculopathy, whereas lobar 

BMB are associated with CAA (Greenberg et aI., 2009, Vemooij et aI., 2008, Knudsen et 

aI., 2001 , Fazekas et aI. , 1999, Vinters & Gilbert 1983). Deep, but not lobar, BMB have 

been reported to be associated with ambulatory blood pressure in first-ever lacunar stroke 

patients (Stalls et aI., 2009). ApoE e4 (which is related to CAA and a known ri sk factor 

for AD) was reported to be associated with lobar, but not deep BMB (Vernooij et aI., 

2008). In another study, BMB were most frequently lobar with a predominant posterior 

location mostly in the parietal lobe, and homozygous ApoE e4 was associated with BMB. 

This, together with a borderline significance for hypertension, suggests an underlying 

CAA pathology in the study participants (Sveinbjornsdottir et aI., 2008). 
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BMB and Future Bleeding Risk 

Studies have shown that BMB in ischemic stroke, ICH and CAA patients are 

associated with future hemOlThage (Soo et a!., 2008, Jeon et aI., 2007, Greenberg et a!., 

2004, Greenberg et a!. , 2009). Whether BMB presence and number is associated with 

increased risk in first ever stroke has not yet been determined (Cordonnier et aI. , 2007, 

Greenberg et aI., 2009). There appears to be controversy about whether BMB represent a 

risk for bleeding follow thrombolytic agents administered after stroke (Greenberg et a!., 

2009). BMB ri sk in the context of anticoagulant agents also is an open question 

(Greenberg et aI., 2009). A recent cross sectional study found BMB were more prevalent 

in subjects that were using or had used platelet aggregation inhibitors drugs. In addition, 

aspirin users had lobar bleeds more often then carbasalate calcium users (Vernooji et a!., 

2009). Soo et aI., conclude that benefits outweigh anticoagulant agent risk except 

perhaps when patients have 5 or more BMB (Soo et aI., 2008). 

BMB in 'Healthy' Populations 

BMB have been rep0l1ed present in 5% of healthy adult study subjects based on a 

systematic review of four studies where 70 of 1,411 had one or more BMB (Cordonnier 

et aI. , 2007). However, in each of these studies there was a high prevalence of 

hypertension among participants: 24.9% (Tsushima et a!. , 2002), 28.8% (Jeerakathil et 

aI. , 2004), 31.8% (Roob et a!. , 1999b) and 46.4% (Horita et aI., 2003), so prevalence in 

non-hypel1ensive subjects is likely lower. In community-dwelling elderly Vernooij et aI., 

found prevalence increased strongly with age (60-69 yrs: 17.8%,70-79 yrs: 31.3%,80-

97: 38.3%) as did those with multiple BMB (60-69 yrs: 5.4%, 70-79 yrs: 16.5%,80-97: 
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23.3%) (Vernooij et aI., 2008). The higher prevalence here compared to the four studies 

just mentioned could be explained by the high mean age of participants (69.6 yrs) 

(Vernooij et aI., 2008), and perhaps slightly because of magnet strength (CordOimier et 

aI. , 2007). However, in another community study a lower prevalence of I 1.1 % was 

found and prevalence increased with age even though participants were older (mean age 

76 yrs) (Sveinbjornsdottir et aI., 2008). 

Iron Content ill BMB: A Biomarker 

In light of the above discussion, it is clear that BMB are associated with 

cerebrovascular disease and AD - "the most common age-related pathologies of the 

brain" (Schneider 2007) as well as some of the most costly. Pathological studies have 

indicated tissue damage is associated with BMB (Fazekas et aI., 1999, Tanaka et aI., 

1999, Schrag el aI2010). Umegulated or dysregulated brain iron can be cytotoxic (eg, 

free radical production through the Fenton reaction), and oxidative damage, iron 

accwl1Ulation and/or iron dysregulation have been implicated in neurodegenerative and 

cerebrovascular diseases (Vymazal et aI. , 2007, Gaasch et aI., 2007, Andersen, 2004, 

Neema et aI. , 2009, Smith et aI. , 1997, Smith et aI., 2010). Therefore, extravasated iron 

fo llowing BMB is potentially important for two reasons: I) the iron is an agent of tissue 

damage and resulting disease, and 2) the amount of iron is proportional to the amount of 

extravasated blood and iron is therefore an indicator of the extent of microvascular 

fragility and disease. Thus, the quantified iron content in BMB is potentially a valuable 

biomarker to monitor disease progression, treatment efficacy and risk factor control. 

Finally, it is noteworthy that all the studies in BMB literature only count BMB and the 

7 



notion of severity is simply related to the number ofBMB. Knowledge of the total iron 

deposited in each BMB would allow a more precise measure of severity. For example, 

two BMB containing 5 flg each represents more bleeding than 10 BMB containing less 

than 1 flg each. Such information may be useful in decisions regarding the use of 

antithrombotic or thrombolytic agents. 

Brain Iron Quantification Using Magnetic Resonance 

Magnitude and Phase Contrast in MRl 

Black and white images (of any kind) are possible because the elemental units of 

the picture (e.g., pixels) vary in intensity. It is this contrast that allows the viewer to 

distinguish between objects and features of the image. In MR imaging, nuclear spins in 

tissues and molecules exchange energy with nuclear and electron spins in neighboring 

molecules and their microenvironment. In conventional MR, it is the differential rates at 

which this energy exchange takes place that gives rise to image contrast. These rates are 

quantified by three relaxation time constants T I , Tz and T2* (l/Tz* = lIT2 + I/Tz' where 

Tz' is related to interactions between nuclear spins and static local magnetic field 

inhomogeneities). It is spatial differences in these rates that ultimately lead to contrast in 

image intensity or magnitude. Phase contrast on the other hand arises from a different 

mechanism. Due to their intrinsic angular momentum, nuclear spins in a strong magnetic 

field precess about the field with an angular velocity proportional to the field strength. 

Thus, in a given time a population of spins will trace out an angle proportional to the 

magnetic field in their microenvironment. Differences in this angle or phase reflect 

differences in local tissue propeliies and provide image contrast (Roberts and Mikulis 
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2007, Haacke et a!., 1999). Phase information can be used in two ways: 1) in conjunction 

with magnitude images to enhance (magnitude) contrast, or 2) as a stand-alone contrast 

agent (Reichenbach et a!., 1997a, Haacke et a!., 2004). 

Iron Quantification in Phase vs. Magnitude Images 

There continues to be an interest in brain iron quantification (Brittenham et a!., 

2003, Schenck et a!., 2004, Haacke et a!., 2005, Jara et a!., 2006). Because of the 

association with iron accumulation in normal aging and AD, Parkinson's (PD), 

Huntington's (HD), Multiple Sclerosis (MS), and Hallervorden-Spatz (HS) disease states 

several authors have recently attempted to determination brain iron content using 

magnitude contrast (Haacke et a!., 2005, Jara et a!., 2006, Bartzokis et a!., 2007, Peran et 

a!., 2009, Gilissen et a!., 1999, Bartzokis et a!., 1993, , Schenck et a!., 2006, House et a!., 

2007, Ordidge et a!., 1994, Gelman et a!., 1999, Vymazal et a!., 2007, Neema et a!., 2009, 

McNeill et a!., 2008). In particular, because the presence of paramagnetic iron leads to 

local changes in magnetic susceptibility and spin dephasing, these studies used T2 

relaxation times (or increased relaxation rate Rz = IITz), GRE Tz*, TdTz ratio, or Tz' 

methods. However, a fundamental weakness of these conventional magnitude image 

methods is their dependence on complex relaxation mechanisms (eg, spin-spin coupling) 

that possibly vary across tissue types, disease states, and experimental parameters 

(Gossuin et a!., 2007; Jensen et a!., 2009). MR phase however, is directly proportional to 

the susceptibility variations (eg, due to paramagnetic brain iron) and does not depend on 

a particular coupling mechanism. Tissue phase differences are theoretically independent 

ofT! and Tz tissue parameters and RF phase (Haacke et a!., 2005). Thus, phase images 
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are expected to be largely free from the influence of confounding tissue water and more 

consistent across tissue types and states than T j , T2, T2* and T2' approaches. In addition, 

unlike magnitude images that suffer signal loss when diffusion effects are significant (ie, 

outside the static dephasing regime (Yablonskiy and Haacke, 1994), bulk phase shifts due 

to internal or external time independent field inhomogeneities are thought to be largely 

unchanged by water diffusion. 

The Blooming Effect in GRE T2* Magnitude Images 

Moreover, the spatial extent of signal hypointensities in GRE T2* magnitude 

images of a localized source of magnetic susceptibility is typically larger than its actual 

size. This so called blooming effect varies with scan parameters as well as source 

magnetization (Bos et aI., 2003; Pintaske et aI., 2006b). Because the true dimensions of 

the source cannot be reliably determined, GRE T2* magnitude image signal void volume 

is unreliable for iron content determination (Dixon et aI., 2009). The blooming effect is 

useful for at least two reasons: I) it allows the visualization of tissue features that would 

otherwise be too small to see in MR images (eg, small vessels, magnetically labeled cells) 

(Reichenbach et aI., I 997a), and 2) it is recOlmnended criterion in BMB identification 

(Greenberg et aI., 2009). However, since the blooming effect obscures the true 

dimensions of e.g. a BMB, MR magnitude images are not reliable for BMB size 

detennination or for localizing the source of a signal void (e.g., magnetically labeled 

cells). In a recent report BMB appeared an average of 1.57 times larger than the actual 

tissue lesion in postmortem AD/CAA brain (Schrag et aI., 2010), and in magnetically 

labeled cells blooming magnification is reported to be as much as 50 times (Dodd et aI., 
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1999). Tn part because of the blooming effect, the use ofBMB (apparent) size has been 

discouraged in BMB identification. However, introduction of a technique to accurately 

estimate true source diameter would allow size criteria in classification of BMB and more 

precise spatial location. Tn addition, size detemlination together with iron content 

information would allow the estimation of iron concentration for BMB or magnetically 

labeled cell clusters. 

Susceptibility Weighted Imaging 

Susceptibility weighted imaging (SWI) is a GRE sequence that uses magnetic 

susceptibility-dependent complex phase information to provide or enhance image 

contrast (Haacke et a!., 2004; Reichenbach et a!., 1997a). Recent studies have shown 

SWI to be 3 to 6 times more sensitive in BMB detection than conventional GRE T2* 

methods (Akter et a!., 2007; Tong et a!., 2003). Theoretical considerations estimate SWI 

phase to be roughly 8 times more sensitive to iron content than conventional T2 methods 

(Haacke et a!., 2007). 

Phase Image Studies 

Several recent studies used phase images to investigate iron levels in normal 

subjects and AD, PD, and MS disease states (Ogg et a!., 1999, Haacke et a!., 2007, Xu et 

a!., 2008, Ding et a!., 2009, Kirsch et a!., 2010, Zhang et a!., 2009, Grabner et a!., 2010, 

Ge et a!., 2007), and several studies used both phase and magnitude methods in normal, 

MS, HSS subjects (Pfefferbaum et a!., 2009, Hammond et a!., 2008, Haacke et a!., 2009, 

Eissa et a!., 2009, Szumowski et a!., 2010). Outside of the brain, phase approaches were 
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used to quantifY iron oxide mass in localized injections of rat leg muscle (three injections 

in two postmortem rat legs) (Dixon et a!., 2009) and magnetic moment in cylindrical 

phantoms (Robson and Hall, 2005). Dipole phase fitting approaches (Dixon et a!., 2009) 

and the rn parameter (very important in the present study) (Robson and Hall, 2005) are 

important and useful contributions of these papers. However, these studies showed 

limited success, inconsistent results, as well as several important limitations including 

questionable adequacy of background phase removal, and/or not accounting for source 

geometry. Finally, Cheng et a!., proposed a phase method using an infinite cylinder 

model (Cheng et a!., 2007) that could potentially be adapted to more localized (eg, 

spherical) sources like BMB. 

Limitations of Phase Images 

While possessing several advantages over magnitude images for iron 

quantification (Haacke et a!., 2005, McAuley et a!., 2010a) phase image approaches also 

face limitations. Phase contrast depends on source geometry and orientation with respect 

to the main magnetic field. In addition, because field perturbations extend beyond the 

sources of susceptibility that cause the perturbations, the phase is also altered in areas 

surrounding the source (Shmueli et a!., 2009, Schafer et a!., 2009). The effects ultimately 

arise from the fundamental physical nature of the magnetic field (e.g., solenoidality) and 

these effects of orientation-dependent contrast and non-locality cannot be fully eliminated 

in phase images. However, for localized iron sources these effects are less important and 

can even be exploited in localize iron content determination (discussed in Chapters 4 and 

6). 
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Localized Versus Distributed Iron Sources 

It is noteworthy that to date, efforts to determine brain iron content have primarily 

involved brain regions (eg, anatomic structures). However, BMB represent a localized 

source of iron where quantification is desirable. The studies of Robson and Hall (Robson 

and Hall, 2005), Dixon et aI., (Dixon et aI., 2009), and Cheng et aI., (Cheng et aI., 2007) 

mentioned above, are examples where localized sources of susceptibility were studied 

using a phase image approach. 

Purpose of the Present Research 

From the above discussion, it is clear that BMB are associated with diseases of 

aging that have enormous social and economic impact. BMB represent a source of 

pathologic iron to the brain that is potentially informative whether iron is found to be a 

significant agent of disease or a surrogate biomarker of cerebral vessel pathology. BMB 

iron quantification could provide diagnostic or prognostic information as well as 

guidelines for treatment. Knowledge of the amount of iron in individual bleeds would 

allow the definition of an iron load index for a group of bleeds. For example, one could 

sum up all the extravasated iron due to all lobar bleeds and define a lobar iron load index. 

Such constructs could provide more sensitive information than mere counts of eg lobar 

BMB. In experimental systems, localized bleeding lesions could similarly be 

characterized, compared and monitored. Localized quantitication techniques also have 

potential applications beyond the BMB context - for example, in the non-invasive 

tracking, location and quantification of magnetically labeled cell clusters (eg, stem and 

immune system cells). Finally, an automated or semi-automated system to analyze 
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images containing localized iron sources would greatly increase the usefulness of a 

quantification technique. 

The purpose of this research project was to investigate and develop techniques to 

quantify the iron content and size oflocalized brain iron sources using magnetic 

resonance phase images. Easily recognized phase image parameters l were 

mathematically related to source iron content and dimensions. Experimental results were 

compared with these theoretical predictions and thus provided validation for the proposed 

methods. 

The techniques were developed and tested in four major experiments. The first 

two experiments introduce and validate the basic methods in idealized model systems. 

The last two experiments apply and test the methods to postmortem human and living 

animal tissue. Thus, the four experiments present a body of work that follows a logical 

progression of investigation and application of the techniques from the more idealized 

model toward localized iron content quantification in systems more relevant to clinical 

and experi mental settings. 

Experiment I: Phantom System 

Experiment one can be thought of as a 'proof of concept' experiment. Samples 

from a polysaccharide/ferric oxy-hydroxide composite material (eh-Fe) (Sipos et a!., 

2003) were embedded in agarose and scanned with an SWI MR protocol at 11.7T. 

Localized samples were mathematically modeled as magnetic dipoles. The phase image 

analysis method that relates features in the images with the underlying theory depends on 

I The phrase "phase image parameters" (or a similar phrase) in this document refers to measurements of 
characteristic features of patterns in phase images due to the presence oflocalized iron sources. This 
should not be confused with the "imaging parameters" that are chosen and used to acquire MR images. 
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measurement of the r" parameter. This phase parameter was described in the literature by 

Robson and Hall in an attempt of limited success to measure the magnetic moment of 

cylindrical phantoms containing solutions of manganese chloride (Robson and Hall, 

2005). In this present experiment we apply a very similar r" method to our spherical iron 

samples. However, we employ high-pass filtering (Wang et aI., 2000, Haacke et aI., 

2004) of higher resolution phase images, and report very good success. In addition, we 

discuss and test the prediction (suggested by Robson and Hall, 2005) that phase images 

and the r" parameter can in principle be used to determine the true diameter (i.e., 

un obscured by the blooming effect) of a localized susceptibility source (a spherical 

source of iron in our case), and consider questions of iron measurement sensitivity. 

Chapter two is entitled "Quantification of Punctate Iron Sources Using Magnetic 

Resonance Phase" and presents experiment one in the form of a paper recently published 

in Magnetic Resonance in Medicine with the same title (McAuley et aI., 2010a). 

Experiment 2: Postmortem Rat Brain Chitosanllron Injection 

While experiment one involved iron samples assumed and carefully prepared to 

be spherical, experiment two investigated quantification of non-spherical sources. In 

addition, quantification was investigated in the real tissue of the rat brain. Ch-Fe was 

injected in perfused postmortem rat brains that were then scanned with an SWI protocol 

at 11.7T. Ch-Fe samples were modeled as scalene (triaxial) ellipsoids using ellipsoidal 

coordinates. Generalizations and analogs of r" are introduced and putatively related with 

the dipole-like phase images patterns associated with the Ch-Fe samples. Computer 

simulations were also performed as to check the validity of the method. Chapter three is 
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entitled "Quantification of Ellipsoidal Iron Sources in Postmortem Rat Brain Using Phase 

Images" and presents this experiment as a work in progress. 

Experiment 3: BMB Quantification in Postmortem Human CAA Brain 

[n this experiment a modified spherical method was applied to real BMB in 

postm011em tissue of AD/CAA patients. Tissue slices containing BMB were imaged 

using an SWI protocol at 11. 7T. BMB lesions were then assayed for iron content using 

atomic absorption spectrometry. We present a standardization curve where BMB iron 

content can tentatively be related to phase image parameters at least in tissue similar to 

our autopsy cases. In addition, we introduce a second method to estimate BMB source 

diameter based on image feature geometry alone (without explicit relation to the 

magnetic susceptibility of the source). Finally, we report iron mass estimates, as well as 

upper bound diameter and lower bound iron concentration estimates of the postmortem 

BMB. Chapter four is entitled "Iron Quantification of Microbleeds in Postmortem Brain" 

and presents this experiment in the form of a paper of the same title recently accepted for 

publication pending minor revisions in Magnetic Resonance in Medicine (revisions not 

included). 

Experiment 4: Collagenase Induced BMB in Living Rat Brain 

In experiment four we induce small hemorrhagic lesions in the living rat brain. In 

a simple but novel in vivo rodent BMB model, bleeds were induced by collagenase 

injection. Approximately a month after the surgical procedure, we scanned the animals 

before sacrifice at 4.7T using an SWI protocol, and assayed lesion iron content following 
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sacrifice using atomic absorption spectrometry. We used our modified spherical method 

to relate lesion iron content and phase image measurements, and tested the expected 

relationship using liner regression. While not as robust as in previous experiments, the 

results of this experiment demonstrate that a localized phase image model can potentially 

be used to estimate localized iron content in the living rodent brain. Chapter five is 

entitled "In Vivo Iron Quantification in Collagenase-Induced Microbleeds in Rat Brain" 

and presents this experiment as a manuscript in preparation to submit for publication. 

Finally, chapter six discusses the results, implications, limitations, and areas for 

future work of the four experiments, individually and collectively. 
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Abstract 

Iron-mediated tissue damage is present in cerebrovascular and neurodegenerative 

diseases and neurotrauma. Brain microbleeds (BMB) are often present in these maladies 

and are assuming increasing clinical importance. Because BMB present a source of 

pathologic iron to the brain, the non-invasive quantification of this iron pool is potentially 

valuable. Past efforts to quantifY brain iron have focused on content estimation within 

distributed brain regions. In addition, conventional approaches using 'magnitude' images 

have met significant limitations. In this study, a technique is presented to quantify the 

iron content of punctate samples using phase images. Sanlples are modeled as magnetic 

dipoles and phase shifts due to local dipole field perturbations are mathematically related 

to sample iron content and radius using easily recognized geometric features in phase 

images. Phantoms containing samples of a chitosan-ferric oxyhydroxide composite 

(which serves as a mimic for hemosiderin) were scanned with a susceptibility weighted 

imaging sequence at 11.7T. Plots relating sample iron content and radius to phase image 

features were compared to theoretical predictions. The primary result is the validation of 

the teclmique by the excellent agreement between theory and the iron content plot. This 

research is a potential first step toward quantification of punctate brain iron sources such 

as BMB. 

Keywords 

Iron quantification, phase images, susceptibility weighted imaging, brain 

microbleeds 
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Introduction 

Brain micro bleeds (BMB), detected as focal signal losses in gradient recalled 

echo (GRE) T2' MRI, are assuming an increasing clinical impOliance (Greenberg et a!., 

2009; Cordonnier et a!., 2007; Nighoghoss ian et a!., 2002; Tong et a!., 2003; Tong et a!., 

2004; Scheid et a!., 2003; Yakushiji et a!., 2008). Hemosiderin, the iron-protein complex 

associated with pathological iron storage fo llowing hemorrhage (Bizzi et a!., 1990), is 

visible in MR images due to its paramagnetic iron content and serves as a marker for 

BMB (Atlas et a!. , 1988; Viswanathan and Chabriat, 2006). BMB represent a potentially 

significant and previously underestimated source of pathologic brain iron, and iron­

mediated tissue damage is implicated in neurotrauma, cerebral vascular disease and a 

variety ofneurodegenerative maladies (Andersen, 2004; Bush, 2003; Gaasch et a!., 2007; 

Neema et aI., 2009; Vymazal et a!., 2007). Therefore, non-invasive MR quantification of 

iron is potentially valuable both as a marker of disease progression and for monitoring 

treatment efficacy (Haacke et a!., 2005; Schenck and Zimmerman, 2004). 

Susceptibil ity weighted imaging (SWI) is a GRE sequence that uses magnetic 

susceptibility-dependent complex phase information to provide or enhance image 

contrast (Haacke et a!., 2004; Reichenbach et aI. , 1997a). Recent studies have shown 

SWI to be 3 to 6 times more sensitive in BMB detection than conventional GRE T2' 

methods (Akter et a!. , 2007; Tong et a!., 2003). Theoretical considerations estimate SWI 

phase to be roughly 8 times more sensitive to iron content than conventional T2 methods 

(Haacke et aI. , 2007). In addition, compared to conventional magnitude techniques, high­

field (7.0T) high resolution GRE phase images have shown a nearly 10 fold increase in 

gray/white matter contrast to noise ratio and dramatic contrast heterogeneity attributed at 
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least in part to tissue iron stores (Duyn et a!., 2007). Previous attempts to relate phase 

differences to brain iron content compared average phase values with published iron 

concentrations of brain regions (Ogg et a!., 1999), or detennined baseline phase values of 

iron-rich brain regions (Haacke et a!., 2007). 

It is noteworthy that to date, efforts to detennine brain iron content have primarily 

involved brain regions (eg, anatomical structures) rather than punctate iron deposits (eg, 

BMB). In addition, the spatial extent of signal hypointensities in GRE images of a 

punctate susceptibility source is typically larger than its actual size and varies with scan 

parameters as well as source magnetization (Bos et a!., 2003; Pintaske et a!., 2006b). 

Because the true dimensions of the source cannot be reliably determined using signal size 

as a criterion in BMB quantification has been called in question (Greenberg et a!., 2009), 

and as expected, GRE signal void volume is unreliable for iron content determination 

(Dixon et a!., 2009). 

The purpose of this study was to investigate iron quantification of punctate iron 

sources using a phase technique. Iron-containing samples were modeled as magnetic 

dipoles. The easily recognizable image parameter r IT (the distance from the dipole center 

associated with a phase value equal to 1! (see below)) (Robson and Hall, 2005) was 

hypothesized to be mathematically related to iron content and sample radius. The 

technique was validated using phantoms constructed with a chitosan-ferric oxyhydroxide 

composite (a mimic for hemosiderin) (Sipos et a!., 2003). In this paper, phase images of 

the phantom samples were acquired using a SWI sequence at 11.7T. Plots relating 

sample iron content and actual diameter with the rn parameter were compared to 

theoretical predictions using linear regression analysis to test the hypothesis. 
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Materials and Methods 

Theoretical Background and Rationale 

MR voxels containing and surrounding paramagnetic ( or ferromagnetic) brain 

iro n deposits have an altered local field i1B, and thus an altered phase with respect to 

their neighbors. This phase diffe rence is detectible in ORE pulse sequences and 

described by the simple formula (for a right handed system): 

[I] 

where!1rp is the change in phase, y is the proton gyromagnetic ratio, and T E is the echo 

time (Haacke et aI. , 1999). Thus, the amount of iron in a voxel can potentially be related 

to the phase. If iron samples are treated as spherical magnetic dipoles under the 

assumptions that the magnetic susceptibility (xi) is constant throughout the sample, and 

the sample is immersed in a medium with a constant magnetic susceptibility (x,), the only 

non-negligible component of !1B is parallel to the main field Bo and for r > a given by: 

[(dx)(a)'( , I x'J ,jB'=3 -;: .kos-e - I ,+ 3' Bo (r>a) 

[2] 

Here !1x == (xi - Xc)« 1, a is the radius of the sample, e the angle with respect to 

the main field axis, r is the distance from the center of the sample to the point of interest 

P (Fig 2. 1 A), and xcl3 is the Lorentz sphere correction (Haacke et aI. , 1999). Further, if 

constant density p is assumed, the mass 111 of the sample can be expressed as: 

[3] 
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Figure 2.1: Iron-Containing Samples are Treated as Magnetic 
Dipoles. A) Cross-sectional schematic of a sample with radius a, 
density p, and magnetic susceptibility Xi , embedded in a medium wi th 
susceptibility Xc, and immersed in a magnetic field Bo. The 
azimuthally symmetric induced field (Eg. [2]) as well as the 
proportional phase (Eg. [1]) vary at point P with r and e. B) A 
simulated modulo-27r wrapped phase map of a slice containing the 
main-field axis. Red and blue bands represent phase values of n 
(maximum) and -n (minimum) respectively and thus the red-blue 
interfaces define 'phase wrappings'. A line through the center of the 
sample perpendicular to the main field axis (ie, e = n/2) is shown and 
labeled 1 8= '112 . C) Blue trace: a simulated phase profile along Ie = n12. 

Red trace: a modulo-2n phase wrapped profile. The circles highlight 
the coordinates where the traces intersect with a maximum phase value 
LJrpo=n (arrow). These points corresponds with the outermost red-blue 
interface along line l fienl2 of B and define r ff• D) Red trace of C is 
plotted alone. Lateral maximal peaks represent LJrpo=n for I' = 1'" 

medial maximal peaks define LJrpD=3n for I' = 3113
1',. B, C and D were 

generated from in-house MA TLAB code (The Math Works, Natick, 
MA). 
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Finally, for B= lr/2 and assuming for the moment Xc = 0, Eqs. [1], [2] and [3] 

imply that at a distance r > a from the dipole center along a line perpendicular (l(Frr/2) to 

its axis (Fig 2.IA & B), the phase change due to the dipole sample LitpD can be related to 

the mass of the sample InFe by the following formula: 

[4] 

A simulated phase profile along l (Frr/2 of a sample is shown in Fig 2.1 C (blue line) 

for a paramagnetic source (LlZ > 0). MR imaging systems typically display phase maps 

modulo 2lr over the interval (-lr, lr] as shown in Fig 2.IC (red line). A key observation 

(as seen in the figure) is that the maximum phase value where the two plots overlap is 

equal to lr. Ifwe let r,,(Robson and Hall, 2005) denote the value on the abscissa 

corresponding to LltpD = TC, then Eq. [4] becomes: 

( , ) 4rr- p 3 
117 = r 

F , }' d X BoTE IT 

(dX > O) 

[5] 

For given Bo and T E values, Eq. [5] reveals a strictly proportional relationship 

between the mass of iron and the cube of r ". The r" parameter is easily identified in 

modulo 2lr phase maps and their intensity profiles. Thus, Eq. [5] implies that such phase 

maps could be used to quantify the iron content of punctate iron samples treated as 

magnetic dipoles. 

Eq. [5] is however, an idealized case that involves changes in phase due only to 

the magnetic dipole source. A more complete description of the total phase of a voxel is 

given by: 
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[6] 

where rpT is the total phase of the voxel, rpo is a time independent constant possibly due to 

the conductivity and permittivity of the voxel (Haacke et aI., 1999) or scanner central 

frequency shift, rps is a background phase due to magnet or bulk geometry 

inhomogeneities, rpL is the Lorentz conection necessary when Xc of 0 (Haacke et aI., 1999) 

and ,drpo is the dipole phase change of interest. Therefore, in a real-world phase map, r ff 

is associated with rpI = 7r and Eq. [4] implies 7r must be replaced by 7r - (rpo + rps + rpL) in 

Eq. (5). Since rpo + rps + rpL is generally unknown (at least a priori) and varies with 

scanner, this substitution seems to spoil the promise of the quantification technique. 

However, phase contributions that are constant or vary over spatial scales that are long 

compared to local dipole field variations (e.g., magnet inhomogeneities) can potentially 

be removed from the phase map by homodyne high-pass filtering (Wang et aI., 2000). 

Therefore, under the assumption of complete background removal (ie, rpT = ,drpo), Eq. [5] 

can be applied to high-pass filtered modulo 27r phase maps of dipole sources and without 

the restriction of a vanishing Xc. 

Phase images and r" can also potentially be used to quantify the diameter of a 

spherical sample or the effective diameter of a point dipole. Substituting the expression 

I11Fc = pV (where Vis the volume of the sample) into Eq. [5] results in Eq. [7]: 

3rr 
( )

113 

( ,1X > O) 

[7] 

Eq. [7] can also potentially be used to estimate ,dX, from measurements of a and r ff' 
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Eq. [8] follows from Eq. [7] and reveals, for a given LIZ, an r,7 value measured at 

one field strength and echo time is easily converted to a value corresponding to another 

field strength and echo time: 

[8] 

Therefore, under the assumption that LIZ, or LlZI p does not significantly vary, Eqs. [5], [7] 

and [8] imply the r ff values from different scanners and at different echo times can be 

consistently compared to determine iron content or source diameter. 

Finally, the sensitivity of the method in n1Fc detennination (c5m Fe) can be estimated 

by considering uncertainty due to white noise in the phase images, expressed by Eq. [9] 

as: 

[9] 

where SNRMag is the SNR ofthe corresponding magnitude image, and a systematic error 

due to phase averaging over slices of finite thickness t, expressed by Eq. [10] as (see 

Appendix): 

[10] 

Eqs. [5] and [7] amount to mathematical hypotheses that predict proportional 

relationships between the dipole phase pattern parameter r, and sample iron mass and 

radius. Therefore, simple plots of these variables can be used to verifY the predictions of 

the hypotheses and thus validate the method (see Discussion). 
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MRPhantoms 

Hemosiderin, considered a breakdown product of the iron storage protein ferritin 

(Schenck and Zimmerman, 2004), is formed in lysosomes and is not commercially 

available. To mimic hemosiderin, we used a composite material consisting offerric-oxy­

hydroxide (FeOOH) nanospheres evenly distributed in chitosan (Ch-Fe) (Sipos et aI., 

2003). Chitosan (deacetylated chitin) is an exceptionally heat resistant polysaccharide. 

The 5-10 nm diameter nanospheres are sterically separated by the chitosan and very 

similar to the FeOOH core of ferritin, and the even distribution of iron is morphologically 

reminiscent of hemosiderin. Thus, the distribution ofFeOOH in an amorphous organic 

matrix imitates the in vivo pathologic deposition of iron following BMB. 

A Ch-Fe solution of known concentration was mixed with agarose powder 

(Sigma-Aldrich, St. Louis, MO) and the Ch-Fe-Agarose (Ch-Fe-Agr) combination (2% 

agarose) was heated in a water bath at 95° C for 20 min and then held at 95° C in a 

Thermomix (Eppendorf, Westbury, NY). Small volumes of the liquid Ch-Fe-Agr were 

pipetted into micro-centrifuge tubes (one sample per tube) containing a mixture of 

chlorofoml (CHCb) and soybean oil at room temperature and allowed to harden 

(Fig 2.2A). The hydrophobic oillCHCb mixture is both isodense and immiscible with the 

hydrophilic Ch-Fe-Agr. Both propel1ies contribute to the (non-trivial) task of spherical 

sample formation (Fig 2.2A inset, B): the former, because neutral buoyancy prevents 

flattening ofthe drop on the tube bottom, and the latter, because of the tendency to form a 

configuration of minimal surface contact (ie, a spherical shape), due to the hydrophobic 

effect. The agarose component ofthe Ch-Fe-Agr sample prevents the Ch-Fe material 

from dispersion into the surrounding medinm of the phantoms (Fig 2.2B). 
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Ch-Fe-Agr samples were finally embedded in a degassed 2% agarose gel. The 

embedding process consists of two stages: first agarose was poured and hardened into 

molds that leave narrow 'wells' in the agarose inside plastic tubes. Next, samples are 

placed in hot agarose (-85 C) added to the wells. The wells prevent the samples from 

dritiing in the surrounding hardening agarose liquid and thus serve to position the 

samples. The temperature ofthe agarose was chosen to be as hot as possible to minimize 

air bubble formation on the surface of the Ch-Fe-Agr samples (and the resulting air 

bubble artifact) but still be below the agarose melting temperature to preserve the shape 

and prevent sample dispersion. 

The iron concentration of the Ch-Fe-Agr mixture was detem1ined by graphite 

furnace atomic absorption spectrometry (Varian, Inc., Palo Alto, CA) to be 1520).lg/g, 

approximately 3 times that of whole blood (Helmer and Emerson, J 934) and 1.5 times 

that of red blood cells. Since iron is expected to concentrate following hemorrhage, this 

concentration is physiologically relevant. 
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b 

Figure 2.2: Ch-Fe-Agr Phautoms. A) Ch-Fe-Agr droplet 
suspended in a CHCI/ soybean oil mixture. The hydrophobic 
mixture is isodense and immiscible with the hydrophilic 
droplet resulting in spherically shaped samples (inset). 8) 
Embedded Ch-Fe-Agr samples retain their shapes and are 
discreetly confined in the phantom agarose gel medium. 
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Magnetic Resonance Imaging 

Phantoms were scanned in an II. 7T small vertical-bore MR scanner (Bruker 

Biospin, Billerica MA). The SWI parameters used were: TRITE: 60/5 ms, flip angle: 25°, 

matrix: 512 x 512 or 256 x 512, NEX: I, FOV: 2.7 cm, in-plane resolution 0.0527mm x 

0.0527mm or 0.106mm x 0.0527mm, and 32 slices of thickness 0.084 mm. Images 

were taken in the coronal plane parallel to the main magnet axis. 

Image and Data Processing 

To remove non-dipole phase contributions, raw phase images were high-pass 

filtered using a 32x32 frequency domain filter (SPIN software, MRI Institute, Detroit, 

MI) (Fig 2.3A-C) (Wang et a!., 2000). The filtering technique generally involves a 

tradeoff between removal of background components and preservation of the signal of 

interest. Therefore, the best practice is to choose the smallest possible filter size that 

adequately removes the background. Kernel sizes smaller than 32x32 (e.g., 8x8, 16x16) 

displayed significant background presence and effects in some ofthe phantoms images. 

Magnitude images were multiplied four times by a phase mask created from the high­

pass filtered images (Haacke et a!., 2004). Dipole symmetry in the resulting phase­

enhanced magnitude images can help indicate that the filtering process has adequately 

removed the generally heterogenous background phase (Fig 2.3D). 

Phase profiles were obtained along the minor axis of the Ch-Fe sample dipole 

patterns in the high-passed filtered phase images (Fig 2.3E, F) in the slice closest to the 

equatorial plane (see Appendix). The rn values were calculated by dividing the number 

of pixels between and including the end-pixels corresponding to the maximum wrapped 
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phase (n), by 2, and multiplying this value by the horizontal resolution (Fig 2.3F). 

Because the phase wrapping most likely occurs between the pixel prior to (where (.drpD 

mod 2lC) < lC), and the pixel after wrapping (where (.drpD mod 2lC) > lC), linear 

interpolation was used to obtain end-pixels of sub-voxellength. 

Sample Diameter Measurements 

After scanning, the Ch-Fe-Agr samples were removed from the phantoms and 

their diameters were measured using digital calipers (World Precession Instruments, 

Sarasota, FL) by an investigator blinded to sample mass and r;r values. 

Statistical and Sensitivity Analysis 

The predicted relationships between the mass of iron inFo, radius a, and r) of the 

phantom samples were tested by linear regression analysis using SigmaPlot version II 

(Systat Software, Inc., Chicago, IL). Plots of I11Fc vs. r) and a vs. r ff were constructed 

along with best-fit least squares regression lines. Statistical significance was considered 

at p < 0.05. Comparison of Eqs. [5], [9], and [10] reveals that 6111Fe can be determined by 

substitution of the iJ1Fe vs. r) regression line slope and scan parameters into Eqs. [9] and 

[10]. Accordingly, estimates of the sensitivity of the method (ie, estimated lower iron 

detection limit) were calculated. 

Results 

Two samples were removed from analysis because of I) a damaged sample and 2) 

probable mass measurement error and twelve phantoms (containing one sample each) 
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were analyzed. All Ch-Fe-Agr samples showed typical dipole patterns in magnitude, raw 

phase, high pass-filtered and phase-enhanced magnitude images (Fig 2.3A-D). The 

magnitude images displayed hypo intense regions in shapes and patterns consistent with 

reports of dipole artifacts in the literature: clover leaf shaped for medial, and tri-lobular 

for lateral slices parallel to the dipole axis (80S et a!., 2003; Kim et a!., 1993; Pintaske et 

a!., 2006b) (Fig 2.3A). Raw phase images displayed dipoles blended with background 

zebra stripe artifact (Haacke et a!., 1999), however, when the images were high-pass 

filtered they typically exhibited dipole patterns with clearly visible phase wraps 

surrounded by a largely homogenous background (Fig 2.3C). Phase profiles in the 

filtered phase images generally had' flat' left and right edges and were very similar in 

form to theoretical profiles (Figs 2.18, 2.3F). In addition, average intensity values 

measured in ROI centered at approximately - 3r n units along the minor axis from the 

dipole center were within one standard deviation of zero phase for ten separate phantoms. 

Iron mass, radii, rn, r,3 and rlmfe values for 12 Ch-Fe-Agr samples are shown in 

Table 2.1. Sample iron mass vs. rn3 is plotted in Fig 2.4A, and exhibits a strong linear 

relationship (R2 
= 0.972, p < 0.001) between variables with a slope of2810 !!g/cmJ (p < 

0.001). The y-intercept of the plot is -0.084 )lg, which is smaller than white noise levels 

for seven phantoms with the largest mass values (Samples 6 - 12, Table 2.1) and is not 

significantly different from zero (p = 0.874). Thus, the plot displays the proportional 

relationship between the variables predicted by Eq. [5]. 

A plot of sample radii vs. corresponding r n values similarly demonstrates a strong 

linear relationship between these variables (R2 = 0.970,p < 0.001) with a dimensionless 

slope of 0.837. They-intercept is -0.0137 cm, which narrowly misses statistical 
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significance (p = 0.06) (Fig 2.4B). Thus, the proportional relationship predicted by Eq. 

[7] is confirmed by our experimental results. Using the slope from Fig 2.4B and Eq. [7], 

LIZ for the Ch-Fe-Agr samples (with respect to water) is found to be 1.03 ppm, roughly 

20 times larger than the estimate of LIZ = 0.05ppm (with respect to CSF) given in (Duyn 

et aI., 2007) for gray matter susceptibility due to storage protein (territinlhemosiderin) 

iron. This order of magnitude difference suggests the Ch-Fe-Agr preparation reasonably 

mimics LIZ for pathological iron deposition. 

Mass sensitivities due to white noise (ompe). and finite slice phase averaging 

(5mre), corresponding to measured r ff values together with mass differences between 

successive phantom samples (L1m= 111n+I-111n) are also shown in Table 2.1. A close 

comparison between Table 2.1 and the mFe vs. r ff plot of Fig 2.4A reveals that point pairs 

with L1111 values as low as 0.3 .lg (points 2 and 3), less than I Ilg (points 1 and 2, 5 and 6, 

6 and 7, 11 and 12), and less than 2 Ilg (points 3 and 4, and 10 and 11) are clearly 

distinguished and appear correctly in the plot (i.e., lower iron content has the lower ,} 

value). In each of these cases, L1m is above the white noise level (elmFe). and averaging 

error (elmFe)t for each point in the point pair. Points 4 and 5, and 8 and 9 with larger L1m 

values and L1m > both (5m values are also correctly displayed. In contrast, point numbers 

9 and 10 have a L1111 value comparable with the white noise levels and less than the 

averaging error for each point (L1111 = 0.2 f-Lg, (6mFe).(point 9) = (omrc).(point 10) = 0.2 

.lg, (6111re)t(point 9) = 0.6 f-Lg, and (6111Fe)t(point 10) = 0.5 Ilg) and are not correctly 

displayed. In addition, points 7 and 8 overlap even though L1m equals 0.9 ~lg and is above 

the noise level. This is possibly attributable to the larger pixel width of point 7, and thus 

a larger uncertainty in r ff than the neighboring point 8 (Table 2.1). 
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Figure 2.3: Ch-Fe-Agr Phantom Images . A) Magnitude, B) raw phase, C) high 
pass- filtered and 0) phase-enhanced magnitude images of a phantom containing a 
Ch-Fe-Agr sample. The distinctive appearance of the samples is due to the well 
known dipole artifact where the sample behaves as magnetic dipole and perturbs the 
local field. E) Color mapped magnification of the dipole with a profile line drawn 
through it, and F) the wrapped phase profile of the dipole . rn values were determined 
from the two 'end-pixels' that correspond to the maximum phase values (shown in 
red) in the wrapped phase profile. r ff is approximately '/,(# of pixels between and 
including end-pixels)x(pixel resolution). However, because wrapping generally 
occurs between an end-pixel and the one medially adjacent, linear interpolation is 
used to obtain sub-voxellengths for the end pixels. This correction is applied to give 
r ,T' Note the similarities between the experimental dipole and phase profile in E and 
F, respectively compared with the theoretical dipole and profile in Fig 2.1 Band C. 
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Table 2.1: Phantom Sample Data - The table contains iron mass (mFc), radii (a), r ff, and 
r} data (plotted in Fig 2.4A & B) as well as t5mFc sensivity data for 12 Ch-Fe-Agr 
phantom samples. The sensitivity data for (t5mFe)~ and (t5mFe), is calculated according to 
Eqs. [9] and [10] respectively. However, since LlX is unknown, the first factor in the 
equations (471 pi yLlXBo T E) is replaced by the slope of the graph in Fig 2.4A (compare Eq. 
[5] with Eqs. [9] and [10]). mn+l-mn is the mass difference between successive sample 
data points. 

Sample m (flg) a (mm) r" (mm) r/ (mm·') amni !-mn (~g)* b(JmF'). (flg) '(JII1F,)' (flg) 

I I.O±OA OA2±0.04 0.75±0.12 OA±O.2 0.9±0.6 0.011 0.11 

2 1.9±OA 0.72±0.04 0.92"'0.10 0.S±0.3 0.3±0.6 0.02 0.2 

3 2.2±OA 0.69±0.04 1.0 I ±O.OS 1.0±0.3 1.6±0.6 0.04 0.2 

4 3.S±0.5 0.S4±0.04 1.07±0.OS 1.2±0.3 2.3±0.S 0.05 0.2 

5 6.1 ±0.7 0.S5±0.04 1.20±0.07 1.7±0.3 0.9± 1.0 O.OS 0.3 

6 7.0±0.7 0.97±0.04 1.37±0.06 2.6±0.4 0.9± 1.I 0.11 0.4 

7 7.9±0.S 1.06±0.04 I AS±O.OS 3.3±0.5 0.9± 1.2 0.11 0.4 

S S.S±0.9 I.OS±0.04 1.50±0.06 3.3±OA 4.S±1.5 0.14 0.4 

9 13.6± 1.3 1.30±0.04 1.75±0.05 5.3±0.5 0.2± I.S 0.2 0.6 

10 13. 7± 1.3 1.31±0.04 1.67±0.05 4.6±0.5 I.S± 1.9 0.2 0.5 

II 15.5±1.4 1.33±0.04 1.70±0.05 5.0±0.5 0.7±2.0 0.2 0.6 

12 16.2± 1.5 1.3S±0.04 I.SO±0.05 5.S±0.5 N/A 0.3 0.6 

amn-d - mn refers to the mass difference benveen successive sample data pomts (eg, the mass dIfference 
between phantom sample 2 and 3 is 0.3 fIg ~ (2.2 - 1.9) pg 
"(Jm F, ). FefeFs to uncertainty in II1F' due to white noise in phase measurements (Eq. (9)) 
C(Jm f'c){ refer to uncertainty in IJ1Fe due to averaging in a phase image slice of finite thickness t (Eq. (10». 
' Phantom samples scanned using a 512x256 matrix (all other phantom were scanned at 512x512). 
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Figure 2.4: Ch-Fe-Agr Phantom Data. A) The iron mass 
(mFc) of Ch-Fe-Agr samples is plotted against r/ The 
mathematical hypothesis behind the quantification method 
(Eq. [5]) predicts a proportional relationship between these 
variables. The strong linear relationship (R2 = 0.972, p < 
0.001) and vanishing y-intercept value (-0.084 ).lg, 
statistically indifferent from zero, p = 0.874) corroborates the 
hypothesis and validates our method for punctate iron 
quantification. The slope of the graph is 2810 ).lg/cm3 (p < 
0.001). 8) Ch-Fe-Agr samples were removed from the 
agarose medium of the phantoms and their diameters were 
measured with digital calipers. Sample radii, a, were plotted 
against corresponding r,T values. The plot shows a strong 
linear relationship between variables (R2 

= 0.970, p < 0.001) 
and a y-intercept statistically indifferent from zero (-0.0137 
cm, p = 0.06). A proportional relationship between variables 
is predicted by Eq. [7]. The dimensionless slope of the graph 
is 0.837,p < 0.001). 
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Discussion 

The purpose of the present study was to investigate iron quantification of punctate 

iron sources using phase images. The key observation of this paper is that geometric 

properties of magnetic dipole field patterns obtained from filtered MR phase images can 

be used to quantify iron content, diameter and susceptibility of punctate sources (Eqs. [5] 

and [7]). While to date, MR iron quantification approaches have used magnitude images 

and/or focused on regionally distributed iron, we propose a method using phase images 

and focusing on punctate iron sources. Phantoms constructed with a unique biologically 

relevant mimic of hemosiderin were used to validate the method. Our primary finding is 

the expected linear relationship between I11Fc and the cube of r ff. This relationship is 

predicted by Eq. [5] and thus demonstrates the validity of the proposed method and the 

underlying theOlY. Similarly, the linear relationship between the sample radius a and rff 

is predicted by Eq. [7] and this finding verifies that the r" parameter can effectively 

determine the radius of punctate magnetic dipole source. In addition, sample iron masses 

were resolved consistent with the sensitivities predicted by Eqs. [9] and [10]. 

The validated Eqs. [5] and [7] together with rffmeasurements, can be applied 

toward quantification in two ways: I) as calibration curves obtained fi-om samples of 

known mass (radii) that are then used to determine unknown masses (radii) of different 

samples of similar material, or 2) using known or measured p and/or LlX, mass and radii 

can be calculated directly from the equations. Moreover, approach I) can also be used to 

calculate p, X;, XC, LlX, or LlX/ p with appropriate knowledge of the other equation 

parameters. Finally, under the assumption(s) of constant LlX or LlX/ p, the r ff parameter 
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theoretically can be consistently compared between scatmers, field strengths and echo 

times (Eq. [8]). 

Because the presence of paramagnetic iron leads to local changes in magnetic 

susceptibility and spin dephasing, several investigators have sought to quantify or 

correlate brain iron using decreased T 2 relaxation times (or increased relaxation rate Rz = 

IIT2) (Bartzokis et aI., 1993; Haacke et aI., 2005; House et aI., 2007), GRE T2* methods 

(Gilissen et aI., 1999), T] /Tz ratio (lara et aI., 2006), Tz' (Gelman et aI., 1999; Ordidge et 

aI., 1994), and T 2 histogram methods (MacKay et aI., 2006). However, a fundamental 

weakness of these conventional magnitude methods is their dependence on complex 

relaxation mechanisms (e.g., spin-spin coupling) that possibly vary across tissue types, 

disease states, atld experimental parameters (Gossuin et aI., 2007; Jensen et aI., 2009). 

Phase however, is directly proportional to the susceptibility variations at1d does not 

depend on a particular coupling mechanism. Tissue phase differences are theoretically 

independent ofT] and Tz tissue parameters and RF phase (Haacke et aI., 2005). Thus, 

phase images are expected to be largely free from the influence of confounding tissue 

water and more consistent across tissue types and states than T I, T 2, T z * at1d T 2' 

approaches. In addition, unlike magnitude images that suffer signal loss when diffusion 

efJects are significant (ie, outside the static dephasing regime), bulk phase shifts due to 

internal or external time independent field inhomogeneities are unchanged by water 

diffusion. The relationship between susceptibility and phase has been exploited in 

several studies. Oxygen dependent susceptibility differences were used to separate 

arteries and veins (Wang et aI., 2000). Unwrapped phase maps have been used to obtain 

iron susceptibility measurements in gerbil cardiac tissue however, the calculation was 
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complicated by constant phase tenn (hyperfine contact shift) (Wang et a!., 2005). The 

high pass filtering used in the present study beneficially removes constant phase terms 

and the resulting complications of data analysis. Cheng et a!., used a more complicated 

summation of the complex MR signal (i.e., with respective real and imaginary magnitude 

and phase components) that uses most surrowlding pixel information to quantify the 

susceptibility of cylindrical phantoms (Cheng et a!., 2007). 

Several other authors have studied MR dipole propeliies (Bos et a!., 2003; Kim et 

a!., 1993; Pintaske et a!., 2006a, 2006b) including application to phase images (Dixon et 

a!., 2009; Mills et aI., 2008; Robson and Hall, 2005). The r R parameter was used to 

measure magnetic dipole moments of cylindrical phantoms but such measurements were 

found to be inaccurate for larger moments when compared to theoretical calculations. 

This could possibly be explained by inadequate background phase removal by the empty 

scanner subtraction technique employed (Robson and Hall, 2005). In our study, we used 

high-pass homodyne filtering to remove background phase effects, significantly higher 

resolution images, and a modified r R parameter with subpixel resolution and obtained 

consistent results. However, sample moments in our study are three orders of magnitude 

smaller than (Robson and Hall, 2005) so direct comparison may not be fully straight 

forward. Dixon et al. recently used the expected point dipole spatial phase distribution to 

estimate the known iron content of three injections of iron oxide particles into rat leg 

muscle. Better estimates from fitting phase difference images from dual echo GRE 

(where a significant portion of background phase is removed by the subtraction) were 

reported compared to single echo GRE phase images fits (without background phase 

removal and Lorentz correction) that yielded inaccurate estimates (Dixon et a!., 2009). 
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Mills et ai., found dipole pattern templates robust even in the presence of noise in 

identifYing dipole impressions in phantoms and magnetic particle labeled rat heart (Mills 

et aI., 2008). Similarly, because rIT is associated with the first phase wrap of the dipole 

pattern, it can be robustly distinguished in noisy phase profiles. The importance of 

modeling punctate sources as magnetic dipoles may increase with high field scanner 

adoption and resulting greater paramagnetic effects lead to enhanced dipole patterns. In 

addition, while dipole patterns have been considered (undesirable) artifacts, the 

quantification technique we describe can be facilitated by scan parameters that enhance 

rather than minimize dipole patterns. For example, longer echo times increase phase 

wrapping and thus aid in the determination of r ff values from low content iron deposits. 

However, loss of signal due to longer T E may need to be compensated for to achieve 

satisfactory results. 

The potential role of paramagnetic material as a biomarker or agent of disease 

makes its noninvasive quantification by MR potentially valuable. An important first 

question concerning the usefulness of the method is if the technique is sensitive enough 

to measure clinically or experimentally relevant iron levels and source sizes. A sphere of 

red blood cells of diameter Imm to 4mm and iron concentration of II OO)lg/g, contains 

approximately 0.6 to 37 )lg of iron. As iron is expected to concentrate following heme 

breakdown and hemosiderin formation, these estimates can be considered lower limits of 

iron mass in BMB with these diameters. For our phantom samples the largest (6111 ,,). and 

(6111,0), predicted by Eqs. (9) and (10) were 0.3 and 0.6 )lg, respectively. The method was 

able to resolve fairly consistently at the level of I - 2 )lg. Seven of the II pairs of 

successive points were resolved with best estimate mass differences less than 2 )lg, and 5 

40 



were resolved at less than 1 flg. Therefore, the quantification method is capable of iron 

mass resolution at levels relevant to BMB. The smallest phantom sample (Sample I, 

Table 2.1) had an r, value ofO.7Smm, conesponding to 7.1 interpolated pixels. A five 

pixel distance is probably a reasonable lower limit estimate for r, before the dipole 

pattern becomes indistinct due to pixilation. Writing rn = Ss, where s is the pixel width 

and using Eq [7], the ratio of minimum sample diameter (dm;n) to pixel width is given by 

equation 11: 

( )

1/3 

d ml" "" . :1000 IT 

s ydXBJ£ 
[11] 

Using the slope from Fig 2.4B and Eq. [7], Eq. [II] gives a ratio of 8.37 for the 

current experiment, corresponding to a dm;n of O.4Smm. Using f':..X = 2.Sppm, Bo = 7T, T E 

= 30ms, and s = 240flm gives a ratio of 4.1 and a dm;n of 0.98mm. Therefore, the method 

is applicable to source sizes relevant to BMB. Interestingly, sub-voxel (dm;n/s < I) iron 

source quantification using cunent technology is theoretically achievable for tissue f':..X -

300ppm (eg, due to biogenic magnetite) . Another possible application of the technique is 

to assess the location or viability of magnetically labeled cells clusters. Assuming 5 pg 

iron and magnetic moments of 4.9 x 10-13 A m2 per cell (Smirnov et ai., 2006), clusters of 

105 to 106 SPIO labeled cells with volumes 1 to 10 fll (Pintaske et ai., 2006b) contain 

O.S - S flg of iron and have susceptibilities slightly larger but of the same order of 

magnitude as our Ch-Fe-Agr samples. That the volumes, radii, and iron content of these 

clusters is comparable with at least the smallest of the samples and that r, can be used to 

measure radii unobscured by the blooming effect, shows the potential of application of 

the method to magnetically labeled cells. Finally, brain calcium deposits also cause 
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hypointensities of GRE images confounding the identification of BMB. However, since 

calcium is diamagnetic, dipole patterns in phase images are distinct from paramagnetic 

iron dipole patterns. Thus, phase images of dipole patterns could potentially be used to 

distinguish between punctate calcium and iron brain deposits (Yamada et aI., 1996) as 

well as quantify the content and effective radius of punctate calcium deposits. 

There are several limitations in this study and to our quantification method. I) 

Our approach assumes background phase has been reduced to negligible levels. 

Background phase removal is a fundamental problem in phase imaging and several 

approaches have been used including: estimating phase from modeled susceptibility 

sources (Neelavalli et aI., 2009), nWllerical smooth and tit techniques (Duyn et aI., 2007), 

simple subtraction (Cheng et aI., 2007), and homodyne high pass filtering (Wang et aI., 

2000). Since phase dipole patterns are the result of aliasing, all but the latter method 

necessitate an additional phase unwrapping step before background removal. In our 

phantoms, background phase levels were adequately removed and dipole phase 

frequencies were assumed greater than the removed background frequencies. Despite the 

filtering, a linear relationship as expected from Eq. [5] was still seen. 2) We have 

assumed spherical symmetry for dipole samples and have produced high quality Ch-Fe­

Agr spheres. This assumption allows iron content and sample radii to be determined 

from the three dimensional dipole pattern using only a one dimensional measurement 

along a single phase profile. The method is expected to breakdown for large deposits of 

irregular shape. However, for point dipoles in the far field the actual geometry of the 

susceptibility source in not important. For larger objects the suitability of the method 

could be assessed by the degree of dipole symmetry. 3) Because r" is determined from 
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only four points in the phase profile the method might be expected to be prone to noise. 

However, the fact that L1<PD increases rapidly near l'ff(as 1Ir3) above a flat background 

tends to reduce the effect of noise on l'ffmeasurements. 4) Eq. [11] reveals the smallest 

source object for which rff can be determined is limited by s, and that the ratio dmin/S is 

determined by I'1X, Bo, and TE. At high field (eg, 3T, 7T or 11.7T) and with a 

paramagnetic iron concentration on the order of mg/g tissue, dOli,,/s ratios from 4 to 9 are 

expected, depending on field strength and T E. However, with the availability of high 

resolution imaging (eg, pixel sizes ranging from 50 to 500um), minimum source 

diameters of 250um to 1.2mm are possible using typical parameters. 5) Finally, there are 

several important issues and challenges to be met when attempting to apply the method 

beyond phantom systems with idealized geometry and magnetic compartments. 

Application and validation of similar methods to real tissue will necessitate studies 

concerning the chemical, physical and magnetic properties and spatial features of relevant 

biomolecules and tissue types. In human tissues, it will be important to detennine and 

characterize susceptibilities, densities, and related properties of brain iron deposits and 

surrounding tissue, including hemosiderin and ferritin iron core components. Here, we 

have used carefully prepared samples of ferric oxyhydroxide and have assumed constant 

density and susceptibility. In real tissues, especially under pathologic conditions, these 

parameters can be expected to vary. For example, the particular nature of the 

complicated and potentially disease-variable iron deposit crystal structure and spin state 

will affect susceptibility and could complicate quantification. Whether these densities 

and susceptibilities of deposits vary with a narrow distribution and allow the application 
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of the linear Eqs. [5] and [7] in useful tolerances, is an important specific question that 

must be addressed. 

Our technique based on r;r is simple, does not require complex image sequences 

or processing techniques, and is shown here to be effective. Nevertheless, several 

improvements are possible and under investigation. Increases in method SNR could be 

achieved by fitting the phase profile instead of using only the wrapping points. This 

would require a phase unwrapping step that can be problematic because of typically noisy 

dipole centers. Rapid dephasing due to high susceptibility leads to substantial signal loss, 

especially if enhanced aliasing is required produce a dipole pattern (ie, low iron content 

sources). On the other hand, SNR gains are expected for higher phase values that 

increase as IIr ) toward the dipole center before signal loss dominates. Alternately and 

similarly, the method can be extended to use data from the second phase wrap (qJD=3 Jr, 

Fig 2. 1D) (enhanced by longer echo times) provided there is sufficient SNR available and 

if an interpolation can still adequately be made between the phase in adjacent pixels. 

Conclusion 

We investigated iron quantification punctate iron sources modeled as magnetic 

dipoles using a phase technique. Geometric properties of dipole field patterns (r,,) in SWI 

phase images were hypothesized to be mathematically related to sample iron content and 

radius. For a given magnetic source, the limit of the sensitivity of the technique is the in­

plane resolution and slice thickness of the image. The technique was explored using MR 

phantoms constructed with a unique ferric iron-containing composite material that serves 

as a biologically relevant mimic for hemosiderin. Our experimental results are in 
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excellent agreement with our theoretical predictions corroborating the hypotheses and 

validating the method. The present study is a first step toward the use of similar methods 

in experimental and clinical settings. The quantification and monitoring of iron content 

and source diameter of BMB and magnetically labeled cells are possible application areas 

of special interest. 

Appendix 

Eq. (5) implies the first order sensitivity of iron sample mass is related to 

measurement unce11ainty in rp (orp) and 1',(01',) and by the equations (A I) and (A2) 

respectively: 

[AI] 

[A2] 

Orp in phase images is related to the SNR of corresponding magnitude image 

(SNRMag) by the expression iJrp = IISNRMag (Haacke et aI., 1999), which upon 

substitution into Eq. [AI] results in Eq. [9]. An estimate ofiJl',due to phase averaging 

over a slice of thickness t can be calculated by integrating the complex phase over the 

slice according to Eq. [A3] (Fig 2.AI): 

a 
i·l) 1 f i TiCOS 1(\" d e =-- e ()( 

2 r< -a 
[A3] 
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Figure 2.Al: Uncertainty in r 71 (Jr,,) Due to Averaging 
Over Finite Slice Thickness. The figure depicts the 
position of a phase image slice (dotted rectangle) with 
respect to the dipole source (circle) and field pattern (not 
drawn to scale). The arc is a portion of the contour line 
L1<;?D = 7r of the field pattern within the plane perpendicular 
to the main field (Bo) axis and passing through the center of 
the source. Thus, the radius of curvature of the arc is r 71• 

Note that this plane is perpendicular to the coronal planes 
where the phase images were acquired. Thus the image 
slice contains the main field axis which projects 
perpendicularly outward from the page (vector tip of Bo, 
an·ow). The phase shift over the slice can be estimated 
from Eq. [A3), and used to estimate the resulting 6r71 (see 
text for details). 
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Under the assumption that tl2 is small compared to r ff, the fractional uncertainty r5rpl rp = 

r5rpl " '" tl(l2rff). Because rp - IIr3
, r5rpl rp '" 3r5rlr, and r5r ff '" t136. Combining this result 

with Eg. [A2] yields Eg. [10]. 

Acknowledgements 

The following contributions of time and expertise are gratefully acknowledged: 

Sam Barnes (technical discussions and suggestions), Elias Kim, Pedro Hayes, Yimin 

Shen (scarmer operation and technical assistance), Floyd Petersen, David Shavlik 

(statistics) and April Dickson, Cindy Dickson, and Jackie Knecht (administrative 

supp0!1), Zachary Taylor (laboratory assistance). 

47 



References 

Akter M, Hirai T, Hiai Y, Kitajima M, Komi M, Murakami R, Fukuoka H, Sasao A, Toya 
R, Haacke EM, Takahashi M, Hirano T, Kai Y, Morioka M, Hamasaki K, Kuratsu 
J-I, Yamashita Y. Detection of hemorrhagic hypointense foci in the brain on 
susceptibility-weighted imaging clinical and phantom studies. Academic 
Radiology 200714(9):1011-1019. 

Andersen JK. Iron dysregulation and Parkinson's disease. Journal of Alzheimer's Disease: 
JAD 2004 6(6 Suppl):S47-52. 

Atlas SW, Mark AS, Grossman Rl, Gomori JM. Intracranial hemorrhage: gradient-echo 
MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical 
applications. Radiology 1988 168(3):803-807. 

Bartzokis G, Aravagiri M, Oldendorf WH, Mintz J, Marder SR. Field dependent 
transverse relaxation rate increase may be a specific measure of tissue iron stores. 
Magn Reson Med 1993 29(4):459-464. 

Bizzi A, Brooks RA, Brunetti A, Hill JM, Alger JR, Miletich RS, Francavilla TL, Di 
Chiro G. Role of iron and ferritin in MR imaging of the brain: a study in primates 
at different field strengths. Radiology 1990 177(1 ):59-65. 

Bos C, Viergever MA, Bakker CJG. On the artifact ofa subvoxel susceptibility deviation 
in spoiled gradient-echo imaging. Magnetic Resonance in Medicine 2003 
50(2):400-404. 

Bush AI. The metallobiology of Alzheimer's disease. Trends Neurosci 2003 26(4):207-
214. 

Cheng Y-CN, Hsieh C-Y, Neelavalli J, Liu Q, Dawood MS, Haacke EM. A complex sum 
method of quantifying susceptibilities in cylindrical objects: the first step toward 
quantitative diagnosis of small objects in MR!. Magn Reson Imaging 2007 
25(8): I 171-1180. 

Cordonnier C, Salman RA-S, Wardlaw J. Spontaneous brain microbleeds: systematic 
review, subgroup analyses and standards for study design and reporting. Brain 
2007 l30(Pt 8): 1988-2003. 

Dixon WT, Blezek OJ, Lowery LA, Meyer DE, Kulkarni AM, Bales BC, Petko DL, Foo 
TK. Estimating amounts of iron oxide from gradient echo images. Magnetic 
Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in 
Medicine I Society of Magnetic Resonance in Medicine 2009 61(5):1132-1136. 

Duyn JH, Gelderen Pv, Li T-Q, Zwart JAd, Koretsky AP, Fukunaga M. High-field MR! 
of brain cortical substructure based on signal phase. Proc Nat! Acad Sci USA 
2007104(28):11796-11801. 

48 



Gaasch JA, Lockman PR, Geldenhuys WJ, Allen DD, Van der SchyfCJ. Brain iron 
toxicity: differential responses of astrocytes, neurons, and endothelial cells. 
Neurochemical Research 2007 32(7):1196-1208. 

Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, Knight RA. 
MR Imaging of Human Brain at 3.0 T: Preliminary Report on Transverse 
Relaxation Rates and Relation to Estimated Iron Content. Radiology 1999 
210(3):759-767. 

Gilissen EP, Jacobs RE, Allman JM. Magnetic resonance microscopy of iron in the basal 
forebrain cholinergic structures of the aged mouse lemur. Journal of the 
Neurological Sciences 1999 168(1):21-27. 

Gossuin Y, Gillis P, Muller RN, Hocq A. Relaxation by clustered ferritin: a model for 
ferritin-induced relaxation in vivo. NMR in Biomedicine 2007 20(8):749-756. 

Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, 
Warach S, Launer LJ, Van Buchem MA, Breteler MMB. Cerebralmicrobleeds: a 
guide to detection and interpretation. The Lancet Neurology 2009 8(2):165-174. 

Haacke EM, Ayaz M, Khan A, Manova ES, Krishnamurthy B, Gollapalli L, Ciulla C, 
Kim I, Petersen F, Kirsch W. Establishing a baseline phase behavior in magnetic 
resonance imaging to determine normal vs. abnormal iron content in the brain. J 
Magn Reson Imaging 2007 26(2):256-264. 

Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic Resonance Imaging, 
Physical Principles and Sequence Design: Wiley-Liss; 1999. 

Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, 
Kirsch W, Obenaus A. Imaging iron stores in the brain using magnetic resonance 
imaging. Magn Reson Imaging 2005 23(1): 1-25. 

Haacke EM, Xu Y, Cheng Y-CN, Reichenbach JrR. Susceptibility weighted imaging 
(SWI). Magn Reson Med 2004 52(3):612-618. 

Helmer 0, Emerson C. The iron content of whole blood in normal individuals. J BioI 
Chem 1934104:157-161. 

House MJ, Pierre TGS, Kowdley KV, Montine T, Connor J, Beard J, Berger J, Siddaiah 
N, Shankland E, Jin L-W. Correlation of proton transverse relaxation rates (R2) 
with iron concentrations in postmortem brain tissue from alzheimer's disease 
patients. Magn Reson Med 200757(1):172-180. 

Jara H, Sakai 0, Mankal P, Irving RP, Norbash AM. Multispectral quantitative magnetic 
resonance imaging of brain iron stores: a theoretical perspective. Top Magn 
ResonImaging200617(1):19-30. 

49 



Jensen JH, Szulc K, Hu C, Ramani A, Lu H, Xuan L, Falangola MF, Chandra R, Knopp 
EA, Schenck J, Zimmerman EA, Helpem JA. Magnetic field correlation as a 
measure of iron-generated magnetic field inhomogeneities in the brain. Magnetic 
Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in 
Medicine / Society of Magnetic Resonance in Medicine 200961(2):481-485. 

Kim JK, Kucharczyk W, Henkelman RM. Cavernous hemangiomas: dipolar 
susceptibility artifacts at MR imaging. Radiology 1993 187(3):735-741. 

MacKay A, null n, Vavasour I, Bjarnason T, Kolind S, Madler B. Insights into brain 
microstructure from the T2 distribution. Magn Reson Imaging 2006 
24(4):515-525. 

Mills PH, Wu Y -JL, Ho C, Ahrens ET. Sensitive and automated detection of iron-oxide­
labeled cells using phase image cross-correlation analysis. Magnetic Resonance 
Imaging 2008 26(5):618-628. 

Neelavalli J, Cheng Y-CN, Jiang J, Haacke EM. Removing background phase variations 
in susceptibility-weighted imaging using a fast, forward-field calculation. Journal 
of Magnetic Resonance Imaging: JMRI 2009 29(4):937-948. 

Neema M, Arora A, Healy BC, Guss ZD, Brass SD, Duan Y, Buckle GJ, Glanz BI, 
Stazzone L, Khoury SJ, Weiner HL, Guttmann CRG, Bakshi R. Deep gray matter 
involvement on brain MRl scans is associated with clinical progression in 
multiple sclerosis. Journal ofNeuroimaging: Official Journal of the American 
Society ofNeuroimaging 2009 19(1):3-8. 

Nighoghossian N, Hermier M, Adeleine P, Blanc-Lasserre K, Derex L, Honnorat J, 
Philippeau F, Dugor JF, Froment JC, Trouillas P. Old microbleeds are a potential 
risk factor for cerebral bleeding after ischemic stroke: a gradient-echo T2*­
weighted brain MRI study. Stroke; a Journal of Cerebral Circulation 2002 
33(3):735-742. 

Ogg RJ, Langston JW, Haacke EM, Steen RG, Taylor JS. The correlation between phase 
shifts in gradient-echo MR images and regional brain iron concentration. Magn 
ResonImaging 199917(8):1141-1148. 

Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. Assessment of relative brain 
iron concentrations using T2-weighted and T2*-weighted MRl at 3 Tesla. Magn 
Reson Med 199432(3):335-341. 

Pintaske J, Muller-Bieri B, Schick F. Effect of spatial distribution of magnetic dipoles on 
Lamor frequency distribution and MR Signal decay-a numerical approach under 
static dephasing conditions. MAGMA 2006a 19(1 ):46-53. 

50 



Pintaske J, Miiller-BierI B, Schick F. Geometry and extension of signal voids in MR 
images induced by aggregations of magnetically labelled cells. Phys Med BioI 
2006b 51(18):4707-4718. 

Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in 
the hwnan brain: MR venography with deoxyhemoglobin as an intrinsic contrast 
agent. Radiology 1997a 204(1):272-277. 

Robson P, Hall L. IdentifYing particles in industrial systems using MRI susceptibility 
artefacts. AIChE Journal 2005 51(6):1633-1640. 

Scheid R, Preul C, Gruber 0, Wiggins C, von Cramon DY. Diffuse axonal injury 
associated with chronic traumatic brain injury: evidence from T2*-weighted 
gradient-echo imaging at 3 T. AJNR American Journal ofNeuroradiology 2003 
24(6): 1 049-1 056. 

Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain iron: birth 
of a biomarker? NMR in biomedicine 2004 17(7):433-445. 

Sipos P, Berkesi 0, Tombacz E, Pierre TGS, Webb 1. Formation of spherical iron(III) 
oxyhydroxide nanoparticles sterically stabilized by chitosan in aqueous solutions. 
J Inorg Biochem 2003 95(1 ):55-63. 

Smirnov P, Gazeau F, Beloei! JC, Doan BT, Wilhelm C, Gillet B. Single-cell detection 
by gradient echo 9.4 T MRI: a parametric study. Contrast Media & Molecular 
Imaging 20061(4):165-174. 

Tong KA, Ashwal S, Holshouser BA, Nickerson JP, Wall CJ, Shutter LA, Osterdock RJ, 
Haacke EM, Kido D. Diffuse axonal injury in children: clinical correlation with 
hemorrhagic lesions. Ann Neurol2004 56(1):36-50. 

Tong KA, Ashwal S, Holshouser BA, Shutter LA, Herigault G, Haacke EM, Kido DK. 
Hemorrhagic shearing lesions in children and adolescents with posttraumatic 
diffuse axonal injury: improved detection and initial results. Radiology 2003 
227(2):332-339. 

Viswanathan A, Chabriat H. Cerebral microhemorrhage. Stroke; a Journal of Cerebral 
Circulation 200637(2):550-555. 

Vymazal J, Klempir J, Jech R, Zidovska J, Syka M, Ruzicka E, Roth 1. MR relaxometry 
in Huntington's disease: correlation between imaging, genetic and clinical 
parameters. Journal of the Neurological Sciences 2007 263(1-2):20-25. 

Wang Y, Yu Y, Li D, Bae KT, Brown JJ, Lin W, Haacke EM. Artery and vein separation 
using susceptibility-dependent phase in contrast-enhanced MRA. J Magn Reson 
Imaging 200012(5):661-670. 

51 



Wang ZJ, Lian L, Chen Q, Zhao H, Asakura T, Cohen AR. Irr2 and Magnetic 
Susceptibility Measurements in a Gerbil Cardiac Iron Overload Model. Radiology 
2005234(3):749-755. 

Yakushiji Y, Nishiyama M, Yakushiji S, Hirotsu T, Uchino A, Nakajima J, Eriguchi M, 
Nanri Y, Hara M, Horikawa E, Kuroda Y. Brain microbleeds and global cognitive 
function in adults without neurological disorder. Stroke; a loumal of Cerebral 
Circulation 200839(12):3323-3328. 

Yamada N, Imakita S, Sakuma T, Takamiya M. Intracranial calcification on gradient­
echo phase image: depiction of diamagnetic susceptibility. Radiology 1996 
198(1):171-178. 

52 



CHAPTER THREE 

QUANTIFICATION OF ELLIPSOIDAL IRON SOURCES IN 

POSTMORTEM RAT BRAIN USING PHASE IMAGES 

Introduction 

Iron-mediated tissue damage is implicated in neurotrauma, cerebral vascular 

disease and a variety of neurodegenerative maladies (Anderson 2004; Gaasch et a!., 2007; 

Neema et a!., 2009; Vymazal et a!., 2007; Smith et a!., 1997; Smith et a!., 2010). Brain 

microbleeds (BMB) are often present in these conditions and are assuming an increasing 

clinical importance (Cordonnier et a!., 2007; Greenberg et a!., 2009; Igase et a!., 2009; 

Fazekas et a!., 1999; Tong et a!., 2003; Cordonnier et a!., 2006; Kirsch et a!., 2009; 

Yakushiji et a!., 2008; Sveinbjomsdottir et a!., 2008). Pathologically, BMB have been 

shown to be associated with hemosiderin (Fazekas et a!., 1999, Tanaka et a!., 1999, 

Schrag et a!., 2010) the iron-protein complex associated with hemorrhage (Bizzi et a!., 

1990). Hemosiderin is visible in MR images due to its paramagnetic iron content and 

thus serves as a marker for BMB (Atlas et a!., 1988, Viswanathan and Chabriat, 2006). 

Because BMB present a source of pathologic iron to the brain, the non-invasive magnetic 

resonance quantification of this iron pool is potentially valuable to monitor both disease 

progression and treatment efficacy (Haacke et a!., 2005; Schenck and Zilmnerman, 

2004). Past efforts to quantifY brain iron have focused on content estimation within 

distributed brain regions (Haacke et a!., 2005, lara et a!., 2006, Bartzokis et a!., 2007, 
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Peran et a!., 2009, Gilissen et a!., 1999, Bartzokis et a!. , 1993, Schenck et a!., 2006, 

House et a!., 2007, Ordidge et a!. , 1994, Gelman et a!., 1999, Vymazal et al., 2007, 

Neema et a!., 2009, McNeill et a!. , 2008, Ogg et a!. , 1999, Haacke et a!. , 2007, Xu et a!., 

2008, Ding et a!., 2009, Kirsch et a!., 2010, Zhang et a!., 2009, Grabner et a!., 2010, Ge et 

a!., 2007, Pfefferbaum et a!., 2009, Hammond et a!., 2008, Haacke et a!., 2009, Eissa et 

a!., 2009, Szumowski et a!., 2010). BMB however represent a localized source of iron 

deposition. In addition, the use of "magnitude" images oflocalized iron sources is not 

reliable both for iron content (Dixon et a!., 2009) or source size determination (Pintaske 

et a!., 2006b, Bos et a!., 2003 , Schrag et a!., 2010). 

We recently proposed a simple method to quantifY localized iron sources using 

phase images. The method was validated using agarose gel phantoms containing 

carefully prepared spherical iron samples modeled as magnetic dipoles (McAuley et a!., 

2010a). For small deposits in the far field, the actual geometry of the susceptibility 

source in not significant. However, fo r measurements near larger deposits the shape of 

the source becomes more important. In the present study, we present a putative 

generalization of our localized quantification technique to account for non-spherical 

samples and assume scalene (i.e., triaxial) ellipsoidal geometry. In addition, beyond the 

idealized phantom systems of the previous study, here the localized iron samples are 

prepared in real animal tissue. Therefore, the purpose of this study is to investigate iron 

quantification oflocalized iron sources with ellipsoidal geometry using phase images of 

the postmortem rat brain. 
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Materials and Methods 

Theoretical Background and Rationale 

MR voxels containing and surrounding paramagnetic (or ferromagnelic) brain 

iron deposits have an altered local field t..B, and thus an altered phase with respect to 

their neighbors. This phase difference is detectible in GRE pulse sequences and 

described by the simple formula (for a right handed system): 

~ (I) =- }' ~ BT £ 

[IJ 

where t..<p is the change in phase, y is the proton gyromagnetic ratio , and T E is the echo 

time (Haacke et aI., 1999). In our previous paper we proposed a method that uses phase 

images to determine the iron content of localized samples treated as spherical magnetic 

dipoles. Here we generalize to ellipsoidal source geometry and formulate expressions for 

t..B and t..<p using confocal ellipsoidal coordinates. Similar to our previous report we 

assume the magnetic susceptibility is constant both internal (xi) and external (x,) to the 

iron sample and define LlX == (xi - Xe). Projections of schematic triaxial ellipsoidal sources 

and simulated modulo-21r dipole phase pattems (projected onlo the main field axis) into 

various coordinate planes are shown in Fig 3.1A, C, E, G, J, K, and 3.1B, 0, F, H, J, L, 

respectively. In our previous work, phase patterns were characterized by the single r ff 

parameter (McAuley et aI., 2010a, Robson and Hall, 2005). Here the ellipsoidal dipole 

phase pattern characterization is generalized to three analogous parameters: all> b ff, and Cff• 

As with r ff, these parameters are associated with ll-phase wraps and thus are easily 

identified or derived from modulo 21r phase maps. 
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Figure 3.1: Sim ulated Triaxial Ellipsoidal Sources and Dipole Patterns -
A, C, E, G, I, and K) Cross-sectional schematics of triaxial ellipsoidal samples 
with semi-axes a> b > C immersed in a magnetic field Bo that is either parallel 
(A, C, E) or perpendicular (G, I, K) to the major axis of the ellipsoid, Plane of 
projection is indicated by the axes in each panel. Samples have constant 
density p and magnetic susceptibility ;(;, and are embedded in a medium of 
constant susceptibility Xc- B, D, F, H, J, L) Plane projections of simulated 
modulo-2rr wrapped phase maps corresponding to the schematic samples in 
adjacent columns. Note the dipole patterns have triaxial asymmetry. Dipoles 
in panels B, D, Hand J are oriented parallel to (and contain) the main field, 
whereas those in F and L are oriented perpendicular to the main tield, and 
represent the induced tield projected along the main field axis. 
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Ellipsoidal Coordinates 

Eq. 2 is the generating equation for the ellipsoidal coordinates, where 

/.. = ~ = constant, /.. = !l = constant, and /.. = v = constant respectively represent families of 

ellipsoids, hyperboloids of one sheet, and hyperboloids of two sheets, provided 

= ar? _ba2 where ao > bo > Co are the semi-axes of a reference ellipsoid respectively 

oriented along the x, y and z axes. Thus, hand k are the focal lengths of the ellipses 

formed when the reference ellipsoid is projected onto the x-z and x-y planes respectively. 

These families of quadratic surfaces are orthogonal to each other and confocal with a 

reference ellipsoid. 

[2] 

The value of the variable ~ = ~o completely characterizes the ellipsoid with semi-major 

axis ~o, and can be thought of as the "ellipsoidal radius". It is seen from Eq. 2 that ~ = ao 

specifies the reference ellipsoid, and in the limit as ~ -> (/), ~ describes a sphere with 

radius ~ -> r. The relations between the Cartesian and ellipsoidal coordinates implicit in 

Eq. 2 are expressed in Eqs. 3 (Sten, 2006): 

[3] 
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Note that because each coordinate is squared in the relations ofEq. 3, there is an eight 

fold degeneracy when mapping (~,fl,v) to (x,y,z). 

The scale factors for the ellipsoidal coordinates are given in Eqs. 4 (Sten, 2006): 

[4] 

Maglletostlltic BOUl/dlllY Problem 

Similar to our previous report, we assume that all background phase components 

(e.g., magnet inhomogeneities and constant phase shifts) are completely removed and the 

only signal present in the phase images are perturbations due solely to the dipole source. 

To calculate the magnetic field peliurbation and proportional phase shift due to a 

paramagnetic source, application of Maxwell's equations leads to a boundary value 

problem involving Laplace's equation. The ellipsoidal harmonics are separable solutions 

to the Laplace equation in ellipsoidal coordinates (Sten, 2006). Our magnetostatic 

boundary problem is perfectly analogous to the problem of the dielectric ellipsoid in a 

uniform electrostatic field solved in ellipsoidal coordinates in section 3.2 of reference 

(Sten, 2006). Assuming an ellipsoidal source with isotropic magnetic susceptibility ""X 

placed in a uniform main field Bo, we consider two cases: I) Bo is parallel, or 2) 
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perpendicular to the direction vector (Ii) of the major diameter of the reference ellipsoid 

(Fig. 3.1). For definiteness, we take the axis of orientation for case 2 as the y-axis. (For 

completeness, a third case, formally similar to case 2, where Ii is directed along the z-axis 

should be considered. We do not treat this case here, and leave it for future work). In 

analogy with (Sten, 2006), the magnetostatic potential outside the source for cases I) and 

2) is given by Eqs. 5 and 6 respectively, where the integral expressions are defined by 

Eqs. 7 -10: 

xc 

l ;i ~ . x )= f 
I; 

du 

(u' - h' f" (u' - k 2 
)112 
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Here I1X is the di fference between the magnetic susceptibility of the iron samples and 

background tissue, and <l{j, bo and Co are the semi-axes of the ellipsoidal sample. Thus the 

product aoboco can be related to the iron mass of the sample Fe by equation II : 

III , 
.' [11] 

where p is the iron density of the sample, assumed constant. Taking the negative gradient 

of Eqs. 5 and 6, and using the scale factors of Eq. 4, the magnetic fields in the ellipsoidal 

system are given by Eqs. 12 and 13 for case i) and ii) respectively: 

f(BOP\')( 
\ khh, l -

f(BJ;\')( l leh"" 1 -

[12] 

[l3] 
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where 

[14] 

Phase Image Parameters 

Simulated modu10-2Jr ellipsoidal dipole phase patterns are shown in Fig 3.1 B, D, 

F, H, J, L (in house MATLAB code, The MathWorks, Natick, MA). The triaxial 

asymmetry evident in the figure underscore that at least three parameters from the dipole 

patterns are required to characterize the phase perturbations. Three easily identified and 

characterized points on two image orientations are shown for Case 1 in Fig 3.2A and B 

denoted A', Band C (note point C is common to both simulated images). The Jr-phase 

wrapping of the axial image of Fig 3.2B forms an ellipse due to the ellipsoidal symmetry 

of the source. However, the horizontal image of Fig 3.2A displays cylindrical symmetry 

due to the linear main field Bo. Analogous points are depicted for Case 2 in Fig 3.2C and 

D denoted B*, A, and C. 

Case 1 (Bo II a): 

Using Eqs. 1,3, 11 and 12, the phase at points A' (r/JA·) and B (¢B) can be 

expressed as: 

[15] 

[16] 
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Figure 3.2: Phase Pattern Measurement Points - Schematic cross sections 
of triaxial dipole phase patterns from two Cases: I) main field Bo parallel (A 
and B), and 2) perpendicular (C and D) to the major axis of the ellipsoid. A) 
Cross section of a horizontally oriented image (Case I). Point A' is the 
intersection of the main field axis with the first phase wrap. The distance 
from the origin to point A' is denoted a 'ff. The field perturbation at this point 
L\.B > 0, thus the phase is ~A'= -n in the right-handed system. Point C is 
identical to point C in panel B and described below. B) Cross section of an 
axially oriented image (Case I). The plane of this image is orthogonal to that 
of panel A. Points C and B occur at the intersections of the first phase wrap 
and the axes which respectively correspond to the smallest and second-to­
smallest semi-axes of the reference ellipsoid. The distance from the origin to 
points Band C is denoted b ff and C ff respectively. The field perturbations at 
these points is equal and negative (L\.B < 0), thus the phase is ~B = ~c = n. 
Panels C and D represent Case 2 and are analogous to panels A and B. C) 
Cross section of a horizontally oriented image (Case 2). Point B* is the 
intersection of the main field axis and the first phase wrap located at a 
distance b ff from the origin. L\.B > 0 and the phase at this point is ~B'= - n. 

Point C is identical to point C in panel D and described below. D) Cross 
section of axially oriented image (Case 2). Points A and C occur at the 
intersections of the first phase wrap and the axes which respectively 
conespond to the largest and smallest semi-axes of the reference ellipsoid. 
The distance from the origin to points A and C is denoted aff and Cff 

respectively. L\.B is equal at these points and negative, thus the phase is 
~A = ~c = n. Application of the triaxial quantification method requires the 
knowledge of aff' bffand Cff to evaluate the integrals ofEq. 7 and 8 (since hand 
k depend on these three parameters). The elliptical symmetry of the axial 
images allows direct measurement of two of these parameters: b ff and Cff for 
case I (panel B) and aff and Cff (panel D). However, the elliptic cylindrical 
symmetry of the horizontal images does not allow a direct measurement of the 
third parameter. However, aff for case I (b ff for case 2) can be calculated from 
Eq. 19 (Eqs. 20 and 24) using values of a 'ff. (b* ff) measured from the image 
(see Fig 3.3). 
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Note that the points A' and B fall on the first phase-wrap and therefore have respective 

corresponding phases ¢A' = nand ¢S = -n. There exist ellipsoids in the confocal system 

that contain these points and we denote their elliptical radii by a' ~ and a H respectively. 

Note that a' H is the distance from the origin to point A' and is easily measured in the 

fi gure, whereas a~ is as yet undetermined. Using Eq. 16, we arrive at the following 

expression for sample iron mass: 

(1 7] 

(here we have safely used the approximation 1 + Lc-X ;CO: I since 0 ~ L ~ 1 (Landau et aI., 

1984) and C-X is on the order of several tens of parts per million for brain iron (Duyn et 

a!., 2007)). Thus, Eq. 17 informs us that iron mass is proportional to the inverse of the 

integral ofEq. 7 where,; = aHis the elliptical radius of the ellipsoid defined by the n-

wrapping that occurs at points Band C. That is, the ellipsoid with semi-axes bffand C,y 

whose cross section in the y-z plane corresponds to the n-wrapping (Fig 3.2B). 

There are two apparent problems in determining the integral l(a ff:OO). First, in 

practice we do not know the actual dimensions of the iron source, therefore the reference 

ellipsoid with semi-axes ao, bo and Co can not be used to determine hand k. Second, 

while b,yand c~can be determined from the axial phase images (Fig 3.2B), aHcan not be 

directly determined from the horizontal images. To address the first problem we choose 

the ellipsoid defined by aH• bH, and C,Tas the reference ellipsoid. We assume this ellipsoid 

is confocal to the ellipsoid defined by the source dimensions, and thus /72 = a/ -b/ and 

K = a/ -c/ (note that the validity of this assumption has not yet been verified (discussed 
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further below)). Because the polarization factors of Eq. 9 and 10 are neglected and the 

product aoboco is absorbed in the iron mass expression ofEq. 11 , the analysis method is 

now independent of the source dimensions. As a solution to the second problem, we use 

the combined phase information at the points A' and B to detennine a". Taking the ratio 

ofEqs. 15 and 16 we find: 

1 1 1 1 , 7" 
1 10 : >.) - l ,a : 'l. ) = c., iCI I 

TT IT - IT 

[19] 

A simple numerical technique can then be used to determine the a" parameter implicitly 

defined by Eq. 19. 

Case 2 (Bo.L a): 

Similar to Case 1, the points A, B* and C (with corresponding a" , b* ", and c,,) in 

the schematic phase images of Fig 3.2C & D can be used to determined b". Eq.3 can be 

used to de tine the ellipsoidal radius a'" for the ellipsoid corresponding to b'" that is 

confocal to the reference ellipsoid ~ = a,7: 

[20] 

Analogous definitions of Eqs. 15, 16, 17, and 19 for case 2 become: 

[21] 

[22] 
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[23) 

[24a) 

12 (a : 7) ) - 1' l a ' :'1:;) = ( Ia ') 
ITt lIT -TT [24b) 

While Eq. 24a is derived analogously to Eq. 19, contrary to Eq. 19, Eq. 24a is not 

consistent with simulation data and arr values could not be determined. However, it was 

observed that a.T values could be calculated using a sign change according to Eq. 24b, and 

this data seemed to give reasonably accurate results compared to theoretical expectations 

(eg, linear curves). Additional simulations however showed unexpected results 

(discussed below). Therefore, explanations regarding the validity ofEq. 24b and/or other 

assumptions of our method, especially with regard to Case 2, are required before the 

triaxial technique can be validated. Possible sources of these discrepancies in under 

investigation and discussed below. In any case, for now, we assume that Eq. 24b is 

correct, use it in our analysis method below, and consider our results tentative. 

A critical facet of Eqs. 17 and 23 is that they share the same proportionality 

constant. Therefore, in theory plots ofmFc and both 1I/ 1•I(a,:"') and 1/II.2(a , :",) can be 

displayed on the same axes to build a standard curve. We will use the notation /(~ : CIJ) to 

refer to either integral as appropriate. In add ition, we also adopt the fo llowing 

generalized notation for the image parameters: a', == a ', or b * '" for the parameters along 

the main field axis; v, == a, or b, for parameters on the vertical axis of the axial images, 

and h,,== e" the parameter on the horizontal axis of the axial images. 
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In summary, application of the proposed quantification method for scalene 

ellipsoidal sources consists of the following requirements and steps: I) Eqs. 17 and 23 

describe the inversely proportional relationship between sample iron mass and the 

integrals of Eqs. 7 and 8 for the parallel (Case I) and transverse (Case 2) cases 

respectively. Therefore, evaluation of the integrals is required. 2) Integral evaluation 

requires the knowledge of the ellipsoidal radius a", as well as the ellipsoidal phase pattern 

semi-axes b.7 and c ". 3) For the parallel (transverse) case b" and c" (a" and c ,,) can be 

determined by the axial phase images (Fig 3.1 F, L, Fig 3.2B, D, Fig 3.4, H, J). However, 

a" (b ,,) must be determined indirectly from a '" (b * ,,) measured in the horizontal images 

(Fig 3.lD, J, Fig 3.2A, C, Fig 3.4D, I) using Eq. 19 (Eqs. 20 and 24b) for the parallel 

(transverse) case to numerically solve for a" (b,,). It should be noted that to date, these 

steps are tentatively defined and await further theoretical and experimental verification. 

In the special case of a sphere where h = k = 0 and a" = b" = C" = r ", the integral 

becomes 113 r ,,3 and Eqs. 17 and 23 both reduce to the same equation reported in our 

previous paper for spherical samples (Eq. 5 of (McAuley et aI., 2010a)): 

[25] 

Similar analogies with the equations and their implications of the previous paper 

(McAuley et aI., 2010a) can be deduced by substitution ofr/ with [31(a,,:O'J)r i and a3 

with aobocQ. In analogy to Eq. 7 of (McAuley et aI., 2010a) the combination ofEqs. II 

and 17 lead to: 

67 



[26] 

Eq. 26 reveals that the actual volume of an ellipsoidal source can potentially be 

determined from phase images unhindered by the familiar blooming effect of GRE 

magnitude images. Eq. 27 is analogous to Eq. 8 of (McAuley et aI. , 201 Oa) and for a 

given LIZ, describes the conversion of l(a,,: 00) between field strengths and echo times: 

l (o rr: x,), 

1 (0 : :0), rr _ 

Finally, for a spherical source, it follows from Eqs. 1,2 and 5 of reference 

(McAuley et aI., 201 Oa) that 

a' == a' = b* = 2'/3 r It ;r iT Jt 

Thus, replacement of III with a ',,3 in Eq. 25 amounts to an assumption of spherical 

geomet,y and ignores triaxial etIects. (The larger dynamic range of a'" in a pixilated 

environment confers an advantage over r,,). 

[27] 

[28] 

The rationale to validate the method of the present paper is similar to our previous 

work: Eqs. 17 and 23 amount to mathematical hypotheses that predict inversely 

proportional relationships between parallel or transverse integrals of the dipole phase 

pattem parameter a"and sample iron mass. Therefore, simple plots of these variables can 

be used to verify the predictions of the hypotheses and thus validate the method. In 

addition, comparison with plots using a 'H allow appraisal of the differential effects of 

triaxial versus spherical geometry. 
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Computer Simulations 

Dipole phase pattems due to triaxial iron sources were simulated using in house 

MATLAB code (The MathWorks, Natick, MA) using Egs. 1,3,4,7-10,12-14. Source 

semi-axes such that ao > bo> Co were chosen with the aid of a peudo-random number 

generator. Simulations were performed for each of two cases: Bo.L a (Case I) or Bo II a 

(Case 2) using the following parameters: Bo = 11.7T, 384x384 matrix, 0.086xO.086mm 

in-plane resolution, T E 20 ms, and L1X = 20ppm. The resulting simulated images were 

similar to Fig 3.IB, F, Hand L. Bounding rectangles were drawn around simulated 

horizontal and axial dipole cross sections in the same way as shown (for real data) in Fig 

3.41 and J (McAuley et a!., 2010b). The parameters aff, b,T' and cHwere determined as 

follows: Case I: a 'H, b" and Cn were measured from bounding rectangles, and an was 

calculated using Eg. 19. Case 2: aH, b'n, and cHwere measured from bounding 

rectangles, a', was calculated using Eg. 20, and bp was determined from Eg. 24b. Eg.7 

or 8 was then used to calculate [I./(a,:oo) or 1/.2(aH:oo) for Case I and Case 2, respectively. 

The source volume (4rr /3)aoboco for all simulations was plotted against [J(a H : oo)r'. In 

addition, (4n/3)aoboco was also plotted versus a 'H to compare with spherical geometric 

assumptions. An additional set of similar simulations was carried out using manually 

chosen dimensions to test how the triaxial method performed when samples had the same 

volume but different geometry (i.e., different semi-axes lengths). 

Iron Sample Preparation 

As described in our previous study, we used a chitosan-ferric oxyhydroxide 

composite material (Ch-Fe) to create iron samples of known concentration (McAuley et 

aI. , 20 lOa, Sipos et aI., 2003). The material serves as a mimic for hemosiderin (McAuley 
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et aI. , 2010a) which is formed in Iysosomes and is not commercially avai lable. 

Hemosiderin is the iron-protein complex associated with pathological iron storage 

following hemorrhage (Bizzi et aI. , 1990) and ferritin breakdown (Schenck and 

Zimmerman, 2004). It is visible in MR images due to its paramagnetic iron content and 

thus serves as a marker for BMB (Atlas et aI., 1988; Viswanathan and Chabriat, 2006). 

An aqueous solution ofCh-Fe was prepared and microliter volumes of the 

solution were injected into the rat brain as described below. The iron concentration of the 

Ch-Fe material was determined by graphite furnace atomic absorption spectrometry 

(Varian, Inc., Palo Alto, CAl therefore the injections contained a known amount of iron. 

Rat Brain Ch-Fe Injections 

Our animal protocol was approved by the Loma Linda University Institutional 

Animal Care and Use Committee. To remove the blood from cerebral vessels, 12 

Sprague-Dawley rats (225-400 g) were sacrificed by transcardial perfusion with PBS. 

The rats were decapitated, the skull uncovered, and the heads were placed in a stereotatic 

frame (KopfInstruments, Tujunga, CAl. A small burr hole (- 1 mm) was drilled into the 

skull 0.5mm anterior and 3.1mm lateral from bregma. Microliter quantities (0.5, 1.0, 

l.25, 1.5,2.0,2.5,3.0,3.5 and 4.0) ofCh-Fe solution of known iron concentration were 

injected 5.2mm below the skull surface using a Hamilton syringe (Reno, NV). Each 

sample was injected over 5 min controlled by a microsyringe pump (World Precision 

Instruments, Sarasota, FL). The chosen stereotactic coordinates target the 

caudate/putamen of the rat brain. To minimize, bleeding ofCh-Fe up the needle tract, 

following the injections, the needle was held in place for at least 10 minutes and then 

slowly withdrawn at approximately 0.5mm/min. Fourteen samples were injected into 12 
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rats (two rats received bilateral injections). Surrounding tissue was then removed and the 

skulls were fixed in 4% buffe red paraformaldehyde for at least 24 hours. Following 

fi xation, brains were removed from the skull and embedded in 2% degassed agarose gel 

within plastic scintillation tubes. 

Magnetic Resonance Imaging 

Susceptibility weighted imaging (SWI) is a ORE sequence that uses magnetic 

susceptibility-dependent complex phase information to provide or enhance image 

contrast (Haacke et aI., 2004; Reichenbach et aI., 1997a) and is very sensitive in BMB 

detection (Tong et aI., 2003; Akter et aI. , 2007). We used two SWI sequences for this 

study: a 3D SWI horizontal sequence, and a 2D axial sequence. The 2D sequence was 

used because of 3D axial scans had significant background phase apparently due to 

inadequate magnetic shimming. The 2D sequences did not have this problem and 

therefore were chosen in place of a 3D ax ial scan. 

The rat brains were scanned in an 11.7T small vertical-bore MR scaruler (Bruker 

Biospin, Billerica MA) using the following parameters: 1): 3D horizontal sequence: 

TRITE: 10017 ms, flip angle: 20°, matrix: 256 x 256, NEX: I , FOV: 2.2 em, in-plane 

resolution: 85.9 flm x 85 .9 flm, and 32 slices of thickness 688 flm. 2) a 2D SWI axial 

sequence: TRITE: 154.417 ms, flip angle: 20°, matrix: 256 x 256, NEX: 4, FOV: 2.2 cm, 

in-plane resolution: 85.9 flm x 85.9 ,1ITI slices: 10-40 of thickness 688 flm. 

Image and Data Processing 

As in our previous report (McAuley et aI. , 201Oa), raw phase images were high-

pass filtered (HP) using a frequency domain filter (SPIN software, MRl Institute, Detroit, 
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MI) (Wang et a!., 2000). 16x32 or 32x32 kernel sizes were empirically chosen for 30 

horizontal and 20 axial image respectively. These filter sizes typically resulted in 

isolated dipoles with good symmetry and little distortion. Magnitude images were 

multiplied four times by the product of a positive and a negative phase masks created 

from the HP images (Haacke et a!., 2004). 

The image parameters a 'rr, b", and eN, (Case 1), or b *" a" and c" (Case 2) were 

detelmined from the dimensions of rectangles bounding the Jr-phase wrap of dipole 

patterns in the filtered phase images using ImageJ software (ImageJ, NIH) (McAuley et 

al. ,2010b). The width and height of the rectangle in pixels was divided by two and 

multiplied by the appropriate pixe l dimension to give the lengths of the parameters (Fig 

3.41 and J). In house code (MATLAB, The Math Works, Natick, MA) was used to solve 

for aN (b ff) that is implicitly defined by Eg. 19 (Eg. 24b). The method is depicted 

graphically in Fig 3.3. A necessary, but not sufficient condition for a parallel orientation 

(ie, Case I) is: a ' ff Iv ff 2: 21/3 '" 1.26. Therefore, dipoles that do not meet this criterion are 

assumed to have a transverse geometlY (Case 2) and analyzed based on Eg. 24b. 

However, for dipoles that do meet this criterion, a transverse solution is still possible; 

therefore such dipoles are processed for both orientations. The ambiguity associated with 

thi s case is discussed below. 

Statistical and Sensitivity Analysis 

The predicted relationships between the mass of iron f11fe (injected Ch-Fe samples) and 

vo lume V = (4n:/3)aoboco (simulations) versus III were tested by linear regression analysis 

using SigmaPlot version II (Systat Software, Inc., Chicago, IL). Plots of f11Fe vs. III and 
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Vvs. III were constructed along with best-fit least squares regression lines. Statistical 

significance was considered at p < 0.05. Plots of mFe and V vs. a '/ and b*/ alone were 

also constructed so that the effects of source geometry can be compared (i.e., the 

generalized triaxial ellipsoidal geometry versus the special case of spherical symmetry). 
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Fig 3.3: I(a,,:ro)± I(a' ,,:ro) vs. ~((I,,) - A graphical illustration of the 
numerical method employed to find an (bn) from a 'n (b * ,,) measured in 
the horizontal images using Eq. 19 (Eqs. 20 and 24b). The method is 
applied to two Ch-Fe samples: sample 10 in (see Table 3.1) panel A, 
and sample 9 in panels Band C. A) Case I for sample 10: 
11.1 (a,,:ro) + hl(a 'n:ro), ((a ',,), and 111.1 (a,,:oo) + [1.1 (a '".:00) - ((a 'n)1 are 
plotted against the putative at" where b,,:O;at,,:O;a',f' The chosen an 
(0.98 em) is the point on the abscissa corresponding to the intersection 
of hl(a,,:oo) + 11,I(a ',,:00) and ((a 'n.) as well as the negligibly small 
value of 111.1(a,,:oo) + 11.1 (a '".:00) - ((a ',,)1. B) Case 1 for sample 9: 
hl(a,,:oo) + [1.1 (a ',,:00) and ((a ',,) do not cross in this plot. The 
apparent convergence (divergence) of these two curves as an 

approaches b" (a '".) from the right (left) is consistent with an an value 
< b" implying that the assumed orientation of the source to the field is 
not correct. In other words, the field is not parallel to the major ax is of 
the source but orthogonal to it. C) Case 2 for sample 9 assumes the 
transverse field orientation. The two curves 11.2(a,,:ro) - [ 1.2(a ',,:00) and 
((a',,) intersect, and 111,2(a,,: oo) - hl(a ',,:00) - ((a ',,)1 takes on a 
negligibly small value at when b If = bt" = 1.06 mm where c".:O; b t,, :o; a". 
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Fig 3.4: Postmortem Rat Brain Ch-Fe Injection Image Results A) Three 
dimensional (3~) reconstruction, B) magnitude, e) raw phase, and D) high pass­
filtered SWI horizontal images of a eh-Fe sample (sample 7 Table 3.1) in the 
caudate/putamen of postmortem rat brain. E) 3D reconstruction, F) magnitude, 0) 
raw phase, and H) high pass-filtered axial SWI images for the same eh-Fe sample 
and brain of panels A - D. The 3D reconstructions are based on Tl image data 
(not shown). Note the asymmetric shape of the sample and the elliptic cross 
sections F-H. Magnifications of the dipole patterns from panels 0 and Hare 
shown in I) and J) respectively. Note the similarity with the simulated dipoles of 
Fig 3.1. Also shown in panels I and J are the bounding rectangles used to 
measure the image parameters a ff, b m C ff, a '", b' ff. The rectangle in panel I is used 
to measure a 'fffor case I orientation, or b '" for case 2 orientation. The rectangle 
in panel J is used to measure b ff and C ff for case I orientation, or aff and C ff for case 
2 orientation. 
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Results 

Simulations 

Fig 3.5A shows a plot of source volume V = (4n/3)aoboco vs. [I(a H: co)r i for the 

simulation data. The graph displays a strong linear relationship (R2 
= 0.997, P < 0.001) 

with a non-significant y-intercept (-5 .88e-05
, p = 0.825). The observed proportional 

relationship is predicted by Eqs. 17 and 23, and would seem to provide verification of the 

ellipsoidal method and underlying theolY at least in idealized (simulated) dipole phase 

images. However, Fig 3.6 shows similar simulations of ellipsoidal sources of the same 

volume but with differing semi-ax is lengths. In Fig 3.6A, Case I points with volumes -

0.015 f.ll tightly overlap suggesting that the method adequately accounts for the differing 

geometry. However, in Case 2 (Fig 3.6B) points with this volume appear more spread 

out. The discrepancy between the cases raises the question of the validity of the Case 2 

application of the method in general and the role of the questionable Eq. 24b in specific 

(discussed below). In any case, at thi s point, conclusions about the validity of the 

ellipsoidal method based on Fig 3.6A remain tentative especially for Case 2 applications. 

Fig 3.5B, C and D show plots of Vvs. a '/, v/ and h/ respectively. The use of 

these single parameters can be interpreted as an assumption of spherical geometry. All 

three plots show strong linear relationships (R2 = 0.995, P < 0.001; R2 = 0.979, p < 0.001; 

R2 = 0.995, P < 0.001; for Vvs. a ',/, v}, respectively) and two show non-significant 

intercepts (-1.78e-04
, p = 0.598; -1.50e-04

, p = 0.833; for Vvs. a ,}, and V H
3

, respectively) 

as predicted by theory. The intercept of the Vvs. h/, although small is statistically 

significant under linear regression ana lysis (1.4 k03
, P < 0.001). It is surprising that 

al though some data points appear to be appropriated corrected by taking the ellipsoidal 

78 



geometry into account, overall the linear relationship is essentially the same under the 

relaxed assumptions. It appears that the details of the geometry are not that important in 

the present context. If the slope of Vvs. [1(0,,: oo)r l (Fig 3.5A) is taken as the ' true ' 

slope, the unit-less slopes of V vs. a'", v" and h ".are predicted by Eq s. 17, 23 and 25 to 

be 0.0161 (2.2 % error), 0.0321 (3.1 % elTor), and 0.0321 (0.94 % error), respectively. 

Because of the non zero intercept of the hj plot and the greater dynamic range of a '", it 

appears that a spherical assumption and the measurement of a '" may be sufficient to 

quantity iron in real BMB data, without extra assumptions and complications associated 

with a triaxial assessment. This is a very significant result. 

Rat Brain Injection Data 

Four Ch-Fe samples were not analyzed because of significant dissection of Ch-Fe 

solution out the caudate/putamen and 10 samples in 10 rat brains were analyzed. 

Magnitude, phase, and high-pass filtered phase images for Ch-Fe sample 7 are shown in 

Fig 3.4. Samples showed robust dipole patterns in the horizontal magnitude, raw phase, 

and high pass-filtered images (Fig 3.4B-D, I) (Bos et aI., 2003; Kim et a I. , 1993; Pintaske 

et aI. , 2006b). In addition, the expected equatorial dipole patterns in the axial images 

were also seen as concentric elliptical phase wraps in the filtered phase images (Fig 3.4F­

H, .f). High-pass filtered images of both orientations exhibited dipole patterns with 

clearly visible phase wraps surrounded by a largely homogenous background (Fig 3.4C, 

G, 1, .1). Three dimensional reconstructions based on T2 image data (not shown) of the 

same sample are shown in Fig 3.4A and E. The sample clearly has a complicated 
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Fig 3.5: Simulated Triaxial Ellipsoid and Spherical Quantification Methods -
The proposed triaxial ellipsoidal method, and for comparison, methods that assume 
spherical geometry were applied to simulated dipoles. Source volume (proportional 
to iron mass) is plotted against A) I(a",ooyi, B) a '), C) v), and 0) h/ The inversely 
proportional relationship seen in panel A is predicted by the equations underlying the 
triaxial method (Eqs. 17 and 23). However, the plots in panels B - 0 also show strong 
proportional relationships and suggest that the additional assumptions and complexity 
associated with the triaxial method may not offer significant advantages over the 
simple spherical teclmiques at least in the present context. 

80 



Simulation Data: Case 1 

0.025 
y::: O.0107x .. 9E-05 

R'=09997 
0.020 

/ 
~ 0.015 

• / E 
" ~ 0010 

/ 
0005 

0.000 
0.00 0.50 1.00 1.50 2.00 

1 / Iu(cmJ) 

Simulation Data: Case 2 

0.025 
y=OO105x+O.OOOS 

R' = 0.9892 
0020 

/ Z 
• 0.015 

/ E 
" ~ 0010 

/ 
0.005 

0000 
0.00 0.50 1.00 1.50 200 

1 / 111 lcm l) 

Figure 3.6: Simulation Data with Constant Volume/Differing 
Dimension Sources - As in Fig 3.5A the triaxial method was 
applied to simulated dipoles including samples that have the same 
volume but different dimensions (i.e., differing semi-axis lengths). 
A) Case 1, and 8) Case 2 application of the method. Note that in 
Case 1, points with volumes - 0.015 ~l tightly overlap suggesting 
that the method adequately accounts for the differing geometry. 
However, in Case 2, points with this volume appear more spread 
out suggesting an inferior separation of iron mass and geometry 
and raising questions about the soundness of Eq. 24b and the 
method in general, particularly when applied to Case 2. 
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asymmetrical shape. However, taken together horizontal and axial dipole patterns show a 

triaxial symmetry. In particular, the elliptic cross section seen in the axial image of Fig 

3.4H and J, recommend an ellipsoidal analysis approach. 

Iron mass, sample volume, a'N' aN, v..,., h..,., and omFe values for the 10 eh-Fe 

samples are shown in Table 3.1. Data for sample 7 is reported assuming both a parallel 

and transverse orientation. For this sample a' N/V"" = 1.29 implying that a case 1 (parallel) 

orientation was possible. However, this sample also had a case 2 (transverse) solution. 

T2 data for this sample (not shown) revealed that the transverse orientation was correct 

and the corresponding data is used in all future analysis. Sample iron mass vs. 111 is 

plotted in Fig 3.7A, and exhibits a strong linear relationship (R2 = 0.968, p < 0.001) 

between variables with a slope of699 fig/cm3 (p < 0.001) and vanishing y-intercept value 

(-1.24 fig , statistically indifferent from zero, p = 0.519). Thus, the plot displays the 

inversely proportional relationship by Eqs. 17 and 23. However, similar to the simulation 

data, the additional plots of iron mass plotted against a'':, v':, and h} (Fig 3.7B - D) are 

also strongly linear. In pmiicular, the plot in panel B shows that a '} predicts sample iron 

mass slightly better than does l(a'7,00)'1 (R2 = 0.979,p < 0.001) although the intercept of 

0.454 ,lg is statistically different from zero (p = 0.006). The methods depicted in the 

latter three plots ignore the triaxial asymmetry of the dipole phase patterns and therefore 

in essence are spherical methods. Thus, as anticipated from the simulation data, 

satisfactory quantification of localized iron sources appears possible using the simpler 0. '..,. 

standard curves at least in the present experimental context. 
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Table 3.1: Ch-Fe Injection Data: Iron mass and image parameter data for lOCh-Fe 
samples injected in the caudate/putamen of the postmortem rat brain. Eight of the ten 
samples are interpreted as ellipsoids with major semi-axes perpendicular to the main MRl 
field magnet (Case 2). Two samples (samples 711 and! 0) assume an orientation with the 
major semi-axis parallel to the field (Case I). Sample 7 is shown interpreted in both 
orientations. 

' Sample 7 interpreted with the major ellipsoidal axis parallel to 8 0 

bSample 7 interpreted with the major ellipsoidal axis perpendicular to 8 0 

' Samples 711 and 10 are calculated assuming the major ellipsoidal axis is parallel to 8 0 
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Fig 3.7: Triaxial Ellipsoidal and Spherical Methods - Postmortem Rat Ch-Fe 
Injection Data - The iron mass (mFe) of ten eh-Fe samples injected into the 
postmortem rat brain is plotted against A) J(aff,OOr i, B) a'}, C) v/, and D) h/ The 
strong linear relationship (R2 = 0.968, P < 0.001) and vanishing y-intercept (-1.24 flg, 
statistically indifferent from zero, p = 0.519) in panel A is predicted by Eqs. 17 and 
23. The slope of the graph is 699 flg/cm3 (p < 0.001). However, similar to the 
simulation data (Fig 3.5) the methods that assume spherical symmetry are also 
stronger linear. In particular, the plot in panel B shows that a' / predicts sample iron 
mass slightly better than does J(a;r,oor i (R2 = 0.979, p < 0.001) although the intercept 
of 0.454 flg is statistically different from zero (p = 0.006). 
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Discussion 

The purpose ofthe present study was to investigate iron quantification of 

localized iron sources of ellipsoidal geometry in animal tissue using phase images. Plots 

of measurements from real and simulated phase images of non-spherical localized iron 

deposits display the expected linear relationships necessary for validation of our triaxial 

method. However, the Case 2 application of the method to simulated ellipsoidal sources 

of constant volume but differing dimensions (Fig 3.5B) suggest that these plots are not 

sufficient to validate the method as it stands. However, Case 1 results do not appear to 

show weaknesses suggesting that certain features of the method are likely robust. Two 

areas that may explain the questionable data of Case 2 include Eq. 24b, and the 

assumption that h (k) is identical whether calculated from ao and bo (ao and co) or a, and 

bn (an and cn), respectively. 

A somewhat unexpected but highly significant finding was that in both the 

simulation and experimental data, strongly linear relationships were observed using the 

cube ofa single dipole phase image parameter (Fig 3.5B - 0 , 3.7B - 0). The single 

geometric parameter can be interpreted as an effective radius, therefore the single 

parameter methods are in essence spherical methods. The fact that a simple spherical 

method is effective in millimeter sized iron deposits has important implications for BMB 

quantification as discussed below. 

This experiment seeks to extend the application of localized phase methods 

beyond spherical sample geometry to ellipsoidal geometries. In addition, the triaxial 

method here is a general method that handles spherical (h = k = 0), prolate spheroidal (h 

= k # 0), and oblate spheroidal (h = 0, k # 0) as special cases. That the triaxial method is 
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applicable even beyond smooth scalene source geometry can be seen from Fig 3.4. The 

irregular geometry of Fig 3.4A and E becomes smoothed out to the clover leaf pattern in 

the horizontal images (Fig 3.4D, J) and the "concentric" ellipses in the axial image (Fig 

3.4H, J). While bulk non-spherical features may still be important at this level, much of 

the geometric details are apparently not. 

a~, b~, and c".represent a generalization from the r~ parameter of spherical or 

cylindrical sources (Robson and Hall, 2005, McAuley et aI. , 20 lOa) and like r".are easily 

and robustly identified in phase wrapped images because of their association with the 

prominent it-phase wrap. The general applicability to the above geometries and robust 

identification in noisy images suggest the triaxial ellipsoidal could potentially be used in 

automated detection (count) and quantification schemes. Such methods conld be 

designed as extensions to work similar to (Mills et aI., 2008) who nsed the dipole 

template to identify dipole impressions in phantoms and magnetic paJ1icle labeled rat 

heart (Mills et aI., 2008). Scaled dipole templates (ie, parameterize by a"., etc. ) could in 

principle be corre lated in ax ial and hori zontal images to provide information on source 

geomehy and iron content (however, see below for challenging limitations). 

BMB are associated with both chronic and emergency conditions of significant 

social and economic impact, especially in light of our aging population (discussed in 

McAuley et aI., 201 Ob). Because BMB present a source of pathologic iron to the brain 

proportional to extravasated blood, the quantified iron content of BMB is potentially a 

valuable biomarker for disease progression, treatment efficacy and ri sk factor assessment 

(Schenck & Zimmerman 2004, Haacke et aI. , 2005, Greenberg et aI. , 2009). Associations 

between BMB and di sease states aJ1d severity, as well as diagnostic guidelines have been 
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described by BMB count thresholds (Knudsen 2001, Soo et a!., 2008, Sanneke 2009, 

Kirsch et a!., 2010). Whether in single bleeds or in whole regions affected by 

microvascular disease, knowledge of lesion iron content as a continuous variable might 

enhance or hold advantage over interpretations based on discrete BMB number 

(McAuley et aI., 201 Ob). However, technical hurdles must be addressed before such iron 

data can be acquired on clinical sCaJmers (McAuley et aI., 2010b) and fUl1her studies 

needed to assess the benefits of such information in diagnostic and prognostic criteria and 

recommendations regarding treatment. Such issues are discussed in Chapter 4, 6 and 

(McAuley et aI., 201 Ob). 

The advantages of a phase image approach for quantification of iron compared to 

magnitude image was discussed in our previous paper (McAuley et aI., 201 Oa). In 

addition, most brain iron quantification efforts have involved brain regions (e.g., 

anatomic structures) whereas BMB are localized areas of iron deposition. In our previous 

work we introduced a phase image iron quantification method for localized iron sources 

in a phantom system (McAuley et a!. , 20 lOa). In the present work, we extend this 

beyond idealized spherical samples embedded in agarose gel, to asymmetric iron deposits 

in animal tissue (Fig 3.4). However, in addition we report here that an approach based on 

the single a'ff parameter appears to as effective as the more complex triaxial method in 

producing a standard curve of our simulation and experimental. Therefore, it appears that 

under our experimental conditions a far field effect renders the magnitude of 

susceptibility (iron in our case) more imp0l1ant than the geometric details. Tllis 

observation has very important and practical implications for BMB iron quantification 
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because the assumption of a spherically symmetric source greatly simplifies the 

quantification and clinical practicality. 

In many or even most BMB, the actual geometry can probably be ignored because 

of far field effects. Indeed, this may be reflected in the definition ofBMB as "round' 

hypo intense ORE T2* (magnitude) image features by recently proposed BMB rating scale 

(Gregoire et aI., 2009). However, other recommendations allow for "ovoid" 

hypointensities (Greenburg et aI., 2009) and the spherical geometry assumption may not 

be globally applicable. In the present context, far field means that e.g. V ff is large enough 

that the iron source can be treated as a sphere. Because a 'n> v.T> h.Tmeasurements at a 'ff 

are further from the dipole center and less affected by non-spherical effects than 

measurements at V ff or h ff. In addition, the larger distances mean a greater dynamic range, 

advantageous in a pixilated environment. Consistent with these two facts, the plots of 

(!. '/ generally give slightly better results than v/ and h,,3 (Fig 3.5 B - D, Fig 3.7 B - D) 

even though use of (!. '", V ff, and hffalone all essentially represent spherical methods. Thus, 

the a 'ff parameter appears a promising alternative to the triaxial method for several 

reasons: no assumptions or knowledge of orientation is necessary, a single orientation 

and thus a only single MR acquisition in needed, issues of filter compatibility does not 

arise, and automated count and quantifY schemes are much more feasible. 

There are several limitations to our triaxial method and its applicability to real 

BMB quantification. 

First of all, the validity of both Eq. 24 and the assumption that image 

measurement points (B and C in Case 1, and A and C in Case 2 (see Fig 3.2» lie on the 

same confocal ellipse (the confocal assumption) remain to be validated. Eqs. 1,3, 11 , 
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and 13 when applied at the points B*, A and C of Fig 3.2C and D, lead to Eq. 24a and not 

24b. However, Eq. 24a appears to be inconsistent with simulation data. In particular, the 

sum of the integrals on the left hand side is greater than the tem1 on the right hand side of 

the equation. In contrast, Eq.24b, which contains an as of yet unexplained minus sign, 

seemed at first to give good results in our simulations (Fig 3.5A). However further 

simulations revealed that at least for Case 2, the sample volume (and thus iron mass) 

depends on the geometry of the source (Fig 3.6B). The discrepant results regarding the 

application ofEq. 24b suggest that i) Eq. 24b is after all incolTect, and/or ii) other aspects 

of the triaxial method (particularly Case 2) are somehow flawed. It is also possible that a 

similar mass dependence on source dimensions would be discovered for Case 1 if 

simulated sources had the "right" geometric properties (i.e., ratios of semi-axes). 

Therefore, what is most needed is fUl1her understanding of the mathematical theory 

underlying the method. 

Determining the COtTectness of the sign in Eq. 24b would be an essential step in 

this understanding. One possible explanation for the necessity of its presence instead of 

the predicted opposite sign (i.e. , Eq. 24a) is that the relationship between the orientations 

of the ellipsoids and Bo for Cases 1 and 2 is not accounted for in Eq. 24a. Unlike, say a 

spherical system, the ellipsoidal system is directionally dependent (George Dassios, 

personal communication) and our formulation assumed that the major axis of the 

ellipsoid was orientated along the x-axis. Therefore, for the parallel case of Case 1 Bo 

was also oriented along the x-axis. However, for Case 2, Bo was along the y-axis. Thus, 

while the ellipsoids are related by a 900 rotation, Bo is related by a rotation and a 

reflection, the implications of which merit further study. 
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Besides Eq. 24, an important candidate for a flaw in our method is the 

unconfirn1ed confocal assumption stated above. A stronger statement, of which the 

above statement is a corollary, is that in the dipole pattern equatorial planes (Fig 3.2B and 

D) the constant magnetic field contour lines are confocal with the source reference 

ellipsoid. From considerations of symmetry and the nature of the dipole field 

perturbations, the phase contour lines in the dipole equatorial plane are expected to 

appear as "concentric" ellipses that decrease in eccentricity (i.e. , become more circular) 

further from the origin. Qualitatively, our images seem to meet this expectation, but a 

quantitative confirmation is needed. In addition, the dipole patterns actually represent the 

projection of the field perturbation onto the Bo direction, and the implications of this 

should be understood. Key to the usefulness of the method is the assumption that phase 

contour lines can be used to infer properties (i.e., hand k) of a susceptibility source of 

unknown volume. If the confocal assumption is not at least approximately correct, then 

the triaxial method is indeed flawed, and the usefulness of the method as it stands is 

uncertain. Therefore, a solid theoretical basis to answer these questions is of paramount 

importance. 

Secondly, the method assumes either a parallel or transverse iron source/main 

field orientation but not oblique orientations. Generalization of the method at the 

expense of additional complexity can be done. However, in practice one could rarely, if 

at all , detern1ine the exact orientation of a real BMB. Further, Olihogonal projections of 

obliquely oriented dipoles may be hard to detect in an automated count and quantifY 

scheme as proposed above, significantly challenging a non-an1biguous scheme. On the 

other hand, our method may find applications in other problem domains (i.e., outside of 
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BMB quantification). For small structures where geometric details are less important, 

assuming that only the principle component of the iron source is transversely or 

orthogonally oriented may give satisfactory results. An approximate principle direction 

may even be known ahead of time. In any case, under the non-oblique assumption, the 

parallel orientation can be excluded under the condition that a ·ff /v,, < 2113 In our 

injection data, the parallel case was excluded for 8 of 1 0 samples. 

Thirdly, because the negation of this condition is necessary but not sufficient for a 

parallel orientation, our method can give ambiguous results as the entries for sample 711 

and 7.L in Table 3.1 indicate. In the current study we used the additional infonnation of a 

T2 scan (data not shown) to overcome the ill-posed problem of orientation. In practice 

such information will not generally be available and best practice may be to average the 

results from the different orientations and/or report the results as a range. This problem 

only increases if the second transverse case (i.e., ellipsoid directed along the z-axis) (not 

developed in the present study) is entered into the analysis. 

Fourthly, since the method requires that aff, bff, and eN be determined, two 

orientations and thus two scans are required, increasing imaging time. However, multiple 

scans are usually acquired in clinical situations, and the addition or substitution of a 

single scan may not be a significant limitation. 

Finally, as in our previous study, our approach assumes background phase has 

been reduced to negligible levels and this is attempted using high-pass filtering (McAuley 

et a!., 2010a, Wang et a!., 2000). Background phase removal is a fundamental problem in 

phase imaging and several approaches have been attempted (Neelavalli et a!., 2009, Duyn 

et a!., 2007, Cheng et a!., 2007, Wang et a!., 2000). For homodyne filtering, the choice of 
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filter size is often chosen empirically (Szumowski et aI., 2010, McAuley et a!., 201 Oa). 

The 32x32 filtering we used in our previous study resulted in slightly blunting the phase 

dipole pattern in horizontal images resulting in smaller a' K and b * ff measurements. 

Therefore, we employed a 16x32 filter for the horizontal images. The 2D axial scans 

however, required a 32x32 filter to yield non-distorted dipoles. The significance of the 

differing filter sizes as well as the effects of filtering in localized dipole sources in 

general are areas where future research is needed. In any case, the linear relationships 

predicted by Eqs. 17,23,25 and 30 were observed in our experimental data. 

Conclusion 

In summary, we have proposed a method to quantify localized iron sources of 

triaxial ellipsoidal geometry using an ellipsoidal harmonic mathematical framework that 

attempts to relate easily identified image features with source iron mass. Experimental 

and simulated results show necessary agreement with some aspects of the underlying 

theory of the method (e.g., linear relationships). However, questions and discrepancies 

regarding simulations and other aspects of theory do not allow validation of the method 

as it stands. The method does not seem to display weakness in Case 1 but only Case 2 

application however, and investigation into the source of the observed discrepancies is 

ongoing. However, in both the experimental and simulation data the use of the a 'ff 

parameter with implicit spherical geometric assumptions provided quite adequate results. 

This is significant for application of a localized quantification method to BMB iron 

content where the complexity of the triaxial may be less practical. The use of a ' K seems 

to broaden the possibility of using iron content to provide diagnostic criteria and inform 
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critical treatment decisions such as bleeding risk of anti thrombotic agents in the presence 

ofBMB. Finally, the triaxial method might find application in other areas of medical 

MR research as well as in industrial applications (Robson and Hall, 2005), materials 

susceptibility, and MR compatible materials. 
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Abstract 

Brain microbleeds (BMB) are associated with chronic and acute cerebrovascular 

disease and present a source of pathologic iron to the brain proportional to extravasated 

blood. Therefore, BMB iron content is potentially a valuable biomarker. We tested non­

invasive phase image methods to quantify iron content and estimate true source diameter 

(i.e., unobscured by the blooming effect) of BMB in postmortem human tissue. Tissue 

slices containing BMB were imaged using a susceptibility weighted imaging protocol at 

Il.7T. BMB lesions were assayed for iron content using atomic absorption spectrometry. 

Measurements of geometric features in phase images were related to lesion iron content 

and source diameter using a mathematical model. BMB diameter was estimated by 

image feature geometry alone without explicit relation to the magnetic susceptibility. A 

strong linear relationship (R2=0.984, p<O.OOI) predicted by theory was observed in the 

experimental data, presenting a tentative standardization curve where BMB iron content 

in similar tissues could be calculated. In addition, we report BMB iron mass 

measurements, as well as upper bound diameter and lower bound iron concentration 

estimates. Our methods potentially allows the calculation of brain iron load indices based 

on BMB iron content and classification ofBMB by size unobscured by the blooming 

effect. 

Keywords 

Iron quantification, brain micro bleeds, blooming effect, phase images, 

susceptibility weighted imaging, Alzheimer's disease, cerebral amyloid angiopathy, 

postmortem human tissue 
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Introduction 

Brain microbleeds (BMB) are associated with ischemic stroke, silent lacunar 

infarcts, non-traumatic intracerebral hemorrhage (ICH), cerebral amyloid angiopathy 

(CAA), neurotrauma, Alzheimer's disease (AD), vascular dementia, cognitive decline, 

hypertension and age (Cordonnier et aI., 2007; Greenberg et aI., 2009; Igase et aI., 2009; 

Fazekas et aI., 1999; Tong et aI., 2003; Cordonnier et aI., 2006; Kirsch et aI., 2009; 

Yakushiji et aI., 2008; Sveinbjornsdottir et aI., 2008). The presence ofBMB in ischemic 

stroke, ICH and CAA is associated with future hemorrhage, (Greenberg et aI. , 2009; Soo 

et aI. , 2008; Greenberg et aI. , 2004) but whether it confers risk for first ever stroke has 

not been determined (Greenberg et aI. , 2009; Cordonnier et aI., 2007). Risk of bleeding 

associated with thrombolytic and tlu·ombolic agents is a controversial open question of 

considerable importance (Greenberg et aI., 2009; Greenberg et aI., 2004; Vernooij et aI., 

2009; Lee et aI., 2009). Thus, the presence of BMB is related to both chronic and acute 

illness of significant social and economic impact in our aging population. 

BMB are detected as focal signal losses in gradient recalled echo (GRE) T2* 

magnetic resonance (MR) imaging and have been histopathologically related mainly to 

hemosiderin (Fazekas et aI. , 1999; Schrag et aI., 2010). Hemosiderin, the iron-protein 

complex associated with pathologic iron storage following hemorrhage (Bizzi et aI., 

1990), is visible in MR images due to it paramagnetic iron content and serves as a marker 

for BMB (Atlas et aI. , 1988). Iron-mediated tissue damage has been implicated in 

neurotrauma, cerebral vascular di sease and a variety of neurodegenerative maladies 

(Vymazal et aI. , 2007; Gaasch et aI., 2007; Neema et aI., 2009). Because BMB present a 

source of pathologic iron to the brain proportional to extravasated blood, quantification of 
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iron content within a BMB is potentially a valuable biomarker for disease progression, 

treatment efficacy and ri sk factor assessment (Greenberg et a!., 2009; Haacke et a!. , 

2005). 

Past efforts to quantify brain iron have focused on content estimation within 

distributed brain regions (Kirsch et a!., 2009; Vymazal et a!., 2007; Neema et a!., 2009; 

Haacke et a!., 2005; Szumowski et a!., 2010; Haacke et a!., 2007; Xu et a!., 2008; Zhang 

et a!., 2009). However, BMB represent a localized source of iron deposition. In addition, 

conventional "magnitude" MR images have signiticant limitations especially for 

localized iron quantification (Dixon et a!., 2009; McAuley et a!., 20 lOa). Moreover, due 

to susceptibility effects, the hypointensities in magnitude GRE T2* images associated 

with BMB typically appear larger than the actual tissue lesion. Thus, this well known 

"blooming effect" generally obscures the true dimensions of an iron susceptibility source 

(Schrag et a!., 2010; Pintaske et a!. , 2006b). Finally, susceptibility-weighted imaging 

(SWI) is a GRE sequence that uses magnetic susceptibility-dependent phase information 

to provide or enhance image contrast (Reichenbach et a!., 1997a; Haacke et a!., 2004). 

S WI has been shown to be more sensitive in BMB detection compared to more 

conventional GRE sequences (Tong et a!., 2003; Akter et a!., 2007). 

We recently proposed a method to noninvasively quantify localized iron sources 

using SWl phase images. This method was validated using a model phantom system 

containing samples of ferric oxy-hydroxide (McAuley et a!., 20 lOa). The purpose of the 

present research was to test the use of a similar method to quantify iron content and 

estimate hue source diameter (i.e., unobscured by the blooming effect) in actual BMB 

from postmortem human tissue. In addition, unlike our previous rep0l1, source cliameter 
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was estimated by image feature geometry alone, without explicit relation to the magnetic 

susceptibility of the iron source. Finally, we report iron mass values (based on sensitive 

tissue measurements), as well as diameter and iron concentration estimates (based on 

phase image measurements) for real BMB in postmortem AD/CAA brain. Iron content 

and concentration of BMB have been heretofore absent in the literature. 

Materials and Methods 

Theoretical Background and Rationale 

MR voxels containing and surrounding paramagnetic (or felTomagnetic) brain 

iron deposits have an altered local magnetic field I'-B, and thus an altered magnetization 

phase with respect to their neighbors. This phase difference is detectible in ORE pulse 

sequences and is described by the formula (for a right handed system): 

(I] 

where I'-cp is the change in phase, y is the proton gyromagnetic ratio, and T E is the echo 

time (Haacke et aI., 1999). Thus, the amount of iron in a voxel can potentially be related 

to the phase. 

In a previous paper (McAuley et aI., 20 lOa) we discussed how an easily identified 

parameter in modulo 211: phase-wrapped images can be mathematically related to iron 

mass in a localized spherical sample (Eq. 2). Briefly, Fig 4.1A shows a schematic cross 

section of an iron sample dipole phase pattern induced by the main MRl magnetic field 

(Bo), and Fig 4.1 C shows a cOlTesponding phase profile taken across the red dotted line in 

Fig 4.IA. The value on the abscissa cOlTesponding to I'-¢D = 11: is denoted by r g , (Robson 

and Hall, 2005) and rg is easily measured from the wrapped profile (Fig 4.1 D) or the 
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rectangle bounding the n-phase wrap of the dipole pattem (Fig 4.1A). Under the 

assumptions that i) the magnetic susceptibility is constant both intemal (xi) and external 

(xe) to the iron sample, ii) LlX, the susceptibility difference, defined as odX = (xi - Xc), is 

very small (-10-\ iii) the density of the samples p is constant, iv) the source is roughly 

spherical, and v) all background phase has been removed, r"is related to iron mass of the 

sample by Eq. 2 (McAuley et a!., 2010a): 

[2] 

The true radius a of the iron source (unobscured by the blooming effect) can also 

be related to r" by Eq. 3, and for a givenodx, r"can in principle be converted between 

magnet field strengths and echo times by Eq. 4 (McAuley et a!., 2010a): 

[3] 

[4] 

In this present study, we denote by r '" the value on the ordinate dipole axis 

corresponding to I'1¢D = n. Thus, r'" is analogously related to the vertical n-wrap and 

phase profile (taken along black dotted line in Fig 4.IA) as r"is to the horizontal. It 

follows from equations 2 and 5 of McAuley et aI., (McAuley et a!., 201 Oa) that the profile 

intensities are proportional to each other (proportionality constant of -2), and that r" and 
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Figure 4.1: Image Parameter Measurement - The phase image parameters r IC and r "T 
can be measured using bounding rectangles or phase profiles. A) Bounding rectangle 
drawn around schematic of a spherical dipo le pattern in coronal orientation. The widths 
and heights of the rectangle (solid red) are respectively 2r;t and 2r' ;t. The black lincs 
represent the phase wraps (shown are rc and 3rc wraps). The main field Bo is parallel to 
the axis of the dipole. B) Bounding rectangle drawn around the dipole in axial 
orientation showing rc and 3rc phase wraps. The plane shown is a cross section of the 
equatorial plane of panel A, thus the dimensions are equal to 2r". The main field is 
shown projecting out of the plane of the page. C) Phase profiles drawn along the dipole 
equator (dotted red lines in panel A and B) appear modulo 2rc (red trace). These wrapped 
profiles can be used to measure rm or can in principle be unwrapped (bluc trace) and used 
to i) estimate. d, the diameter of the iron source or ii) an arbitrary phase value (eg, 3rc). 
The parameter I' ' ,T can similarly be related to the phase profile taken along the vertical 
black dotted line in panel A. 0) A magnified view of the wrapped profile in panel C 
superimposed with a circle representing a spherical iron source. Peak to peak widths of 
phase wrappings are proportional to r " and r 3,7. Note that the distance between the most 
medial peaks is equal the diameter of the source d. However, since these peaks do not 
represent a full phase wrapping, d > 21'5", and d is bounded as: r5" < d < Y3,7. 
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r '"are related by Eq. 5 below. Thus, r '" analogs ofEqs. 2 - 4 can be expressed as Eqs. 

6 - 8: 

[5] 

[6] 

[7] 

[8] 

Both r" and r'" can simultaneously be measured from the dimensions of the rectangle 

bounding the dipole phase pattern as shown in Fig 4.1A. Because r'" is larger than r" 

(Eq. 5) it has the advantage ofa larger dynamic range compared with r". 

Fig 4.1 B shows an axial cross section of the phase-wrapped dipole pattern 

corresponding to the equatorial plane of Fig 4.IA. The prominent lines in Fig 4.IA and 

B correspond to phase wraps (71 and 371 wraps are shown) which appear as concentric 

circles in the axial orientation for a spherical source. Thus, r" can alternately be 

detern1ined from axial bounding rectangles (Fig 4.18). In addition, the horizontal profile 

(along dashed red line of Fig 4.IA and shown in Fig 4.1 C and D) is equivalent to an 

axial profile along any diameter (eg, along dashed red lines of Fig 4.IB), and the 

concentric rings of Fig 4.18 correspond with the phase wraps of the wrapped profile in 

Fig 4.1D. 
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Careful examination of Fig 4,1 B and D reveal that ideally, phase profiles and 

axial phase patterns can be used to determine the diameter of a susceptibility source (Fig 

4,1 C and D): the last full phase wrap is an upper bound to the source diameter, and the 

last profile peak (not necessarily a phase wrap) corresponds the source diameter d itself. 

In practice, signal loss in noisy dipole centers and pixelation may obscure higher order 

phase wraps and diameter peaks, Neve11heless, the sequence of phase wrap diameters 

2r ff, 2r3ff" 21'5", etc, that are discernable provide increasingly better approximations to d, 

with the innermost discernable phase peak diameter (which is not necessarily a phase 

wrap) d*, being the best upper bound source diameter estimate, It follows from equation 

4 of McAuley et aI., (McAuley et aI., 201 Oa) that rUff = nl-
1/3

)r ff, This implies that higher 

order phase wrap diameters need not be measured directly, Ifhigher order phase wraps 

or peaks are present, related phase wrap diameters can be calculated based on the most 

robust wrap parameter, r " , This allows the calculation of a lower bound to the best 

source diameter estimates based on a hypothetically defined "next phase wrap diameter" 

(Fig 4,ID), The consequence of the above discussion is that bounded source diameters 

can be estimated or defined allowing classification of sources based on diameter 

thresholds unobscured by the blooming effect. In addition, while Eqs, 3 and 7 require a 

knowledge of L'-.X to relate source diameter to the image parameters r ff and r '", in principle 

diameter can be determined by phase geometry alone, 

The rationale used to validate the quantification method in actual BMB in 

postmortem tissue was similar to our previous work (McAuley et aI., 20 1 Oa) , Eq, 6 

predicts a proportional relationship between the r' H parameter and sample iron mass, 

Therefore, a plot of these experimentally measured variables was used to verify the 
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prediction and validate the method. Assuming similar values of iron sample density and 

susceptibility, such a plot can potentially be used as a standard curve to predict iron 

content in similar samples. In addition, we used phase peak diameter measurements to 

estimate true BMB source diameter and iron concentration. 

Postmortem Human BMB Sample Preparation 

Postmortem human brain tissue was donated from the Alzheimer's Disease 

Research Center Brain Bank at the University of California, Los Angeles. The research 

protocol was approved by the Institutional Review Board of Loma Linda University 

Medical Center. On average, five I cm coronal sl ices representing frontal , 

temporallparietal and occipital lobar areas were obtained from three cases 

histopathologically diagnosed as comorbid for advanced AD (Braak and Braak V-VI) and 

CAA (Vonsattel stage 3). The tissue slabs were embedded in 2% agarose and imaged on 

a 3T MRJ clinical scanner (TriolTim, Seimens Medical Solutions, Erlangen, Germany) 

using a SWI protocol similar to (Schrag et aI., 2010). These preparation images were 

then used to identifY BMB. Approximately 40 small tissue slices were dissected from the 

slabs, each containing at least one BMB. To alleviate air-tissue interface susceptibility 

artifacts, tissue slices were embedded in 2% agarose in plastic scintillation tubes. 

Magnetic Resonance Imaging 

Besides the 3T SWI preparation image sequence used in sample preparation (see 

above), we used two 11. 7T SWI sequences in this study (referred to in text as data 

images): a 3D SWI coronal sequence, and a 2D axial sequence. The 2D sequence was 
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used because comparative 3D axial scans had significant signal inhomogeneities and 

background phase apparently due to inadequate magnetic shimming. To acquire data 

images, sample tubes were scanned in an 11.7T small vertical-bore MR scanner (Bruker 

Biospin, Billerica MA) using the following parameters: 1): 3D coronal sequence: 

TRITE: 10017 ms, NEX: I, FOY: 2.2 cm, and 32 slices ofthicklless 688 J.lm. 2) a 2D SWI 

axial sequence: TRITE: 154.4-61717 ms, NEX: 4, and 20-40 slices of thickness 688 J.lm. 

For both 3D and 2D scans: flip angle: 20°, matrix: 256 x 256, in-plane resolution: 85.9 

~Ul1 x 85.9 ~lm. 

Image and Data Processing 

Raw coronal and axial phase images were high-pass filtered with 16x32 and 

32x32 frequency domain filters, respectively (Wang et aI., 2000) using SPIN software 

(MRI Institute, Detroit, MI). Magnitude images were multiplied four times by a phase 

mask created from the high-pass filtered (HP) images (Haacke et aI., 2004) to produce 

phase-enhanced magnitude images. The image parameters r;r and r 'n were obtained from 

the coronal HP images using the height and width of the rectangle bounding the dipole 

phase pattern of each sample. In addition, the ratio of the sides of rectangles bounding 

dipole patterns in the axial images were used to help assess the spherical symmetry of the 

samples. Bounding rectangles are shown in the schematics of Fig 4.1 A and B, and for 

real data samples in Fig 4.31 and J. Using the Image] software package (Image], NIH), 

the rectangle was drawn, its height and width were deternlined, and r n (r 'n) is calculated 

as y, of width (lJeight) of the rectangle. 
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[ron Content Determination 

Tissue slices were removed from agarose and BMB were located in the slices 

with the aid of SWI data images. Small blocks of tissue surrounding the BMB were 

dissected from the slices using a diamond knife (Fig 4.2). To increase the fraction of 

BMB iron verses background iron, the surrounding tissue in each block was trimmed 

away as deemed necessary or practical. Control blocks (not containing BMB) were also 

dissected from similar tissue (e.g., cortical grey matter) as blocks containing BMB. 

Samples were wet ashed similar to Maynard et aI., (Maynard et aI., 2002): blocks (2 - 21 

mg) were dissolved in 250 III of70% HN03 for 12 to 48 hours, heated at 80°C for 20 

min, and allowed to cool to room temperature. 250 III of 10M of H20 Z were added, and 

after 30 min, samples we heated samples at 70°C for 15 min and allowed to cool. [ron 

concentrations of control and BMB blocks were measured in triplicate by graphite 

furnace atomic absorption spectrometlY (SpectrAA 220Z, Varian, Victoria, Australia). 

BMB iron content was then determined using Eq. 9: 

(mFc)BMB = (mTissue)BMA ([Fe]BMB - [Fe]cONTRoL) [9] 

where (mFc)BMB is the iron content (i.e., iron mass) of the BMB, (mTissue)BMB is the mass 

of the BMB tissue block, and [Fe] BMB and [Fe]coNTRoL, are the iron concentrations of the 

BMB and control tissue blocks respectively. 

BMB Diameter and Iron Concentration Calculation 

Bounding rectangles were drawn around the innelIDost hyperintense ring in axial 

dipole patterns from 13 samples (Fig 4.3K and L). The average of the dimensions of the 

rectangle was taken as the diameter of the lesion. Though the average ratio ofthe 

rectangle dimensions was O.96±O.03 (mean±SEM), the dimensions typically differed by a 
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few pixels (a 0 pixel difference in 4 samples, I pixel in 5 samples, 2 pixels in 3 samples, 

and 3 pixels in I sanlple), and rectangles were easier to objectively place around the rings 

than circles. In cases of uncertainty regarding the location or measurement of the 

innermost ring (8 of 13 samples), a ring with the larger diameter was chosen instead of a 

putative ring with a smaller diameter. The phase diameters 2r3", 2r5", and 2r7,7 were 

calculated using the corresponding r, for each sample according to the fonnulas: 

r",, = n· 1/3r" for n = 3,5, and 7. Sample iron mass (as detennined above) was divided by 

(n/6) d3 to obtain iron concentrations. Units of llg/cm3 were converted to Ilg/g wet tissue 

weight assuming a ti ssue density equal to water. 
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a d 

Figure 4.2: BMB in Postmortem Brain - A) Tissue slices were embedded in 
agarose and scatmed at high field MRI. Arrows point to a cortical BMB and B) a 
Tl weighted image reveals the presence of the BMB (l1.7T, TRITE: 630.8117.9, 
NEX: 4, FOY: 22 mm, MAT: 256x256, Thk: 0.3mm). C) Close-up view of the 
tissue BMB (top of panel) and the corresponding MR image correlate (bottom of 
panel) . 0) Small pieces of tissue containing (red arrow) or free of BMB (cut from 
dotted region) wcre dissected and assayed for iron content using atomic 
absorption spectroscopy. 
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Sample InclusionlExclusion 

Over 40 putative BMB were originally identified in 40 I I .7T SWI data image 

scans. For practical reasons, a smaller subset consisting of 26 of the most promising 

putative BMB were chosen and afterward underwent image and tissue processing. 

Selection was based primarily on the quality of the dipole appearance (eg, symmetry, 

distinct edges) seen in magnitude SWI scans. 

After image and tissue processing, seven samples were excluded from iron 

content analysis: one sample was damaged during dissection, two samples displayed 

inadequate background phase removal , one sample dipole was due to an air bubble, one 

sample dipole was highly di storted, and two samples displayed faint and indistinct 

dipoles. Six additional samples were excluded from BMB diameter and iron 

concentration analysis based on axial images: axial images were not available (one 

sample), inadequate background phase removal (three samples), and indistinct dipole 

phase patterns (two samples). In total , 19 samples were used for iron content 

determination, and 13 samples for BMB diameter and iron concentration estimates. 

Statistical Analysis 

The predicted proportional relationships between BMB iron mass and the image 

parameter r' ff was tested by linear regression analysis using SigmaPlot version I I (Systat 

Software, Inc., Chicago, IL). Plots of these variables were constrncted along with a best­

fit least squares regression lines. Normality of BMB iron concentration was tested using 

a Shapiro-Wilk test. Statistical significance was considered at p ~ 0.05. 
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Results 

Magnitude, raw phase, high-pass filtered phase and phase-enhanced magnitude 

coronal and axial images of two BMB samples are shown in Fig 4.3. Robust 

characteristic dipole patterns are seen in each image (McAuley et aI. , 20 lOa; Pintaske et 

ai. ,2006b). High-pass filtered images generally exhibited dipole patterns with clearly 

visible phase wraps surrounded by a largely homogenous background (Fig 4.3C, G, I, J). 

Measured iron mass, r 'J[, r;r, r ';r to r ;r ratio, as well as estimated diameter and iron 

concentration is shown for BMB samples in Table 4.1. The average r ';r to r" ratio was 

1.25±0.03 (mean±SEM) consistent with the theoretical value of 2'13 = 1.26 for a spherical 

source. This implies that the filtering did not significantly distort the aspect ratio of the 

dipole pattern. BMB iron mass vs. r'j is plotted in Fig 4.4, and exhibits a strong linear 

relationship (R2 = 0.984, P < 0.001) between variables with a slope of 1290 Ilg/c m3 (p < 

0.001). The y-intercept of the plot is small but statistically significant (-0.309 j.lg, P = 

0.021). This value is smaller than all the iron masses of the samples except one (Sample 

15 in Table 4.1), and can be interpreted as an indicator of the sensitivity of the technique 

in the present context. The strong linear relationship is predicted by Eq. 6 and thus 

confirms the usefulness of our quantification method to measure iron content in BMB 

from human tissues. BMB iron content ranged from 0.065 to 13.1 j.lg (median 1.0). 

Upper bound BMB estimated diameters ranged from 0.82 to 1.5 mm (median 1.0 111m) 

(Fig 4.5). Lower bound BMB iron concentration values were normally distributed (W­

Statistic = 0.932, P = 0.363) with a mean value of 18421lg/g tissue. Ten of 13 , and 12 of 

13 samples fell within ± 1, or ± 2 standard deviations about the mean, respectively (Fig 

4.6). 
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Table 4.1: Postmortem BMB Data - Iron mass was measured by atomic absorption 
spectromehy. r'" and "/r are measured by bounding rectangles in coronal filtered phase 
images (Fig 4.31). Diameter and concentration estimates are detennined as described in 
text. 

Sample mr, ( ~g) r'., (mm) r., (mOl) r',11 r:r d(nun) [Fe] (~g/g) 

I 0.73 ± 0.05 0.86 ± 0.19 0.65 ± 0. 12 1.33 --
, --• 

2 0.98 ± 0.02 0.99 ± 0.06 0.77 ± 0.06 1.28 1.03 ± 0.07 1705 ± 358 
3 1.54 ± 0.03 1.03 ± 0.06 0.86 ± 0.06 1.20 1.20 ± 0.10 1687 ± 438 
4 0.90 ± 0.02 0.86 ± 0.06 0.73 ± 0.06 1.18 0.99 ± 0.07 1786 ± 39 1 
5 0.86 ± 0.04 0.95 ± 0.06 0.65 ± 0.06 1.47 0.86 ± 0.09 2580 ± 811 
6 1.04 ± 0.03 1.20 ± 0.06 0.86 ± 0.06 l AO 1.16 ± 0.09 1269 ± 295 
7 2.01 ± 0.09 1.29 ± 0.06 0.99 ± 0.06 1.30 1.03 ± 0.10 3502 ± 1067 
8 1.14 ± 0.07 1.07 ± 0.06 0.73 ± 0.06 1.47 --

, --, 
9 0.43 ± 0.06 0.86 ± 0.06 0.60 ± 0.06 1.43 0.82 ± 0.07 1499 ± 453 
10 0.55 ± 0.03 0.77 ± 0.06 0.60 ± 0.06 1.29 0.86 ± 0.09 1656 ± 52 1 
II 0.75 ± 0.03 1.03 ± 0.06 0.90 ± 0.14 1.26 0.99 ± 0.09 1473 ± 404 
12 8.15±0.16 1.81 ± 0.06 1.50 ± 0.06 1.20 --

, --, 
13 0.49 ± 0.03 0.86 ± 0.06 0.77 ± 0.06 1.11 1.16± 0.09 595 ± 141 
14 13.1 ± 0.3 2. 19 ± 0.06 2.02 ± 0.06 1.09 --• --• 
15 0.065 ± 0.01 0.52 ± 0.06 0.43 ± 0. 18 1.20 --

, 
--
, 

16 1.02 ± 0.04 0.90 ± 0.06 0.86 ± 0.06 1.05 1. 12 ± 0.10 1400 ± 394 
17 2.50 ± 0.05 1.33 ± 0.06 1.12 ± 0.06 1.15 1.25 ± 0.12 2464 ± 693 
18 3.79±0.14 1.50 ± 0.06 1.42 ± 0.06 1.06 1.46 ± 0.10 2322 ± 501 
19 1.39 ±0. 10 1.16 ± 0.06 0.90 ± 0.06 1.29 --, --• 

II Diameter and concentration values \vere not detennined (see text). 
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Figure 4.3: SWI of BMB in Postmortem CAA Brain - A & E) Magnitude, B & F) 
raw phase, C & G) high-pass filtered phase and D & H) phase-enhanced magnitude 
images of two cortical grey BMB, showing coronal (A - D) and axial (E - H) 
orientations respectively. The top lesion (dotted rectangle) in panel C is shown in the 
axial images (E - H). Characteristic dipole patterns were seen in each image. I & J) 
Bounding rectangles are shown surrounding magnifications (l2x) of the top lesion in 
panel C (dotted rectangle) in coronal (I) and axial (1) orientations (1 is a magnification 
of panel G). K) Magnification of the lower (unmarked) lesion in panel C showing the 
IT phase wrap and an interior hyperintense ring of radius 2: r Jff (respectively 
highlighted by red dotted lines). L) The same image as panel K showing a bounding 
rectangle used to estimate the diameter, d*, of the iuner ring (dotted red lines). The 
actual lesion diameter d, can be estimated by d*, and in practice d* is on average an 
upperbound to d (see text). 

118 



140 

120 

10.0 

~ 80 

e'f 
60 

40 

20 

00 
0.000 

Postmortem Human SMS Data: m"" vs , r~·3 

m,-~ : 1290 [ c·
l - 0 309 

R> :0984 

0002 0 004 ODDS 0006 0010 0.012 

r _,1(cm)) 

Figure 4.4: BMB Iron Content vs. Image Parameters -
Iron mass InFc is plotted against ,} for N= 19 BMB. The 
graph displays a strong linear relationship (R2 

= 0.984, p 
<0.001) with slope equal to 1290 llg/cmJ

. The small but 
statistically significant intercept of -0.309 clg (p = 0.021) 
can be interpreted as an indicator of the sensitivity of the 
technique. The strong linear relationship is predicted by 
Eq. 6 and thus confin11S the usefulness of this 
quantification method to measure iron content in actual 
BMB in human tissue. 
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Figure 4.5: Estimated BMB Lesion Diameter Values -
Estimated BMB lesion diameters d*, are shown bounded 
by phase diameter estimates (2r ", 2r3;,-, and/or 21'5,,) for 
N= 13 samples. The lesion diameter estimates are based 
on dipole phase patterns in axial phase images (Fig 4.3K 
and L). Phase diameters are calculated from 
corresponding r" values. The dotted horizontal line 
represents the median diameter estimate of 1.0mm. 
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Figure 4.6: BMB Iron Concentration Estimates - A 
scatter plot showing estimated BMB iron 
concentrations (N=13). The estimates are nomlally 
distributed (W-Statistic = 0.932, p = 0.363). Ten of 13 
samples fall within ± I standard deviation, and 12 of 13 
fall within ± 2 standard deviations about a mean value 
of 1842 flg/g wet tissue weight. 
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Discussion 

The present study demonstrates that measurements from phase images can be 

related to iron content in real BMB in postmortem tissue. As discussed below, Fig 4.4 

serves as a potential standard curve for human BMB, where r' H values from filtered phase 

images can be related to BMB iron mass. The strong linear correlation is predicted by 

Eq. 6 and validates our quantification method, where the spherical dipole model provides 

satisfactory results for our BMB samples. In addition, we report estimates ofBMB iron 

mass and concentration based on direct tissue iron measurements and phase image 

diameter estimates. We used atomic absorption spectromeh'y (the gold standard for 

tissue metal concentration measurements) to determine lesion iron content that ranged 

from 0.065 to 13.1 )lg with a median value of 1.0 )lg, a range consistent with previous 

expectations (McAuley et aI., 201 Oa). Lesion diameters were estimated using features of 

axial dipole phase pattems. The lesion iron concentration was found to be nomlally 

distributed with a mean value of 1842±202 )lg/g (mean±SEM). Seventy-seven percent 

and 92% of the BMB sample iron concentrations fell within ± one and two standard 

deviations about the mean respectively. A normal distribution allows for a simple 

assessment of disparity between BMB concentrations in different brain regions or 

diseases. Because higher order phase peaks and wraps were typically obscured in noisy 

and pixilated dipole centers, these BMB diameters and iron concentrations are on average 

best regarded as upper and lower bounded estimates, respectively. 

BMB are associated with a growing number of disease states and present a source 

of potentially cytotoxic iron to the brain in proportion to the extent of blood 

extravasation. Therefore the quantified iron content of BMB is a potential valuable 
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biomarker to monitor disease progression, treatment efficacy and risk factor assessments. 

In recent reports: the presence of a single lobar bleed, or more than one lobar bleed fulfill 

in part the Boston criteria for the diagnosis of possible and probable CAA respectively 

(van Rooden et aI., 2009; Knudsen et aI., 2001); two or more baseline BMB is associated 

with progression from MCI to outright dementia (Kirsch et aI., 2009); and BMB 2 5 was 

associated with higher risk oflCH than benefit of anti-thrombotic agents (Soo et aI., 

2008). Such studies are examples where results and clinical interpretations are based on 

BMB number. However, measurement of iron content as a continuous variable goes 

beyond an assessment of pathologic severity based on presence/absence or a discrete 

number of bleeds. Our method of localized BMB (iron) quantification allows the 

characterization of severity at the level of a single bleed, groups of bleeds, brain region or 

whole brain. For example, indices of iron load or disease burden could be defined as "the 

sum of the iron content for all lobar BMB". Such characterizations could provide 

advantages over diagnostic criteria, prognostic standards or therapeutic recommendations 

based on discrete numeric thresholds. 

In efforts to improve interrater agreement in BMB detection and capture 

standardized auxiliary information several investigators have developed systematic BMB 

rating scales for reliable measures of presence, number, anatomical location, 

certainlunceliain status, and/or size (Cordonnier et aI., 2009; Gregoire et aI., 2009). The 

results of the present study suggest that quantified iron content could enhance the 

usefulness of such discreet data. We found a wide range of iron content (0.065 - 13.1 

flg) for BMB with estimated diameters ranging from 0.82 to 1.5 mm. In addition, BMB 

with a diameter of 3.2 mm (unbloomed) and iron concentration of 2000 flg/g would 
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contain - 35 ~lg of iron. Therefore, since our mean iron concentration of 1842 ~ lg/g is 

probably a lower bound value, in BMB that typically meet rating scale inclusion criteria, 

iron content may range over two orders of magnitude. This suggests that mere counts 

may not necessarily be i) a good indicator of bleeding severity (eg, 5 BMB of I Ilg each 

versus 1 BMB with IS Ilg of iron), or ii) a sensitive means for patient and study group 

comparisons (eg, "number of BMB in the parietal cortex" versus "total iron load of 

parietal cortex") compared to iron content per se . 

It is well known that BMB hypointensity size seen in magnitude GRE T2* images 

are typically larger than the actual tissue lesion. This so called blooming effect varies 

with field strength, scan parameters_and magnetic susceptibility of the source (Pintaske et 

al.,2006b) . Schrag et aI., recently reported an average hypointensity magnification factor 

of 1.57 based on 3T images of 13 lesions in postmortem CAAIAD brains (Schrag et aI., 

20 I 0). Although a recent Microbleed Study Group review recommends the presence of 

T2* blooming in BMB identification criteria, it also discourages the use of size 

characterizations due primarily to the blooming effect (Greenberg et aI. , 2009). 

Interestingly, the BOMBS scale (Cordonnier et aI. , 2009), but not the MARS scale 

(Gregoire et aI., 2009), classifY bleeds according to size, because the authors of the latter 

scale consider size descriptions "may U1mecessarily complicate the rating without adding 

extra useful infommtion" (Gregoire et aI. , 2009). Results from the present and our recent 

study (McAuley et aI., 2010a) demonstrate that BMB diameter estimation unobscured by 

the blooming effect is possible in phase images. The Eqs. 4 & 8 further reveal that these 

determinations can in principle be effecti vely compared across various fi eld strengths and 

echo times. Thus, the benefits of size criteria should be revisi ted. Indeed, for definitions 
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of iron load indices to be usefully compared between studies or clinical situations, BMB 

minimum and maximum size limits are necessary. Source dimension quantification in 

principle allows an objective definition of such inclusion limits. 

It had been recognized that automated BMB detection may further improve 

interrater agreement (Gregoire et a!., 2009) as well increase clinical practicality. Mills et 

a!., recently exploited the distinct dipole pattern in coronal phase images to automatically 

identifY and COWlt superparamagnetic iron oxide agents (Mills et a!., 2008) in phantoms 

and rat heart tissue. Results from ilie present and our recent study underscore that the 

scale of such dipole templates can be related to iron content (McAuley et a!., 2010a). 

Therefore, using appropriately scaled dipole templates (e.g., varying r' ff and rn 

parameters) BMB could potentially be, not only counted but simultaneously their iron 

content could be quantified. Moreover, BMB could also be classified by size using r" 

based diameter estimates or definitions. As described above, estimates could be made 

tl'om diameters of circles or rectangles best fit to inner phase peak rings in axial filtered 

phase images (Fig 4.3K and L). The corresponding phase diameters (as defined above) 

calculated from corresponding I',T values could provide upper and lower bound values to 

the diameter estimates. Alternately, diameter could be defined based purely on 1'" values 

and used for classification. For example, lesion diameter can be defined as r5" based on 

pertinent knowledge of source properties. Finally, iron or disease load indices could then 

be calculated from count, location and severity (i.e., iron content) data, and clinically or 

biologically relevant threshold criteria could flag for further investigation, provide 

diagnostic information or therapeutic recommendations. 
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There are several limitations (0 the present study. First of all, while phase images 

have several advantages over magnitude images for iron quantification (Haacke et aI., 

2005; McAuley et aI. , 201Oa) there are some limitations. Phase contrast depends on 

source geometry and orientation with respect to the main magnetic field, and field 

perturbations extend beyond sources of susceptibility and alter contrast of sun-ounding 

tissue (Shmueli et aI., 2009; Schafer et a!., 2009). These effects ultimately arise from 

fundamental physical properties of the magnetic field (eg, solenoidality) and calmot be 

fully eliminated. However, unlike quantification of iron in distributed tissue regions (eg, 

red nucleus), our localized method is significantly less impacted by such effects and 

actually exploits them: the rHand r 'H image parameters are related to magnetic field 

intensity on the directionally dependent dipole pattern outside the localized susceptibility 

source. Advantage is conferred by 1) providing additional dynamic range in pixilated 

images allowing resolution of very small sources that could not otherwise be resolved. 

This range can be increased by increasing echo time provided that the concomitant loss in 

SNR is not too large. 2) Since parameter measurements occur away from the actual 

lesion, the shape of the source is less important. In the far-field case, the assumption of a 

spherically symmetric source greatly simplifies quantification and clinical practicality. 

Secondly, our approach assumes background phase has been reduced to negligible 

levels and this is attempted using high-pass filtering (McAuley et a!., 2010a; Wang et aI. , 

2000). Background phase removal is a fundamental problem in phase imaging and 

several approaches have been attempted (Wang et a!., 2000; Neelavalli et a!., 2009; Duyn 

et aI., 2007; Cheng et aI. , 2007). For homodyne filtering, the choice of filter size is often 

chosen empirically (Szumowski et aI., 2010; McAuley et aI., 20 lOa), and the assumed 
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best practice has been to choose the smallest possible filter size that adequately removes 

the background (McAuley et a I. , 2010a). For horizontal images we employed a 16x32 

filter. The 2D axial scans however, required a 32x32 filter to yield non-distorted dipoles. 

The significance of these differing filter sizes, as well as the effects of filtering and filter 

size in localized dipole sources in general and on accurate comparison of r ff and r' ff 

values between data sets in particular, are areas where future research is needed. 

Third, we have assumed that BMB iron sources are effectively spheres. In most 

BMB, the actual geomelly can likely be ignored because offar field effects. Indeed, this 

may be reflected in the definition ofBMB as "round ' hypo intense GRE T2* (magnitude) 

image features by a recently proposed BMB rating scale (Gregoire et aI. , 2009). 

However, other recommendations allow for "ovoid" hypointensities (Greenberg et aI., 

2009) and it is expected that the spherical geometry assumption may not be globally 

applicable. However, based on at least three observations, non-spherical effects do not 

seem to be important in the present study: 1) The average height to width ratio of the 7t­

wrap bounding rectangle in the axial images was 0.99±0.02 (mean±SEM) suggesting 

circularity in the equatorial plane. 2) The r 'Jr" ratio for the coronal dipole patterns was 

consistent with the theoretical value for a spherical source (described above). 3) The plot 

ofmFe vs. r'/ was strongly linear (Fig 4.4) as predicted by Eg. 6 which is based on the 

assumption of spherical geometry. 

Fourth, our method is a linear model based on the assumptions of uniform iron 

density and susceptibili ty. The strong linear correlation between iron mass and r ' / in the 

present study seems to imply that tllese BMB iron properties have a relatively small 

variance. However, because our BMB represent a small number of cases and a specific 
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disease population, future investigation of BMB iron properties in normal and diseased 

cohorts are necessary before our results can be safely generalized to other ti ssue states 

and compared with other studies (McAuley et a!., 2010a). For this reason, as well as 

possible inconsistencies in comparison of r ' a values due to differences in background 

phase processing (e.g., differing filter sizes) discussed above, the plot ofm,c vs. r } (Fig 

4.4) can only be regarded as a tentative standardization curve of iron content in the 

postmortem human brain. 

Fifth, because sample inclusion before data processing and sample exclusion after 

processing was based on dipole quality, our results may be biased toward best-case 

scenarios. However, our study analyzed BMB in postmOliem tissue slices and in almost 

all cases, lesions were visible on the surface of the tissue. BMB dipoles in intact brain 

will not be influenced by issues and artifacts associated with lesion bisection and cut­

ti ssue interfaces. Therefore, dipoles of comparable iron content could likely be better 

formed than those excluded in our study. In addition, faint excluded dipoles were 

associated with iron values at or below the sensitivity threshold of the method (- 0.3 ,lg, 

based on the significant intercept of Fig 4.4) , and thus do not actually contribute to a bias. 

Finally, background phase distortion is less of an issue in clinical scanners when 

compared to the experimental hardware used in the present study. In any case, how often 

malformed and ambiguous phase image features occur and to what extent the method is 

affected must be informed by further research. Moreover, automated image processing 

software could still possibly discern essential features from dipole patterns that appear 

indistinct to the human eye. 
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Finally, the present research was conducted in postmortem tissue with relatively 

small fields of view (e.g., 2.2 cm) and at very high field 11.7T. Eq. 8 implies in principle 

that equivalent r ff and r' ff values are achievable even with the clinically state of the art 

3.0T magnets. For example, at 3.0T an echo time 01'27 ms is required to get dipoles with 

the same r ff values as this current study (Eq. 8), well within current use in BMB detection 

(Greenberg et a!., 2009; Gregoire et a!., 2010). However, practical issues concerning 

adequate SNR and sufficiently short scan times have yet to be addressed with 

acquisitions using FOY s that are an order of magnitude larger in typical clinical scans 

compared with the current study. 

[n summary, this research demonstrates that real BMB iron content can be 

accurately related to prominent phase image features under the simple assumption that 

BMB iron sources are spherically shaped. Our mFc vs. r';' plot can tentatively be 

regarded as a standard curve, allowing BMB iron content estimates from similarly 

processed phase images of tissue states comparable to our AD/CAA autopsy cases. In 

addition, phase image features were used to estimate upper bounds of BMB iron source 

diameters and lower bounds of iron concentrations. Our method potentially allows the 

definition of iron load or disease burden indices from the level of a single bleed to the 

whole brain (eg "the sum of the iron content of all lobar BMB"), as well as the 

classification ofBMB by size unobscured by the blooming effect. A "count, classifY and 

quantifY" method can potentially be fully or semi-automated, and the results can in 

principle be compared across field strengths and echo times. Such information 

potentially could enhance prognostic and diagnostic criteria in the context of cerebral 
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vessel disease and associated late onset dementias, as well as inform treatment decisions 

regarding the use of thrombolytic or thrombotic agents. 
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Abstract 

Brain micro bleeds (BMB) are associated with chronic and acute cerebrovascular 

disease. Because BMB present to the brain a source of potentially cytotoxic iron 

proportional to extravasated blood, BMB iron content is a potentially valuable biomarker 

both to assess tissue risk and small cerebral vessel health. We recently reported methods 

to quantifY localized iron sources using phase images that were tested in phantoms and 

BMB in postmortem tissue. In the present study we applied our method to small 

hemorrhagic lesions induced in the living rat brain by bacterial collagenase. The 

expected correlation between measurements of geometric features in phase images and 

lesion iron content was tested by linear regression and observed in the experimental data. 

Iron content estimation following BMB in an in vivo rodent model could shed light on 

the role and temporal evolution of iron-mediated tissue damage and the efficacy of 

potential treatments in cerebrovascular diseases associated with BMB. 

Keywords 

Iron quantification, brain microbleeds, phase images, susceptibility weighted 

imaging, bacterial collagenase 
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Introduction 

Brain microbleeds (BMB) are associated with ischemic and hemorrhagic stroke, 

cerebral amyloid angiopathy (CAA), neurotrauma, Alzheimer's disease (AD), vascular 

dementia, cognitive decline, hypertension and age (Cordonnier et aI., 2007; Greenberg et 

aI., 2009; Menon et aI., 2009; Kimberly et aI., 2009; Igase et aI., 2009; Jeon et aI., 2009; 

Fazekas et aI. , 1999; Vernooij et aI., 2008; Knudsen et aI., 2001; Tong et aI., 2003; Tong 

et aI., 2004; Seo et aI., 2007; Yakushihi et aI., 2008; Kirsch et aI., 2010; Stalls et aI., 

2009; Sveinbjornsdottir et aI., 2008). The presence of BMB in ischemic stroke, 

intracerebral hemorrhage (rCH) and CAA is associated with future hemorrhage (Soo et 

aI., 2008; Jeon et aI., 2007; Greenberg et aI., 2004; Greenberg et aI. , 2009). Whether 

BMB presence increases risk of bleeding with use of thrombolytic and antithrombotic 

agents is an important and controversial open question (Greenberg et aI., 2009; Soo et aI., 

2008; Vernooji et aI., 2009; Lee et aI., 2009). Thus, BMB are associated with both 

chronic and acute illness of no small consequence in of our aging population. 

BMB are visible in gradient recalled echo (GRE) T2* magnetic resonance (MR) 

imaging as focal regions of signal loss and have been histopathologically related to 

hemosiderin, the iron-protein complex associated with pathologic iron storage following 

hemorrhage (Bizzi et aI., 1990) and ferritin breakdown (Schenk and Zimmerman, 2004). 

Hemosiderin is visible in MR images due to it paramagnetic iron content and serves as a 

marker for BMB (Atlas et aI., 1988; Viswanathan & Chabriat 2006). Thus, BMB 

represent a source of pathologic iron to the brain that is potentially cytotoxic (eg, free 

radical production through the Fenton reaction), and oxidative damage, iron accumulation 

and/or iron dysregulation have been implicated in neurodegenerative and cerebrovascular 
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diseases (Vymazal et aI., 2007; Gaasch et aI., 2007; Andersen, 2004; Neema et aI., 2009; 

Perez et aI., 2008; Smith et aI., 1997; Smith et aI., 2010). In addition, since iron is 

deposited at the site of a BMB in proportion to the amount of extravasated blood, iron 

content in BMB can be considered a marker for the severity of underlying vessel disease 

(Greenberg et aI., 2009). Therefore the quantified iron content in BMB is potentially 

informative regarding disease progression and the efficacy of treatment (Schenck & 

Zimmerman 2004, Haacke et aI., 2005, Greenberg et aI., 2009). 

A few studies have compared radiologic BMB to postmortem tissue correlates 

and have noted evidence of associated tissue damage (Fazekas et aI., 1999, Tanaka et aI., 

1999, Schrag et aI., 20 I 0). However, in vivo animal studies would allow investigation of 

temporal relationships regarding tissue damage evolution following BMB and possible 

interventions. In particular, studies where BMB iron content levels could be correlated 

with tissue damage severity and evolution could potentially shed light on the role of iron 

in the disease process. 

We recently proposed a family of techniques to quantify localized iron sources 

using phase images. The methods have been investigated in MR phantom, postmortem 

rat and postmortem human systems. In the former cases, iron sources consisted of a 

hemosiderin mimic (McAuley et aI., 20 lOa, Chapter 3), and in the later case, actual BMB 

were analyzed (McAuley et aI., 2010b). In the present study, we apply similar methods 

toward iron quantification in the living rat brain using a collagenase induced BMB 

model. 
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Methods 

Experimental Plan 

Critical to the validation of the quantitication technique in the living rat brain is 

the correlation between BMB iron measured by the atomic absorption spectrometer 

(AAS) and the phase image parameter values that reflect the amowlt iron "visible" to the 

MR scanner. Since the AAS machine will measure the total iron in the tissue, perfect 

correlations can only occur if the imaging is done when all the iron extravasated 

following the BMB is visible. However, during the time course of the breakdown of 

blood products, liberation of free iron, hemosiderin formation, etc., the amount of iron 

visible in the phase images will vmy. If one assumes that all the iron, once deposited, is 

never resorbed or transported but remains indefinitely at the original deposit location, 

then choosing a very late imaging time points (on the order of months) would be 

desirable. However, asymptotic release rates, and reports that BMB deposits are not 

static but dynamic, as well as practical concerns of time and cost require a shorter time 

point. Based on data regarding the time course of blood product breakdown and iron 

deposition published in the literature as well as preliminary data, we have chosen a time 

point of POD 28. Since hematoidin, a mmker of free iron release due to hemeoxygenase 

activity, peaks around POD 10 (Manfred et aI., 2004), and hemosiderin deposition peaks 

mound POD 10-14 (Manfred et aI., 2004, Bradley, 1993), it can be assumed that total 

iron as measured by AAS will likely correlate with phase images measurements obtained 

mound POD 28 and further improvements at later time points would be marginal. To 

insure the best synchrony between the AAS and phase image measurements, the rats were 

immediately sacrificed after the POD 28 in vivo scan (see below). 
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Animal Procedures 

Our animal protocol was approved by the Loma Linda University Institutional 

Animal Care and Use Committee. Ten male Sprague-Dawley rats (4S0-S00g) were 

placed under anesthesia (isoflurane) and positioned in a stereotactic frame (Knopf 

Instruments, Tujunga, CA). A mid line incision was made on the top of the head and the 

scalp held back. A small burr hole (- [mm) was drilled into the skull 0.5nun anterior and 

3.1 ±0.2 mm lateral from bregma. A single dose of type VII bacterial collagenase in 

saline (Sigma-Aldrich, St. Louis, MO) was injected 6. [ mm below the skull surface using 

a Hamilton syringe (Reno, NV) placed in a microsyringe pump (Model 3 [0 Plus Series, 

KD Scientific, Holliston, MA). These stereotactic coordinates target the 

caudatelputamen (CP) of the rat brain. The collagenase doses (0. [ [U /200 n[ saline, 

0.[4U/200 nl, 0.15U/200 nl, 0.[6U/200 nl, 0.17U/200 nl, 0.[8U1200 nl, 0.2U/200 nl, 

0.22U/200 nl, 0.24U/200 n[ saline) were injected over 5 min. An established ICH rat 

model typically delivers 0.2U of collagenase in [ ~[of saline (Titova et aI., 2007; 

MacLellan et aI., 2008). The smaller doses and volumes used in this study reflect an 

attempt to induce smaller and more [ocalized hemorrhagic legions. To minimize, 

bleeding of injectate up the needle tract, the needle was held in place for 20 minutes 

following the injections and then slowly withdrawn at approximately 0.5mm/min. The 

bUtT hole was filled with bone wax, the scalp sutured shut, and the rats will be allowed to 

recover. Following MR scanning (see below) animals were sacrificed by transcardial 

perfusion with 4% buffered paraformaldehyde (PFA). Brains were extracted from the 

skull and fixed in 4% PFA. 

141 



MR Imaging 

Living rats were scanned POD 28±2 in a 4.7T small animal MR scanner (Bruker 

Biospin, Billerica MA) using two SWI sequences with the following parameters: I) 3D 

coronal SWI: TRiTE: 46.5/25 ms (two rats: TRiTE: 39/20 ms), flip angle: 17°, matrix: 

256 x 256, NEX: 3, FOV: 3.0 cm, in-plane resolution: 117 Ilm x 117 Ilm, and 32 slices of 

thickness 0.938 mm. 2) 20 axial SWI: TRiTE: 558.3/25 ms (two rats: TRiTE; 1248.8/20 

ms), flip angle; 20°, matrix; 256 x 256, NEX; 6, FOV; 3.0 cm, in-plane resolution; 117 

Ilm x 117 ~lm , slices: 10, 12 or 32 of thickness 0.8 mm. 

Lesion Dissection 

Coronal cuts were first made in the fixed rat brains anterior and posterior to the 

needle tract (cortical scar was visible at the top ofthe brain). Subsequent cuts were made 

as necessary to reveal the anterior/posterior lesion boundaries and trim away excess 

tissue. Sections of tissue surrounding the lesion (ipsilateral CP) and control sections 

(contralateral CP) were dissected out of the coronal slices using a diamond knife and 

plastic and titanium forceps (Fig 5.1) and weighed on a precision balance. 

Iron Content Determination 

Samples were wet ashed similar to (Maynard et aI., 2002): blocks (20 - 70 mg) 

were dissolved in 250 III of70% HN03 overnight, heated at 80°C for 20 min, and 

allowed to cool to room temperature. 250 III of IOM of H202 were added, and after 30 

min, samples we heated samples at 70°C for 15 min and allowed to cool. Iron 

concentrations were measured in triplicate by graphite furnace atomic absorption 
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spectrometry (SpectrAA 220Z, Varian, Victoria, Australia). Under the assumption that 

the contra- and ipsilateral CP have identical iron concentrations, lesion iron content was 

calculated using the formula: l11(rc)L = ft Fc)llnl - f(Fe)Clnl , where In(Fc)L is the mass of iron in 

the lesion, ftFe)1 (f(Fe)C) is the w/w Fe concentration of the ipsilateral (contralateral) tissue 

block, and ml is the mass of ipsilateral tissue. 
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Figure 5.1: Collagenase-Induced BMB - A) Two successive coronal sections of 
a rat brain with a collagenase-induced bleed in the right CPo Dissected tissue 
surrounding the bleed (left) taken from the right CP, and a control tissue sample 
taken from the left CPo 
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Image Processing 

Raw phase images were high-pass filtered using a l6x32 frequency domain filter 

(Wang et aI., 2000) using SPIN software (SPIN software, MRI Institute, Detroit, MI). 

Magnitude images were multiplied four times by the product of the negative and positive 

phase mask of reference (Haacke et aI., 2004). The image parameter r'~ was obtained 

from phase dipole patterns using bounding rectangles similar to (McAuley et aI., 201 Ob). 

However, to eliminate subjectivity where the location of the phase wrap was ambiguous 

(- 3 cases), gray-scale images were converted to binary images using ImageJ software 

before bounding rectangles were drawn (see Fig 5.2). 

Statistical Analysis 

The predicted proportional relationship between BMB iron mass and r ' ~ was 

tested by linear regression analysis using SigmaPlot version 11 (Systat Software, Inc., 

Chicago,IL). A plot of I11rc vs. r '~ was constructed along with a best-fit least squares 

regression lines. Statistical significance was considered at p < 0.05. 
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Figure 5.2: Bounding Rectangles in Binary Images - To eliminate 
subjectivity in drawing bounding rectangles, HP image were converted to 
binary images before rectangles were drawn. A and D) phase enhanced 
magnitude images, B and E) HP images, C and F) binary conversions of 
panels Band E. The top row (panels A, B, and C) show a well formed dipole 
and the bottom row (panels 0 , E, and F) a less distinct dipole. Note that in 
panel B the dipole pbase wraps are well defined, whereas the bottom vertical 
phase wrap in panel E is indistinct. Distinct black/white interfaces in the 
binary images of panels C and F were used to define the phase wraps and 
draw the bounding rectangles. The rectangles defined in binary images (C 
and F) are shown superimposed on the HP images in Band E. 
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Results 

Right circling behavior, left forelimb paresis, and loss of left whisker reflex was 

observed in varying degrees in rats following recovery from and a few days after surgery, 

consistent with the lesioning of the targeted caudate/putamen (CP). This was confirmed 

by MR images which showed lesions present in the CP (Fig 5.3). One animal was 

euthanized POD 2 due to possible pulmonary embolism and 9 rats were scanned. Dipole 

patterns were observed in SWI phase, filtered phase, phase mask, phase-enhanced 

magnitude, and to a lesser extend, magnitude images (Fig 5.3). However, the dipole 

patterns were generally not as distinct or symmetric compared to our other localized 

quantification studies (McAuley et aI., 2010a, 2010b, Chapter 3). One rat was excluded 

because the lesion dipole pattern was distorted by background phase and image data from 

8 animals were analyzed. Iron mass and image parameter data for these animals are 

shown in Table 5.1. The median iron mass of the induced BMB for theses animals was 

found to be 1.40 ~g. 

Fig 5.4 shows a plot of BMB lesion iron mass vs. r' ;r 3. A statistically significant 

linear relationship is displayed (R2 = 0.758,p = 0.005) as expected from the theory 

underlying the quantification method (McAuley et aI., 2010b). The slope is 385 ~g/cm3 

(p = 0.005) and the intercept while predicted to be zero (McAuley et aI., 2010b) is 

statistically different from zero (0.821 ~g, p = 0.006). This non-zero intercept can be 

interpreted as the sensitivity of the method under the current experimental conditions. 
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Table 5.1: Collagenase-Induced BMB Image Data - Data is 
shown for collagenase-induced lesions in the CP of the rat 
brain. Iron mass data was measured using atomic absorption 
spectrometry. r'" data was obtained from bounding rectangle 
dimensions of HP phase images converted to binary image 
format as discussed in text. 

Subject mFe (119) r', (em) r',3 (em) 
1 1.187 0.1099 0.00133 
2 2.194 0.1611 0.00418 
3 0.758 0.0938 0.00082 
4 1.329 0.0879 0.00068 
5 1.465 0.1172 0.00161 
6 1.185 0.1172 0.00161 
7 1.743 0.1055 0.00117 
8 2.409 0.1641 0.00442 
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Figure 5.3: In vivo SWI Scan of Collagenase Induced BMB: - In vivo A, F) 
magnitude, B, G) raw phase, C, H) high pass-filtered, D, I phase-enhanced magnitude 
SWI images in coronal (A - D) and axial orientations (F - I) of a BMB induced in the 
caudate/putamen of the living rat brain (subject I, Table 5.1) (two successive slices 
are shown for axial images). E) Magnification of the dipole pattem in panel C. 
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Figure 5.4: Induced BMB Data: mFc vs. r',,3 - The 
iron mass (mFc) from 8 collagenase-induced BMB is 
plotted against ( ';' The linear relationship (R2 

= 

0.758, P = 0.005) is expected from tbe mathematical 
theory underlying the quantification method. The 
slope is 385 flg/cm3 (p = 0.005) and the intercept 
while predicted to be zero is statistically different 
from zero (0.821 ~lg,p = 0.006). 
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Discussion 

In the present work, we have introduced a simple collagenase-induced BMB 

model in the living rat brain and used it to test our localized iron quantification technique. 

The BMB are on the order of a few millimeters in size and contain 0.8 to 2.4 Ilg of iron. 

Thus, the size and iron content of the BMB are relevant to human BMB (McAuley et a!., 

20 I Ob). Dipole patterns, while not as robust as in other studies, are nevertheless present 

and 8 out of 9 experimentally induced bleeds were measured for the r '" parameter 

(McAuley et aI., 201 Ob). A plot of lesion iron mass against r''; produced a linear graph 

as expected by the theory underlying the quantification technique. This can be thought of 

as a standard curve whereby other BMB so induced can be assayed for iron content in the 

rat brain. Examination of Table 5.1 and Fig 5.4 reveals that point pairs 5 and 6, 3 and 4, 

and I and 7, differ in iron mass by -0.3,0.5 and 0.6 flg respectively, although their 

corresponding r ',; values differ little or are equal. Thus, the non-zero intercept of - 0.8 

Ilg from the plot of Fig 5.4 provides a reasonable estimate to the sensitivity of the method 

in the current experiment. 

The dipole patterns due to the collagenase induced BMB are not as distinct as 

seen in the phantoms, ex vivo felTic oxyhydroxide rat brain injections, and human 

postmortem tissue BMB of our previous studies, and the linear correlations between 

variables are also not a strong (McAuley et aI., 20 IDa, 20 I ~b, Chapter 3). Because of the 

complexities associated with clotting, erythrocyte/hemoglobinlheme breakdown, free iron 

release, iron uptake into ferritin, formation of hemosiderin, etc., these results may not be 

surprising when compared to our oxyhydroxide model systems (McAuley et a!., 201 Oa, 

Chapter 3). However, results from our study of BMB in postmortem AD/CAA brain 
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showed substantially better iron content/image parameter cOlTelations and more robust 

dipoles than we report here (McAuley et aI. , Chapter 3). These discrepant results are 

most likely explained by more spatially diffuse lesions in the present study. Indeed, the 

dipole patterns were less distinct even though lesion iron content was on average larger 

(all but one lesion> 1 Ilg, but only 53% > 1 Ilg in the human study), consistent with less 

localized iron deposits and magnetic susceptibility source. 

There are several factors that could plausibly contribute to more diffuse lesions. 

If it is assumed that exstravasted iron becomes spatially concentrated over time, then 

differences compared to postmortem data could be explained by lesion age. A 

longitudinal study design that extends beyond our POD 28 time point could shed light on 

how lesion iron accumulation and magnetic properties vary over time. Alternately, a 

contribution due to differences in rat versus human cerebral vessel density, iron transport 

mechanisms and physiology is possible. In several rat brains significant MR signal is 

associated with needle tract locations that extend beyond the localized lesion (e.g., see 

Fig 5.3). While unlikely to be significant, it is possible that some dipole pattern 

measurements thus correspond to less than the total iron measured in the CP by the AAS, 

leading to poorer cOlTelations. However, the primary cause of diffuse lesions is most 

likely that the injected collagenase is simply causing bleeding over a larger spatial scale 

then is characteristic of real BMB. Although, the non-spherical shape of the iron deposits 

seen in our data does not necessarily results in non-robust dipoles (McAuley et aI., 

Chapter 3), it is likely that the more diffuse lesion iron distribution does thus contribute 

here. 
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There are two widely used experimental rodent models of intracerebral 

hemorrhage (ICH) involving injections of autologous blood or bacterial collagenase 

(Bullock et aI. , 1984, Rosenburg et aI. , 1990, MacLellan et aI., 2008). While each model 

has advantages and disadvantages for ICH studies (Belayev et aI., 2007; MacLellan et aI., 

2008), the main goal our surgical procedure was simply to produce localized iron 

deposits to test our quantification method. The collagenase procedure was advantageous 

when compared to blood injection since the blood draw step and associated blood 

coagulation was eliminated . On the other hand, collagenase is thought to result in blood 

dissecting through the brain parenchyma (MacLel lan et aI., 2008) which could be counter 

productive in localized BMB formation. Collagenase lCH rat models typically de liver 

0.2U of enzyme in 1 III of saline (Titova et aI. , 2007; MacLellan et aI. , 2008). The 

smaller collagenase doses and saline volumes used in this study reflect an attempt to 

induce smaller and more localized hemorrhagic legions that better model BMB. 

However, it appears that the injected collagenase is causing bleeding over a larger spatial 

scale then is characteristic of real BMB leading to more diffuse lesions when compared to 

our postmortem BMB study. 

Limitations of our localized phase method have been discussed elsewhere 

(McAuley et aI., 2010a, 2010b, Chapter 3), and here, we have focused on limitations 

particular to the present collagenase model that lead to less localized lesions. In spite of 

these limitations, our results have nevertheless demonstrated the potential of our local ized 

quantification technique in the rat brain, and enhanced or alternate models promise to 

bring more robust dipole patterns and superior results. 
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Improvements could potentially be made to the experimental procedure. To 

reduce needle trauma and it resulting effects a glass micro needle could be used. Such 

needles have outer diameters that are an order of magnitude smaller than the 26 gauge 

needle used in the present experiment (McCluskey et a!., 2008). A smaller bore needle 

tract could lead to less dissection of collagenase and thus more concentrated iron deposits 

and distinct dipoles. In addition, the use a syringe that allows accurate injection of 

smaller volumes of injectate could also lead to more concentrated iron deposits. Beside 

improvements to the current collagenase model, alternate BMB models may offer 

superior results. One promising approach is the use of ultrashort laser pulses to induce 

hemorrhages in targeted microvessels (Nishimura et aI., 2006). 

In conclusion, we have shown that a localized phase image method can 

potentially be used to estimate localized iron content on the order of micrograms in the 

living rodent brain using a simple modifications of established collagenase ICH model. 

Improvements to the experimental technique or the use of alternate bleeding models are 

expected to produce better results and increase the usefulness of the technique. This 

potentially will allow investigation of the temporal progression of bleeding lesions and 

the role of iron-mediated tissue damage and the etlicacy of therapeutic interventions in 

small cerebral vessel disease associated with BMB. 
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CHAPTER SIX 

DISCUSSION 

Summary of Main Results 

The purpose of this research project was to develop techniques to quantifY the 

iron content and size oflocalized brain iron sources using magnetic resonance phase 

images. The desire to non-invasively quantify iron content and diameter ofBMB 

provides a strong motivation for such research. Each of the four experiments detailed in 

the preceding chapters provides important contributions toward this goal. 

The main results of the phantom studies (Chapter 2) were the expected 

propOliional relationships between the iron mass and radius of the samples and the cube 

of the r, parameter. This result is predicted by the theory expounded in Chapter 2 and 

therefore validates the method. In particular, it shows that iron quantification of the 

localized source can be carried out in two ways: using the equations underlying the 

curves (Chapter 2, Eqs. 5 and 7) with appropriate knowledge of the equation parameters, 

or using the curves themselves as standard curves (Chapter 2, Fig 2.4A and B). A key to 

the success is the application of high pass filtering that attempts to separate the true 

dipole signal representing the iron susceptibility source from background phase artifacts. 

In addition, the sample iron mass and diameter fell in ranges relevant to real BMB, and 

the method was able to resolve iron mass differences at a level also relevant to BMB. 

These 'proof of concept' results demonstrated that quantification of iron content and 
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diameter of localized sources relevant to BMB is feasible at least under idealized 

conditions. 

The postmortem rat Ch-Fe injection experiments (Chapter 3) sought to investigate 

iron quantification of non-spherical sources in real tissue. This work represents a step 

away from the ideal phantom world to presumably a more realistic context. In the 

phantom experiments, the Ch-Fe samples were assumed and carefully and successfully 

prepared (Chapter 2, Fig 2.2) to be spherical. Ch-Fe injections resulted in non-spherical 

sources (Chapter 3, Fig 3.4). A sophisticated mathematical theory was presented based 

on confocal ellipsoidal coordinates and ellipsoidal dipole analogs to extend and 

generalize the localized quantification method based on one phase image parameter (r,,) 

to three parameters (a,v, bll, and c,v). In addition to horizontally oriented coronal images, 

information gained from axially oriented images is required by the method. The 

cylindrical symmetly induced in the main field (Bo) direction further required the use of a 

numerical method to calculate an undetermined ellipsoidal radius (all, or b" depending on 

the orientation of the ellipsoid with respect to Bo) (Chapter 3, Fig 3.3). While 

experimental data appears consistent with theoretical expectations (Chapter 3, Fig 3.7A), 

unverified assumptions of the method, inconsistencies in theory and simulations (at least 

in Case 2) do not allow verification of the method as it currently stands. Investigation 

into these issues is ongoing and thus the triaxial method described in this chapter is 

considered a work in progress. However, an unexpected but very important result from 

Chapter 3 was the strong linear relationships in simulation and experimental data after 

application of essentially spherical methods (Chapter 3, Fig 3.5B - D, Fig 3.7B - D). 

The implications of this are very important when considering possibly non-spherical 
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BMB. Although elegant and promising in certain contexts, the triaxial ellipsoidal method 

is complex and relies on certain assumptions that may significantly limit useful 

application to real BMB (discussed below). Therefore, a simple spherical method is 

much more appealing. The use of a' ff was considered to be the best choice for a spherical 

method because of its increased dynamic range compared to hffand v ff• 

In the postmortem human BMB experiments of Chapter 4, localized 

quantification in phase images of real BMB in AD/CAA brain was investigated. Similar 

to the previous experiments, the plot of iron mass against r) showed an expected linear 

relationship (Chapter 4, Fig 4.4) predicted by theory. The strong relationship was 

important for at least three reasons. First of all, it suggested that a spherical assumption 

may be adequate in analyzing images of real BMB. Secondly, it showed that the linear 

assumption (i.e., constant iron source density and magnetic susceptibility) may also be 

sufficient, at least for the limited number of autopsy cases in the study. Thirdly, the plot 

(Chapter 4, Fig 4.4) can be regarded as standard curve for iron content estimation that can 

be at least tentatively applied to a similar disease population. Thus, it is the first possible 

application of the method to real BMB data. For the first time in the literature BMB iron 

content (i.e., mass) has been reported at least for "fractional BMB,,2, as well as non-

invasive estimates of iron concentration and true lesion diameter (i.e., unobscured by the 

blooming effect). The iron mass was measured by atomic absorption spectrometry, 

which is considered a gold standard for measurement of metal content. Dian1eters were 

estimated based on a novel method using the diameter of the inner-most hyperintense 

2 Because the majority were visible on cut tissue surfaces, we may refer to our lesions as "fractional BMB". 
Therefore, technically iron content in analogous intact lesions is likely higher on average, and our reported 
values can be considered order of magnitude lower bound estmates oftypicaJ 8MB. This minor detail was 
not appreciated at the time when the paper of Chapter 4 was submitted and does not alter significant results. 
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ring in axial images as the best estimate for the lesion diameter. In addition, the phase 

diameters were defined (e.g., r3ff, rh, etc.) based on the phase wraps observed in the 

images. The phase diameters can be used as bounds to the best diameter estimates, or can 

provide an objective definition of lesion "diameter". Importantly, these diameter and 

concentration estimates do not depend on a knowledge of source density or susceptibility. 

However, signal to noise ratio and pixelization will ultimately limit the resolution of the 

estimates. 

Finally, the collagenase induced BMB experiments (Chapter 5) sought to apply 

localized iron quantification to an in vivo animal model. A plot of iron mass against r 'ff3 

confirmed significant linear relationships between variables (Chapter 5, Fig 5.3). 

However, compared to the other experiments the relationship was weaker. In addition, 

although lesion iron content was on average greater than in the human study, dipole 

patterns in phase image at 4.7T were not as distinct as the other studies. Nevertheless, it 

is the first report of a collagenase -induced BMB animal model, and the first investigation 

of localized iron quantification using dipole properties of phase images in the rat brain. 

Despite the limitations, our results show that phase image methods can potentially be 

applied for localized in vivo quantification in the living rodent brain. 

In addition to individual contributions, the completed four experiments 

complement each other. For example, comparing Table 2.1 of Chapter 2 and Table 4.1 of 

Chapter 4, it can be seen that the Ch-Fe sample diameters and radii are not just 

theoretically relevant to real BMB as discussed in Chapter 2, but are indeed relevant. In 

addition, the slopes of the phantom and human iron mass curves (Chapter 2, Fig 2.4A and 

Chapter 4 Fig 4.4, respectively) can be compared using Eqs. 4 and 5 of Chapter 4 to 
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conve11 between r nand r' n. The phantom slope is 2810 Ilg/cm3 whereas the corrected 

human slope is of the same order of magnitude and becomes 3612 Ilg/cm3. This implies 

that the mass susceptibility of the BMB (L'.x/p) is smaller than that of the Ch-Fe. 

Therefore, the concentration of the Ch-Fe solution used to make the phantoms can 

potentially be diluted to match this mass susceptibility. 

Significant of Results 

Taken together these four experiments represent a body of knowledge pertinent to 

localized iron quantification in general and to BMB in specific. While more work 

remains to be done, this research lays a foundation for non-invasively measuring 

localized iron content, iron source diameter, and source iron concentration. Because the 

dipole patterns are easy to identifY in the presence of noise, our methods can potentially 

be automated (Mills et aI., 2009) (discussed below). Therefore, in combination, one can 

potentially identifY a MR image feature based on a dipole pattern(s), count the number of 

such features in the image, estimate the effective diameter or volume of the source, 

classify each identified feature using the size information, classifY each feature based on 

position in the image or in relation to other features, quantifY the amount of iron in each 

source, and finally calculate a pertinent index based on this data (eg, the total amount of 

iron in all BMB greater than 1 mm in diameter but less than 5 mm in diameter located in 

the temporal lobes"). In short, an automated "count, classifY, and quantifY" scheme is 

possible. 
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Clinical Relevance 

BMB are associated with ischemic and hemonhagic stroke, cerebral amyloid 

angiopathy (CAA), neurotrauma, Alzheimer's disease (AD), vascular dementia, cognitive 

decline, hypertension and age (Cordonnier et a!., 2007, Greenberg et a!., 2009, Menon et 

a!., 2009, Kimberly et a!., 2009, Igase et a!., 2009, Jeon et a!., 2009, Fazekas et a!., 1999, 

Vernooij et a!., 2008, Knudsen et a!., 2001, Tong et a!., 2003, Tong et a!., 2004, Seo et 

a!., 2007, Yakushihi et a!., 2008, Kirsch et a!., 20ID, Stalls et a!., 2009, Sveinbjornsdottir 

et a!., 2008). The presence ofBMB in ischemic stroke, intracerebral hemorrhage and 

CAA is associated with future hemorrhage (Soo et a!., 2008, Jeon et a!., 2007, Greenberg 

et a!., 2004, Greenberg et a!., 2009). Whether there is an increased risk of bleeding 

associated with thrombolytic and antithrombotic agents when BMB are present is an 

important open question (Greenberg et a!., 2009, Soo et a!., 2008, Vernooji et a!., 2009, 

Lee et a!., 2009). Thus, BMB are seen to be associated with both chronic and emergency 

illness of significant social and economic impact, especially in light of our aging 

population. 

Because BMB present a source of potentially cytotoxic iron to the brain 

proportional to extravasated blood, the quantified iron content of BMB is potentially a 

valuable biomarker (Schenck & Zimmerman 2004, Haacke et a!., 2005, Greenberg et a!., 

2009). As discussed in Chapter 4, recent reports in the literature have used BMB number 

as the basis for clinical interpretation. However, measurement of iron content as a 

continuous variable goes beyond an assessment of pathologic severity based on presence, 

absence or count of a discrete number of bleeds, and potentially allows the 

characterization of severity at the level of a single bleed, groups of bleeds, brain region or 
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whole brain. For example, indices of iron load or disease burden could be defined as e.g. 

"the sum of the iron content for all lobar BMB". The extent of the added value and 

clinical usefulness of such characterizations in relation to diagnostic criteria, prognostic 

standards or therapeutic recommendations merits further study. 

Several investigators have developed systematic BMB rating scales for reliable 

measures of presence, number, anatomical location, certain/unceliain status, and/or size 

(Cordonnier 2009, Gregoire 2009). Results of the present study suggest that quantified 

iron content could add value to such discreet data sets. For example, total iron load as 

opposed to number of "certain BMB in the parietal cortex" could be compared between 

subjects of a study. 

It is well known that BMB hypo intensities seen in magnitude GRE T2* images 

typically appear larger than the actual tissue lesion. This so called blooming effect varies 

with field strength, scan parameters and magnetic susceptibility of the source (Pintaske et 

aI., 2006b, Bos et aI., 2003). Schrag et aI., recently reported an average hypo intensity 

magnification factor of 1.57 based on3T images of 13 lesions in postmortem CAAIAD 

brain (Schrag et aI., 20 I 0). Although a recent Microbleed Study Group review 

recommends the presence ofT2* blooming in BMB identification criteria, it also 

discourages the use of size due primarily to the blooming effect (Greenburg et aI., 2009). 

The BOMBS rating scale (Cordonnier et aI., 2009), but not the MARS rating scale 

(Gregoire et aI., 2009), classifies BMB according to size. The MARS scale authors' 

remark that size descriptions "may Ulmecessarily complicate the rating without adding 

extra useful information" (Gregoire et aI., 2009). However, results from Chapter 2 and 

particularly Chapter 4 demonstrate that BMB diameter can potentially be measured, 
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estimated or defined in phase images unobscured by the blooming effect (McAuley et aI., 

2010a,2010b). Further, Eqs. 4 & 8 from Chapter 4 reveal that these determinations can 

in principle be compared across field strengths and echo times. With this new found 

ability, the benefits of size criteria should be revisited. Indeed, for definitions of iron 

load indices to be usefully compared between studies or clinical situations, BMB 

minimum and maximum size limits are necessary. Source dimension quantification in 

principle allows an objective definition of such inclusion limits. 

Relevance to Basic Science 

Another possible area of application of the proposed quantification methods is in 

animal models of microvascular disease. For example, therapeutic agents could 

potentially be tested by monitoring BMB iron load following treatment, or the temporal 

evolution of iron mediated tissue damage could be followed . Chapter 5 shows that 

bleeding lesion dipole patterns are visible and quantifiable in the rodent brain following 

iron deposition on the order of I )lg (Chapter 5, Table 5.1). Application of the proposed 

methods to other animal models of bleeding (Winkler 200 I, Nishimura et aI., 2006) 

would also be of interest. In addition, magnetically labeled cell tracking methods could 

potentially benefit from the quantitication methods of the present research (McAuley et 

aI., 20 lOa). Diameter estimates may shed light on cell division status, removal of 

blooming could provide more precise information on cell cluster location relative to 

anatomic structures, and localized iron content may shed light on labeled cell number. 

166 



Relevance to Industry 

The methods described in this dissertation could also find application in industrial 

applications. While we have focused on iron quantification, the methods are generally 

applicable to other sources of susceptibility. Investigation into MR based identification, 

distribution, and discrimination of objects and materials have been reported (Robson and 

Hall et aI., 2005) and may benefit from the present work. For example, the ellipsoidal 

frame work of Chapter 3 covers several shapes including spheres, disks, rods and general 

ellipsoids and may find use in applications where the orientation and/or shape of scanned 

objects is known. 

Relation to Literature 

As the title of this dissertation suggests the essence of this research concerns 

quantification of localized iron sources using MR phase images. We exploit the dipole 

pattern in the phase image analysis. Eq. I of Chapter 2 implies that the dipole phase is 

proportional to the perturbation in the local magnetic field. In simple terms, these means 

looking at the phase is essentially looking at the magnetic field. The local field is altered 

by an iron source because of the magnetic field induced in it by the main field magnet of 

the MRl system. The extent to which a field can be induced in a material is quantified by 

its magnetic susceptibility. 

The relationship between susceptibility and phase has been exploited in several 

studies. Oxygen dependent susceptibility differences were used to separate arteries and 

veins (Wang et aI., 2000). Unwrapped phase maps have been used to obtain iron 

susceptibility measurements in gerbil cardiac tissue however, the calculation was 
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complicated by constant phase term (hyperfine contact shift) (Wang et aI., 2005). The 

high pass filtering used in the present study beneficially removes constant phase terms 

and the resulting complications of data analysis. Cheng et aI., used a more complicated 

summation of the complex MR signal (i.e., with respective real and imaginary magnitude 

and phase components) that uses most surrounding pixel information to quantifY the 

susceptibility of cylindrical phantoms (Cheng et aI., 2007). Several other authors have 

studied MR dipole properties (Pintaske et aI., 2006a, Bos et aI., 2003, Kim et aI., 1993, 

Pintaske, et aI., 2006b) including application to phase images (Robson and Hall, 2005, 

Dixon et aI., 2009, Mills et aI., 2008). The former two are now discussed in more detail. 

While there are no reports (to the best of my knowledge) to quantifY localized 

iron sources in brain per se, there are a few reports that studied localized susceptibility 

effects (including due to iron) outside of the brain exploiting dipole patterns in phase 

images. Some of the concepts described in these studies that are relevant and influential 

to the present study were understood independently by the dissertation author. However, 

citation and credit is appropriately given to these studies because they appear first in the 

literature. 

The mathematical theory of the method discussed in the phantom study (Chapter 

2) is based on well know physics and the rffimage parameter. While the concept ofrff 

was understood independently (but several years later) by the dissertation author, the r ff 

parameter was first reported in the literature by Robson and Hall in 2005 (Robson and 

Hall, 2005). It was measured from dipole patterns in phase images due to cylinders of 

varying magnetic susceptibility (cylinders filled with air or a manganese chloride 

solution) and used to compare experimental and theoretically predicted magnetic 

168 



moments. Since magnetic moments are proportional to products of geometric parameters 

(eg, radius of spheres) and susceptibility, determining magnetic moments in known 

localized geometry (such as spheres) is essentially localized qnantification. Thus, in a 

fundamental way, the theory for localized quantification and determining source diameter 

from phase image underlying this project was in essence described by Robson and Hall 

(Robson and Hall, 2005). However, their predicted magnetic moments based on 

experimentally measured r1( value did not reliably match theoretical calculations for 

larger magnetic moments, and they reported that "Thus, although it is possible to measure 

the dipole moment of an object using MRI, such measurements do not give a reliable 

value; ... ". This could possibly be explained by inadequate backgrowld phase removal 

due to the empty scanner subtraction technique they employed. However, sample 

magnetic moments in the phantom study are much smaller than theirs, so direct 

comparison with our study may not be fully straight forward. In any case, the results of 

Chapter 2 are reliable over the full range of iron masses reported and thus represent a 

succes:,ful demonstration of the feasibility of quantification of localized iron content and 

source diameter using phase image parameters such as r 1(. In addition, by assuming a 

constant density and magnetic susceptibility, and using spherical geometry, the present 

research formulates the quantification method slightly differently than the Robson and 

Hall study. Under these conditions, a simple linear model is constructed that relates iron 

mass to r;. [n practice, the iron sources can be regarded as having similar physical and 

magnetic properties, and small variations of these properties are somewhat "averaged 

out" when the slope of the line assumed to relate them is determined. A main advantage 

of the linear model is its simplicity. 
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Dixon et a!., attempted to predict the known iron mass of in three injections of 

iron oxide into muscle in two postmortem rat legs (Dixon et a!., 2009). The localized 

sources, which were apparently not spherical, were analyzed using phase images. Dipole 

patterns from an assumed point source were fit using a least squares method to the actual 

phase distribution surrounding the non-spherical iron oxide injections. The results 

comparing known and experimental estimates (three samples) were not consistent, 

possibly because the method used to remove background phase was not adequate, or that 

the point source dipole pattern did not adequately represent the true geometry of the 

source. In the present research, dipole feature measurements in phase images were 

shown to be consistently linearly related to iron mass for 22 iron oxy-hydroxide samples 

(Chapter 2 phantom and Chapter 3 postmortem rat brain Ch-Fe injections), and 27 actual 

bleeding lesions (Chapter 4, in postmortem human, and Chapter 5, in living rat brain). 

In the present experiments, we used high-pass homo dyne filtering to remove 

background phase effects. These effects can confound the dipole signal so that phase and 

phase parameters (e.g., r,,) are not measuring the dipole signal alone, leading to 

inaccurate results. The use of high pass filtering could in pati explain our success 

compared to (Robson and Hall, 2005) and (Dixon et aI., 2009). In addition, in the 

phantom paper we discuss the need of adequate background removal, and complete 

removal is stated as an assumption in the theory of our method. The phantom paper also 

provides a somewhat thorough mathematical, physical, and image processing description 

of an r" method applied to a localized spherical source. Finally, in Chapter 3 we expand 

the phase image parameter approach by introducing extensions to the r" parameter for use 

with ellipsoidal geometries (a '", b * ", a", b ", and c ,,), and in Chapters 4 and 5 we use the 
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1" ff parameter in quantification. Thus, the present research elaborates and expands upon, 

as well as successfully uses, the concepts published by Robson and Hall and Dixon et al. 

Novel Contributions 

Novel contributions of the research presented in this dissertation are now briefly 

summarized and listed: I) The present research successfully demonstrated the feasibility 

of quantification of A) iron content, and B) effective diameter of localized iron sources. 

2) High-pass filtering of phase images was incorporated into a localized method to 

remove confounding background phase. 3) While a work in progress, in the triaxial 

method of Chapter 3, A) the spherical method was extended to non-spherical sources, 

using B) multiple phase image orientations, C) an ellipsoidal mathematical formulation, 

D) numerical methods, E) a 'ff, b * ff, a ff, b ff, and C ff measurements, to relate image 

parameters to iron content. 4) The parameter I' 'ff was used in a spherical method 

providing better dynamic range in a pixilated environment compared to r,y. 5) Results 

from Chapter 4 suggest that our method with a simple spherical assumption may be 

effectively applied to postmortem human BMB. 6) We report lower bound iron content 

ofBMB from AD/CAA postm0l1em brain based on AAS measurements. 7) We 

introduce an alternate method to estimate localized source diameter based on geometry 

alone and without requiring knowledge of source susceptibility or density, or the use of a 

standard curve. 8) We report upper bound estimates of diameter in real BMB and lower 

bound real BMB iron concentration estimates. 9) We present a tentative standard curve 

for image parameter based iron content estimation in real AD/CAA postmortem BMB. 

10) We introduce a collagenase-induced BMB rat model, and 11) demonstrate the 
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feasibility of our method for localized iron content estimation in the rodent brain. 11) We 

introduce a rectangle based method to measure phase image parameters (e.g., r ff, d'). 12) 

We introduce the use of the Ch-Fe material as a mimic of hemosiderin. 13) We report a 

technique to make very nice spherical samples of known iron content in MR phantoms. 

Potential Automation 

It had been recognized that automated BMB detection may further improve 

interrater agreement (Gregoire et aI., 2009). In addition, while researchers may have time 

to identifY BMB over several days (Ahaz et aI., 2010) clinicians do not have this luxury. 

Moreover, the image and data processing time involved in our methods is time intensive. 

Therefore, for such techniques to be widely applicable in a clinical setting, full or semi­

automation is probably necessary. 

Mills et aI., recently exploited the distinct dipole pattern in MR phase images to 

automatically identify and count SPIO agents (Mills et aI., 2008). Our results suggest 

that the scale of such dipole templates can be related to the iron content of the dipole 

source. In other words, because the vertical distance from the dipole template center to 

the n-wrapping interfaces is equal to r ' ff, matching a template dipole to a source dipole 

pattern effectively determines its iron content. Diameter information can similarly be 

determined in axial phase images. Therefore, using appropriately scaled dipole templates 

(eg, varying r 'ff and rff parameters) BMB could potentially be not only identified and 

counted as reported in (Mills et aI., 2008), but simultaneously their iron content and 

diameter could be estimated. This is the basis for the "count, classifY, and quantifY" 

method proposed above. 
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Limitations 

There are several limitations in this project and to our quantification methods. 

Limitations to Phase Images 

While possessing several advantages over magnitude images for iron 

quantification (Haacke et aI., 2005, McAuley et aI., 2010a) phase image approaches also 

have limitations. Phase contrast depends on source geometry and orientation with respect 

to the main magnetic field. In addition, field perturbations extend beyond sources of 

susceptibility resulting in the altered contrast of sun'ounding tissue (Shmueli et aI., 2009, 

Schafer et aI., 2009). These effects of non-locality and directionally -dependent contrast 

ultimately arise from the fundamental physical nature of the magnetic field (e.g., 

solenoidality) and cannot be fully eliminated. However, our method actually uses these 

propeliies to quantifY iron in local sources. Image parameters are related to magnetic 

field intensity on the directionally dependent dipole pattern outside the localized source. 

Advantage is conferred by providing additional dynamic range in pixilated images. This 

allows resolution of very small sources that would not be otherwise resolved. This range 

can be increased by increasing echo time provided that the concomitant loss in SNR is 

not too large. 

Assumed linearity 

Our method is a linear model based on the assumptions of unifonn iron density 

and susceptibility. In the postmortem human experiment of the present study (Chapter 

4), the very good linear correlation between iron mass and,.' ff seems to imply that these 
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BMB have a relatively small variance. However, because our BMB represent a small 

number of cases and a specific disease population, it is not possible to draw conclusions 

about BMB in general. Therefore, at best the plot of Chapter 4, Fig 4.4 can only be 

regarded as a tentative standard curve. Values of BMB iron density and susceptibility in 

normal and diseased cohorts have not been repOlied in the literature. Such work will be 

necessary before our results can be safely generalized and compared with other studies. 

More fundamentally, whether iron densities and susceptibilities vary with a narrow 

distribution and generally allow the application of the linear model remains to be 

determined. 

Background Phase 

Our approach assumes background phase has been reduced to negligible levels. 

Background phase removal is a fundamental problem in phase imaging and several 

approaches have been used, including: estimating phase from modeled susceptibility 

sources (Neelavalli et aI., 2009), numerical smooth and fit techniques (Duyn et aI., 2007) 

(Duyn et aI., 2007), simple subtraction (Cheng et aI., 2007), and homodyne high pass 

filtering (Wang et aI., 2000). Since phase dipole patterns are the result of aliasing, all but 

the latter method necessitate an additional phase unwrapping step before background 

removal, and this was a major reason we originally chose the filtering approach in our 

phantoms. In all our experiments (Chapters 2 - 5) the expected linear relationships were 

observed, and as discussed above, the use of the HP filtering is assumed to be a 

significant element to in the success of our method when compared to other studies 

involving localized susceptibility sources. However, filtering size was deternlined 
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empirically and differed between, e.g., the phantom experiments (32x32) and postmOliem 

human (I6x32 filter). 

Several important questions surrounding filtering associated with localized 

susceptibility sources merit further study. For example, to what extent do differing filter 

sizes affect the consistency of iron quantification results within and between studies? 

What is the most effective way to optimally and objectively choose a filter size? Are 

alternate methods of background removal superior to filtering? These, and other related 

questions, must be addressed by future research before our localized methods can be 

widely applied with confidence. 

Practical Limitations 

The present research was conducted in using very small fields of view (2.2 - 3 

cm) and mostly at very high field 11. 7T. Eqs. 4, 5, and 8 of Chapter 4 imply in principle 

that equivalent r,T and r'ff values are achievable even with the clinical state of the art 3.0T 

magnets. For example, at 3.0T an echo time of27 ms is required to produce dipoles with 

the same r' ff values as in the postmortem human study of Chapter 4 (Eq. 8), a value well 

within current use in BMB detection (Gregoire et aI., 2010, Greenburg et aI., 2009). 

However, practical issues concerning questions of adequate SNR and sufficiently short 

scan times have yet to be addressed with acquisitions using FOV s that are an order of 

magnitude larger than in the current study. 
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Idealization Bias 

In our postmortem human (Chapter 4) and in vivo rat brain (Chapter 5) studies, 

BMB were excluded from analysis because associated phase dipole patterns were deemed 

too faint, distorted or altered by background phase to give reliable results. Therefore, our 

results may be biased toward best-case scenarios. In practice, whether in a clinical or 

experimental context, malformed and ambiguous phase image features are likely to 

present. How often these cases occur and to what extent the overall utility of the method 

is affected must be informed by further research. However, it is likely that an automated 

computer pattern recognition approach could prove more effective than human judgment 

in ambigous cases. At least such approaches could be designed to include objective 

criteria that could be consistently applied across data sets. For example, subtle pixel 

intensity gradients could be employed to determine ll-wrapping points when no distinct 

phase jump appears to be present, or scaled dipole templates could be correlated with 

actual dipole pattern pixels similar to the method reported by Mills et aI., (Mills et aI., 

2008) to determine dipole phase pattern parameters. Curve-fitting algorithms could be 

applied to hyperintense phase rings to give best fit estimates of the source diameter. 

Finally, it is possible that certain distorted dipole patterns are actually superpositions of 

two or more susceptibility sources. Methods that seek to analyze irregularly shaped 

images by composition/decomposition in constituent parts (e.g., individual dipoles of 

varying sizes) might be helpful in such cases. 
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Future Work 

There are several aspects of this research dissertation that appear very promising. 

However, many results represent initial steps and more work will be needed before the 

extent of the usefulness of the localized quantification methods is clearly seen. The 

Limitations section suggests that more work is required before the method can reliably be 

applied in experimental animal systems and in clinical settings - most of which are 

technical. An imp0l1ant technical question in the clinical setting is whether phase image 

parameters can be measured at sufficient resolution using clinical scanner hardware. 

Such research is ongoing. However, even iftechnical obstacles are successfully 

overcome, such as adequate SNR and reasonably short clinical scan times, the extent to 

which quantification and classification of BMB iron content adds value in clinical 

settings remains to be demonstrated. For example, is knowing the total iron extravasated 

due to several BMB in a brain region more informative and clinically relevant than 

simply knowing the number of BMB in the region? Such questions will eventually 

require clinical research experiments. 

Conclusion 

In conclusion, the current research project proposes a family of methods that use 

phase image features to quantifY iron content and effective diameter in localized brain 

iron sources. The techniques have been tested in phantom, postmortem and living rat 

brain, and postmortem human tissue systems, using both modeled and actual BMB. 

Several novel contributions have been described in each of the four experimental 

systems. Notable results in the application of our method include non-invasive estimates 
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ofBMB (upper bound) true diameter and (lower bound) iron concentration, and a 

tentative standard curve allowing BMB iron content estimates in postmortem AD/CAA 

brain based on phase image parameters. Our methods potentially allows the definition of 

iron load or disease burden indices from the level of a single bleed, to the whole brain 

(e.g. "the sum of the iron content of all lobar BMB"), as well as the classification of 

BMB by size unobscured by the blooming effect. A "count, classify and quantify" 

method can potentially be fully or semi-automated, and results can in principle be 

compared across field strengths and echo times. Such infolmation potentially could 

enhance prognostic and diagnostic criteria in the context of cerebral vessel disease 

associated late onset dementias, as well as inform treatment decisions e.g. regarding the 

use of thrombolytic or thrombotic agents. However, technical feasibility and the tangible 

value of information derived from these teclmiques to clinical or research settings 

remains to be determined. impoliant future steps include testing and validation of the 

methods on clinical scanners and under clinically practical scan time constraints, research 

into the physical and magnetic properties of BMB iron, and investigation of robust 

filtering and background phase removal techniques. 
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