
Loma Linda University
TheScholarsRepository@LLU: Digital Archive of Research,
Scholarship & Creative Works

Loma Linda University Electronic Theses, Dissertations & Projects

9-2014

Cortical Mechanisms of Human Pelvic Floor
Muscle Synergies
Skulpan Asavasopon

Follow this and additional works at: http://scholarsrepository.llu.edu/etd

Part of the Rehabilitation and Therapy Commons

This Dissertation is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative
Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of
TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact
scholarsrepository@llu.edu.

Recommended Citation
Asavasopon, Skulpan, "Cortical Mechanisms of Human Pelvic Floor Muscle Synergies" (2014). Loma Linda University Electronic
Theses, Dissertations & Projects. 163.
http://scholarsrepository.llu.edu/etd/163

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loma Linda University

https://core.ac.uk/display/151738603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarsrepository.llu.edu?utm_source=scholarsrepository.llu.edu%2Fetd%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsrepository.llu.edu?utm_source=scholarsrepository.llu.edu%2Fetd%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsrepository.llu.edu/etd?utm_source=scholarsrepository.llu.edu%2Fetd%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsrepository.llu.edu/etd?utm_source=scholarsrepository.llu.edu%2Fetd%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/749?utm_source=scholarsrepository.llu.edu%2Fetd%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsrepository.llu.edu/etd/163?utm_source=scholarsrepository.llu.edu%2Fetd%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsrepository@llu.edu


 

 

 

 

 

 

LOMA LINDA UNIVERSITY 

School of Allied Health 

in conjunction with the 

Faculty of Graduate Studies 

 

 

 

____________________ 

 

 

 

 

Cortical Mechanisms of Human Pelvic Floor Muscle Synergies   

 

 

by 

 

 

Skulpan Asavasopon 

 

 

 

____________________ 

 

 

 

 

A Dissertation submitted in partial satisfaction of 

The requirements for the degree 

Doctor of Philosophy in Rehabilitation Science 

 

 

 

____________________ 

 

 

 

 

September 2014 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014 

 

Skulpan Asavasopon 

All Rights Reserved 



iii 

Each person whose signature appears below certifies that this dissertation in his/her 

opinion is adequate, in scope and quality, as a dissertation for the degree Doctor of 

Philosophy. 

 

 

 

 

 

 , Chairperson 

Lee S. Berk, Associate Professor of Allied Health Studies and Physical Therapy 

 

 

 

 

  

Noha S. Daher, Associate Professor of Statistics and Research 

 

 

 

 

  

Jason J. Kutch, Assistant Professor of Biokinesiology and Physical Therapy, Ostrow 

School of Dentistry 

 

 

 

  

Everett B. Lohman, Professor of Physical Therapy 

 

 



iv 

ACKNOWLEDGEMENTS 

 

 

 I would like to express my deepest gratitude to Dr. Jason Kutch being the brains 

behind the science of this work. He can single-handedly do it all; a master genius of the 

universe. His brilliant ability to learn and master the craft of the scientific process as well 

as his mathematical and technological wizardry behind the scenes has enabled me to 

appreciate the possible I once thought was impossible. He is a prodigy of mathematics, 

technology, and science. I am in awe of how one human can become an expert in 

anything literally over night. He is inspiring; and fortunate for me, he has been a great 

mentor who leaves me wanting to learn more and more from him. Simply put, without 

him, I would not be completing my dissertation, and I am forever grateful.  

 I would also like to thank my committee members for their advice and direction.  

To Dr. Everett Lohman, thank you for basically being my angel through all the obstacles 

I encountered throughout this entire process. Without him, I would have simply been 

stuck in my tracks. His ability to help find funding, as well as leading and guiding me 

through this entire process is like the “behind the scenes” crew of a great production.  He 

has been the most empowering man I have ever met, and that alone, is priceless, 

especially in times of my powerlessness. To Dr. Lee Berk, who no matter what I fancied, 

supported me in every idea and quest I chose. His positive energy and emotional 

intelligence is like that of a Jedi Knight. Any path I chose, he was there to further it; any 

idea I had, he was there to expand on it; and anytime I needed insight, he was there to 

provide it. Finally, to Dr. Noha Daher, the person who made sure that all the statistical 

analysis was in check. Thank you for your statistical wizardry and ability to help analyze 



v 

the final results.   She has a heart of family and her statistical support on this project has 

been reassuringly solid in every aspect of the word.  

 To all the members of the USC Applied Mathematical and Physiology Laboratory 

under the directorship of Dr. Jason Kutch, I thank all of you (Manku Rana, Moheb Yani, 

and Daniel Kirages) for your technical help, your helping hands, and your friendships.  

To my family and friends, thank you for putting up with me throughout this entire 

journey.  



vi 

DEDICATION 

 

 

I dedicate this PhD to my parents who are the reason why I am here today. My 

mother especially, is the one who has instilled such a drive in me; I am grateful for 

learning and appreciating what hard work is all about; a valuable lesson I hope to instill 

in my future children.  

 



vii 

CONTENT 

 

 

Approval Page .................................................................................................................... iii 

 

Acknowledgements ..............................................................................................................v 

 

Table of Contents .............................................................................................................. vii 

 

List of Tables ..................................................................................................................... ix 

 

List of Figures ......................................................................................................................x 

 

List of Abbreviations ......................................................................................................... xi 

 

Abstract ............................................................................................................................ xiii 

 

Chapter 

 

1. Background ..............................................................................................................1 

 

Overview of the Human Pelvic Floor ................................................................1 

 

Pelvic Floor Function ...................................................................................1 

Pelvic Floor Functional Anatomy and Innervation ......................................1 

Pelvic Floor Cortical Representation ...........................................................3 

 

2. Introduction ..............................................................................................................4 

 

Pelvic Floor Associated Disorders .....................................................................4 

 

Muscle Synergies of the Human Pelvic Floor .............................................6 

 

3. Cortically Facilitated Synergies of the Human Pelvic Floor .................................10 

 

Abstract ............................................................................................................10 

Introduction ......................................................................................................11 

Methods............................................................................................................12 

 

Participant Population ................................................................................12 

EMG Acquisition and Analysis .................................................................13 

fMRI Acquisition and Analysis .................................................................15 

TMS Acquisition and Analysis ..................................................................16 

 

Results ..............................................................................................................18 

Discussion ........................................................................................................27 



viii 

References ........................................................................................................53 

 

4. Brain Activation Associated with Decoupling Involuntary Muscle Synergies       

of the Human Pelvic Floor .....................................................................................31 

 

Abstract ............................................................................................................31 

Introduction ......................................................................................................32 

Methods............................................................................................................34 

 

Participant Population ................................................................................34 

EMG Acquisition and Analysis .................................................................35 

fMRI Acquisition and Analysis .................................................................37 

 

Results ..............................................................................................................38 

Discussion ........................................................................................................43 

 

5. Discussion ..............................................................................................................47 

 

The End of Two Experiments and the Beginning of Many More ...................47 

Conclusions and Future Directions ..................................................................50 

 

References ..........................................................................................................................53 

 

 



ix 

TABLES 

 

Tables Page 

 

1. Peak Foci for Activation in the Region of Overlap Obtained During         

Voluntary Pelvic Floor Muscle and Voluntary Muscle Activation .......................26 

 

 



x 

FIGURES 

 

 

Figures Page 

 

1. Electromyographic Evidence of Pelvic Floor Muscle Synergies ..........................18 

2. Functional Magnetic Resonance Imaging Evidence of Overlapping  

Activation ...............................................................................................................21 

3. Transcranial Magnetic Stimulation Evidence of Pelvic Floor Muscle Motor 

Evoked Potentials...................................................................................................23 

4. Evidence of Motor Cortical Representation in the Overlapping Brain       

Activation During Voluntary PFM and Voluntary GMM Activation ...................25 

5. Electromyography Evidence of Pelvic Floor Muscle Synergy Decoupling ..........40 

6. fMRI Evidence of Non-Motor Related Brain Regions ..........................................42 

 

 

 

 

  



xi 

ABBREVIATIONS 

 

 

ACC    Anterior Cingulate Cortex 

ANS    Autonomic Nervous System 

APA    Anticipatory Postural Adjustments 

BOLD    Blood Oxygenation Level Dependent 

BA    Brodman’s Area 

CPPS    Chronic Prostate/Pelvic Pain Syndrome 

EEG    Electroencephalography 

EMG    Electromyography 

FDI    First Dorsal Interosseous 

FHL    Flexor Hallucis Longus 

FI    Fecal Incontinence 

fMRI    Functional Magnetic Resonance Imaging 

GMM    Gluteus Maximus Muscles 

IC    Interstitial Cystitis 

LA    Levator Ani 

LAI    Left Anterior Insula 

LBP    Low Back Pain 

MVC    Maximum Voluntary Contraction 

MEP    Motor Evoked Potential 

MNI    Montreal Neurological Institute 

PBS    Painful Bladder Syndrome 

PET    Poistron Emission Topography 



xii 

PFM    Pelvic Floor Muscles 

SMA    Supplementary Motor Area 

UI    Urinary Incontinence 

UCPPS   Urologic Chronic Pelvic Pain Syndrome 

 

 

  



xiii 

ABSTRACT OF THE DISSERTATION 

 

 

Cortical Mechanisms of Human Pelvic Floor Muscle Synergies 

by 

Skulpan Asavasopon 

Doctor of Philosophy, Graduate Program in Rehabilitation Science 

Loma Linda University, September 2014 

Dr. Lee Berk, Chairperson 

 

The human pelvic floor is an anatomically, functionally, and morphologically 

complex region that is associated with many disorders such as chronic prostatitis/pelvic 

pain syndrome (CPPS), chronic low back pain, and urinary incontinence. The purpose of 

this dissertation was to explore the cortical mechanisms that underlie human pelvic floor 

muscle synergies. Our first original experiment involved the study of 20 healthy male 

controls who were instructed to perform a variety of muscle tasks presumed to be 

associated with pelvic floor muscle synergies. Surface electromyography (EMG) method 

was used to detect timing onsets, as well as activation patterns of the pelvic floor, gluteus 

maximus, and first dorsal interosseous muscles. Functional magnetic resonance imaging 

(fMRI) was used to measure blood oxygenation density levels (BOLD) in the brain while 

subjects performed various prime mover tasks. Our second original experiment involved 

another set of 10 healthy male subjects who were trained to perform a complex synergy 

breaking/decoupling task that was confirmed with EMG. They repeated the coupling 

motor task (gluteal activation) as well as the more complex motor decoupling task while 

being scanned with fMRI, so that BOLD signals could be compared. The first experiment 

revealed evidence of cortically facilitated synergy of the pelvic floor muscles and the 
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second experiment revealed that complex motor tasks such as the breaking of a cortically 

facilitated muscle synergy involves BOLD signals in the brain known to be involved with 

interoception.  
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CHAPTER ONE 

 

BACKGROUND 

 

Overview of the Human Pelvic Floor 

Pelvic Floor Function 

The architectural function of the pelvic floor is to support pelvic organs such as 

the abdominal viscera and rectum, while the functional role of the pelvic floor muscles 

(PFM) is to control continence and elimination (Messelink et al., 2005). The complexity 

in function of the PFM lies in the fact that its dysfunction has been shown to be 

associated with many disorders such as low back pain (LBP), CPPS, fecal and urinary 

incontinence (FI/UI), vulvodynia/chronic pelvic pain, and overactive pelvic floor 

syndrome. To logically understand how the PFM may have a role in these disorders, we 

first discuss the basic functional anatomy of the pelvic floor.  

 

Pelvic Floor Functional Anatomy and Innervation 

The pelvic floor is primarily made up of two layers:  the striated Levator Ani 

Muscle complex and external anal sphincter muscle. The pelvic floor has been described 

as having a third layer making up the superficial layer also known as the urogenital 

diaphragm. The layer consists of not only the external anal sphincter, but also the 

bulbospongiosus, ischiocavernosus, and superficial transverse perinei (Vodušek, 2004). 

The levator ani consists of 4 parts: iliococcygeus, pubococcygeus, puboretalis, and 

coccygeus. Relaxation of these muscles allows evacuation of the bladder and rectum, 
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while contraction facilitates continence. The external anal sphincter consists of 3 circular 

loops of muscles: the musculus subcutaneous without attachment, the superficial 

elliptical part attached to the coccyx, and the deep part that blends into the puborectalis. It 

is in a state of constant tonic contraction having no identifiable antagonist, therefore 

assisting in the maintenance of fecal continence. The motor neurons innervating the PFM 

originate from the Onuf nucleus in the S2-S4 anterior horn of the spinal cord (Vodušek, 

2004). The somatic fibers from the ventral rami (also called the sacral plexus) form the 

pudendal nerve, which ultimately contributes to motor innervation of all the muscles of 

the pelvic floor, as well as the external urethral sphincter.  Although not directly part of 

the pelvic floor, the perineal nerve is the inferior and larger terminal branch of the 

pudendal nerve that further divides into posterior scrotal/labial and muscular branches 

(Vodušek, 2004). While the PFM has direct peripheral nerve innervation by portions of 

the sacral plexus, the autonomic nervous system contributes to the continence function of 

the pelvic floor at the visceral level as well. The visceral afferents accompany both 

parasympathetic and sympathetic efferent fibers, while the somatic accompany the 

pudendal nerves and direct somatic branches of the sacral plexus. This autonomic 

innervation results in the sympathetic nerves having the ability to facilitate an inhibitory 

effect on colon peristalsis and secretions, while the parasympathetic stimulation increases 

peristalsis and secretions. While there is a considerable amount of detailed information 

known in humans on the peripheral innervation of the pelvic floor, there is a need to 

better understand PFM function at the cortical level (Vodušek, 2004). 
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Pelvic Floor Cortical Representation 

 Since the increased use of functional magnetic resonance imaging (fMRI) in 

studying cortical mapping of muscle function over the past decade, there has been an 

increasing trend in understanding the cortical representation of various muscles. Of 

particular interest, is better understanding muscle synergies of the human pelvic floor at 

the cortical level. To begin, it is important to understand what is currently known in terms 

of cortical representation of the human pelvic floor. Three neuroimaging studies which 

investigated brain activity during voluntary contractions of the pelvic floor in healthy 

controls came to divergent conclusions (Blok et al., 1997; Vodušek, 2004; Zhang et al., 

2005; Seseke et al., 2006b). Blok et al. found activity in the superolateral and 

superomedial precentral gyrus (primary motor cortex), during repeated pelvic floor 

straining in healthy women. Zhang et al. did not find M1 activity but reported strong 

activity in the supplementary motor area (SMA), as well as parietal cortex, limbic system, 

cerebellum, and putamen; especially in the full-bladder condition, while contracting the 

PFM. Seseke et al. found that relaxation and contraction of the PFM resulted in activation 

patterns that included both M1/S1 and SMA, as well as the frontal cortex, cerebellum, 

and basal ganglia. Despite the divergent findings from the given studies, there is a strong 

presence of pelvic floor muscles being consistently represented in the SMA. Because our 

interest lies within muscle synergies and the mechanisms by which muscle synergies 

affect clinical conditions such as LBP, CPPS, and FI/UI (fecal incontinence/urinary 

incontinence), we have chosen to exploit the area of functional imaging to further 

understand human muscle synergies of the pelvic floor. 
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CHAPTER TWO 

 

INTRODUCTION 

 

Pelvic Floor Associated Disorders 

Preserving dignity at the humane level by maintaining continence is accomplished 

through proper functioning of the pelvic floor muscles. However, when the PFM 

becomes impaired, other disabling consequences may ensue. The most obvious of 

consequences is urinary incontinence (UI) or fecal incontinence (FI). According to the 

most recent Cochrane review in 2010, there is strong support for the widespread 

recommendation that pelvic floor muscle training be included as first-line conservative 

management programs for women with stress, urge or mixed, urinary incontinence (Hay-

Smith and Dumoulin, 2006). This review summarizes the important role the PFM plays 

in women with UI.  

Along with UI or FI, there are a variety of disorders and syndromes in which an 

impaired PFM may be relevant. It has been shown that PFM dysfunction is associated 

with the development of LBP (Sjödahl et al., 2009; Arab et al., 2010). Bi et al. published 

a randomized clinical trial to assess the effect of pelvic floor muscle exercise in patients 

with chronic low back pain and found that pelvic floor exercises in combination with 

routine treatment provides significant benefits in terms of pain relief and disability, when 

compared to routine treatment along (Bi et al., 2013). PFM insufficiency is believed to 

occur as a result of pain, poor movement patterns, trauma, surgery, or childbirth (Sjödahl 

et al., 2009). These muscle imbalances do not recover and can lead to sustained 
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inappropriate muscle synergies that may largely contribute to the chronic pain vortex. 

Whether pain is a precursor to PFM impairments or vice-versa leaves us with a “chicken 

or the egg” question. Demystifying the complexity of pain as it pertains to the pelvic 

floor remains a challenge. 

Another PFM associated disorder is chronic pelvic/prostate pain syndrome or any 

nebulously labeled pain syndrome such as vulvodynia, overactive pelvic floor syndrome, 

spastic levator ani syndrome, pubalgia, or simply put – urologic chronic pelvic pain 

syndrome (UCPPS). The mechanisms underlying chronic pelvic pain remains largely 

unknown and has resulted in a diagnosis of exclusion, such as: ruling out factors related 

to psychosocial, genitourinary system, organ specific, infection, neurologic/systemic, 

and/or skeletal muscles (Doggweiler and Stewart, 2011). Descriptive studies that allude 

to any such proposed mechanisms are scarce. However, there is evidence for the use of 

muscle inhibiting agents such as botulinum toxin injection therapy for patients thought to 

have pain from spastic PFM or PFM with trigger points (Abbott et al., 2006; Abbott, 

2009). Unfortunately, results comparing favorable outcomes were not much different 

than placebo groups in one pilot study as well as one of the randomized clinical trials (Bø 

et al., 2009). The treatment of PFM with tone inhibiting agents might imply that there is 

an up-regulated tonus of the PFM group relative to its synergistic muscles. For this 

reason, we turn to the conceptual framework of understanding muscle synergies of the 

pelvic floor and exploring the synergistic relationships between the PFM group and other 

larger muscle groups. 
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Muscle Synergies of the Human Pelvic Floor 

There is a large body of literature demonstrating that muscles of the human pelvic 

floor - that is, muscles of the perineum and rectum that contribute to the control of 

urination, defecation, and sexual activity are activated synergistically with other muscles 

during functional tasks. For example, pelvic floor muscles activate during voluntary 

contraction of abdominal muscles (Hodges, 1999; Sapsford and Hodges, 2001; Critchley, 

2002; Bø et al., 2003; Sapsford, 2004; Hodges et al., 2007; Smith et al., 2007; Madill and 

McLean, 2008; Sjödahl et al., 2009), gluteal muscles (Bø and Stien, 1994; Peschers et al., 

2001), hip adductors (Bø and Stien, 1994), and even voluntary shoulder flexion or 

extension (Hodges et al., 2007; Sjödahl et al., 2009). Pelvic floor muscle synergies have 

been suggested to be an important mechanism to promote continence when functional 

tasks generate increased intra-abdominal pressure (Junginger et al., 2010).  

Despite multiple larger muscle groups that have been shown to co-contract with 

the PFM group, the deep abdominal muscles (transverse abdominis) and PFM pair have 

been most recently and prevalently studied because of their synergistic activity during 

normal trunk activities (Bø et al., 2009). Critchley et al. have shown a direct co-

contraction of the transversus abdominis muscle when the pelvic floor is the prime mover 

(Critchley, 2002). In 2006, Madill et al. also found that abdominal muscles co-contracted 

and intravaginal pressure also increased when healthy continent women were instructed 

to perform pelvic floor contractions (Madill and McLean, 2006). Sapsford et al. found 

congruent results in a similar experiment they performed on healthy controls quantifying 

PFM activity and abdominal activity during exercises for the PFM in various positions 

using fine-wire electromyography (EMG). Furthermore, they also included a small pilot 
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in which they instructed the two subjects to perform various abdominal maneuvers. It was 

from this pilot that they found the subjects had an increase EMG activity of the 

pubococcygeus muscle as a co-contraction to the primary abdominal muscles.  Ultimately 

they concluded that activation of the abdominal muscles was a normal response to PFM 

exercises. The mechanism by which there is muscle synergy between the PFM and 

abdominal muscles is explained by the pelvic floor muscles’ contribution to intra-

abdominal pressure and trunk stability.  Hodges et al. have also demonstrated a feed-

forward mechanism by which the PFM may be activated because of an anticipatory 

postural adjustment (APA) in response to trunk perturbation, such as rapid arm 

movement (Hodges et al., 2002). Of all larger muscle groups, the transverse abdominis is 

the only one that has been studied for the treatment of urinary incontinence in 

conjunction with or without the PFM (Bø et al., 2009).  

The other large muscle group where literature has shown sparse hints of 

synergistic contraction with the PFM is the gluteus maximus muscles (GMM). Solianik et 

al. have shown functional and morphological connections between the gluteus maximus 

and PFM during voluntary contraction of the PFM (Soljanik et al., 2012). They 

demonstrated that Levator Ani (LA) and GMM contractions were electromyographically 

observed in 97.2% of their subjects when GMM was the prime mover. Structural 

mapping of the LA, GMM, and connecting fascia of the fossa ischioanalis showed 

synchronous movement of all structures during pelvic floor contraction. Although they 

did not claim this to be a synergistic contraction via any neural connectivity, they 

concluded that the LA and GMM are functionally and morphologically connected; 

calling it the ‘LFG-Complex.’ They further recommended considering the integration of 
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this complex as part of the pelvic floor.  It is also noted that they did instruct their 

subjects to perform maximum contractions of the PFM and this may have resulted in a 

compensatory over-recruitment mechanism of synergistic muscles. It is possible that they 

may have only recorded isolated PFM contraction if their subjects were instructed to 

perform light voluntary contractions. To further support the synergistic coupling of the 

PFM and GMM, Peschers et al. evaluated PFM strength using four different techniques 

(Peschers et al., 2001). They found that the combined contraction of the GMM and PFM 

resulted in significantly increased strength readings compared to contraction of the PFM 

alone. This supports the notion of a functional synergy between these two muscle groups.  

Bo et al. found clear co-contractions of the PFM while the following prime mover 

muscles were contracting: gluteus maximus, abdominals, and hip adductors (Bø and 

Stien, 1994). Schrum et al. was able to show activity of the PFM contraction that was 

independent of the GMM or flexor halluces longus, which was set to be the control 

muscle comparison (Schrum et al., 2011b). In summary, there appears to be a synergistic 

coupling of the PFM group when the GMM is the prime mover but there is no contrary 

synergistic coupling when the PFM is the prime mover. To further understand how or 

why such a relationship might exist between the PFM and GMM, we designed and 

executed two original experiments on healthy male subjects that involved the use of 

EMG and fMRI.  

Chapter Three introduces our first original experiment that seeks to understand 

the muscle synergies of the human pelvic floor by first employing peripheral EMG while 

healthy male subjects performed a variety of muscle tasks that could be replicated in a 

fMRI scanner. Subjects were asked to perform repeated isometric primary mover tasks 
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that involved collecting EMG data on the PFM, GMM, and first dorsal interosseous 

(FDI). Onsets and magnitudes of the various muscles were processed and analyzed to 

determine what muscle synergies of the pelvic floor, if any, existed. Subjects repeated all 

muscle tasks in the fMRI scanner so that BOLD signals could be measured and correlated 

with EMG findings. Comparing EMG data to fMRI data may help determine if muscle 

synergies of the pelvic floor are cortically facilitated. Following this presumption that 

muscle synergies of the pelvic floor do exist, we planned and executed our second 

original experiment that is introduced in Chapter Four.  

Chapter Four introduces the pelvic floor decoupling experiment in which subjects 

go through a training program to teach them how to break the synergy between the PFM 

and the GMM. Once they have been confirmed to have the capability of breaking the 

synergy between the PFM and GMM with objective EMG confirmation feedback, they 

proceeded to perform the same tasks in an fMRI scanner. FMRI was used to compare a 

coupling task of the GMM/PFM and the complex decoupling task in which subjects were 

asked to maintain GMM contraction while shutting off or down-regulating any PFM 

contraction. Understanding the neural correlates of a naturally occurring coupling task 

versus a more complex learned motor behavior task may help better interpret cortical 

mechanisms related to the learning of more complex motor coordination behavior 

activities.  
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CHAPTER THREE 

CORTICALLY FACILITATED MUSCLE SYNERGIES OF THE 

HUMAN PELVIC FLOOR 

 

Abstract 

 Human pelvic floor muscles have been shown to operate synergistically with a 

wide variety of muscles, which has been suggested to be an important contributor to 

continence and pelvic stability during functional tasks. However, the neural mechanism 

of pelvic floor muscle synergies remains unknown. Here we tested the hypothesis that 

activation in motor cortical regions associated with pelvic floor activation is part of the 

neural substrate for such synergies. We first use electromyographic recordings in 10 

healthy males to extend previous findings and demonstrate that pelvic floor muscles 

activate synergistically during voluntary activation of gluteal muscles, but not during 

voluntary activation of finger muscles. We then show, using functional magnetic 

resonance imaging (fMRI) in 10 healthy males that a region of the medial wall of the 

precentral gyrus consistently activates during both voluntary pelvic floor muscle 

activation and voluntary gluteal activation, but not during voluntary finger activation. We 

finally confirm, using transcranial magnetic stimulation in 10 healthy males, that the 

fMRI-identified medial wall region is likely to directly facilitate pelvic floor muscle 

activation. Thus, muscle synergies of the human pelvic floor appear to be facilitated by 

activation of motor cortical areas. 
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Introduction 

 There is a large body of literature demonstrating that muscles of the human pelvic 

floor - that is, muscles of the perineum and rectum that contribute to the control of 

urination, defecation, and sexual activity - are activated synergistically with other 

muscles during functional tasks. For example, pelvic floor muscles (PFM) activate during 

voluntary activation of abdominal muscles (Sapsford et al., 2001; Madill and McLean, 

2008), gluteal muscles (Bø and Stien, 1994; Peschers et al., 2001), hip adductors (Bø and 

Stien, 1994), and even voluntary shoulder flexion or extension (Hodges et al., 2007; 

Sjödahl et al., 2009). PFM synergies have been suggested to be an important mechanism 

to promote continence by resisting increased intra-abdominal pressure generated by 

functional tasks (Junginger et al., 2010) . 

 Despite the potential relevance of PFM synergies to prevalent clinical conditions, 

including incontinence  (Bø and Stien, 1994; A. Ashton-Miller, 2001; Sapsford et al., 

2001; Parekh et al., 2003) and chronic pelvic pain (Doggweiler-Wiygul and Wiygul, 

2002; Doggweiler-Wiygul, 2004), the neural mechanism of these synergies is poorly 

understood. While many muscle synergies are likely shaped by subcortical connections 

(Mussa-Ivaldi et al., 1994; Saltiel et al., 2001; Cheung et al., 2009), there is evidence of 

cortical involvement in structuring muscle synergies (Mussa-Ivaldi et al., 1994; Saltiel et 

al., 2001; Drew et al., 2008; Cheung et al., 2009; Waters-Metenier et al., 2014). 

Synergistic pelvic floor activity has been shown to occur in advance of activity in the 

primary muscles used to complete a task (Sapsford and Hodges, 2001; Hodges et al., 

2007), suggesting that PFM activity may be part of a feedforward synergy. Since 

extensive research has demonstrated the cortical underpinnings of feedforward synergies      
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(Aruin, 2002; Jacobs et al., 2009) we hypothesized that PFM synergies may be facilitated 

by activity in specific motor cortical areas that enhance PFM activation. 

 A long line of evidence, dating back to at least Leyton and Sherrington (1917), 

demonstrates that pelvic floor musculature is represented in the medial wall of the 

precentral gyrus, primarily in Brodmann area (BA) 6 (Leyton and Sherrington, 1917; 

Turnbull et al., 1999; Schrum et al., 2011b). We hypothesized that, if pelvic muscle 

synergies are cortically facilitated, that there would be a medial wall region that was 

active during voluntary pelvic floor activation and voluntary activation of synergists, and 

that moreover, stimulation of this region would facilitate pelvic floor activation. Using a 

combination of electromyographic (EMG) recording, functional magnetic resonance 

imaging (fMRI), and transcranial magnetic stimulation (TMS), we present data below in 

support of this hypothesis. 

 

Methods 

Participant Population 

 We recruited 32 healthy men with a mean age (± SD) of 32.63 ± 5.89 (range 24 to 

43). Since possible sex differences in the control of PFM have not been fully 

characterized, we limited our study to a single sex as in previous studies (Seseke et al., 

2006b; Schrum et al., 2011b). Participants were practicing physical therapists or physical 

therapy students with general knowledge of pelvic floor anatomy and function. The 

studies we describe here were carried out at the University of Southern California and 

approved by the University of Southern California Institutional Review Board. All 

participants provided informed consent.  
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EMG Acquisition and Analysis 

 In 10 participants, we measured muscle activation using EMG to define the 

characteristics of PFM synergies before performing the same tasks using fMRI to define 

the neural substrate. We used EMG to verify the previously-reported muscle synergy 

between the PFM and gluteus maximus muscle (GMM) and to establish finger muscle 

activation as an appropriate control muscle group that does not have synergistic coupling 

with the PFM muscles. With the participant resting in a supine position inside a mock 

magnetic resonance imaging (MRI) scanner, we recorded surface EMG data from the 

right GMM, the PFM, and the right first dorsal interosseous muscle (FDI). We recorded 

EMG signals from the GMM and FDI with miniature electrode/preamplifiers (DELSYS, 

Boston, MA) with 2 silver recording surfaces, 5mm long and 10 mm apart. We recorded 

an aggregate EMG signal from the PFM using a medical-grade rectal EMG sensor (The 

Prometheus Group, Dover, NH). The EMG preamplifier filters had a bandwidth of 20-

450 Hz, with gains of 1000 for GMM and FDI, 10000 for PFM, and a sampling rate of 

2000 Hz.  

 Prior to the experimental session, we asked participants to empty their bladder. 

Participants performed separate trials, each of which involved voluntary activation of a 

different primary muscle group. In PFM trials, we instructed participants to contract their 

pelvic floor as if to stop the flow of urine. In GMM trials, we instructed participants to 

isometrically contract their GMM. In FDI trials, we instructed participants to contract 

their FDI muscle to generate index finger abduction. For all trial types, we first acquired 

EMG data corresponding to maximal voluntary contraction (MVC). During subsequent 

trials, participants activated the appropriate muscle group according to an audio tone that 
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ramped up and down in frequency to guide the participant through a smooth activation 

over a period of 2 seconds. Each trial consisted of 2 blocks of 10 activations. Previous 

studies of brain activity during PFM activation have not used EMG in the scanner 

(Seseke et al., 2006b; Kuhtz-Buschbeck et al., 2007; Schrum et al., 2011b). Since we 

planned to repeat voluntary activation trials in the fMRI scanner without EMG, we 

instructed participants in the mock scanner EMG study to produce moderate muscle 

activation (approximately 20% effort) to avoid fatigue, and quantified the activation 

(expressed as % MVC). 

 We analyzed EMG data to first estimate the activation onsets of the primary 

muscle group of each trial, and then to determine if significant time-locked activity 

occurred in EMG signals from the other recorded muscles. To perform this analysis, 

EMG signals from all recorded muscles were first high-pass filtered at 100 Hz (4th order 

zero-lag Butterworth filter), rectified, low-pass filtered at 30 Hz (Hodges et al., 2007) and 

then normalized to identically processed EMG data from the maximum activation trial. 

EMG data were then smoothed with a 500 ms moving average. Activation onsets were 

defined to occur when the smoothed EMG exceeded 2 standard deviations of the EMG 

baseline noise with the muscle at rest. Within each participant, we then defined an EMG 

transient for each muscle and each trial by averaging the rectified and filtered EMG data 

across repeated muscle activations within a time window spanning 1 second before to 3 

seconds after the activation onset of the primary muscle for the trial. To define significant 

EMG magnitude changes, we performed group statistics on the maximum of the EMG 

transient for muscles of interest within each participant. To define significant temporal 

shifts between EMG signals, we quantified temporal shifts in each participant by 
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determining the maximum cross-correlation between a pair of EMG transients 

(normalized to their maximum value).    

 

fMRI Acquisition and Analysis 

 In 14 participants, we measured brain activation associated with the voluntary 

muscle activation tasks (described above) using fMRI. We used a 3 Tesla (GE Signa 

Excite) with an 8-channel head coil. We positioned participants supine viewing a fixation 

crosshair, and placed foam pads to limit head motion. As in previous fMRI studies of 

PFM activation (Schrum et al., 2011b), we collected T2-weighted echo planar image 

volumes with blood oxygen level dependent (BOLD) contrast (echo time 34.5 

milliseconds, flip angle 90 degrees, field of view 220 mm, pixel size 3.43 mm) 

continually every 2.5 seconds during 3 imaging runs. Each volume consisted of 37 axial 

slices (3 mm slice thickness, 0.5 mm interslice gaps) that covered the brain from vertex to 

cerebellum. We additionally acquired a T1-weighted high-resolution anatomical image 

from each participant. We cued participants to voluntarily activate each muscle group (to 

approximately 20% effort) in 3 separate runs - PFM activation run, GMM activation run, 

and FDI activation run - as described above with the exception that participants 

performed additional activation blocks (6 blocks of 10 activations) in the scanner. All 14 

participants performed PFM activation runs, 12 participants performed GMM activation 

runs, and 10 participants performed FDI activation runs. 

 We preprocessed each participant’s fMRI data using the FMRIB Expert Analysis 

Tool (FEAT, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), which included skull extraction using 

the brain extraction tool (BET) in FSL, slice timing correction, motion correction, spatial 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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smoothing using a Gaussian kernel with full-width half-maximum of 5 mm and nonlinear 

high-pass temporal filtering (100 s). We used a general linear model (GLM) to examine 

the changes in BOLD signal associated with muscle activation for the three tasks. We 

performed participant-level whole-brain GLM analyses of individual runs in each 

participant to determine the change in BOLD signal during the activation blocks 

compared to the rest blocks. We then performed a group-level mixed-effect (FLAME 1 in 

FSL) analysis, with unpaired 2-sided t tests, to identify voxels in standard Montreal 

Neurological Institute (MNI) coordinates with significant differences in response based 

on the muscle group being voluntary contracted by the participant. We thresholded 

group-level images with cluster-based correction for multiple comparisons with Z > 2.3 

and p < 0.05. We made inferences about specific Brodmann areas using the Jülich 

Histological Atlas within FSL (Eickhoff et al., 2005). 

 

TMS Acquisition and Analysis 

 In 8 participants, we obtained motor evoked potentials (MEP) from the PFM, with 

participants resting supine, using a single-pulse magnetic stimulator (Magstim 2002, The 

Magstim Company Ltd, Withland, UL) with a 110 mm double cone coil. We sampled 

EMG signal at 16000 Hz, band pass filtered at 1 to 1000 Hz, and amplified at a gain of 

9500. Our fMRI findings and previous studies have shown that pelvic floor musculature 

is represented in the medial wall (Leyton and Sherrington, 1917; Schrum et al., 2011b). 

To localize the PFM representation in the anterior-posterior direction, we stimulated 

along the midline. We identified a participant-specific midline and central sulcus location 

by registering the participant’s head with their T1-weighted 3D high-resolution 
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anatomical image using Brainsight Frameless (Rogue Research Inc., Montreal, Canada). 

We then used Brainsight to guide TMS coil position to the midline and to record anterior-

posterior position in MNI coordinates. We applied stimulations at 7-9 locations (based on 

the shape and size of participant’s head), one cm apart, with the most posterior location at 

2 cm posterior of the central sulcus. To select an appropriate stimulus intensity for each 

participant, we inspected the average PFM EMG signal in response to 7 pulses at each of 

several sites within 2 cm of central sulcus, and selected the stimulus intensity as the 

minimum intensity to evoke a clearly distinguishable MEP (Tsao et al., 2008). We used 

average response to obtain pelvic MEPs because the PFM are active even during rest 

which makes it difficult to detect a small response to TMS (Mills and Nithi, 1997).  

  In post-analysis, we calculated the MEP magnitude as the peak-to-peak 

magnitude of the average MEP in the time window of 10 to 100 ms after TMS pulse 

onset (Pelliccioni et al., 1997; Turnbull et al., 1999; Lefaucheur, 2005). To compare 

among participants, we normalized MEP magnitudes with respect to the maximum MEP 

magnitude within each participant. For statistical analysis, we divided the stimulation 

locations into three location bins (posterior, middle, and anterior) along the midline. We 

selected the bin edges to make the middle region correspond with the precentral gyrus as 

defined by the Harvard-Oxford Cortical Structural Atlas in FSL. We defined the middle 

region by identifying the most posterior and most anterior coronal slice, which contained 

no voxels with non-zero probability of belonging to the precentral gyrus. Therefore, we 

defined posterior stimulation locations as those in the range y = -60 to -38 mm, middle y 

= -38 to -12 mm, and anterior y = -12 to 20 mm. We performed a 2-way ANOVA with 

interaction of the MEP magnitude using the factors of location bin and participant. 
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Results 

 Using recordings from the PFM, GMM, and the FDI (Figure 1A), we found that 

PFM activity is synergistically coupled to GMM activity, and that PFM synergistic 

coupling did not exist for distal upper extremity muscles such as the FDI. Example 

recordings from a single participant show that during repeated activation of the PFM, the 

GMM remained inactive (Figure 1B). However, when the participant repeatedly activated 

the GMM, the PFM activated in a synchronous fashion (Figure 1B). Group data of EMG 

transients time-locked to activation of the primary muscle demonstrated that we 

consistently observed this synergistic coupling of the PFM across the study population 

(Figure 1C). PFM activated during voluntary activation of the PFM and voluntary 

activation of the GMM, but not during voluntary activation of the FDI. All participants 

voluntarily activated their muscles, as instructed, to moderate levels. On average, 

participants activated PFM to 34% of maximal contraction, the GMM to 13% of maximal 

contraction, and the FDI to 15% of maximal contraction. Importantly, while GMM and 

FDI activation did not significantly differ across participants (paired t test, p = 0.40), 

PFM activation reached an average of 26% of maximal contraction during voluntary 

GMM activation, which was significantly greater than PFM activation during voluntary 

FDI activation (paired t test, p = 0.005) (Figure 1D). We observed that PFM activation 

occurred in advance of GMM activation during voluntary GMM activation (Figure 1E). 

Cross-correlating the average EMG transient from the PFM and from the GMM  during 

voluntary GMM activation, we found that activation in PFM led GMM activation by an 

average of 128 milliseconds, which was significantly greater than 0 (maximum of 239.5 

ms and minimum of 30.5 ms, t test, p = 0.001).  
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Figure 1.  Electromyographic (EMG) evidence of pelvic floor muscle synergies. A,  

EMG signals from the pelvic floor (PFM - blue) muscles, gluteal (GMM - green) muscle, 

and the first dorsal interosseous (FDI - red) muscle were recorded during separate trials 

that focused on the voluntary activation of each of these muscle groups. B, Example 

EMG recordings from the PFM and GMM muscles in a single participant during repeated 

voluntary PFM activation and separate voluntary GMM activation.  Participants 

performed 2 blocks of 10 activations, each activation lasting 2 seconds. We observed 

PFM muscle activation during voluntary GMM muscle activation, but no GMM muscle 

activation during voluntary PFM muscle activation. C, Group data demonstrating the 

consistent finding of synergistic activation of the PFM muscles during voluntary GMM 

muscle activation but not during voluntary FDI muscle activation. Moreover, we did not 

find evidence of FDI or GMM muscle activation during voluntary PFM muscle 

activation. Curves show the average EMG transient triggered by the onset of the primary 

voluntary muscle of the task, averaged across participants (error bars indicate standard 

error of the mean across participants). D, Statistical analysis of group data shows that 

PFM activity is significantly greater (p<0.01, **) during voluntary GMM activation 

compared to PFM activity during voluntary FDI activation. The activity in the primary 

muscles of the tasks (GMM and FDI) was not significantly different (p=0.40, n.s.). E, 

Analysis of the normalized EMG transients for the PFM and GMM muscles during 

voluntary GMM muscle activation revealed that activation of PFM muscles led GMM 

muscle activation by an average of 128 milliseconds across participants (minimum of 

30.5 ms and maximum of 239.5 ms) (p=0.001). 
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 Using fMRI data collected while participants performed muscle activation tasks 

identical to those described above (Figure 2A), we found that a region of the medial wall 

of the precentral gyrus activated during voluntary PFM activation and voluntary GMM 

activation, but not during voluntary FDI activation. We used FDI activation as a 

reference task in fMRI analysis because the EMG results showed that there was neither 

PFM nor GMM muscle activation during voluntary FDI activation. As expected, the 

contrast of FDI activation greater than PFM activation produced significant brain activity 

primarily in left sensorimotor cortex (Figure 2B), as the participant activated the right 

FDI. Also, as expected, the contrast of PFM activation greater than FDI activation 

produced significant activity in the medial wall of the precentral gyrus (Figure 2C). 

Surprisingly, the contrast of GMM activation greater than FDI activation, which EMG 

data suggest contains increased GMM activation and increased PFM activation, also 

produced significant activation in the medial wall of the precentral gyrus (Figure 2D). We 

found a region of the medial wall of the precentral gyrus that exhibited significant 

(p>0.005) brain activation for both voluntary PFM activation and voluntary GMM 

activation compared to FDI activation (Figure 2E).  
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Figure 2.  Functional magnetic resonance imaging (fMRI) evidence of overlapping 

activity during voluntary PFM and voluntary GMM activation. A, fMRI data were 

collected while participants performed 3 separate runs identical to the EMG tasks - 

separate repeated voluntary activation of PFM (run 1), GMM (run 2), and FDI (run 3). B, 

Contrast of voluntary FDI activation greater than voluntary PFM activation produced 

significant brain activation in left sensorimotor cortex. C, Contrast of voluntary PFM 

activation greater than voluntary FDI activation produced significant activation in the 

medial wall of the precentral gyrus. D, Contrast of voluntary GMM activation greater 

than voluntary FDI activation produced significant activation in the medial wall of the 

precentral gyrus E, Anterior medial wall of the precentral gyrus exhibited significant 

brain activation, for both PFM activation and GMM activation compared to FDI 

activation. 
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 Using MEP data generated by application of TMS along the midline of the 

participant’s brain (Figure 3A), we verified that medial wall of the precentral gyrus, 

identified using fMRI to be active during both PFM activation and GMM activation, 

likely facilitates PFM activation. Example data from one participant illustrates the 

findings (Figure 3B). Stimulation over anterior points of the midline over frontal cortex 

did not produce an MEP in the PFM, but stimulation over the precentral gyrus at the 

same stimulus intensity produced an MEP in the PFM at a latency of 23 milliseconds. In 

this participant, the relative magnitude of the MEP in the PFM peaked at an MNI 

coordinate of approximately -20 mm. The locations where we applied stimulation across 

all participants were confined over the midline, and were divided into posterior, middle 

(precentral gyrus), and anterior bins (Figure 3C). We observed that there was a 

significant main effect of bin location on PFM MEP magnitude, F (2,36) = 6.62, p = 

0.004; no significant main effect of participant F(7,36) = 1.24, p = 0.31; and the 

interaction between bin location and participant was not significant F(14,36) = 0.67, p 

=0.79. A post-hoc multiple-comparisons test with Bonferroni correction (p<0.05) 

indicated that MEPs corresponding to the middle bin were significantly greater than 

either the posterior bin (p <0.001) or anterior bin (p < 0.001) (Figure 3D). Viewing the 

stimulation points and the medial wall together demonstrated that stimulation points that 

we classified as precentral gyrus were above the fMRI-identified activation common to 

both voluntary PFM activation and voluntary GMM activation (Figure 3E). 
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Figure 3.  Transcranial magnetic stimulation (TMS) evidence that region of brain 

activation overlap between voluntary PFM activation and voluntary GMM activation 

facilitates activity in PFM muscles.  A, We collected motor evoked potentials (MEP) 

from the PFM muscles generate by TMS along the midline of the participant’s brain. B, 

Single participant data showing an MEP in the PFM muscles generated by stimulating 

over precentral gyrus at a latency of 23 ms.  Stimulating at points not over the precentral 

gyrus did not generate significant MEPs. The MEP in the PFM peaked at an MNI 

coordinate of approximately -20 mm. C, Locations of applied stimulation across all 

participants confined over the midline and divided into posterior, middle (precentral 

gyrus), and anterior bins. D,  MEPs corresponding to the middle bin significantly greater 

than either the posterior bin (p <0.001) or anterior bin (p <0.001) E,  Stimulation points 

classified as precentral gyrus were above the fMRI-identified region of activation 

common to both voluntary PFM activation and voluntary GMM activation.          
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 We found that the brain region with overlapping activation during both voluntary 

PFM and voluntary GMM activation (Figure 3E) contained contributions from both 

primary motor cortex (BA 4) and supplementary motor area (SMA - BA 6) (Figure 4), 

adding additional support to the likely motor involvement of this overlap region. We 

found that 36.0% of overlapping voxels were most likely BA 4, 22.3% were most likely 

primary somatosensory cortex (BA 1-3), 15.9% were most likely BA 6, 14.8% were 

superior parietal lobule (BA 5), and 10.9% were most likely corticospinal tract (CST). 

The foci of peak activation in the overlap region for PFM activation and GMM activation 

were 4.9 mm apart in primary motor cortex and 2.9 mm apart in SMA (Table 1). 
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Figure 4.  Evidence of motor cortical representation in the overlapping brain activation 

during voluntary PFM and voluntary GMM activation. We computed the number of 

voxels in the overlap that were most likely to belong to each of the 121 regions in the 

Jülich Histological Atlas within FSL. The range of atlas regions included in each 

Brodmann Area (BA) is labelled. CST = corticospinal tract. 
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Discussion 

 Our results indicate that motor areas of the cerebral cortex may facilitate the 

synergistic activation of the pelvic floor that has been shown to accompany voluntary 

activation of hip and trunk muscles (Bø and Stien, 1994; Hodges et al., 2007). The 

cortical area facilitating this pelvic floor activation is the medial wall of the precentral 

gyrus, consistent with previous motor cortex stimulation studies in both animals and 

humans (Leyton and Sherrington, 1917; Turnbull et al., 1999). More specifically, this 

identified region in the medial wall appears to contain a clear contribution from BA 6 

(supplementary motor area - SMA).  

 Numerous previous studies have demonstrated the importance of SMA during 

voluntary activation of the pelvic floor (Leyton and Sherrington, 1917; Blok et al., 1997; 

Zhang et al., 2005; Seseke et al., 2006b; Schrum et al., 2011b). The SMA is generally 

thought to be involved in higher order organization and preparation of voluntary 

movement (Cunnington et al., 1996). SMA has functionally and neuroanatomically 

distinct regions; for example, an anterior portion known as the pre-SMA, and a posterior 

portion known as the SMA proper (Luppino et al., 1993; Rizzolatti et al., 1996). The 

SMA proper contains direct corticospinal neurons  (Dum and Strick, 1996), and has been 

shown to be involved in movement execution similar to the primary motor cortex 

(Macpherson et al., 1982; Picard and Strick, 1996; Boecker et al., 1998; Lee et al., 1999). 

Pre-SMA is thought to be more involved with motor planning associated with self-

initiated tasks, and may be active even during motor imagery in the absence of movement 

execution (Tyszka et al., 1994; Stephan et al., 1995; Deiber et al., 1999; Cunnington et 

al., 2002). Our cortical mapping results of the PFM appear to coincide with SMA proper. 
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 To our knowledge, there has been relatively little discussion regarding the 

functional interpretation of why the pelvic floor would have a relatively strong 

representation in SMA.  As in previous studies of pelvic floor muscle synergies, our 

findings support that PFM activation occurs prior to the primary muscle of the task. Data 

from a variety of approaches, including electroencephalography (EEG) and fMRI, 

suggest that SMA activity precedes primary motor cortical activity during voluntary 

motor tasks (Ball et al., 1999; Soon et al., 2008; Bortoletto and Cunnington, 2010). We 

suggest that the SMA representation of the pelvic floor is part of the neural substrate 

facilitating the feedforward pelvic floor activation in advance of hip and trunk muscles as 

we and others have shown (Hodges et al., 2007; Sjödahl et al., 2009). If this suggestion is 

correct, circuits within SMA may be involved in evaluating the demands of the voluntary 

motor task at hand and activating the pelvic floor in preparation if necessary (as in the 

case of gluteal activation), or not necessary (as in the case of voluntary finger muscle 

activation).  

 Our results are consistent with suspected involvement of SMA in feedforward 

muscle synergies underlying postural control. Patients with SMA lesions exhibit 

impairments in anticipatory muscle activation (Viallet et al., 1992). Neuroimaging in 

healthy controls suggests there is SMA activation associated with performing anticipatory 

postural adjustments (APA) (Ng et al., 2013). Additionally, repetitive TMS of SMA has 

been shown to affect the timing of APA in both healthy controls and patients with 

Parkinson’s disease (Jacobs et al., 2009). It has been previously suggested that PFM 

synergies may be part of an APA when perturbations to abdominal pressure are 
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predictable (Hodges et al., 2007); our work critically defines a neural substrate that may 

underlie these adjustments in pelvic floor muscle activation. 

 In this study, we have shown that a motor cortical region that facilitates PFM 

contraction is active during synergistic activation of the pelvic floor - we have termed this 

a cortically-facilitated synergy. Our current study conclusions are limited in scope 

because we have not yet established that PFM synergies are cortically-mediated. Cortical 

mediation of a PFM synergy would imply that the motor cortical area identified is 

necessary and causal for the implementation of the synergy. At present, we do not know 

the extent of subcortical and spinal involvement in contributing to the pelvic floor muscle 

synergy. For example, it is known that there are centers in the pons that facilitate PFM 

activity in subconscious control of urination (Fowler et al., 2008), but we do not currently 

know their role in contributing to the identified pelvic floor muscle synergies. Future 

experiments, including repetitive TMS down-regulation (Jacobs et al., 2009) of the 

identified medial wall region and expanded TMS mapping of PFM activation at cortical 

locations that activate synergistic muscles (e.g. gluteal, abdominal, shoulder), will be 

necessary to determine if the cortical facilitation identified in the current work can be 

extended to cortical mediation.      

 In conclusion, even though our subjects were pain-free, our results have important 

clinical implications for understanding motor cortical mechanisms of chronic pelvic pain. 

It was recently shown that women with the prevalent condition of Interstitial Cystitis / 

Painful Bladder Syndrome (IC/PBS) have significant changes in resting state neural 

activity, compared to healthy controls, in areas of the medial wall of SMA (Kilpatrick et 

al., 2014). The precise function of this region was not investigated in these patients, but 
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the authors interpreted the results in the context of possible motor control mechanisms 

contributing to the condition (Butrick, 2009). The results of our present study are from a 

male population, but major sex differences in the cortical control of the pelvic floor are 

not immediately suspected (Seseke et al., 2006a). The motor cortical region we have 

identified to facilitate PFM activation clearly overlaps with the coordinates reported for 

patient-specific alterations in IC/PBS. Therefore, our results may suggest that changes in 

motor cortical areas that make direct projections to pelvic floor motor neuron pools may 

play a critical role in IC/PBS pathophysiology.  
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CHAPTER FOUR 

BRAIN ACTIVATION ASSOCIATED WITH INVOLUNTARY 

MUSCLE SYNERGIES OF THE HUMAN PELVIC FLOOR 

 

Abstract 

Cortical representation and functional synergies have been established for the 

human pelvic floor but their interaction remains unknown.  We have recently identified 

that synergistic contraction of the pelvic floor muscles (PFM) is cortically facilitated 

when healthy male subjects were instructed to perform light isometric gluteus maximus 

muscle (GMM) contractions. The purpose of this study was to explore the neural 

mechanisms of training subjects to decouple this synergy.  We hypothesized that there 

would be a blood-oxygen-level dependent (BOLD) signal difference in the motor area 

associated with the pelvic floor as a result of this synergy decoupling training, compared 

to the cortically facilitated activity of the pelvic floor when subjects were instructed to 

contract their GMM. In our current study, we measured regional brain activity by 

functional magnetic resonance imaging (fMRI) in 10 healthy males while performing two 

types of gluteal tasks described as being coupled or decoupled. In the coupled condition, 

participants were instructed to perform repeated isometric (GMM) contractions. In the 

decoupling condition, subjects were trained and instructed to break the gluteal/pelvic 

floor muscle synergy by consciously relaxing the PFM while maintaining a comfortable 

GMM contraction. This group was also given the following training cue:  “relax the 

pelvic floor until sensing the urge to urinate.” Our main finding was that the execution of 
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the coupling task as compared to the decoupling task activated the anterior cingulate 

cortex (ACC) and left anterior insula. We interpret that the ACC employs a modulatory 

effect on the primary motor cortex and the supplementary motor area (SMA), which 

facilitates the suppression of cortically facilitated muscle synergies. Furthermore, our 

findings indicate that the left anterior insula mediates somatic and visceral attention to the 

interoceptive state of feeling PFM relaxation or feeling the urge to urinate. These findings 

were not anticipated as with our original hypothesis but it does provide a unique 

perspective related to the role of the ACC and left anterior insula in the context of cortical 

mapping and functional synergies of the pelvic floor muscles. Complex motor tasks that 

require awareness, training, and focus on intricate somatic and visceral areas such as the 

pelvic floor complex may inherently require participation of the brain regions associated 

with interoception as well as motor control.   

 

Introduction 

 Pelvic floor activity has been shown to synergistically co-contract with muscles of 

the hip and trunk as well as in advance of activity in the primary muscles used to 

complete a task (Bø and Stien, 1994; Sapsford et al., 2001; Hodges et al., 2007; Jacobs et 

al., 2009). This suggests that pelvic floor muscle activity may be part of a feed forward 

synergy in the preparation for movement, aside from its well established  co-contraction 

type of synergy. We have recently shown this synergy to be cortically facilitated 

(Asavasopon et al., 2014, in submission). The cortical area facilitating this pelvic floor 

activation is the medial wall of the precentral gyrus. Most recent fMRI (functional 

magnetic resonance imaging) results and confirmatory TMS (transcranial magnetic 
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stimulation ) findings have demonstrated that the medial wall of the precentral gyrus 

where the pelvic floor is distinctly found to be represented, lies within the same cortical 

region of the supplementary motor area (SMA) (Asavasopon et al., 2014, in submission).  

This is consistent with previous neuroimaging studies, which have found pelvic floor 

representation overlapping within the region of SMA (Blok, Willemsen, & Holstege, 

1997; Seseke et al., 2006; Zhang et al., 2005). Whether or not this cortical region 

represents primary motor cortex (PMC) of the pelvic floor or a region that is thought to 

be more involved with higher organization and preparation of voluntary movement 

remains to be explored.  

 Numerous previous studies have demonstrated the importance of SMA during 

voluntary activation of the pelvic floor (Blok et al., 1997; Zhang et al., 2005; Seseke et 

al., 2006a; Schrum et al., 2011a). The SMA is generally thought to be involved in higher 

order organization and preparation of voluntary movement (Cunnington et al., 1996). 

SMA has functionally and neuroanatomically distinct regions; for example, an anterior 

portion known as the pre-SMA, and a posterior portion known as the SMA proper 

(Luppino et al., 1993; Rizzolatti et al., 1996). The SMA proper contains direct 

corticospinal neurons (Dum and Strick, 1996), and has been shown to be involved in 

movement execution similar to the primary motor cortex (Macpherson et al., 1982; Picard 

and Strick, 1996; Boecker et al., 1998; Lee et al., 1999). Pre-SMA is thought to be more 

involved with motor planning associated with self-initiated tasks, and even during motor 

imagery in the absence of movement execution (Tyszka et al., 1994; Stephan et al., 1995; 

Deiber et al., 1999; Cunnington et al., 2002). Our cortical mapping results of the pelvic 

floor muscles appear to coincide with SMA proper. It is interesting that the cortical 
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representation of premovement activity happens to be closely associated with pelvic floor 

muscle activation or motor execution. Although the cortical representation and functional 

synergies of the pelvic floor have been established, their interaction remains unknown.   

 To further understand functional synergies of the pelvic floor muscles (PFM), we 

turn to recent work demonstrating how PFM activity is cortically facilitated. In a study by 

Asavasopon et al., PFM EMG (electromyography) activity was shown to inherently 

accompany voluntary gluteus maximus muscle (GMM) activation in healthy male 

participants, but the reverse was not found (Asavasopon, 2014). After repeating the same 

tasks in the fMRI scanner, we found GMM cortical representation to overlap with PFM 

on the medial wall of the precentral gyrus, when GMM was the primary mover, but when 

PFM was the primary mover, there was no overlap with the GMM. Our TMS results 

further supported the notion that PFM synergy was in fact, cortically facilitated during 

GMM activation, as we were able to elicit PFM motor evoked potentials (MEPs) without 

GMM MEPs.  In summary, voluntary GMM contraction is coupled with naturally 

occurring PFM activity, while PFM are inherently decoupled from the GMM when PFM 

is the primary mover.   

 The purpose of this experiment is to determine if cortically facilitated synergies of 

the pelvic floor muscles can be modified, with corresponding changes in motor cortical 

activity. Neural correlates during the voluntary modification of the pelvic floor muscle 

synergies are also hypothesized to show an increase in BOLD signal in the somatomotor 

areas of the brain.  
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Methods 

Participant Population 

 We recruited 10 healthy men with a mean age (± SD) of 32.6 ± 5. 9). Since 

possible sex differences in the control of PFM have not been fully characterized, we 

limited our study to a single sex as in previous studies (Seseke et al., 2006a; Schrum et 

al., 2011a). Participants were practicing physical therapists or physical therapy students 

with general knowledge of pelvic floor anatomy and function. The studies we describe 

here were carried out at the University of Southern California and approved by the 

University of Southern California Institutional Review Board. All participants provided 

informed consent.  

 

EMG Acquisition and Analysis 

 In 10 participants, we took measurements of muscle activation, using EMG, to 

confirm the characteristics of PFM synergies, train the participants to suppress the natural 

PFM activity that naturally occurs during GMM activation, and to train the participants 

on what to expect during the fMRI portion of the experiment.  Total training time of 1 

hour was given to each participant before proceeding to the actual fMRI scanner to 

perform the same tasks again. Participants were trained with EMG visual feedback of 

their PFM and GMM. We used EMG to verify the previously reported muscle synergy 

between the PFM and GMM, as well as to verify that the participant could appropriately 

perform a GMM contraction while minimizing PFM contraction as much as possible. 

With the participant resting in a supine position inside a mock MRI scanner, we recorded 

surface EMG data from the right GMM and PFM. We recorded EMG signals from the 
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GMM with miniature electrode/preamplifiers (DELSYS, Boston, MA) with 2 silver 

recording surfaces, 5mm long and 10 mm apart. We recorded an aggregate EMG signal 

from the PFM using medical-grade rectal EMG sensor (The Prometheus Group, Dover, 

NH). The EMG preamplifier filters had a bandwidth of 20-450 Hz, with gains of 1000 for 

GMM and FDI and 10000 for PFM, and a sampling rate of 2000 Hz.  

 Prior to the experimental session, we asked participants to empty their bladder. 

Participants performed separate trials, each of which involved voluntary activation of a 

different primary muscle group. In PFM trials, we instructed participants to contract their 

pelvic floor as if to stop the flow of urine. In GMM trials, we instructed participants to 

isometrically contract their GMM. In FDI trials, we instructed participants to contract 

their FDI muscle to generate index finger abduction. In decoupling trials, we instructed 

participants to contract their GMM and to “immediately relax the PFM until feeling the 

urge to urinate. During subsequent trials, participants activated the appropriate muscle 

group according to an audio tone that ramped up and down in frequency to guide the 

participant through a smooth activation over a period of 2 seconds. Each trial consisted of 

2 blocks of 10 activations. Previous studies of brain activation during PFM contraction 

have not used EMG in the scanner (Seseke et al., 2006a; Kuhtz-Buschbeck et al., 2007; 

Schrum et al., 2011a). Since we planned to repeat voluntary activation trials in the fMRI 

scanner without the EMG, we instructed participants in the EMG study to produce 

moderate muscle activation (approximately 20% effort) to avoid fatigue.  

 We analyzed EMG data to first estimate the activation onsets of the primary 

muscle group of each trial, and then to determine if significant time-locked activity 

occurred in EMG signals from the other recorded muscles. To perform this analysis, 
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EMG signals from all recorded muscles were first high-pass filtered at 100 Hz (4th order 

zero-lag Butterworth filter), rectified, and low-pass filtered at 30 Hz (Hodges et al., 

2007), and then normalized to identically processed EMG data from the maximum 

activation trial. EMG data were then smoothed with a 500 ms moving average. 

Activation onsets were defined to occur when the smoothed EMG exceeded 2 standard 

deviations of the EMG baseline noise with the muscle at rest. Within each participant, we 

then defined an EMG transient for each muscle and each trial by averaging the rectified 

and filtered EMG data across repeated muscle activations within a time window spanning 

1 second before to 3 seconds after the activation onset of the primary muscle for the trial. 

To examine significant EMG magnitude changes, we performed group statistics on the 

maximal EMG transient for muscles of interest within each participant. To define 

significant temporal shifts between EMG signals, we quantified temporal shifts in each 

participant by determining the maximum cross-correlation between a pair of EMG 

transients.    

 

fMRI Acquisition and Analysis 

 In 10 participants, we took measurements of brain activation associated with the 

voluntary muscle activation tasks (described above) using fMRI. We used a 3 Tesla (GE 

Signa Excite) with an 8-channel head coil. We positioned participants supine viewing a 

fixation crosshair, and placed foam pads to limit head motion. As in previous fMRI 

studies of PFM activation (Schrum et al., 2011a), we collected T2-weighted echo planar 

image volumes with blood oxygen level dependent (BOLD) contrast (echo time 34.5 

milliseconds, flip angle 90 degrees, field of view 220 mm, pixel size 3.43 mm) 
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continually every 2.5 seconds during 3 imaging runs. Each volume consisted of 37 axial 

slices (3 mm slice thickness, 0.5 mm interslice gaps) that covered the brain from vertex to 

cerebellum. We additionally acquired a T1-weighted high-resolution anatomical image 

from each participant. We cued participants to voluntarily activate each muscle group (to 

approximately 20% effort) in 3 separate runs - PFM activation run, GMM activation run, 

and FDI activation run - as described above with the exception that participants 

performed additional activation blocks (6 blocks of 10 activations) in the scanner. All 10 

participants performed PFM, GMM, and FDI activation runs, as well as PFM decoupling 

runs.  

 We preprocessed each participant’s fMRI data using the FMRIB Expert Analysis 

Tool (FEAT, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), which included skull extraction using 

the brain extraction tool (BET) in FSL, slice timing correction, motion correction, spatial 

smoothing using a Gaussian kernel with full-width half-maximum of 5 mm and nonlinear 

high-pass temporal filtering (100 s). We used general linear model (GLM) to examine the 

changes in BOLD signal associated with muscle activation for the three tasks. We 

performed first-level whole-brain GLM analyses of individual runs in each participant to 

determine the change in BOLD signal during the activation blocks compared to the rest 

blocks. We then performed a group-level mixed-effect (FLAME 1 in FSL) analysis, with 

unpaired 2-sided t tests, to identify voxels in standard Montreal Neurological Institute 

(MNI) coordinates with significant differences in response based on the muscle group 

being voluntary contracted by the participant. We thresheld group-level images with 

cluster-based correction for multiple comparisons with Z > 2.3 and p < 0.05. Since we 

were interested solely in sensorimotor cortical substrates of PFM muscle synergies, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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results only displayed for voxels that have a greater than 0 probability of belonging to the 

precentral gyrus, post-central gyrus, or supplementary motor cortex according to the 

Harvard-Oxford cortical atlas available in FSL. We made inferences about specific 

Brodmann areas using the Juelich Histological Atlas. 

 

Results 

 Using recordings from the PFM and GMM we found that PFM co-contracted 

during GMM activation (Figure 5A). Example recordings from a single participant show 

that during repeated activation of the GMM, participants were able to suppress PFM 

activity post-training (Figure 5B). However, when the participant repeatedly activated the 

GMM prior to the training, the PFM activated in a synchronous fashion (Figure 5A). 

Group data from 10 participants demonstrated that we observed this synergistic 

decoupling of the PFM across the study population (Figure 5C).  
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A       B 

 

C 

 
Figure 5.  Electromyographic (EMG) evidence of pelvic floor muscle synergy 

decoupling. A,  EMG signals from the pelvic floor (PFM - blue) muscles and gluteal 

(GMM - green) muscle, were recorded during voluntary activation of the GMM, showing 

inherent activity of the PFM. B, Example EMG recordings from the PFM and GMM 

muscles in a single participant during repeated voluntary GMM while PFM was 

voluntarily suppressed.  Participants performed 4 blocks of 2 minute training trials. We 

were able to observe apparent simultaneous onset of PFM and GMM activity followed by 

PFM suppression after the training session. C, Statistical analysis of group data shows 

that GMM activity is significantly greater (p<0.01, **) during voluntary decoupling 

compared to PFM activity during voluntary GMM (inherently coupled) activation.  
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 Using fMRI data collected while participants performed muscle activation tasks 

identical to those described above (Figure 5A, B), we found that a region of the medial 

wall of the precentral gyrus was no different during the coupled GMM activation task 

compared to the voluntary GMM/PFM decoupling task (Figure 6). Surprisingly, we 

found significant activation of the Anterior Cingulate Cortex and Left Anterior Insula 

during the decoupling task compared to the coupling task.  
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Figure 6.  Functional magnetic resonance imaging (fMRI) evidence of non-motor related 

brain regions.  Contrast of voluntary decoupling activation greater than voluntary 

coupling activation produced significant brain activation in the Anterior Cingulate Cortex 

(ACC) and Left Anterior Insula (LAI).  
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Discussion 

Our results indicated that with appropriate training, a cortically facilitated PFM 

synergy can be broken, but the neural substrates that underlie this decoupling does not 

involve the motor cortex as originally hypothesized.  Instead, execution of the decoupling 

task (voluntary psychomotor effort of GMM activation without PFM activity) as 

compared to the coupling task (GMM activation accompanied by PFM activity) results in 

increased activation of the anterior cingulate cortex (ACC) and left anterior insula (LAI). 

This is contrary to our original hypothesis that there would be a blood-oxygen-level 

dependent (BOLD) signal difference in the motor area associated with the PFM. This 

salient discovery appears to be in alignment with evidence suggesting that our decoupling 

task involves not only motor cortex mechanisms, but other neural substrates and 

autonomic nervous system (ANS) mechanisms that involve conjoint functions of the 

ACC and LAI - both areas involving micturition function, which inherently engages PFM 

activity (Di Gangi Herms et al., 2006; Medford and Critchley, 2010). This finding is 

consistent with former studies that have shown that pelvic floor activities are closely 

connected with the micturition process  (Zhang et al., 2005; Seseke et al., 2006b).  

Our study also demonstrated that the cortical mechanism that underlies motor 

control of PFM activity is inherently associated with cortical regions involved with 

managing continence and its associated visceral functions. Numerous studies have 

demonstrated consistent activation in the ACC and insula during rectal distension 

(Hobday et al., 2001; Lotze et al., 2001; Kern and Shaker, 2002; Verne et al., 2003), as 

well as the application of visceral stimulation in the upper and lower gastrointestinal tract 

(Derbyshire, 2003). More specifically, Seseke et al. found similar activation patterns of 
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the anterior insular cortex and ACC when they instructed healthy females to “contract” 

the PFM to mimic the interruption of voiding while feeling the urge to urinate, compared 

to the “relax” condition, in which they were instructed to release the PFM to mimic 

voiding while they felt the urge to urinate (Seseke et al., 2006a). Interestingly enough, 

none of their 11 participants were actually able to start voiding during the experiments, 

and this may implicate the involvement of the ANS. Their findings are rather consistent 

with our increased activation patterns of the ACC and LAI during our PFM decoupling 

task. Our GMM and PFM synergy decoupling task requires a significant amount of 

concentration on the task, cognitive awareness of PFM activation and suppression, 

attention to activation of the GMM, detecting error throughout the task, and 

interoception; all of which involve the function of the insula and ACC. The insula is a 

mediator of visceral sensations and is associated with interoception as it relates to 

sensations associated with the pelvic floor (Blok et al., 1998; Mertz et al., 2000; Kern et 

al., 2001; Matsuura et al., 2002; Derbyshire, 2003). We therefore believe the insula 

makes up a portion of the neural substrate that takes part in the cortically facilitated 

inhibition of the PFM while the GMM remains active. The ACC, along with the insula, 

has also been shown to be an important region for interoceptive awareness of such 

visceral sensations, and we believe this to be relevant in the case of learning about pelvic 

floor awareness (Critchley et al., 2004).  ACC neuroimaging studies show that it is 

involved in cognitive processes involving attention (e.g., bladder distention) and 

executive control (e.g., appropriate timing of micturition) (Critchley et al., 2003; 

Matthews et al., 2004). Using healthy male controls and PET (positron emission 

Tomography) imaging, Block et al. demonstrated more cortical activity in the anterior 
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cingulate gyrus during micturition and during an empty bladder state, compared to urine 

withholding (Blok et al., 1997). We suggest that this parallels our findings of increased 

ACC activity during PFM relaxation (pseudo-micturition state) while the participants 

were instructed to feel the ‘urge to urinate,” compared to synergistic contraction of the 

PFM during the GMM activation task (pseudo- urine withholding task). Furthermore, a 

presumable link has been shown between urge incontinence and lesions of the forebrain 

such as the anterior cingulate gyrus (Andrew and Nathan, 1964; Maurice-Williams, 

1974). This would support the idea that the anterior cingulate gyrus may play a specific 

role in functional PFM synergies, such as during the task of withholding urine. Thus, we 

also believe that the ACC makes up another portion of the neural substrate that takes part 

in the PFM decoupling task. It is apparent that our findings with the ACC and LAI play a 

consistent role with PFM activity as it relates to micturition, but the cortical mechanisms 

to explain our decoupling results warrant further discussion.  

 Our study also provides further cortical evidence by which motor control of the 

PFM may be inherently associated with the ANS. The dorsal ACC is activated when 

engaging in attentional or behaviorally demanding cognitive tasks (Paus, 2001). This 

activation is suggested to be associated with the synergy decoupling task in our 

experiment. From a motor function and anatomical perspective, the ACC contains 

cingulate motor areas that are defined by their projections into the premotor and motor 

cortices and spinal cord (Morecraft and Tanji, 2009). This cognitive subdivision of the 

ACC (Vogt et al., 1992; Devinsky et al., 1995; Bush et al., 1998; Carter et al., 1999) 

keeps reciprocal interconnections with the premotor and supplementary motor areas; and 
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has efferent paths to the autonomic, visceromotor and endocrine systems (Devinsky et al., 

1995; Vogt et al., 1992). 
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CHAPTER FIVE 

 

DISCUSSION 

 

The End of Two Experiments and the Beginning of Many More 

 The impetus to study muscle synergies of the human pelvic floor is three-fold: 1. 

Pelvic floor associated disorders is prevalent in many neuro-musculoskeletal forms 

relevant to rehabilitation science (e.g. chronic pelvic pain, overactive bladder syndrome, 

incontinence, and chronic low back pain), 2. The pelvic floor serves as a feasible and 

well-controllable experimental paradigm to study possible mechanisms, and 3. The pelvic 

floor serves as a good vehicle to explore cortical and peripheral mechanisms related to 

understanding muscle synergies, more specifically, the muscles of the human pelvic 

floor. Through the scientific process of this dissertation we set a goal to understand how 

muscles of the pelvic floor behave in their natural healthy state; more specifically, in 

healthy male participants.  As a result of our two original, completed experiments, we 

answered the questions of: 1. What are the neural substrates underlying pelvic floor 

muscle (PFM) synergies and 2. What cortical changes occur when these muscle synergies 

are broken?  The specific accomplished aims were as follows: 1. The muscle synergies of 

the pelvic floor were cortically facilitated, and 2. We discovered that the cortical regions 

that are more active as a result of PFM decoupling does not involve the primary motor 

cortex or premotor cortex regions, but instead regions of the limbic system.  

 In experiment 1 (Chapter 3), we utilized electromyography (EMG), functional 

magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS) to 
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study pelvic floor muscle synergies in healthy male participants. In that experiment, we 

first demonstrated that voluntary gluteus maximus muscle (GMM) activation was 

accompanied by involuntary PFM activity but the reverse did not hold true. We then 

proceed to utilize fMRI to cortically map each individual muscle task that was performed 

(GMM task, PFM task, and first dorsal interossei [FDI] task). Interestingly enough, our 

findings suggested that voluntary PFM activation is associated with increased blood-

oxygen-level dependent (BOLD) signal specifically in the region known as the 

supplementary motor area (SMA). Even more interesting was the association between 

GMM activation and  increased BOLD signal in an overlapping area within SMA as well 

as another distinct area of the primary motor cortex. As expected, using FDI as a 

reference control, we further demonstrated that FDI muscle activity does not occur 

synergistically with the PFM and it is not associated with any overlap with the region of 

the SMA, which also represents motor activity of the PFM. To further validate our 

findings, we were able to show, utilizing TMS and T2 weighted images of each 

individual participant, that TMS was able to elicit motor evoked potentials (MEPs) of the 

PFM in the midline, where SMA was also located. More specifically with TMS, MEPs 

from the GMM were not produced when the TMS coil was stimulating over the area of 

the SMA. Having the rigor of being able to cross validate between EMG, fMRI, and 

TMS, we were able to demonstrate in Chapter 3 that PFM synergies are cortically 

facilitated.  

In experiment 2 (Chapter 4), we utilized EMG and fMRI to study the cortical 

changes that occur when healthy male participants are trained to break the synergy found 

in our prior original experiment (experiment 1, Chapter 3). In this experiment, we utilized 
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EMG as a training session for participants to learn how to decouple the PFM synergy by 

training them with the use of EMG visual feedback. In our experiment, the training time 

sufficient for training subjects to relax the pelvic floor while GMM is contracting, was 

approximately 30 minutes, although participants were given 1 hour total time prior to 

actually performing the tasks in the fMRI scanner. Once we deemed that there was a 

significant difference in the coupling vs. decoupling task, participants were consented to 

perform the same tasks in the fMRI scanner. Contrary to our original hypothesis, we did 

not find differences in BOLD signal of the SMA and motor cortices. Instead, we found 

increased BOLD signal in the anterior cingulate cortex (ACC) and left anterior insula 

(LAI). We interpreted that the ACC employs a modulatory effect on the primary motor 

cortex and the supplementary motor area (SMA), which facilitates the suppression of 

cortically facilitated muscle synergies. Furthermore, our findings indicated that the left 

anterior insula mediates somatic and visceral attention to the interoceptive state of feeling 

PFM relaxation or feeling the urge to urinate. Complex motor tasks that require 

awareness, training, and focus on intricate somatic and visceral areas such as the pelvic 

floor complex may inherently require participation of the brain regions associated with 

interoception as well as motor control.   

 A possible reason why we did not demonstrate changes in the motor cortical 

regions may be explained by insufficient amount of time of the training period which 

might have resulted in our ability to produce long-lasting neuroplastic changes, as well as 

changes in the motor cortex or SMA. We provided our participants with a one our 

training that included the decoupling training with EMG feedback, as well as procedural 

training for the fMRI portion of the data collection. Di Gangi Hermes et al. had placed 
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females with stress urinary incontinence on an 11-week program of PFM training with 

biofeedback and found absence of activity in the supplementary motor and premotor 

areas, as well as a more focused activation in the primary motor (superior lateral and 

superior medial precentral gyrus) and somatosensory areas in the post-test condition. This 

might suggest that cortical plasticity may take up to 12 weeks of training to be able to 

demonstrate cortical changes in the motor cortex.  

 

Conclusions and Future Directions 

Human movement and bodily functions are made possible by the orchestrated 

interactions between the brain’s neural networks and the synergistic muscles involved 

with the activity. This dissertation presented 2 original experiments that demonstrated the 

cortical mechanisms by which certain muscles of the pelvic floor are cortically 

facilitated, as well as how they are cortically decoupled. This process may serve as a 

foundational template for future muscle synergy studies.  

Understanding muscle synergies is important because many disorders that are 

managed by rehabilitation professionals involve muscle synergies that adversely affects 

function and participation in meaningful activities. In our studies, we focused on muscle 

synergies of the human pelvic floor. Associated disorders that can benefit from 

understanding theses synergies are incontinence, chronic pelvic pain, and low back pain, 

for example. In other body regions, understanding muscle synergies would be helpful as 

well, such as synergies involved with neck pain and deep neck flexors; low back pain and 

the deep abdominal muscles; patella-femoral pain and gluteal muscles; and chronic ankle 

sprain and gluteal muscles. As in our experiment, we chose to study the PFM and gluteal 
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muscles. One logical step in understanding muscle synergies is picking relevant muscles 

to study. In our case, we chose the gluteus maximus muscles because of associated 

function, anatomical relationships, and feasibility of being able to study these muscles in 

the fMRI scanner. Our study was rather novel because muscle studies involving the PFM 

and GMM synergies are not common, yet conceptually relevant, with potential to impact 

pelvic floor rehabilitation, such as patients with incontinence.  

Our studies involving PFM muscle synergies parallel many previous studies 

looking at cortical mapping of the PFM muscles (Zhang et al., 2005; Seseke et al., 2006a; 

Kuhtz-Buschbeck et al., 2007). To our knowledge, our studies are the first to determine 

that PFM are cortically facilitated and decoupling of these synergies involve increased 

activity in brain regions other than the motor cortex and SMA. We have shed much 

insight regarding the role of the GMM during PFM contractions, yet the evidence related 

to gluteal muscles and pelvic floor disorders is scarce. There is an abundance of literature 

connecting the deep abdominal muscles to the functional synergy of the PFM but not the 

GMM (Sapsford and Hodges, 2001; Critchley, 2002; Sapsford, 2004; Madill and 

McLean, 2006, 2008; Junginger et al., 2010). We believe that there is an abundance of 

opportunities to explore functional relationships between the GMM and PFM, especially 

now that we have established a clear functional synergy between the two muscle groups.  

In the realm of physical therapy and rehabilitation science, motor control is a 

common impairment to address. The ultimate goal of a physical therapist, for example, is 

to retrain or restore movement through tactics such as exercise prescription. Frequently, 

the restoration of movement or retraining of movement requires a physical therapist’s 

ability to reinforce a muscle synergy, build a new muscle synergy with compensatory 
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strategies, or decouple or break a muscle synergy that has a negative impact on the 

movement. For example, in a patient with patella-femoral pain, one may be excessively 

using his/her quadriceps muscle to perform a functional squat, while minimizing the 

activation and strength of the functionally synergistic gluteal muscles. Studying these two 

muscle synergies and how they are facilitated at a cortical level will help provide an 

understanding of its mechanism as to prepare for appropriate interventions. Furthermore, 

just as in our second study (experiment 2, Chapter 4), one would need to break the 

synergistic dominance of the quadriceps muscle to unload the patella-femoral elements, 

by increasing the demands on the gluteals. Similar to our PFM synergy studies, we were 

first able to determine that there is a PFM and GMM synergy, and that this synergy was 

cortically facilitated. This synergy decoupling was achieved through cortical facilitation 

of the ACC and LAI; two functional areas that involve interoception, attention, and the 

autonomic nervous system. Because of this, a physical therapist that is specialized in the 

pelvic floor may employ different exercise interventions to help facilitate more gluteal 

activation during pelvic floor contractions to either facilitate more PFM activity, or to 

suppress the PFM activity. This is just one of many examples by which understanding 

muscle synergies can impart more effective and novel interventions. We recommend that 

involve other muscles that may be synergistically involved with the PFM, or other studies 

that involve a completely different body region that would also benefit from 

understanding muscle synergies and how they can be trained to be broken.  
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