
Loma Linda University
TheScholarsRepository@LLU: Digital Archive of Research,
Scholarship & Creative Works

Loma Linda University Electronic Theses, Dissertations & Projects

3-1-2012

The Impact of Nucleoside Sugar Modification on
Biochemical DNA Transactions
Adides Williams
Loma Linda University

Follow this and additional works at: http://scholarsrepository.llu.edu/etd

Part of the Medical Biochemistry Commons

This Dissertation is brought to you for free and open access by TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative
Works. It has been accepted for inclusion in Loma Linda University Electronic Theses, Dissertations & Projects by an authorized administrator of
TheScholarsRepository@LLU: Digital Archive of Research, Scholarship & Creative Works. For more information, please contact
scholarsrepository@llu.edu.

Recommended Citation
Williams, Adides, "The Impact of Nucleoside Sugar Modification on Biochemical DNA Transactions" (2012). Loma Linda University
Electronic Theses, Dissertations & Projects. 104.
http://scholarsrepository.llu.edu/etd/104

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loma Linda University

https://core.ac.uk/display/151738553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarsrepository.llu.edu?utm_source=scholarsrepository.llu.edu%2Fetd%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsrepository.llu.edu?utm_source=scholarsrepository.llu.edu%2Fetd%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsrepository.llu.edu/etd?utm_source=scholarsrepository.llu.edu%2Fetd%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsrepository.llu.edu/etd?utm_source=scholarsrepository.llu.edu%2Fetd%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/666?utm_source=scholarsrepository.llu.edu%2Fetd%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsrepository.llu.edu/etd/104?utm_source=scholarsrepository.llu.edu%2Fetd%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsrepository@llu.edu


  

 
 
 
 
 

LOMA LINDA UNIVERSITY 
School of Medicine 

in conjunction with the 
Faculty of Graduate Studies 

 
 
 

____________________ 
 
 
 
 

The Impact of Nucleoside Sugar Modification on Biochemical DNA Transactions 
 
 

by 
 
 

Adides Anthwon Williams 
 
 
 

____________________ 
 
 
 
 

A Dissertation submitted in partial satisfaction of 
the requirements for the degree of 

Doctor of Philosophy in Biochemistry 
 
 
 

____________________ 
 
 
 
 

March 2012 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2012 
 

Adides Anthwon Williams 
All Rights Reserved 



 iii 

Each person whose signature appears below certifies that this dissertation in his/her 
opinion is adequate, in scope and quality, as a dissertation for the degree Doctor of 
Philosophy. 
 
 
 
 
 
 , Chairperson 
 

Lawrence C. Sowers, Professor and Chair, Department of Pharmacology & Toxicology, 
University of Texas Medical Branch, Galveston, TX 
 
 
 
 
  
John Buchholz, Professor of Physiology and Pharmacology 
 
 
 
 
  
Penelope Duerksen-Hughes, Professor of Biochemistry 
 
 
 
 
  
Jonathan Neidigh, Assistant Professor of Biochemistry 
 
 
 
 
  
Kangling Zhang, Associate Research Professor of Biochemistry 
 
 

 
 



 iv 

ACKNOWLEDGEMENTS 
 
 

 I would like to express my thanks and gratitude to Dr. Lawrence Sowers who 

provided both the time and resources to make all this possible. I am grateful for his 

mentorship and am thankful that he dedicated his personal time and interest into my 

development as a scientist. 

 I would also like to extend a loving thanks to my mom, Margaret Kearney, who 

has stood by me and encouraged me to attain my goals. She continues to be an invaluable 

support system. I would also like to thank my sister, Kadijah Rhinehart, and my brother, 

Tajh Rhinehart, for all of their encouragement and support. 

 I would like to say a special thanks to Dr. Jonathan Neidigh for his guidance and 

co-mentorship both in and out of the lab. I would also like to extend a special thanks to 

my committee members for their guidance and support.  



 v 

CONTENTS 

 
Approval Page .................................................................................................................... iii 
 
Acknowledgements ............................................................................................................ iv 
 
Table of Contents .................................................................................................................v 
 
List of Tables ................................................................................................................... viii 
 
List of Figures .................................................................................................................... ix 
 
List of Abbreviations ......................................................................................................... xi 
 
Abstract ............................................................................................................................ xiii 
 
 
Chapter 
 

1. Introduction ..............................................................................................................1 
 

DNA Synthesis and Fidelity ..............................................................................1 
Polymerase Incorporation and Extension ..........................................................1 
Nucleoside Ribose Conformation ......................................................................2 
Clinically Relevant Nucleoside analogues and their metabolites ......................4 
Purpose and Goal of These Studies ...................................................................4 
References ..........................................................................................................6 
 

2. The Impact of Sugar Pucker on Base Pair and Mispair Stability ..........................10 
 

Abstract ............................................................................................................11 
Footnotes ..........................................................................................................12 

 
Abbreviations .............................................................................................12 

 
Introduction ......................................................................................................13 
Materials and Methods .....................................................................................17 

 
Solvents and Reagents ...............................................................................17 
Synthesis of U2'F(ara) -phosphoramidite .......................................................17 
Oligonucleotide Synthesis and Characterization .......................................18 
Synthesis of Oligonucleotides with 3'-end 2'-dU Analogues .....................18 
Determination of Duplex Melting Behavior ..............................................19 
Ligase Assays.............................................................................................21 

 



 vi 

Results ..............................................................................................................22 
 
Oligonucleotide synthesis ..........................................................................22 
Oligonucleotide characterization ...............................................................24 
Measurement of Duplex Thermal and Thermodynamics Stability ............26 
Analysis of Thermodynamic Data .............................................................26 
DNA Ligase Activity .................................................................................28 
 

Discussion ........................................................................................................28 
Acknowledgment .............................................................................................44 
References ........................................................................................................45 
 

3. The Impact of Nucleoside Ribose Substitution on Polymerase 
Incorporation ..........................................................................................................51 

 
Abstract ............................................................................................................52 
Abbreviations ...................................................................................................53 
Introduction ......................................................................................................54 
Material and Methods ......................................................................................60 
 

Solvents and Reagents ...............................................................................60 
Nucleotides and Nucleosides .....................................................................61 
Synthesis and purification of 2'-deoxy-2',2'-difluorouridine .....................61 
Synthesis of 2'-deoxy-2',2'-difluorouridine triphosphate 
(dFdUTP) ...................................................................................................62 
Assaying Triphosphate Fractions for Inorganic 
Pyrophosphate  (PPi)..................................................................................63 
Synthesis of FIAU and dFdU Phosphoramidites (FIUA-P 
and dFdU-P) ...............................................................................................65 
Enzymes and DNA Preparation  ................................................................68 
Steady-State Kinetic Experiments (polymerase 
incorporation assays) .................................................................................69 
Determination of kcat and Km ...................................................................70 
Thermal Denaturation Studies and Assessment of Duplex 
Melting Behavior .......................................................................................72 
Analysis of Thermodynamic Data .............................................................73 

 
Results ..............................................................................................................73 
 

Characterization of Phosphoramidites by Electrospray 
Ionization Mass Spectrometry (ESI-MS) ...................................................73 
Oligonucleotide Synthesis and Characterization .......................................74 
Determination of Steady-State Kinetic Parameters for 
Polymerase Incorporation of Modified Triphosphates 
(modNTPs) .................................................................................................75 
Ribonucleotide (rNTP) Insertion Kinetics .................................................77 



 vii 

Arabinonucleotide (araNTP) Insertion Kinetics ........................................78 
Discussion ........................................................................................................79 
Closing remarks .............................................................................................100 
References ......................................................................................................101 
 

4. The impact of nucleoside ribose substitution on polymerase extension ..............114 
 

Abstract ..........................................................................................................115 
Abbreviations .................................................................................................116 
Introduction ....................................................................................................117 
Materials and Methods ...................................................................................120 

 
Solvents and Reagents .............................................................................120 
Synthesis of FIAU and dFdU phosphoramidites .....................................121 
Enzymes and DNA Preparation ...............................................................123 
Steady-State Kinetics Experiments (Polymerase Extension 
Assays) .....................................................................................................123 
Determination of kcat and Km .................................................................124 
Thermal Denaturation Studies and Assessment of Duplex Melting 
Behavior ...................................................................................................126 
Analysis of Thermodynamic Data ...........................................................127 
 

Results ............................................................................................................127 
 

Oligonucleotide Synthesis and Characterization .....................................127 
Determination of Steady-State Kinetic Parameters for 
Polymerase Extension of Modified Primer Termini ................................128 
Extension Kinetics for Primers Terminated by 3'-
ribonucleosides (3'-rNs) ...........................................................................131 
Extension Kinetics for Primers Terminated by 3'-
arabinonucleosides (3'-araNs) ..................................................................131 

 
Discussion ......................................................................................................132 
Concluding remarks .......................................................................................146 
References ......................................................................................................148 
 
 

 



 viii 

TABLES 

 
Tables Page 

 
1. Experimental thermodynamic parameters of duplex formation ............................30 

2. Kinetic parameters for polymerase insertion of modified NTPs opposite 
template dA ............................................................................................................82 

3. Experimental thermodynamic parameters of duplex formation of modified 
3'-end duplexes ......................................................................................................95 

4. Kinetic parameters for polymerase extension of modified primer termini, 
paired opposite template dA. ...............................................................................135 

5. Experimental thermodynamic parameters of duplex formation ..........................142 

6. Comparison of the differences in ΔΔH° and ΔΔS° between 3'-end 
substituted duplexes and duplexes with a substitution at an internucleotide 
position. ................................................................................................................145 

 

 



 ix 

FIGURES 
 

 
Figures Page 
 

1. Nucleoside analogues examined in this study. ......................................................15 

2. Oligonucleotide synthesis. .....................................................................................23 

3. Oligonucleotide duplexes examined in this report. ................................................23 

4. MALDI-TOF-MS spectra for U2’F(ara) containing oligonucleotides. .....................25 

5. HPLC analysis of oligonucleotides following enzymatic digestion. .....................27 

6. Ultraviolet melting curves of modified DNA duplexes .........................................33 

7. The thermodynamics of duplex formation display enthalpy-entropy 
compensation. ........................................................................................................35 

8. Comparison of differences in ΔΔG°, ΔΔH°, and ΔΔS° between substituted 
duplexes and the standard duplex. .........................................................................38 

9. Ligase activities on 3’-end dU, U2’F(ara) , U2’F(ribo) residues paired with 
adenine. ..................................................................................................................42 

10. Chemical structures of antiviral and anticancer nucleoside analogues used 
in this study ............................................................................................................57 

11. DNA substrates for polymerase insertion kinetics and thermodynamic 
studies. ...................................................................................................................60 

12. The HPLC, UV-vis and mass spectral analyses of dFdUTP .................................65 

13. Characterization of FIAU phosphoramidite by electrospray ionization 
mass spectrometry (ESI-MS) .................................................................................68 

14. Determination of  Michaelis-Menten constants using denaturing gel-based 
polymerase kinetics assays. ...................................................................................71 

15. Polymerase β incorporation of modified NTPs opposite template dA. .................76 

16. A log plot comparing the incorporation efficiencies for sugar-modified 
NTPs using pol β, AMVRT, and Klenow (exo-) ...................................................85 

17. Relationship between polymerase insertion kinetics and DNA 
thermodynamics .....................................................................................................97 



 x 

18. Chemical structures of antiviral and anticancer nucleoside analogues used 
in this study ..........................................................................................................119 

19. DNA substrates used for polymerase extension kinetics and 
thermodynamic studies. .......................................................................................125 

20. Polymerase β extension of sugar-modified primer termini paired opposite 
template dA ..........................................................................................................130 

21. A log plot comparing the extension efficiencies for sugar-modified primer 
termini using pol β, AMVRT, and Klenow (exo-) ..............................................137 



 xi 

ABBREVIATIONS 

 
dU 2’-deoxyuridine  

U2'F(ara) 2’-deoxy-2’-fluoroabinofuranosyl uracil 

U2'F(ribo) 2’-deoxy-2’-fluororibofuranosyl uracil  

rU Uridine  

araU 1-β-D-arabinofuranosyluracil 

dFdU 2’-deoxy-2’,2’-difluorouridine (Gemcitabine metabolite) 

FIAU (Fialuridine) 5-iodo-(2'-deoxy-2'-fluoro-β-D-arabinosyl) uracil 

5IdU 5-iodo-2’-deoxyuridine  

araC  1-β-D-arabinofunanosylcytosine 

dFdC (Gemcitabine) 2’-deoxy-2’,2’-difluorocytidine  

pol β DNA polymerase Beta (β) 

AMVRT avian myeloblastosis viral reverse transcriptase 

Klenow (exo-) Escherichia coli (Klenow Fragment) exonuclease deficient 

Tm Melting Temperature 

ΔG° Gibbs free energy 

ΔH° Enthalpy change 

ΔS° Entropy change 

Km Michaelis-Menten constant 

kcat Catalytic turnover number 

kcat/Km Enzyme catalytic efficiency 

rN ribonucleoside 

araN arabinonucleoside 



 xii 

HPLC high performance liquid chromatography 

MALDI-TOF matrix-assisted laser desorption/ionization time-of-flight  

ESI-MS electrospray ionization mass spectrometry 

MeCN acetonitrile 

MeOH methanol 

DCM dichloromethane 

EtOAc ethyl acetate 

UV/Vis ultraviolet-visible light 

 

 



 xiii 

ABSTRACT OF THE DISSERTATION 

The Impact of Nucleoside Sugar Modification on Biochemical DNA Transactions 
 

by 

Adides Anthwon Williams 

Doctor of Philosophy, Graduate Program in Biochemistry 
Loma Linda University, March 2012 
Dr. Lawrence C. Sowers, Chairperson 

 

Discrimination by DNA polymerases controls the fidelity of DNA replication, and 

reduced fidelity results in mutations essential in the etiology of cancer.  Polymerase 

discrimination operates at both dNTP insertion and subsequent elongation steps, and 

involves several energetic and structural factors that are as yet incompletely understood.  

While base pairing interactions have been studied extensively, substantially less is known 

about the role of sugar structure and conformation for polymerase incorporation and 

extension.  In these studies we examined, systematically, the role of sugar structure and 

conformation on polymerase selection of the dNTP for insertion and polymerase 

elongation. To accomplish these goals, we have developed methods for the synthesis of 

oligonucleotides with nucleoside analogues with biased sugar conformations at the 3’-end 

(growing end) as well as at internucleotide positions. Through a series of thermodynamic, 

structural and functional studies, we reveal how sugar structure and conformational 

properties impact polymerase incorporation and extension behavior. The analogues 

proposed for this study allow an examination of structural and conformational properties, 

but also, this group of analogues comprises an important class of cytotoxic, antitumor and 

antiviral agents.  The results of these studies will likely provide a clearer understanding 

of the role of sugar conformation in the fidelity of DNA synthesis and replication as well 



 xiv 

as reveal important insights into the activity and toxicity of several nucleoside analogues 

and allow prediction of the biological properties of future analogues.  
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CHAPTER ONE 

INTRODUCTION 

 

DNA Synthesis and Fidelity 

Fidelity of DNA synthesis is necessary to maintain genomic integrity, and errors 

made during replication and repair can lead to mutations and stalled replication forks [1]. 

DNA polymerases ensure the fidelity of DNA replication in both eukaryotes and 

prokaryotes. Nucleotide insertion, exonucleolytic proofreading and extension of primer 

termini are three distinct steps that contribute to overall replication fidelity [2]. 

Substantial work has focused on the importance of "base pairing fidelity" in the selection 

of the correct nucleotide [3-8]. But, relatively little work has been devoted to the impact 

of nucleoside ribose conformation on polymerase incorporation and extension. It is well 

known, however, that under endogenous conditions, DNA polymerases preferentially 

select 2’-deoxyribonucleoside triphosphates (dNTPs) for DNA replication whereas RNA 

polymerases select ribonucleoside triphosphates (rNTPs).     

 

Polymerase Incorporation and Extension 

For a given DNA sequence position, polymerase discrimination must occur in two 

distinct steps. During the insertion step a candidate nucleotide is chosen that is 

complimentary to the template base and is able to bind to the primer-template complex 

with sufficient stability [3-8]. Differences in the base-pairing and base-stacking energy 
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between correct and incorrect nucleotides, as measured in oligonucleotide melting 

studies, have been proposed to account for polymerase discrimination at the insertion 

step. Indeed, Goodman and co-workers [9] explained how polymerases could 

discriminate against mispairs by amplifying free energy differences (ΔΔG°) between 

correct and incorrect base pairs. Following insertion, the polymerase must select the next 

correct nucleotide during the extension step. Surprisingly, polymerase extension beyond a 

mispair is very difficult, even for the insertion of a correct dNTP and even though base-

pairing and geometry conditions are met [9-13].  Thus, extension fidelity contributes 

nearly as much to the overall replication fidelity as the initial insertion step. Both the 

insertion and extension steps require a correctly positioned terminal 3'-hydroxyl (3'-OH) 

to attack the α-phosphate (αP) of an incoming nucleotide. In the case of geometrically 

aberrant base pairs, such as a purine-purine mispair, the 3’-OH would be shifted several 

angstroms from the correct position, potentially preventing polymerase extension.  With 

purine-pyrimidine mispairs, however, the geometry is closer to that of a normal Watson-

Crick base pair, so that more subtle differences, such as sugar conformation, might 

become important. While sugar conformation can be biased by sugar structure, sugar 

conformation can also be influenced by base pair configuration.   

 

Nucleoside Ribose Conformation 

Sugar conformation, and therefore 3’-OH position, can change due to mispair 

formation, as well as from changes in the glycosidic torsion angle [14-18]. Sugar 

conformation can also be biased by the presence of substituents in the furanose ring. The 

conformational difference between deoxyribose and ribose sugars is attributed primarily 
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to the presence of the 2’-OH in the ribonucleosides.  Other substituents, in particular, 

electron-withdrawing substituents including fluorine, are known to profoundly influence 

sugar conformation [19-22].  Nucleoside analogues bearing C2' (sugar) fluoro (F) and 

OH modifications comprise an important class of  antitumor and antiviral agents [23, 24, 

25, 26], and existing evidence indicates that the activity of these analogues results largely 

from interfering with DNA synthesis following misincorporation. Although the 

mechanism of action of these agents is incompletely understood, they are primary agents 

for the treatment of several human maladies including viral infections and tumors. For 

example, 2’-deoxy-2’,2’-difluorocytidine (Gemcitabine, dFdC), in combination with 

platinum-containing drugs, is successfully used in the treatment of metastatic breast 

cancer [27], bladder cancer [28], and pancreatic adenocarcinoma [29]. 1-β-D-

arabinofuranosylcytosine (Cytarabine, araC), in combination with daunorubicin, is 

commonly used as a chemotherapeutic for the treatment of acute myeloid leukemia 

(AML) and lymphomas [30] and has demonstrated activity against both herpes simplex 

and herpes zoster viruses [31, 32].  5-iodo-(2'-deoxy-2'-fluoro-β-D-arabinosyl) uracil 

(Fialuridine, FIAU) is perhaps the most infamous of the nucleoside analogue family as it 

was once used in the treatment of hepatitis B virus infection in NIH clinical trials where 

unexpected hepatotoxicity, progressive lactic acidosis and pancreatitis resulted in two 

patients receiving emergency liver transplants in addition to the deaths of five patients 

[33]. The mechanism of action of each nucleoside analogue is varied but ultimately 

involves inhibition of DNA synthesis following incorporation by a DNA polymerase. In 

the triphosphate form, nucleoside analogues are incorporated into DNA and, in the case 

of dFdC, araC and FIAU, act as (pseudo) chain terminators.      
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Clinically Relevant Nucleoside Analogues and their Metbolites 

In addition to phosphorlyation, nucleoside analogues can undergo additional 

metabolic processing. For example, FIAU is further metabolized to 1-(2-deoxy-2-fluoro-

β-D-arabinofuranosyl)uracil (U2'F(ara)). Interestingly, studies have shown that incubation 

of human hepatoma HepG2 cell lines with U2'F(ara) resulted in decreased mitochondrial 

DNA content [34] suggesting that U2'F(ara) may contribute to the cytotoxic profile of 

FIAU. Further, intra- and extracellular cytidine deaminases rapidly deaminate dFdC and 

araC to 2'-deoxy-2',2'-difluorouridine (dFdU) and 1-β-D-arabinofuranosyluracil (araU) 

metabolites. Surprisingly, little work has been done with these uracil analogues, yet they 

could account for much of the activity or cytotoxicity of these agents. Indeed, recent 

studies have demonstrated that dFdU nucleotides are formed and accumulate in the liver 

of mice and humans after multiple dosings of dFdC [35]. In addition, dFdUTP was 

observed in the DNA of HepG2 treated cells and the incorporation of dFdUTP correlated 

with dFdU cytotoxicity suggesting that liver accumulation of dFdU and subsequent 

misincorporation of dFdUTP might be associated with observed liver toxicity in patients 

following continuous oral and/or intravenous administration of dFdC [36]. In all, these 

studies highlight the biological importance of these sugar modified nucleoside analogues 

and the contribution of their metabolites to observed cytotoxicity.   

 

The Purpose and Goals of these Studies 

In this project we designed a series of experiments that allowed us to 

systematically examine the role of sugar structure and conformation on sugar-modified 

NTP (modNTP) incorporation and extension. To accomplish this we chemically 
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synthesized sugar-modified triphosphates and a series of synthetic oligonucleotides with 

C2'-F and C2'-OH substituted ribose sugars in arabino and ribo configurations at both an 

internucleotide position, and for the first time, at the 3'-end in a model replication fork. 

The results of our polymerase kinetics and thermal denaturation studies provided a 

systematic understanding of the energetic impact of nucleoside sugar substitution on 

polymerase incorporation and extension. Further, these studies lend insight into the 

mechanism of action and toxicity of clinically relevant nucleoside analogues and their 

metabolites.   
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Abstract 

The selection of nucleoside triphosphates by a polymerase is controlled by several 

energetic and structural features, including base pairing geometry as well as sugar 

structure and conformation.  Whereas base pairing has been considered exhaustively, 

substantially less is known about the role of sugar modifications for both nucleotide 

incorporation and primer extension.  In this study, we synthesized oligonucleotides 

containing 2’-fluoro modified nucleosides with constrained sugar pucker in an 

internucleotide position and, for the first time, at a primer 3’-end.  The thermodynamic 

stability of these duplexes was examined. The nucleoside 2’-deoxy-2’-

fluoroarabinofuranosyl uracil (U2’F(ara)) favors the 2’-endo conformation (DNA-like) 

while 2’-deoxy-2’-fluororibofuranosyl uracil (U2’F(ribo)) favors the 3’-endo conformation 

(RNA-like). Oligonucleotides containing U2’F(ara) have slightly higher melting 

temperatures (Tm’s) than those containing U2’F(ribo) when located in internucleotide 

positions or at the 3’-end and when correctly paired with adenine or mispaired with 

guanine. However, both modifications decrease the magnitude of ΔHo and ΔSo for duplex 

formation in all sequence contexts.  In examining the thermodynamic properties for this 

set of oligonucleotides, entropy-enthalpy compensation is apparent.  Our thermodynamic 

findings led to a series of experiments with DNA ligase that reveal, contrary to 

expectation based upon observed Tm’s, that the duplex containing the U2’F(ribo) analog is 

more easily ligated.  The 2’-fluoro-2’-deoxynucleosides examined here are valuable 

probes of the impact of sugar constraint and are also members of an important class of 

antitumor and antiviral agents.  The data reported here may facilitate understanding the 
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biological properties of these agents, as well as the contribution of sugar conformation to 

replication fidelity. 

 

Footnotes 

1Abbreviations 

 Tm , Melting Temperature; dU, 2’-deoxyuridine; U2’F(ara), 2’-deoxy-2’-

fluoroabinofuranosyl uracil; U2’F(ribo), 2’-deoxy-2’-fluororibofuranosyl uracil; araC, 1-β-

D-arabinofunanosylcytosine 
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Introduction 

The accurate replication of nucleic acids requires that polymerases select the 

correct nucleotide at each successive step of replication.  Substantial work has focused on 

the importance of "base pairing fidelity" in the selection of the correct nucleotide (1-6).  

Polymerases must also choose among potential nucleoside triphosphates, even when the 

base pairing condition has been met.  For example, RNA polymerases select 

ribonucleotide triphosphates (rNTPs) whereas DNA polymerases select 2’-

deoxyribonucletide triphosphates (dent's) upon the basis of sugar structure and 

conformation.  The selection of nucleotide triphosphates (NTP’s) based upon differences 

in sugar structure and conformation has led to a suggested role for "sugar fidelity" among 

polymerases although the mechanisms have not been extensively explored (7-10). 

For a given DNA sequence position, polymerase discrimination must occur in two 

distinct steps.  In the insertion step, a candidate nucleotide is interrogated for its capacity 

to bind to the primer-template-enzyme complex with sufficient stability in an acceptable 

geometry (1-6).  Differences in the base-pairing and base-stacking energy between 

correct and incorrect nucleotides, as measured in oligonucleotide melting studies, have 

been proposed to account for polymerase discrimination at the insertion step.  Following 

insertion, the polymerase must select the next correct nucleotide during the extension 

step.  Surprisingly, polymerase extension beyond a mispair is very difficult, even for the 

insertion of a correct NTP and even though base-pairing and geometry conditions are met 

(11-15).  Extension fidelity contributes nearly as much to the overall replication fidelity 

as the initial insertion step.  Although polymerase pausing at the extension step following 

a nucleotide misinsertion event would reduce overall mutation frequency by facilitating 
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proofreading or other repair, the mechanistic basis for extension fidelity is as yet 

unknown. 

Polymerase insertion and extension require a terminal 3’-hydroxyl (3’-OH) in the 

correct position to attack the α-phosphate of a candidate NTP. In the case of 

geometrically aberrant base pairs, such as a purine-purine mispair, the 3’-OH would be 

shifted several angstroms from the correct position, potentially preventing polymerase 

extension.  With purine-pyrimidine mispairs, however, the geometry is closer to that of a 

normal Watson-Crick base pair, so that more subtle differences, such as sugar 

conformation, might become important.  The furanose sugar component of nucleic acids 

is non-planar and adopts a number of potential conformations that can be described by 

the pseudorotation angle, P (16-18).  There are several conformations that correspond to 

energy minima as a function of P, and the value of P can significantly change the position 

of the 3’-OH.  Ribonucleotides in RNA are biased toward a 3'-endo conformation 

whereas 2'-deoxynucleosides in DNA assume preferentially a 2'-endo pucker, potentially 

explaining, in part, polymerase sugar fidelity (Figure 1). 

While sugar conformation can be biased by sugar structure, sugar conformation 

can also be influenced by base pair configuration.  Sugar conformation, and therefore 3’-

OH position, can change due to mispair formation, as well as from changes in the 

glycosidic torsion angle (19-23).  While a correct base pair at the 3’-end of a template-

primer complex would likely be found predominantly in a correct conformation with the 

3’-OH in the correct position, mispair formation could modify sugar pucker and distort 

the position of the 3’-OH potentially explaining, in part, polymerase extension fidelity. 
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Figure 1.  Nucleoside analogs examined in this study. 
 

 
Sugar conformation can also be biased by the presence of substituents in the 

furanose ring. The conformational difference between deoxyribose and ribose sugars is 

attributed primarily to the presence of the 2’-OH in the ribonucleosides.  Other 

substituents, in particular, electron-withdrawing substituents including fluorine, are 

known to profoundly influence sugar conformation (24-33).  Evidence exists that sugar 

pucker can influence both nucleotide incorporation and extension by polymerases (34-

41).  Nucleotides that are constrained to a 3'-endo conformation - for example, 2'-

fluororibo nucleotides - are preferentially incorporated by RNA polymerases (34).  

Conversely, 2'-fluoroarabino nucleotides that prefer the 2'-endo pucker are preferentially 

incorporated by DNA polymerases, yet surprisingly, are very difficult to extend (38).  

The physical basis for this selectivity has not as yet been established. 

For this study, we constructed oligonucleotides with 2'-deoxyuridine (dU) and the 

2’-fluoro analogs 2’-deoxy-2’-fluoroarabinofuranosyl uracil (U2’F(ara)) and  2’-deoxy-2’-

fluororibofuranosyl uracil (U2’F(ribo)) in both internucleotide and 3'-end positions (Figure 

1). The sugar pucker equilibrium for the U2'F(ara) and U2'F(ribo) analogs studied here has 

been previously studied by NMR spectroscopy (25-32).  The reference nucleoside analog, 

dU, is in a rapid equilibrium between 2’-endo and 3’-endo conformations, with a 
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preference (61%) for the 2’-endo conformation (32).  The U2'F(ara) analog is 57% 2’-endo 

whereas the U2'F(ribo) analog is 69% 3’-endo (33).  When located in oligonucleotides and 

constrained by internucleotide linkages, the conformational preference of dU and U2'F(ara) 

shifts more toward 2’-endo whereas U2'F(ribo) shifts more toward 3’-endo (26).  

The analogs described here were incorporated into an internucleotide position, as 

well as on the 3'-end.   While both analogs have been incorporated previously into 

internucleotide positions, this is the first report of incorporation into the 3'-position.  The 

analogs have been incorporated into duplex structures either properly paired with adenine 

or mispaired with guanine in an internucleotide position, as well as at a 3'-end position 

creating a model polymerase replication fork or ligase junction.  The thermal and 

thermodynamic stability of these duplex structures has been studied.  With this set of 

analogs, we could probe the energetic advantage or penalty for each analog and base pair, 

as well as probe for a potential interaction between base pairing and sugar conformation. 

Thermodynamic results reported here led to a series of experiments with DNA ligase that 

demonstrate, unexpectedly, that the duplex containing the U2’F(ribo) analog is more easily 

ligated.  The thermodynamic parameters and results obtained are discussed within the 

context of the available literature on polymerase preferences for both nucleotide insertion 

and extension.  Due to the importance of sugar-modified nucleosides as anticancer and 

antitumor drugs, the results reported here may provide new insight into the mechanisms 

of activity and the potential adverse effects of these analogs. 
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Materials and Methods 

Solvents and Reagents 

The solvents dichloromethane (CH2Cl2), methanol (MeOH), ethyl acetate 

(EtOAc) and hexanes were purchased from Fisher Scientific (Pittsburgh, PA). Pyridine, 

triethylamine (TEA) and acetonitrile (MeCN) were purchased from Sigma-Aldrich (St. 

Louis, MO). Dimethoxytrityl chloride (DMT-Cl) and 2-cyanoethyl tetraisopropyl 

phosphorodiamidite were purchased from Sigma-Aldrich (St. Louis, MO). 1,3,5-tri-O-

benzoyl-2’-deoxy-2’-fluoro-D-arabinofuranose was purchased from MP Biomedicals 

(Aurora, OH). Thin layer chromatography (TLC) was performed on precoated silica gel 

60 F254, 5x20 cm, 250 µm thick plates purchased from EMD (Gibbstown, NJ).  

 

Synthesis of 5’-dimethoxy-2’-deoxy-2’-fluoro-1-β-D-
arabinofuranosyluracil, 3’-[(2-cyanoethyl)-(N,N-diisopropyl)]-

phosphoramidite 

Commercially available 1,3,5-tri-O-benzoyl-2’-deoxy-2’-fluoro-D-

arabinofuranose was brominated to the corresponding bromosugar in 100% yield (42,43). 

The bromosugar was then coupled to 2,4-bis-O-trimethylsilyluracil to give 1-β-D-(3,5,-

di-O-benzoyl-2-fluoroarabinofuranosyl)uracil as a solid residue (44). The dibenzoyl 

derivative was then deprotected to give 2’-deoxy-2’-fluoro-1-β-arabinofuranosyluracil 

(U2'F(ara)) in a 30% yield (45). U2'F(ara) was then tritylated to give 5’-dimethoxytrityl-2’-

deoxy-2’-fluoro-1-β-arabinofuranosyluracil in 48% yield and subsequently converted to 

its phosphoramidite derivative, 5’-dimethoxy-2’-deoxy-2’-fluoro-1-β-D-

arabininofuranosyluracil, 3’-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite in 49% 

yield (46).  
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Oligonucleotide Synthesis and Characterization 

Standard oligonucleotide synthetic procedures (47) were used to produce 

oligonucleotides with normal and modified analogs including dU, U2'F(ara) and U2'F(ribo) 

residues located at an internucleotide site. Oligonucleotide synthesis was conducted with 

a Gene Assembler Plus (Pharmacia LKB) automated DNA synthesizer. Oligonucleotides 

were deprotected with concentrated NH3 (aq) at 60°C for 24 hours. In general, following 

synthesis and deprotection, oligonucleotides were purified by HPLC using a Hamilton 

PRP-1 column and a gradient of 10 – 40% MeCN in potassium phosphate buffer (10mM, 

pH 6.8) and examined by MALDI-TOF-MS. Oligonucleotides were then detritylated with 

80% aqueous acetic acid at room temperature for 30 minutes. Following detritylation, 

oligonucleotides were purified by HPLC using a C-18 Vydac column and a gradient of 0 

– 20% MeCN in water. Oligonucleotide purity was examined by MALDI-TOF-MS (48), 

and the free base composition was verified by HPLC, following enzymatic digestion (49) 

using a Supelcosil LC-18-S column and a gradient of 0 – 15% MeCN in water.  

 

Synthesis of Oligonucleotides with 3’-terminally Located 2’-
deoxyuridine Analogues 

To insert dU, U2'F(ara) and U2'F(ribo) residues at the primer terminus, three synthetic 

approaches were investigated using the following universal supports available from Glen 

Research: 1) Glen UnySupport CPG 500, 2) Universal Support II and 3) Universal 

Support III PS (50,51). In each of the three approaches, it was necessary to increase the 

coupling times to 10 min (from 3 min) for insertion of U2'F(ara) and U2'F(ribo) residues at the 

primer terminus. Following detritylation, overall purity of the oligonucleotides produced 

using each of the three universal supports was determined by MALDI-TOF-MS and 
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denaturing polyacrylamide gel (20% (v/v) polyacrylamide, 8M urea). Upon the basis of 

MALDI-TOF-MS analysis, oligonucleotides synthesized using Universal Support III PS 

were of greater purity than those synthesized using Universal Support II or Glen 

UnySupport CPG 500. In particular, the mass spectra for oligonucleotides containing 

U2'F(ara) and U2'F(ribo) residues, produced using Universal Support III PS, revealed single 

peaks corresponding to the expected oligonucleotide masses. Following synthesis using 

Glen UnySupport CPG 500, several unidentified impurities in U2'F(ara) containing 

oligonucleotides (M-50, 221, 307, 360 and 619) and in U2'F(ribo) containing 

oligonucleotides (M+18 and M-227) were observed. Upon the basis of purity assessment 

following gel electrophoresis, Universal Support III PS was again determined to produce 

oligonucleotides of greater purity. In all, synthesis using Universal Support III PS 

produced oligonucleotides in greater quantity and of higher purity and was thus used 

exclusively for subsequent syntheses of oligonucleotides with dU, U2'F(ara) and U2'F(ribo) 

residues at the 3’-end.   

 

Determination of Duplex Melting Behavior 

Samples containing non self-complementary oligonucleotides were prepared in 

buffer containing 0.1 M NaCl, 0.01 M sodium phosphate, and 0.1mM EDTA, pH 7.0. 

Complexes were prepared by mixing equimolar amounts of interacting strands, and 

concentration dependent Tm measurements were conducted with total strand 

concentration (CT) between 2 and 60 µM in cuvettes with path lengths between 1 and 10 

mm. Molar extinction coefficients of oligonucleotides were calculated (52) to determine 

single strand concentrations. Oligonucleotide melting temperatures (Tm) were determined 

using a Varian Cary 300 Bio UV-visible spectrophotometer (Varian, Walnut Creek, CA). 
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Five temperature ramps were performed on each sample per run while observing the 

absorbance at 260 nm: 1) 12 °C to 90 °C at a rate of 0.5 °C/min, 2) 90 °C to 12 °C at a 

rate of 0.5 °C/min, 3) 12 °C to 90 °C at a rate of 0.5 °C/min, 4) 90 °C to 12 °C at a rate of 

0.5 °C/min, and 5) 12 °C to 90 °C at a rate of 0.5 °C/min. The sample was held for 3 min 

when the temperature reached 90 °C and for 10 min when it reached 12 °C and started the 

next cycle. Data were collected at 0.5 °C intervals while monitoring the temperature with 

a probe inserted into a cuvette containing only buffer. The Tm of each duplex was 

determined using Cary WinUV Thermal software (Varian). Theoretical Tm values for 

control duplexes (A:dU and G:dU) were determined (53,54) and compared against values 

obtained using the Cary WinUV Thermal software. Thermodynamic parameters for non 

self-complimentary duplexes were calculated in two ways: 1) averages from fits of 

individual melting curves at different concentrations using Van't Hoff calculation in the 

Cary WinUV Thermal software; 2) the 1/ Tm versus ln (CT/4) plots fitted to the following 

equation for the non self-complementary sequences examined here.  

 

         
0

0

0

1

4
ln

H

SC

H

R
T T

m 













                              Eq. 1 

 

Both methods assume a two-state model and ΔCp = 0 for the transition 

equilibrium. The two-state approximation was assumed to be valid for sequences in 

which the ΔH° values derived from the two methods agreed within 15% (54). The ΔH° 

values derived from the two methods agree within 15%, indicating that the two-state 

approximation is valid for all other sequences employed in this study.  
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Ligase Assays 

The E. coli DNA ligase was obtained from New England Biolabs (Ipswich, MA) 

and human DNA ligase III was obtained from Enzymax (Lexington, KY).  

Oligonucleotide 5’-end radiolabeling was performed using adenosine 5’-[-32P]-

triphosphate ([-32P]-ATP) (MP Biomedical, Costa Mesa, CA) and T4 polynucleotide 

kinase (New England BioLabs) under conditions recommended by the enzyme supplier. 

Labeled mixtures were subsequently centrifuged through G-25 Sephadex columns 

(Roche Applied Science, Indianapolis, IN) to remove excess unincorporated nucleotide. 

Duplex oligonucleotides containing a ligase junction were generated by mixing the 

labeled single strand (5’-GGCCACGACGG-3’) with a 2-fold molar excess of 

CTTTGCCCGAAX, where X is dU, U2’F(ara), U2’F(ribo), and the template strand 

CCGTCGTGGCCATTCGGGCAAAG in the appropriate enzyme buffer as previously 

described (55). The E. coli DNA ligase buffer contained 30 mM Tris-HCl pH 8.0, 4 mM 

MgCl2, 1 mM DTT, 26 µM NAD+, 50 µg/ml BSA. The human DNA ligase III buffer 

contained 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM DTT, 1 mM ATP.  Annealing 

mixtures were heated at 95ºC for 5 min and then cooled slowly to room temperature. 

Standard E. coli DNA ligase assays were performed using 50 nM substrate with 500 nM 

E. coli DNA ligase in buffer, as above, in a total volume of 10 µl at 16ºC for selected 

time periods. Substrates (50 nM) were incubated with 50 nM human DNA ligase III in 

buffer, as above, in 10 µl total volume at 26.5ºC for selected time periods. The reactions 

were terminated by adding an equal volume of Maxam-Gilbert loading buffer (98% 

formamide, 0.01 M EDTA, 1 mg/ml xylene cyanole and 1 mg/ml bromophenol blue). 

Samples were denatured by heating at 95ºC for 5 min and quickly placed on ice for 2 min 
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before electrophoresis on 20% denaturing polyacrylamide gels (8 M urea). The bands 

corresponding to substrate and products were visualized and quantified using a Molecular 

Dynamics PhosphorImager (Molecular Dynamics, Sunnyvale, CA, now part of GE 

Healthcare) and quantified using ImageQuant software. Reaction rate constants (kobs) for 

ligation reactions were determined by fitting time course data to a single exponential (y = 

a(1-a-bx)) using Sigma Plot 10.0, where “a” is the maximum product ratio and “b” is the 

reaction rate constant, kobs.  

 

Results 

Oligonucleotide Synthesis 

The phosphoramidite analog of U2'F(ribo) is commercially available; however, the 

corresponding phosphoramidite of U2'F(ara) is not available and was prepared in this 

laboratory by previously described methods as shown in Figure 2A.  Oligonucleotides 

containing both analogs were prepared by standard solid phase synthesis methods.  

Sequences of oligonucleotides used in this study are shown in Figure 3. 

Although the synthesis of oligonucleotides with U2'F(ara) and U2'F(ribo) have been 

previously reported, oligonucleotides with these analogs at the 3'-end are reported here 

for the first time.  We considered two methods: the synthesis of solid phase supports 

linked to the analogs of interest or the use of solid supports containing linkers or 

"universal supports" for the preparation of 3'-end modified oligonucleotides (Figure 2B).  

As the needed phosphoramidites were available in our lab, we proceeded to test a series 

of commercially available solid supports.  Although we did not exhaustively examine all 

of the supports, we found that Universal Support III PS provided the highest consistent 

coupling yields and purity. 
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Figure 2. Oligonucleotide synthesis. A) Abbreviated scheme showing the synthesis of 
phosphoramidites for the incorporation of U2’F(ara) into oligonucleotides. B) Modified 
coupling conditions were used to attach U2’F(ara) to the 3’-terminus of oligonucleotides as 
described in the Materials and Methods.  
 

 

 

5'-CTTTGCCCGAAX-3'
3'-TAGGAAACGGGCTTPCAATAA-5'

A

B

C

5'-CCGAAXGTTATT-3'
3'-GGCTTPCAATAA-5'

5'-CTTTGCCCGAAXOH

3'-GAAACGGGCTTA-----CCGGTGCTGCC-5'

PGGCCACGACGG-3'

X = dU, U2'F(ara), U2'F(ribo)

P = A, G

 

Figure 3.   Oligonucleotide duplexes examined in this report. The sequence of duplexes 
with sugar-modified nucleotides at A) the 3'-terminus or B) an internucleotide position 
used in this report. C)  The sequences for oligonucleotide duplexes used as substrates for 
the ligase assays described in the Materials and Methods section.  
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Oligonucleotide Characterization 

Synthetic oligonucleotides were characterized by MALDI-TOF-MS following 

deprotection and purification by HPLC.  The mass spectra of the oligonucleotides 

containing the U2'F(ara) analog in both an internucleotide position and at a 3'-end are 

shown in Figures 4A and B, respectively.  The observed mass in each case was consistent 

with the expected mass and demonstrated that the 3'-phosphate of the original 

phosphoramidite had been removed (Figure 2B).  Oligonucleotides were also 

characterized by enzymatic digestion and analysis of the liberated nucleosides by HPLC.  

We considered this important as the mass of the two 2'-fluoro analogs is identical, and we 

needed an additional method to confirm that the oligonucleotides contained the correct 

isomer.  As shown in Figure 5A, dU, U2'F(ara)  and U2'F(ribo) are separable by HPLC and 

resolvable from the standard DNA nucleosides (Figure 5B). 
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Figure 4. MALDI-TOF-MS spectra for U2’F(ara) containing oligonucleotides. A) The mass 
spectrum observed for the oligonucleotide with sequence 5’-CCGAAXGTTATT-3’ 
where X is a U2’F(ara) residue at an internucleotide site. B) The mass spectrum observed 
for the oligonucleotide of sequence 5’-CTTTGCCCGAAX-3’ where X is a U2’F(ara) 

residue at the 3’-end. 
 

 

Measurement of Duplex Thermal and Thermodynamics Stability 

Oligonucleotide duplexes were prepared in buffered solution by mixing equimolar 

amounts of the two strands, as indicated in Figure 3.  Strands were annealed by heating to 
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90°C, followed by slow cooling.  Melting profiles were obtained by observing UV 

absorbance at 260 nm as a function of temperature as described in Materials and 

Methods.  Melting temperatures and corresponding thermodynamic parameters were 

obtained by analysis of the UV-temperature profiles as previously described (53, 54).  

Melting temperatures and thermodynamic parameters are presented in Table 1.  Example 

melting curves are shown in Figure 6. 

 

Analysis of Thermodynamic Data 

Thermal and thermodynamic data obtained for the ensemble of oligonucleotides 

examined here were expressed as the corresponding differences by comparing the 

measured value for the substituted duplexes with the standard A:dU containing duplex for 

the 3'-end and internucleotide series. This data and the corresponding values of ΔTm, 

ΔΔGo
37, ΔΔHo and ΔΔSo are presented in Table 1. Values of ΔΔHo and ΔΔSo appeared to 

correlate with one another, and this relationship is presented in Figure 7.  Energy 

differences between base pairs examined in this study are shown diagrammatically in 

Figure 8. 
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Figure 5. The composition of synthetic oligonucleotides were analyzed by HPLC 
following enzymatic digestion. A) HPLC was able to resolve the dU, U2’F(ara) and U2’F(ribo) 
nucleosides. B) The HPLC chromatogram confirming the composition of the 
oligonucleotide, 5’-CCGAAXGTTATT-3’, where X is a U2’F(ara) residue.  
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DNA Ligase Activity 

Oligonucleotides were assembled as shown in Figure 3C to create a ligase joint.  

The model ligase junction was incubated with human DNA ligase III and E. coli DNA 

ligase and the reaction products were examined by gel electrophoresis as shown in Figure 

9.  Human DNA ligase III and E. coli DNA ligase were able to ligate junctions containing 

all three analogs. Human DNA ligase III was found to ligate junctions containing dU, 

U2'F(ara) and U2'F(ribo) with kobs values of 1.83 ± 0.21 X 10-2 s-1, 4.70 ± 0.43 X 10-3 s-1 and 

2.18 ± 0.25 X 10-2 s-1, respectively. In addition, E. coli DNA ligase was found to ligate 

junctions containing dU, U2'F(ara) and U2'F(ribo) with kobs values of 6.34 ± 0.73 X 10-3 s-1, 

8.64 ± 1.33 X 10-4 s-1 and 2.81 ± 0.39 X 10-2 s-1, respectively.  

 

Discussion 

The experimental goal of this study was to examine the role of constrained sugar 

pucker on oligonucleotide stability for both a correct base pair and a wobble mispair in 

both internucleotide and 3'-terminal positions.  These properties might help explain why 

polymerases initially insert correct nucleotides (insertion) and insert correct nucleotides 

following mispairs (extension) with such low efficiency.  The impact of constrained 

sugar conformation on mispairs has not been previously examined.  We considered the 

possibility that mispair geometry might be coupled with changes in sugar pucker at a 

duplex 3'-end which might help explain the inefficiency of mispair extension.  Previous 

structural studies have suggested that aberrant base pair geometry could induce changes 

in sugar conformation (19-23), however, these effects have not been previously studied at 

a replication fork.  The sugar-substituted nucleosides examined here are also members of 

an important class of nucleoside analogs with antitumor and antiviral properties (34-41), 
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and thus the data reported here might facilitate a greater understanding of the biological 

activity of this class of nucleoside analogs. Our experimental approach was to construct 

oligonucleotides containing dU and 2'-fluoro analogs constrained to either the 2'-endo 

(south, DNA-like) sugar pucker or the 3'-endo (north, RNA-like) sugar pucker and to 

measure thermodynamic stabilities of duplex oligonucleotides.   

Melting temperatures for oligonucleotides containing standard and modified 

nucleotides were determined and measured values were consistent with expectations. In 

the studies reported here, uracil was selected as the pyrimidine rather than thymine so 

that the data set examined here could be used in future studies to compare a series of 5-

substituted pyrimidines.  The replacement of T by dU does not change base pairing 

geometry when paired with A (56) or mispaired with G (57) and results in only a modest 

decline in Tm due to reduced base stacking (58).  Oligonucleotide duplexes were 

assembled as shown in Figure 3.  Oligonucleotide melting temperatures were obtained 

from the temperature dependence of the UV absorbance as shown in Figure 5.  

Thermodynamic parameters were extracted from the melting curves and the 

corresponding data is presented in Table 1.  The observed Tm of the duplex containing an 

internucleotide A:dU base pair was 43.8 ± 0.2 oC.  The expected Tm for a duplex of the 

same sequence except dU would be replaced by thymine is 43.8 to 44.2 oC, depending 

upon which basis set and method of calculation is used (53).  The observed Tm of the 

duplex in which the dU residue on the 3'-end was paired with A was observed to be 49.4 

± 0.3 oC, slightly below the 52.8 to 53.1 oC calculated range when dU is replaced by T 

(53).  
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Table 1: Experimental thermodynamic parameters of duplex formation. The values include measured free energy of duplex 
formation (ΔG°37), enthalpy (ΔH°), entropy (ΔS°) and melting temperature with a strand concentration of 28 µM (Tm 28 µM). The 
thermodynamic parameters for the A:dU oligonucleotides were used as the references when calculating ΔΔG°37, ΔΔH°, and ΔΔS° in 
the 3’-terminal (Figure 3A) or internucleotide positions (Figure 3B). Measured free energy, enthalpy and entropy differences that 
exceed experimental error are indicated in bold. 
 

 
G°37 

(kcal/mol) 
G°37 
(kcal/mol)

Tm 28µM 
(°C) 

Tm 28µM 
(°C) 

H° 
(kcal/mol) 

H° 
(kcal/mol)

S° 
(cal/mol K)

S° 
(cal/mol K)

 
3'-Terminal 

 

A:dU -9.5±0.2 - 49.4±0.3 - -89.0±4.6 - -251.2±14.2 - 

G:dU -9.0±0.2 0.5±0.3 48.1±0.2 -1.3±0.4 -86.0±5.4 3.0±7.1 -244.2±16.7 7.0±21.9 

A:U2'F(ara) -9.5±0.2 0.0±0.3 50.3±0.1 0.9±0.3 -84.8±3.2 4.2±5.6 -238.4±9.7 12.8±17.2 

G:U2'F(ara) -8.8±0.2 0.7±0.3 48.1±0.5 -1.3±0.6 -82.1±4.3 6.9±6.3 -232.0±13.4 19.2±19.5 

A:U2'F(ribo) -9.0±0.2 0.5±0.3 49.2±0.2 -0.2±0.4 -79.9±3.9 9.1±6.0 -224.3±12.2 26.9±18.7 

G:U2'F(ribo) -8.6±0.2 0.9±0.3 47.2±0.6 -2.2±0.7 -76.7±5.1 12.3±6.9 -215.7±15.8 35.5±21.2 
 

Internucleotide 
 

A:dU -8.1±0.2 - 43.8±0.2 - -93.2±5.1 - -271.4±14.9 - 

G:dU -6.2±0.1 1.9±0.2 36.6±0.2 -7.2±0.3 -87.1±3.7 6.1±6.3 -257.6±12.4 13.8±19.4 

A:U2'F(ara) -8.0±0.1 0.1±0.2 43.8±0.3 0.0±0.4 -85.4±3.0 7.8±5.9 -245.7±9.5 25.7±17.6 

G:U2'F(ara) -6.5±0.1 1.6±0.2 37.5±0.2 -6.3±0.3 -81.7±3.7 11.4±6.3 -239.6±11.8 31.9±19.0 

A:U2'F(ribo) -7.8±0.1 0.3±0.2 42.9±0.1 -0.9±0.2 -86.7±3.5 6.4±6.2 -250.7±11.1 20.7±18.6 

G:U2'F(ribo) -6.4±0.1 1.7±0.2 36.7±0.5 -7.1±0.5 -81.9±2.9 11.3±5.8 -240.2±9.3 31.2±17.5 
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The conversion of a Watson-Crick base pair to a wobble mispair is known to 

significantly decrease melting temperatures (1,11,58).  The formation of the 

internucleotide G:dU mispair results in a Tm  of 36.6 ± 0.2 oC, 7.2 oC lower than the A:dU 

duplex.  The calculated range for a duplex of the same sequence containing a G:dT 

mispair is 36.8 to 38.2 oC (54).  When the G:dU mispair is moved from an internucleotide 

position to the 3'-end, the observed Tm is  48.1 ± 0.2 oC, only 1.3 oC  lower than the Tm 

for the sequence containing a correct A:dU base pair.  The expected Tm for an 

oligonucleotide of an otherwise same sequence, but with a G:dT rather than G:dU mispair 

at the 3’-end, is 50.2°C to 50.8°C (54). The data reported thus far is consistent with 

expectations based upon literature precedents and confirms that the impact of a mispair 

on Tm is substantially less when the mispair is located at the 3'end. 

The Tm of the duplex containing the internucleotide A:U2'F(ara) base pair is 

observed to be 43.8 ± 0.3 oC, experimentally indistinguishable from that of the A:dU 

duplex.  Previously, other investigators have observed that the placement of 2'-

fluoroarabino analogs in duplex structures increases their melting temperatures by 

roughly 1°C per nucleotide, and this stabilizing effect has been attributed to constraining 

the sugar into the more DNA-like 2'-endo pucker (28,32).  In most of the previous 

studies, however, the oligonucleotides included multiple substitutions.  The observed Tm 

for the formation of the internucleotide G:U2'F(ara) mispaired duplex is 37.5 ± 0.2 oC, 

which is 0.9 oC higher than that of the G:dU duplex.  The 3’-terminal A:U2'F(ara) base pair 

duplex exhibited a Tm 0.9°C higher than that of the 3'-terminal A:dU base pair duplex 

whereas the Tm of the terminal G:U2'F(ara) mispair duplex is indistinguishable from the Tm 

of the 3'-terminal G:dU duplex.  These results demonstrate that incorporation of the 
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U2'F(ara)  analog stabilizes duplexes in some cases; however, the observed effect on Tm is 

modest and substantially less than the impact of mispair formation. 

Substitution of dU with the U2'F(ribo)  analog at an internucleotide position has the 

opposing effect, slightly decreasing Tm 's  when paired with A or mispaired with G.  

Again, the impact of the sugar constraint on Tm is less than that of mispair formation at 

the internucleotide position.  At the 3'-end, the effect of sugar constraint on Tm shows 

similar decreases.  One of the initial hypotheses considered here is that mispair geometry 

might be related to sugar pucker at a duplex 3’-end, and therefore, a nucleotide with 

constrained sugar pucker might have an opposing impact on a mispair versus a normal 

pair.  The evidence thus far on Tm’s does not support this hypothesis in that mispairs with 

G are approximately 2 oC less stable than base pairs with A for both U2'F(ara) and U2'F(ribo) 

analogs.  

Oligonucleotide duplexes with similar Tm’s can have significantly different 

thermodynamic parameters if enthalpy and entropy changes are correlated.  Although 

oligonucleotide duplexes might have similar Tm's, they can have different thermodynamic 

parameters.  For this reason we examined the free energy changes at 37°C (ΔGo
37), 

enthalpy (ΔHo) and entropy (ΔSo) changes for each of the duplex structures reported here 

(Table 1).  In Figure 6B, the melting curves for oligonucleotides with A:dU and 

A:U2'F(ara) are shown.  Although the midpoint for the temperature-dependent UV 

transition (Tm) is similar for each, the shapes of the curves, and corresponding 

thermodynamic parameters, are different.  The magnitude of the experimental errors for 

ΔSo, ΔHo and ΔGo observed here are in accord with previously reported studies (58,60). 
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Figure 6. Ultraviolet melting curves of complexes at 28 µM (A) and 60 µM (B) in 100 
mM NaCl, 0.1 mM EDTA and 10 mM phosphate buffer (pH 7.0).  

 

 
In order to assess the impact of the substitution on the thermodynamic parameters, 

the free energy, enthalpy and entropy changes are expressed as the corresponding 

differences (ΔΔGo, ΔΔHo and ΔΔSo) relative to the A:dU base pair for the internucleotide 
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or 3’-terminal series.  In all cases, positive values are observed for ΔΔGo
37, ΔΔHo and 

ΔΔSo, indicating that constraining the sugar pucker with either the U2'F(ara)  or U2'F(ribo) 

analog has a destabilizing effect, as does mispair formation.  Previously, positive values 

for ΔΔHo and ΔΔSo upon substitution with U2'F(ara)  have been observed (25), and the 

magnitudes of these changes per substitution are similar to those reported here. The 

impact of the sugar constraint on ΔΔSo has been attributed to a conformational 

preorganization, reducing the net conformational entropy change upon duplex formation 

(25).  The impact on ΔΔHo would be attributed to the constrained sugar preventing the 

formation of the most favorable base-stacking geometry. 

In this study, we have assumed a two state equilibrium between 2'-endo and 3'-

endo sugar puckers as supported by previous NMR studies with the  U2'F(ara) and U2'F(ribo) 

analogs studied here (25-32).  The reference nucleoside analog, dU, is in a rapid 

equilibrium between 2’-endo and 3’-endo conformations, with a preference (61%) for the 

2’-endo conformation (32).  The U2'F(ara) analog is 57% 2’-endo whereas the U2'F(ribo) 

analog is 69% 3’-endo (33).  When located in oligonucleotides and constrained by 

internucleotide linkages, the conformational preference of dU and U2'F(ara) shifts more 

toward 2’-endo whereas U2'F(ribo) shifts more toward 3’-endo (26). 

Enthalpy and entropy differences for the oligonucleotide duplexes examined here 

are shown to be proportional.  In previous studies of oligonucleotide stability in which 

mispairs and constrained sugar pucker were considered separately, enthalpy and entropy 

contributions were shown to correlate (60).  As shown in Figure 7, enthalpy and entropy 

are shown to correlate for the series examined here, as well.  The relatively large size of 

the error bars when the values are presented as ΔΔSo and ΔΔHo are consistent with 
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previous studies as discussed by McTigue et al. (60).  The slope of the line in Figure 7 is 

2.9, and this plot includes normal base pairs, those with sugar constraints and 

unconstrained mispairs, and mispairs with sugar constraints in both internucleotide and 

3’-terminal positions. This value compares favorably with the value of 2.8 from a 

previous study on mispairs with no sugar constraint (11) and with the value of 2.95 from 

a study that examined constrained sugars but no mispairs (60), suggesting that this value 

of ΔΔSo / ΔΔHo is broadly applicable to nucleic acids.   
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Figure 7: The thermodynamics of duplex formation display enthalpy-entropy 
compensation. The slope of the line is 2.9 and the R2  value of the associated trend line is 
0.98. Experimental ΔΔH° and ΔΔS° values are provided in Table 1.  
 
 
 

Thermodynamic differences for 3’-end base pairs likely contribute to polymerase 

insertion kinetics.  Previous studies have established that sugar pucker can also influence 

nucleotide insertion by DNA polymerases.  DNA polymerases must distinguish between 
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NTP’s with different sugars, and it is known that the discrimination is between one and 

three orders of magnitude depending upon the template and polymerase, and several 

apparent Km values have been reported.  Astatke et al. (9) demonstrated that the 

mechanism for E. coli DNA polymerase discrimination between deoxy and 

dideoxynucleotides involves a direct interaction with the 3’-OH present on the deoxy, but 

not dideoxynucleotide, accounting for several orders of magnitude higher Km for the 

dideoxynucleotide.  Richardson et al. (8) demonstrated that human polymerase α and 

polymerase γ accept U2’F(ara) nucleotides with Km’s similar to dUTP.  However, both 

polymerases discriminate against ribonucleotides and 2’-deoxy-2’-fluororibonucleotides 

with Km’s that are increased between one and two orders of magnitude, although all of 

these nucleotides contain the necessary 3’-OH. 

Previously, Goodman and coworkers (11) explained how polymerases could 

discriminate against mispairs by amplifying free energy differences (ΔΔGo) between 

correct and incorrect base pairs.  Free energy differences are determined by the relative 

magnitude of the enthalpy and entropy contributions (ΔΔGo = ΔΔHo - TΔΔSo).  If ΔΔHo 

and ΔΔSo are proportional, large values of ΔΔHo might be cancelled by large values of 

ΔΔSo, giving small values of ΔΔGo.  On the other hand, if the polymerase active site 

accepts only nucleotides with sugar conformations that approximate the correct 

conformations, ΔΔGo would approach ΔΔHo providing sufficient energy for the observed 

discrimination.  One of the surprising findings of this study is that, despite modest 

differences in Tm, (ΔTm = -0.2 oC), the measured difference in free energy change 

between A:dU and A:U2'F(ribo)  (ΔΔGo = 0.5 kcal/mol) is as large as the corresponding 

difference in free energy change between a correct A:dU base pair and a G:dU mispair 
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(ΔΔGo = 0.5 kcal/mol) although the mispair has a substantially larger impact on the 

observed Tm (ΔTm = -1.3 oC).  These results are consistent with a thermodynamic 

contribution to sugar fidelity for polymerase insertion. 

Thermodynamic differences resulting from mispair formation and sugar 

constraint appear to be additive in all cases suggesting that sugar conformation and 

mispair geometry are independent and not interacting.  Our initial expectation was that 

constraining the sugar pucker to 2’-endo (U2'F(ara)) would stabilize a correct base pair, but 

destabilize an incorrect base pair whereas the 3’-endo sugar (U2'F(ribo)) would destabilize 

the correct base pair and stabilize the mispair.  Our experimental results are inconsistent 

with this expectation.  When examining the impact of mispair formation and sugar pucker 

on ΔΔGo, the contributions of each appear to be additive for both 3’-terminal and 

internucleotide positions.  Neither constrained pucker appears to selectively stabilize or 

destabilize either the correct base pair or the mispair, in accord with observations of Tm 

discussed above.  The contributions of mispair formation and constrained sugar pucker 

also appear to be additive for ΔΔHo and ΔΔSo in all cases presented here, as indicated in 

Figure 8.  For example, for the internucleotide A:dU base pair, conversion to a G:dU 

mispair is associated with a ΔΔHo of 6.1 kcal/mol.  The energy penalty associated with 

constraining the sugar conformation of the mispairs by comparing G:dU and G:U2'F(ara)  is 

associated with a ΔΔHo of 5.3 kcal/mol.  The combined effect of mispair formation and 

constraining the sugar with the U2'F(ara)  analog would be expected to be 11.4 kcal/mol if 

they were additive and not interacting, which is the observed value obtained when 

comparing the thermodynamic properties of the A:dU and G:U2'F(ara)  duplexes.   
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Figure 8. Comparison of differences in free energy (ΔΔG°37), enthalpy (ΔΔH°) and 
entropy (ΔΔS°) between substituted duplexes and the standard A:dU containing duplex. 
Numbers adjacent to arrows represent corresponding differences between duplexes. 
Values of ΔΔG°37, ΔΔH° and ΔΔS° for each duplex are presented in Table 1. 

 

 

The observation that the influences of mispair geometry and sugar constraint are 

simply additive strengthens the proposal that aberrant base pair geometry and constrained 

sugar pucker are not linked.  Therefore, it is unlikely that the altered base pairing 

geometry of a mispair induces a shift in equilibrium for the 3'-residue, placing the 3'-OH 

in a position inconsistent with insertion of the next nucleotide. The data presented thus 
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far suggests that polymerases are unlikely to exploit induced changes in sugar 

conformation to increase replication fidelity. 

Net thermodynamic differences between 3’-end modified duplexes and internally 

modified duplexes might explain why polymerase extension beyond a mispair is so 

difficult.  The magnitude of the observed ΔΔHo and ΔΔSo for the 3'-terminal G:dU 

mispairs are 3.0 kcal/mol and 7.0 cal/mol K, respectively, whereas for the internucleotide 

mispair, the values increase to 6.1 kcal/mol and 13.8 cal/mol K, respectively.  

Interestingly, the enthalpic and entropic destabilization approximately doubles when 

moving from a 3’-terminal mispair to an internucleotide mispair, and this observation 

likely has important implications for understanding why polymerases have substantial 

difficulty in extending beyond mispairs.  

Previously, Goodman and coworkers (11) argued that polymerases can exploit 

differences in ΔGo, ΔHo and ΔSo between correct and incorrect base pairs for nucleotide 

insertion, and the altered base pairing and stacking energy associated with mispair 

formation increases proportionately the apparent Km for insertion of the incorrect 

nucleotide. A comparatively larger Km for insertion of a modified nucleotide is associated 

with a higher tendency for a candidate nucleotide to dissociate from the enzyme-primer-

template complex. 

Extension past a mispair, however, involves inserting a correct nucleotide, yet the 

Km is also substantially higher than when extending past a correct pair.  When comparing 

the energetic penalty of mispair formation for the sequences examined here, it is apparent 

that an internucleotide mispair induces destabilization on both the 5’-side and on the 3’-

side of the mispair.  At the misinsertion step, an incorrect base pair does not stack as well 
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on the 5’-primer-template complex and is more likely to dissociate, resulting in an 

increased apparent Km.  At the extension step, an incoming correct nucleotide would 

stack - but only poorly - on the mispair.  Thus, the destabilizing impact of the mispair is 

transmitted in the 3’-direction as well, perhaps explaining a significant component of 

polymerase extension fidelity. 

Net thermodynamic differences between 3’-end base pairs and internal base pairs 

might be related to ligase efficiency.  When comparing thermodynamic parameters for 

base pairs located at the 3’-terminal position with those obtained for the same base pair 

located in an internucleotide position, some trends are apparent that could be important 

for understanding the activities of enzymes that act upon nucleic acids including 

polymerases and ligases.  The thermodynamic results presented here establish that the 

U2'F(ribo) substitution is more destabilizing, with larger magnitude ΔHo and ΔSo when on 

the 3’-end, relative to the internucleotide linkage.  In contrast, U2'F(ara)  is substantially 

less destabilizing than U2'F(ribo)  on the 3’-end.  However, when comparing the impact of 

U2'F(ara)  substitution on the 3’-end to the internucleotide position, U2'F(ara)  is more 

destabilizing in the internucleotide position than on the 3’-end.  The conversion of the 3’-

end modification to the internucleotide linkage could be accomplished by members of the 

DNA ligase family.  Conversion of the 3’-end U2'F(ara)  to an internucleotide linkage 

would increase the destabilizing impact of the substitution, however, conversion of the 

3’-end U2'F(ribo)  to an internucleotide linkage would substantially reduce the destabilizing 

impact of the substitution.  We therefore predicted that the rate of ligation of the analog 

substrates examined here would be A:U2'F(ribo)  > A:dU > A:U2'F(ara) . 
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Relative efficiency of DNA ligases is consistent with net thermodynamic 

differences on synthetic templates.  Data obtained with E. coli DNA ligase and human 

DNA ligase III, as shown in Figure 9, is consistent with the above prediction, in that the 

order of ligase efficiency is U2'F(ribo)  > dU > U2'F(ara). As seen in the panel for the U2'F(ara)  

data, initial interaction of the ligase with the 5’-phosphate of the linker transfers an 

adenosine monophosphate group (App-5'-DNA).  The same intermediate forms with both 

the U2'F(ribo)  and dU substrates; however, with the U2'F(ara)  substrate, the intermediate is 

less efficiently converted to the internucleotide linkage.  Sugar pucker does impact ligase 

efficiency, however, the relative impact of the U2'F(ara)  and U2'F(ribo)  substitutions is 

opposite expectation based upon Tm’s, but likely explained by the thermodynamic 

differences described here.  We note that previously, Mikita and Beardsley (35) observed 

that an oligonucleotide containing araC is ligated by T4 ligase three times more slowly 

than one with dC, although both oligonucleotides had similar Tm’s.  It was suggested that 

the presence of the 2’-OH in the arabino configuration could directly interfere with the 

ligase.  In the studies reported here, the A:U2'F(ara)  containing oligonucleotide is ligated 

by human DNA ligase III approximately four times slower than the A:dU 

oligonucleotide. Likewise, the rate of ligation of the A:U2'F(ara)  oligonucleotide by E. coli 

DNA ligase is approximately seven times slower than the A:dU oligonucleotide. Here, 

the difference in ligation rates is attributed to net thermodynamic differences between a 

3’-end A:U2'F(ara)  and the corresponding base pair in an internucleotide linkage. 
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Figure 9.  Ligase activities on 3’-terminal dU (●), U2’F(ara) (○), U2’F(ribo) (▼) residues 
paired with adenine.  A) The experiments were performed at 26.5ºC with 50 nM substrate 
and 50 nM human DNA ligase III in a total volume of 10 µl. AppDNA indicates the 5’-
AMP intermediate product of the ligation reaction. B) The experiments were performed 
at 16ºC with 50 nM substrate and 500 nM E. coli DNA ligase in a total volume of 10 µl.  
 
 
 

Although U2'F(ara)  is less disruptive thermodynamically when placed at a duplex 

3’-end, it is more disruptive thermodynamically when in an internucleotide linkage, 

perhaps accounting for decreased ligase efficiency. 

In the ligase studies reported here, it was assumed that the primary effect of the 

2'F substitution was to constrain the sugar pucker equilibrium. It is important to note, 

however, that the larger fluorine substituent could induce additional steric effects as well 
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as electronic effects upon the nucleophilicity of the 3' OH, and these effects might be 

different for each isomer. 

Net thermodynamic differences between 3’-end base pairs and internal base pairs 

might be related to polymerase extension efficiency. Multiple studies have been published 

on the impact of nucleotide analogs on polymerase incorporation and extension (7,8,34-

41).  The various studies examining different sets of analogs and polymerases make it 

difficult to draw specific conclusions.  However, one of the consistent findings, and as 

yet unexplained paradoxes, with these nucleotide analogs is that some DNA polymerases 

strongly discriminate against ribonucleotides and 2’-deoxy-2’-fluororibo analogs at the 

insertion step, but incorporate arabino and 2’-deoxy-2’-fluoroarabino analogs with 

kinetics similar to normal dent's.  Yet, once incorporated, the arabino and 2’-deoxy-2’-

fluoroarabino analogs prevent further elongation and act as chain terminators.  In 

contrast, some DNA polymerases discriminate against ribonucleotides at insertion, yet 

efficiently extend 3’-ribonucleotides.  Indeed, DNA polymerase α preferentially adds 

dNTPs to ribonucleotide primers as part of the polymerase α/primase complex.  Chain 

termination underlies the mechanism of toxicity for arabino analogs, yet the mechanism 

for the difference in polymerase preference between insertion and extension is as yet 

unknown. 

Above, we discussed surprising results with DNA ligase which revealed that the 

U2'F(ara)  analog was more thermodynamically destabilizing when in an internucleotide 

linkage as opposed to the 3’-end, and the net thermodynamic disadvantage with 

incorporating the 3’-OH of U2'F(ara)  into an internucleotide linkage could provide an 

energetic barrier for polymerase extension.  However, insufficient data currently exists to 
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resolve this issue.  Further studies are currently in progress to understand the role of sugar 

constraint on thermodynamic properties, and the results of these studies might provide 

mechanistic insights into the mechanism of action of an important class of antitumor and 

antiviral compounds. 
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Abstract 

 The accurate replication of DNA is critical for genomic integrity. During the 

insertion step, a DNA polymerase must select a nucleotide that is complimentary to the 

template base, has the correct deoxyribose sugar, and is able to bind to the primer-

template complex with sufficient stability. While substantial work has revealed the 

structural and energetic factors that contribute to base-pairing fidelity, the role of sugar 

structure and conformation has received less attention. Sugar discrimination is especially 

challenging as DNA polymerases must accurately distinguish between 

deoxyribonucleoside 5'-triphosphates (dNTPs) and ribonucleoside 5'-triphosphates 

(rNTPs) even though rNTPs exist at higher intracellular concentrations. Apart from 

endogenously occurring NTPs, C2' (sugar) modified nucleoside analogues have been 

synthesized and shown to have potent toxicity. Although the underlying mechanism of 

cytotoxicity is incompletely understood, these therapeutic nucleoside analogues are used 

as primary agents for the treatment of human maladies including viral infections and 

tumors and their cytotoxicity depends on their ability to be phosphorylated and 

subsequently incorporated into DNA. Using stead-state kinetics, we investigated the 

ability of three different polymerases, human DNA polymerase β (pol β), avian 

myeloblastosis viral reverse transcriptase (AMVRT), and Escherichia coli Klenow 

fragment (exo-), to utilize sugar-modified NTP (modNTP) analogues. We found that pol 

β, AMVRT, and Klenow (exo-) readily incorporated arabinonucleotides (araNTPs) but 

incorporated rNTPs 2 – 5 orders of magnitude less efficiently than natural dNTPs. This 

observation led us to investigate the thermodynamic penalty associated with 

incorporating modNTPs onto the 3'-end of DNA. Interestingly, modNTP misinsertion 
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frequency increased proportionally with increasing melting temperatures (Tm) of 3'-end 

modified duplexes indicating that increased duplex thermal stability, as well as sugar 

conformation, contributed incorporation efficiency. These studies represent the first 

attempt to reconcile the thermodynamic consequence of misincorporating sugar-modified 

nucleoside analogues onto the 3'-end of a DNA strand and polymerase incorporation 

kinetics.    

 

Abbreviations 

dU, 2’-deoxyuridine; 5IdU, 5-iodo-2’-deoxyuridine; araU, 1-β-D-

arabinofuranosyluracil; rU, Uridine; U2’F(ribo), 2’-deoxy-2’-fluorouridine; U2’F(ara), 1-(2’-

deoxy-2’-fluoro-β-D-arabinofuranosyl) uracil; FIAU, 5-iodo-(2'-deoxy-2'-fluoro-β-D-

arabinofuranosyl) uracil; dFdC, 2’-deoxy-2’,2’-difluorocytidine (Gemcitabine); dFdU, 

2’-deoxy-2’,2’-difluorouridine (Gemcitabine metabolite); FIAU-P, 5’-O-dimethoxytrityl-

5-iodo-2’-deoxy-2’-fluoroarabinosyluracil, 3’-O-[(2-cyanoethyl)(N,N,-diisopropyl)]-

phosphoramidite; dFdU-P, 5’-O-dimethoxytrityl-2’-deoxy-2’,2’-difluorouridine, 3’-O-

[(2-cyanoethyl)(N,N-diisopropyl)]-phosphoramidite.  
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Introduction 

Fidelity of DNA synthesis is necessary to maintain genomic integrity, and errors 

made during replication and repair can lead to mutations and stalled replication forks [1]. 

Nucleotide insertion, exonucleolytic proofreading, and primer terminus extension are 

three distinct steps that contribute to overall replication fidelity [2]. During the insertion 

step a DNA polymerase selects a deoxyribonucleoside 5'-triphosphate (dNTP), whereas a 

RNA polymerase selects a ribonucleoside 5'-triphosphate (rNTP), that is complimentary 

to the template base and is able to bind to the primer-template complex with sufficient 

stability [3a]. During the extension step a correctly positioned terminal 3'-hydroxyl (3'-

OH) is required to attack the α-phosphate (αP) of an incoming nucleoside triphosphate 

(NTP). While substantial work has revealed the structural and energetic factors that 

contribute to base-pairing fidelity [4 – 7], substantially less work has investigated the 

impact of nucleotide sugar structure and conformation on polymerase incorporation and 

extension.  

Depending on the rNTP/dNTP pair, the cell-cycle phase, and organism, rNTPs 

have been shown to exist at intracellular concentrations that are 10 – 2000-fold greater 

than dNTP concentrations [8 – 10]. Remarkably, DNA polymerases efficiently 

distinguish dNTPs from rNTPs during the incorporation step despite this nucleotide pool 

imbalance. Depending on the DNA polymerase family, template sequence, and 

rNTP/dNTP pair, incorporation efficiency for dNMPs into DNA exceeds rNMP insertion 

efficiency by 102 – 106-fold [11, 12]. Though the basis for sugar discrimination is 

incompletely understood, the results of several structural and mutation studies has led to 

the proposed steric exclusion model in which the bulky side-chain [13 – 19] of amino 
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acid residues in the polymerase active site sterically clash with the C2'-OH of a rNTP.  

However, rNTP misincorporation is unavoidable. It has recently been demonstrated that 

DNA polymerases α (pol α), ε (pol ε), and δ (pol δ) from Saccharomyces cerevisiae 

misincorporate greater than 10000 rNMPs per round of nuclear genomic replication [10, 

20] suggesting that ribonucleosides may be the most common contaminant in prokaryotic 

and eukaryotic genomic DNA. Misincorporation of a rNTP into DNA could target the 

resulting duplex for aberrant cleavage by enzyme activities including toposiomerase type 

I (Topo I), ribonuclease H type II (RNase H II), and flap endonuclease I (FEN I) [21, 22]. 

Together, these studies highlight the necessity and biological importance of the sugar 

selectivity mechanisms employed by DNA polymerases. 

Apart from endogenously occurring NTPs, several nucleoside analogues, bearing 

C2' (sugar) and/or C5 (base) modifications, have been synthesized and shown to have 

significant toxicity [23 – 29]. Although the mechanism of action of these agents is 

incompletely understood, they are primary agents for the treatment of several human 

maladies including viral infections and tumors. This class of clinically significant 

nucleosides includes the thymidine analogues 5-iodo-2’-deoxyuridine (5IdU) and 5-iodo-

(2'-deoxy-2'-fluoro-β-D-arabinosyl) uracil (Fialuridine, FIAU) (Figure 10) as well as the 

2'-deoxycytidine analogues 2’-deoxy-2’,2’-difluorocytidine (Gemcitabine, dFdC) and 1-

β-D-arabinofuranosylcytosine (Cytarabine, araC). 5IdU is a C5-iodo-substituted analogue 

that has successfully been used in the treatment of vaccinia virus [30 – 32], herpes 

simplex virus type 1 [33] and herpes simplex keratitis [34]. FIAU, which bears both C5-

iodo and C2’-fluoro substitutions, was used in the treatment of hepatitis B virus infection 

in NIH clinical trials where unexpected hepatotoxicity, progressive lactic acidosis and 
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pancreatitis resulted in the deaths of five patients [35]. Gemcitabine, in combination with 

platinum-containing drugs, is successfully used in the treatment of metastatic breast 

cancer [36], bladder cancer [37], and pancreatic adenocarcinoma [38]. Cytarabine, in 

combination with daunorubicin, is commonly used as a chemotherapeutic for treatment of 

acute myeloid leukemia (AML) and lymphomas [39] and has demonstrated activity 

against both herpes simplex and herpes zoster viruses [40, 41].  

The mechanism of action of each nucleoside analogue is varied but ultimately 

involves inhibition of DNA synthesis following incorporation by a DNA polymerase. In 

general, the nucleoside analogues are transported across the cell membrane through the 

human nucleoside transporters (hNTs), including equilibrative (hENTs) and 

concentrative (hCNTs) nucleoside transporters and activated following intracellular 

phosphorylation to their respective monophosphate (MP), diphosphate (DP) and 

triphosphate (TP) forms which have multiple cellular targets [42 – 44]. For example, 

ribonucleotide reductase (RNR) is potently inhibited by dFdCDP ultimately leading to 

decreased dCTP pools [45] and dFdCTP has been implicated in the inhibition of both 

deoxycytidine monophosphate (dCMP) deaminase and CTP synthetase [46, 47]. In the 

triphosphate form, nucleoside analogues are incorporated into DNA and in the case of 

dFdC, araC and FIAU, act as chain terminators.             

In addition to phosphorlyation, FIAU is further metabolized to 1-(2-deoxy-2-

fluoro-β-D-arabinofuranosyl)uracil (U2'F(ara)) (Figure 10). 
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Figure 10: Chemical structures of an important class of antiviral and anticancer 
nucleoside analogues used in this study. The nucleoside analogues were either converted 
to 5’-triphosphates that were used in nucleotide incorporation experiments or converted 
to phosphoramidites which were then incorporated onto the 3’-end (primer terminus) of 
oligonucleotides which were used in primer extension experiments.   
 
 

 

Interestingly, studies have shown that incubation of human hepatoma HepG2 cell 

lines with U2'F(ara) resulted in decreased mitochondrial DNA content [48a] suggesting that 

U2'F(ara) may contribute to the cytotoxic profile of FIAU. In addition, dFdC and araC are 

rapidly deaminated to the corresponding 2'-deoxy-2',2'-difluorouridine (dFdU) and 1-β-

D-arabinofuranosyluracil (araU) metabolites (Figure 10), respectively, by the 

ubiquitously expressed enzyme cytidine deaminase [49, 50]. Studies have demonstrated 

that araU and dFdU exhibit especially long terminal half-lifes (14 – 89 h) relative to their 

cytidine cognates (8 – 16 min) [51 – 53]. Significantly, clinical studies have shown that 

dFdU nucleotides are formed and accumulate in the liver of mice and humans after 

multiple dosings of dFdC [51]. Moreover, Veltkamp and co-workers [54] demonstrated 

that dFdUTP was incorporated into the DNA and RNA of HepG2, A549 and hCNT1-
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transfected MDCK cell lines and that the incorporation of dFdUTP correlated with dFdU 

cytotoxicity suggesting that liver accumulation of dFdU and subsequent misincorporation 

of dFdUTP might be associated with observed liver toxicity in patients following 

continuous oral and/or intravenous administration of dFdC.  Plunkett and co-workers first 

demonstrated that araU accumulates in the cerebrospinal fluid of patients following 

intermittent infusion of high-dose araC [55] leading to the suggested role for araU 

accumulation in araC-associated neurotoxicity [50]. In all, these studies highlight the 

biological importance of these sugar modified nucleoside analogues and the contribution 

of their metabolites to observed cytotoxicity. 

The underlying mechanism of cytotoxicity for the nucleoside analogues 

investigated in this report is believed to be chain termination following incorporation. 

Several in vitro incorporation and extension studies have demonstrated that pol α, pol ε, 

and pol δ exhibit greater than 103-fold reduction in catalytic efficiency when extending  

araC-, dFdC- and FIAU-terminated primers consistent with the chain termination model. 

However, araC and dFdC are often found in internucleotide linkages when studied in cell 

culture [56, 57] suggesting that additional polymerases may play a role in the 

incorporation of these nucleotide analogues into DNA. Indeed, Chou and co-workers 

have demonstrated that translesion DNA pol η efficiently extends araCMP- and 

dFdCMP-terminated primers [58]. Moreover, pol η-deficient fibroblast cells exhibited 

increased sensitivity to araC or dFdC treatment relative to normal human fibroblasts 

suggesting that the increased sensitivity was due to the inability of pol η-deficient 

fibroblasts to continue replication following polymerase pausing at araC and dFdC-

terminated primers. In addition, DNA repair polymerases may participate in the 
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incorporation of nucleotide analogues into genomic DNA. Significantly, Plunkett and co-

workers demonstrated that DNA repair synthesis was the  primary route of incorporation 

of araC into the DNA of proliferating human leukemia cells [59]. When one takes into 

account the increased oxidative stress of the tumor [60] and that several tumor types 

exhibit increased expression of pol β [61], it is likely that pol β activity contributes to the 

cytotoxicity of these nucleoside analogues.  

For this report we evaluated the ability of pol β, Klenow (exo-), and AMVRT  to 

incorporate several modNTP analogues modified at either C2' (sugar) or C5 (nucleobase) 

onto the 3'-end of a DNA strand. We also constructed oligonucleotides with each of the 

modified nucleoside analogues (Figure 10) at the 3’-end position (Figure 11B). These 3'-

end modified oligonucleotide duplexes  were then used in thermal denaturation studies to 

probe the energetic penalty for misincorporation of the modified NTPs (modNTPs) on to 

the primer terminus of a DNA strand.  
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A.

5'-32P-CTTTGCCCGAA
TAGGAAACGGGCTTACAATAA

Primer

Template

XTP

Polymerase: Incorporation

11/21A

B.

5'-CTTTGCCCGAAX
TAGGAAACGGGCTTACAATAA

Primer

Template

Thermodynamics: 3'-Terminal

x = dU, araU, rU, 5IdU, dFdU, U2'F(ara), U2'F(ribo), FIAU  

 
Figure 11:  DNA substrates used in the present study for polymerase insertion kinetics 
and thermodynamic studies. For polymerase kinetics studies, a 32P-labeled primer (11-
mer) was annealed to a 21-mer template. The steady-state kinetic parameters for (A) the 
incorporation of modNTPs were measured and are presented in Table 2. For the 
thermodynamic studies, synthetic duplexes with sugar-modified residues at (B) the 
primer terminus (3’-terminal) were used.        
 
 

 

Materials and Methods 

Solvents and Reagents 

 All solvents were purchased from Sigma-Aldrich (St. Louis, MO). Thin layer 

chromatography (TLC) was performed on precoated silica gel 60 F254, 5x20 cm, 250 µm 

thick plates purchased from EMD (Gibbstown, NJ). Universal support III PS and all 

normal (unmodified) phosphoramidites (dC, dG, dA, dT) were purchased from Glen 

Research (Sterling, VA).    
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Nucleotides and Nucleosides 

The triphosphates dUTP, 5IdUTP, araUTP, and U2’F(ribo)TP were purchased from 

Trilink Biotechnologies (San Diego, CA), U2’F(ara)TP and FIAUTP were purchased from 

Moravek Biochemicals (Brea, CA), and rUTP was purchased from Promega (Madison, 

WI).  The nucleoside dFdC (Gemcitabine) was purchased from Carbosynth Ltd. (Old 

Station Business Park, Compton Berkshire, UK) and FIAU was purchased from R.I. 

Chemical, Inc. (Orange, CA). 

 

Synthesis and Purification of 2’-deoxy-2’,2’-difluorouridine (dFdU) 

Commercially available 2’-deoxy-2’,2’-difluorocytidine (dFdC, Gemcitabine) 

was deaminated to the corresponding dFdU nucleoside analogue following [62, 63]. First, 

100 mg of dFdC (0.38 mmol)  and 700 mg of sodium nitrite (NaNO2; 10.1 mmol)  were 

combined in 20 mL of H2O. The initial reaction mixture, pH of 7.2, was adjusted to a pH 

of 3.4 by the addition of hydrochloric acid (HCl). The reaction mixture temperature was 

adjusted to 57 °C and the reaction proceeded, with magnetic stirring, for 5 hr.  The pH of 

the reaction mixture was monitored hourly and readjusted to a pH of 3.4 when necessary. 

Conversion of dFdC to dFdU was monitored by thin-layer chromatography (TLC) 

developed in a solvent system of dichloromethane (DCM) and methanol (MeOH) (90:10) 

at room temperature.  The conversion of dFdC to dFdU was determined to be complete 

when the spot of RF 0.11 (dFdC) was no longer visible and only the spot of RF 0.39 

(dFdU) was observed. The solvent (H2O) was then removed under reduced pressure and 

the resulting white precipitate (ppt) was dissolved in MeOH. The methanolic solution 

was spiked with DCM and cooled, in an ice water bath, to 0 °C to precipitate out sodium 

salts (NaCl and unreacted NaNO2). The sodium salts were then removed by vacuum 
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filtration, the filtrate (containing dFdU) was collected and the solvents were removed 

under reduced pressure. The resulting ppt was dissolved in DCM and purified by open 

silica gel column eluting the following gradient: 1) 0 – 10% MeOH in DCM for 10 min.; 

2) 10 – 10% MeOH in DCM for 10 min.; 3) 10 – 20% MeOH in DCM for 10min for total 

run time of 30 min. Fractions containing dFdU, as determined by TLC, were combined 

and the solvents were removed under reduced pressure to afford 88.3 mg of dFdU (88 

mmol), as a white foam, in 88% yield. The dFdU nucleoside analogue was characterized 

by electrospray ionization mass spectrometry (ESI-MS) in negative ion mode. The 

observed fragment ions were m/z = 111.27 (C4H3N2O2, uracil base); m/z = 220.19 

(C8H8F2NO4, loss of CHNO from dFdU nucleoside); m/z = 263.13 (C9H9F2N2O5, dFdU 

nucleoside); m/z = 527.18 (C18H19F4N4O10, dFdU nucleoside dimer). 

 

Synthesis of 2’-deoxy-2’,2’-difluorouridine triphosphate (dFdUTP) 

The 5’-triphosphate analogue of dFdU is not available and was synthesized using 

established procedures. Following Yoshikawa’s monophosphorylation method [64], 10 

mg of dFdU (37.9 μmol)  was stirred in 97.4 μL of trimethylphosphate (P(OCH3)3OH; 

116.6 mg, 833 μmol, 22 molar equiv. of nucleoside)  at 0 °C. To this was added 14 μL of 

phosphorous (IV) oxychloride (POCl3; 23 mg, 151 μmol, 4 molar equiv. of nucleoside) to 

generate the 5’-phosphodichloridate derivative of dFdU (dFdU-POCl2, activated dFdU 

monophosphate). The reaction mixture was allowed to warm to room temperature during 

stirring. At 5 minute intervals 1-μL aliquots of the reaction mixture were treated with 19 

μL of aqueous triethylammonium bicarbonate buffer (TEAb, pH 7.5) and assayed by 

anion exchange HPLC using a Mono Q HR 5/5 anion-exchange column eluting 0 – 2M 

ammonium acetate (NH4OAc, pH 7). After maximum formation of dFdU-POCl2 was 
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observed (40 – 50%), the reaction mixture was added drop-wise to a 0.5 M solution of 

100 mg of tributylammonium pyrophosphate (TBA-PPi; 220 μmol)  dissolved in 400 μL 

of dimethylformamide (DMF) and 40 μL of tributylamine (TBA) at -10 °C with stirring, 

according to the “one-pot, three-step” procedure [65, 66], to generate the corresponding 

5’-triphosphate derivative (dFdUTP). The reaction mixture was then allowed to warm to 

room temperature and the reaction was checked for triphosphate formation by 

neutralizing 1-μL aliquots of the reaction mixture with 19 μL of TEAb (pH 7.5) which 

were then assayed by anion exchange HPLC using a Mono Q HR 5/5 anion-exchange 

column eluting a gradient of 0 – 2M ammonium acetate (NH4OAc, pH 7). When 

formation of dFdUTP was maximal (10 – 20%), the reaction was quenched with excess 

cold aqueous TEAb (pH 7.5).  The product was purified by open column chromatography 

on Sephadex DEAE A-25 eluting a gradient of 0 – 2M TEAb (pH 7.5). Fractions were 

collected and assayed for pyrophosphate content. 

 

Assaying Triphosphate Fractions for Inorganic Pyrophosphate (PPi) 
Content 

Typically the nucleoside phosphodichloridate intermediate (dN-POCl2) is added 

to excess TBA-PPi to afford maximal conversion of dN-POCl2 to dNTP [65 – 67]. 

However, it is known that polymerase activity is greatly reduced in the presence of 

excess PPi [68 – 72]. Thus, fractions obtained following the purification of the dFdUTP 

reaction by open column chromatography were assayed for PPi content using a 

molybdenum phosphate based reagent (MoPho-R) as previously described [73]. MoPho-

R was prepared, fresh daily, by combining 1 volume (vol.) of 6N H2SO4, 1 vol. of a 2.5% 

aqueous solution of molybdenum phosphate (MoPho), 1 vol. of a 0.57 M aqueous 
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solution of ascorbic acid and 2 vol. of H2O. The individual components of MoPho-R 

were prepared as follows: 6N H2SO4 was prepared by adding 18 mL of concentrated 

(conc.) H2SO4 to 108 mL of H2O and stored at room temperature (rt). Aqueous 2.5% 

MoPho was prepared by dissolving 5 g of ammonium molybdate tetrahydrate 

((NH4)6Mo7O24●4H2O) in 200 mL of H2O and stored at rt. Aqueous ascorbic acid (0.57 

M) was prepared by dissolving 10 g of L-ascorbic acid in 100 mL of H2O and stored at 4 

°C.  

Following open column purification of the dFdUTP reaction, 10-μL aliquots of 

each collected fraction were diluted into 990 μL of MoPho-R. The MoPho reaction 

mixtures were then vortexed and incubated at 37 °C for 1 h. Over time, the MoPho 

reaction mixtures became blue colored as a consequence of phosphomolybdate reduction 

product formation and the intensity of color development was proportional to 

phosphorous content as previously observed [73]. The UV absorption profile of each 

MoPho color reaction was monitored at 800 nm. Fractions containing appropriately pure 

dFdUTP (97 – 99%  triphosphate and 1 – 3% diphosphate by HPLC) and acceptable PPi 

content were combined, lyophilized to dryness, relyophilized thoroughly from H2O and 

MeOH (1:1, v/v) 5 times to remove excess buffer to afford dFdUTP in 25% yield which 

was then characterized by ESI-MS (negative-ion mode), HPLC and UV-vis spectral 

analyses (Figure 12).       
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Figure 12: The HPLC, UV-vis and mass spectral analyses of dFdUTP. Panel A: HPLC 
chromatogram. Panel B: UV spectrum of the HPLC peak in Panel A. Panel C: The 
structure of dFdUTP and the proposed structures of its fragmentation products detected 
by mass spectrometry. The theoretical masses for each structure are in parentheses. Panel 
D: Mass spectrum obtained following direct inject onto a Thermo Finnigan Surveyor 
MSQ mass spectrometer using electrospray ionization (negative-ion mode). 
 
 
 

Synthesis of FIAU and dFdU Phosphoramidites (FIAU-P and dFdU-P) 

The phosphoramidite analogues of 5-iodo-(2'-deoxy-2'-fluoro-β-D-

arabinofuranosyl) uracil (FIAU) and 2’-deoxy-2’,2’-difluorouridine (dFdU) are not 

commercially available and were synthesized using established methods [74 – 76]. First, 

250 mg of FIAU (0.67 mmol)  was co-evaporated with anhydrous (anhyd.) pyridine (3 X 

10 mL) and the resulting oily residue was re-dissolved in 10 mL anhyd. pyridine. To this 

was added 4.10 mg of 4-dimethylaminopyridine (DMAP; 0.034 mmol, 0.05 molar equiv. 

of nucleoside), 131 μL of TEA (0.94 mmol, 1.4 molar equiv. of nucleoside)  and 276.4 

mg of 4,4’-dimethoxytrityl chloride (DMT-Cl; 0.82 mmol, 1.2 molar equiv. of 

nucleoside).  The reaction proceeded under an argon (Ar) atmosphere with magnetic 

stirring for 7 h.  The conversion of FIAU to the corresponding 5’-dimethoxytrityl 
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protected derivative (5’-dimethoxytrityl-5-iodo-2’-deoxy-2’-fluoroarabinosyluracil, 

FIAU-DMT) was monitored by TLC developed in a solvent system of DCM and MeOH 

(95:5, v/v). The formation of FIAU-DMT was determined to be complete when the spot 

of RF 0.11 (FIAU) was no longer visible and the spot of RF 0.39 (FIAU-DMT) was 

observed.  Upon completion of the reaction, pyridine was removed under reduced 

pressure and the resulting oily residue was dissolved in DCM and extracted with 

saturated aqueous sodium bicarbonate (NaHCO3, pH 8). The organic layer was removed, 

washed with H2O and dried over anhyd. sodium sulfate (Na2SO4). Evaporation of the 

solvent gave an oily residue that was then dissolved in DCM and purified by open silica 

gel column eluting a gradient of 0 – 3% MeOH in DCM for 50 min. Fractions containing 

FIAU-DMT, as determined by TLC, were combined and the solvents were removed 

under reduced pressure to afford 245 mg (0.36 mmol) of FIAU-DMT, as a white (slightly 

yellow) foam, in 53% yield. FIAU-DMT was characterized by ESI-MS in negative ion 

mode. The observed fragment ions were m/z = 673.18 (C30H27FIN2O7, FIAU-DMT); m/z 

= 303.07 (C21H19O2, free DMT protecting group). 

The FIAU phosphoramidite (5’-dimethoxytrityl-5-iodo-2’-deoxy-2’-

fluoroarabinosyluracil, 3’-[(2-cyanoethyl)(N,N,-diisopropyl)]-phosphoramidite, FIAU-P) 

was prepared by combining 220 mg of FIAU-DMT (0.33 mmol)  and 29.5 mg of 

diisopropylamine hydrotetrazolide (0.17 mmol, 0.5 molar equiv. of FIAU-DMT)  in 5 mL 

of anhyd. acetonitrile (MeCN) under an Ar atmosphere. To this mixture was added 

116.27 μL of 2-cyanoethyl-N,N,N’,N’-tetraisopropylphosphoramidite (109 mg, 0.36 

mmol, 1.1 molar equiv. of FIAU-DMT), dropwise, with continuous stirring for 3 h. The 

conversion of FIAU-DMT to FIAU-P was monitored by TLC developed in a solvent 
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system of DCM, ethyl acetate (EtOAc) and TEA (55:40:5, v/v). The conversion of FIAU-

DMT to FIAU-P was determined to be complete when the spot of RF 0.64 (FIAU-DMT) 

was no longer visible and the spot of RF 0.89 (FIAU-P) was observed.  Upon completion 

of the reaction, 2 mL of TEA was added to the reaction mixture which was then extracted 

with an aqueous solution of NaCl (3 X 10 mL). The organic (top) layer was recovered, 

dried over anhyd. Na2SO4 and evaporated in vacuo. The resulting colorless residue was 

dissolved in a solution of Hexanes, EtOAc and TEA (89:10:1, v/v) and purified by open 

silica gel column eluting a gradient of 10 – 100% solvent A (EtOAc, TEA; 99:1, v/v) in 

solvent B (Hexanes, TEA; 99:1, v/v) for 1 hr. Fractions containing FIAU-P, as 

determined by TLC, were combined and evaporated in vacuo to give 148.6 mg (0.17 

mmol) of FIAU-P as a white (slightly yellow) foam, in 51% yield. The FIAU-P was 

characterized by ESI-MS (Figure 13).  

Both the 5’-tritylated (dFdU-DMT) and phosphoramidite (5’-O-dimethoxytrityl-

2’-deoxy-2’,2’-difluorouridine, 3’-O-[(2-cyanoethyl)(N,N-diisopropyl)]-

phosphoramidite, dFdU-P) analogues of dFdU were synthesized and purified exactly as 

FIAU-DMT and FIAU-P (previously described), respectively, to give dFdU-P, as a white 

foam, in 47% yield.  
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Figure 13: The FIAU phosphoramidite analogue (FIAU-P) was characterized by 
electrospray ionization mass spectrometry (ESI-MS) in negative ion mode. Fragments 
corresponding to free dimethoxytrityl (DMT) protecting group (A), loss of the DMT 
group from FIAU-P (B) and intact FIAU-P (C) were observed. Theoretical mass for 
fragment A. (C21H19O2): (m/z) = 303.15 [M-H+]; observed: 303.16. Theoretical mass for 
fragment B. (C18H26FIN4O6P): (m/z) = 571.07 [M-H+]; observed: 571.28. Theoretical 
mass for C. (C39H44FIN4O8P): (m/z) = 873.20 [M-H+]; observed: 873.31.      
 
 

 

Enzymes and DNA Preparation 

Human DNA polymerase β (pol β) was obtained from Enzymax (Lexington, KY). 

Avian myeloblastosis virus reverse transcriptase (AMV-RT) and exonuclease-deficient 

Klenow fragment (exo-) polymerase were obtained from New England Biolabs (Ipswich, 

MA). For the polymerase incorporation assays, the primers were 5′-32P-end labeled by T4 

polynucleotide kinase (New England Biolabs) with [γ-32P]adenosine triphosphate (MP 

Biomedicals, Costa Mesa, CA) under conditions recommended by the enzyme supplier. 

Labeled oligonucleotides were purified using G25 Sephadex columns (Roche Applied 

Science, Indianapolis, IN). A 2-fold excess of the complementary template strand was 
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then added to the labeled primer mixture, incubated at 95 °C for 5 min, and allowed to 

cool to room temperature gradually to create the oligo-primer duplex.  

 

Steady-State Kinetic Experiments (Polymerase Incorporation Assays) 

Polymerase β incorporation reactions were performed in pol β buffer (50 mM 

Tris-HCl, pH 7.5, 10 mM MgCl2, 2mM dithiothreitol, 20 mM NaCl, 20 mM KCl, 200 

µg/ml BSA, 1% glycerol) and increasing concentrations of dNTPs at 37°C. AMV-RT 

incorporation assays were performed in AMV-RT buffer (5 mM NaCl, 60 mM Tris-HCl, 

8 mM MgCl2, and 0.5 mM dithiothreitol, pH 7.5) and increasing concentrations of dNTPs 

at 37°C. Klenow (exo-) incorporation assays were performed in Klenow (exo-) buffer (50 

mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, and 1 mM dithiothreitol, pH 7.5) and 

increasing concentrations of dNTPs at 37°C. In general, the reactions were initiated by 

the addition of radiolabeled substrate to enzyme (pol β, AMVRT, or Klenow (exo-)) and 

dNTP. The radiolabeled DNA concentrations were 10-fold greater than polymerase 

concentrations and the dNTP concentrations ranged from 0.01 to 1000 μM. Reactions (20 

μL) were quenched at various times using equal volumes of “STOP” solution (98% 

formamide, 0.01 M EDTA, 1 mg/mL xylene cyanole, and 1 mg/mL bromophenol blue) 

followed by heating at 95 °C for 2 min. The reaction products were electrophoresed on 

denaturing polyacrylamide gels containing 20% acrylamide (19:1 

acrylamide:methylenediacrylamide) and 8 M urea. The size of the gel was 19.5 cm x 16 

cm x 0.4 cm and was run at 519 V for 2.5 – 3 h using a Hoeter PS 500 XT DC Power 

Supply (Amersheim Pharmacia Biotech). The gel was visualized and quantified using a 

Storm 860 PhosphorImager (Molecular Dynamics, Sunnyvale, CA) and ImageQuant 5.2 

software (GE Healthcare Bio-Sciences). 
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Determination of kcat and Km. 

The previously described assays were used to measure the incorporation kinetics 

(kcat and Km) for the incorporation of a sugar modified NTP (modNTP) opposite template 

dA at pH 7.5 (Figure 11A). A series of reaction mixtures containing increasing 

concentrations of modNTP were incubated for 0, 15, 30, 60, 120 or 180 sec. The amount 

of product formed by nucleotide incorporation at the template target was determined by 

calculating the ratio of the band intensity of the extended primer (DNAn+1) to the band 

intensity of the un-extended primer (DNAn). Initial velocities (Vo) were determined by 

plotting product formation versus time (Figure 14B). The values of Vo were then plotted 

versus concentration (Figure 14C) and the data were fitted by nonlinear regression, using 

Prism version 5 (GraphPad Software, San Diego, CA; www.graphpad.com), to Equation 

1,  

 

                                         ][

][])[(

dNTPK

dNTPEk
v

m

tcat
o 


                                         Eq. 1  

 

where Vo is the initial velocity, kcat is the catalytic turnover number, [E]t is the total 

enzyme concentration, [dNTP] is the concentration of nucleoside triphosphate and Km is 

the Michaelis-Menten constant. 
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Figure 14: Representative gel (A), product formation plot (B) and saturation curve plot 
(C) to illustrate how Michaelis-Menten constants were determined from denaturing gel-
based polymerase kinetics assays. The saturation curves (C) were fitted to Equation 1 to 
yield Km and kcat values for NTP incorporation. The plots are for the incorporation of 
U2'F(ribo)TP opposite template dA. 
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Thermal Denaturation Studies and Assessment of Duplex Melting 
Behavior 

Samples containing non-self-complementary oligonucleotides were prepared in 

buffer containing 0.1 M NaCl, 0.01 M sodium phosphate, and 0.1 mM EDTA (pH 7.0). 

Complexes were prepared by mixing equimolar amounts primer and template strands 

(Figure 11B) , and concentration dependent melting temperature (Tm) measurements were 

conducted with a total strand concentration (CT) between 2 and 60 μM in cuvettes with 

path lengths between 1 and 10 mm. Molar extinction coefficients of oligonucleotides 

were calculated [77] to determine single-strand concentrations. Oligonucleotide Tm's 

were determined using a Varian Cary 300 Bio UV-visible spectrophotometer (Varian, 

Walnut Creek, CA). Five temperature ramps were performed on each sample per run 

while the absorbance at 260 nm was observed: (1) from 12 to 90 °C at a rate of 0.5 

°C/min, (2) from 90 to 12 °C at a rate of 0.5 °C/min, (3) from 12 to 90 °C at a rate of 0.5 

°C/min, (4) from 90 to 12 °C at a rate of 0.5 °C/min, and (5) from 12 to 90 °C at a rate of 

0.5 °C/min. The sample was held for 3 min when the temperature reached 90 °C and for 

10min when it reached 12 °C, and then the next cycle was started. Data were collected at 

0.5 °C intervals while the temperature was monitored with a probe inserted into a cuvette 

containing only buffer. The Tm of each duplex was determined using Cary WinUV 

Thermal software (Varian). Theoretical Tm values for the control duplexes (A:dU) were 

determined [78, 79] and compared against values obtained using Cary WinUV Thermal. 

Thermodynamic parameters for non-self-complementary duplexes were calculated in two 

ways: (1) averages from fits of individual melting curves at different concentrations using 

the van’t Hoff calculation in Cary WinUV Thermal and (2) 1/Tm versus ln(CT/4) plots 

fitted to Equation 2 for the non-self-complementary sequences examined here: 
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Both methods assume a two-state model, and ΔCp = 0 for the transition 

equilibrium. The two-state approximation was assumed to be valid for sequences in 

which the ΔH° values derived from the two methods agreed within 15% [79]. The ΔH° 

values derived from the two methods agree within 15%, indicating that the two-state 

approximation is valid for all other sequences employed in this study. 

 

Analysis of Thermodynamic Data 

Thermal and thermodynamic data obtained for the ensemble of oligonucleotides 

examined here were expressed as the corresponding differences by comparing the 

measured value for the substituted duplexes with the standard A:dU containing duplex for 

the 3'-end and internucleotide series. The corresponding values of ΔTm, ΔΔGo
37, ΔΔHo 

and ΔΔSo are presented in Table 3.  

 

Results 

Characterization of Phosphoramidites by Electrospray Ionization Mass 
Spectrometry (ESI-MS) 

The phosphoramidite derivatives of FIAU and dFdU are not commercially 

available and were synthesized using established methods [74, 75]. Traditionally, 

phosphoramidites have been characterized using several techniques including 1H, 13C and 

31P NMR and IR. In general, phosphoramidites contain both 5’-O-dimethoxytrityl (acid 

labile) and 3’-O-β-cyanoethyl-N,N-diisopropyl (base labile) groups making 
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characterization by mass spectrometric techniques problematic. Indeed, even mild 

ionization methods including matrix assisted laser desorption ionization (MALDI), fast 

atom bombardment (FAB) and liquid secondary ion mass spectrometry (LSIMS) employ 

acidic media and matrices that are not compatible with the acid-labile substituents [80, 

81].  

Conventionally, ESI methods employ mixtures of aqueous organic solvents 

(MeOH or MeCN) and weak organic acid for mass spectrometric analysis in positive ion 

mode.  However, in the present study, a method using ESI-MS was used with MeCN and 

H2O (1:1, v/v) to characterize phosphoramidites in negative ion mode. The FIAU 

phosphoramidite analogue was characterized by ESI-MS and a representative spectrum is 

shown in Figure 13. All mass spectrometric measurements were performed on a Thermo 

Finnigan Surveyor MSQ mass spectrometer (Finnigan MAT, San Jose, CA). We found 

that it was possible to generate mass spectra in negative ion mode using only aqueous 

MeCN without the use of organic acids. In general we observed fragments corresponding 

to the free DMT protecting group (Figure 13A), loss of the DMT group from FIAU-P 

(Figure 13B), and intact FIAU-P (Figure 13C). 

 

Oligonucleotide Synthesis and Characterization 

Oligonucleotide resins and phosphoramidites of the normal DNA bases were 

obtained from Glen Research (Sterling, VA). Oligonucleotide synthesis was conducted 

with a Pharmacia gene assembler (GE Healthcare Bio-Sciences, Piscataway, NJ). In 

general, oligonucleotides containing sugar-modified residues were deprotected with 

concentrated aqueous ammonia (33% as NH3) at 60 °C for approximately 12 – 15 h, 
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purified by HPLC, and characterized by MALDI-TOF-MS, as previously described [82, 

83]. However, oligonucleotides containing C5-iodo-substituted residues (i.e. 5IdU and 

FIAU) were instead deprotected at room temperature for 24 h to prevent the formation of 

C5-amino side products as previously described [84, 85]. A synthetic approach [82], 

using Universal Support III PS [86, 87] available from Glen Research was used to insert 

dU, 5IdU, araU, rU, U2’F(ara), U2’F(ribo) FIAU and dFdU at the 3’-end (primer terminus) of 

synthetic duplexes. For each of the C2’-fluorine-substituted residues (i.e. FIAU, U2’F(ara), 

U2’F(ribo) and dFdU) it was necessary to increase the coupling times to 10 min.   

 

Determination of Steady-State Kinetic Parameters for Polymerase 
Incorporation of Modified NTPs (modNTPs) 

The incorporation of modNTPs onto the 3’-end of an 11-mer primer annealed to a 

21-mer template (termed 11/21A, Figure 11A) was examined under steady-state 

standing-start conditions. The steady-state kinetic parameters (Km and kcat) and the 

catalytic efficiencies (kcat/Km) for pol β, AMVRT or Klenow (exo-) incorporation of 

each modNTP opposite template dA are summarized in Table 2. To measure the stead-

state kinetic parameters for modNTP incorporation, a solution of enzyme (pol β, AMVRT 

or Klenow (exo-)), 5’-32P-labeled 11/21A, and the appropriate enzyme buffer (see 

Materials and Methods) was mixed and reacted with increasing concentrations of 

modNTPs at 37 °C for various times. Gel electrophoresis followed by autoradiographic 

image analysis revealed that the enzyme gradually incorporated the modNTP substrate; 

as primer 11-mer was elongated to a 12-mer (Figure 15A – H). Product (elongated 

primer) formation was plotted as a function of time to determine initial velocities (Figure 

14B).  



 

76 

dU

araU

rU

FIAU

U2’F(ribo)

0
 M

1
0

-9
M

1
0

-8
M

1
0

-7
M

1
0

-6
M

1
0

-5
M

1
0

-4
M

1
0

-3
M

U2’F(ara)

5IdU

dFdU

NTP

B

C

A

E

F

D

H

G

 
 
Figure 15: Polymerase β incorporation of modified NTPs opposite template A. Gel 
showing band intensities as a function of increasing concentrations of A) 5IdUTP, B) 
dUTP, C) FIAUTP, D) U2’F(ara)TP, E) araUTP, F) dFdUTP, G) U2’F(ribo)TP and H) rUTP. 
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The initial velocities were then plotted as a function of increasing NTP 

concentration (Figure 14C) and a nonlinear least-squares fit of the data to the Michaelis-

Menten rectangular hyperbola (equation 1), as previously described [88], was performed 

to obtain Km and kcat. The relative insertion efficiencies for pol β, AMVRT, or 

Klenow(exo-) incorporation of modNTPs were determined by (kcat/Km)dNTP 

/(kcat/Km)dUTP, where (kcat/Km)dUTP is the catalytic efficiency for incorporation of the 

reference nucleotide dUTP, and are summarized in Table 2. 

 

Ribonucleotide (rNTP) Insertion Kinetics 

When compared with the reference nucleotide dUTP, we observed that rUTP, 

U2’F(ribo)TP, and dFdUTP (Gemcitabine metabolite) were poor substrates for each of the 

polymerases examined (Table 2, Figure 16).  When using pol β,  the catalytic efficiency 

for U2’F(ribo)TP and dFdUTP incorporation was reduced by 100 – 300-fold and the 

catalytic efficiency for rU incorporation was reduced by more than 3000-fold consistent 

with previous results [18].  When using AMV-RT, the catalytic efficiencies for dFdUTP 

and U2’F(ribo)TP incorporation were reduced by 400 and 1,100-fold, respectively, and the 

catalytic efficiency for rUTP incorporation was reduced by more than 30,000-fold (Table 

2, Figure 16).  When using Klenow (exo-), incorporation efficiencies for dFdUTP and 

U2'F(ribo)TP were reduced by 7,000- and 26,000-fold, respectively, and the incorporation 

efficiency for rUTP was reduced by 80,000-fold (Table 2, Figure 16). Thus, pol β, 

Klenow (exo-) and AMV-RT strongly discriminate against rNTPs. We found that the loss 

in incorporation efficiency for ribonucleotides (rNTPs) was due to an increase in Km 
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values and a decrease in catalytic turnover (kcat) rates, although, discrimination against 

rNTPs appears to be based more on Km.   

 

Arabinonucleotide (araNTP) Insertion Kinetics 

Arabinonucleotides (araNTPs) differ structurally from rNTPs by having their C2'-

substituents on opposite ends of the sugar plane. Thus, the C2'-substituent of an araNTP 

might avoid the steric gate mechanisms used by DNA polymerases to exclude rNTPs. In 

addition, araNTPs represent an important class of anticancer and antiviral compounds. 

Therefore, we probed the ability of pol β, AMVRT, and Klenow (exo-) to efficiently 

incorporate these modNTP analogues into DNA. We found that the araNTPs, namely, 

U2’F(ara)TP (FIAU metabolite), araUTP (Cytarabine metabolite), and FIAUTP (anti-

Hepatitis B agent) were good substrates for each of the polymerases examined. When 

using pol β incorporation efficiencies for araUTP and U2’F(ara)TP were modestly reduced 

by 1.1 – 2.5-fold. Significantly, the catalytic efficiency for FIAUTP incorporation was 3-

fold greater than for dUTP, indicating that pol β will readily incorporate FIAUTP into 

genomic DNA (Table 2, Figure 16). When using AMV-RT, the insertion efficiency for 

FIAUTP and was modestly reduced by 3-fold. AMV-RT, however, exhibited greater 

discrimination against U2'F(ara)TP and araUTP as their catalytic efficiencies were reduced 

by 32- and 75-fold, respectively. Interestingly, when using Klenow (exo-), araNTP 

incorporation efficiencies were reduced 70 – 600-fold (Table 2, Figure 16). These data 

indicate that both araNTPs and rNTPs distort the active site of Klenow (exo-), although, 

an araNTP appears to be better tolerated.   
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When considering that araNTP/rNTP pairs we found that conversion of 

U2'F(ribo)TP to U2'F(ara)TP resulted in a 243-fold increase in incorporation efficiency for pol 

β, a 34-fold increase in the kcat/Km value with AMV-RT and a 68-fold increase with 

Klenow (exo-). Moreover conversion of rUTP to araUTP resulted in an increase in 

catalytic efficiency that was ≥1200-fold for pol β, a 137-fold increase in the kcat/Km 

value when using Klenow (exo-), and an increase in catalytic efficiency that was ≥250-

fold when using AMV-RT. 

 

Discussion 

The experimental goal of this study was to examine the role of constrained ribose 

geometry on polymerase incorporation kinetics. These properties might help to explain 

how the configuration of the nucleoside sugar affects polymerase mediated processes 

including nucleotide incorporation and primer extension. The nucleoside analogues 

analyzed here represent an important class of compounds with demonstrated anticancer 

and antiviral properties. Our experimental approach was to incubate an enzyme (pol β, 

AMVRT, Klenow (exo-)) with several base- and sugar-modified NTP analogues, 

including 2’-fluoro- and 2’-OH-modified triphosphates, constrained to the either the C2’-

endo (DNA-like) configuration or C3’-endo (RNA-like) configuration (Figure 10), and 

examine how efficiently each polymerase inserted them opposite template dA. The data 

reported here might facilitate an improved understanding of the actions of this class of 

nucleoside analogues. 

Kinetic parameters (Km, kcat, kcat/Km) for Klenow (exo-), AMV-RT and pol β 

incorporation of standard triphosphate analogues (dTTP, dUTP) opposite template dA 

were determined and observed values were consistent with expectations. In the present 
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study uracil was chosen rather than thymine so that the data set examined here could be 

used to compare a series of C5-substituted pyrimidines. In general, during the polymerase 

incorporation experiments a DNA polymerase (Klenow (exo-) or AMV-RT) was 

incubated with radiolabeled primer/template substrate and a modNTP in buffer 

containing MgCl2 (see Materials and Methods). The kinetic parameters Km, kcat and 

kcat/Km were determined  from non-linear regression analysis of saturation curves and 

the corresponding data are presented in Table 2.  Though our focus is on the 

incorporation of dUTP and its analogues, we investigated the incorporation of dTTP to 

validate our incorporation assays.  

Using Klenow (exo-) and the appropriate incorporation assay conditions 

(Materials and Methods), we report a Km value of 1.39±0.14 X 10-8 M and a kcat value 

of 2.15±0.11 X 10-3 s-1  leading to a kcat/Km value of 1.55±0.18 X 105 M-1 s-1 for the 

insertion of dTTP opposite template dA. Our Km value is in agreement with previously 

reported Km values for Klenow (exo-) incorporation of dTTP opposite template dA  [2, 

3b]. Using Klenow (exo-), we report an apparent Km value of 2.07±0.07 X 10-8 M for the 

insertion of dUTP opposite template dA; a value that is approximately 1.5-fold higher 

than the observed Km for dTTP insertion (1.39 X 10-8 M). Previously, Loeb L. A. and co-

workers demonstrated that Klenow (exo-) incorporation efficiency of dUTP is modestly 

reduced by 1.75-fold compared to dTTP [3b]. Consistent with the literature, we report a 

kcat/Km value of  9.47±0.43 X 104 M-1 s-1 for dUTP incorporation (Table 2); a value that 

is 1.63-fold less than dTTP (1.55±0.18 X 105 M-1 s-1).  

Using AMV-RT and the appropriate incorporation assay conditions (Materials 

and Methods), we report a Km value of 2.10±0.15 X 10-7 M and a kcat value of 
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3.15±0.30 X 10-3 s-1  leading to a kcat/Km value of 1.50±0.18 X 104 M-1 s-1 for the 

insertion of dTTP opposite template dA. Previously Goodman, M.F. and co-workers [4] 

investigated the ability of AMV-RT to extend various base pairs and mispairs at the 

primer terminus and observed that AMV-RT incorporated dTTP against a 3'-A●T base 

pair with a Km value of 1.5 X 10-7 M; a value that is merely 1.4-fold lower than the Km 

value reported here (2.10±0.15 X 10-7 M) with similar sequence context.  

Using pol β, under the assay conditions described (Materials and Methods), we 

report a Km value of 1.76±0.08 X 10-6 M and a kcat value of 2.27±0.12 X 10-3 s-1  leading 

to a kcat/Km value of 1.29±0.81 X 103 M-1 s-1 for the insertion of dTTP opposite template 

dA. Our Km value is in agreement with previously reported Km values for pol β insertion 

of dTTP opposite template dA whether using single-gapped DNA substrates [90] or DNA 

substrates with a 3'-overhang [91]. We report an apparent Km value of 3.66±0.59 X 10-6 

M for the incorporation of dUTP opposite template dA; a value that is approximately 2-

fold higher than the observed Km value for dTTP insertion (1.76 X 10-6 M).  We note 

that researchers have previously investigated the ability of DNA polymerases to 

incorporate dUTP into a nascent DNA chain. Depending on the polymerase preparation 

and primer/template sequence, pol β has been shown to incorporate dUTP with Km 

values that are approximately 2 – 3-fold higher than dTTP [92, 93]. Similar observations 

have also been made using human pol α [94] and, interestingly, feline immunodeficiency 

viral (FIV) reverse transcriptase and murine leukemia virus (MuLV) reverse transcriptase 

[95], implying that dUTP can serve as an alternative substrate to dTTP for polymerases 

of both human and viral origins. The data reported thus far is consistent with literature 

precedence and indicates that our incorporation assays are appropriate. 
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Table 2: Kinetic parameters (kcat, Km and kcat/Km) for insertion of sugar-modified NTPs opposite template A using pol β, 
AMV-RT and Klenow (exo-) at pH 7.5  
 
a. Insertion efficiency is defined as (kcat/Km)NTP /(kcat/Km)dUTP, where NTP is the incoming sugar-modified triphosphate.  
b. NDA – No Detectable Activity. The reaction was too inefficient to independently determine Km and kcat values.
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 5'-CTTTGCCCGAA

...GAAACGGGCTTAC...

Primer

Template

NTP

Polymerase Template NTP Km (M) kcat (s-1) kcat/Km (M-1 s-1) 
Insertion 
frequency 

Pol β A dU 3.66±0.59 X 10-6 1.69±0.12 X 10-3 4.61±0.81 X 102 1.00 

FIAU 5.01±0.48 X 10-6 6.31±0.28 X 10-3 1.26±0.13 X 103 2.73 

5IdU 3.06±0.29 X 10-6 1.40±0.06 X 10-3 4.57±0.47 X 102 9.91 X 10-1 

U2'F(ara) 5.91±0.73 X 10-6 2.59±0.16 X 10-3 4.38±0.61 X 102 9.50 X 10-1 

araU 8.15±0.86 X 10-6 1.52±0.09 X 10-3 1.87±0.22 X 102 4.06 X 10-1 

dFdU 7.14±0.61 X 10-5 2.33±0.08 X 10-4 0.32±0.03 X 101 6.94 X 10-3 

U2'F(ribo) 3.12±0.43 X 10-4 5.60±0.20 X 10-4 0.18±0.03 X 101 3.90 X 10-3 

rU NDAb NDA <0.015 X 101 ≥3.25 X 10-4 

AMV-RT A dU 4.83±0.32 X 10-7 2.45±0.19 X 10-3 5.07±0.52 X 103 1.00 

5IdU 7.87±0.45 X 10-7 2.59±0.15 X 10-3 3.29±0.27 X 103 6.49 X 10-1 

FIAU 5.97±0.75 X 10-7 9.86±0.45 X 10-4 1.65±0.21 X 103 3.25 X 10-1 

U2'F(ara) 3.85±0.03 X 10-6 6.16±0.18 X 10-4 1.60±0.05 X 102 3.16 X 10-2 

araU 7.26±0.05 X 10-6 4.91±0.28 X 10-4 6.76±0.39 X 101 1.33 X 10-2 

dFdU 1.37±0.09 X 10-5 1.75±0.08 X 10-4 1.28±0.10 X 101 2.52 X 10-3 

U2'F(ribo) 3.50±0.12 X 10-5 1.60±0.30 X 10-4 0.46±0.08 X 101 9.07 X 10-4 

rU NDAb NDA <0.015 X 101 ≥ 2.96 x 10-5 

Klenow (exo-) A dU 2.07±0.07 X 10-8 1.96±0.06 X 10-3 9.74±0.43 X 104 1.00 

FIAU 7.57±0.56 X 10-7 1.07±0.26 X 10-3 1.41±0.36 X 103 1.45 X 10-2 

5IdU 3.85±0.60 X 10-6 1.30±0.06 X 10-3 3.38±0.70 X 102 3.47 X 10-3 

U2'F(ara) 4.63±0.53 X 10-6 1.20±0.18 X 10-3 2.59±0.30 X 102 2.66 X 10-3 

araU 4.45±0.84 X 10-6 7.30±0.33 X 10-4 1.64±0.32 X 102 1.68 X 10-3 

dFdU 1.40±0.11 X 10-5 1.59±0.26 X 10-4 1.41±0.21 X 101 1.45 X 10-4 

U2'F(ribo) 6.71±0.05 X 10-5 2.55±0.07 X 10-4 0.38±0.01 X 101 3.90 X 10-5 

rU 1.13±0.04 X 10-4 1.36±0.28 X 10-4 0.12±0.03 X 101 1.23 X 10-5 
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DNA polymerase β, Klenow (exo-), and AMVRT efficiently select against 

ribonucleoside triphosphates (rNTPs). The furanose ring of a NTP is not planar an can 

adopt several conformations [96 – 98]. However, substitution of electronegative groups at 

the C2' position greatly influences conformational equilibria and population. For 

example, chemical addition of hydroxyl (OH) and fluorine (F) groups at the C2' position 

in the ribo (down, "below the sugar plane") configuration constrain nucleoside furanose 

geometry to a C3'-endo (RNA-like) geometry [99]. Indeed, it has been observed that the 

conformation of the nucleoside furanose moiety can be predicted by the electronegativity 

of the C2' substituent and that the most electronegative groups will pull the sugar pucker 

toward its side of the sugar plane [100 – 102]. Likewise, if those same electronegative 

groups are substituted at the C2' position in the arabino (up, "above the sugar plane") 

configuration, the nucleoside furanose will predominately adopt a C2'-endo (DNA-like) 

conformation [103 – 105]. Further, modNTP analogues constrained to a C3'-endo 

conformation (e.g. rNTPs) are activated as substrates for RNA polymerases [106], 

whereas, modNTP analogues constrained to the C2'-endo conformation (e.g. dNTPs) are 

activated as substrates for DNA polymerases [27]. Therefore, we hypothesized that ribo 

configured modNTP analogues would be poor substrates for each of the DNA 

polymerases examined (pol β, AMVRT, and Klenow (exo-)) regardless of the C2' 

substituent.  

During DNA synthesis and repair a DNA polymerase must efficiently select 

against rNTPs which are present in higher cellular concentrations than dNTPs [8]. 

Depending on the rNTP/dNTP pair, pol β, Klenow (exo-) and reverse transcriptases 

(RTs) have been shown to select against ribonucleotides by 103 – 106-fold [11, 13, 17, 18, 
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107]. Under the experimental conditions used (see Materials and Methods), we observed 

that the insertion efficiency of rUTP (Figure 10) was reduced by 80,000-fold when using 

Klenow (exo-), by greater than 3,000-fold when using pol β and by greater than 30,000-

fold when using AMVRT (Table 2, Figure 15, Figure 16).  
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Figure 16: A log plot comparing the incorporation efficiencies for sugar-modified 
triphosphate analogues using the following polymerases: polymerase β (black-filled 
bars), AMV reverse transcriptase (open-bars), and Klenow (exo-) (gray-filled bars). The 
base line represents a catalytic efficiency of 101 M-1 s-1. The catalytic efficiencies are 
tabulated in Table 2.   
 

X-ray crystallographic studies and mutation studies imply that this strong 

selection against rUTP is afforded by a "steric gate" mechanism whereby the side chain 

or backbone of an active site residue sterically interacts with the 2'-OH of rUTP. The 

steric gate mechanism varies slightly depending on the polymerase family. For example, 

pol β selects against a rNTP using a protein-backbone segment spanning Tyrosine residue 

271 (Tyr271) to Glycine residue 274 (Gly274) that sterically interacts with the C2'-OH of 

an incoming rNTP, thus preventing rNTP binding and misinsertion [19, 108], Klenow 
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(exo-) utilizes glutamic acid residue 710 (Glu 710) to prevent rNTP misincorporation 

[13], and AMVRT (like other RTs) employs either a Tyr or phenylalanine (Phe) residue 

to exclude rNTPs from its active site [17]. Our observation that rUTP insertion is reduced 

by 103 – 105-fold relative to dUTP is consistent with this steric model.  

DNA polymerase selection against rNTPs could be attributed to the sugar 

conformation or the steric challenge presented by the C2'-OH. We hypothesized that 

reducing the size of the C2' substituent would recover incorporation efficiency. This led 

us to investigate the ability of DNA polymerases to incorporate UF(ribo)TP. U2'F(ribo)TP 

differs from rUTP through replacement of the C2'-OH with a C2'-F (Figure 10). In 

addition the steric size of fluorine (1.47 Å) as predicted by van der Waals radius is 

intermediate between the steric sizes of a proton (1.2 Å) and a hydroxyl (2.8 Å) [7]. 

Previously, researchers have investigated the ability of U2'F(ribo)TP to act as a substrate for 

several polymerases including Deep Vent (exo-) and 9 degrees North (modified) (9° Nm)  

DNA polymerases [28, 110]; human immunodeficiency virus-1 (HIV-1) and  Moloney 

Murine Leukemia Virus (MMLV) reverse transcriptases [28, 106, 110, 111]. In general, 

U2'F(ribo)TP was readily incorporated by RNA polymerases yet was a poor substrate for 

DNA polymerases. Indeed,  Richardson, F.C. et al observed that catalytic efficiency for 

incorporation of U2'F(ribo)TP, opposite template dA, was reduced by 19-fold for 

polymerase alpha (α) and 137-fold for polymerase gamma (γ) relative to dUTP 

incorporation [94].Consistent with these observations, the steady-state kinetic data 

revealed that, relative to dUTP, insertion efficiency for U2’F(ribo)TP was reduced 256-fold 

when using pol β, by 26,000-fold when using Klenow (exo-), and by 1,100-fold when 

using AMVRT (Table 2, Figure 16).  
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Guschlbauer and Jankowski [101] have solved the solution-phase structure for the 

U2'F(ribo) nucleoside analogue using NMR and found U2'F(ribo) to be preferentially in the 

C3'-endo form (~82 - 88%). During the incorporation step, it is likely that U2'F(ribo)TP 

remains in the C3'-endo conformation when initially bound to the enzyme-

primer/template complex. However, during the phosphoryl transfer step DNA pol β is 

expected to convert U2'F(ribo)TP from its initial C3'-endo conformation to the more suitable 

C2'-endo-like conformation to allow proper alignment of the αP of U2'F(ribo)TP with the 

primer terminus 3'-OH. Therefore, the energetic penalty incurred during this process is 

likely to reduce the incorporation efficiency of U2'F(ribo)TP. Moreover, the C2'-F group is 

predicted to increase the electron density at the C2' position and consequently, the size of 

the furanose ring at the site of substitution [112]. The increased size likely results in 

unfavorable steric interactions with the steric gate residues of pol β, AMVRT, and 

Klenow (exo-) resulting in reduced incorporation efficiency. Although, conversion of the 

C2'-OH (rUTP) to a C2'-F (U2'F(ribo)TP) resulted in  31-fold recovery in catalytic 

efficiency for AMVRT but only a modest 11-fold recovery for pol β and a 3-fold 

recovery for Klenow (exo-) (Table 2, Figure 16). Together, these data indicate that the 

active sites of Klenow (exo-) and pol β are more sensitive to rNTP sugar conformation 

relative to the  AMVRT active site. An alternative explanation would be that the fluorine 

atom is still large enough to interact with the Glu710 residue in the Klenow (exo-) active 

site or the carbonyl backbone of Tyr271 in the pol β active site. 

 Gemcitabine (dFdC), a 2’,2’-difluoro-substituted nucleoside analogue has been 

shown to adopt a C3’-endo configuration as the free nucleoside hydrochloride salt [113] 

and when substituted into the DNA duplex region (DDR) of a model Okazaki fragment 



 

88 

[114]. Previously, researchers have investigated the incorporation of 2’,2’-difluoro-

substituted nucleoside analogues (including dFdCTP and dFdGTP) into DNA and found 

that they were poor substrates for DNA polymerases. Depending on the sequence context 

and the kinetics approach (i.e. steady-state or pre-steady state kinetics) it has been 

observed that the catalytic efficiency for dFdCTP incorporation is reduced by 20-fold for 

pol ε [116], ~50 – 3000-fold for pol β [117], 80-fold for pol α [118], 150-fold for pol λ 

[119], and 432-fold for pol γ [120] relative to dCTP incorporation. It has been reasoned 

that one of the contributing factors to poor misincorporation of dFdUTP is that its sugar 

is constrained to a C3'-endo geometry that is amenable to RNA polymerase incorporation 

[117, 120]. Interestingly, the deaminated metabolite, dFdU, investigated in the present 

study has been shown to prefer the C2'-endo conformation (58%) in solution [115]. One 

might then predict, on the basis of conformation, that dFdUTP should be a good substrate 

for DNA polymerases. Yet, despite its apparent preference for the C2'-endo geometry, 

dFdUTP was strongly selected against by each of the polymerases as if it were a rNTP.  

We observed  that incorporation efficiency for the dFdUTP analogue was reduced 

by 144-fold when using pol β, by 400-fold when using AMVRT, and by 7,000-fold when 

using Klenow (exo-) (Table 2, Figure 16). There are several structural properties of dFdU 

that likely render it a poor substrate for DNA pol β incorporation: 1) The C2’-difluoro 

group increases the electron density and size of dFdUTP which may cause steric clash 

with polymerase active site residues and/or 2) a combination of increased electron density 

(in the vicinity of the difluoro group), increased physical size and altered sugar geometry, 

likely weaken the interactions between dFdUTP and the template base dA rendering it 

more likely to dissociate from the enzyme-primer/template complex resulting in 
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relatively larger apparent Km values. In addition, the C2' geminal difluoro group alters 

the electrostatic surface potential of the dFdC nucleoside [114] and this altered 

electrostatic potential is predicted to affect the rate and stability of complex formation 

between dFdU and the polymerase. Therefore, when considering C2'-difluoro-substituted 

nucleotide analogues additional features, including the electrostatic potential of the 

geminal difluoro group, may be more important determinants of incorporation efficiency.   

 In all, each of the polymerases (Klenow (exo-), AMVRT, and pol β) efficiently 

selected against rUTP, U2'F(ribo)TP, and dFdUTP. We observed that kinetic discrimination 

was based more on Km than kcat and that when compared to the reference dUTP 

incorporation efficiencies were reduced by 102 – 105-fold. Previously, Branscomb, Galas, 

and co-workers reasoned that relative NTP insertion frequencies were directly 

proportional to NTP residence times within the polymerase active site and that the NTP 

residence times were a reflection of the stability of the ternary ground-state enzyme-

DNA-NTP complex [121, 122]. Therefore, these data imply that, rUTP, U2'F(ribo)TP, and 

dFdUTP analogues form comparatively unfavorable enzyme-DNA-NTP complexes and, 

consequently, exhibit a greater tendency to dissociate from the enzyme-primer-template 

complex as reflected in the increased Km values.       

 

DNA polymerase β, Klenow (exo-), and AMVRT readily inserted 

arabinonucleoside triphosphates (ararNTPs). The Arabinonucleotides (araNTPs) 

represent an important class of anticancer and antiviral agents [48a] and their sugar 

moieties preferentially adopt a C2'-endo conformation [103 – 105]. AraNTPs and rNTPs 

differ structurally by having their respective C2’ substituents on opposite ends of the 
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sugar plane (Figure 10). DNA polymerases are known to incorporate araNTPs with Km 

values similar to their unmodified dNTP cognates [25 – 27, 29, 48a, 123, 124]. 

Fialuridine (FIAU) is an antiviral agent that was developed for the treatment of chronic 

Hepatitis-B infection. During clinical trials, 5 of the 15 enrolled patients succumbed to 

unexpected liver failure resulting from progressive lactic acidosis and acute 

mitochondrial toxicity [35]. For a nucleoside analogue to be effective it must be 

transported across the cell membrane, phosphorylated and incorporated into DNA.  It has 

been demonstrated that FIAU is phosphorylated to FIAUTP by herpes simplex virus 

thymidine kinase (HSV-TK) and human thymidine kinase 2 (TK2) [27]. FIAU is an 

antimetabolite and two products of its metabolic activation, 1-(2-deoxy-2-fluoro-β-D-

arabinofuranosyl)-5-methyluracil (FMAU), 1-(2-deoxy-2-fluoro-β-D-

arabinofuranosyl)uracil (U2'F(ara)), are considered to contribute to its cytotoxicity [48a].  

In addition, NMR studies of 5-methyl-(2'-deoxy-2'-fluoro-β-D-arabinofuranosyl) 

uracil (FMAU) reveal that FMAU prefers the 2'-endo conformation (64%) [48b]. FIAU 

and FMAU are structurally similar and differ only by their C5 (base) substituent. It is 

assumed, therefore, that the sugar portion of FIAU will prefer the 2'-endo conformation 

as well. Significantly, we found that the incorporation efficiency for FIAUTP (1.26 X 103 

M-1 s-1) was similar to dTTP (1.29 X 103 M-1 s-1) implying that FIAUTP can serve as an 

alternative substrate to dTTP and that in addition to being readily incorporated into 

mitochondrial DNA by pol γ [125, 126], FIAUTP is predicted to be readily incorporated 

into genomic DNA, by pol β, through the BER pathway. Moreover, AMVRT 

incorporation efficiency of FIAUTP was modestly reduced by 3-fold and Klenow (exo-) 

incorporation efficiency was reduced by 75-fold (Table 2). In an effort to resolve the 
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structural features that likely render FIAUTP a high affinity substrate for all polymerases 

examined, we investigated the incorporation of U2'F(ara)TP, which differs structurally from 

FIAUTP only in that it lacks the C5-iodo substituent, and 5IdUTP, which differs 

structurally from FIAUTP in that it lacks the C2'-F substituent (Figure 10). Each of these 

analogues allows isolation of the contribution of the C2'-F (U2'F(ara)TP) or the C5-Iodo 

group (5IUdUTP) to FIAUTP's kinetic profile. 

The solution-phase structure for the U2'F(ara) nucleoside analogue has been solved 

using NMR and has revealed that U2'F(ara) is preferentially in the C2'-endo conformation 

[115, 127]. We found that, relative to dUTP, pol β incorporated U2'F(ara)TP with near 

identical catalytic efficiency. Moreover, when compared with FIAUTP, pol β 

incorporated U2'F(ara)TP with a similar Km value but a kcat value that was approximately 

2.4-fold lower, resulting in a kcat/Km value that was approximately 3-fold lower (Table 

2). Previously, Goodman and co-workers [128] reasoned that the Km value reflects base 

pairing free energy differences which, in turn, are influenced by two interactions: 1) 

hydrogen bonding interactions between the base of the incoming dNTP and the templated 

base and 2) base stacking interactions between the base of the incoming dNTP and the 

primer terminus base. Therefore, it would appear that the presence of the C5-iodo group 

does not influence the ability of FIAUTP to either hydrogen bond with template dA or 

stack properly on the primer terminated by 3'-dAMP during the incorporation step 

(Figure 11A) since U2'F(ara)TP (FIAUTP minus the C5-iodo) was incorporated with an 

identical Km to FIAUTP (Table 2). The same is observed with 5IdUTP as well in that pol 

β incorporated 5IdUTP with Km and kcat/Km values that were nearly identical to dUTP 

(Table 2). However, we note that, when compared with FIAUTP, pol β incorporated 
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5IdUTP with a Km value that was reduced by 1.6-fold and a kcat value that was reduced 

by 4.5-fold. Thus, whereas the C5-iodo does not appear to significantly alter base 

stacking interactions, the C2'-F group appears to contribute to the rate at which FIAUTP 

is bound by pol β and subsequently incorporated into the DNA strand as conversion of 

5IdU to FIAU (addition of arabino C2'-F) resulted in 4-fold increase in the catalytic 

turnover rate (kcat) (Table 2). We also note that pol β and AMVRT (a viral reverse 

transcriptase) incorporated FIAUTP with near identical incorporation efficiencies (Figure 

16), further strengthening the argument that pol β, via the BER pathway, provides a 

major route for FIAUTP incorporation misincorporation.   

Cytarabine (araC) is rapidly deaminated to araU and has been shown to 

accumulate in the cerebrospinal fluid of patients following intermittent infusion of high-

dose araC [55] leading to the suggested role for araU accumulation in araC-associated 

neurotoxicity [50]. We were therefore interested in the ability of DNA polymerases to 

utilize araUTP as a substrate. The sugar moiety of araU (cytarabine metabolite) has been 

shown to adopt a C2'-endo conformation as the free nucleoside [104, 129] and araUTP is 

presumed to adopt the same conformation in solution and when bound to the enzyme-

primer-template complex . Relative to dUTP, we observed that pol β incorporation 

efficiency was modestly reduced by 2.4-fold (Table 2). While the backbone carbonyl of 

Tyr271 of α-helix M within the pol β active site is predicted to sterically clash with the 

C2'-OH of an incoming rNTP, Aspartate residue 276 (Asp276) of α-helix N is predicted 

to block the C2'-OH of an incoming araNTP [11]. The modest reduction in incorporation 

efficiency, however, suggests that Asp276 can adjust to permit incorporation of a C2'-OH 

of an araNTP. Interestingly, we observed that pol β incorporated U2'F(ara)TP with a Km 
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that was 1.4-fold lower and a kcat/Km value that was 2.3-fold higher than araUTP. 

Moreover, dUTP was incorporated with Km that was 2.2-fold lower and a kcat/Km value 

that was 2.5-fold higher than araUTP (Table 2). These data imply that incorporation 

efficiency was recovered  as the araNTP C2' substituent size was decreased. As such, it 

would appear that pol β possesses two steric gate-like mechanisms: 1) a "rigid", 

intolerable gate protruding from α-helix M to block bulky rNTP C2' substituents and 2) a 

"soft", relatively tolerable gate protruding from α-helix N to block bulky araNTP C2' 

substituents. Interestingly, a similar trend is observed for Klenow (exo-) and AMVRT 

(Figure 16). Thus, it would appear that steric gate mechanisms interact with the C2' 

substituent whether it exists above or below the sugar plane.  

Thermodynamic differences for 3'-end modified duplexes appear to contribute to 

polymerase insertion kinetics. A combination of stacking interactions between adjacent 

bases and hydrogen bonding interactions between complementary strands is primarily 

responsible for  duplex stability. Past comparisons of polymerase kinetics and DNA 

stability [4] have revealed that polymerases likely exploit differences in free energy 

(ΔG°), enthalpy (ΔH°), entropy (ΔS°), and melting temperature (Tm) between correct and 

incorrect base pairs at the insertion step; and, the altered base pairing and stacking energy 

associated with mispair formation reduces duplex thermodynamic and thermal stability 

resulting in larger observed Km values for incorporation of the incorrect nucleotide. 

Thus, the stability of the DNA-primer/template-dNTP complex is reflected in the Km and 

catalytic efficiency (kcat/Km). In order to estimate the impact of sugar conformation on 

duplex stability and incorporation kinetics the misinsertion frequency, fins, was 

determined by Equation 3  
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                               dUTPdNTP KmkcatKmkcatfins )//()/(                               Eq. 3 

 
The magnitude of fins was observed to increase continuously  with increasing Tm 

of 3'-end modified duplexes (Figure 17), suggesting that the increased duplex thermal 

stability was contributing to nucleotide incorporation. The araNTPs were the most 

frequently incorporated but also formed the most stable duplexes when incorporated onto 

the 3'-end. Conversely, the rNTPs were not readily incorporated and misincorporation 

onto the 3'-end resulted in reduced duplex Tms.   

The impact of 3' aranucleoside. Previously, we discussed the rigid geometrical 

constraints and steric blocking mechanisms of the polymerase active site that likely deter 

rNTP incorporation and that these unfavorable interactions are largely avoided by 

araNTPs. Here, we show that in addition to steric constraints there possibly exists a 

thermodynamic component of Km discrimination on the basis of sugar conformation. The 

data presented in Table 3 and Figure 17 imply that pol β will most frequently incorporate 

NTPs in a manner that maintains or increases the stability of the primer-template 

complex and the resulting duplex. Significantly, FIAUTP was the most readily 

incorporated of the NTPs investigated and a FIAU-terminated primer formed the most 

stable duplex. We note that 5IdU (FIAU minus C2'-F) and U2'F(ara) (FIAU minus C5-I) 

terminated primers increased duplex Tms by 0.8 °C and 0.9 °C, respectively (Table 3). 

Interestingly, the impact of 3'-FIAU on duplex Tm (ΔTm = 1.9 °C) is approximately the 

result of adding the thermal stabilizing contribution of 5IdU and U2'F(ara). Thus, it would 

appear that the C5-I of FIAU contributes as much to its thermodynamic profile as its C2'-

F.     
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Table 3: Experimental thermodynamic parameters of duplex formation. The values include measured free energy of duplex 
formation (ΔG°37), enthalpy (ΔH°), entropy (ΔS°) and melting temperature with a strand concentration of 28 µM (Tm 28 µM). 
The thermodynamic parameters for the A:dU oligonucleotide was used as the reference when calculating ΔΔG°37, ΔΔH°, and 
ΔΔS° in the 3’-terminal position. Measured free energy, enthalpy and entropy differences that exceed experimental error are 
indicated in bold. 

 

 

 

 

 

 

 

 

 

 
ΔG°37 

(kcal/mol) 
ΔΔG°37 
(kcal/mol)

Tm 28µM 
(°C) 

ΔTm 28µM 
(°C) 

ΔH° 
(kcal/mol) 

ΔΔH° 
(kcal/mol)

ΔS° 
(cal mol-1 K-1)

ΔΔS° 
(cal mol-1 K-1)

 

3'-Terminal 

 

A:dU -9.5±0.2 - 49.4±0.3 - -89.0±4.6 - -251.2±14.2 - 

A:U2'F(ara) -9.5±0.2 0.0±0.3 50.3±0.1 0.9±0.3 -84.8±3.2 4.2±5.6 -238.4±9.7 12.8±17.2 

A:U2'F(ribo) -9.0±0.2 0.5±0.3 49.2±0.2 -0.2±0.4 -79.9±3.9 9.1±6.0 -224.3±12.2 26.9±18.7 

A:dFdU -9.5±0.2 0.0±0.3 51.0±0.4 1.6±0.5 -85.5±3.3 3.5±5.7 -240.4±10.1 10.8±17.4 

A:araU -9.4±0.1 0.1±0.2 49.8±0.4 0.4±0.5 -85.9±2.6 3.1±5.3 -242.1±7.8 9.1±16.2 

A:rU -9.2±0.1 0.3±0.1 49.2±0.2 -0.2±0.4 -83.7±2.2 5.3±5.1 -235.7±6.5 15.5±15.6 

A:5IdU -9.4±0.2 0.1±0.3 50.2±0.2 0.8±0.4 -80.3±3.9 8.7±6.1 -224.5±12.2 26.7±18.7 

A:FIAU -9.7±0.1 -0.2±0.2 51.3±0.2 1.9±0.4 -85.3±3.6 3.7±5.8 -238.9±11.2 12.3±18.1 
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Surprisingly, dFdU (dFdC metabolite) terminated primers increase the duplex 

thermal stability (ΔTm = 1.6 °C) nearly as much as FIAU terminated primers (ΔTm = 1.9 

°C). The source of dFdU-induced stability is not understood, however, these observations 

likely have broader applications. For example, 5’3’ NTP insertion, extension of primer 

termini, and 3’5’ exonucleolytic activity are three distinct steps that contribute to the 

overall fidelity of DNA replication [2]. Butlag and Kornberg first demonstrated that the 

exonucleolytic activity of DNA pol I removed terminal mispairs more efficiently than 

correct terminal base pairs [130]. A "melting capacity" model was defined as the likely 

mechanism for exonucleolytic activity. In the melting model an exonuclease is 

intrinsically a single-stranded nuclease that preferentially recognizes a duplex with a 

terminal mispair because it is more likely to be in the single-stranded state due to its 

lower Tm.  In the same report it was demonstrated that the exonuclease of DNA pol I 

exhibited specificity for single-stranded DNA and that its activity on double-stranded 

DNA increased proportionally with increasing temperature. Here, we report that 

terminally located FIAU and, surprisingly, terminally located dFdU form the most stable 

of the 3'-modified duplexes investigated in this report (Table 3, Figure 17). It is likely 

that the increased thermal stability resulting from the incorporation of FIAU and dFdU 

onto the 3'-end of a growing strand precludes exonuclease editing and may explain, in 

part, why DNA polymerases with highly efficient exonuclease activities such as pol γ and 

pol ε exhibit difficulty removing FIAU and dFdC from primer termini [57, 114, 120].  
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Figure 17: Relationship between polymerase insertion of modified NTPs onto the 3’-end 
of a DNA strand and melting temperatures of 3’-end modified duplexes (Table 3). A line 
is drawn through all of the points except dFdU. A) When using human DNA pol β, the 
slope of the line is 1.26, the intercept of the line is -62.09 and the R2 value is 0.95. B) 
When using Klenow (exo-), the slope of the line is 6.35, the intercept of the line is -
313.69 and the R2 value is 0.85. C) When using AMVRT, the slope of the line is 0.178, 
the intercept of the line is -8.73 and the R2 value is 0.28. 
 
 
 

Impact of 3' ribonucleoside. Goodman and co-workers reasoned [4b] that a 

polymerase could achieve observed Km discrimination against base mispairs by 

amplifying free energy differences (ΔΔG°) between correct and incorrect base pair 

formation. Free energy differences are derived from the relative magnitude of enthalpy 
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and entropy contributions (ΔΔG° = ΔΔH° - TΔΔS°). When enthalpy and entropy changes 

for duplex formation are proportional, as observed in aqueous media, values of ΔΔH° are 

nearly offset by values of ΔΔS° to give small values of  ΔΔG°. If, however, rigid 

geometrical constraints at the polymerase active site only allowed those NTPs whose 

sugar conformations approximated the correct conformations, then ΔΔS° would reduce to 

0 and the polymerase could achieve Km discrimination that would approach ΔΔG° = 

ΔΔH° .  Although ΔΔG° values in solution are expected to be negligible due to entropy-

enthalpy compensation, we note that the ribonucleotides exhibit relatively large positive 

free energy changes (ΔΔG° = 0.3 – 0.5 kcal/mol) that exceed error (Table 3). In a 

previous study [82] we evaluated the impact of sugar geometry on base pair and mispair 

stability. We observed that, surprisingly, the measured difference in free energy change 

between the correct terminal A:dU base pair and the terminal A:U2'F(ribo) base pair (ΔΔG° 

= 0.5 kcal/mol) was as large as the corresponding difference in free energy change 

between the reference A:dU terminal base pair and a G:dU terminal base mispair (ΔΔG° 

= 0.5 kcal/mol). We've extended this finding by investigating the impact of a terminal 

A:rU base pair on DNA duplex stability. We found that a A:rU base pair on the 3'-end 

destabilizes DNA duplexes (ΔΔG° = 0.3 kcal/mol) nearly as much as the A:U2'F(ribo) 

(Table 3) and G:dU [82] terminal base pairs. Although ΔΔG° values in solution are 

expected to be negligible due to entropy-enthalpy compensation we note that previously, 

Goodman and co-workers [4b] observed that the difference in free energy change 

between a correct terminal base pair (A:T) and terminal mispairs (G:T, C:T, and T:T) was 

ΔΔG° = 0.25 – 0.41 kcal/mol. It is interesting that the ribonucleosides, examined in this 

report, exhibit a range of relatively large positive free energy changes (ΔΔG° = 0.3 – 0.5 
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kcal/mol) (Table 3) that are consistent with the observations made by Goodman and co-

workers for terminal mispairs. These results are consistent with a thermodynamic 

contribution to sugar fidelity for polymerase incorporation.  

It is known, however, that misincorporation of a single ribonucleotide into DNA 

influences DNA structure and conformation. For example, Sundaralingam and co-

workers have solved the crystal structures for self-complementary DNA decamers 

containing a ribonucleoside at both 5' and 3' termini [131], at an internucleotide position 

[132, and at the 3'-end [133]. Surprisingly,  each of the ribonucleoside-containing 

decamers investigated crystallized as A-form DNA with all residues adopting a C3'-endo-

like conformation despite the all DNA decamers crystallizing in the B-form. These 

observations likely have implications for the ribonucleoside-containing duplexes studied 

here. Bresslauer K et al demonstrated that conformationally ordered single strands exhibit 

intramolecular interactions that enthalpically prepare them for duplex formation [134]. 

Therefore, one would predict that pairing between strands that are conformationally 

preorganized for DNA duplex formation is entropically more favorable than pairing 

between strands whose conformations differ from the duplex [135]. During thermal 

denaturation studies a duplex is "melted" into single strands that are then allowed to pair 

again. A strand containing a ribonucleoside (in our case the primer, Figure 11B) would 

have a different conformation than the all DNA strand (the template) and the pairing 

between the two would be entropically unfavorable resulting in relatively less stable 

duplexes (Figure 17, Table 3). 
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Concluding Remarks 

We found that Klenow (exo-), AMVRT, and pol β inefficiently incorporated a 

rNTP yet readily inserted an araNTP opposite template dA. Though rigid geometrical 

constraints of the polymerase active site (i.e. steric gate mechanism) may be the primary 

contributor to rNTP exclusion,  we present a basic thermodynamic model for sugar 

discrimination. Consistent with expectations based on kinetic data, arabinonucleoside 

analogues formed the most stable duplexes when incorporated onto the primer terminus 

(3'-end). Consequently, misincorporation efficiency increased proportionally with 

increasing melting temperature of 3'-end duplexes indicating that DNA polymerases will 

incorporate modNTPs in a manner that maintains or increases duplex thermal stability. 

Thus, results from our polymerase incorporation and thermal denaturation studies implies 

that sugar substitution impacts polymerase incorporation. Whereas araNTPs are 

stabilizing on the 3'-end and readily incorporated, rNTPs are not. In addition, we also 

reported that FIAU- and, surprisingly, dFdU-terminated primers increase duplex stability 

by ~2 °C. The increased duplex thermal stability resulting from misincorporation of 

FIAU and dFdU (or the parent compound dFdC) onto the 3'-end likely allows these 

analogues to elude exonuclease editing mechanisms.  
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Abstract 

 Nucleotide insertion, exonucleolytic proofreading, and primer terminus extension 

are three distinct steps that contribute to overall replication fidelity. Multiple factors 

appear to influence both incorporation and extension efficiency including the relative 

thermal and thermodynamic stability of a given base pair, base pair geometry, furanose 

conformation and geometry and the interaction of the incoming or terminal 3’ nucleotide 

with DNA polymerase.  Numerous studies have examined the role of base pair formation 

on both incorporation and elongation, however substantially less is known about the 

properties of the nucleoside sugar that determine incorporation or elongation efficiency. 

It is known, however, that during the extension step a correctly positioned terminal 3'-

hydroxyl (3'-OH) is required to attack the α-phosphate (αP) of an incoming nucleoside 

triphosphate (NTP). The furanose ring of a nucleoside is not planar an can adopt several 

conformations. However, substitution of electronegative groups at the C2' position 

greatly influences conformational equilibria and population. For example, chemical 

addition of hydroxyl (OH) and fluorine (F) groups at the C2' position in the ribo (down, 

"below the sugar plane") configuration constrain nucleoside furanose geometry to a C3'-

endo (RNA-like) geometry. Likewise, if those same electronegative groups are 

substituted at the C2' position in the arabino (up, "above the sugar plane") configuration, 

the nucleoside furanose will predominately adopt a C2'-endo (DNA-like) conformation. 

The terminal 3'-OH is directly tethered to the furanose ring. As such, its position relative 

to the αP of the incoming triphosphate is predicted to be influenced by the conformation 

of the nucleoside sugar to which it is attached. Therefore, we predicted that nucleoside 

sugar substitution would impact primer extension efficiency of DNA polymerases. For 
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this report, we have synthesized oligonucleotides containing modified nucleoside 

analogues at the 3’-end in a model replication fork. Using stead-state kinetics, we 

investigated the ability of three different polymerases, human DNA polymerase β (pol β), 

avian myeloblastosis viral reverse transcriptase (AMVRT), and Escherichia coli Klenow 

fragment (exo-), to extend modified primer termini. Surprisingly, we found that all 

polymerases investigated readily extended primers terminated by the ribonucleosides rU, 

dFdU, and U2'F(ribo) and that extension efficiencies were reduced by no greater than 13-

fold. Conversely, the arabinonucleosides araU, FIAU and U2'F(ara) were inefficiently 

extended with extension efficiencies being reduced by as much as 570-fold.  

 

Abbreviations 

dU, 2’-deoxyuridine; 5IdU, 5-iodo-2’-deoxyuridine; araU, 1-β-D-

arabinofuranosyluracil; rU, Uridine; U2’F(ribo), 2’-deoxy-2’-fluorouridine; U2’F(ara), 1-(2’-

deoxy-2’-fluoro-β-D-arabinofuranosyl) uracil; FIAU, 5-iodo-(2'-deoxy-2'-fluoro-β-D-

arabinofuranosyl) uracil; dFdC, 2’-deoxy-2’,2’-difluorocytidine (Gemcitabine); dFdU, 

2’-deoxy-2’,2’-difluorouridine (Gemcitabine metabolite); FIAU-P, 5’-O-dimethoxytrityl-

5-iodo-2’-deoxy-2’-fluoroarabinosyluracil, 3’-O-[(2-cyanoethyl)(N,N,-diisopropyl)]-

phosphoramidite; dFdU-P, 5’-O-dimethoxytrityl-2’-deoxy-2’,2’-difluorouridine, 3’-O-

[(2-cyanoethyl)(N,N-diisopropyl)]-phosphoramidite.  
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Introduction 

The accurate replication of nucleic acids requires that polymerases select the 

correct nucleotide at each successive step of replication  [1]. DNA polymerases ensure 

the fidelity of DNA replication in both eukaryotes and prokaryotes. Nucleotide insertion, 

exonucleolytic proofreading and extension of primer termini are three distinct steps that 

contribute to overall replication fidelity [2]. During the insertion step a DNA polymerase 

selects from the deoxynucleoside triphosphate (dNTP) pool a dNTP that is 

complimentary to the template base and is able to bind to the primer-template complex 

with sufficient stability [3]. During extension, a polymerase commits to further rounds of 

dNTP addition by selecting and adding the next correct nucleotide to the primer termini. 

Interestingly, polymerase extension beyond a mispair is very difficult, even for the 

insertion of a correct dNTP and even though base-pairing and geometry conditions are 

met [4-8].  For reasons that have not yet been revealed, extension fidelity contributes 

nearly as much to the overall replication fidelity as the initial insertion step.  Although 

polymerase pausing at the extension step following a nucleotide misinsertion event would 

reduce overall mutation frequency by facilitating proofreading or other repair, the 

mechanistic basis for extension fidelity has not yet been established.  

Both the insertion and extension steps require a correctly positioned terminal 3'-

hydroxyl (3'-OH) is required to attack the α-phosphate (αP) of an incoming nucleoside 

triphosphate (NTP). In the case of geometrically aberrant base pairs, such as a purine-

purine mispair, the 3’-OH would be shifted several angstroms from the correct position, 

potentially preventing polymerase extension.  With purine-pyrimidine mispairs, however, 

the geometry is closer to that of a normal Watson-Crick base pair, so that more subtle 
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differences, such as sugar conformation, might become important. In addition to mispair 

geometry, nucleoside sugar conformation can also be biased by the presence of 

substituents in the furanose ring.  The conformational difference between deoxyribose 

and ribose sugars is attributed primarily to the presence of the 2’-OH in the 

ribonucleosides.  Other substituents, in particular, electron-withdrawing substituents 

including fluorine, are known to profoundly influence sugar conformation [9-18].  

Evidence exists that sugar pucker can influence both nucleotide incorporation and 

extension by polymerases [19-27].  Nucleotides that are constrained to a 3'-endo 

conformation - for example, 2'-deoxy-2'-fluororibo nucleotides - are preferentially 

incorporated by RNA polymerases [19].  Conversely, 2'-deoxy-2'-fluoroarabino 

nucleotides that prefer the 2'-endo conformation are preferentially incorporated by DNA 

polymerases, yet surprisingly, are very difficult to extend [23].  The physical basis for 

this selectivity has not as yet been established. 

Nucleoside analogues with chemically modified sugars (Figure 18) comprise an 

important class antitumor and antiviral agents [21-22, 25, 27], and existing evidence 

indicates that the activity of these analogues results largely from interfering with DNA 

synthesis following misincorporation. In general, the nucleoside analogues are 

transported across the cell membrane through the human nucleoside transporters (hNTs), 

including equilibrative (hENTs) and concentrative (hCNTs) nucleoside transporters and 

activated following intracellular phosphorylation to their respective monophosphate 

(MP), diphosphate (DP) and triphosphate (TP) forms which have multiple cellular targets 

[28-30]. In the triphosphate form, nucleoside analogues are incorporated into DNA and in 

the case of dFdC, araC and FIAU, act as chain terminators.  
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Several in vitro incorporation and extension studies have demonstrated that pol α, 

pol ε, and pol δ exhibit greater than 103-fold reduction in catalytic efficiency when 

extending  araC-, dFdC- and FIAU-terminated primers consistent with the chain 

termination model [31-33]. In addition, thermal denaturation studies of araC- and dFdC-

substituted synthetic oligonucleotides revealed that these analogues reduce DNA duplex 

melting temperatures by 4 – 5 °C [34, 35]. As such, reduced DNA thermal or 

thermodynamic stability following misincorporation of these nucleoside analogues might 

explain, in part, why polymerase extension of araC-, dFdC-, and FIAU-terminated 

primers is difficult.   
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Figure 18: Chemical structures of an important class of antiviral and anticancer 
nucleoside analogues used in this study. The nucleoside analogues were either converted 
to 5’-triphosphates that were used in nucleotide incorporation experiments or converted 
to phosphoramidites which were then incorporated onto the 3’-end (primer terminus) of 
oligonucleotides which were used in primer extension experiments.   
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For this study, we constructed oligonucleotide primers containing modified 

nucleosides at the 3'-end and also at an internucleotide position.  These primers were then 

coupled with complementary sequences to form replication forks in which the modified 

nucleosides were correctly paired with template dA.  With the series of 3'-end modified 

duplexes we were able to study the ability of Klenow (exo-), AMVRT and pol β to 

extend sugar-modified termini. In addition, the series of primers with modifications at an 

internucleotide position were used in thermal denaturation studies to investigate the 

thermodynamic consequence of extending a sugar-modified terminus. Overall, the studies 

performed here represent the first systematic study of the impact of sugar modifications 

on primer extension.   

 

Materials and Methods 

Solvents and Reagents 

All solvents were purchased from Sigma-Aldrich (St. Louis, MO). Thin layer 

chromatography (TLC) was performed on precoated silica gel 60 F254, 5x20 cm, 250 µm 

thick plates purchased from EMD (Gibbstown, NJ). Universal support III PS and all 

normal (unmodified) phosphoramidites (dC, dG, dA, dT) were purchased from Glen 

Research (Sterling, VA). The sugar-modified phosphoramidites, U2'F(ribo), araU, rU, and 

dU, are commercially available and were purchased from Glen Research (Sterling, VA). 

The remaining nucleoside analogues, U2'F(ara), 5IdU, dFdU, and FIAU, were synthesized 

according to established procedures as discussed below.     
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Synthesis of FIAU and dFdU Phosphoramidites (FIAU-P and dFdU-P) 

The phosphoramidite analogues of 5-iodo-(2'-deoxy-2'-fluoro-β-D-

arabinofuranosyl) uracil (FIAU) and 2’-deoxy-2’,2’-difluorouridine (dFdU) are not 

commercially available and were synthesized using established methods [36-38]. First, 

250 mg of FIAU (0.67 mmol)  was co-evaporated with anhydrous (anhyd.) pyridine (3 X 

10 mL) and the resulting oily residue was re-dissolved in 10 mL anhyd. pyridine. To this 

was added 4.10 mg of 4-dimethylaminopyridine (DMAP; 0.034 mmol, 0.05 molar equiv. 

of nucleoside), 131 μL of TEA (0.94 mmol, 1.4 molar equiv. of nucleoside)  and 276.4 

mg of 4,4’-dimethoxytrityl chloride (DMT-Cl; 0.82 mmol, 1.2 molar equiv. of 

nucleoside).  The reaction proceeded under an argon (Ar) atmosphere with magnetic 

stirring for 7 h.  The conversion of FIAU to the corresponding 5’-dimethoxytrityl 

protected derivative (5’-dimethoxytrityl-5-iodo-2’-deoxy-2’-fluoroarabinosyluracil, 

FIAU-DMT) was monitored by TLC developed in a solvent system of DCM and MeOH 

(95:5, v/v). The formation of FIAU-DMT was determined to be complete when the spot 

of RF 0.11 (FIAU) was no longer visible and the spot of RF 0.39 (FIAU-DMT) was 

observed.  Upon completion of the reaction, pyridine was removed under reduced 

pressure and the resulting oily residue was dissolved in DCM and extracted with 

saturated aqueous sodium bicarbonate (NaHCO3, pH 8). The organic layer was removed, 

washed with H2O and dried over anhyd. sodium sulfate (Na2SO4). Evaporation of the 

solvent gave an oily residue that was then dissolved in DCM and purified by open silica 

gel column eluting a gradient of 0 – 3% MeOH in DCM for 50 min. Fractions containing 

FIAU-DMT, as determined by TLC, were combined and the solvents were removed 

under reduced pressure to afford 245 mg (0.36 mmol) of FIAU-DMT, as a white (slightly 

yellow) foam, in 53% yield. FIAU-DMT was characterized by ESI-MS in negative ion 
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mode. The observed fragment ions were m/z = 673.18 (C30H27FIN2O7, FIAU-DMT); m/z 

= 303.07 (C21H19O2, free DMT protecting group). 

The FIAU phosphoramidite (5’-dimethoxytrityl-5-iodo-2’-deoxy-2’-

fluoroarabinosyluracil, 3’-[(2-cyanoethyl)(N,N,-diisopropyl)]-phosphoramidite, FIAU-P) 

was prepared by combining 220 mg of FIAU-DMT (0.33 mmol)  and 29.5 mg of 

diisopropylamine hydrotetrazolide (0.17 mmol, 0.5 molar equiv. of FIAU-DMT)  in 5 mL 

of anhyd. acetonitrile (MeCN) under an Ar atmosphere. To this mixture was added 

116.27 μL of 2-cyanoethyl-N,N,N’,N’-tetraisopropylphosphoramidite (109 mg, 0.36 

mmol, 1.1 molar equiv. of FIAU-DMT), dropwise, with continuous stirring for 3 h. The 

conversion of FIAU-DMT to FIAU-P was monitored by TLC developed in a solvent 

system of DCM, ethyl acetate (EtOAc) and TEA (55:40:5, v/v). The conversion of FIAU-

DMT to FIAU-P was determined to be complete when the spot of RF 0.64 (FIAU-DMT) 

was no longer visible and the spot of RF 0.89 (FIAU-P) was observed.  Upon completion 

of the reaction, 2 mL of TEA was added to the reaction mixture which was then extracted 

with an aqueous solution of NaCl (3 X 10 mL). The organic (top) layer was recovered, 

dried over anhyd. Na2SO4 and evaporated in vacuo. The resulting colorless residue was 

dissolved in a solution of Hexanes, EtOAc and TEA (89:10:1, v/v) and purified by open 

silica gel column eluting a gradient of 10 – 100% solvent A (EtOAc, TEA; 99:1, v/v) in 

solvent B (Hexanes, TEA; 99:1, v/v) for 1 hr. Fractions containing FIAU-P, as 

determined by TLC, were combined and evaporated in vacuo to give 148.6 mg (0.17 

mmol) of FIAU-P as a white (slightly yellow) foam, in 51% yield. The FIAU-P was 

characterized by ESI-MS. 



 

123 

Both the 5’-tritylated (dFdU-DMT) and phosphoramidite (5’-O-dimethoxytrityl-

2’-deoxy-2’,2’-difluorouridine, 3’-O-[(2-cyanoethyl)(N,N-diisopropyl)]-

phosphoramidite, dFdU-P) analogues of dFdU were synthesized and purified exactly as 

FIAU-DMT and FIAU-P (previously described), respectively, to give dFdU-P, as a white 

foam, in 47% yield.  

 

Enzymes and DNA Preparation 

Human DNA polymerase β (pol β) was obtained from Enzymax (Lexington, KY). 

Avian myeloblastosis virus reverse transcriptase (AMV-RT) and exonuclease-deficient 

Klenow fragment (exo-) polymerase were obtained from New England Biolabs (Ipswich, 

MA). For the polymerase incorporation assays, the primers were 5′-32P-end labeled by T4 

polynucleotide kinase (New England Biolabs) with [γ-32P]adenosine triphosphate (MP 

Biomedicals, Costa Mesa, CA) under conditions recommended by the enzyme supplier. 

Labeled oligonucleotides were purified using G25 Sephadex columns (Roche Applied 

Science, Indianapolis, IN). A 2-fold excess of the complementary template strand was 

then added to the labeled primer mixture, incubated at 95 °C for 5 min, and allowed to 

cool to room temperature gradually to create the oligo-primer duplex.  

 

Steady-State Kinetic Experiments (Polymerase Extension Assays) 

Polymerase β extension reactions were performed in pol β buffer (50 mM Tris-

HCl, pH 7.5, 10 mM MgCl2, 2mM dithiothreitol, 20 mM NaCl, 20 mM KCl, 200 µg/ml 

BSA, 1% glycerol) and increasing concentrations of dGTP at 37°C. AMV-RT extension 

assays were performed in AMV-RT buffer (5 mM NaCl, 60 mM Tris-HCl, 8 mM MgCl2, 
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and 0.5 mM dithiothreitol, pH 7.5) and increasing concentrations of dGTP at 37°C. 

Klenow (exo-) extension assays were performed in Klenow (exo-) buffer (50 mM NaCl, 

10 mM Tris-HCl, 10 mM MgCl2, and 1 mM dithiothreitol, pH 7.5) and increasing 

concentrations of dGTP at 37°C. In general, the reactions were initiated by the addition of 

radiolabeled primer-template substrate (5'-32P-labeled) to enzyme (pol β, AMVRT, or 

Klenow (exo-)) and dGTP. The radiolabeled DNA concentrations were 10-fold greater 

than polymerase concentrations and the dGTP concentrations ranged from 0.01 to 1000 

μM. Reactions (20 μL) were quenched at various times using equal volumes of “STOP” 

solution (98% formamide, 0.01 M EDTA, 1 mg/mL xylene cyanole, and 1 mg/mL 

bromophenol blue) followed by heating at 95 °C for 2 min. The reaction products were 

electrophoresed on denaturing polyacrylamide gels containing 20% acrylamide (19:1 

acrylamide:methylenediacrylamide) and 8 M urea. The size of the gel was 19.5 cm x 16 

cm x 0.4 cm and was run at 519 V for 2.5 – 3 h using a Hoeter PS 500 XT DC Power 

Supply (Amersheim Pharmacia Biotech). The gel was visualized and quantified using a 

Storm 860 PhosphorImager (Molecular Dynamics, Sunnyvale, CA) and ImageQuant 5.2 

software (GE Healthcare Bio-Sciences). 

 

Determination of kcat and Km 

The previously described polymerase assays were used to measure the extension 

kinetics (kcat and Km) for the extension of a modified primer terminus (3'-dN) correctly 

paired opposite template dA) at pH 7.5 (Figure 19A). A series of reaction mixtures 

containing 5'-32P-modified primer-template and increasing concentrations of dGTP were 

incubated for 0, 15, 30, 60, 120 or 180 sec. The amount of product formed by nucleotide  
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5'-32P-CTTTGCCCGAAX
TAGGAAACGGGCTTACAATAA

Primer

Template

dGTP

B.

Polymerase: Extension

12X/21A

A.

5'-CCGAAXGTTATT
GGCTTACAATAA

Primer

Template

Thermodynamics: Internucleotide

1 12

13193033

x = dU, araU, rU, 5IdU, dFdU, U2'F(ara), U2'F(ribo), FIAU  
 
Figure 19:  DNA substrates used in the present study for polymerase extension kinetics 
and thermodynamic studies. For polymerase kinetics studies, a 32P-labeled primer (12-
mer) was annealed to a 21-mer template. The steady-state kinetic parameters for (A) the 
extension of a sugar-modified primer terminus were measured and are presented in Table 
4. For the thermodynamic studies, synthetic duplexes with sugar-modified residues at (B) 
an internucleotide position were used.       
 
 
incorporation at the template target was determined by calculating the ratio of band 

intensity of the extended primer (DNAn+1) to the band intensity of the un-extended primer 

(DNAn). Initial velocities (Vo) were determined by plotting product formation versus 

time. The values of Vo were then plotted versus concentration and the data were fitted by 

nonlinear regression, using Prism version 5 (GraphPad Software, San Diego, CA; 

www.graphpad.com), to Equation 1,  

 

                                            ][
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v

m

tcat
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                                         Eq. 1 

 
where Vo is the initial velocity, kcat is the catalytic turnover number, [E]t is the total 

polymerase concentration, [dGTP] is the concentration of the next correct nucleotide, 2'-

deoxyguanosine-5'-triphosphate (dGTP), and Km is the Michaelis-Menten constant. 
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Thermal Denaturation Studies and Assessment of Duplex Melting Behavior 

Samples containing non-self-complementary oligonucleotides were prepared in 

buffer containing 0.1 M NaCl, 0.01 M sodium phosphate, and 0.1 mM EDTA (pH 7.0). 

Complexes were prepared by mixing equimolar amounts primer and template strands 

(Figure 19B) , and concentration dependent Tm measurements were conducted with a 

total strand concentration (CT) between 2 and 60 μM in cuvettes with path lengths 

between 1 and 10 mm. Molar extinction coefficients of oligonucleotides were calculated 

[39] to determine single-strand concentrations. Oligonucleotide melting temperatures 

(Tm) were determined using a Varian Cary 300 Bio UV-visible spectrophotometer 

(Varian, Walnut Creek, CA). Five temperature ramps were performed on each sample per 

run while the absorbance at 260 nm was observed: (1) from 12 to 90 °C at a rate of 0.5 

°C/min, (2) from 90 to 12 °C at a rate of 0.5 °C/min, (3) from 12 to 90 °C at a rate of 0.5 

°C/min, (4) from 90 to 12 °C at a rate of 0.5 °C/min, and (5) from 12 to 90 °C at a rate of 

0.5 °C/min. The sample was held for 3 min when the temperature reached 90 °C and for 

10min when it reached 12 °C, and then the next cycle was started. Data were collected at 

0.5 °C intervals while the temperature was monitored with a probe inserted into a cuvette 

containing only buffer. The Tm of each duplex was determined using Cary WinUV 

Thermal software (Varian). Theoretical Tm values for the control duplexes (A:dU) were 

determined [40, 41] and compared against values obtained using Cary WinUV Thermal. 

Thermodynamic parameters for non-self-complementary duplexes were calculated in two 

ways: (1) averages from fits of individual melting curves at different concentrations using 

the van’t Hoff calculation in Cary WinUV Thermal and (2) 1/Tm versus ln(CT/4) plots 

fitted to Equation 2 for the non-self-complementary sequences examined here: 



 

127 

                                   













H

SC

H

R

T
T

m 4
ln

1

                                      Eq. 2 

 

Both methods assume a two-state model, and ΔCp = 0 for the transition 

equilibrium. The two-state approximation was assumed to be valid for sequences in 

which the ΔH° values derived from the two methods agreed within 15% [41]. The ΔH° 

values derived from the two methods agree within 15%, indicating that the two-state 

approximation is valid for all other sequences employed in this study. 

 

Analysis of Thermodynamic Data 

Thermal and thermodynamic data obtained for the ensemble of oligonucleotides 

examined here were expressed as the corresponding differences by comparing the 

measured value for the substituted duplexes with the standard A:dU containing duplex for 

the 3'-end and internucleotide series. The corresponding values of ΔTm, ΔΔGo
37, ΔΔHo 

and ΔΔSo are presented in Table 5.  

  

Results 

Oligonucleotide Synthesis and Characterization 

Oligonucleotide resins and phosphoramidites of the normal DNA bases were 

obtained from Glen Research (Sterling, VA). Oligonucleotide synthesis was conducted 

with a Pharmacia gene assembler (GE Healthcare Bio-Sciences, Piscataway, NJ). In 

general, oligonucleotides containing sugar-modified residues were deprotected with 

concentrated aqueous ammonia (33% as NH3) at 60 °C for approximately 12 – 15 h, 

purified by HPLC, and characterized by MALDI-TOF-MS, as previously described [42, 
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43]. However, oligonucleotides containing C5-iodo-substituted residues (i.e. 5IdU and 

FIAU) were instead deprotected at room temperature for 24 h to prevent the formation of 

C5-amino side products as previously described [44, 45]. A synthetic approach [42], 

using Universal Support III PS [46, 47] available from Glen Research was used to insert 

dU, 5IdU, araU, rU, U2’F(ara), U2’F(ribo) FIAU and dFdU at the 3’-end (primer terminus) of 

synthetic duplexes. For each of the C2’-fluorine-substituted residues (i.e. FIAU, U2’F(ara), 

U2’F(ribo) and dFdU) it was necessary to increase the coupling times to 10 min.   

 

Determination of Steady-State Kinetic Parameters for Extension of 
Modified Primer Termini. 

For a modNTP analogue to persist in DNA following misincorporation, it must be 

extended by the addition of downstream nucleotides. Neither Klenow (exo-), AMVRT, or 

pol β preparations, used in this report, possess 3’5’ exonuclease activity that might 

remove a misincorporated modNTP analogue from the primer terminus. We therefore 

investigated the ability of Klenow (exo-), AMVRT, and pol β to extend a modNTP 

following misinsertion onto the 3'-end of a DNA strand. To accomplish this we designed 

12-mer primers with a single sugar-modified residue at the primer terminus (3’-dNMP) 

correctly paired with template dA (Figure 19; termed 12X/21A, where X is the modified 

analogue) and we examined the ability of Klenow (exo-), AMVRT, and pol β to add the 

next correct nucleotide, dGTP (Figure 19A). Gel electrophoresis followed by 

autoradiographic image analysis revealed that the enzyme gradually incorporated the 

dGTP against a modified terminus; as primer 12-mer was elongated to a 13-mer (Figure 

20A – H). Product (elongated primer) formation was plotted as a function of time to 

determine initial velocities. The initial velocities were then plotted as a function of 
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increasing dGTP concentration and a nonlinear least-squares fit of the data to the 

Michaelis-Menten rectangular hyperbola (equation 1), as previously described [48], was 

performed to obtain Km and kcat. The relative extension frequencies for pol β, AMVRT, 

and Klenow (exo-) extension of modified termini are summarized in Table 4 and were 

determined by (kcat/Km)3’-dN /(kcat/Km)3’-dU, where 3’-dN is the modified primer 

terminus paired opposite template dA and (kcat/Km)3’-dU
 is the catalytic efficiency for 

extension of the reference terminus, 3'-dU.  
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Figure 20: Polymerase β extension of sugar-modified primer termini paired opposite 
template A. Gel showing band intensities as a function of increasing concentrations of the 
next correct nucleotide, dGTP, inserted after 3’- A) dU, B) rU, C) 5IdU, D) dFdU, E) 
U2’F(ribo), F) FIAU, G) U2’F(ara) and H) araU modified termini.  
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Extension Kinetics for Primers Terminated by 3'-
ribonucleosides (3'-rN) 

Surprisingly, and contrary to expectations based on our incorporation studies 

(presented and discussed in Chapter 3 of this dissertation), we found that 3'-rU, 3'-

U2'F(ribo), and 3'-dFdU were good substrates, during the extension step, for each of the 

polymerases examined (Table 4, Figure 21) when compared with the reference 3'-dU. 

When using AMVRT, extension efficiencies for 3'-rU, 3'-dFdU, and 3'-U2'F(ribo) were 

modestly reduced by 1.1-, 1.2-, and 1.6-fold, respectively. Klenow (exo-), however, 

appeared to be more sensitive to sugar-modified termini as its extension efficiencies of  

3'-rU, 3'-dFdU, and 3'-U2'F(ribo) were reduced by 4-, 7.5-, and 13-fold, respectively. 

Significantly, when using pol β, the catalytic efficiency for dFdU- and U2’F(ribo)-

terminated primers was reduced by only 1.20 – 2.15-fold (Table 4, Figure 21). 

Interestingly, the extension efficiency for a rU-terminated primer was identical to the 

extension efficiency for the unmodified dU-terminated primer. Therefore, it appears that 

a ribonucleoside at the primer terminus does not significantly influence pol β primer 

extension. These results suggest that if a rNTP is misincorporated during the base 

excision repair (BER) process, it will be readily extended (buried in the DNA) by pol β. 

 

Extension Kinetics for Primers Terminated by 3'-
arabinonucleosides (3'-araNs) 

Although the araNTPs investigated in these studies were readily incorporated into 

DNA by Klenow (exo-), AMVRT, and pol β (presented and discussed in Chapter 3 of 

this dissertation), they were inefficiently extended. We found that AMV-RT extension 

efficiency of 3'-FIAU, 3'-U2'F(ara), and 3'- araU was reduced by 25-, 54-, and 130-fold, 

respectively. Pol β extension efficiency of 3'-FIAU, 3'-U2'F(ara), and 3'-araU was reduced 
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by 30-, 50-, and 140-fold, respectively (Table 4, Figure 21). However, Klenow (exo-) 

exhibited greater difficulty when extending the same residues. Extension efficiency for 

3'-FIAU, 3'-U2'F(ara), and 3'- araU was reduced by 180-, 400-, and 570-fold, respectively . 

The results reported thus far indicate that, perhaps paradoxically, Klenow (exo-), 

AMVRT, and pol β inefficiently incorporate rNTPs yet efficiently extends rN-terminated 

primers. However, the converse is observed with araNTPs in that they are readily 

incorporated by Klenow (exo-), AMVRT, and pol β yet an arabinonucleoside (araN)-

terminated primer is poorly extended (Table 4).   

When considering the 3'-rN/3'-araN pairs we observed that conversion of 3'-

U2'F(ara to a 3'-U2'F(ribo) resulted in a 34-fold increase in extension efficiency for AMV-RT, 

a 32-fold increase in extension efficiency for Klenow (exo-), and 23-fold increase in 

extension efficiency for pol β. Likewise, conversion of 3'-araU to 3'-rU resulted in a 120-

fold increase in extension efficiency for AMVRT, a 142-fold increase in extension 

efficiency for Klenow (exo-), and a 140-fold increase in extension efficiency for pol β. 

Thus, for Klenow (exo-), AMV-RT, and pol β, catalytic efficiency was recovered by 101 

– 102-fold when the terminus residue was converted from a 3'-araN to a 3'-rN. Together, 

these data indicate that the sugar pucker of the primer terminus significantly affects the 

ability of DNA polymerases to complete primer extension.  

 

Discussion 

The experimental goal of this study was to examine the role of constrained ribose 

geometry on polymerase extension kinetics. These properties might help to explain how 

the configuration of the nucleoside sugar at the primer terminus impacts the ability of a 



 

133 

DNA polymerase to continue synthesis following misincorporation of modNTP. The 

nucleoside analogues analyzed here represent an important class of compounds with 

demonstrated anticancer and antiviral properties. Our experimental approach was to 

incubate Klenow (exo-), AMVRT, and pol β with primers modified at 3'-end with several 

sugar-modified analogues, including 2’-fluoro- and 2’-OH-modification, constrained to 

the either the C2’-endo (DNA-like) configuration or C3’-endo (RNA-like) configuration 

(Figure 18), and examine how efficiently Klenow (exo-), AMVRT, and pol β extended 

them by incorporation of the next correct nucleotide dGTP (Figure 19A). The data 

reported here might facilitate an improved understanding of the actions of this class of 

nucleoside analogues. 

Klenow (exo-), AMVRT, and pol β readily extend primers terminated by 

ribonucleosides (3'-rNs). During the incorporation step we observed that Klenow (exo-), 

AMVRT, and pol β exhibited difficulty incorporating yet readily incorporated an araNTP 

(Table 4). Interestingly, the inverse was observed during the extension step, namely, we 

observed that pol β exhibited difficulty when extending a 3'-araN yet readily extended a 

3'-rNMP by incorporation of the next correct nucleotide, dGTP.  

During the extension step, the electron-rich 3'-O– of the primer terminus has to be 

appropriately positioned to perform a nucleophilic attack on the αP of the incoming NTP 

(phosphoryl transfer).  Klenow (exo-), AMVRT, and pol β extended 3'-rU with catalytic 

efficiencies that were nearly identical to the extension efficiencies for the reference 3'-dU 

(Table 4, Figure 21). Moreover, extension efficiency of 3'-dFdU and 3'-U2'F(ribo) was only 

reduced by 1.2 and 2.1-fold, respectively, when using AMVRT and 7.5- and 13-fold, 

respectively, when using Klenow (exo-) (Table 4). These data imply that the sugar 
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moieties of the 3'-rU, 3'-dFdU, and 3'-U2'F(ribo) residues are in the proper geometry and, 

consequently, their 3'-O– is well positioned to allow further catalysis. Previously, Batra 

V.K. et al were able to develop a high resolution structure for a precatalytic complex of 

pol β with a single-nucleotide gapped substrate whose primer terminus had an intact C3'-

OH, catalytic Mg2+ and a nonhydrolyzable dUTP analogue, 2'-deoxyuridine-5'-(α, β)-

imido triphosphate [49]. Several intriguing features were revealed regarding pol β 

catalyzed phosphoryl transfer: 1) the sugar geometry of the primer terminus is C3'-endo 

when catalytic metal ion sites are occupied by Mg2+; 2) when Mg2+ occupies metal 

binding site A it coordinates the 3'-O–, the αP of the incoming NTP, three aspartate 

residues and exhibits octahedral geometry. This coordination geometry, in turn, 

influences the geometry of the primer terminus; 3) the identity of the catalytic metal 

influences the geometry of the sugar pucker of the primer terminus; whereas Mg2+ 

induces a C3'-endo geometry, Na+ induces a conformation geometry that is closer to C2'-

endo; 4) the Mg2+-induced C3'-endo conformation of the primer terminus shifts the 3'-O– 

1.3 Å closer to both the catalytic metal and the αP when compared with the Na+-induced 

C2'-endo like terminus.  
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Table 4: Kinetic parameters (kcat, Km and kcat/Km) for extension of sugar-modified primer 
termini, paired opposite dA, using pol β, AMV-RT and Klenow (exo-) at pH 7.5.  
 

5'-CTTTGCCCGAAX
...GAAACGGGCTTAC...

Primer

dGTP

Template

Polymerase Template 3’-NMP Km (M) kcat (s-1) kcat/Km (M-1 s-1) 
Extension 
Efficiency 

Pol β A dU 7.47±0.10 X 10-6 2.31±0.17 X 10-3 3.09±0.23 X 102 1.00 

rU 2.13±0.48 X 10-5 6.60±0.90 X 10-3 3.10±0.82 X 102 1.00 

5IdU 9.05±0.42 X 10-6 2.66±0.35 X 10-3 2.94±0.41 X 102 9.52*10-1 

dFdU 2.11±0.07 X 10-5 5.44±0.19 X 10-3 2.58±0.12 X 102 8.35*10-1 

U2'F(ribo) 3.39±0.53 X 10-5 4.88±0.27 X 10-3 1.44±0.24 X 102 4.66*10-1 

FIAU 5.73±0.57 X 10-4 6.41±0.30 X 10-3 1.12±0.12 X 101 3.62*10-2 

U2'F(ara) 5.00±0.47 X 10-4 3.04±0.20 X 10-3 0.61±0.06 X 101 1.97*10-2 

araU 7.87±0.82 X 10-4 1.73±0.05 X 10-3 0.22±0.02 X 101 7.12*10-3 

AMV-RT A dU 7.27±0.23 X 10-7 3.39±0.40 X 10-3 4.66±0.57 X 103 1 

5IdU 6.98±0.17 X 10-7 3.10±0.23 X 10-3 4.44±0.35 X 103 9.53 X 10-1 

rU 6.63±0.29 X 10-7 2.79±0.23 X 10-3 4.21±0.39 X 103 9.03 X 10-1 

dFdU 4.57±0.15 X 10-7 1.80±0.21 X 10-3 3.94±0.48 X 103 8.45 X 10-1 

U2'F(ribo) 3.39±0.22 X 10-7 9.87±0.16 X 10-4 2.91±0.51 X 103 6.24 X 10-1 

FIAU 5.43±0.30 X 10-6 1.02±0.10 X 10-3 1.88±0.21 X 102 4.03 X 10-2 

U2'F(ara) 9.65±0.14 X 10-6 8.34±0.10 X 10-4 8.64±0.12 X 101 1.85 X 10-2 

araU 2.48±0.12 X 10-5 8.83±0.23 X 10-4 3.56±0.19 X 101 7.64 X 10-3 

Klenow (exo-) A dU 3.71±0.12 X 10-8 3.03±0.10 X 10-3 8.17±0.38 X 104 1 

5IdU 5.12±0.27 X 10-8 1.96±0.13 X 10-3 3.83±0.32 X 104 4.69 X 10-1 

rU 5.87±0.11 X 10-8 1.19±0.16 X 10-3 2.03±0.28 X 104 2.48 X 10-1 

dFdU 7.64±0.23 X 10-8 8.31±0.02 X 10-4 1.09±0.03 X 104 1.33 X 10-1 

U2'F(ribo) 9.03±0.52 X 10-7 5.80±0.21 X 10-4 6.42±0.44 X 103 7.86 X 10-2 

FIAU 7.15±0.42 X 10-7 3.26±0.37 X 10-4 4.56±0.58 X 102 5.58 X 10-3 

U2'F(ara) 1.42±0.14 X 10-6 2.85±0.24 X 10-4 2.01±0.26 X 102 2.46 X 10-3 

araU 1.53±0.17 X 10-6 2.17±0.24 X 10-4 1.42±0.22 X 102 1.74 X 10-3 

 
a. Extension efficiency, is defined as (kcat/Km)3’-dNMP /(kcat/Km)3’-dUMP, where 3’dNMP 
is the modified primer terminus paired opposite template dA.  
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Thus, catalytic Mg2+ induces additional conformational changes within the pol β 

active site leading to optimal positioning of the 3'-O– necessary for efficient phosphoryl 

transfer during the extension step. Consequently, this optimal positioning is brought 

about when the sugar pucker of the primer terminus is inverted to C3'-endo. The 

unencumbered extension of the 3'-rU-, 3'-dFdU-, and 3'-U2'F(ribo)-terminated primers 

examined (Table 4) is in support of primer terminus sugar pucker inversion at the 

polymerase active site. Indeed, X-ray crystal structures for DNA at the active sites of 

bacteriophage T7, thermostable Bacillus stearothermophilus, and Thermus aquaticus 

(Taq) DNA polymerases reveal that the base pairs at the primer terminus exhibit a 

widened minor groove, a decreased helical twist, and C3'-endo configured sugars [50-

52], suggesting that primer terminus sugar pucker inversion is commonly employed by 

DNA polymerases. Further, Arnold, E. et al have solved the crystal structure for human 

immunodeficiency virus type 1 (HIV-1) reverse transcriptase (HIV-RT) with a double-

stranded DNA (dsDNA) template-primer [53, 54]. This structure revealed that the base 

pairs of dsDNA at the reverse transcriptase active site adopted a conformation like A-

form DNA, whereas the base pairs outside of the active site conformed to B-form DNA 

geometry. This observation is reasonable when one considers that the polymerase active 

site is hydrophobic when the polymerase-primer/template-dNTP complex is in the 

"closed" form and that under hydrophobic conditions (i.e. reduced water activity) DNA is 

known to conform to A-form geometry [55, 56].  Thus, in the context of the hydrophobic 

active site the preferred nucleoside sugar geometry at the primer terminus is predicted to 

be C3'-endo (A-form). Thus, an rN-terminated exists in the preferred extension geometry 

and, consequently, a lower energy penalty is incurred when aligning its 3'-O– for 
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nucleotidyl transfer. It is apparent that the incorporation step is critical to avoid rNTP 

accumulation in DNA since once incorporated, a ribonucleoside is readily extended and 

buried into the growing DNA strand.   
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Figure 21: A log plot comparing the extension efficiencies for sugar-modified primer 
termini using the following polymerases: polymerase β (black-filled bars), AMV reverse 
transcriptase (open-bars), and Klenow (exo-) (gray-filled bars). The base line represents 
a catalytic efficiency of 102 M-1 s-1. The catalytic efficiencies are tabulated in Table 4.   
 
 

  

Klenow (exo-), AMVRT, and pol β inefficiently extend primers terminated by 

arabinonucleosides (3'-araNs). It has been observed that several DNA polymerases 

including DNA pol α-Primase, Escherichia coli polymerase I (Klenow fragment) (Pol I), 

T4 polymerase and avian myeloblastosis virus reverse transcriptase (AMVRT) [20, 21, 

26, 57] exhibit difficulty when extending araC-terminated primers. Consistent with 

literature, we observed that AMV-RT extension efficiency of 3'-FIAU, 3'-U2'F(ara), and 3'- 
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araU was reduced by 25-, 54-, and 130-fold, respectively. Pol β extension efficiency of 

3'-FIAU, 3'-U2'F(ara), and 3'-araU was reduced by 30-, 50-, and 140-fold, respectively 

(Table 4, Figure 21). However, Klenow (exo-) exhibited greater difficulty when 

extending the same residues. Extension efficiency for 3'-FIAU, 3'-U2'F(ara), and 3'- araU 

was reduced by 180-, 400-, and 570-fold, respectively .The exact mechanism by which an 

araN-terminated primer impedes further extension is not known, though, several 

structural studies on araN-substituted duplexes likely offer insight into the difficulty 

polymerases exhibit when elongating araN-terminated primers. These studies are 

discussed below.   

Gmeiner and co-workers have investigated the structural consequences of araC 

substitution in DNA using NMR spectroscopy and temperature dependent UV 

spectroscopy [35, 58]. These studies revealed that substitution of araC in the DNA duplex 

region (DDR) of a model Okazaki fragment: 1) resulted in reduced base stacking in 

adjacent purines located 5' of the site of substitution in the DNA strand, 2) decreased the 

melting temperature of the duplex by 4.4 °C, and 3) resulted in a pronounced 19° increase 

in the helical bend at the site of substitution. This increase in helical bend is likely the 

result of the C2'-OH group of araC projecting into the major groove of the DNA helix 

[59, 60], sterically interacting with the C5-CH3 and H6 atoms of the dT residue 

immediately 3' of the araC substitution, and pushing the dT base further away from the 

araC base causing destacking between the two bases. Beardsley and co-workers [61]  also 

investigated the impact of araC substitution on DNA dodecamer structure and formation. 

In the sequence used in these studies a dG residue is immediately 3' of the araC 

substitution. It was determined that the C2'-OH of the araC residue was within ~2.5 Å of 
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the guanine base of dG. This would have the effect of pushing against the dG residue 

causing a loss of interstrand stacking. Together, these studies imply that  the C2' 

substituent of an arabinonucleoside is in close contact with the entire base moiety of the 

3' nucleoside not just the C5/C6 substituent of the 3' base.  

These findings likely have implications regarding our extension results. In the 

extension model investigated in this report, AMVRT, Klenow (exo-), and pol β extended 

a modified primer by incorporation of dGTP (Figure 19B). It is predicted, therefore, that 

stacking dG on the 3'-araU led to the C2'-OH of 3'-araU sterically interacting with, and 

pushing against, the base moiety of dG which resulted in increased buckling in the 

araU12-dA19 base pair. This would have the effect of reducing van der Waals 

interactions between the araU12 base and the 3' adjacent dG base (Figure 19B). 

Displacement of the araU12-dA19 base pair from its original position would have the 

domino effect of displacing the adjacent dA11-dT18 base pair and so on, consequently, 

increasing helical bend, reducing stacking interactions, and destabilizing the duplex. Loss 

of stacking interactions between the terminal 3'-araU and the 3'-dG could affect the 

stabilization of the dGTP when araU is at the primer terminus. We therefore proposed 

that reducing the steric size of the C2' substituent of the 3'-araN would lessen steric 

interactions between it and the base of the incoming dGTP and avoid duplex 

destabilization resulting from increased helical bend and interstrand destacking at the site 

of substitution. Consistent with these expectations, conversion of the C2'-OH to a C2'-F 

resulted in a 3 – 5-fold recovery in extension efficiency with pol β, a 3-fold recovery in 

extension efficiency with Klenow (exo-), and 2 – 5-fold recovery in extension efficiency 
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with AMVRT (Table 4), implying that the smaller fluorine group is less detrimental to 

duplex formation and stability. 

The conformational flexibility of the 3'-araN sugar may also impact polymerase 

extension efficiency. Damha et al [62, 63] observed that 2'-deoxy-2'-

fluoroarabinosyladenine (2'F(ara)A), when incorporated into DNA/RNA hybrid duplexes, 

was capable of adopting RNA compatible sugar pucker conformations, including C4'-

endo. Conversely, arabinosyladenine (araA) was incapable of exploring as much 

conformational space and generally maintained DNA compatible conformations 

including C1'-exo. It was reasoned that this inability to explore conformational space was 

the result of araA being a more "rigid" molecule than 2'F(ara)A and that this rigidity was 

derived from intramolecular hydrogen bonding between the C2'-OH and H8 group of the 

nucleobase that rendered araA unlikely to adopt a C3'-endo or A-form like conformation 

[64]. Indeed, X-ray crystal studies of araC-substituted decamers indicate that the C2'-OH 

of araC is able to form stable hydrogen bonds with the H6 of its own cytosine base and 

the C2'-H and C4'-H of its own sugar [59]. In addition, several lines of research indicate 

that a hydrogen bond between the C2'-OH and C5'-oxgen also contributes to the rigidity 

of C2'-endo arabinosides [60, 65, 66]. Taken together, these structural studies imply that 

the arabino C2'-OH  is close enough in space to stably hydrogen bond with its own sugar 

and base moieties thus "locking" the sugar in a C2'-endo conformation and predisposing 

it to a B-form-like geometry.    

Again, these observations likely have implications regarding the Klenow (exo-), 

AMVRT, and pol β extension models investigated in this report. As previously discussed 

in Chapter 3 of this dissertation, Klenow (exo-), pol β, and AMVRT (and other DNA 
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polymerases) convert the primer terminus sugar pucker from C2'-endo to C3'-endo and in 

doing so the terminus 3'-O– is geometrically positioned for in-line attack on the αP of the 

incoming modNTP. In addition the desolvated hydrophobic active site will likely favor 

A-form nucleoside sugar conformations [55, 56]. The 3'-araU is predicted to be the most 

rigid of the 3'-araNs investigated in this report and this increased rigidity likely rendered 

the 3'-araU more resistant to sugar pucker inversion at the active sites of Klenow (exo-), 

AMVRT, and pol β. Thus, the 102-fold reduction in the extension efficiency of 3'-araU 

exhibited by each of the polymerases examined reflects the greater energetic penalty 

incurred by Klenow (exo-), AMVRT, and pol β to invert the sugar pucker of 3'-araU to a 

suitable C3'-endo-like conformation for the extension step likely resulting in reduced 

phosphodiester bond formation. On the other, 3'-rU exists in the preferred geometry, as 

such, a lower energy penalty is incurred with extending a primer terminated by rU (Table 

4, Figure 21).  

Net thermodynamic differences between 3'-end-modified duplexes and internally 

modified duplexes might explain why polymerase exhibit difficulty when extending sugar-

substituted primer termini. One of the paradoxical findings of these studies is that 

araNTPs are readily incorporated by DNA polymerases, yet, difficult to extend. 

Conversely, rNTPs are difficult to incorporate, yet, readily extended. In our previous 

report [42] we observed that the U2'F(ribo) substitution was more destabilizing, with larger 

magnitude ΔΔH° (enthalpy) and ΔΔS° (entropy) when on the 3'-end, relative to the 

internucleotide linkage (Table 5). 

 



 

 

142 

 

 

 

 

 

 

Table 5: Experimental thermodynamic parameters of duplex formation. The values include measured free energy of duplex 
formation (ΔG°37), enthalpy (ΔH°), entropy (ΔS°) and melting temperature with a strand concentration of 28 µM (Tm 28 µM). 
The thermodynamic parameters for the A:dU oligonucleotide was used as the reference when calculating ΔΔG°37, ΔΔH°, and 
ΔΔS° in the 3’-terminal position. Measured free energy, enthalpy and entropy differences that exceed experimental error are 
indicated in bold.   
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G°37 

(kcal/mol) 
G°37 
(kcal/mol)

Tm 28µM 
(°C) 

Tm 28µM 
(°C) 

H° 
(kcal/mol) 

H° 
(kcal/mol)

S° 
(cal mol-1 K-1)

S° 
(cal mol-1 K-1)

 

3'-Terminal 

 

A:dU -9.5±0.2 - 49.4±0.3 - -89.0±4.6 - -251.2±14.2 - 

A:U2'F(ara) -9.5±0.2 0.0±0.3 50.3±0.1 0.9±0.3 -84.8±3.2 4.2±5.6 -238.4±9.7 12.8±17.2 

A:U2'F(ribo) -9.0±0.2 0.5±0.3 49.2±0.2 -0.2±0.4 -79.9±3.9 9.1±6.0 -224.3±12.2 26.9±18.7 

A:dFdU -9.5±0.2 0.0±0.3 51.0±0.4 1.6±0.5 -85.5±3.3 3.5±5.7 -240.4±10.1 10.8±17.4 

A:araU -9.4±0.1 0.1±0.2 49.8±0.4 0.4±0.5 -85.9±2.6 3.1±5.3 -242.1±7.8 9.1±16.2 

A:rU -9.2±0.1 0.3±0.1 49.2±0.2 -0.2±0.4 -83.7±2.2 5.3±5.1 -235.7±6.5 15.5±15.6 

A:5IdU -9.4±0.2 0.1±0.3 50.2±0.2 0.8±0.4 -80.3±3.9 8.7±6.1 -224.5±12.2 26.7±18.7 

A:FIAU -9.7±0.1 -0.2±0.2 51.3±0.2 1.9±0.4 -85.3±3.6 3.7±5.8 -238.9±11.2 12.3±18.1 

 

Internucleotide 

 

A:dU -8.1±0.2 - 43.8±0.2 - -93.2±5.1 - -271.4±14.9 - 

A:U2'F(ara) -8.0±0.1 0.1±0.2 43.8±0.3 0.0±0.4 -85.4±3.0 7.8±5.9 -245.7±9.5 25.7±17.6 

A:U2'F(ribo) -7.8±0.1 0.3±0.2 42.9±0.1 -0.9±0.2 -86.7±3.5 6.4±6.2 -250.7±11.1 20.7±18.6 

A:dFdU -6.9±0.1 1.2±0.2 39.5±0.1 -4.3±0.2 -84.7±2.4 8.5±5.6 -247.5±7.5 24.0±16.7 

A:araU -7.3±0.1 0.8±0.2 40.2±0.1 -3.6±0.2 -86.1±2.7 7.1±5.8 -250.8±8.5 20.6±17.2 

A:rU -7.2±0.1 0.9±0.2 41.0±0.1 -2.8±0.2 -82.6±4.2 10.6±6.6 -239.5±13.6 31.9±20.2 

A:5IdU -8.0±0.2 0.1±0.3 43.7±0.2 -0.1±0.3 -85.3±3.4 7.9±6.1 -245.3±10.8 26.1±18.4 

A:FIAU -8.1±0.1 0.0±0.3 44.8±0.2 1.0±0.3 -85.9±3.7 7.3±6.3 -246.7±11.6 24.8±18.9 
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The impact of the sugar constraint on ΔΔS° has been attributed to a 

conformational preorganization, reducing the net conformational entropy change upon 

duplex formation [12]. The impact on ΔΔH° would be attributed to the constrained sugar 

preventing the formation of the most favorable base stacking geometry. In contrast, 

U2'F(ara) was substantially less destabilizing than U2'F(ribo) on the 3'-end. However, upon 

comparison of the impact of U2'F(ara) substitution on the 3'-end to the internucleotide 

position, U2'F(ara) was more destabilizing in the internucleotide position than on the 3'-end. 

Put another way, these results predict that the U2'F(ara) nucleoside analogue will be more 

destabilizing when converted to an internucleotide position through polymerase extension 

and, consequently, will be difficult to extend. On the other hand, the U2'F(ribo) analogue is 

less destabilizing at an internucleotide position and will likely be extended by a 

polymerase. Based on the thermodynamic parameter ΔΔH°, the extent to which a 

modified analogue will increase or decrease duplex stability when converted to an 

internucleotide position can be computed by taking the difference between ΔΔH° for 

duplex formation with the modified nucleoside at an internucleotide position (ΔΔH°Intern) 

and ΔΔH° or for duplex formation with the modified  nucleoside at the 3'-terminal 

position (ΔΔH°3'-Terminal). Thus, positive values of ΔΔH°Intern. - ΔΔH°3'-Terminal  would 

predict that converting the modified nucleoside analogue to an internucleotide position 

would decrease duplex stability. Conversely, negative values of  ΔΔH°Intern. - ΔΔH°3'-

Terminal  would predict that converting the modified nucleoside analogue to an 

internucleotide position would increase duplex stability. The same analysis can be 

performed for values of ΔΔS° (Table 6) 
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Table 6: Comparison of the differences in enthalpy (ΔΔH°) and entropy (ΔΔS°) between 
3'-terminal substituted duplexes and duplexes with a substitution at an internucleotide 
position. The experimental thermodynamic parameters of duplex formation, namely, the 
measured free energy of duplex formation (ΔG°37), enthalpy (ΔH°), entropy (ΔS°) and 
melting temperature with a strand concentration of 28 µM (Tm 28 µM) are listed in Table 5.  
 

 
ΔΔH°Intern. - ΔΔH°3'-Terminal 

(kcal/mol) 
ΔΔS°Intern - ΔΔS°3'-Terminal 

(cal mol-1 K-1) 
 
A:dU - - 
A:U2'F(ara) +3.6a +12.9 
A:U2'F(ribo) -2.7b -6.2 
A:dFdU +5.0 +13.2 
A:araU +4.0 +11.5 
A:rU +5.3 +16.4 
A:5IdU -0.8 -0.6 
A:FIAU +3.6 +12.5 

 
 
a. Positive values of ΔΔH°Intern. - ΔΔH°3'-Terminal and ΔΔS°Intern. - ΔΔS°3'-Terminal predict that 
converting the modified nucleoside analogue to an internucleotide position would 
decrease duplex stability. 
b. Negative values of ΔΔH°Intern. - ΔΔH°3'-Terminal and ΔΔS°Intern. - ΔΔS°3'-Terminal predict that 
converting the modified nucleoside analogue to an internucleotide position would 
increase duplex stability.   
 

 

Upon computing values of ΔΔH°Intern. - ΔΔH°3'-Terminal and ΔΔS°Intern. - ΔΔS°3'-

Terminal (Table 6), it is apparent that each of the arabinonucleosides (FIAU, U2'F(ara), araU) 

yield positive values. As such, one would predict that these analogues would be difficult 

to extend. Consistent with these predictions we observed that Klenow (exo-), AMVRT, 

pol β exhibited difficulty when extending 3'-FIAU, 3'-U2'F(ara), and 3'-araU (Table 4, 

Figure 21). When these same calculations are performed for duplexes containing 5IdU, 

small negative values are obtained for ΔΔH°Intern. - ΔΔH°3'-Terminal and ΔΔS°Intern. - ΔΔS°3'-

Terminal (Table 6). As such, one would predict that 3'-5IdU would be extended nearly as 

well as 3'-dU. The kinetic results for pol β and Klenow (exo-) extension of 5IdU are 
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consistent with this prediction. Finally, this model correctly predicts that 3'-U2'F(ribo) will 

be readily extended as it yields large negative values of ΔΔH°Intern. - ΔΔH°3'-Terminal and 

ΔΔS°Intern. - ΔΔS°3'-Terminal (Table 6). However, whereas this thermodynamic model 

correctly predicts the extension behavior of six out of eight nucleoside analogues 

investigated (dU, 5IdU, U2'F(ara), U2'F(ribo), araU, and FIAU) it does not correctly predict 

the extension behavior the remaining two (dFdU, rU). Whereas our thermodynamic 

model predicts that 3'-dFdU and 3'-rU would be poorly extended, our kinetic data 

demonstrates that they are readily extended. Thus, additional factors, perhaps unique to 

dFdU and rU and their interaction with the polymerase active site, take precedence over 

net thermodynamic differences during the extension step. 

   

Concluding Remarks. 

We found that surprisingly Klenow (exo-), pol β, and AMVRT extended a 3'-rN 

more efficiently than a normal 3'-dN or modified 3'-araN. However, the opposite was 

observed during the incorporation step, namely, each of the three polymerases 

inefficiently incorporated a rNTP yet readily inserted an araNTP opposite template dA. 

Our data suggests that selection criteria for nucleotide incorporation might be different 

from that required for primer extension . Taken together, these data directly demonstrate 

that sugar modification impacts duplex stability and, consequently, polymerase  extension 

ability.  Whereas rigid geometrical constraints imposed by the polymerase active site are 

believed to be the primary contributor to sugar fidelity at the insertion and extension 

steps, we also present a basic thermodynamic model for sugar discrimination. Consistent 

with expectations based on kinetic data, arabinonucleosides form the most stable 



 

147 

duplexes when incorporated onto the primer terminus. However, those same 

arabinonucleosides are more thermodynamically destabilizing when converted to an 

internucleotide position, explaining, in part, why polymerases exhibit difficulty extending 

araNTPs following incorporation. We also reported that, significantly, the deaminated 

metabolites of Gemcitabine (dFdC) and Cytarabine (araC) reduce duplex melting 

temperatures by ~ 4 °C when located at an internucleotide position.   FIAU- and, 

surprisingly, dFdU-terminated primers increase duplex stability by ~2 °C. The increased 

duplex thermal stability resulting from misincorporation of FIAU and dFdU (or the 

parent compound dFdC) onto the 3'-end likely allows these analogues to elude 

exonuclease editing mechanisms.  
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