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ABSTRACT OF THE DISSERTATION 

Radiosensitization of Head & Neck Carcinoma Cells by Linifanib, A 

Receptor Tyrosine Kinase Inhibitor 

 

 

Heng-Wei Hsu 

Doctor of Philosophy, Graduate Program in Pharmacology 

Loma Linda University, December 2013 

Dr. Saied Mirshahidi & Dr. Chien-Shing Chen 

 

 

Tumor angiogenesis is a hallmark of advanced cancers and promotes invasion and 

metastasis. Over 90% of head and neck squamous cell carcinomas (HNSCC) express 

angiogenic factors such as vascular endothelial growth factor (VEGF). Since 

radiotherapy is one of the most commonly used treatments for HNSCC, it is imperative to 

identify the interactions between antiangiogenic therapy and radiotherapy, and to develop 

combination therapy to improve clinical outcome. The mechanisms between 

antiangiogenic agents and ionizing radiation are complicated and involve many 

interactions between the vasculature, tumor stroma and tumor cells. The proliferation and 

metastasis of tumor cells rely on angiogenesis/blood vessel formation. Rapid growing 

tumors will cause hypoxia, which up-regulates tumor cell survival factors, such as VEGF 

and hypoxia-inducing factor-1α (HIF-1α), giving rise to more tumor proliferation, 

angiogenesis and increased radioresistance. Thus, agents that target new tumor vessel 

formation can modulate the tumor microenvironment to improve tumor blood flow and 

oxygenation, leading to enhanced radiosensitivity. 

Signal transducer and activator of transcription 3 (STAT3), is a potential 

modulator of VEGF expression and regulates cell-cycle progression, angiogenesis, 

metastasis and apoptosis. Approximately 80% of HNSCC exhibit up-regulation of 
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STAT3 expression, which theoretically mediates radio-resistance and chemo-resistance. 

Therefore, inhibition of STAT3 may render tumor cells growth arrest and/or apoptosis. 

Recently it has been discovered that DNA damage can induce the expression and 

secretion of interleukin-6 (IL-6), resulting in the activation of STAT3 signaling pathway. 

Therefore, by inhibiting STAT3, one can also inhibit DNA damage repair and induce 

apoptosis in tumor cells.  

In this project, we tested the feasibility of Linifanib (ABT-869), a multi-receptor 

tyrosine kinase inhibitor of VEGF and platelet derived growth factor (PDGF) receptor 

families, on radio-sensitization of HNSCC. The results show that Linifanib (ABT-869) 

can induce an antitumor effect and radio-sensitize HNSCC cells via inhibition of STAT3 

signaling pathway. Combining antiangiogenic targeted agent such as Linifanib (ABT-

869) with radiation to enhance tumor killing and apoptosis may provide a novel 

therapeutic strategy and improve efficacy of radiation against HNSCC in the future.  
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CHAPTER ONE 

INTRODUCTION  

Head and neck squamous cell carcinoma (HNSCC), including cancers of the oral 

cavity, oropharynx, hypopharynx, pharynx and larynx, is the sixth most common cancer 

worldwide with approximately 600,000 new cases diagnosed each year (Saman, 2012). 

The risk factors are tobacco and alcohol consumption (Saman, 2012), human 

papillomavirus (HPV) (Gillison et al., 2012; Kundu and Nestor, 2012), Epstein-Barr virus 

(EBV) (Lui et al., 2009; Ho et al., 2013), areca nut (Tseng et al., 2012), and dietary 

factors, like higher red meat consumption (Saman, 2012). Two-third of patients are 

presented with advanced disease, a combined modality treatment with surgery, radiation 

therapy and chemotherapy is current standard of care (Forastiere et al., 2001). 

Surgery can be performed if complete tumor resection is possible (Bonner et al., 2006), 

however the majority of patients with advanced stage HNSCC are inoperable. The most 

frequent treatment is to combine chemotherapeutic agents with radiation (Pan et al., 

2009). Although concurrent chemo-radiation protocols are effective in treating HNSCC, 

treatment outcomes vary considerably and cytotoxic side effects are significant (Yin et 
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al., 2011). In addition, tumor control and survival are still unsatisfactory. Even those who 

have achieved complete remission have a reported local recurrences incidence of 50% to 

60%, and distant metastases develop in 20% to 30% of cases, with the 5-year overall 

survival rate less than 50% (Sahu and Grandis, 2011). 

Recent studies have focused on the use of novel molecule-targeting agents as they 

have non-overlapping side effects and can be incorporated with existing treatment 

modality of HNSCC to improve outcome. Targeting epidermal growth factor receptor 

(EGFR) becomes a rational approach for HNSCC treatment since higher expression of 

EGFR has been associated with resistance to radiation and/or chemotherapy (Bonner et 

al., 2006; Vermorken et al., 2008). Cetuximab, a monoclonal antibody against EGFR, is 

an FDA-approved targeted agent for the treatment of advanced HNSCC (Kundu and 

Nestor, 2012; Vincenzi et al., 2010). Combination of cetuximab and radiation improves 

the overall survival in patients with locally advanced HNSCC, compared to radiation 

alone (49 months versus 29.3 months, P=0.03) (Bonner et al., 2006; 2010). In order to 

provide personalized medicine and continue to improve outcome, other novel targeting 

strategies are needed. In the past 5 years, antiangiogenic therapies have seen a rapid 

ascent into mainstream clinical practice. Since angiogenesis is a hallmark of advanced 
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and metastatic cancers, combining anti-angiogenic agents and radiation seems to be 

feasible, and warrants further investigation. 

 

The Role of Angiogenesis in Tumor Growth and Metastasis 

Angiogenesis is defined as the process of forming new blood vessels to support 

tissue growth. It involves endothelial cell differentiation, proliferation, migration and 

cord formation, which lead to tubulogenesis to form vessels (Rahimi, 2006). Four 

decades ago, Judah Folkman was the first to demonstrate that angiogenesis is important 

for the growth and survival of tumor cells (Folkman, 1971). The relationship between 

angiogenesis and tumor growth suggests that both tumor cells and their supporting 

endothelial cells are potential targets for cell killing and should be considered when 

planning cancer treatment (Menard and Camphausen, 2002). Also, solid tumors will not 

grow larger than 2 to 3 mm in diameter in the absence of new blood vessels, and require 

angiogenesis to metastasize (Folkman, 1995). Vascular supply is an essential component 

of the progressive growth of solid tumors because cells in solid tumors, must receive 

oxygen and other nutrients to grow (Folkman, 1976). The “tumor cord” model implied 

that hypoxic cells exist in a state of oxygen and nutrient starvation at the limits of the 

diffusion range of oxygen, and it was hypothesized that tumor cells could proliferate and 



4 

grow only if they were close to a supply of oxygen from tumor stroma. To increase in 

size beyond this passive diffusion-limited state, the growing tumor mass must acquire 

new blood vessels. A switch to the angiogenic phenotype allows the tumor to expand 

rapidly. This so-called “angiogenic switch” (Hanahan and Folkman, 1996) is regulated by 

environmental factors and by genetic alterations that act to either up-regulate 

proangiogenic factors (i.e., VEGF and bFGF) and transforming growth factors (TGF-α 

and TGF-β) and/or downregulate inhibitors of angiogenesis, i.e., angiostatin, endostatin, 

thrombospondin, and IFN-α (Los, 2011). Meanwhile, secretion of proteolytic enzymes, 

including matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), 

can break down extracellular matrix and basement membranes and allow endothelial cells 

to migrate and organize themselves into pericyte supported tubules, eventually, tumor 

cells metastasize out (von Tell et al., 2006). A key feature of these new tumor vessels is 

that they are structurally abnormal and differ in their behavior from normal blood vessels. 

These incomplete endothelial lining and interrupted basement membranes result in an 

increased vascular permeability with extravasation of blood plasma and of red blood cells 

expanding the interstitial fluid space and drastically increasing the hydrostatic pressure 

(interstitial fluid pressure, IFP) in the tumor interstitium (Vaupel, 2004). Such “leaky” 

and inefficient tumor vessels deliver less blood, oxygen, nutrients, and ultimately 
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anticancer drugs to the tumor, increasing hypoxic conditions and thereby keeping the 

angiogenesis cascade continuously active (Bergers and Benjamin, 2003). 

Hypoxic condition (pO2 < 2.5 mmHg) can lead to elevated activity of DNA-repair 

enzymes and resistance-related proteins, increased transcription of growth factors, and 

genomic changes (genomic instability leading to clonal heterogeneity and selection of 

resistant clonal variants, like cancer stem cells) (Vaupel, 2004). This is the most potent 

stimulus for induction of VEGF, which occurs by activation of Src kinase (Park et al., 

2012). Src kinase activation leads to an increase in HIF-1α and consequent upregulation 

of VEGF expression (Dal Monte et al., 2011). Other growth factors stimulating VEGF 

production include insulin-like growth factor (IGF)-I and -II, EGF, and PDGFs. There are 

some signaling pathways related to the up-regulation of VEGF, like PI3K/AKT, 

RAS/MAPK and STAT pathways (Jasinghe et al., 2008; Wong et al., 2009; Zhou et al., 

2009). Although VEGF causes a large increase in blood vessel formation, these vessels 

are immature, tortuous and leaky. The formation of thicker, more stable vessels requires 

encapsulation by pericytes that is driven by PDGFR-β signaling. In other words, PDGFR-

β can support perivascular cells to maintain tumor vasculature formation (Albert et al., 

2006). Low perfusion rates and hypoxia may then coexist with high nonfunctional 

vascular density, creating hypoxic regions. In these regions of hypoxia, endothelial cells 
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may up-regulate survival factors to maintain their integrity and prevent apoptosis 

(Eberhard et al., 2000). Thus, so-called “angiogenic hot spots” or localized regions of 

intense angiogenesis may be created and may be associated with failure of radiotherapy 

(Koukourakis et al., 2001). 

 

Vascular Endothelial Growth Factor (VEGF) and Its Receptors: 

The Role in HNSCC 

VEGF plays a central role in the formation of new blood vessels and its 

importance in HNSCC has been well established (Moriyama et al., 1997). The VEGF 

family of proteins consists of seven ligands, including VEGF A-E and placenta growth 

factor (PLGF) 1 and 2 (Ferrara et al., 2003). PLGF, VEGF-A and VEGF-B are known to 

bind VEGFR-1. VEGF-A, VEGF-C and VEGF-D are known to bind VEGFR-2 (Dorsey 

and Agulnik, 2013; Tammela et al., 2005). VEGF-C and VEGF-D also bind to VEGFR-

3, which is expressed by lymphatic endothelial cells and hematopoietic progenitor cells 

(Achen et al., 2006; Jussila and Alitalo, 2002). VEGFR-1/FLT-1 (fms-like tyrosine 

kinase) and VEGFR-2/KDR/FLK-1 (fetal liver kinase) are primarily involved in 

angiogenesis. Previous reports show that among VEGF family proteins, VEGF-A is the 

most common and can bind to two receptor tyrosine kinases, VEGFR-1 and VEGFR-2, 
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promoting endothelial cell differentiation, migration, survival and induction of matrix 

metalloproteinase (MMPs) (Jain, 2005; Rahimi, 2006). VEGFR-1 is more involved in the 

development of the vascular system during angiogenesis. VEGFR-2 is the predominant 

mediator of the angiogenic functions attributed to VEGF that exerts its mitogenic, 

chemotactic, and vascular permeabilizing effects on endothelial cells (Christopoulos et 

al., 2011). It also activates signaling pathways such as PI3K/AKT and Ras/MAPK 

pathways to help with endothelial cell proliferation and survival (Ferrara et al., 2003). 

Meanwhile, tumor cells and stromal cells, like endothelial cells and fibroblasts, can 

produce VEGF. Through a paracrine loop, tumor cell VEGF can increase endothelial cell 

survival (Harmey and Bouchier-Hayes, 2002). Since VEGF and PDGF receptors, as well 

as their ligands, are highly expressed in HNSCC, over-expression of PDGF enhances 

tumor formation by stimulating VEGF expression in neovessels and by attracting vessel-

associated pericytes (Guo et al., 2003). Dual inhibition of VEGF and PDGF can markedly 

decrease angiogenesis and inhibit tumor growth in vitro and in vivo (Choong et al., 2010; 

Erber et al., 2004). Therefore, these could be good targets to inhibit angiogenesis for the 

treatment of HNSCC. 

 

 



8 

Signal Transducer and Activator of Transcription 3 (STAT3): The 

Role in HNSCC 

STAT3 is a multi-fuctional oncogenic transcription factor, present in a number of 

different cancer cells including head and neck cancers (Buettner et al., 2002; Leong et al., 

2003; Yin et al., 2010). It is activated by tyrosine phosphorylation via upstream receptor 

that binds to growth factors such as EGF, VEGF, PDGF and interleukin-6 (IL-6) (Garg et 

al., 2005). Approximately 80% of HNSCC exhibit up-regulation of STAT3 expression, 

which implies it may mediate radio-resistance and chemo-resistance (Greten et al., 2002; 

Real et at., 2002).  

Constitutive activation of STAT3 in HNSCC is caused by diverse signal 

transduction pathways. The frequent activation of TGF-α/EGFR and IL-6/gp130/Jak can 

upregulate STAT3 expression in HNSCC (Sriuranpong et al., 2003). Src also plays 

causative roles in STAT3 upregulation. Tobacco and EBV infection activate STAT3 in 

oral keratinocyte and nasopharyngeal epithelial cells. STAT3 up-regulates the levels of 

anti-apoptotic proteins cyclinD1 and c-myc, which result in abnormal proliferation 

(Masuda et al., 2002). Other anti-apoptotic proteins, like Bcl-2, Bcl-XL and Survivin, are 

also targets of STAT3. Overexpressions of these proteins promote cell growth and 

increase chemoradiation resistance. Moreover, it is proposed that these ani-apoptotic 
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proteins protect DNA-damaged cancer stem cells from elimination by apoptosis and 

thereby allow them to expand clonally (Gerl and Vaux, 2005; Yu and Jove, 2004). In 

tumor cells, STAT3 is a positive modulator of VEGF production and secretion, in turn; 

VEGF activates STAT3 in endothelial cells, which enhance endothelial cell migration, 

vessel formation and metastasis. As for innate and adoptive immune responses, STAT3 is 

a negative modulator. Tumor cells expressing constitutively active STAT3 decrease 

markedly the level of inflammatory cytokines, like TNF-α, IFN-γ, RANTES and IP-10, 

therefore inhibit both acute and adoptive immune responses (Jewett et al., 2006; Wang et 

al., 2004). Furthermore, these tumor cells significantly increase the level of 

immunosuppressive cytokines and growth factors like VEGF and IL-10, which inhibit the 

functions of dendritic cells, natural killer cells and cytotoxic T-lymphocytes. As a result, 

tumor cells with constitutive STAT3 activation develop the state of “immune evasion” 

(Jewett et al., 2006). Recent findings also suggest that STAT3 is involved in the process 

of epithelial-to-mesenchymal transition (EMT), thus, tumor cells acquire the ability to 

migrate and metastasize (Christofori, 2006; Thiery, 2002). Taken together, STAT3 

orchestrates HNSCC tumor development and progression (Masuda et al., 2010). (Figure 

1)  
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Figure 1. A proposed mechanism by which HNSCC is addicted to STAT3. Constitutive 

activation of STAT3 in HNSCC is caused by diverse signal transduction pathways, 

therefore, STAT3 is like the Achilles’ heel of HNSCC and can orchestrate tumor 

development and progression. Current Cancer Drug Targets Masauda M. 2010, 10, 117-

126. 

                                       

 

 

 

 



11 

Radiation and Hypoxia 

Radiation-induced DNA double strand breaks trigger cell cycle arrest and cell 

death by apoptosis and/or necrosis. Oxygen is known to be a potent radiosensitizer that 

can promote reactive oxygen species (ROS)/free radicals production, essential for the 

induction of radiation-induced DNA damage (Karar and Maity, 2009). As tumors grow, 

the microenvironment lacks an adequate blood supply, leading to regions that are 

underperfused and poorly oxygenated or hypoxic (Yeom et al., 2011). This can lead to 

radiation resistance as a tumor microenvironment in oxygen deficit can not facilitate 

radiation-induced DNA damage. Hypoxic tumor cells are particularly known to up-

regulate hypoxia-inducing factor 1α (HIF-1α), a key transcription factor which increases 

the expression of VEGF (Kung et al., 2000). After radiation exposure, the induction of a 

variety of transcription factors can activate transcription of growth factors, cytokines and 

cell cycle-related genes involved in multiple pathways and affect tumor cell survival or 

alter tumor cell proliferation. As for angiogenesis, radiation exposure can result in 

activation of EGFR which can activate PI3K/AKT and STAT3 pathways, and upregulate 

VEGF production (Bowers et al., 2001). The release of angiogenic growth factors like 

VEGF and FGF have been recognized as part of the radiogenic response of epithelial 

tumors (Gorski et al., 1999). Protection of tumor vessels by high VEGF levels could 
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thereby contribute to the radio-resistance of tumors (Brieger et al., 2007). It has also been 

shown that Hsp90, EGFR, VEGF and AKT are known to play a role in radiation 

resistance (Sheridan et al., 1997; Tanno et al., 2004). Radiation therapy itself contributes 

to radioresistance by upregulating angiogenic and pro-survival factors, like Bcl-2, Bcl-xL 

and Survivin (Ho et al., 2010; Khan et al., 2010). The increased tumor cell proliferation 

that is often seen after radiation may be the result of up-regulated angiogenic pathways 

(Horsman and Siemann, 2006; Timke et al., 2008). This may lead to factors contributing 

to radiation resistance such as increased interstitial fluid pressure and vascular 

permeability, decreased tumor perfusion, increased oxygen consumption, increased 

hypoxic microenvironment, and up-regulated survival pathways, which makes radiation 

less effective (Jain, 2005).  

 

Antiangiogenic Interactions and Radiation 

 Antiangiogenic agents with radiation have been tested in experimental conditions 

with various tumor models, tumor host strains, starting tumor size, final tumor volume 

measured, and dosing and scheduling (Hendry, 1999). Tumor size can affect oxygen 

tension, nutrient supply, and pH, which are all factors in determining radiation response 

(Horsman and Siemann, 2006). As tumor size increases, oxygen tension and pH decrease 
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because of a greater demand for oxygen and nutrients, and glycolysis dominates, leading 

to acidosis (Vaupel, 2004). A previous study also showed that radiation dose required to 

achieve the same biologic effect is around 3 times higher in the absence of oxygen than in 

its presence, the so-called “oxygen enhancement effect” (Gray et al., 1953). 

Antiangiogenic therapy produces a specific “vascular normalization window”, a break 

when function, structure of tumor blood vessels and microenvironment temporarily 

become normalized (Jain, 2005). Since tumor growth and angiogenesis are part of a 

codependent cycle and antivascular treatments can break this cycle and prevent 

revascularization after radiation (Wachsberger et al., 2003), the potential function behind 

this, is to decrease interstitial fluid pressure (IFP) in tumor tissues and increase blood 

perfusion, so that antitumor drugs can easily penetrate into the tumors. Additionally, it 

will temporarily overcome hypoxia, improve oxygenation to produce more free radicals, 

result in more DNA damage, apoptotic cell death and increase the sensitivity to 

radiotherapy (Tong et al., 2004). Therefore, the alternation of radiotherapy and short term 

antiangiogenic therapy is what produces this seemingly paradoxical effect of 

antiangiogenic therapy via vascular normalization. The concurrent administration of 

radiotherapy and contiguous antiangiogenic therapy will not produce a decrease in IFP 

and increased blood perfusion.   
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Central Hypothesis 

The central hypothesis of our project is that, Linifanib (ABT-869), a 

VEGFR/PDGFR multi-receptor tyrosine kinase inhibitor, can induce an antitumor effect 

and radiosensitize HNSCC cells via inhibition of STAT3 signaling pathway and 

augmenting DNA double strand break in tumor cells. 

 

Significance 

Angiogenesis plays an important role in the pathogenesis of HNSCC. VEGF and 

its receptors are expressed in most cases of HNSCC, and multiple preclinical studies have 

shown that these markers are associated with tumor progression, changes in microvessel 

density and development of lymph node metastasis (Hicklin and Ellis, 2005). Previous 

animal studies demonstrated that inhibition of VEGF markedly decreases angiogenesis 

and tumor growth (Kim, 1993). STAT3 is a potential modulator of VEGF expression and 

regulates cell differentiation, cell-cycle progression, angiogenesis, metastasis and 

apoptosis (Garg et al., 2005). The mechanism of Linifanib (ABT-869), a VEGF/PDGF 

receptor tyrosine kinase inhibitor, combined with radiation therapy as a radiosensitizer on 

STAT3 signaling pathway and DNA damage response has not yet been identified in 

HNSCC. Our study’s contribution is significant; because, for the first time, it defines the 
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mechanism for the role of ABT-869 in the regulation of STAT3 pathway in HNSCC, it 

will be expected to lead to further research on STAT3 signaling mechanism in 

pharmacology. In addition, the positive effects of ABT-869 have been observed in the 

treatment of leukemia and other solid tumors, such as breast, liver, lung and colorectal 

cancers. Identification of mechanisms underlying ABT-869 combined with radiation 

suppression of STAT3 signaling pathway could provide an effective therapeutic for 

HNSCC treatment in the future. 
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Abstract 

Novel targeted therapeutic strategies to overcome radio-resistance of cancer cells 

traditionally treated with radiation may improve patient survival with the added benefit of 

reduced systemic toxicity. Herein, we tested the feasibility of Linifanib (ABT-869), a 

multi-receptor tyrosine kinase inhibitor of members of vascular endothelial growth factor 

(VEGF) and platelet derived growth factor (PDGF) receptor families, on radio-

sensitization of head and neck squamous cell carcinoma (HNSCC). UMSCC-22A and 

UMSCC-22B cells were treated with Linifanib and γ-radiation response was determined 

as well. Cell viability, cytotoxicity, apoptosis induction and cell cycle distribution were 

examined by MTT assay, colony formation assay and flow cytometry. In addition, 

expression of STAT3 and downstream signaling proteins were assessed using western 

immunoblotting. To evaluate DNA double strand break γH2AX was used as a marker. 

Treatment with Linifanib resulted in cell growth inhibition, G2/M cell cycle arrest, 

induction of cell death via apoptosis, reduced phosphorylation of STAT3, which has been 

linked to radio-resistance, lower expression of cyclin D1, survivin, increased PARP 

cleavage and γH2AX expression. In addition, Linifanib overcame the radio-resistance of 

the cell lines and significantly enhanced radiation-induced cytotoxicity (p < 0.05). These 

data suggest the possibility of combining targeted therapeutic such as Linifanib with 
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radiation to enhance inhibition of cell growth and apoptosis in HNSCC cells. Thus, it 

may provide a novel therapeutic strategy and improve efficacy of radiation against 

HNSCC in the future.  

 

Introduction 

Head and Neck Squamous Cell Carcinoma (HNSCC) is the most common 

epithelial malignancy arising in the upper aerodigestive tract, which includes cancers of 

the oral cavity, oropharynx, hypopharynx, pharynx and larynx. It is the sixth most 

common cancer worldwide, with approximately 600,000 new cases diagnosed each year 

(Jemal et al., 2009). Despite advancements in therapeutic regimens, up to 50% of 

HNSCC patients will experience treatment failure, patients who have frequent recurrence, 

the median survival rate will limit less than 1 year (Cooper et al., 2004). The standard 

treatment for loco-regional disease involves surgery and/or radiotherapy in either the neo- 

or adjuvant setting. Concurrent chemoradiation is frequently used as primary treatment 

for patients with advance-stage disease, but only a portion of patients have durable 

responses to cisplatin-based chemoradiation. In addition, cisplatin has a number of side-

effects that can limit its use (Bernier et al., 2004; de Castro et al., 2007). 
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Targeted biological therapies that selectively interfere with cancer cell growth 

signals may improve patients’ survival by enhancing the effects of radiation, with the 

added benefit of reduced systemic toxicity (Yin et al., 2011). Based on retrospective 

cohort study, overexpression of epidermal growth factor receptor (EGFR) correlates with 

worse clinical outcome, making it a logical therapeutic target (Agra and Carvalho, 2008). 

However, the majority of these tumors fail to respond to EGFR inhibitors. Presence of 

EGFR variant III, overactivation of the Ras/MAPK, STAT3 and PI3-K/mTOR pathways 

independent from EGFR by other stimuli such as hypoxia-inducible factor-1α (HIF-1α

), which upregulates vascular endothelial growth factor (VEGF) expression, are potential 

reasons for response failure (Matta and Ralhan, 2009). 

Signal transducer and activator of transcription 3 (STAT3), an oncogenic 

transcription factor, is present in a number of different cancer cells including head and 

neck cancers (Buettner et al., 2002; Leong et al., 2003; Yin et al., 2010). It is activated by 

tyrosine phosphorylation via upstream receptor that binds to growth factors such as 

epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-

derived growth factor (PDGF) and interleukin-6 (Garg et al., 2005). It is also a potential 

modulator of VEGF expression and regulates a variety of critical functions, including cell 

differentiation, cell-cycle progression, angiogenesis, metastasis and apoptosis (Sternberg 
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and Licht, 2005). Approximately 80% of HNSCC exhibit up-regulation of STAT3 

expression, which theoretically mediates radio-resistance and chemo-resistance as 

demonstrated in pancreatic and breast cancer studies (Greten et al., 2002; Real et al., 

2002). Therefore, inhibition of STAT3 may render tumor cells growth arrest and/or 

apoptosis. In addition, it has been shown that STAT3 blockade in tumor cells resulting to 

increased expression of proinflammatory chemokines and cytokines, which led to 

subsequent activation of innate and adaptive anti-tumor immunity (Wang et al., 2004). 

Linifanib (ABT-869) is a novel ATP-competitive receptor tyrosine kinase 

inhibitor in the vascular endothelial growth factor (VEGF) and platelet derived growth 

factor (PDGF) receptor families. It is under active clinical development primarily in solid 

tumors. Previous studies had shown that Linifanib can inhibit PI3K/AKT, RAS/MAPK 

and STAT pathway in acute myeloid leukemia (AML) (Wong et al., 2009; zhou et al., 

2009), and in combination with mTOR inhibitor can inhibit VEGF expression in several 

types of cancers (Jasinghe et al., 2008; Semenza, 2003). 

In search for novel targeted therapeutic strategies to overcome radio-resistance of 

cancer cells, we investigated the role of ABT-869 on radio-sensitization in HNSCC. To 

the best of our knowledge, the effect of ABT-869 on radio-sensitization of head and neck 

cancer cells has not yet been reported. Furthermore, this study aimed to examine whether 
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STAT3 signaling pathway could be inhibited by ABT-869, as a new therapeutic strategy 

to reduce radio-resistance of HNSCC. We found that ABT-869 enhances the radiation-

induced inhibition of proliferation and apoptosis in two HNSCC cell lines. In addition, 

Linifanib reduces phosphorylation of STAT3, which has been linked to radio-resistance. 

Therefore, Linifanib may offer a new therapeutic strategy to reduce radio-resistance of 

HNSCC.  

 

Materials and Methods 

Cell Culture and Reagents 

Radio-resistant HNSCC cell lines were used for this study. UMSCC-22A (SCC-

22A) and UMSCC-22B (SCC-22B) originated from the same patient’s hypopharynx, but 

were derived from primary tumor and metastatic cervical lymph node, respectively. The 

original tumor grade for SCC-22A was T2N1M0, for SCC-22B was T2N1M0 as well 

(Zhao et al., 2011). Linifanib (ABT-869) was kindly provided by Abbott Laboratories, 

Abbott Park, IL. 

 

Cell Viability Assay 

The cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 
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supplemented with 10% fetal bovine serum, 100 U/mL penicillin G and streptomycin and 

1% nonessential amino acids. All cells were cultured in a humidified atmosphere of 5% 

CO2 at 37 oC. Both cells were seeded in triplicate at 8000 cells/well in 96-well plates. 

After growth overnight, the cells were then treated for 48 h and 72h at 37°C with varying 

doses (0 [control], 5, 10, 20 and 40 M) of ABT-869. Cell viability was assessed with 3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT reagent, Roche 

Diagnostics, Indianapolis, IN) according to the manufacturer's protocol. The plates were 

read on a microplate reader (Bio-Rad Model 3550). The similar outcomes were observed, 

in a dose- and time-dependent manner, the shown result was for 48 h. The IC50 values 

(50% growth inhibition) were determined for each cell line and displayed as mean ± SEM 

from at least 3 experiments.  

 

Clonogenic Survival Assay 

Cells were exposed to IC25 & IC50 of ABT-869 for 12 hours before-irradiation 

with a dose of 2, 4 or 8 gray (Gy) at a dose rate of 1.678 Gy/min, using a 60Co source 

(Eldorado machine, Atomic Energy of Canada Ltd, Ottawa, Canada). Culture media was 

replaced with fresh media the next day. Colonies were stained with crystal violet after 12-
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14 days, and the number of colonies containing at least 50 cells was counted. Each 

experiment was done in triplicate. 

 

Cell Cycle Analysis 

Cells (5x105) were exposed to ABT-869 (20 M) or radiation (4 Gy). After 24 & 

48 hrs cells were collected, fixed with 75% ethanol, then treated with propidium iodide 

(PI) and ribonuclease staining buffer (BD Pharmingen) according to the manufacturer's 

protocol. Samples were analyzed by flow cytometry (FACSCaliburTM; Becton Dickinson, 

Franklin Lakes, NJ). For radio-sensitization experiments, cells were treated with ABT-

869, irradiated (4 Gy) and analyzed after 24 & 48 hrs. 

 

Analysis of Apoptosis 

Cell death by apoptosis was evaluated by trypan blue dye exclusion using light 

microscopy (Olympus IX70, Olympus America Inc., PA) and Annexin-V & PI apoptosis 

detection kit (BD Biosciences, San Jose, CA). Briefly, cells were treated the same as for 

the cell cycle analysis. After 24 hrs cells were stained with trypan blue (Thermo 

Scientific) for 2 hrs and then tested under the light microscope (100X & 400X).  Also 
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treated cells were stained with FITC-conjugated Annexin-V in the presence of PI 

analyzed by flow cytometry. Annexin V+ cells were scored as apoptotic cells. 

 

Western Immunoblotting 

The treatment protocol used was the same as for the cell cycle analysis. Twenty- 

four hours after radiation treatment the cells were harvested, washed and resuspended in 

NP-40 lysis buffer. Whole cell lysates (40 μg) were separated through 10-12% sodium 

dodecyl sulfate (SDS) polyacrylamide gels under denaturing conditions and transferred to 

polyvinylidene difluoride (PVDF) membranes (Invitrogen, Carlsbad, CA). The 

membranes were blocked and incubated with the following antibodies; Phosphor-STAT3, 

STAT3 and cPARP (Cell Signaling Technologies, Beverly, MA), cyclin D1, Bcl-2, Bcl-

xL, Mcl-1, AIF (Santa Cruz Biotechnology, Santa Cruz, CA), Survivin (Novus, Littleton, 

CO), γH2AX (EMD Millipore, Billerica, MA) and HRP-conjugated anti-rabbit IgG 

antibody (Cell Signaling Technologies, Beverly, MA). Data were normalized to 

corresponding values of GAPDH densitometry. 

 

Statistical Analysis 

Each assay was performed at least three times as independent experiments. 
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Statistical analyses were done with two-tailed Student’s t-test and performed with Prism 

5.01 software (GraphPad Software, San Diego, CA). A p-value of <0.05 was considered 

as statistically significant. 

 

Results 

Effect of ABT-869 on Cell Growth Inhibition 

To evaluate the cytotoxic effect of ABT-869 on SCC-22A and SCC-22B cell 

lines, MTT assay was used. ABT-869 induced a significant growth inhibition in a dose-

dependent manner (Figure 2). IC50 for these cell lines were 21.2 and 19.4 M, 

respectively. 
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Figure 2. Growth inhibition curve of HNSCC cell lines after ABT-869 treatment. Cells 

were treated with increasing concentration of ABT-869 for 48 hr. Live cells were 

quantitated by MTT assay. Data are displayed as mean ± SEM from at least 3 

experiments.  
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ABT-869 Enhances the Antitumor Growth Effect of Radiation 

To determine whether ABT-869 enhances radiation-induced cell death in 

HNSCC cells, the relatively radiation–insensitive (a 50% killing dose is approximately 8 

Gy) SCC-22A&B cells were exposed to ABT-869 for 12 hr followed by radiation (2, 4, 

or 8 Gy). The impact of the single and combination treatments on cell proliferation was 

then measured by clonogenic cell survival assay.  Figure 3 shows that the surviving 

fraction at 4 and 8 Gy for ABT-869 treated cells was significantly lower than that of 

untreated cells (p < 0.05). This observation suggests that the growth inhibition effect of 

ABT-869 could overcome radio-resistance and significantly enhance the effect of 

radiation. 
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Figure 3. Radio-sensitization effect of ABT-869 on HNSCC cells. SCC-22A & B cells 

were plated and exposed to ABT-869 for 12 hr followed by single radiation dose of 2, 4, 

or 8 Gy. Colony formation picture was shown above. Survival fraction was assessed at 

12-14 days after irradiation. Data are the mean ± SEM of 3 independent experiments. 

Asterisks represent significant difference as compared to untreated control group (*p < 

0.05, **p < 0.01). 
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ABT-869 Induces G2/M Cell Cycle Arrest and Increases Sub-G0 

Population Alone and Enhances when Combined with Radiation 

The observed inhibition of cell growth by ABT-869 could be the result of the 

induction of cell cycle arrest and/or apoptosis. To examine this, SCC-22A&B cells were 

treated with ABT-869 for 24 or 48 hr. The percentages of cells were then examined by 

flow cytometry after PI staining (Figure 4A&B). Compared to control group, we 

observed significant accumulation in G2/M phase in SCC-22A (42.2% versus 23.4% in 

control) and in SCC-22B cells (24.6% versus 17% in control), after ABT-869 treatment, 

indicating that a higher number of cells were blocked in a more radiosensitive phase of 

the cell cycle. In addition, ABT-869 treatment increased sub-G0 population in SCC-22A 

(14.3% versus 4.4% and 22.6% versus 5.2% in control) and SCC-22B (21.6% versus 

8.6% and 31.4% versus 12% in control) after 24-48 hr, respectively. Interestingly, 

radiation alone induced only a transient arrest at G2/M phase at 24 hr. In contrast, the 

combination treatment blocked recovery from radiation-induced cell cycle arrest in SCC-

22A and caused higher accumulation of sub-G0 population in SCC-22B cells, compared 

to radiation alone (48 hr). Next we tested whether ABT-869 enhances the effect of 

radiation on sub-G0 population. Cells were treated (12 hr) with ABT-869 prior to 

radiation (4Gy) and collected 24 hr later. As shown in Figure 4C, ABT-869 in 
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combination with radiation increased sub-G0 population by around 2 fold in both cell 

lines, compared to radiation alone, confirming that ABT-869 sensitized the cells to 

irradiation, hence the synergistic effect of the two treatments. 
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Figure 4. The effects of ABT-869 on cell cycle distribution. (A) SCC-22A and (B) SCC-

22B were treated with ABT-869 20 M combined with radiation and analyzed 24 or 48 

hrs later. (C) SCC-22A & B cells were pre-treated with ABT-869 20 M for 12 hrs, then 

irradiated at 4 Gy. Cells were harvested 24 hrs later. The percentages of cells were 

determined by flow cytometry after PI staining. Data are the mean ± SEM of 3 

independent experiments. (*p < 0.05, **p < 0.01)  
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ABT-869 Induces Cell Death via Apoptosis  

To confirm that the observed ABT-869-induced cell growth inhibition is by 

apoptotic death, cells were treated with either ABT-869, radiation, the combination and 

stained with trypan blue dye exclusion or Annexin-V and PI. We clearly observed 

increased trypan blue dye uptake by cells (dead cells) and morphological changes 

considered dead by apoptosis (cell shrinkage, cytoplasmic blebbing, cytoplasmic 

condensation and irregular shape) in the combination group compared with untreated, 

radiation and ABT-869 alone groups (Figure 5A). We then performed Annexin-V and PI 

staining to confirm and determine apoptotic population changes. ABT-869 treatment 

increased the apoptotic population by 4.61 and 3.11-fold and by 9.15 and 5.33-fold 

increase in combination in SCC-22A & B cells, as compared to untreated and radiation 

alone groups respectively (Figure 5B). Apoptotic cell death after combination treatment 

was significantly higher (p< 0.05-0.01) than that caused by either of the agents alone. 

This was also consistent with increased sub-G0 population (Figure 4C). These data 

suggest that apoptosis could be a major contributor in the ABT-869-caused cell growth 

inhibition and synergistically enhanced the antitumor growth effect of radiation in both 

cell lines. 
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Figure 5. ABT-869 can induce cells to undergo apoptosis. SCC-22A & B cells were pre-

treated with ABT-869 20 M for 12 hrs, or in combination with 4 Gy radiation. Cells 

were harvested 24 hrs after radiation. (A) Light microscopy (100X & 400X) showed that 

ABT-869 treated and combination group resulted in morphological changes, decreased 

cell numbers and more cell death. Trypan blue stain positive cells were considered as 

dead cells. (B) Annexin V and PI staining were used and Annexin V positive cells were 

counted as apoptotic cells. Data are the mean ± SEM of 3 independent experiments (*p < 

0.05, **p < 0.01).  
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Using Stattic as Positive Control to Compare the Apoptotic Effects 

Induced by ABT-869  

Stattic is a well known STAT1 and STAT3 inhibitor in previous literature (Bill et 

al., 2010), we further used it as positive control to evaluate whether the apoptotic effects 

caused by Stattic is similar to those by ABT-869. We first determined its IC50 after 48 

hrs treatment for both SCC-22A&B was around 6 μM. Cells were treated with either 

ABT-869 or Stattic IC50 concentration for 24 hrs. Flow cytometry was performed to 

determine apoptotic population changes like previously described. The data showed that 

ABT-869 can induce similar amount of cell apoptosis like Stattic. (Figure 6) 
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Figure 6. ABT-869 can induce similar apoptotic population changes like Stattic. Cells 

were treated for 24 hrs. Annexin V and PI staining were used and Annexin V positive 

cells were counted as apoptotic cells. Data are the mean ± SEM of 3 independent 

experiments (*p < 0.05, **p < 0.01).  
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Combination of ABT-869 and Radiation Inhibits Activation of the 

STAT3 and Downstream Signaling Pathways  

Because STAT3 is critical in regulating the expression of downstream genes 

involved in apoptosis (Bcl-2, Bcl-xL, Mcl-1, survivin) and proliferation (cyclin D1), 

which has also been associated with both chemo- and radio-resistance in HNSCC, we 

examined the phosphorylation level of STAT3 after cells were treated with either ABT-

869, radiation alone or in combination by western blot analyses. STAT3 is constitutively 

activated at high level in these two cell lines. Densitometry analysis demonstrated that 

combination treatment significantly reduced the level of STAT3 phosphorylation (Figure 

7). We next investigated the effect of ABT-869 on STAT3-regulated proteins. A 

concomitant reduction of expression level of cyclin D1, Bcl-xL, Bcl-2, Mcl-1, survivin 

and increased level of poly (ADP-ribose) polymerase cleavage (cPARP), a hallmark of 

apoptotic cell death (Yoo et al., 2004), were observed in both cell lines. 
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Figure 7. The effects of ABT-869 and radiation on STAT3 and downstream effectors in 

HNSCC cells. Cells were either treated with 20 M ABT-869 or 4 Gy for 24 hrs or pre-

treated for 12 hrs subsequent radiation. Protein expressions were determined by western 

blot. GAPDH was used as loading control. Data are the mean ± SEM of 3 independent 

experiments. 
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Combination of ABT-869 and Radiation Also Induces Caspase-

Independent AIF-mediated Cell Death 

To identify if ABT-869 could induce caspase-independent cell death, we further 

detect the expression of apoptosis inducing factor (AIF) (Figure 8). While AIF was 

released to cytosol from mitochondria, later on it would translocate to the nucleus and 

cause DNA fragmentation and cell death. Therefore, increased nuclear AIF expression 

implies more cell death. We observed that combination of ABT-869 and radiation has 

higher nuclear AIF and lower cytosolic AIF expression compared to ABT-869 alone on 

both cell lines. In SCC-22B metastatic cell line, an even more obvious trend was 

observed compared to primary SCC-22A cell line. Thus, combination of ABT-869 and 

radiation can also induce caspase-independent AIF-mediated cell death in HNSCC. 
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Figure 8. The effects of ABT-869 and radiation on cytosol & nuclear AIF expression in 

HNSCC cells. Cells were either treated with 20 M ABT-869 or 4 Gy or combination for 

24 hrs. Protein expressions were determined by western blot. PARP was used as nuclear 

loading control for nuclear AIF. GAPDH was used as cytoplasm loading control for 

cytosol AIF. Data are the mean ± SEM of 3 independent experiments. 
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Combination of ABT-869 and Radiation Increases DNA Damage -

Double Strand Breaks (DSBs) 

We further investigate the effect of ABT-869 on DNA damage response. To 

assess DNA DSBs, we examined the well documented marker γH2AX expression for 

DNA double strand breaks (Bonner et al., 2008). We found that ABT-869 alone could 

induce DNA damage, when combining with radiation resulted in more DNA damage. 

(Figure 9) These results indicated that, inhibition of STAT3 signaling by ABT-869 could 

increase DNA double strand breaks and sensitize the HNSCC cells to radiation in a 

synergistic manner. 
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Figure 9. The effects of ABT-869 and radiation on DNA double strand breaks in HNSCC 

cells. Cells were either treated with 20 M ABT-869 or 4 Gy or combination for 24 hrs. 

Protein expressions were determined by western blot. DNA double strand break marker 

γH2AX was detected. GAPDH was used as loading control. Data are the mean ± SEM of 

3 independent experiments.  
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Discussion 

Current radiation and chemotherapy protocols can control HNSCC but many 

tumors do not respond well. In addition, both chemotherapy and radiotherapy have dose 

limiting toxicity. Recent studies have focused on the use of novel molecular-targeted 

agents with limited side effects in an attempt to improve existed treatments of HNSCC. 

Targeting EGFR becomes a rational approach for HNSCC treatment since higher 

expression of EGFR has been associated with resistance to radio- and/or chemo-therapy 

(Bonner et al., 2006; Vermoken et al., 2008). However, such improvement on disease 

control by EGFR targeting was incremental and novel targeting strategies are needed.  

VEGF and its receptors are potential targets for cancer therapy and both are 

expressed in increased numbers primarily during periods of tumor growth (Brekken et al., 

2000). Protection of tumor vessels by VEGF could thereby contribute to the radio-

resistance of tumors and high VEGF levels may additionally contribute to blood vessel 

and tumor cell protection as a cause of radio-resistance (Brieger et al., 2007). Considering 

the regulatory role of VEGF/PDGF as modulators of tumor growth and response to 

radiation (Timke et al., 2007), we hypothesized that Linifanib (ABT-869) would 

overcome radio-resistance of HNSCC cell lines. We demonstrated that ABT-869 

augments head and neck cancer cells’ susceptibility to the radiation and that the cell 
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growth inhibition could be achieved at lower radiation dose in combination with ABT-

869 in both cell lines compared to either ABT-869 or radiation alone (Figure 3), which 

may prevent undesired radiation damage. To the best of our knowledge, this work shows 

for the first time the synergistic effect of ABT-869 and radiation in HNSCC in vitro. The 

mechanism of enhanced cell growth inhibition involves ABT-869-mediated cell cycle 

arrest in G2/M phase and apoptosis.  

Recent reports also showed that STAT3 can activate downstream molecules (e.g., 

c-myc, cyclin D1, Bcl family proteins, IAPs and VEGF) in HNSCC, therefore, promote 

tumor cells proliferation and survival. Constitutive activation of STAT3 suppresses 

apoptosis, and also has a positive correlation with cyclin D1 expression in laryngeal 

carcinoma (Masuda et al., 2010). In addition, upregulation of cyclin D1, which is 

involved in G1 and G2 cell cycle arrest (Michalides et al., 2002; Zhang et al., 2011), has 

been specifically associated with resistance to anti-EGFR treatment and poor prognosis 

of HNSCC patients. Therefore, STAT3 and cyclin D1 can be effective targets to control 

the growth of cancer cells and facilitate their apoptotic death. The activity of STAT3 and 

cyclin D1 expression were down-regulated after ABT-869 treatment alone and to a 

greater extent in combination with radiation, which is consistent with observed G2/M cell 

cycle arrest and capability to enhance the cytotoxicity of radiation. It also has been shown 
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that radiation enhances STAT3 phosphorylation and increases anti-apoptotic protein 

expression in several cancers (Ho et al., 2010; Lee et al., 2008). After combination 

treatment of ABT-869 and radiation we detected an altered/reduced expression of STAT3 

downstream effectors, Mcl-1, Bcl-2 and Bcl-xL, which have been shown to influence 

radio-sensitivity (Masuda et al., 2010; Nix et al., 2005).  

Several studies have documented a positive correlation between survivin, a 

member of the inhibitor of apoptosis protein, tumor aggressiveness and radio-resistance 

in head and neck cancer cells (Farnebo et al., 2011; Khan et al., 2010; 2012). Zhou et al. 

showed that survivin is a direct target of STAT3 pathway in an AML cell line (Zhou et al., 

2009). Moreover, down-regulation of survivin can arrest cancer cells at G2/M phase and 

increase caspase-dependent apoptosis (Liu et al., 2010). Our results indicated that 

radiation-induced survivin expression was significantly down-regulated and the inhibition 

of cell growth was correlated with significantly increased expression of cleaved PARP, a 

hallmark of apoptosis, after treatment with ABT-869 alone and in combination with 

radiation in SCC-22A and to a lesser extent in SCC-22B cells. 

In summary, we demonstrated that ABT-869 significantly radio-sensitizes 

primary and metastatic HNSCC cells (Figure 3) by inducing cell cycle arrest and cell 

death. However, some differences were observed in ABT-869-induced effects between 
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primary versus metastatic cell lines such as a) prolonged G2/M cell cycle arrest, b) higher 

level of survivin down-regulation and c-PARP expression in primary compared to the 

metastatic cell lines. This can be explained by reports of significantly higher survivin 

expression in cervical lymph node metastases than in primary HNSCCs, and its negative 

regulation of G2/M and apoptosis (Marioni et al., 2006; Mehlen and Puisieux, 2006). 

These results suggest that the combination treatment of ABT-869 and radiation may 

affect multiple pathways to induce cell death in metastatic cells, such as apoptosis 

inducing factor (AIF) and endonuclease G (Endo G) mediated caspase-independent 

apoptosis (Cao et al., 2012; Huerta et al., 2009). AIF can translocate from cytosol to 

nucleus and cleave DNA, so we further detected the expression of nuclear AIF. The 

combination of ABT-869 and radiation resulted in higher nuclear AIF and lower 

cytosolic AIF expression. It implies the combination treatment can also induce caspase-

independent cell death; in SCC-22B metastatic cell line, the trend is even more obvious 

than SCC-22A primary cell line. Our results are also consistent to previous studies, 

showing that some reagents/compounds can affect on caspase dependent or AIF-mediated 

capspase independent cell death or both pathways in various cancer types (Artus et al., 

2006; Croci et al., 2008; Jeong et al., 2011; Liu et al., 2004; Rashimi et al., 2005; Yu et 

al., 2012).  
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Since approximately 80% of HNSCC exhibits up-regulation of STAT3 

expression, inhibition of STAT3 may cause tumor cells growth arrest and/or apoptosis. 

Recent studies showed that, in colon and lung cancer cell lines, DNA damage could 

induce the expression of IL-6, resulting in the activation of STAT3 signaling pathway. 

Therefore, by inhibiting STAT3, one can also inhibit DNA damage repair and induce 

apoptosis in tumor cells (Barry et al., 2010; Yun et al., 2012). We confirmed this 

relationship by examining the expression of DNA double strand break marker γH2AX. 

Inhibition of STAT3 signaling by a VEGFR/PDGFR inhibitor, ABT-869, could increase 

DNA double strand breaks and synergistically sensitize HNSCC cells to radiation. 

Taken together, our results serve as proof of principle that a multi-receptor 

tyrosine kinase inhibitor, such as ABT-869 can be a promising radio-sensitizer and 

deserve further clinical development in the treatment of HNSCC.  
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CHAPTER THREE 

GENERAL DISCUSSION 

 

Targeting Angiogenesis Agents Combined with Radiation on Head 

and Neck Cancer 

Our study demonstrates a VEGFR/PDGFR multi-receptor tyrosine kinase 

inhibitor, ABT-869, that inhibits angiogenesis can radiosensitize HNSCC cells. An 

overview of current antiangiogenic agents combined with radiation on HNSCC in vitro 

and in vivo studies is given in Table 1. A schematic diagram of antiangiogenic agents is 

also shown in Figure 10. These studies showed that the combination of antiangiogenic 

agents with radiation or chemotherapy may improve clinical responses to treat HNSCC 

patients.  

 

Postulated Mechanisms of Antiangiogenic Therapy and Radiation  

The precise mechanism by which angiogenesis inhibition improves clinical 

outcome is not fully understood yet. On one hand, antiangiogenic agents traditionally are 

presumed to inhibit tumor vasculature formation, depriving the tumor of necessary 
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nutrients and oxygen. Studies showed that the excess of EGF, VEGF and PDGF cause 

poor blood flow in disorganized and leaky tumor vessels, resulting in increased IFP, and 

poor drug delivery and hypoxia (Wchsberger et al., 2005). Data for head and neck cancer 

suggests that bevacizumab (VEGF-A monoclonal antibody) as a single agent is not 

effective in vitro, but did have in vivo activity in preclinical models. It is therefore 

believed that the physiological vascular microenvironment is critical for tumor 

angiogenesis (Hoang et al., 2012; Wachsberger et al., 2003). Since VEGF is a survival 

factor for endothelial cells via the induction of AKT and other proteins, anti-VEGF 

agents have been shown to enhance the apoptosis of endothelial cells in vitro (Gorski et 

al., 1999). Given these observations, it has been proposed that anti-VEGF therapy can 

enhance the ability of radiotherapy to induce destruction of tumor vasculature. There are 

several possible advantages for the combination of antiangiogenic drugs with radiation to 

improve cancer treatment. (1) Antiangiogenic agents are directly cytotoxic to endothelial 

cells and can target VEGF and its receptors, instead of having to access the tumor 

masses. (2) Decreases in the proportion of hypoxic cells and increased oxygen content 

enhances oxygen-induced free radical formation resulting more DNA damage to tumor 

cells. (3) Angiogenesis occurs in certain limited circumstances, like wound healing and 

ovulation, therefore, antiangiogenic therapies targeting specific receptors on proliferating 
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tumor endothelium will be safer and reduce normal tissue toxicities (Scappaticci et al., 

2002). Since oxygen is a potent radiosensitizer, the combination of ionizing radiation and 

antiangiogenic agents would be a favorable approach. A recent study also indicated that 

oxygen levels may actually increase after treatment with antiangiogenic agents and 

ionizing radiation. Combination of antiangiogenesis and radiation can cause apoptosis of 

both endothelial cells and tumor cells (Griffin et al., 2002; Horsman and Siemann, 2006). 

(Figure 11) 

 

Prognostic Factors / Biomarkers 

Hypoxia is a characteristic pathophysiological property of locally advanced solid 

tumors and such areas have been found in a wide range of human malignancies including 

cancers of the prostate, pancreas, rectum, breast, uterine cervix, brain tumors, malignant 

melanomas and head & neck cancers. Molecular studies investigating the tissue 

distribution of HIF-1α and of its target proteins CA-9 and GLUT-1 showed worse 

outcomes in cases exhibiting an overexpression of these endogenous markers (Evans et  

al., 2003; Vaupel et al., 2002; 2004). Lactate accumulation is another factor proportional  

to malignant levels and increased risk of metastases in head and neck cancer, cervical  

cancer, and colorectal cancer (Brizel et al., 2001; Walenta et al., 2000; 2003).  
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Overexpression of EGFR is detected in 90 % of all HNSCC tumors, and high levels of  

this protein expression is associated with decreased survival, radio-resistance, increased  

rates of distant metastases and recurrence (Dorsey and Agulnik, 2013). In a meta-analysis  

of 12 studies, including 1002 patients of oral cavity, pharyngeal and laryngeal cancers,  

higher VEGF expression showed positive association with a 2-fold higher risk of death  

within 2 years (Kyzas et al., 2005). VEGF plasma levels have been described as potential  

prognostic and predictive biomarkers as well (Allen et al., 2005; Druzgal et al., 2005).  

Other factors like VEGFR/KDR, pKDR/KDR, Bax, BcL-xL, BcL-2, cyclooxygenase-2  

(COX-2) and survivin, all correlated to clinical outcomes in retrospective clinical studies  

(Cohen et al., 2009; Farnebo et al., 2011; Seiwert and Cohen, 2008). A recent study also  

showed that vascular normalization induced by antiangiogenic therapies can stimulate  

tumor microenvironmental immune response, thus, enhance cancer immunotherapy to  

kill cancer cells (Huang et al., 2012). An increase in tumor-infiltrating CD8+ T cells  

could be a potential biomarker for vascular normalization (Huang et al., 2013). Thus, it is  

critical to validate these potential biomarkers in perspective randomized studies.   
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Conclusions 

Despite recent advances in therapy for head and neck squamous cell carcinoma, 

chemotherapeutics cytotoxicity is of major concern. Novel therapy with targeted agents is 

a promising direction. There are some practical points needed to be considered. These 

agents have a cytostatic function but not curative potential, theoretically should be used 

in combination with radiation or other chemo-therapies instead of single therapy to 

achieve appreciable impact on patient survival (Loges et al., 2009). Increasing the dose of 

antiangiogenic agent or double antiangiogenic agent combination treatment might do 

harm to normal tissues and destroy vasculature due to rapid/excessive pruning of tumor 

vessels, leading to hypoxia and poor drug delivery in the tumor (Jain, 2005). Thus, 

optimal doses and schedules of these reagents tailored to the angiogenic profile of tumors 

can normalize tumor vasculature and its microenvironment without harming normal 

tissues. Combining ABT-869 with other chemo-drugs/DNA damaging agents like 

cisplatin and 5-Fluorouracil or PARP inhibitor to result in more persistent DNA double 

strand breaks might mimic the results of this study.  Here, we have shown 

VEGFR/PDGFR multi-receptor tyrosine kinase inhibitor, ABT-869, is an attractive 

option to overcome radioresistance. Antiangiogenic therapy in combination with 
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radiotherapy is a promising strategy, which could lead to less morbidity and increased 

efficacy in the treatment of HNSCC. 
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Figure 10. The effects of antiangiogenic agents on cell signaling pathways that lead to 

enhanced radiosensitivity. 
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Figure 11. Possible advantages and mechanisms of using antiangiogenic therapies to 

enhance tumor response to radiation. These agents can improve tumor oxygenation via 

targeting tumor vasculature and inhibiting new vessel formation, also disrupt the 

interaction between tumor cells and tumor endothelial cells. When combining with 

ionizing radiation, it results in both tumor and endothelial cell apoptosis, work 

synergistically to improve radiosensitization effects. 



56 

 

 

 

 

REFERENCES 

 

Abraham, I., Juhasz, G., Kekesi, K.A., Kovacs, K.J., 1996. Effect of intrahippocampal       

dexamethasone on the levels of amino acid transmitters and neuronal excitability. 

Brain Research 733, 56–63. 

 

Abraham, I.M., Harkany, T., Horvath, K.M., Luiten, P.G., 2001. Action of 

glucocorticoids on survival of nerve cells: promoting neurodegeneration or 

neuroprotection? Journal of Neuroendocrinology 13, 749–760.  

 

Alikhani-Koopaei, R., Fouladkou, F., Frey, F.J., Frey, B.M.. 2004. Epigenetic regulation 

of 11 beta-hydroxysteroid dehydrogenase type 2 expression. Journal of Clinical 

Investigation 114, 1146 – 1157. 

 

Achen, M.G.., Mann, G.B., Stacker, S.A., 2006. Targeting lymphangiogenesis to prevent 

tumour metastasis. British Journal of Cancer 94(10), 1355-1360. 

 

Agra, I., Carvalho, A.C.P., 2008. Biological markers and prognosis in recurrent oral 

cancer after salvage surgery. Archives of Otolaryngology—Head and Neck 

Surgery 134(7), 743-749. 

 

Albert, D.H., Tapang, P., Magoc, T.J., 2006. Preclinical activity of ABT-869, a 

multitargeted receptor tyrosine kinase inhibitor. Molecular Cancer Therarpy 5(4), 

995-1006. 

 

Allen, C., Duffy, S., Teknos, T., Islam, M., Chen, Z., Albert, P.S., 2007. Nuclear factor-

κB–related serum factors as longitudinal biomarkers of response and survival in 

advanced oropharyngeal carcinoma. Clinical Cancer Research 13(11), 3182-3190. 

 

Artus, C., Maquarre, E., Moubarak, R.S., Delettre, C., Jasmin, C., Susin, S.A., Robert-

Lézénès, J., 2006. CD44 ligation induces caspase-independent cell death via a 

http://www.ncbi.nlm.nih.gov/pubmed?term=Artus%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16636662
http://www.ncbi.nlm.nih.gov/pubmed?term=Maquarre%20E%5BAuthor%5D&cauthor=true&cauthor_uid=16636662
http://www.ncbi.nlm.nih.gov/pubmed?term=Moubarak%20RS%5BAuthor%5D&cauthor=true&cauthor_uid=16636662
http://www.ncbi.nlm.nih.gov/pubmed?term=Delettre%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16636662
http://www.ncbi.nlm.nih.gov/pubmed?term=Jasmin%20C%5BAuthor%5D&cauthor=true&cauthor_uid=16636662
http://www.ncbi.nlm.nih.gov/pubmed?term=Susin%20SA%5BAuthor%5D&cauthor=true&cauthor_uid=16636662
http://www.ncbi.nlm.nih.gov/pubmed?term=Robert-L%C3%A9z%C3%A9n%C3%A8s%20J%5BAuthor%5D&cauthor=true&cauthor_uid=16636662
http://www.ncbi.nlm.nih.gov/pubmed?term=Robert-L%C3%A9z%C3%A9n%C3%A8s%20J%5BAuthor%5D&cauthor=true&cauthor_uid=16636662


57 

novel calpain/AIF pathway in human erythroleukemia cells. Oncogene 25(42), 

5741-51. 

 

Barry, S.P., Townsend, P.A., knight, R.A., 2010. STAT3 modulates the DNA damage 

response pathway. International Journal of Experimental Pathology 91, 506–514.  

 

Bergers, G., Benjamin, L.E., 2003. Tumorigenesis and the angiogenic switch. Nature 

Reviews Cancer 3(6), 401-410. 

 

Bernier, J., Domenge, C., Ozsahin, M., Matuszewska, K., Lefèbvre, J., Greiner, R.H., 

2004. Postoperative irradiation with or without concomitant chemotherapy for 

locally advanced head and neck cancer. New England Journal of Medicine 

350(19), 1945-1952. 

 

Bill, M.A., Fuchs, J.R., Li, C., Yui, J., Bakan, C., Benson, D.M., Schwartz, E.B., 

Abdelhamid, D., Lin, J., Hoyt, D.G., Fossey, S.L., Young, G.S., Carson, W.E., Li, 

P.K., Lesinski, G.B., 2010. The small molecule curcumin analog FLLL32 induces 

apoptosis in melanoma cells via STAT3 inhibition and retains the cellular 

response to cytokines with anti-tumor activity. Molecular Cancer. 9, 165-176. 

 

Bonner, J.A., Harari, P.M., Giralt, J., Azarnia, A., Shin, D.M., Cohen, R.B., 2006. 

Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. 

New England Journal of Medicine 354(6), 567-578. 

 

Bonner, J.A., Harari, P.M., Giralt, J., Cohen, R.B., Jones, C.U., Sur, R.K., Raben, D., 

Baselga, J., Spencer, S.A., Zhu, J., 2010. Radiotherapy plus cetuximab for 

locoregionally advanced head and neck cancer: 5-year survival data from a phase 

3 randomised trial, and relation between cetuximab-induced rash and survival. 

Lancet Oncology 11(1), 21-28. 

 

Bonner, W.M., Redon, C.E., Dickey, J.S., Nakamura, A.J., Sedelnikova, O.A., 2008.   

γH2AX and cancer. Nature Review Cancer 8, 957–967. 

 

Bowers, G., Reardon, D., Hewitt, T., Dent, P., Mikkelsen, R.B., Valerie, K., 2001. The 

relative role of ErbB1-4 receptor tyrosine kinases in radiation signal transduction 

responses of human carcinoma cells. Oncogene 20(11), 1388-1397. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=CD44+ligation+induces+caspase-independent+cell+death##
http://www.ncbi.nlm.nih.gov/pubmed?term=Bill%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Fuchs%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Yui%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Bakan%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Benson%20DM%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Benson%20DM%20Jr%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Abdelhamid%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Lin%20J%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Hoyt%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Fossey%20SL%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Young%20GS%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Carson%20WE%203rd%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Li%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed?term=Lesinski%20GB%5BAuthor%5D&cauthor=true&cauthor_uid=20576164
http://www.ncbi.nlm.nih.gov/pubmed/20576164##


58 

 

Bozec, A., Sudaka, A., Toussan, N., Fischel, J.L., Etienne-Grimaldi, M.C., Milano, G., 

2009. Combination of sunitinib, cetuximab and irradiation in an orthotopic head 

and neck cancer model. Annal Oncology 20(10), 1703-1707. 

 

Brekken, R.A., Overholser, J.P., Stastny, V.A., Waltenberger, J., Minna, J.D., Thorpe, 

P.E. 2000. Selective inhibition of vascular endothelial growth factor (VEGF) 

receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks 

tumor growth in mice. Cancer Research 60(18), 5117-5124. 

Brieger, J., Kattwinkel, J., Berres, M., Gosepath, J., Mann W.J., 2007. Impact of vascular 

endothelial growth factor release on radiation resistance. Oncology Report 18, 

1597-1601. 

 

Brizel, D.M., Schroeder, T., Scher, R.L., Walenta, S., Clough, R.W., Dewhirst, M.W., 

2001. Elevated tumor lactate concentrations predict for an increased risk of 

metastases in head-and-neck cancer. International Journal of Radiation Oncology 

51(2), 349-353. 

 

Buettner, R., Mora, L.B., Jove, R., 2002. Activated STAT signaling in human tumors 

provides novel molecular targets for therapeutic intervention. Clinical Cancer 

Research 8(4), 945-954. 

 

Cao, H., Hu, Y., Wang, P., Zhou, J., Deng, Z., Wen, J., 2012. Down-regulation of Notch 

receptor signaling pathway induces caspase-dependent and caspase-independent 

apoptosis in lung squamous cell carcinoma cells. APMIS 120(6), 441-450. 

 

Choong, N., Kozloff, M., Taber, D., Hu, H.S., Wade, J., Ivy, P., 2010. Phase II study of 

sunitinib malate in head and neck squamous cell carcinoma. Investigational New 

Drugs 28(5), 677-683. 

 

Christofori, G., 2006. New signals from the invasive front. Nature 441, 444-450. 

 

Christopoulos, A., Ahn, S.M., Klein, J.D., Kim, S., 2011. Biology of vascular endothelial 

growth factor and its receptors in head and neck cancer: beyond angiogenesis. 

Head and Neck 33(8), 1220-1229.  

 



59 

Cohen, E.E.W., Davis, D.W., Karrison, T.G., Seiwert, T.Y., Wong, S.J., Nattam, S., 

2009. Erlotinib and bevacizumab in patients with recurrent or metastatic 

squamous-cell carcinoma of the head and neck: a phase I/II study. Lancet 

Oncology 10(3), 247-257. 

 

Cooper, J.S., Pajak, T.F., Forastiere, A.A., Jacobs, J., Campbell, B.H., Saxman, S.B., 

2004. Postoperative concurrent radiotherapy and chemotherapy for high-risk 

squamous-cell carcinoma of the head and neck. New England Journal of Medicine 

350(19), 1937-1944. 

 

Croci, D.O., Cogno, I.S., Vittar, N.B., Salvatierra, E., Trajtenberg, F., Podhajcer, O.L.,  

Osinaga, E., Rabinovich, G.A., Rivarola, V.A., 2008. Silencing survivin gene 

expression promotes apoptosis of human breast cancer cells through a caspase-

independent pathway. Journal of Cell Biochemistry 105(2), 381-90 

 

Dal Monte, M., Martini, D., Ristori, C., 2011. Hypoxia effects on proangiogenic factors 

in human umbilical vein endothelial cells: functional role of the peptide 

somatostatin. Naunyn-Schmiedeberg's Archive Pharmacology 383(6), 593-612. 

 

de Castro, G., Snitcovsky, I., Gebrim, E., Leitão, G., Nadalin, W., Ferraz, A., 2007. High 

dose cisplatin concurrent to conventionally delivered radiotherapy is associated 

with unacceptable toxicity in unresectable, non-metastatic stage IV head and neck 

squamous cell carcinoma. European Archives of Oto-Rhino-Laryngology 

264(12), 1475-1482. 

 

Dorsey, K., Agulnik, M., 2013. Promising new molecular targeted therapies in head and 

neck cancer. Drugs 73(4), 315-325. 

 

Druzgal, C.H., Chen, Z., Yeh, N.T., Thomas, G.R., Ondrey, F.G., Duffey, D.C., 2005. A 

pilot study of longitudinal serum cytokine and angiogenesis factor levels as 

markers of therapeutic response and survival in patients with head and neck 

squamous cell carcinoma. Head and Neck 27(9), 771-784. 

 

Eberhard, A., Kahlert, S., Goede, V., Hemmerlein, B., Plate, K.H., Augustin, H.G. 2000. 

Heterogeneity of angiogenesis and blood vessel maturation in human tumors: 

http://www.ncbi.nlm.nih.gov/pubmed?term=Croci%20DO%5BAuthor%5D&cauthor=true&cauthor_uid=18553460
http://www.ncbi.nlm.nih.gov/pubmed?term=Cogno%20IS%5BAuthor%5D&cauthor=true&cauthor_uid=18553460
http://www.ncbi.nlm.nih.gov/pubmed?term=Vittar%20NB%5BAuthor%5D&cauthor=true&cauthor_uid=18553460
http://www.ncbi.nlm.nih.gov/pubmed?term=Salvatierra%20E%5BAuthor%5D&cauthor=true&cauthor_uid=18553460
http://www.ncbi.nlm.nih.gov/pubmed?term=Trajtenberg%20F%5BAuthor%5D&cauthor=true&cauthor_uid=18553460
http://www.ncbi.nlm.nih.gov/pubmed?term=Podhajcer%20OL%5BAuthor%5D&cauthor=true&cauthor_uid=18553460
http://www.ncbi.nlm.nih.gov/pubmed?term=Osinaga%20E%5BAuthor%5D&cauthor=true&cauthor_uid=18553460
http://www.ncbi.nlm.nih.gov/pubmed?term=Rabinovich%20GA%5BAuthor%5D&cauthor=true&cauthor_uid=18553460
http://www.ncbi.nlm.nih.gov/pubmed?term=Rivarola%20VA%5BAuthor%5D&cauthor=true&cauthor_uid=18553460
http://www.ncbi.nlm.nih.gov/pubmed/18553460##


60 

implications for antiangiogenic tumor therapies. Cancer Research 60(5), 1388-

1393. 

 

Elser, C., Siu, L.L., Winquist, E., Agulnik, M., Pond, G.R., Chin, S.F., 2007. Phase II 

trial of sorafenib in patients with recurrent or metastatic squamous cell carcinoma 

of the head and neck or nasopharyngeal carcinoma. Journal of Clinical Oncology 

25(24), 3766-3773. 

 

Erber, R., Thurnher, A., Katsen, A.D., Groth, G.., Kerger, H., Hammes, H.P., 2004. 

Combined inhibition of VEGF and PDGF signaling enforces tumor vessel 

regression by interfering with pericyte-mediated endothelial cell survival 

mechanisms. FASEB Journal 18(2), 338-340. 

 

Escudier, B., Eisen, T., Stadler, W.M., Szczylik, C., Oudard, S., Siebels, M., 2007. 

Sorafenib in advanced clear-cell renal-cell carcinoma. New England Journal of 

Medicine 356(2), 125-134. 

 

Evans, S.M., Koch, C.J., 2003. Prognostic significance of tumor oxygenation in humans. 

Cancer Letters 195(1), 1-16. 

 

Farnebo, L., Jerhammar, F., Ceder, R., Grafström, R.C., Vainikka, L., Thunell, L., 2011. 

Combining factors on protein and gene level to predict radioresponse in head and 

neck cancer cell lines. Journal of Oral Pathology and Medicine 40(10), 739-746. 

 

Ferrara, N., Gerber, H.P., LeCouter, J., 2003. The biology of VEGF and its receptors. 

Nature Medicine 9(6), 669-676. 

 

Folkman, J., 1971. Tumor angiogenesis: Therapeutic implications. New England  Journal 

of Medicine 285(21), 1182-1186. 

 

Folkman, J., 1976. The vascularization of tumors. Scientific American 234(5), 58-64. 

 

Folkman, J., 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. 

Nature Medicine 1(1), 27-31. 

 



61 

Forastiere, A., Koch, W., Trotti, A., Sidransky, D., 2001. Head and neck cancer. New 

England Journal of Medicine 345(26), 1890-1900. 

 

Fury, M.G., Lee, N.Y., Sherman, E., Lisa, D., Kelly, K., Lipson, B., 2012. A phase 2  

study of bevacizumab with cisplatin plus intensity-modulated radiation therapy 

for stage III/IVB head and neck squamous cell cancer. Cancer 118(20), 5008-

5014. 

 

Garg, A.K., Buchholz, T.A., Aggarwal, B.B. 2005. Chemosensitization and 

radiosensitization of tumors by plant polyphenols. Antioxidant Redox Signaling 

7, 1630-1647. 

 

Gerl, R., Vaux, D.L., 2005. Apoptosis in the development and treatment of cancer.   

Carcinogenesis 26, 263-270. 

 

Gillison, M., Broutian, T., Pickard, R., Tong, Z., Xiao, W., Kahle, L., Graubard, B., 

Chaturvedi, A., 2012. Prevalence of oral hpv infection in the united states, 2009-

2010. The Journal of the American Medical Association 307(7), 693-703. 

 

Gorski, D.H., Beckett, M.A., Jaskowiak, N.T., Calvin, D.P., Mauceri, H.J., Salloum, 

R.M., 1999. Blockade of the vascular endothelial growth factor stress response 

increases the antitumor effects of ionizing radiation. Cancer Research 59(14), 

3374-3378. 

 

Gray, L., Conger, A., Ebert, M., Hornsey, S., Scott, O., 1953. The concentration of 

oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. 

British Journal of Radiology 26(312), 638-648. 

 

Greten, F.R., Weber, C.K., Greten, T.F., Schneider, G., Wagner, M., Adler, G., 2002. 

Stat3 and NF-κB activation prevents apoptosis in pancreatic carcinogenesis. 

Gastroenterology 123(6), 2052-2063. 

 

Griffin, R.J., Williams, B.W., Wild, R., Cherrington, J.M., Park, H., Song, C.W., 2002. 

Simultaneous inhibition of the receptor kinase activity of vascular endothelial, 

fibroblast, and platelet-derived growth factors suppresses tumor growth and 

enhances tumor radiation response. Cancer Research 62(6), 1702-1706. 



62 

 

Guo, P., Hu, B., Gu, W., Xu, L., Wang, D., Huang, H.J.S., 2003. Platelet-derived growth 

factor-B enhances glioma angiogenesis by stimulating vascular endothelial 

growth factor expression in tumor endothelia and by promoting pericyte 

recruitment. American Journal of Pathology 162(4), 1083-1093. 

 

Gupta-Abramson, V., Troxel, A.B., Nellore, A., Puttaswamy, K., Redlinger, M., 

Ransone, K., 2008. Phase II trial of sorafenib in advanced thyroid cancer. Journal 

of Clinical Oncology 26(29), 4714-4719. 

 

Gustafson, D., Frederick, B., Merz, A., Raben, D. 2008. Dose scheduling of the dual 

VEGFR and EGFR tyrosine kinase inhibitor vandetanib (ZD6474, Zactima®) in 

combination with radiotherapy in EGFR-positive and EGFR-null human head and 

neck tumor xenografts. Cancer Chemotherapy and Pharmacology 61(2), 179-188. 

 

Hanahan, D., Folkman, J., 1996. Patterns and Emerging Mechanisms of the Angiogenic 

Switch during Tumorigenesis. Cell 86(3), 353-364. 

 

Hainsworth, J.D., Spigel, D.R., Greco, F.A., Shipley, D.L., Peyton, J., Rubin, M., 2011. 

Combined modality treatment with chemotherapy, radiation therapy, 

bevacizumab, and erlotinib in patients with locally advanced squamous carcinoma 

of the head and neck: a phase II trial of the Sarah Cannon oncology research 

consortium. Cancer 17(5), 267-272. 

 

Harmey, J.H., Bouchier-Hayes, D., 2002. Vascular endothelial growth factor (VEGF), a 

survival factor for tumour cells: Implications for anti-angiogenic therapy. 

BioEssays 24(3), 280-283. 

 

Hendry, J., 1999. Treatment acceleration in radiotherapy: the relative time factors and 

dose-response slopes for tumours and normal tissues. Radiotherapy and Oncology 

25(4), 308-312. 

 

Hicklin, D.J., Ellis, L.M., 2005. Role of the vascular endothelial growth factor pathway in 

tumor growth and angiogenesis. Journal of Clinical Oncology 23, 1011-1027. 

 



63 

Ho, J.N., Kang, G.Y., Lee, S.S., Kim, J., Bae, I.H., Hwang, S.G., 2010. Bcl-XL and 

STAT3 mediate malignant actions of γ-irradiation in lung cancer cells. Cancer 

Science 101(6), 1417-1423. 

 

Ho, Y., Tsao, S.W., Zeng, M., Lui, V.W.Y., 2013. STAT3 as a therapeutic target for 

Epstein-Barr virus (EBV) – associated nasopharyngeal carcinoma. Cancer Letters 

330(2), 141-149. 

 

Hoang, T., Huang, S., Armstrong, E., Eickhoff, J.C., Harari, P.M., 2012. Enhancement of 

radiation response with bevacizumab. Journal of Experimental Clinical Cancer 

Research 26, 31-37. 

 

Horsman, M.R., Siemann, D.W., 2006. Pathophysiologic effects of vascular-targeting 

agents and the implications for combination with conventional therapies. Cancer 

Research 66(24), 11520-11539. 

 

Hsu, H.W., Gridley, D.S., Kim, P.D., Hu, S., de Necochea-Campion, R., Ferris, R.L., 

Mirshahidi, S., 2013. Linifanib (ABT-869) enhances radiosensitivity of head and 

neck squamous cell carcinoma cells. Oral Oncology 49(6), 591-597. 

 

Huang, Y., Yuan, J., Righi, E., Kamoun, W.S., Ancukiewicz, M., Nezivar, J., 

Santosuosso, M., Martin, J.D., Martin, M.R., Vianello, F., Leblanc, P., Munn, 

L.L., Huang, P., Duda, D.G., Fukumura, D., Jain, R.K., Poznansky, M.C. 2012. 

Vascular normalizing doses of antiangiogenic treatment reprogram the 

immunosuppressive tumor microenvironment and enhance immunotherapy. 

Proceedings of the National Academy of Sciences USA 109(43), 17561-6. 

 

Huang, Y., Goel, S., Duda, D.G., Fukumura, D., Jain, R.K. 2013. Vascular normalization 

as an emerging strategy to enhance cancer immunotherapy. Cancer Research 

73(10), 2943-8. 

 

Huerta, S., Baay-Guzman, G., Gonzalez-Bonilla, C.R., Livingston, E.H., Huerta-Yepez, 

S., Bonavida, B. 2009. In vitro and in vivo sensitization of SW620 metastatic 

colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor 

DETANONOate: Involvement of AIF. Nitric Oxide 20(3), 182-194. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Huang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Yuan%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Righi%20E%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Kamoun%20WS%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Ancukiewicz%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Nezivar%20J%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Santosuosso%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Martin%20JD%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Martin%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Vianello%20F%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Leblanc%20P%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Munn%20LL%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Munn%20LL%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Huang%20P%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Duda%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Fukumura%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Jain%20RK%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed?term=Poznansky%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=23045683
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vascular+normalizing+doses+of+antiangiogenic+treatment+reprogram+the##
http://www.ncbi.nlm.nih.gov/pubmed?term=Huang%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23440426
http://www.ncbi.nlm.nih.gov/pubmed?term=Goel%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23440426
http://www.ncbi.nlm.nih.gov/pubmed?term=Duda%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=23440426
http://www.ncbi.nlm.nih.gov/pubmed?term=Fukumura%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23440426
http://www.ncbi.nlm.nih.gov/pubmed?term=Jain%20RK%5BAuthor%5D&cauthor=true&cauthor_uid=23440426
http://www.ncbi.nlm.nih.gov/pubmed/?term=Vascular+Normalization+as+an+Emerging+Strategy+to+Enhance##


64 

Jain, R.K., 2005. Normalization of tumor vasculature: an emerging concept in 

antiangiogenic therapy. Science 307(5706), 58-62. 

 

Jasinghe, V.J., Xie, Z., Zhou, J., 2008. ABT-869, a multi-targeted tyrosine kinase 

inhibitor, in combination with rapamycin is effective for subcutaneous 

hepatocellular carcinoma xenograft. Journal of Hepatology 49(6), 985-997. 

 

Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Thun, M.J., 2009. Cancer statistics, 2009. 

CA: A Cancer Journal for Clinicians 59(4), 225-249. 

 

Jeong, J.C., Shin, W.Y., Kim, T.H., Kwon, C.H., Kim, J.H., Kim, Y.K., Kim, K.H., 2011. 

Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in 

U87MG human glioma cell death. Journal of Experimental Clinical Cancer 

Research 30(44), 1-8. 

 

Jewett, A., Head, C., Cacalano, N.A., 2006. Emerging mechanisms of 

immunosuppression in oral cancers. Journal of Dental Research 85, 1061-1073. 

 

Jun, H.J., Ahn, M.J., Kim, H.S., Yi, S.Y., Han, J., Lee, S.K., 2008. ERCC1 expression as 

a predictive marker of squamous cell carcinoma of the head and neck treated with 

cisplatin-based concurrent chemoradiation. British Journal of Cancer 99(1), 167-

172. 

 

Jussila, L., Alitalo, K., 2002. Vascular growth factors and lymphangiogenesis. Physical 

Review 82(3), 673-700. 

 

Karar, J., Maity, A., 2009. Modulating the tumor microenvironment to increase radiation 

responsiveness. Cancer Biology Therapy 8(21), 1994-2001. 

 

Khan, Z., Khan, N., Tiwari, R.P., Patro, I.K., Prasad, G.B., Bisen, P.S., 2010. Down-

regulation of survivin by oxaliplatin diminishes radioresistance of head and neck 

squamous carcinoma cells. Radiotherapy and Oncology 96(2), 267-273. 

Khan, Z., Tiwari, R.P., Khan, N., Prasad, G.B., Bisen, P.S., 2012. Induction of apoptosis 

and sensitization of head and neck squamous carcinoma cells to cisplatin by 

targeting survivin gene expression. Current Gene Therapy 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Jeong%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=21501525
http://www.ncbi.nlm.nih.gov/pubmed?term=Shin%20WY%5BAuthor%5D&cauthor=true&cauthor_uid=21501525
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20TH%5BAuthor%5D&cauthor=true&cauthor_uid=21501525
http://www.ncbi.nlm.nih.gov/pubmed?term=Kwon%20CH%5BAuthor%5D&cauthor=true&cauthor_uid=21501525
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=21501525
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20YK%5BAuthor%5D&cauthor=true&cauthor_uid=21501525
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20KH%5BAuthor%5D&cauthor=true&cauthor_uid=21501525
http://www.ncbi.nlm.nih.gov/pubmed/21501525##
http://www.ncbi.nlm.nih.gov/pubmed/21501525##


65 

Kim, K.J., 1993. Inhibition of vascular endothelial growth factor-induced angiogenesis 

suppresses tumour growth in vivo. Nature 6423, 841-844. 

 

Koukourakis, M.I., Giatromanolaki, A., Sivridis, E., 2001. Squamous cell head and neck 

cancer: evidence of angiogenic regeneration during radiotherapy. Anticancer 

Research 21(6B), 4301-4309. 

 

Kruser, T.J., Wheeler, D.L., Armstrong, E.A., Iida, M., Kozak, K.R., van der Kogel, A.J., 

2010. Augmentation of radiation response by motesanib, a multikinase inhibitor 

that targets vascular endothelial growth factor receptors. Clinical Cancer Research 

16(14), 3639-3647. 

 

Kundu, S.K., Nestor, M., 2012. Targeted therapy in head and neck cancer. Tumor 

Biology 33(3), 707-721. 

 

Kung, A.L., Wang, S., Klco, J.M., Kaelin, W.G., Livingston, D.M., 2000. Suppression of 

tumor growth through disruption of hypoxia-inducible transcription. Nature 

Medicine 6(12), 1335-1340. 

 

Kyzas, P., Stefanou, D., Batistatou, A., Agnantis, N., 2005. Prognostic significance of 

VEGF immunohistochemical expression and tumor angiogenesis in head and 

neck squamous cell carcinoma. Journal of Cancer Research and Clinical 

Oncology 131(9), 624-630. 

 

Lee, T.L., Yeh, J., Friedman, J., Yan, B., Yang, X., Yeh, N.T., 2008. A signal network 

involving coactivated NF-κB and STAT3 and altered p53 modulates BAX/BCL-

XL expression and promotes cell survival of head and neck squamous cell 

carcinomas. International Journal of Cancer 122(9), 1987-1998. 

 

Leong, P.L., Andrews, G.A., Johnson, D.E., Dyer, K.F., Xi, S., Mai, J.C., 2003. Targeted 

inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer 

cell growth. Proceedings of the National Academy of Sciences USA 100(7), 

4138-4143. 

 



66 

Liu, B., Ren, Z., Shi, Y., Guan, C., Pan, Z., Zong, Z., 2008. Activation of signal 

transducers and activators of transcription 3 and overexpression of its target gene 

cyclin D1 in laryngeal carcinomas. Laryngoscope 118(11), 1976-1980. 

 

Liu, J., Wang, Y., Jiang, J., Kong, R., Yang, Y.M., Ji, H.F., 2010. Inhibition of survivin 

expression and mechanisms of reversing drug-resistance of human lung 

adenocarcinoma cells by siRNA. Chinese Medical Journal 123(20), 2901-2907. 

 

Liu, T., Brouha, B., Grossman, D. 2004. Rapid induction of mitochondrial events and 

caspase-independent apoptosis in Survivin-targeted melanoma cells. Oncogene 

23(1), 39-48. 

 

Loges, S., Mazzone, M., Hohensinner, P., Carmeliet, P., 2009. Silencing or fueling 

metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15, 167-

170. 

 

Los, M., 2001. The potential role of antivascular therapy in the adjuvant and neoadjuvant 

treatment of cancer. Seminar in Oncology 28(1), 93-105. 

 

Lui, V.W.Y., Wong, E.Y.L., Ho, Y., Hong, B., Wong, S.C.C., Tao, Q., Choi, G.C.G., Au, 

T.C.C., Ho, K., Yau, D.M.S., 2009. STAT3 activation contributes directly to 

Epstein-Barr virus–mediated invasiveness of nasopharyngeal cancer cells in vitro. 

International Journal of Cancer 125(8), 1884-1893. 

 

Marioni, G., Bertolin, A., Giacomelli, L., Marchese-Ragona, R., Savastano, M., Calgaro, 

N., 2006. Expression of the apoptosis inhibitor protein survivin in primary 

laryngeal carcinoma and cervical lymph node metastasis. Anticancer Research 

26(5B), 3813-3817. 

 

Masuda, M., Suzui, M., Yasumatu, R., Nakashima, T., Kuratomi, Y., Azuma, K., Tomita, 

K., Komiyama, S., Weinstein, I.B., 2002. Constitutive activation of signal 

transducers and activators of transcription 3 correlates with cyclin D1 

overexpression and may provide a novel prognostic marker in head and neck 

squamous cell carcinoma. Cancer Research 62, 3351-3355. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Liu%20T%5BAuthor%5D&cauthor=true&cauthor_uid=14712209
http://www.ncbi.nlm.nih.gov/pubmed?term=Brouha%20B%5BAuthor%5D&cauthor=true&cauthor_uid=14712209
http://www.ncbi.nlm.nih.gov/pubmed?term=Grossman%20D%5BAuthor%5D&cauthor=true&cauthor_uid=14712209
http://www.ncbi.nlm.nih.gov/pubmed/14712209##


67 

Masuda, M., Wakasaki, T., Suzui, M., Toh, S., Joe, A.K., Weinstein, I.B., 2010. Stat3 

orchestrates tumor development and progression: the Achilles’ heel of head and 

neck cancers? Current Cancer Drug Targets 10, 117-126. 

 

Matta, A., Ralhan, R., 2009. Overview of current and future biologically based targeted 

therapies in head and neck squamous cell carcinoma. Head and Neck Oncology 1, 

1-8. 

 

Mehlen, P., Puisieux, A., 2006. Metastasis: a question of life or death. Nature Review in 

Cancer 6(6), 449-458. 

 

Menard, C., Camphausen, K., 2002. Angiogenesis inhibitors and radiotherapy of primary 

tumours. Expert Opinion on Biological Therapy 2(5), 477-481. 

 

Michalides, R., Tiemessen, M., Verschoor, T., Balkenende, A., Coco-Martin, J. 2002. 

Overexpression of cyclin D1 enhances taxol induced mitotic death in MCF7 cells. 

Breast Cancer Research and Treatment 74(1), 55-63. 

 

Moriyama, M., Kumagai, S., Kawashiri, S., Kojima, K., Kakihara, K., Yamamoto, E., 

1997. Immunohistochemical study of tumour angiogenesis in oral squamous cell 

carcinoma. Oral Oncology 33(5), 369-374. 

 

Nix, P., Cawkwell, L., Patmore, H., Greenman, J., Stafford, N., 2005. Bcl-2 expression 

predicts radiotherapy failure in laryngeal cancer. British Journal of  Cancer 92, 

2185-2189. 

 

Pan, Q., Gorin, M.A., Teknos, T.N., 2009. Pharmacotherapy of head and neck squamous 

cell carcinoma. Expert Opinion on Pharmacotherapy 10(14), 2291-2302. 

 

Park, J.J., Jin, Y.B., Lee, Y.J., 2012. KAI1 suppresses HIF-1α and VEGF expression by 

blocking CDCP1-enhanced Src activation in prostate cancer. BMC Cancer 

12(81). 

 

Rahimi, N., 2006. VEGFR-1 and VEGFR-2: two non-identical twins with a unique 

physiognomy. Front Bioscience 1(11), 818-829. 

 



68 

Rashmi, R., Kumar, S., Karunagaran, D., 2005. Human colon cancer cells lacking Bax 

resist curcumin-induced apoptosis and Bax requirement is dispensable with 

ectopic expression of Smac or downregulation of Bcl-XL. Carcinogenesis 26(4), 

713-23 

 

Real, P.J., Sierra, A., Juan, A., Segovia, J.C., Lopez-Vega, J.M., Fernandez-Luna, J.L. 

2002. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in 

metastatic breast cancer cells. Oncogene 21, 7611-7618. 

 

Sahu, N., Grandis, J.R., 2011. New advances in molecular approaches to head and neck 

squamous cell carcinoma. Anticancer drugs 22(7), 656-64. 

 

Salama, J.K., Haraf, D.J., Stenson, K.M., Blair, E.A., Witt, M.E., Williams, R., 2011. A 

randomized phase II study of 5-fluorouracil, hydroxyurea, and twice-daily 

radiotherapy compared with bevacizumab plus 5-fluorouracil, hydroxyurea, and 

twice-daily radiotherapy for intermediate-stage and T4N0-1 head and neck 

cancers. Annal Oncology 22(10):2304-2309. 

 

Saman, D., 2012. A review of the epidemiology of oral and pharyngeal carcinoma: 

update. Head and Neck Oncology 4,1-7. 

 

Sano, D., Matsumoto, F., Valdecanas, D.R., Zhao, M., Molkentine, D.P., Takahashi, Y., 

2011. Vandetanib restores head and neck squamous cell carcinoma cells' 

sensitivity to cisplatin and radiation in vivo and in vitro. Clinical Cancer Research 

17(7), 1815-1827. 

 

Scappaticci, F.A., 2002. Mechanisms and future directions for angiogenesis-based cancer 

therapies. Journal of Clinical Oncology 20(18), 3906-3927. 

 

Seiwert, T.Y., Cohen, E.E.W., 2008. Targeting angiogenesis in head and neck cancer. 

Seminar in Oncology 35(3), 274-285. 

 

Seiwert, T.Y., Haraf, D.J., Cohen, E.E.W., Stenson, K., Witt, M.E., Dekker, A., 2008. 

Phase I study of bevacizumab added to fluorouracil- and hydroxyurea-based 

concomitant chemoradiotherapy for poor-prognosis head and neck cancer. Jornal 

of Clinical Oncology 26(10), 1732-1741. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Rashmi%20R%5BAuthor%5D&cauthor=true&cauthor_uid=15661804
http://www.ncbi.nlm.nih.gov/pubmed?term=Kumar%20S%5BAuthor%5D&cauthor=true&cauthor_uid=15661804
http://www.ncbi.nlm.nih.gov/pubmed?term=Karunagaran%20D%5BAuthor%5D&cauthor=true&cauthor_uid=15661804
http://www.ncbi.nlm.nih.gov/pubmed/15661804##


69 

 

Semenza, G.L. 2003. Angiogenesis ischemic and neoplastic disorders. Annual Reviews 

in Medicine 54(1), 17-28. 

 

Sen, M., Joyce, S., Panahandeh, M., Li, C., Thomas, S.M., Maxwell, J., 2012. Targeting 

Stat3 abrogates EGFR Inhibitor resistance in cancer. Clinical Cancer Research 

18(18), 4986-4996. 

 

Sheridan, M.T., O'Dwyer, T., Seymour, C.B., Mothersill, C.E. 1997. Potential indicators 

of radiosensitivity in squamous cell carcinoma of the head and neck. Radiation 

Oncology Investigation 5(4), 180-186. 

 

Sternberg, D.W., Licht, J.D., 2005. Therapeutic intervention in leukemias that express the 

activated fms-like tyrosine kinase 3 (FLT3): opportunities and challenges. Current 

Opinions in Hematology 12, 7-13. 

 

Sriuranpong, V., Park, J.I.,  Amornphimoltham, P., Patel, V., Nelkin, B.D., Gutkind, J.S., 

2003. Epidermal growth factor receptorindependent constitutive activation of 

STAT3 in head and neck squamous cell carcinoma is mediated by the 

autocrine/paracrine stimulation of the interleukin-6/gp130 cytokine system. 

Cancer Research 63, 2948-2956 

 

Tammela, T., Enholm, B., Alitalo, K., Paavonen, K., 2005. The biology of vascular 

endothelial growth factors. Cardiovascular Research 65(3), 550-563. 

 

Tanno, S., Yanagawa, N., Habiro, A., Koizumi, K., Nakano, Y., Osanai, M., 2004. 

Serine/Threonine kinase AKT is frequently activated in human bile duct cancer 

and is associated with increased radioresistance. Cancer Research 64(10), 3486-

3490. 

 

Thiery, J.P., 2002. Epithelial-mesenchymal transitions in tumour progression. Nature 

Review Cancer 2, 442-454. 

 

Timke, C., Zieher, H., Roth, A., Hauser, K., Lipson, K.E., Weber, K.J., 2008. 

Combination of vascular endothelial growth factor receptor/platelet-derived 



70 

growth factor receptor inhibition markedly improves radiation tumor therapy. 

Clinical Cancer Research 14(7), 2210-2219.  

 

Tong, C.C.L., Ko, E.C., Sung, M.W., Cesaretti, J.A., Stock, R.G., Packer, S.H., 2012. 

Phase II trial of concurrent sunitinib and image-guided radiotherapy for 

oligometastases. PLoS ONE 7(6), e36979. 

 

Tong, R.T., Boucher, Y., Kozin, S.V., Winkler, F., Hicklin, D.J., Jain, R.K. 2004. 

Vascular normalization by vascular endothelial growth factor receptor 2 blockade 

induces a pressure gradient across the vasculature and improves drug penetration 

in tumors. Cancer Research 64(11), 3731-3736 

 

Tseng, Y.H., Chang, K.W., Yang, C.C., Liu, C.J., Kao, S.Y., Liu, T.Y., Lin, S.C., 2012. 

Association between areca-stimulated vimentin expression and the progression of 

head and neck cancers. Head and Neck 34(2), 245-253. 

 

Vaupel, P., Briest, S., Höckel, M., 2002. Hypoxia in breast cancer: pathogenesis, 

characterization and biological/therapeutic implications. Wien Medical 

Wochenschr 152(13), 334-342. 

 

Vaupel, P., 2004. Tumor microenvironmental physiology and its implications for 

radiation oncology. Seminars in Radiation Oncology 14(3), 198-206. 

 

Vaupel, P., Mayer, A., Höckel, M., 2004. Tumor hypoxia and malignant progression. 

methods in enzymology 381, 335-354. 

 

Vermorken, J.B., Mesia, R., Rivera, F., Remenar, E., Kawecki, A., Rottey, S., Erfan, J., 

Zabolotny, D., Kienzer, H.R., Cupissol, D., 2008. Platinum-based chemotherapy 

plus cetuximab in head and neck cancer. New England Journal of Medicine 

359(11), 1116-1127. 

 

Vincenzi, B., Zoccoli, A., Pantano, F., Venditti, O., Galluzzo, S., 2010. Cetuximab: from 

bench to bedside. Current Cancer Drug Targets 10(1), 80-95. 

 

von Tell, D., Armulik, A., Betsholtz, C., 2006. Pericytes and vascular stability. 

Experimental Cell Research 312(5), 623-629. 



71 

 

Wachsberger, P., Burd, R., Dicker, A.P., 2003. Tumor response to ionizing radiation 

combined with antiangiogenesis or vascular targeting agents. Clinical Cancer 

Research 9(6), 1957-1971. 

 

Wachsberger, P.R., Burd, R., Marero, N., Daskalakis, C., Ryan, A., McCue, P., 2005. 

Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of 

U87 glioblastoma. Clinical Cancer Research 11(2), 835-842. 

 

Wang, T., Niu, G., Kortylewski, M., Burdelya, L., Shain, K., Zhang, S., Bhattacharya, R., 

Gabrilovich, D., Heller, R., Coppola, D., Dalton, W., Jove, R., Pardoll, D., Yu, H., 

2004. Regulation of the innate and adaptive immune responses by Stat-3 signaling 

in tumor cells. Nature Medicine 10, 48-54. 

 

Walenta, S., Chau, T.V., Schroeder, T., Lehr, H.A., Kunz-Schughart, L.A., Fuerst, A., 

2003. Metabolic classification of human rectal adenocarcinomas: a novel 

guideline for clinical oncologists? Journal of Cancer Research and Clinical 

Oncology 129(6), 321-326. 

 

Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfør, K., Rofstad, E.K., 

2000. High lactate levels predict likelihood of metastases, tumor recurrence, and 

restricted patient survival in human cervical cancers. Cancer Research 60(4), 916-

921. 

 

Wheeler, S.E., Suzuki, S., Thomas, S.M., Sen, M., Leeman-Neill, R.J., Chiosea, S.I., 

2010. Epidermal growth factor receptor variant III mediates head and neck cancer 

cell invasion via STAT3 activation. Oncogene 29(37), 5135-5145. 

 

Wong, C.I., Koh, T.S., Soo, R., Hartono, S., Thng, C.H., McKeegan, E., 2009. Phase I 

and biomarker study of ABT-869, a multiple receptor tyrosine kinase inhibitor, in 

patients with refractory solid malignancies. Journal of Clinical Oncology 27(28), 

4718-4726. 

 

Yacoub, A., Park, J.S., Qiao, L., Dent, P., Hagan, M.P. 2001. MAPK dependence of 

DNA damage repair: ionizing radiation and the induction of expression of the 

DNA repair genes XRCC1 and ERCC1 in DU145 human prostate carcinoma cells 



72 

in a MEK1/2 dependent fashion. International Journal of Radiation in Biology 

77(10), 1067-1078. 

 

Yadav, A., Kumar, B., Teknos, T.N., Kumar, P., 2011. Sorafenib enhances the antitumor 

effects of chemoradiation treatment by downregulating ERCC-1 and XRCC-1 

DNA repair proteins. Molecular Cancer Therapy 10(7), 1241-1251. 

 

Yang, S., Wu, J., Zuo, Y., Tan, L., Jia, H., Yan, H., 2010. ZD6474, a small molecule 

tyrosine kinase inhibitor, potentiates the anti-tumor and anti-metastasis effects of 

radiation for human nasopharyngeal carcinoma. Current Cancer Drug Targets 

10(6), 611-622. 

 

Yin, X., Hayes, D.N., Shores, C.G., 2011. Antitumor activity of enzastaurin as radiation 

sensitizer in head and neck squamous cell carcinoma. Head and Neck 33(8), 

1106-1114. 

 

Yin, X., Zhang, H., Lundgren, K., Wilson, L., Burrows, F., Shores, C.G., 2010. BIIB021, 

a novel Hsp90 inhibitor, sensitizes head and neck squamous cell carcinoma to 

radiotherapy. International Journal of Cancer 126(5), 1216-1225. 

 

Yoo, D.S., Kirkpatrick, J.P., Craciunescu, O., Broadwater, G.., Peterson, B.L., Carroll, 

M.D., 2012. Prospective trial of synchronous bevacizumab, erlotinib, and 

concurrent chemoradiation in locally advanced head and neck cancer. Clinical 

Cancer Research 18(5), 1404-1414. 

 

Yoo, G.H., Piechocki, M.P., Oliver, J., Lonardo, F., Zumstein, L., Lin, H.S., 2004. 

Enhancement of Ad-p53 therapy with docetaxel in head and neck cancer. 

Laryngoscope 114(11), 1871-1879. 

 

Yeom, C.J., Zeng, L., Zhu, Y., Hiraoka, M., Harada, H., 2011. Strategies To Assess 

Hypoxic/HIF-1-active cancer cells for the development of innovative radiation 

therapy. Cancers 3(3), 3610-3631. 

 

Yu, H.Y., Jin, C.Y., Kim, K.S., Lee, Y.C., Park, S.H., Kim, G.Y., Kim, W.J., Moon, H.I., 

Choi, Y.H., Lee, J.H. 2012. Oleifolioside A mediates caspase-independent human 

cervical carcinoma HeLa cell apoptosis involving nuclear relocation of 

http://www.ncbi.nlm.nih.gov/pubmed?term=Yu%20HY%5BAuthor%5D&cauthor=true&cauthor_uid=22564025
http://www.ncbi.nlm.nih.gov/pubmed?term=Jin%20CY%5BAuthor%5D&cauthor=true&cauthor_uid=22564025
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20KS%5BAuthor%5D&cauthor=true&cauthor_uid=22564025
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20YC%5BAuthor%5D&cauthor=true&cauthor_uid=22564025
http://www.ncbi.nlm.nih.gov/pubmed?term=Park%20SH%5BAuthor%5D&cauthor=true&cauthor_uid=22564025
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20GY%5BAuthor%5D&cauthor=true&cauthor_uid=22564025
http://www.ncbi.nlm.nih.gov/pubmed?term=Kim%20WJ%5BAuthor%5D&cauthor=true&cauthor_uid=22564025
http://www.ncbi.nlm.nih.gov/pubmed?term=Moon%20HI%5BAuthor%5D&cauthor=true&cauthor_uid=22564025
http://www.ncbi.nlm.nih.gov/pubmed?term=Choi%20YH%5BAuthor%5D&cauthor=true&cauthor_uid=22564025
http://www.ncbi.nlm.nih.gov/pubmed?term=Lee%20JH%5BAuthor%5D&cauthor=true&cauthor_uid=22564025


73 

mitochondrial apoptogenic factors AIF and EndoG. Journal of Agricultural and 

Food Chemistry 60(21), 5400-6 

 

Yu, H., Jove, R., 2004. The STATs of cancer--new molecular targets come of age. Nature 

Review Cancer 4, 97-105. 

 

Yun, U.J., Park, S.E., Jo, Y.S., 2012. DNA damage induces the IL-6/STAT3  signaling 

pathway, which has anti-senescence and growth-promoting functions in human 

tumors. Cancer Letters 323, 155-160. 

 

Zhang, S., Suvannasankha, A., Crean, C.D., White, V.L., Chen, C.S., Farag, S.S., 2011. 

The novel histone deacetylase inhibitor, AR-42, inhibits gp130/Stat3 pathway and 

induces apoptosis and cell cycle arrest in multiple myeloma cells. International 

Journal of Cancer 129(1), 204-213. 

 

Zhao, M., Sano, D., Pickering, C.R., Jasser, S.A., Henderson, Y.C., Clayman, G.L., 2011. 

Assembly and initial characterization of a panel of 85 genomically validated cell 

lines from diverse head and neck tumor sites. Clinical Cancer Research 17(23), 

7248–64. 

 

Zhou, J., Bi, C., Janakakumara J.V., Liu, S.C., Chng, W.J., Tay, K.G., Poon, L.F., Xie, Z., 

Palaniyandi, S., Yu, H., Glaser, K.B., Albert, D.H., Davidsen, S.K., Chen, C.S., 

2009. Enhanced activation of STAT pathways and overexpression of survivin 

confer resistance to FLT3 inhibitors and could be therapeutic targets for AML. 

Blood 113(17), 4052-62. 

 

Zhou, J., Goh, B.C., Albert, D., Chen, C.S., 2009. ABT-869, a promising multi-targeted 

tyrosine kinase inhibitor: from bench to bedside. Journal of Hematology & 

Oncology 2(1), 33-45. 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=oleifolioside+A+mediates+caspase##
http://www.ncbi.nlm.nih.gov/pubmed/?term=oleifolioside+A+mediates+caspase##

	Loma Linda University
	TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works
	12-2013

	Radiosensitization of Head & Neck Carcinoma Cells by Linifanib, A Receptor Tyrosine Kinase Inhibitor
	Heng-Wei Hsu
	Recommended Citation


	LOMA LINDA UNIVERSITY

