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ABSTRACT OF THE DISSERTATION 

Kinetically Controlled Synthesis of Triblock Copolymer Stabilized 
Gold Nanoparticles 

 
by 
 

Theodore Saleem Sabir 
 

Doctor of Philosophy, Graduate Program in Biochemistry 
Loma Linda University, June 2012 

Dr. Christopher C. Perry, Chairperson 
 

Concerns for the environmental and economic impact of organic solvents in gold 

nanoparticle synthesis have motivated the search for more environmentally benign 

alternatives. One viable approach is the synthesis of AuNPs from tetrachloroauric(III) 

acid (HAuCl4) using triblock copolymers (TBPs). However, a major challenge of using 

TBPs is the heterogeneous nature of the formed nanocrystals. Establishing control over 

AuNP size and shape requires a detailed mechanistic understanding of precursor 

reduction and nanoparticle growth. By using mixtures of TBPs (L31 and F68), a more 

flexible method to tune AuNP size and shape is demonstrated. This is achieved by 

adjusting the TBP/Au(III) ratio and the concentrations of seed citrate-stabilized AuNPs. 

Kinetic models are used to explain why L31 inhibits the rate of AuNP formation and 

growth. Experimental evidence of sigmoidal growth kinetics, early time bimodal gold 

nanoparticle size distributions, and polycrystallinity suggest that aggregative AuNP 

growth is an important mechanism. 
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CHAPTER ONE 

INTRODUCTION 

 
The field of nanoscience involves the study of objects and systems where at least 

one dimension is in the range of 1-100 nm.1  At this level, objects and systems have 

length scales in the size range needed to define the physical properties of materials.2 The 

term nanotechnology, as defined by NASA, refers to the “creation of functional 

materials, devices and systems through control of matter on the nanometer scale (1-100 

nm), and exploitation of novel phenomena and properties (physical, chemical, 

biological)”.3 The field of nanotechnology branches into areas of science such as 

biochemistry, organic chemistry, molecular biology, physics and surface science. 

Nanotechnology is currently one of the fastest growing technologies with substantial 

impacts in the development and design of a host of novel products.  Some products may 

even be revolutionary or paradigm-shifting in their applications.  Current research in 

nanotechnology is driven by the desire to find new materials with unique properties at the 

nanoscale.  An example of such an attempt is the nanocar (Figure 1.1).4 These efforts are 

exploiting the unique characteristic phenomena that are governed by the principles of 

quantum mechanics. 
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Figure 1.1 An example of a nanocar.4 
 

   

The advancements in synthetic chemistry enable the preparation of small 

molecules with specific useful structures.  Interfacial and colloidal sciences are producing 

a growing selection of strategies to construct materials.  This, in its broadest terms, 

represents nanochemistry, a branch of synthetic chemistry that is used to make nanoscale 

building blocks of varying sizes, shapes, compositions, structure, charge and 

functionality. Such structures cover the range from carbon nanostructures (nanotubes, 

nanoparticles, fullerenes and nanorods)5,6,7,8,9 to DNA origami.10  

The intense focus on nanomaterials is based upon the fact that fundamental 

physical and electronic properties are substantially different at this scale. In particular, the 

high surface-to-volume ratio imparts high reactivity potential for catalysis or sensor 

applications.11 The volume of an object V  l3, (where l is the characteristic atomic 

length) decreases with scale more rapidly than does the surface area (S  l2) : S/V  l-1. 

This scaling dependence is reflected in the observed changes of certain material 

properties, such as the melting point for example.3 Furthermore, such changes in material 

properties relative to bulk characteristics can be modified without change in chemical 

composition (e.g. magnetization, optical properties (color), melting point, hardness, etc.). 

The changes in the bulk properties such as decreased melting point, solubility, or 
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increased hardness are related to the higher surface energy due to higher density of 

surface atoms.  Similarly, the size tunable electronic properties are rationalized by 

quantum-confinement effects.  Generally, the nanomaterials may be categorized in terms 

of quantum confinement12 or in terms of dimensionality13 (Table 1.1).  

 

Table 1.1 Examples of reduced-dimensionality systems.12 

 
3D confinement (0-D) 2D confinement (1-D) 1D confinement (thin films) (2-D) 

Fullerenes 

Colloidal particles 

Nanoporous silicon 

Activated carbons 

Nitride and carbide precipitates in 
high-strength low-alloy steels 

Semiconductor 

Semiconductor quantum dots 

Quasi-crystals 

Carbon nanotubes and 
nanofilaments 

Metal and magnetic nanowires 

Oxide and carbide nanorods 

Semiconductor quantum wires 

Nanolaminated materials 

Grain boundary films 

Clay platelets 

Semiconductor quantum wells 

Langmuir-Blodgett films 

Grapheme/grapheme oxide films 

 

For clarity, additional terms are sometimes employed: nanoparticle, nanocluster, 

nanopowder, colloid, nanocrystal, and quantum dot.  Nanoparticles are defined as 

amorphous or semi-crystalline 0-D nanostructures with dimensions larger than 10 nm, 

and a relatively large (15%) size dispersion. For amorphous/semi-crystalline 

nanostructures smaller in size (i.e., 1–10 nm), with narrow size distribution, the term 

nanocluster is more often used.  In contrast, colloidal materials are more polydisperse 

and less well characterized (Table 1.2). The agglomeration of noncrystalline 

nanostructural subunits should best be termed a nanopowder. Any nanomaterial that is 

crystalline is referred to as a nanocrystal. A special case of nanocrystal that is composed 

from semiconductor material is called a quantum dot (QD).13 
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A Table 1.2 Comparison of 0-D nanoarchitectures with traditional colloids.14 
 

Nanoparticles/nanoclusters Colloids 

  
Size: 1–100 nm (nanoclusters: 1–10 nm) Typically >10 nm 

Homogeneous molecular composition >15% Size 
dispersion (less polydispersity for nanoclusters 

relative to nanoparticles) 

Poorly defined compositions >15% Size 
dispersion 

Reproducible synthesis (control over size, shape, 
and composition) 

Nonreproducible, uncontrollable morphology/ 
composition 

Reproducible physical properties and catalytic 
activity 

Nonreproducible properties 

Soluble in polar/nonpolar organic solvents Typically only soluble in polar solvents 
Contain clean surfaces Contain surface-adsorbed species such as —OH, 

—X, —OH2, etc. 
   

 

Nanoparticles 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2  Density of States.  Upper panel: Schematic 
illustration comparing the density of states of metal with 
that of semiconductor clusters. Lower panel: Density of 
states for a semiconductor as a function of dimension.  
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Optical Properties of Nanoparticles 

The size and shape of noble metal (Au, Ag) nanoparticles affect the color of their 

appearance.15 Gold nanoparticle spheres in a polar solvent have a characteristic red color, 

while silver nanoparticle spheres appear yellow.16 The origin of the color, is not due to 

quantum confinement as in semiconductor nanocrystals, as there is no bandgap between 

valence and conduction bands, and the energy states form a continuum analogous to bulk 

metal (Figure 1.2).17 Theoretical treatments have shown that the color is due to the 

collective oscillation of the free electrons in the conduction band, known as surface 

plasmon resonance (SPR) or localized surface plasmon resonance (LSPR).2, 15b This 

oscillation frequency is usually in the visible region for gold and silver. In contrast to 

quantum dots where the size variation alters the optical properties of the nanoparticles, 

when metal nanoparticles are enlarged, the optical properties are altered only slightly. 

However, if anisotropy with respect to shape and size is involved, such as is present in 

nanorods when compared to nanospheres, the optical properties can change significantly.  

 
 

 

 Figure 1.3 Plasmon Resonance.  Schematic of plasmon oscillation for a
sphere, showing the displacement of the conduction electron charge
cloud relative to the nuclei.2 
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What is the origin of the LSPR? As the mean free path of an electron is ~50 nm 

for gold and silver, there will be minimal electron scattering from the bulk particles 

which are below this in size. Thus, light-matter interactions will occur at the surface and 

when the wavelength of light is much larger than the nanoparticle size, standing 

resonance conditions are produced. Light in resonance with the conduction electron 

plasmon frequency will cause oscillations of the metal conduction electrons (Figure 1.3). 

This resonance condition is found to be dependent upon the shape, size, and dielectric 

constants of both the metal and the surrounding medium.2 The effects of shape and size 

can be explained by the change in the electric field density at the surface resulting in a 

change in the apparent cross-sections of nanoparticles and their optical properties 

including absorption and scattering.  

The surrounding dielectric on the NP surface will affect the oscillation frequency 

due to its effects on the ability of the surface to accommodate electron charge density 

from the nanoparticles. This includes the solvent and the capping material. The capping 

material, however, is more important in determining the plasmon resonance shift. Thus, 

chemically bonded molecules can be detected by observing the change they induce in the 

electron density on the surface, i.e., SPR shift.  This is the basis for the use of noble metal 

nanoparticles as sensitive sensors. The SPR can be calculated analytically in the case of 

spherical particles by solving Maxwell’s equations for small spheres interacting with an 

electromagnetic field. Modern approaches use numerical methods such as discrete dipole 

approximation (DDA) to calculate SPR for arbitrary nanoparticle geometries.18   

The photochemistry or “the chemistry of light” is an important investigative study 

tool to understand the behavior of molecules.  Light introduces a minimal perturbation 
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during observations and readily transmits through space. Technical advances in light 

sources such as optical filters and photon counting detectors are employed in optical 

imaging systems.  Using sensitive imaging systems we can quantitatively analyze a 

variety of chemical reactions on the molecular level or with respect to molecular 

aggregates.  The nanoparticle surface properties are easily affected by particle 

morphologies and surrounding dielectric environments.19 

 

Gold Nanoparticles 

 Gold (Au) is historically regarded as the elite element.  It was one of the first 

precious metals to be discovered and studied.  Colloidal gold held an important role in 

medicine as early as the fourth and fifth centuries when Chinese and Indian physicians 

used it to treat patients.  Then during the Middle Ages, European alchemists studied 

gold’s medicinal uses and the possibility of making gold out of other metals.20  Alchemist 

Paracelsus and his contemporary Giovanni Andrea used Aurum potable to treat mental 

illness, ulcers, epilepsy and diarrhea.20a, 21  In 1618 philosopher and doctor of medicine 

Franscisco Antonii published a book that contains information on the preparation of 

colloidal gold and its medical applications.20b  Colloidal gold continued to be used to treat 

various diseases including cancer.22,21  With advancing technology new applications for 

colloidal gold or AuNPs emerged including catalytic processes, delivery of low and high 

molecular weight drugs, cellular delivery of bio-macromolecules and medical imaging.15a, 

23 

 Gold compounds and their photochemistries is complex and are described in 

literature over nearly three hundred years.  Recent research led to a deeper understanding 
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of a variety of unique complexes of gold.  Light sensitive Au (I) and Au (III) compounds 

are classified according to the nature of reactive excited states.24  These include metal-

centered, ligand-to-metal charge transfer, metal-to-ligand charge transfer, metal-to-metal 

charge transfer and intra ligand.25  

 

Chemical and Physical Properties of Gold Nanoparticles 

 Nanomaterials possess unique properties that are not observed in their bulk 

counterparts and that are affected by the sizes and shapes of the nanoparticles.26  Many 

fundamental properties including crystalline phases, electronic properties and LSPRs are 

size dependent.  Surface free energies and surface stress are important components to the 

overall phase stability. For nanoparticles free energies of surface is a large component of 

the total free energy.  Electronic properties are also size dependent, specifically the 

electronic band gap.  Changes in the band gap will influence many properties including 

surface reactivity.  Size will also alter the LSPR. Gold has an LSPR that can occur 

throughout the visible region of the spectrum depending on the size of the nanoparticle.  

Though, size is not the only factor that influences LSPR as the shape has also been 

known to affect these phenomena.   Shape influences the extinction spectra by red-

shifting the LSPR into the near-infrared region of the electromagnetic spectrum.  Surface 

properties such as aggregation and concentration will also affect the chemical reactivity 

of the nanoparticles.21,26,27 

 Recently there has been much research on the optical properties of AuNPs 

because of their potential biomedical applications.  AuNPs can enhance the light 

absorption, light scattering, local electromagnetic field and fluorescence.  This 
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enhancement is due to the unique interaction of light with the free electrons in the gold.  

When AuNPs are exposed to light, the electric field of light causes the collective 

oscillation of the conduction-band electrons (LSPRs) at the surface of the 

nanoparticle.26,27  For gold nanorods the electrons oscillate along both the long and short 

axis resulting in a resonance band in the near-infrared region and a weak band in the 

visible region.23a  The excitation of the SPR results in the enhancement of the 

photophysical properties of the AuNPs.  Rayleigh scattering, also known as light 

scattering, is enhanced because of the excitation of the SPR.  Since AuNPs have high-

scattering cross-section and have superior photostability, they can be used for imaging 

intensive medical applications.   

 AuNPs also possess surface-enhanced Raman scattering (SERS).  SERS results 

from two factors: long range electromagnetic enhancement and short-range chemical 

enhancement.16b  Long-range electromagnetic enhancement is due to the resonance of the 

applied light field with the collective electron oscillations of the nanoparticles resulting in 

strongly enhanced local electric fields at the surface.  Short-range chemical enhancement 

is due to a change in the molecular polarizability by the charge transfer interaction of the 

molecules with the metal surface and interaction with atoms near the metal surface.28  

AuNPs have been used as SERS substrates to probe components in living cells.  AuNPs 

absorb light strongly and quickly convert it into heat.  The highly efficient and localized 

light to heat conversion can be useful for the photothermal therapy of cancers.29 
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Synthesis and Characterization of Gold Nanoparticles 

Synthesis Techniques 

 There are two methods to synthesize nanoparticles.  In the "bottom-up" approach 

materials can be built from molecular components by principles of chemical and 

molecular recognition. In the "top-down" approach larger objects are broken down and 

small objects constructed from larger entities without atomic-level control.  Top-down 

approach uses electromagnetic radiation either photon and or electron beam lithography 

to etch into surfaces and create two or three-dimensional structures.  Bottom-up methods 

use organic and inorganic synthesis to create three-dimensional structures.30  Solution 

based AuNP synthesis uses a bottom-up approach introduced first by Turkevitch in 

1951.31  This approach was improved upon by Frens in 1973.32  In 1994 the Brust-

Schiffrin method for AuNP synthesis was published. This synthesis uses a two-phase 

system.  AuCl4
- is transferred to toluene using tetraoctylammonium bromide as the phase 

transfer reagent and reduced by NaBH4 in the presence of dodecanethiol, other sulfur 

ligands can also be used.11  

 Currently researchers are working to create methods to synthesize anisotropic 

AuNPs through a seed methodology.  Seed methodology uses a small amount of gold 

precursor i.e., citrate nanoparticles as a platform to synthesis larger nanoparticles.  Liz-

Marzan et al.33 synthesized triangular/hexagonal and smaller pseudo-spherical gold NPs 

from HAuCl4 using salicylic acid. Similarly, nanoplates were made using aspartic acid,34 

with the assistance of UV-vis irradiation,35 or by using gamma irradiation in a reaction 

medium containing gold(I) and ascorbic acid in the presence of CTAB.36  In this work, I 

demonstrate a more environmentally begin seeding methodology by using triblock 
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copolymers (TBPs) to produce hexagonal/triangular and smaller pseudo-spherical 

AuNPs. Size and shape control is important because the newly synthesized particle’s 

physical and chemical properties depend on the size and shape. 

 

Characterization Techniques 

Characterization techniques are central to fully understand the exact nature of 

synthesized nanomaterials.  There are a variety of analytical methods that have been 

successfully applied to the characterization of nanomaterials.  Typically, spectroscopic 

and scattering characterization techniques span the electromagnetic spectrum (Table 1.3).  

These methods can be sub-divided into spectroscopic, scattering, and microscopy 

techniques that primarily grew out of the field of colloidal chemistry.  Table 1.4 

summaries the advantages and disadvantages of each characterization technique. 
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Table 1.3 Wavelengths and frequencies for different types of electromagnetic waves. 
 

Scattering Techniques 

 
 The scattering methodologies for characterization of nanomaterials include 

dynamic light scattering, Raman scattering and X-ray diffraction approaches. 

Dynamic Light Scattering (DLS). This technique allows particle sizing down to 

1 nm diameter. Typical applications include the characterization of emulsions, micelles, 

polymers, proteins, nanoparticles or colloids. DLS can be used to determine the size 

distribution profile of small particles and probe the behavior of complex fluids such as 

concentrated polymer solutions. These techniques depend on scattering of the energized 

particles’ within the sample. They provide important information about the structure, 

Type of Electromagnetic Wave Wavelength(m)  Frequency (Hz) 

Radio 103 104 

Microwave 10-2 108 

Infrared 10-5 1012 

Visible    

Red 750-620 x 10-9 400-484x1012 

Orange 620-590 x 10-9 484-508x1012 

Yellow 590-570 x 10-9 508-526x1012 

Green 570-495 x 10-9 526-606x1012 

Cyan 495-476 x 10-9 606-630x1012 

Blue 475-450 x 10-9 631-668x1012 

Violet 450-380 x 10-9 668-789x1012 

Ultraviolet 400-10 x10-9 1015-1016 

X-Ray 10-10 1018 

Gamma Ray 10-12 1020 

 c  
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hydrodynamic size, aggregation and morphology. Of the various scattering techniques 

available DLS is probably the most commonly used for characterizing the hydrodynamic 

size. It is simple, noninvasive and nondestructive. In this technique the fluctuations in the 

scattered light intensity due to the Brownian motion of the particles are used to determine 

the particle diffusion coefficient which is then related to its hydrodynamic radius.  Some 

groups have used this technique to even explore the effect of physiologically relevant 

dosing media on a variety of unmodified nanomaterials.37 

Raman Scattering.  Raman techniques maybe applied to the characterization of 

NPs. Raman spectroscopy measures the inelastic scattering of monochromatic radiation 

(UV, visible, or near IR) by a sample.  If the final vibrational state of the molecule is 

more energetic than the initial then the emitted photon will be shifted to a lower 

frequency in order for the total energy of the system to remain balanced.  This shift in 

frequency is designated as a Stokes shift.  If the final vibrational state is less energetic 

than the initial then the emitted photon will be shifted to a higher frequency and this is 

designated as an Anti-Stokes shift.  The incident light becomes either Stokes or anti-

Stokes shifted in wavelength resulting in sharp fingerprint Raman bands that are 

characteristic of the sample and complementary to infrared (IR) spectroscopy.  It was 

observed that carbon nanotubes show Raman scattering which is sensitive to isotope 

composition.38  Some groups used Raman spectroscopy to investigate the noncovalent 

interaction between pyrene-labeled cellulose and multi-walled carbon nanotubes.39 

X-ray Diffraction. X-ray diffraction (XRD) is used to generate structural 

information about crystalline samples. It provides a characteristic profile of the 

substance, like a fingerprint, and is ideally suited for characterization and identification of 
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polycrystalline phases.40  It is frequently used to characterize materials containing nano-

sized components embedded in an extended biological matrix, such as those found in 

tissue scaffolds and bone cements.41  In some cases, XRD is used to characterize a 

biomolecule after it has been associated with the nanomaterials (NM).42 

 

Microscopy Techniques 
 

Electron Microscopy.   Microscopy techniques are based on visualizing a sample 

using electrons or a scanning probe.  Transmission electron microscopy (TEM) and 

Scanning electron microscopy (SEM) readily obtain single particle resolution and are 

more frequently applied to characterizing the NM core along with core shell size and or 

structure.  The direct imaging capability of the TEM and SEM is particularly useful for 

nanomaterials with non-spherical shapes allowing a direct measure of the aspect ratio.43  

TEM is more commonly used to image the core.  Although dried samples are typically 

required for TEM analysis, some groups have imaged liquid samples of fixed fibroblast 

cells stained with epidermal growth factor labeled AuNPs.44 SEM has less resolving 

power for features less than 20 nm although the technology is steadily improving even in 

this area.45,46,47 

Atomic Force Microscopy. In contrast to TEM and SEM, atomic force 

microscopy (AFM) is a scanning probe technique.  This technique provides a range of 

information about the nanomaterials and the NM-biomolecule interactions on a single-

particle basis.  AFM was once considered a specialized technique but most recent 

advances in both instrumentation and software have only expanded the technique’s 

capabilities.  Unlike TEM and SEM which are best performed with conducting or 
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semiconducting samples under vacuum conditions, AFM can be applied to 

nonconductive, wet and soft samples.  This allows for many different types of materials 

to be analyzed.48  AFM could potentially allow for a 3D representation of ligands 

attached to a nanoparticle surface, as was shown to be particularly useful in 

characterizing DNA derived nanostructures.49,10a 

Near Field Scanning Optical Microscopy. Another surface probe microscopy 

technique, near-field scanning optical microscopy breaks the optical resolution limit of 

light microscopy by placing the detection probe at distances smaller than the wavelength 

of light.  High frequency spatial and spectral information is obtained by analyzing the 

evanescent fields close to the sample surface.  This technique has the advantage of 

combining optical and or spectroscopic data with high-resolution surface topographical 

information.  This technique allows the contrast mechanism to be easily adapted to study 

properties such as structure and stress.  Dynamic properties can also be studied at a sub-

wavelength level using this technique.50 

 

Spectroscopy 
 

UV-Visible Spectroscopy. Spectroscopic techniques exploit the interaction of 

electromagnetic radiation with a sample material resulting in the wavelength dependent 

absorption and, in the case of fluorescence, re-emission of photons.  Typically, a 

wavelength dependent spectrum is produced with characteristic absorption/emission 

peaks inherent to the sample.51  The UV-visible absorbance properties of nanomaterials 

can be used to monitor important properties such as concentration, size and aggregation 

state.  Metal nanoparticles especially the gold and silver exhibit a strong absorption in the 
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visible region known as the surface Plasmon resonance (SPR) band.  The SPR band is 

dependent on a number of factors and is found to be sensitive to size, shape and 

composition.52,53  Both direct and in-direct analysis of UV-visible spectroscopy data 

can also provide information on the NM-bioconjugate.  Direct characterization is possible 

when the biomolecule has a distinct UV-visible profile that remains discernible upon 

conjugation to the NM. 

Fluorescence Spectroscopy. Fluorescence occurs when an orbital electron of an 

atom or nanostructure relaxes to its ground state by releasing a photon after being exited 

to a higher quantum state by some type of energy.  The fluorescence spectroscopy 

technique offers a powerful and sensitive technique for determining a number of 

parameters associated with the immobilization of biomolecules to a NM surface 

including fluorophore local environment, biomolecule-NM coupling ratio, 

conformational state and in some instances intra-assembly molecular distances.54  A 

number of researchers use the intrinsic fluorescence from tryptophan (Trp) residues to 

obtain information about local changes in tertiary structure upon nanoparticle 

binding.55,56 

Infrared Spectroscopy. Infrared (IR) Spectroscopy measures the absorption of 

IR radiation by a sample resulting from the vibrational stretching and bending modes 

within the molecule.  Fourier Transform (FT)-IR was used to characterize peptide and 

protein binding to nanoparticles.57,58,59  Careful interpretation of the stretching and 

bending vibrations in the amide regions can provide secondary structural information and 

hence the conformational state of the bound protein. 
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Molecular Modeling 

 
Molecular modeling, though not considered a classical nanoparticle tool, can provide 

important insight into the structure and function of nanoparticles and their bioconjugates.  The 

overall goal of any modeling effort is to gain insight into properties or behavior of a system that 

cannot be directly observed.  Although not fully extended to nanomaterials per se, predictive 

modeling can clearly aid in the characterization and understanding of these materials.  This was 

demonstrated by Saunders and co-workers who applied a total interaction energy model to 

accurately predict the size distribution of size-selectively precipitated nanoparticles.  These 

studies showed that modeling is helpful in estimating parameters such as nanoparticle size.60,61  
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Table 1.4 Advantages and disadvantages of nanoparticle characterization techniques.62 
 

Technique Advantages Disadvantages 

Scattering Techniques 
Dynamic Light Scattering (DLS) 1. Provides a distribution of NP 

size. 
2. Hydrodynamic radius is 

provided.  

1. Limited to low concentrations  
2. Optimization of the scan 

parameters is often required. 

Raman Techniques 1. Highly specific even with small 
volumes of sample. 

2. No interference from water.  

1. The detection needs a sensitive 
and highly optimized 
instrumentation. 

2. Sample heating can destroy the 
sample or cover the Raman 
spectrum. 

X-ray Diffraction  1. Simple sample preparation.  
2. Measurements can be taken 

rapidly. 

1. Large crystal samples are hard to 
scan. 

2. Single crystals are hard to 
obtain.  

Microscopy Techniques 

Electron Microscopy  1. Can analyze individual NMs, 
can be used to determine NM 
size and shapes.  

2. Can determine NM composition. 
 

1. Conducting sample usually 
required. 

2. Dry samples needed for analysis. 
3. Mainly used to characterize NP 

core. 

Atomic Force Microscopy (AFM) 1. Size and shape characterization 
of the NM and biomolecule can 
be determined. 

2. Biomolecular interactions can be 
characterized using 
functionalized tips.  

1. Only small area can be mapped 
and the can time can be slowed. 

2. Analysis is, in general, 
limitation to the NP exterior. 

Near Field Scanning Optical 
Microscopy  

1. High resolution surface analysis 
at ambient conditions. 

2. Contrast techniques with optical 
microscopy may also be applied 
for high resolution analysis. 

1. Small surface are analyzed. 
2. Analysis limited to the surface 

of the NP. 
3. Currently a “specialist” 

technique.  

Spectroscopy Techniques  

UV-Vis Absorbance Spectroscopy  1. Cost effective  
2. Can determine concentration, 

size and sometimes shape.  

1. Requires fairly concentrated 
samples as sensitivity is low. 

2. Provides average information 
only no distribution information. 

Fluorescence Spectroscopy  1. Fluorescence can be 
environmentally sensitive which 
can be used to provide 
biomolecule conformational 
information or confirm 
attachment to NM. 

1. Intrinsic or extrinsic 
fluorescence required which 
may necessitate labeling. 

Infrared Spectroscopy  1. Confirms NM-biomolecule 
attachment through the 
appearance of characteristic 
fingerprint IR bands. 

 

1. Sample preparation can be 
complicated. 

2. H2O is an interference, strong 
absorbance  
 

 

 



19 

Gold Nanoparticles for Drug Delivery 

  Nanomaterials are showing a great promise as adjuvants to chemotherapeutics. It 

is believed that the reason nanomaterials are currently explored for a pharmacological 

purpose is due to their unique pharmacokinetic and pharmacodynamic properties.  Some 

nanomaterials of major clinical interest are AuNPs and nanomaterial based surfactants.  

Nanoparticles can be used as drug carriers that increase both drug potency and 

targeting.63 

AuNPs can be prepared surrounded by an organic monolayer which allows for the 

conjugation of targeting ligands and drugs.64  As such, AuNPs can be synthesized to 

increase the pharmacokinetic characteristics of a particular drug.  AuNPs also contain 

unique photochemical characteristics that may allow for the controlled physical 

manipulation of their shape and size for managed site specific effects.65  For example, it 

was shown that upon near-infrared laser radiation of engineered AuNP drug capsules, 

there was an alteration in the particle shape allowing for drug release at a specific site.66 

 

Triblock Copolymers and Drug Delivery 

Nonionic triblock copolymers, being a class of nanomaterials, working in a 

similar way to liposomes, are able to act as drug carriers improving pharmacokinetics and 

biodistribution of particular drugs.67  They are a class of self-associating, amphiphilic, 

pluronics (PL) with hydrophilic ethylene oxide (EO) and hydrophobic propylene oxide 

(PO) blocks. Like the other nanomaterials these pluronics can be functionalized to 

improve their target efficacy.  In polar solvents, they self-associate into micelles at 

particular concentrations based on their engineered chain composition and length, 
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defining the degree of their amphiphilicity.  As a result of this amphiphilicity the polymer 

self-associates into micelles, which contain both a hydrophilic and hydrophobic region, in 

a concentration dependent manner.  The concentration at which this occurs is called the 

critical micelle concentration (CMC).  This unique characteristic has been utilized 

recently in order to solubilize and transport hydrophobic drug within the hydrophobic 

core of the PL micelles.  

 Nonionic triblock copolymers in combination with their cargo drugs are believed 

to alter the microviscosity of tumor membranes and their surrounding vasculature 

rendering these pluronics of increasing interest in chemotherapeutics.68 Given that 

membrane protein stability and conformation are largely dependent on membrane 

integrity, the features of nonionic triblock copolymers may possibly be used to alter 

membrane protein function.  In addition, these triblock copolymers are known to have 

exceptional stability against oxidation and can play a significant role in the advancement 

of clinically useful diagnostic and therapeutic nanomedicines.5  

 

Shape and Size Control in Gold Nanoparticles 

Gold nanoparticles are intensively studied due to their shape and size dependent 

physicochemical properties with useful applications in biomedicine and other fields. In 

the past decade the chemists sought to understand the shape and size control of 

nanoparticles through various strategies.  It continues to be the focus of research in 

nanotechnology today.  Citrate-stabilized gold nanoparticles with up to 200 nanometer 

size distributions were synthesized.69 These gold nanoparticles exhibited uniform quasi-
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spherical shapes as they were prepared through kinetically controlled seeded growth 

strategies through the reduction of tetrachlorohydroauric acid by sodium citrate.  

One of the major difficulties encountered during production of nanoparticles with 

respect to their shape and size is the poor quality of the product.  The shapes and sizes of 

the nanoparticles obtained are generally irregular and non-uniform.  Some minor progress 

in this regard was noted in recent years.  For example, the seeded growth of AuNPs using 

sodium citrate hydroxylamine to obtain nanoparticles smaller than 100 nm in diameter 

were attempted by the Natan et. al.70,71,72  Although this was an improvement over the 

past syntheses, it was not free from secondary populations of rod-shaped particles.  

Murphy et. al.73 and Marzan et. al.74 further improved this and reported the synthesis of 

monodisperse AuNPs of up to 180 nm in diameter using ascorbic acid as a reducing agent 

and cetyltrimethyl Ammonium bromide (CTAB) as a cationic surfactant.  These methods 

allow some limited control but the choices of the reagents create environmental hazards 

and pose possible restrictions to further functionalization.75, 76  The development of new 

AuNP synthetic strategies with environmentally friendly reagents leading to 

monodispersity of the shape and size specificities continues to challenge the research 

community.  

 

Scope of the Research 

The goal of this proposed research is to increase the mechanistic understanding of 

nucleation and growth of gold nanoparticles (Au NPs) from tetrachloroauric (III) acid 

(HAuCl4) via a “one-pot” approach using triblock non-ionic block copolymers (TBPs) of 

poly (ethylene oxide) (PEO) and poly (propylene oxide) (PPO) PEO-PPO-PEO. 
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The central hypothesis is that Au NP morphology and size can be adjusted by the 

TBP/Au (III) ratio. This is based upon two premises: (1) the hydrophobic/hydrophilic 

environment can be regulated via the hydrophobic TBP L31 to control the reaction 

kinetics; (2) kinetic models of AuNP formation and growth are used as predictive tools 

for rational Au NP synthesis. Non-ionic coated Au NPs are synthesized by 

tetrachloroauric (III) acid (HAuCl4) reduction by the EOx blocks in a L31 (EO2-PO16-

EO2) /F68 (EO78-PO30-EO78) aqueous solution. Au NP size and shape are characterized 

by using (a) atomic force microscopy (AFM), (b) dynamic light scattering (DLS) (c) 

ultraviolet-visible (UV-vis) spectroscopy and (d) Field emission scanning electron 

microscopy (FESEM). In the seeding methodology Au NPs are present initially in the 

precursor solutions. The kinetic control of the reaction is achieved by varying the 

TBP/Au (III) ratio and the Au NP shape and size optimized by varying the parameters of 

TBP/Au ratio and citrated AuNP seed size and concentration. Our central hypothesis is 

that  the variation in TBP/Au ratio and seed concentration will change Au NP size and 

shape. In this thesis we test this hypothesis by changing the parameters of the TBP/Au 

ratio, and the citrate coated Au NP seed size and concentration.  

 

Figure 1.4 Monomer units of triblock copolymers (TBPs). 
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CHAPTER TWO 

FLUORESCENCE OF COMMERCIAL PLURONIC F127 

SAMPLES: TEMPERATURE DEPENDENT MICELLIZATION 

 
 

Abstract 

We present a novel approach of using the butylated hydroxytoluene (BHT) 

antioxidant found in commercial Pluronic F127 samples as a marker of polymer 

aggregation. The BHT marker was compared to the pyrene dye and static light scattering 

methods as a way to measure the critical micelle concentration (CMC) and critical 

micelle temperature (CMT). The n* transitions of BHT are sensitive to the 

microenvironment as demonstrated by plotting the fractional intensities of its excitation 

( 280 nm) and emission ( 325 nm) peaks. BHT is more sensitive to changes in 

temperature than concentration.  The partition coefficient increases  40-fold for pyrene 

compared to  2 fold for BHT when the temperature is increased from 25 to 37 °C.  CMT 

values determined using the BHT fluorescence decrease with increasing F127 

concentration. Our results show that BHT can be used as a reliable marker of changes in 

the microenvironment of Pluronic F127. 

 
  



31 

Abbreviations 

 
AFM   Atomic force microscopy 
 
BHT   Butylated hydroxytoluene 
 
CMC   Critical micelle concentration 
 
CMT   Critical micelle temperature 
 
DLS   Dynamic light scattering 
 
ESR   Electron spin resonance 
 
FTIR   Fourier transform infrared spectroscopy 
 
PEO   Poly ethylene oxide 
 
PPO   Poly propylene oxide 
 
NMR   Nuclear magnetic resonance 
 
SANS   Small angle neutron scattering 
 
TEM   Transmission electron microscopy 
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Introduction 

 Triblock non-ionic copolymers of poly (ethylene oxide) (PEO) and poly 

(propylene oxide) (PPO) are produced either in the sequence PEO-PPO-PEO or PPO-

PEO-PPO and are known commercially as Pluronics or Poloxamers. Pluronics have been 

shown to have beneficial synergistic properties in combination with anti-cancer drugs.1  

Finding a reliable way to measure the critical micelle concentration (CMC),  critical 

micelle temperature (CMT), and drug partitioning between aqueous and micelle phases 

are of particular significance to the optimization of pharmaceutical formulations using 

Pluronic copolymers.2  In particular, Pluronic F127 or Poloxamer 407 has received much 

attention because of its unique thermo-reversible gelation properties that has found 

numerous pharmaceutical applications.1d, 3 Pluronics are used increasingly as components 

in building novel nanomaterials, and therefore the intensive study of the physico-

chemical properties of Pluronics is relevant for constructing well-defined nanomaterials 

that can be used as building blocks for more complex molecular architectures.   

 Aspects of the structural and dynamic properties of micellar self-assembly of the 

PEO-PPO-PEO block copolymers have been investigated by a variety of experimental 

methods, including fluorescence spectroscopy,2, 4 differential scanning calorimetry,5 

transmission electron microscopy (TEM),6  viscometry,7 light scattering,8 nuclear 

magnetic resonance (NMR),9 UV-vis absorption of selected probes,10 surface tension,11 

electron spin resonance (ESR),12 small angle neutron scattering (SANS),6a, 13 Fourier 

transform infrared spectroscopy (FTIR),14 and Raman spectroscopy.15 At room 

temperature (RT) both the PEO and the PPO blocks of the Pluronic F127 are hydrophilic 

and water soluble forming a transparent solution. The triblock copolymers exist as 
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unimers solvated by water molecules. Spectroscopic analysis by 1H NMR, Fluorescence 

and FTIR revealed that the hydrophobic PPO portion of the Pluronic polymers is 

important in the temperature-induced micellization,14 whereas the transitional behavior of 

Pluronic polymers, from micellization to liquid crystal formation, is affected by the PEO 

segments.16  

 Simulations using the mean-field lattice17 and the more sophisticated dynamic 

mean field density functional theories18  have been used to model Pluronic polymer 

reorganization. In mean-field lattice theory, the conformation of the polymer chains 

exists in two forms: a polar one, and non-polar one. The polymer segments are allowed to 

assume both polar and non-polar conformations (corresponding to the gauche and trans 

rotations of the C-C and C-O bonds).17  The polar form allows significant interactions 

with the water solvent, whereas the non-polar one denotes poor solvent-solute 

interactions and contraction of the polymer chains. Relative to increasing temperature, 

there is qualitative agreement between theory and experiment for Pluronic F127 

regarding the decrease in the CMC, its increase in aggregation number, the micellar size, 

and the fraction of polymer molecules in micellar form. The more sophisticated dynamic 

mean field density functional calculations of Pluronic F127 by Lam and Wood19 

reproduced experimental observations of increasing micellar sizes with concentration 

consistent with previous cryo-TEM observations.6   Simulations by Yang et al.20 of 

Pluronic F103 have shown that above the CMC, the spherical micelle core consists 

mainly of PPO and the hydrated PEO swollen outer shell or corona. The picture that 

emerges from these simulations is a step-wise micellization process that could explain the 

observed molecular-weight dispersion of Pluronic micelles. At lower micellar 
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concentration, the micelles consist of many copolymer aggregates that form independent 

hard-spheres; with increasing concentration (10 wt %) there are micellar clusters due to 

the coalescence of spherical micelles. Finally, a liquid-crystalline phase of disk-like 

micelles forms.  

 Pluronics are often used without further purification as starting materials in 

polymeric synthesis and drug delivery applications. Furthermore, the comparison 

between purified and “as received” samples is complicated by the possible shift in the 

molecular weight distribution during extraction.5 Therefore, it would be convenient to be 

able to directly quantify the Pluronic CMC and CMT values obtained from some suitable 

characteristic of the Pluronic itself, such as fluorescence, in commercial samples.  

Typical commercial Pluronic F127 samples contain ~ 100 ppm of the antioxidant 

butylated hydroxytoluene (BHT), which we show can be used as a reliable marker for 

temperature dependent polymer reorganization when compared to a reporter such as the 

commonly used pyrene. Together, these different approaches have the potential to 

monitor distinct components of the micellization process. As part of our effort to develop 

novel nanomaterials incorporating Pluronics as an integral component, we describe a 

novel approach to characterize to the aggregation properties of Pluronic F127 using the 

fluorescence of the antioxidant BHT. Independent size distribution results using static 

light scattering and dynamic light scattering (DLS), transmission electron microscopy 

(TEM), and atomic force microscopy (AFM) all support the validity of this approach. 

These  results demonstrate that the BHT spectral transitions observed in the excitation 

and emission fluorescence spectra of the commercial polymer samples may be exploited 

as a probe of structural reorganization. 
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Materials and Methods 

Materials 

The Pluronic® triblock copolymers P127 (PEO99-PPO65-PEO99, Batches#: 

038K0113 and 119K0073), Poloxamer 407, Pluronic 31R1 (PPO27-PEO4-PPO27, Batch#: 

04402BN), and Pluronic L-31 (PEO1-PPO16-PEO1, Batch #: 01631MH) were used as 

received (Sigma Aldrich, Milwaukee, WI, USA). Polyethylene glycol 8000 (PEG 8000, 

Batch#: 314521) was used as received (J.T. Baker Chemical Co., Philipsburg, NJ). 

Different percentages of Pluronic solutions were prepared from 10 mM PBS buffer 

freshly made from milli-Q water. Pyrene (99%) and 2, 6-bis (1, 1-dimethylethyl)-4-

methylphenol also known as butylated hydroxytoluene (BHT) were used as received 

(Sigma Aldrich, Milwaukee, WI, USA). 

 

UV-Vis and Fluorescence Spectroscopy 

UV-vis measurements were done on a Varian Cary-100 spectrometer. All 

fluorescence spectra were recorded on a Model T PTI spectrofluorometer (Photon 

Technology International, Birmingham, NJ, USA), equipped with a magnetic micro-

stirrer and Peltier temperature regulation. The lamp, excitation, emission and photon 

multiplier tube slits were set at 0.30, 0.20, 1.00 and 1.60 mm, respectively.  For Pluronic 

solutions the excitation and emission spectra were monitored at em = 360 nm and ex = 

260 nm respectively. For pyrene containing solutions, used to monitor the micellization 

process of the Pluronic, the excitation and emission spectra were monitored at em = 395 

nm and ex = 335 nm, respectively. Static light scattering experiments were done at em = 

330 nm and ex = 330 nm, at a 90 scattering angle respectively. The spectra were 
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corrected for inner filter effects by determining the extinction coefficients, (), from a 

series of spectra 1 to 20 % w/v or by calculating from a 20 % w/v F127 stock solution. 

Standard curve determination of BHT in methanol gives the value of molar absorption 

coefficient 1.77 ± 0.04 x 103 M-1cm-1. The corrected intensities were determined 

from the relationship suggested by Lakowicz,21 Fc = Fo10(excitation) + emission))/2, where 

Fc, and Fo are the corrected and uncorrected intensities, respectively. 

 

Material Characterization 

The CMC values determined from the BHT probe were compared to the pyrene 

solubilization method. Pluronic solutions were prepared as described previously by direct 

dissolution in 10 mM PBS, giving a final pyrene concentration of 0.6 µM.22 The purity, 

molecular weight and size distributions of Pluronic F127 polymer were characterized by 

desorption/ionization time-of-flight (MALDI-TOF; Bruker autoflex), GC-MS (Agilent 

6989 N GC and Agilent 5973 mass selection detector), size exclusion chromatography 

(SEC) (Waters 510 pump, 717 auto sampler, 410 differential refractometer), DLS 

(NICOMP 370 submicron particle sizer), TEM (Zeiss, operating at 80 kV) and AFM 

(Veeco Dimension 5000 in tapping mode).  The Pluronic F127, as received, had  25% 

w/v PPO-PEO lower molecular weight diblock polymer consistent with published work 

(Figure 2.1).6b, 13a   
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Figure 2.1 Molecular weight distribution of the native polymer as analyzed by: (A) SEC 
(B) MALDI-TOF-MS. For SEC, isocratic separation was performed using two PLgel 
3µm Mixed-E 300 x7.5 mm columns (Varian Inc.) connected in tandem and coupled with 
a PLgel 3µm 50 x 7.5 mm guard column (Varian Inc.).  Column temperature was 
controlled at 35°C.  The mobile phase consisted of stabilized tetrahydrofuran (THF), with 
a flow rate of 1 ml/min.  In B, the plots are: (1) hexane extract, (2) F127 residue after 
hexane extraction, (3) as-received polymer. Positive ion spectra were recorded in 
reflectron mode applying an accelerating voltage of 20 kV. The spectra of 50-80 shots 
were averaged to improve the signal-to-noise ratio. Samples were prepared by dissolving 
the analyte in a 1:1 (v/v) acetonitrile and water solution and dropping 0.5 µl on a 
dithranol (10 mg/ml, 0.5 l in THF) matrix that was deposited previously on the sample 
plate (stainless steel).   The drop was allowed to dry, and the sample holder then 
introduced into ion source. 
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Partition Coefficient Calculation 

To estimate the partitioning of the probe into the F127 micellar phase we used a 

modified model developed by Kabanov et al..2  The extent of partitioning of the probe is 

quantified by the micelle-water coefficient (P) defined by the ratio of the probe 

concentrations in the micellar and aqueous phases: 
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where I is the total fluorescence intensity, Io is the baseline intensity, and I∞ is the 

saturation level of fluorescence. With increasing polymer concentration, equation 2(a) is 

applied when the intensity increases and 2(b) is used when the intensity decreases. This 

fraction can be expressed in terms of P: 
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where the volume fraction of the micelle phase, , is given by 0.01Cpl – CMC +Hx), 

where (assumed an average value of 0.87 for Pluronics2, 23) is the partial specific 

volume, Cpl is the total Pluronic concentration in % w/v, and CMC is the concentration at 
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the inflection point. The Hx term is an offset such that  is ≈ 0 below the CMC. This 

model assumes at the CMC, Cpl is ≈ CMC, i.e., most of the F127 is in the micellar phase. 

 

Results 

Sensitivity of the Observed BHT Electronic Transitions to the Pluronic 
F127 Microenvironment 

 Figure 2.2 compares the excitation and emission spectra of Pluronic F127 at 

37C. Three peaks are resolved in the excitation spectrum centered at 235, 280, and 313 

nm. In the emission spectrum, two peaks at  305 and 325 nm are resolved. These peaks 

are assigned to electronic transitions of BHT, since the F127 as-received samples contain 

100 ppm BHT antioxidant preservative (Figure 2.3). The assignment of these peaks to 

BHT is supported by the intensity increases of these peaks when additional BHT (10 M) 

is added to a 5% w/v F127 solution (Figure 2.4). We also measured the fluorescence of 

lower molecular weight Pluronics L31 and 31R1 and PEG 8000 and found peaks 

associated with phenolic antioxidants (Figure 2.5).   

In separate experiments using the pyrene dye probe, we plotted the ratio of the 

first vibrational band I1 (372 nm), the highest energy vibrational band, to the fluorescence 

intensity of the third vibrational band I3 (385 nm) that is known to correlate with solvent 

polarity (Figure 2.6).24 This (I1/I3) ratio, known also as the “Py scale”, correlates with 

other scales of polarity such as the * scale of Kamlet and Taft24a and is a measure of 

changes in the microenvironment around the pyrene. Moreover, the inflection point of the 

sigmoid fit to (I1/I3) against copolymer concentration has been used as a measure of the 

CMC and CMT.25  With increasing Pluronic concentration and subsequent micelle 

formation, this ratio drops from  1.6 to  1.1 and  0.9 at 25 and 37C, respectively.  
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Figure 2.2 Inner filter corrected excitation (solid lines) and emission (dotted lines) spectra 
of Pluronic F127 taken at 37C, monitored at em  = 360 nm, and ex  = 260 nm at % w/v  
concentrations: 0.01, 0.1, 0.5, 1, 2, 5, 8, 10  in 10 mM PBS. Observed peaks at  321 nm 
(excitation) and 285 nm (emission) are from the Raman scatter of water.  The inset is the 
Beer-Lambert plot at abs = 279 nm, with the dotted lines being the 95% confidence 
intervals. For 100 ppm BHT in F127, the calculated weight-volume % absorption 
coefficient was (1.60 ± 0.05) x 10-2 (w/v%)-1 cm-1. 
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Figure 2.3  GC-MS chromatogram (A) and (B) MS using a 1 l aliquot of the hexane 
extract used to wash 5 g Pluronic F127 that was characterized by MALDI-TOF (Figure 
2.1) and fluorescence spectroscopy. The 205.1 m/z species is BHT after the 
fragmentation of a -CH3 group. 
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Figure 2.4 (A) Excitation and emission spectra of various fractions of Pluronic F127 
taken at 25C, monitored at em  = 360 nm, and ex  = 260 nm. (A) Comparison 5% F127 
as received and washed in hexanes. (B) Comparison 0.1% F127 as received and with 10 
M BHT added. (C) A Spectrum of 10 M BHT in water.  
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Figure 2.5 Excitation and emission spectra taken at 25 C of the Pluronics F127, L31, 
31R1 and poly(ethylene) glycol 8000 each at 10 wt% concentration that have been 
normalized to the area of the spectral region. (A) Excitation spectra monitored at em = 
360 nm. (B) Emission spectra monitored at ex = 260 nm. The peaks at 320 nm and 285 
nm respectively are due to the Raman scattering from the water.  
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Figure 2.6 This figure shows the variations in pyrene fluorescence intensity against F127 
w/v% concentration at 25 and 37C, monitored at ex = 335 nm. (A) Integrated pyrene 
intensities (350-500 nm). (B)  The (I385/I372) ratios of the pyrene.  
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Below the CMC and CMT, the I1/I3 ratios correspond to a polar environment and 

when the concentration increases, this ratio decreases as the environment around the 

pyrene becomes more hydrophobic.24, 25b  

Figure 2.7 shows how the BHT excitation and emission peak intensities change 

with F127 concentration. Figure 2.7(A) had 10 M BHT added to each F127 

concentration at 25ºC so that the intensity baseline was above the noise level. At low 

F127 concentration, the BHT is in a polar aqueous microenvironment. The fluorescence 

intensity of BHT increases significantly upon aggregation.  This is evidenced by the 

sharp break around ~ 0.1% w/v of F127 where the fluorescence from the added 10 M 

BHT dominates the signal. Moreover, analogous to the changes in the pyrene I1/I3 

intensity ratios, we can plot the fractional BHT intensity (peak height/spectral region 

area) against Pluronic F127 concentration and recover the same micellization transition. 

This is because the concentration of BHT will increase in proportion to the concentration 

of F127 but the fraction of BHT relative to F127 will remain the same.  

Latz and Hurtubise26 showed that the luminescence properties of BHT are 

dependent on the solvent polarity. They found that the BHT fluorescence intensity was 

significantly higher in ethanol than chloroform with the emission maxima being 330 and 

350 nm in chloroform and ethanol, respectively. This large difference in intensity may be 

due partially to the heavy atom effect of chlorine, resulting in an increase in the rate of 

inter-system crossing from the singlet to the triplet state of the molecule.27  As the solvent 

polarity increases, the extent of solvent relaxation is greater resulting in emission at lower 

energies and longer wavelengths.21    
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Figure 2.7 (A) Plots of the absolute and fractional fluorescence intensities (peak 
intensity/spectral area between 275- 400 nm) of the 305 nm peak at 25C originating 
from F127 and 10 M added BHT. (B) Plots of the excitation fractional intensities (peak 
intensity/spectral area between 200- 340 nm) of the 280 nm (BHT - squares) and 320.7 
nm (Raman - triangles) peaks at 25 (black) and 37C (white). (C) Plots of the fractional 
fluorescence intensities (peak intensity/spectral area between 275- 400 nm) of the 285 nm 
(Raman - triangles) and 325 nm (BHT -squares) peaks at 25 and 37C. Values of CMC 
are determined from the intersection of the dotted lines or the inflection of the sigmoid 
fit. The original spectra were corrected for the inner filter effect.  
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The relative contributions of the peak components in the excitation and emission 

spectra in the absence of added BHT that are normalized to the spectral region areas at 25 

and 37ºC are shown in Figure 2.7(B) and (C). Between the 0.01 and 1% w/v F127 

concentration, the changes in the excitation (280 and 313 nm) and emission (305 and 325 

nm) spectra are a result of the sensitivity in the n * transitions to the polarity of the 

BHT microenvironment.  Analysis of the UV-Vis data above 250 nm shows that the 

absorbance is < 0.05 below 5% w/v F127 indicating that inner filter effects are 

insignificant below this concentration.  

We used these changes in fractional peak intensities to follow the changes in the 

microenvironment around the BHT. The CMC values determined from the inflection 

points decrease with higher temperature. Using the inflection points from the Raman 

signals provides a more reliable way to determine the polarity changes around BHT 

because extrapolating to the break points in the BHT signals is limited by the low signal-

to-noise below 0.1% w/v F127. The Raman signals decrease with higher F127 

concentration as its contribution relative to BHT in the spectral profile decreases. Figure 

2.7 points to the feasibility of using the electronic transitions in the Pluronic excitation 

and emission spectra as a probe of polymer aggregation.  

The CMC values obtained at 25ºC from the inflection points agree within an 

order-of-magnitude of the published values obtained from surface tension, DLS, and dye 

probe techniques (Table 2.1). At 37ºC the BHT signal-to-noise will be too low for an 

accurate determination of the CMC.   



 

 

48 

 

Table 2.1 Summary of the measured CMC (% w/v) values determined for Pluronic F127 at 25 and 37oC.   
 

Probe 37C 25C Lit. 37 C Lit. 25C 

c 320.7 nm excitation Raman peak a 0.19 ± 0.02    a1.4 ± 0.6 0.001 (dye)23a 

0.0035 (dye)23b 

0.025 (dye)11b 

1 18a (surface Tension) 

0.7 16(dye) 

0.26 ± 0.0313b (DLS) 

0.09 23a (dye) 

d 285 nm Fluorescence Raman peak a 0.50 ± 0.04

0.030 ± 0.005 

a 0.97 ± 0.03

   0.060 ± 0.005 

  

Static Light Scattering b 0.020 ± 0.005

b 0.15 ± 0.05 

   0.50 ± 0.05   

Pyrene I(372)/I(385) a 0.011 ± 0.002  a 0.25 ± 0.02   

Pyrene I(350 – 450 nm) a 0.028 ± 0.005   a 0.46 ± 0.05   

a Values obtained from the inflection of a sigmoid fit. Values mean ± SD.  
b Values for breaks 1 and 2.   
c Normalized with respect to spectral range. 
d Normalized with respect to spectral range (position of the break).  
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We note that the pyrene probe technique will be more sensitive than using BHT 

because the pyrene extinction coefficient is ~ 104 M-1 cm-1 compared to ~ 103 M-1 cm-1 

for BHT; however, our approach can be used reliably for polymers where the CMC 

values are known a priori to be above 0.1 w/v% for 100 ppm added BHT.  For example, 

the Pluronics L64, F68, and P85 have CMC values above 1 w/v% at room temperature.13b 

These Pluronics have found application in drug delivery.1c, d  

The static light scattering results in Figure 2.8 at 25 and 37C show a 3 to 10-fold 

decrease in the aggregation concentration. We note that the mixtures were left to 

equilibrate at 37C for at least 10 hours to minimize relaxation processes of BHT during 

its incorporation in the Pluronic micelles that will cause artifacts in the intensity versus 

concentration plots.2 The broad micellization transition that spans a ten fold concentration 

range at 37C suggests different micellization stages.  This step-wise process of 

micellization has been reported.28 The first break (~0.01) may correspond to initial 

micelle formation (nucleation), but the interpretation of the second break is less 

definitive. There are two plausible explanations. The broad micellization transition may 

correspond to the coalescence of micelles forming non-spherical shapes, or could 

originate from PPO blocks from the diblock copolymer components being incorporated 

into the micelles.  Batsberg et al.29 analyzed Pluronic P85 by differential scanning 

calorimetry and concluded that the diblock components are not incorporated into the 

micelle.   
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Figure 2.8 Static light scattering intensity as a function of F127 concentration at 25 and 
37C; the numbers correspond to the two breaks at 37C.    

Chromatography data by Mortensen et al.13a on Pluronic F127 indicate also that 

the diblock copolymer is not incorporated into the micelles, but their small angle neutron 

scattering (SANS) implicated some degree of association with the micelle corona. Booth 

and coworkers30 showed that the aggregation behavior of the fractionated compounds and 

the unfractionated samples of Pluronic F127 did not differ significantly. 

The micellization process is a complex phenomenon rather than a single stage 

event.  This being the case, it is not unreasonable to expect that particular approaches will 

be more sensitive to certain aspects of the electronic transitions involved.  Different 

agents, with characteristic affinities, will then have the potential to highlight particular 

components of micellization. Although light scattering and pyrene dye methods are more 
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sensitive in detecting the earlier stages of micellization, the additional attractiveness of 

using the BHT probe is that there is no need to add an external dye decreasing the time 

needed for sample preparation. Nevertheless, there are caveats to using this method to 

estimate the CMC: (1) the CMC must be in the Pluronic concentration range where the 

BHT signals have sufficient signal-to-noise; (2) if an additional probe molecule is 

present, there should be minimal spectral overlap; (3) correction for inner filter effects 

may be necessary at high Pluronic concentrations ( > 5% w/v). 

The partition coefficients of pyrene and BHT were determined from non-linear 

least squares fits of plots of  against Cpl (Table 2.2). To evaluate , Equation 2(a) was 

applied to pyrene intensities and 2(b) to the pyrene I1/I3 ratios and BHT relative Raman 

(285 nm) intensities, respectively. Comparison of the partition coefficients between BHT 

and pyrene shows that the partition coefficient increases ~ 40-fold for pyrene taking the 

measurements from the I1/I3 ratios compared to ~ 2 fold for BHT when the temperature 

was increased from 25 to 37C.  Indeed, our calculated value of the partition coefficient 

for pyrene at 37C using the I1/I3 ratios is in good agreement with the published value of 

≈ 2 x 104 .23  Figure 2.9 shows an example plot comparing BHT and pyrene at 37C.  At 

F127 0.1 % w/v the fractional uptake, the values for pyrene and BHT are > 0.8 and ~ 0.1, 

respectively, indicating that the extent of partitioning of BHT in the micelle core may be 

influenced by the unfavorable steric interactions from its tert-butyl groups with the PEO 

segments and the incorporated water molecules.23b 

Tables 2.1 and 2.2 show that there are discrepancies in the calculated CMC, P and 

Hx values determined from the pyrene signals between absolute and relative I1/I3. The 

CMC values are consistently lower from I1/I3 measurements suggesting that this ratio is 
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more sensitive than the intensity to the onset of aggregation.  Moreover, the lower 

partition coefficients determined from the pyrene intensities may be due to the partial 

fluorescence quenching from the water present in the micellar core and intermediate 

regions. In contrast, one would anticipate uniform quenching of the fluorescence in the 

pyrene vibronic fine-structure and thus, this effect would be compensated by using the 

I1/I3 ratio.   The intensity changes in the fluorescence signals with increasing Pluronic 

concentration are the result of the changes in the microenvironment around the BHT as it 

partitions preferentially into the PPO core. Figures 2.2 and 2.7 show the feasibility of 

using the BHT electronic transitions in the Pluronic excitation and emission spectra as a 

probe of polymer aggregation where the difference in the CMC values between 25 and 

37C observed in the Raman scatter is driven thermodynamically by the larger entropy 

contribution in the free energy. 
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Figure 2.9 Example plots of the extent of probe partitioning, , of pyrene and BHT 
against F127 concentration at 37C. The solid lines are non-linear least-squares fits using 
equation 3 and the dotted lines are the calculated 95% confidence intervals. Curve fits 
were done using SigmaPlot 11. 

 
 
 
 
Table 2.2 BHT and pyrene micelle - water partition coefficients and concentrations 
determined from  versus F127 % w/v at 25 and 37C.   

Probe Partition Coefficient (P) Hx  % w/v

 37C 25C 37C 25C 

BHT (1.79 ± 0.05) x 102 (1.04 ± 0.03) x 102  (5.42 ± 0.04) x 10-1 1.05 ± 0.02

Pyrene (3.7 ± 0.06) x 103 (2.6 ± 0.1) x 102 (3.00 ± 0.02) x 10-2 (4.4 ± 0.5) x 10-1 

Pyrene I372/I385 (1.94 ± 0.02) x 104 (5.0 ± 0.1) x 102 (6.08 ± 0.01) x 10-3 (2.40 ± 0.05) x 10-1

Values mean ± SD determined from the fitted parameters. 
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Previous studies show that higher temperatures leads to a sharp CMC decrease 

along with increases in aggregation number, micelle size, and the fraction of polymer 

molecules in micelle form11a, 18a and that the preferential dehydration of PPO segments is 

responsible for micellization.9a, 9c, 16, 25a  These studies provide support for a model of 

micellization, where structural reorganization occurs as a result of the replacement of 

hydrogen bonds between water and polymer with the intra- and intermolecular hydrogen 

bonds between methylene hydrogens and the oxygen component of PO-CH2- of a 

hydrophobic PPO core.  During latter stages of micellization, the cleavage of the coiled 

gauche conformations in PPO segments due to intra-molecular (C-H)… O attractions are 

attributed to the formation of thermodynamically stable stretched trans conformations 

upon micellization.9a  Detailed NMR studies support the interpretation of further Pluronic 

intermolecular hydrogen bond interactions, where a new resonance signal at ~ 3.42 from 

the PO-CH2-  protons above the CMT has been assigned to the breakdown of the 

intramolecular hydrogen bonding between the methylene protons and the ether oxygen’s 

of the PPO segments.9a, 9c  

 

Temperature Dependence of the BHT Fluorescence in Pluronic F127 

 Having demonstrated that the 305 nm and 325 nm electronic transitions of BHT 

associated with F127 are sensitive to the microenvironment, we investigated the effect of 

temperature on the BHT fluorescence wavelength and intensity transitions in water. The 

decrease in the BHT (305 nm) peak intensity in water with increasing temperature is 

consistent with the increased fluorescence collisional quenching by oxygen in the water 

(Figure 2.10).   
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Figure 2.10 Plot of the 305 nm peak against temperature.

For oxygen in water at 25ºC, its diffusion coefficient is 2.5 x 10-5 cm2s-1; 

assuming a diffusion coefficient ~ 10-5 cm2s-1 for BHT and a collision radius of 5 Å, 

yields a bimolecular rate constant of ~ 1010 M-1s-1 .21  The quenching efficiency is 

effectively unity making fluorescence quenching proportional to the bimolecular 

quenching constant; this accounts for the pseudo-first order decay in the fluorescence 

intensity with higher temperature.   

For BHT in F127, Figure 2.11(A) is an example of 2% w/v F127 fluorescence 

spectra with increasing temperature. We note that the positions of the peak maxima will 

vary by polymer batch and extent of BHT degradation. In contrast to BHT in water, the 
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total intensity of the fluorescence signal increases, with the most prominent intensity 

increases occurring in the 285 and 305 nm peaks. Moreover, we found that using 

commercial purified Poloxamer 407 (diblock impurity removed) at 1 % w/v showed the 

same thermo-reversible behavior (not shown). This supports the conclusions by Batsberg 

et al.29 and Booth et al.30 that the diblock impurities do not influence polymer 

aggregation.  

Figure 2.11(B) shows that the integrated intensity between 15 and 37C can be 

used to estimate the CMT. At the CMT the fluorescence intensity sharply increases as the 

BHT becomes associated with the aggregated polymer. In a few samples, data was 

collected as the mixture was cooled. The results were identical to when the sample was 

heated, confirming no hysteresis in the measurements consistent with equilibrium in our 

systems. In separate experiments where F127 was incubated at 37ºC for 48 hours and 

there was BHT degradation as determined by UV-vis and fluorescence spectroscopy, we 

were still able to thermally cycle the fluorescence intensities. 
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Figure 2.11 (A) Fluorescence intensity plots of 2% w/v F127 as function of temperature 
between 19 and 37C. (B) Normalized fluorescence intensities of the 275 - 450 nm 
spectral region as a function of temperature for F127 concentrations 0.25, 0.5, 1, 2 and 
5% w/v.  The normalized fluorescence intensities as against temperature for F127 
concentrations 0.25, 0.5, 1, 2 and 5% w/v monitored at (C) 305, (D) 325, and (E) 285 nm, 
respectively. (F) Static light scattering intensity as a function of temperature for F127 
concentrations 0.25, 0.5, 1, 2 and 5% w/v. 
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Figure 2.11(C)-(E) examines the fluorescence intensities that were normalized to 

the temperature below aggregation. From the BHT (305 nm, 325 nm) and Raman (285 

nm) intensities the CMT can be determined. The CMT values at 0.25% w/v (26C), 0.5% 

w/v  (25C), 1% w/v  (23C), 2% w/v  (22C), and 5% w/v  (19C) are in good 

agreement with the literature16, 25b and static light scattering (Figure 2.11(F)). 

 

Characterization of the Micelle Size Distribution 

 Temperature influences profoundly the phase separation of Pluronic copolymers. 

This phase separation was quantified by DLS measurements at 23, 25 and 37ºC of 2% 

w/v F127 (Figure 2.12(A)). Upon increasing the temperature in the threshold CMT region 

from 23 to 25ºC, the average diameter increases from 7.6 nm to a heterogeneous micelle 

size distribution that can be described by two Gaussian populations centered at 35 and 51 

nm.  The increase in core size agrees with the predictions of theoretical models.18a, 31 We 

can infer from the differences in the hydrodynamic diameter between 23 and 25ºC that 

micelle clusters are formed above CMT. Furthermore, the polydispersity of F127 

decreases with temperature. At 37ºC the distribution of F127 micelle size narrows and the 

average diameter decreases to 21 nm as more water is expelled from the increasing 

hydrophobic PPO core. This temperature dependence in the size distribution behavior for 

Pluronics was previously demonstrated for P104 and F108.8b  Simulation results of P103 

Yang et al.31 also predict the decrease in polydispersity with temperature.   

  



 

59 

 

 

 

Figure 2.12 (A) Volume weighted DLS distributions for 2% w/v F127 at 23, 25, and 
37C. The lines are the Gaussian distributions centered at 7.6 nm (23C), 21 (37C), and 
at 35 and 51 (25C) nm respectively. (B) AFM 300 x 300 nm2 phase contrast image in 
tapping mode of 5% w/v Pluronic F127 air dried on a freshly cleaved mica substrate. (B) 
Typical TEM image of 5% w/v F127 stained with 2% w/v phosphotungstic acid. (D)  A 
graph of the TEM size distribution for 5% w/v F127; this distribution is approximated by 
three Gaussians having means 11.8 ± 1.5 nm, 17.2 ± 1.6 nm, and 23.2 ± 1.4 nm (mean  ± 
SD, n =176). 
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It is expected in the PEO backbone that with increasing temperature, there will be 

additional structural reorganization where the enthalpy cost of breaking ether-water 

hydrogen bonds is greater than the entropy gain associated with the break-up of ether-

water hydrogen bonds and reduction in the structure of hydrating water with increasing 

temperature.32  In contrast, the PPO segments undergo a higher degree of dehydration 

than the PEO segments excluding more water molecules, which is consistent with a 

water-insoluble liquid-like core created by the PPO blocks, during the micellization 

process.11a, 14b, 15, 25a   

 Room temperature (~23-25C) TEM and AFM measurements were used to 

characterize the size distribution of 5% F127 (Figure 2.12(B)-(D)). The diameters 

determined from AFM and TEM measurements from air-dried F127 samples will be 

smaller than the values quantified by DLS because the micelles will collapse upon 

dehydration. The significant heterogeneity of the air-dried samples observed by AFM and 

TEM are consistent with our DLS results at 25C for 2% w/v F127.  

Lam et al.6b visualized the micelles of Pluronic L64 and F127 between 5 and 10% 

w/v by cryogenic TEM. In their vitrified samples, there was an increase in the degree of 

order between 5 and 10% w/v Pluronic F127 samples as well as the mean size of micelle 

core from 6 to 10.8 nm in diameter. In contrast to ours, their size distribution was found 

to be bimodal.  They argued that this micelle bimodal size distribution reflected the 

bimodal molecular weight distribution in the polymer.  However, in addition to the 

molecular weight as a potential determining factor, the observed heterogeneous micelle 

size distribution may also be the result of the concentration dependent aggregate 

formation, which is characteristic of a multi-step micellization process.19, 31 
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Discussion 

 In this work we present a novel approach to characterize temperature-dependent 

micellization using the fluorescence in commercial F127 samples from antioxidant 

molecules like BHT. The fluorescence of BHT is sufficiently sensitive to its 

microenvironment to be used as a reliable marker of temperature induced micellization. 

This sensitivity of BHT to the microenvironment polarity is shown by the fluorescence 

intensity increase in the presence of F127 with higher temperature (Figure 2.11).  In the 

absence of F127, there is collisional quenching of the BHT fluorescence with higher 

temperature.  We compared in sections 3.1 and 3.2 the BHT fluorescence method for 

determining the concentration and temperature dependent Pluronic F127 aggregation.    

In section 3.1 we noted that for a reliable determination of CMC, its value must be in the 

F127 concentration range of good BHT fluorescence signal-to-noise ratio and below 

where inner filter effects become significant. Because of the variations in polymer 

batches, the BHT fluorescence method would provide researchers a convenient way to 

characterize polymer aggregation, without having to add an external dye. An important 

application of our novel method is the in-situ characterization of the temperature-

dependent aggregation of commercial Pluronic batches. Furthermore, this approach to 

determine the CMC and CMT can be applied to any copolymer system that contains 

phenolic antioxidants such as BHT.   

 Above the CMT, light scattering results suggest the coalescence of micelles, PPO 

core dehydration, and decreased heterogeneity in micelle size distributions.  The 

electronic BHT transitions are directly impacted by the local environment where the 

partitioning in the micelle is influenced by steric and hydrogen bonding interactions with 
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the PEO and PPO segments.  This is the case when comparing the changes in the 

fluorescence intensities with increasing temperature. Higher fluorescence intensity values 

with increasing temperature implies greater accommodation to the PPO environment, 

reflecting the higher quantum yield of BHT in the micelle interior. Furthermore, light 

scattering, AFM, and TEM data show high micellar heterogeneity around the CMT, 

lending support to a multi-step model of aggregation. The earliest stage likely involves 

the transition between unimers and low aggregation number micelles, while the second is 

thought to be associated with micellar clusters and the beginning of coalescence into 

larger aggregates. 
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CHAPTER THREE 

KINETICS OF GOLD NANOPARTICLE FORMATION 

FACILITATED BY TRIBLOCK COPOLYMERS 

 
Abstract 

 Concerns for the environmental and economic impact of organic solvents and 

detergents in gold nanoparticle (AuNP) solution synthesis have motivated the search for 

more environmentally benign alternatives. One approach is to synthesize AuNPs from 

tetrachloroauric (III) acid (HAuCl4) using triblock copolymers (TBPs). However, a major 

challenge of using TBPs is the heterogeneous nature of the formed nanocrystals.  

Establishing control over AuNP size and shape requires a detailed mechanistic 

understanding of precursor reduction and nanoparticle growth. By using mixtures of 

TBPs (L31 and F68), we demonstrate a more flexible method for adjusting the 

hydrophobic/hydrophilic environment to tune the size and shape. We show that AuNP 

morphology and size can be changed by adjusting the TBP/Au(III) ratio. Kinetic models 

are used to rationalize why the addition of L31 slows the rate of AuNP formation and 

growth.  Experimental evidence of sigmoidal growth kinetics, early time bimodal gold 

nanoparticle size distributions and polycrystallinity suggest that aggregative AuNP 

growth is an important mechanism. 
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Abbreviations 

AFM    Atomic force microscopy 
 
AuNP    Gold nanoparticle 
 
CP    Cloud point 
 
CTAB    Cetyltrimethylammonium bromide 
 
DPD    Dissipative particle dynamics 
 
FESEM   Field emission scanning electron microscopy 
 
FWHM   Full width half maximum 
 
HAuCl4  Tetrachloroauric (III) acid 
 
HAuCl4.3H20   Tetrachloroaurate (III) Hydrate 
 
HMW    High molecular weight 
 
KJMA    Kolmogorov-Johnson-Mehl-Avrami 
 
LMCT   Ligand-to-metal charge transfer 
 
LMW    Low molecular weight 
 
LSPRs   Localized surface plasmon resonances 
 
PEG    Polyethylene glycol 
 
PEO    Poly-ethylene oxide 
 
PPO    Poly-propylene oxide 
 
PVDF    Polyvinylidene fluoride 
 
SERS    Surfance-enhanced Raman scattering 
 
STEM    Scanning transmission electron microscopy 
 
TBP   Triblock copolymers 
 
XRD    X-ray diffraction 
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Introduction 

 An important challenge in materials chemistry is to understand how the properties 

of nanomaterials scale with physical dimension because different physico-chemical 

properties vary in distinct ways with shape and size.1 Various anisotropic gold 

nanoparticles (AuNPs) have attracted much attention due to their ability to maximize 

electromagnetic-field enhancement which finds applications in surface-enhanced Raman 

scattering (SERS) detection and other spectroscopic fields.1e, 2 The local interactions 

between plasmonic nanoparticles and electromagnetic wave radiation are described by 

localized surface plasmon resonances (LSPRs) which are charge density oscillations that  

produce intense local electric fields within a few nanometers of the particle’s surface.3 

This effect can increase Raman scattering cross-sections of molecules adsorbed on the 

surface.1c The shape dependence of this phenomenon can be exploited to tailor the 

spectral response by controlling the topology of the nanoparticles.4  

 Solution based synthesis of AuNPs typically involves the reduction of precursor 

gold ions.5 The synthesis of anisotropic AuNPs in solution requires that nucleation and 

growth deviate from a thermodynamic to a kinetically controlled pathway by slowing 

down precursor decomposition or reduction via a weak reducing agent or by Ostwald 

ripening.6 A common approach to anisotropic nanoparticle synthesis is the seed 

methodology where a small amount of gold precursor is added to a solution. This method 

has been used to synthesize nanoprisms.7 It has been shown that triangular/hexagonal and 

smaller pseudo-spherical AuNPs can be synthesized from HAuCl4 using salicylic acid,8 

aspartic acid,9 UV-vis irradiation,10 gamma irradiation in a reaction medium containing 
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gold (I), and ascorbic acid in the presence of cetyltrimethylammonium bromide 

(CTAB).11  

 The LaMer mechanism12 (classical nucleation and growth) is commonly used to 

describe the growth of nanoparticles.13 This mechanism supposes a burst of nucleation 

producing a number of nuclei viable for growth. After initial nucleation, the nuclei grow 

into particles by the molecular addition of nutrient species on the surface of the particles 

known as Ostwald ripening. In this model, the particles will be mostly monodisperse. 

This classical model of nucleation burst has been challenged in the case of citrate 

reduction where the polydispersity and size are influenced by pH, temperature and 

concentration of the reducing agent.14 Furthermore, it has been noted that the LaMer 

mechanism does not account for the aggregation of small nanocrystallites.15 An 

alternative model called the aggregative nanocrystal model has been used successfully to 

describe Au nanocrystal growth.14c, 15 In this model, the initial nucleation and growth 

result from a number of critically sized aggregates of smaller nanocrystallites in a non-

classical aggregative nucleation step.15 Nanoparticle growth is then achieved by the 

coalescence of these aggregates and is characterized by polycrystallinity of the 

developing particles,15-16 bimodal size distributions in the early stages of growth15, 17 and 

sigmoidal growth kinetics.15, 18 

 Concerns for the environmental and economic impact of organic solvents and 

detergents such as CTAB have motivated the search for more environmentally benign 

alternatives.19 Recently, several groups have reported the use of nontoxic TBPs that allow 

the single-step formation of AuNPs.20 Triblock non-ionic copolymers contain blocks of 

poly-ethylene oxide (PEO) and poly-propylene oxide (PPO) in the sequence PEO-PPO-
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PEO and are known as poloxamers or commercially as Pluronics. These TBPs reduce the 

hydrogen tetrachloroaurate (III) hydrate (HAuCl4.3H2O) into AuNPs and subsequently 

suspend and stabilize them in solution. It has been shown that the size of the gold 

nanocolloids can be controlled on the basis of the structures of amphiphilic block 

copolymers.20c, d, 21 For example, Alexandridis and coworkers used TBPs in synthesis of 

AuNPs21a, 21c, 22 and Khullar et al.20c studied the micellar TBPs F68 and P103 in reducing 

HAuCl4. The latter study also examined the effects of temperature when comparing 

hydrophobic and hydrophilic TBPs. The conditions used in the Khullar study involved 

isotropic micellar behavior as is shown in the F68-water phase diagram.23 They proposed 

that the extent of hydration of the surface cavities is the rate-determining step and that the 

mechanism of Au(III) reduction involves sequential redox reactions on the surface of the 

PEO ether backbone. Their findings indicate that particle size could be controlled by 

varying EO/PO ratio, solvent, and temperature. In addition they noted that the shape can 

be influenced by the HAuCl4 concentration.  

 The major challenge of using the TBP mediated approach to synthesize AuNPs is 

the heterogeneous nature of the formed nanocrystals.21-22 Furthermore, establishing 

control over AuNP size and shape requires a detailed understanding of the mechanism 

and kinetics of precursor reduction and particle growth.14b We demonstrate a more 

flexible method for adjusting the hydrophobic/hydrophilic environment in order to 

control the growth kinetics of the AuNPs by using mixtures of TBPs. Our method 

involves mixtures of low molecular weight (LMW) hydrophobic (PO: EO ratio > 0.5) 

and high molecular weight (HMW) hydrophilic (PO: EO ratio <0.5) PEO-PPO-PEO 

block co-polymers. We show that the yield of nanoprisms can be manipulated via 
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changes in gold and surfactant concentrations. We also show that the growth kinetics can 

be more adequately described by an aggregative nucleation and growth model. The 

uniqueness of our approach is that we can modify the kinetics of particle growth and 

morphology through optimizing the phase behavior of aqueous block copolymers 

mixtures. 

 

Materials And Methods 

Materials 

 The Pluronics® L-31 (EO2-PO16-EO2 MW  1100; Batch #: 01631MH), and F68 

(EO78-PO30-EO78 MW  8400; Batch #: 018K0029) along with hydrogen 

tetrachloroaurate (III) trihydrate (HAuCl4.3H2O) were used as received (Sigma Aldrich, 

Milwaukee, WI, USA). Water was purified with a Milli-Q (18 M cm) water system.  

 
Synthesis of Gold Nanostructures 

 The cloud point (CP) of stock L31/F68 mixtures can be reduced from above 

100C for aqueous F68 binary mixtures,24 to  30C by adding L31 (Figure 3.1). In a 

typical stock solution preparation, 10 mL of 50% w/v F68 and 10 mL L31 were added to 

100 mL water (8 mM:4 mM; L31/F68). This mixture corresponds to an EO:PO molar 

ratio  0.7. Gold nanostructures were prepared by adding 2 to 5 x 10-2 M HAuCl4 to the 

TBP aqueous polymer mixtures at the required dilutions followed by vigorous mixing for 

10 seconds. HAuCl4 reduction was performed at   25C where the end-point was 

estimated by the plateau in the 540 nm UV-vis absorbance peak. For Au(III) 
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concentrations below 5 x 10-4 M the reaction was complete within 2-3 hours while at 1 x 

10-3 M initial Au(III) concentration. 
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Figure 3.1 A plot of the absorbance at 600 nm against temperature for L31:F68 (8 mM: 
4mM) 2:1 mixture. The inflection point gives an estimate of the CP. 
 
 

The reaction was complete within 12 hours. In UV-vis experiments HAuCl4 was 

added to 1 mL of L31/F68 aqueous solutions followed by 10 cuvette inversions to 

thoroughly mix the reagents. For longer studies of two or three days (Figures 1 and 2), we 

incubated the mixtures in a water bath at 25C before characterization by UV-vis 

spectroscopy and electron microscopy to ensure that HAuCl4 reduction was complete.  

 

Synthesis of Au Citrated Seeds 

Citrated gold nanoparticles, between ~10-30nm, were prepared by refluxing 150 

mL of 2.2 mM sodium citrate aqueous solution in a three-necked round bottom flask for 

15 min as previously described.25 Then 1mL of 25 mM of HAuCl4 was injected and 
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allowed to react, approximately 10 min., until the solution turned soft pink. A 5 mL 

aliquot was removed and placed aside for further characterization. In the same vessel, the 

reaction was cooled to 90oC and 4 mL of sodium citrate (15 mM) and 1 mL HAuCl4 

(25mM) were injected sequentially. After additional refluxing (30 min.), aliquots of 5 mL 

were extracted and placed aside for further characterization. This process (injection of 4 

mL of sodium citrate (15 mM) and 1 mL HAuCl4 (25 mM)) was repeated until 14 

generations of gold nanoparticles of progressively larger gold nanoparticles were 

synthesized. 

 

Synthesis of Seeded TBP Coated Gold Nanoparticles 

The first (~6 nm), seventh (~16 nm), and fourteenth (~23 nm) generations of the 

Au citrate nanoparticles were used to seed the growth of the polymer coated Au 

nanoparticle. In a typical stock solution preparation, 10 mL of 50% w/v F68 and 10 mL 

L31 were added to 100 mL water (8 mM:4 mM; L31/F68). 1 mL of  L31/F68 solution 

was seeded with 0-100 µL of Au citrate seed and incubated at 25oC for ~15 min before 

1x10-3 M HAuCl4 was added to the reaction and monitored for 15 min. 

 

UV-vis/Dynamic Light Scattering (DLS) 

 The reduction of HAuCl4 and the formation of gold nanoparticles were monitored 

by observing the changes in the absorption spectra using a UV-vis spectrometer (Varian 

Cary 300 and 500) fitted with temperature control at 25 ± 1 C. The AuCl4
- concentration 

was estimated from the absorption bands at 240 nm and 320 nm by the use of extinction 

coefficients 9823 M-1cm-1 and 5400 M-1cm-1, respectively.26 
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Turbidity measurements were taken via the absorbance of the mixtures using a 

Cary 300 UV-vis spectrometer at  = 600 nm.  DLS experiments measurements were 

made with a model NICOMP 370 submicron particle sizer (Particle Sizing Systems, 

Santa Barbara CA, USA) at a He-Ne laser wavelength of 632 nm with a power output of 

60 mW. For DLS measurements, samples were centrifuged (10,000 rpm) to remove 

excess surfactant and suspended in water.  

 

Gold Nanoparticle Characterization 

 Samples were prepared for electron microscopy measurements by centrifuging 

(10,000 rpm) twice to remove excess polymer and suspended in water. Field emission 

scanning electron microscopy (FESEM) analysis was carried out on a Zeiss Gemini 

FIB/FESEM instrument with scanning transmission electron microscopy (STEM) 

capabilities (at an operating voltage of 20 kV). Digital TEM images were obtained using 

a Philips Tecnai 12 instrument operating at 80 kV and fitted with a Gatan camera. The 

samples were prepared for TEM and STEM by mounting a drop of a solution on a 

carbon-coated Cu grid (Ted Pella 200 mesh) and allowed to dry in the air. 

 Atomic force microscopy (AFM) images were generated with a Multimode 8 

scanning probe microscope (Bruker, Santa Barbara CA) in the peak forceTM tapping 

mode and using ScanAsystTM (k = 0.4 Nm-1, f = 70 kHz) air probes. Automated feedback 

parameter optimization was achieved using ScanAsystTM. The peak forceTM tapping 

mode modulates the cantilever at ca 2 kHz at each pixel of the image where the feedback 

is based on the interaction force each time the tip taps the sample.  
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 To image nanoprisms, 1 mL aliquots of the reaction mixture were filtered using 

0.1 m polyvinylidene fluoride (PVDF) membrane (Millipore) centrifuge tubes in order 

to remove particles smaller than 100 nm which include the spherical gold particles and 

smaller gold prisms. After filtration, the retentate was collected by adding 1 mL water 

and sonicating for 20 seconds. A 5 L aliquot of the retentate was placed upon a gold 

coated mica sheet (10 mm x 10 mm) to dry prior to AFM imaging. X-ray diffraction 

(XRD) was performed with a Siemens D500 diffractometer. 

 Sample preparation for AFM imaging of the primary nanocrystallites was 

performed by taking 100 L aliquot of a reaction mixture at different times after Au(III) 

addition and adding this aliquot to 900 L of water. This slows the reaction rate so that it 

is negligible on the time-scale of sample preparation. A 1 mL solution was centrifuged at 

13,000 rpm for 5 minutes. Then a 5 L aliquot of this solution was dropped onto a freshly 

cleaved mica surface and allowed to dry. The mica surface is washed to remove excess 

polymer by dropping ~10-20 L of water on the dried spot and allowing the water to 

drain onto a dry cloth.  AFM post-acquisition image processing and analyses were 

performed using Nanoscope Analysis by Bruker, ImageJ (http://rsbweb.nih.gov/ij), and 

Gwyddion (http://gwyddion.net/) software suites.  

 

Analysis of Growth Kinetics 

 AuNP growth was monitored using the 540 nm UV-vis peak. The Kolmogorov–

Johnson–Mehl–Avrami (KJMA) model has been shown in some cases to fit the sigmoidal 

nanoparticle growth profile.14c, 15 However, we found that the simple KJMA model was 

unable to fit the rising slope at later times. Instead, a modified logistic equation that 
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includes a second term to account for Ostwald ripening provided a reasonable fit to the 

data.18a The absorbance, A(t), being proportional to the volume fraction data was fitted by 

a modified exponential function.14c, 18a 
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This equation consists of two terms having proportionality constants c and b. The 

first term is the standard KJMA term to fit nucleation and growth, where kg (min-1) is a 

rate parameter and n is the Avrami exponent. The rate constant, kg, is considered an 

indicator of the relative growth rates.15 The second term provides a linear increase in 

mean volume to account for Ostwald ripening.18a The rate parameter, b, is multiplied by a 

logistic function to activate Ostwald ripening at time, tOR. The width of the turn on 

function, w, was set to unity. We note that values of w greater than unity (e.g., 2 minutes) 

did not statistically improve the quality of the fitting. The Ostwald ripening onset time, 

tOR, of the second growth regime was estimated visually or by plotting the derivative of 

the absorbance against time. The time, tOR, was estimated from the sum of the position of 

the peak maximum and half of the full width at half maximum (FWHM). We found that 

the latter approach was useful at initial Au(III) concentrations above 2 x 10-4 M  where 

the sloping background prevents clear visual designation of the Ostwald growth regime 

(Figure 3.3). Initial guesses for c, kg and n were obtained by fitting the first term in 

equation 1 up to tOR. These parameters were used as initial guesses of the least-squares fit 
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of equation 1, with the parameter, tOR, fixed. Peak fitting and post-acquisition spectral 

analysis was done using Igor Pro (Wavemetrics) and mathcad 15 (PTC). 

 

Results 

Gold Nanoparticle Characterization 

UV-vis Spectroscopy 

 Figure 3.2 shows spectra with initial Au(III) concentrations between 1 x 10-3 and 

1 x 10-5 M. Figure 3.2A is in 4.5 mM F68 solutions and Figure 3.2B is in L31/F68 (8 

mM: 4 mM) solutions. Spectra were not recorded above 1400 nm because of the strong 

water absorption above 2 m.27 The observation of peaks associated with the Au(III) salt 

at 10-3 M indicates a limiting condition in the number of reducing PEO equivalents. The 

estimated 240 nm reduction in absorbance of ~ 10 to ~ 2 represents a 5-fold change of ~ 

80% Au(III) reduction.  

 The transitions above 500 nm are due to the LSPR bands of gold while the peaks 

below 400 nm (216 nm and 320 nm) are assigned to ligand-to-metal charge transfer 

(LMCT) (*) Cl pπ  5d x
2

 – y
2 bands of the various chlorohydroxoaurate species 

AuClxOH4-x
- that may be present depending on the solution pH.28,29 
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Figure 3.2 UV-vis spectra of samples incubated at 25C for two days with initial Au(III) 
concentrations between 1 x 10-3 and 1 x 10-5 M. The polymer concentrations are (A) 4.5 
mM F68; and (B) L31/F68 (8 mM: 4 mM). 
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Figure 3.3 Example plot of 10-4 M initial Au(III) concentration of the first derivative of 
the absorbance.  The white and black squares are the L31 4.5 mM and L31/F68 8 mM/4 
mM solutions, respectively; the dotted and solid lines are the Gaussian single peak and 
composite fits to the data, respectively. We can estimate Ostwald ripening time, tOR, in 
equation 1 from the sum of the position of the peak maximum and half of the full width at 
half-maximum (fwhm) of the first Gaussian peak. 
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Khullar et al.20d observed a peak at 290 nm in L64 aqueous solutions that was red-

shifted with increasing solution temperature to 320 nm for Au(III) reduction. This red-

shift was attributed to the energy relaxation caused by the structural reorganization in the 

copolymer aggregates. Aqueous AuCl4
- solutions exhibit peaks at 217 and 287 nm 

(Figure 3.4). Thus it is likely that any red-shift to ≈ 320 nm upon AuCl4
- addition to TBP 

solutions is due to the hydrogen bonding interactions of TBPs with water that will reduce 

the extent of water solvation around AuCl4
- and the subsequent rate of Au-Cl substitution 

by OH-.  

At 1 x 10-3 M initial Au(III) concentration, the longer wavelength 700 – 1400 nm 

intensities are assigned to in-plane dipole and out-of-plane quadrupole resonance 

absorptions of nanoplates.30 Both experimental7a, 31 and theoretical30a,30b results show 

linear correlations between increasing resonance absorption band wavelengths and the 

edge lengths of gold nanoplates. Larger nanoplates with sizes comparable to the 

excitation wavelength will have a greater scattering contribution to absorption than small 

nanoparticles. Moreover, the absorbance intensities above 700 nm are the highest for 

L31/F68 solutions at 25C (Figure 3.2B), which is double for L31/F68 than F68 alone 

(Figure 3.2A). This infers that the average edge lengths of the gold nanoplates in the 

L31/F68 aqueous mixture are larger compared to those in the F68 aqueous mixture. At 

lower Au (III) concentrations (< 5 x 10-4 M), the higher intensities in the ~ 540-600 nm 

region relative to absorption above 700 nm indicate smaller nanoparticles below 50 nm. 

We note that solutions of L31 did not reduce Au(III) below 70C which is consistent with 

previous work.20d 
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Figure 3.4 The measured UV-vis spectrum of the extinction coefficient of Au(III) in DI 
water at room temperature. The extinction coefficient was determined by using solutions 
at different Au (III) concentrations. (A) Residual of the Gaussian fits. (B) Fitted and 
measured spectra. (C) Deconvoluted peaks at 217 and 287 nm.  
 
 

Dynamic Light Scattering 

 Measurements taken with DLS confirm the smaller average particle sizes for 

Au(III) reduction in aqueous F68 (~ 300 nm) versus L31/F68 (~ 1400 nm) solutions 

(Figure 3.6). This is consistent with the higher absorbance background above 700 nm 

associated with larger nanoplates in the L31/F68 mixture. We note that DLS gives a 

qualitative measure of the relative sizes because the standard DLS model assumes 

spherical particles and the absence of multiple elastic scattering.32  
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FESEM 

 Figure 3.5A and B show representative FESEM images of the formed gold 

nanostructures which were characterized by UV-vis spectroscopy (Figure 3.2) with initial 

Au(III) concentration 1 x 10-3 M. The nanoparticles prepared from Au(III) reduction in an 

aqueous F68 mixture consists of a heterogeneous mix of irregular and nanoprism shaped 

nanoparticles on a length scale of 0.1 – 3 m (see STEM Figure 3.7). Nanoplates are 

formed from Au(III) reduction in L31/F68 aqueous mixtures (Figure 3.5B). The plates 

are dominated by distinctive triangular and hexagonal shapes several microns in length 

interspersed with smaller plates and irregular icosahedral shaped nanostructures below 

500 nm (see STEM/FESEM Figure 3.8). Figure 3.5C and D show that with 10-fold lower 

(10-4 M) Au(III) concentration sub 50 nm Au nanoparticles are formed, which are 

embedded within the polymer matrix. Our results are similar to published results at 40C 

where TEM shows small Au nanoparticle aggregates embedded within the F68 polymer 

matrix.20c 
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Figure 3.5 FESEM images (A) – (B) after three day incubation at 25C with 1 x 10-3 M 
initial Au (III) concentration; (A) 4.5 mM F68 and (B) L31/F68 (8 mM: 4 mM) solutions. 
FESEM images (C) – (D) after three day incubation at 25C with 1 x 10-4 M initial 
Au(III) concentration; (C) 4.5 mM F68 and (D) L31/F68 (8 mM: 4 mM) solutions.  
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(A) 

 
 

(B) 

 
 

Figure 3.6 DLS volume-WT distribution for initial 10-3 M Au(III) concentration after 3 
days. (A) F68  4.5 mM; and (B) L31:F68/(8 mM: 4 m,M) mixtures.  
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Figure 3.7 STEM image with initial 10-3 M Au(III) concentration after 3 days for  F68  
4.5 mM aqueous solution. 
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B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8 (A) STEM image with initial 10-3 M Au(III) concentration after 3 days for  
L31:F68/(8 mM: 4 mM) aqueous solution. (B) FESEM image of Au nanoprisms with 
initial 10-3 M Au(III) concentration reduced in a  L31:F68/(8 mM: 4 mM) aqueous 
solution. 
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Atomic Force Microscopy 

 Figure 3.9A is a representative AFM image of a gold nanoplate step-edge. The 

measured thicknesses of the plates ranged from 15 to 25 nm. Some of the nanoplates had 

multiple step heights. Figure 3.9B shows an example of a nanoplate edge with step 

heights of 20 nm and 25 nm, respectively. Dotted on the surface of the nanoplates are 

bright features (Figure 3.9A and C) which we assign to absorbed TBP coated AuNPs. 

The X-ray diffraction (XRD) pattern of these nanoplates have (111) and (200) peaks 

characteristic of face-centered cubic structures (Figure 3.11). The dominance of the (111) 

peak indicates that the plates have {111} terraces. 

 

Au(III) Reduction and TBP mediatednNanoparticle Growth Kinetics 

 The time evolution in the nanoparticle growth process was monitored by UV-vis 

spectroscopy of the Au(III) absorption peaks (Figure 3.10). Figure 3.10A shows example 

spectra (EO: PO ratio = 0.7) within 30 minutes of Au(III) addition. Upon the addition of 

Au(III) to the TBP mixture, the LMCT peak at 220 nm blue-shifts to 211 nm along with 

the concomitant resolution of the 245 nm peak and the appearance of LMCT peaks at 316 

and 387 nm (Figure 3.10B). The origin of the additional 387 nm peak may be due to the 

reduction in the energy gap between 2eu (π)  2b1g (*) orbitals33 caused by the 

complexation by the -donor oxygen lone pairs of the PEO segments. We note that in the 

case of polyethylene glycol (PEG) a similar peak is observed at ~ 380 nm after 1 minute 

reaction.34 
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Figure 3.10C and D show the time evolution of 240, 320 and 540 nm peaks. There 

is intensity loss for the 240 and 320 nm peaks. The 240 nm absorbance reaches a steady 

state of 0.45 after 4 minutes (Figure 3.10C).  

 

 

Figure 3.9 Representative AFM images of Au nanoplates (A)-(C); (A) nanoplate step-
edge and; (B) the line profile of the nanoplate step-edge shown in (A). (C) An example 
AFM image of nanoprisms having dimensions of the order 1 m.  
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Figure 3.10 (A) Time evolution (15 minutes) UV-vis spectra of a L31/F68 8 mM: 4 mM 
F68 mixture with initial 10-4 M Au (III) concentration. (B) The evolution of the 316 and 
387 nm peaks within the first 5 minutes of Au(III) addition. (C) Time evolution of the 
240 nm peak. The first-order decay constant from the fit (solid line) is (1.95 ± 0.05) x 10-

2 s-1. (D) Time evolution in the 320 and 540 nm peaks. The solid line is the fit of equation 
2 with n = 3; kg = (8.1 ± 1.0) x 10-3 min-1; tOR = 8.02 ± 1.75 min. 
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Figure 3.11 XRD spectrum for AuNPs made from an initial 10-3 M Au(III) concentration 
after 3 days in a of a solution of L31:F68  (8 mM: 4 mM).   
 
 

The increase in the 320 nm peak intensity after 5 minutes is caused by the Au 

nanoparticle scattering contribution. Moreover, this 320 nm absorption increase 

correlates with the end of the induction period seen in the Au 540 nm surface plasmon 

peak.  

 

(111) 

(200) 
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Kinetics of Gold Nanoparticle  Formation 

 An example of the effect of Au(III) concentration on the rate, RNP, of nanoparticle 

formation is shown in Figure 3.12. This plot is constructed from the initial rate of loss in 

the 320 nm peaks. A comparison of ternary F68 + water + HAuCl4 and quaternary 

L31/F68 + water + HAuCl4 solutions show that the maximum rate is lower for L31/F68 

mixtures. It is thought that the reduction of Au(III) proceeds via the oxidation of ethylene 

oxide groups in a pseudo-crown ether complex with AuCl4
- where the reduction of 

Au(III) follows the sequence Au(III) Au(II)Au(I) Au(0).21b, 34 The rate 

determining step is the reduction of Au(I)34 ions which can migrate into micellar cavities 

resulting in disproportionation [3 Au(I)    2 Au + Au(III)],21a followed by metal atom 

coalescence forming Au nanoclusters to yield primary nanocrystallites. Our observation 

that the maximum rate decreases when L31 is added suggests that the function of L31 is 

to inhibit the overall reduction rate of the Au(III). Based upon these observations, we 

constructed a kinetic model that is analogous to the Michaelis-Menten enzyme kinetics of 

mixed inhibition where the substrate is Au(III) and the active sites are the EOx blocks of 

F68 (the derivation is found elsewhere).35 In this model, L31 binds to F68 (L31:L68) and 

Au(III):F68 complexes to inhibit the reduction of Au(III). We show that RNP is 

proportional to [Au(III)] and therefore –RAu(III) is proportional to Au(III) concentration.  



93 

 

Figure 3.12 Rate of initial Au(III) loss (320 nm) against initial Au(III) concentration. The 
solid (—) and dashed (- -) lines are the fits to equation 2. Black squares are the initial 
rates in the 5 mM F68 and the open triangles are the initial rates for 4 mM F68: 8 mM 
L31 solutions. Least-squares fitting determined the values for Rmax and Km to be 0.01 Ms-1 
and (2.4 ± 0.7) x 10-4 M, respectively. The calculated scaling parameters  and ’ are  
1.1 and  1.8 for the L31/F68 mixture giving values of Ki =1.25 Km and Ki’ =10 Km. 
 
 

 

The initial rate of loss in the 320 nm peak is proportional to the rate of AuNP 

formation (-RAu(III)  RNP). The inhibition mechanism by L31 is assumed to occur by its 

interstitial occupation of micellar corona sites preventing the pseudo-crown 

conformations21a, b necessary for gold ion reduction. 

This mixed inhibition process of Au(III) reduction can be modeled with a possible 

reaction mechanism shown in scheme 1 where F68 forms an equilibrium complex with 

Au(III) with a dissociation equilibrium constant of Km. Meanwhile, the L31 interacts with 
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F68 (competitive inhibition) as well as complexing with F68:Au(III) (non-competitive 

inhibition) with dissociation constants of Ki and Ki’, respectively. The AuNP reaction 

rate, RNP, is 

 
)](['

)]([max

IIIAuK

IIIAuR
R

m
NP  

              (2) 

Here, the  term accounts for the competitive inhibition by L31 for F68 active sites and 

’ for its noncompetitive inhibition when it interacts with the F68:Au(III) complexes 

inducing conformational changes in the PEO backbone preventing redox reactions. In the 

absence of L31, the terms and’ are equal to one. The term Rmax is the reaction rate in 

the limit of high Au(III) concentration ([Au(III)] >> Km).  

 In this model, Km, is the concentration at which the reaction rate is one-half Rmax 

and in the case of competitive inhibition by L31 is given by 


mK .  In noncompetitive 

inhibition by the L31, the maximum reaction rate is given by 
'

max


R . At the limit of high 

Au(III) concentration, the reaction rate is 
'

max


R and so the maximum rate will always be 

less when L31 is present. In the high Au(III) concentration limit, varying the L31 

concentration will have the most influence upon the reaction rate. In the low Au (III) 

concentration limit, 
mK

IIIAuR
R







)]([max  provided that αKm >> α’[Au (III)]. Thus, 

varying the Au(III) concentration will have the most influence upon the reaction rate. In 

these two limiting concentration regimes, our model predicts that reaction conditions may 

be optimized to maximize the yield of different Au NP sizes and shapes.  
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 A relative measure of the reaction process number per unit time is the turnover 

number, kcat, which is equal to  
]68[

max

F

R
 (min-1 or s-1). The corresponding reaction time is 

equal to 
catk

1  and in the presence of L31, kcat will be smaller resulting in longer reaction 

times. The ratio 
m

cat

K

k
 (M-1s-1) is the effective second-order rate constant for the reduction 

between Au(I) and EOx blocks of F68 as it is the rate determining step. This ratio is a 

quantitative measure of the reaction efficiency.  

 We determined the values of Km and Rmax from the F68 plot assuming  and ’ 

are 1. The fitted value of Km is (2.4 ± 0.7) x 10-4 M. The measured scaling parameters  

and ’ are  1.1 and  1.8 for the L31(8 mM)/F68 (4 mM) mixture giving values of Ki 

=1.25 Km and Ki’ =10 Km. The calculated turnover number of the F68, kcat is 10-3 s-1; the 

efficiency or effective rate constant, kcat/Km, is  4 M-1s-1. We can estimate the reaction 

time to be equal to ~ 1/kcat, which is 103 s or  17 minutes. In the presence of L31 with 

’ ~ 2 our model accounts for the observation that Rmax will be reduced by half (Figure 

3.12).  
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Scheme 3.1 A proposed kinetic scheme of HAuCl4 reduction by the EOx segments of 
F68. The equilibrium complexes EOx:Au(III), EOx:POy, and POx:POy:Au(III) are 
represented by the dissociation constants, Km, K1, and K1’ respectively. 
 
 

 In this kinetic model, the Au(III) reduction rate is proportional to the number 

density of the AuNP nanocrystal seeds.  This correlates with the observation that AuNP 

size increases with higher Au/TBP ratio. In the limit of high Au(III) concentration the 

kinetics is pseudo-zeroth order. These primary nanocrystallites are between 1.5 – 2 nm in 

diameter (see Figure 3.15). At the limit of high Au(III) concentration, the number density 

of Au primary nanocrystallites will be higher in F68 than in L31/F68 aqueous mixtures. 

Based upon these arguments, it be expected that F68 solutions would grow larger AuNPs, 

which is not the case. Rather, the growth kinetics dominates where the extent of 

anisotropic growth is greater for L31/F68 quaternary mixtures. The presence of L31 

serves likely to cap the AuNPs surfaces making growth along the edges the most 

probable mechanism. In contrast, for the Au(III) concentration linear regime (< 2 x 10-4 

M), AuNP formation rates of F68 and L31/F68 are comparable within a 2-fold range. 
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This has implications for the growth phase, where at ~10-4 M Au(III) initial 

concentration, both F68 and L31/F68 have similar primary nanocrystalline number 

densities and  Km is of the order ~ Au(III) concentration. We observed mostly pseudo 

spherical AuNPs (Figure 3.5C and D) as the case for initial 1 x 10-4 M Au(III) 

concentration.  

 

Kinetics of Gold Nanoparticle Growth 

 An example of the kinetic fitting using equation 1 within 15 minutes Au(III) 

addition to F68 and L31:F68 mixtures is shown in Figure 6. The rate of AuNP growth is 

slower for L31/F68 mixtures than for F68 alone. While the nucleation process of TBP-

facilitated Au(III) reduction occurs on a time-scale of seconds,21b nanoparticle growth is 

detected in the UV-vis after an induction period of ~1 - 3 minutes (Figure 3.13).  
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Figure 3.13 (A) Plot of 10-3 M initial Au(III) concentration of the 540 nm absorbance and 
L31 (8 mM)/F68 (4 mM) (n = 2; kg = (2.8 ± 0.9) x 10-2 min-1; tOR = 7.0 ± 5.2 min) and 4.5 
mM F68 (n = 1.3 ± 0.2; kg = 0.17 ± 0.02 min-1; tOR = 8.1 ± 2.5 min). (B) Plot of 10-4 M 
initial Au(III) concentration of the 540 nm absorbance and L31 (8 mM)/F68 (4 mM) (n = 
3; kg = (7.7 ± 0.8) x 10-3 min-1; tOR = 8.0 ± 1.7 min) and 4.5 mM F68 (n = 1.0 ± 0.3; kg = 
0.30 ± 0.04 min-1; tOR = 4.4± 0.4).  
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Analysis of the peak fits between 10-3 M and 10-5 M indicate that onset of 

aggregative growth and the induction to the Ostwald growth regime occurs earlier for the 

F68 aqueous mixtures (Figures 3.15 and 3.16). The AuNP rate parameter, kg, is higher for 

F68 alone than L31/F68 mixture.  For example it is ~ 35-fold higher for F68 than for 

L31/F68 mixtures at initial 1 x 10-4 M Au(III) concentration (Figure 3.14A). For F68 

solutions, this growth rate passes through a maximum presumably because the initial 

concentration of the Au primary nanocrystallites is low in the Au(III) concentration 

limits. The reduction of Au(III) is limited at low concentrations (1x10-5 M) by the 

availability of Au(III) and at high Au(III) (1x10-3 M) by the availability of redox sites on 

the TBP. The area under the nucleation function, t will be proportional to the particle 

number density.36 According to our kinetic model, the ratio in the AuNP formation rates, 

Rhigh(10-3M)/Rlow(10-5M), with  ~1 and ’~ 2 is   10
1012
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 . This would 

predict that Rhigh > Rlow if tis strongly associated with nucleation rates.  However, we 

observe that Rhigh < Rlow (Figure 3.14B) in the active growth regime. Similar to the kg 

parameters extracted from KJMA analysis,14c, 15 tis associated strongly with growth 

rates and weakly to nucleation rates. The higher tvalue for F68 than L31/F68 

mixtures indicates a greater particle number density in the former system. At high initial 

Au(III) concentration (10-3 M), the lower value of t indicates reduced AuNP number 

density, which may because of AuNP coalescence into larger anisotropic AuNPs. These 

larger AuNPs will have lower absorbance and scattering cross-sections at 540 nm. In 

contrast, at initial 10-4 M Au(III) concentration, tis higher having two peaks at ~ 7 and 

~ 17 minutes.  
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Figure 3.14 (A) Plot of the effective rate parameters, kg, of L31 (8 mM)/F68 (4 mM) and 
F68 (4.5 mM) aqueous solutions against initial Au(III) concentration. (B) The 
aggregative nucleation rate, min-1, against reaction time in the concentration range 10-

3 to 10-4 M. 
 

A 

 
 
B 
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Figure 3.15 Plot of the UV-Vis 540 nm absorption against time for initial Au(III) 
concentrations between 10-3 M and 10-5 M. In all cases, Au(III) was added to 4.5 mM 
F68 aqueous solutions.   
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Figure 3.16 Plot of the UV-Vis 540 nm absorption against time for initial Au(III) 
concentrations between 10-3 M and 10-5 M. In all cases, Au(III) was added to L31/F68 (8 
mM: 4 mM) aqueous solutions.   

 
 
 

These multiple peaks will produce different size populations of AuNPs where the 

differences in the peak profiles between 10-3 and 10-4 M initial Au(III) concentrations is 

suggestive of aggregative nucleation processes that occur within ~ 30 minutes of 

reaction.   

To confirm the presence of multiple populations of AuNPs, AFM images within 

the first 30 minutes of reaction were taken (Figure 3.17). These AuNPs were assumed to 

be spherical, with the z heights being used to construct the size distributions.  Initial 



103 

washing with water was necessary to remove the excess copolymers. Suitable sampling 

statistics were achieved by taking multiple AFM images on several different regions of 

the mica surface.  The height distributions show early time course bimodal size 

distributions with diameters ~2 and ~5 nm within the first three minutes of Au(III) 

addition. This was followed by formation of ~ 10 nm AuNPs after five minutes. After 30 

minutes two distinct populations consisting of ~2 nm and larger ~ 20 nm AuNPs were 

observed. A comparison of AFM height distributions with  (Figure 3.14B), shows 

congruence with the ~7 and ~ 17 min peaks with the ~ 6 nm and ~ 20 nm mean 

diameters. Thus, we have identified three AuNP populations: 1) the primary 

nanocrystalline seeds of ~2 nm, 2) critical aggregates 5-10 nm, and 3) the larger AuNPs 

(~ 20 nm). The DLS measurements (Figure 3.18) after 30 minutes show two distinct 

hydrodynamic diameter populations due to AuNPs and a second larger population, which 

are aggregates of these smaller AuNPs. Thus the existence of a bimodal distribution in 

the early stages of nanoparticle growth is important experimental evidence to support an 

aggregative growth model. 
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A               1 min 

 

B                                                 3min 

C                5 min D                                               10 min 

E               30 min F  
 

 

Figure 3.17 AFM images after 10-4 M Au(III) addition. (A) - (E) representative AFM 
images of AuNPs produced within the 1, 3, 5, 10 and 30 minutes of Au(III) addition, 
respectively. (F) Particle height distributions from processed AFM images at reaction 
times 1 min (N = 327), 3 min (N = 530), 5 min (N = 1166), 10 min (N = 1646) and 30 
min (N = 1363).   
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Figure 3.18 DLS volume-weighted AuNP size distributions in 5 mM F68 (black squares) 
and 8 mM l31: 4 mM F68 (open squares) solutions 30 minutes after adding 1 x 10-4 M 
Au(III).  

 
 

 The detailed Morphologies of the nanoparticles grown were further examined. 

Figure 3.19 shows a representative TEM image for a sample from the growth process 

after 60 minutes. The particles are irregular in shape and had twinned structures as 

evidenced by the small triangular prisms. The observation of the multiple crystal grain 

boundaries is characteristic of the polycrystalline nature for the nanoparticles as a result 

of interparticle coalescence. We note that previous TEM studies of TBP facilitated AuNP 

synthesis also show evidence of polycrystallinity.20c, d This serves as an important piece 

of evidence in support of the aggregative growth mechanism. 
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Figure 3.19 TEM images sampled after 60 minutes reaction. The images show (A,B) the 
polycrystalline nature of these nanoparticles. 
 

 

Synthesis of Seeded TBP Coated Gold Nanoparticles 

The seeded addition to precursor gold salts has been used to produce 

monodisperse Au NPs with a standard deviation of the size distribution of less than 10%. 

The concept of seeded addition involves having monomer Au NPs present in the solution 

before the reduction of precursor gold salts. Upon reduction of the precursor salts, there 

are two competing growth processes: 1) the faster growth of the smaller Au NPs and; 2) 

the dissolution of the smaller Au NPs and the molecular addition to monomers to the 

larger Au NPs (Ostwald growth). In the former case, the rate of the Au NP growth is 

inversely related to the diameter. Consequently, the smaller particles will grow faster 

decreasing the standard deviation in the nanoparticle sizes. This is termed size focusing. 

B 

A 
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In contrast, when the concentration of the monomers are low and/or the precursor ions 

are depleted, the second growth process becomes competitive, where the smaller Au NPs 

< 5 nm dissolve at the expense of the larger ones. This will increase the standard 

deviation in the nanoparticle sizes. This is termed size defocusing.  We show in the 

following section that sufficient size focusing can be achieved by optimizing the 

parameters of citrated Au NP seed size and concentration. 

We used a previously described method to synthesize citrated Au NPs of various 

sizes.25 Figure 3.20 shows the plot of the UV-vis absorbance ratio against Au NP size 

determined by AFM. The particle sizes ranged from 6- 25 nm. Initially, the monomer 

concentration is high and size focusing dominates. In contrast, the subsequent additions 

of larger seeded nanoparticles will be in lower concentrations, such that nucleation and 

growth will mostly occur in the bulk solution. 

 

 

Figure 3.20 A plot of the ratio of the citrated AuNP size as measured by AFM against the 
ratio of the surface plasmon resonance absorbance maximum to the 450 nm peak as a 
function of seeded addition of citrated AuNPs. 
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Figure 3.21 Representative UV-Vis spectra illustrating the effect of seeding with different 
sizes of citrated (50 L added in each case) AuNPs to 1 mM Au(III) aqueous solution. 
 

Figure 3.21 shows the effect of seeding with citrated AuNPs for 1 mM Au(III). 

The presence of monomer significantly changes size distribution of the nanoparticles. 

This is illustrated in the UV-vis spectra where the broad absorbance profile characteristic 

of larger anisotropic AuNPs is transformed in to a single SPR profile ~ 540 nm 

diagnostic of polyhedral AuNPs. The size distributions were further characterized by 

DLS (Figure 3.22) and SEM (Figure 3.23) that show that the 6 nm and 23 nm seed 

solutions were dominated by a single population of AuNPs. The TBP coated particles 

seeded with the smallest citrated AuNPs had the smallest size.  
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Figure 3.22 DLS of samples of AuNPs grown in the presence of TBP, incubated for 24 
hrs at 25°C, seeded with 50 µL of citrate AuNPs, in 8 mM:4 mM of L31:F68 aqueous 
solutions. 
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Figure 3.23 SEM images of TBP coated AuNPs incubated in 8 mM:4 mM; L31/F68 for 
24 hrs at 25°C with A) no citrate seed, B) 50 µL of 6nm citrate seed , C) 50 µL of 16 nm 
citrate seed, D)  50 µL of 23 nm citrate seed. 
 

 

Discussion 

The nucleation and growth of anisotropic gold nanoparticles was accomplished 

using non-ionic TBPs. Kinetic control was achieved by varying the Pluronic/Au(III) 

ratio. The yields and sizes of anisotropic nanoparticles are higher in L31/F68 solutions 

than in F68 alone (Figures 3.2 and 3.5). The presence of the L31 inhibited the rate of 

primary nanocrystal formation and subsequent growth. Our simple kinetic model includes 

noncompetitive inhibition where L31 induces changes in the F68 conformation that 

prevents F68 EOx units from binding to gold ions. The role of the L31 in the growth 
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phase producing higher energy nanostructures having larger surface areas may be caused 

by the inhibition of growth on certain crystallographic faces.  

In general, larger gold particles are produced by Pluronics having shorter PEO 

blocks because the rate of metal ion reduction appears to be limited by reduction on the 

gold surface instead of in the bulk solution.21 Furthermore, published results of TBP 

facilitated Au(III) reduction suggest that the interdependence of block copolymer 

adsorption on different facets of the growing crystal and crystal growth kinetics (rate of 

metal ion reduction) could determine nanoparticle shape.22b, 37   

 Dissipative particle dynamics (DPD) simulations of gold nanoparticles in PEO-

PPO-PEO micelles indicates that gold atoms are wrapped by the copolymer and form 

spherical particles inside the micelles.38 The hydrophobic PO segments are adsorbed on 

the surface of AuNPs whereas the hydrophilic EO segments are exposed to water forming 

stable Pluronic-gold colloids with two-layer structures. This simulated dynamic process 

suggests that the morphology and size of gold nanoparticles depend on the competition 

between the aggregation of gold clusters and stabilization by block copolymer micelles.  

 High yields of microplates were achieved by Sakai and Alexandridis using a TBP 

with PO: EO ratio of 0.9 in Pluronic L64 (EO13-PO30-EO13).
22b They argued that more 

anisotropic particles were produced at this PO:EO ratio because reduction on the PEO 

ether backbone becomes the rate limiting step. They further attributed the origin of the 

plate morphology to AuCl4
- reduction on the facets instead of the shape-directing action 

of the polymeric lyotropic liquid crystals as “soft” templates.  

 We used two models to describe AuNP growth kinetics. The first model describes 

the formation of the primary nanocrystals while the second KJMA model describes the 
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subsequent aggregative growth and Ostwald ripening processes. The rate of primary 

nanocrystal formation is described by eqn. 2. In the modified KJMA model, the rate of 

aggregative nucleation, t is proportional to the AuNP number density. The paradox of 

high AuNP formation rate and slower growth rate in the high concentration limit is 

rationalized by the coalescence of the nanocrystals reducing the number density and 

hence the aggregative nucleation rate t. 

 In the active growth regime the 540 nm UV-vis absorbance can be fit to a KJMA 

model describing aggregative growth (Figure 3.13). Furthermore, AFM height 

distribution data indicate multiple AuNP populations (Figure 3.17). Another experimental 

piece of evidence for this mechanism is the observation of polycrystalline AuNPs (Figure 

3.19). Based upon these observations, we propose a refinement of the AuNP growth 

model in the presence of TBPs.41, 47-48 The growth kinetics will be dominated by 

aggregative processes since the initial nucleation events to form seeds occur rapidly. The 

components of a refined model include: 1) reduction of metal ions by the TBPs to 

produce seeds of different morphologies (primary nanocrystals  1-2 nm) depending on 

TBP PO:EO ratios and the local microenvironment around the nanocrystals  2) initial 

self-assembly of these seeds to critical aggregates in a non-classical nucleation step and 

3) aggregative growth accomplished by the addition of primary crystals as described in 1) 

to the critical aggregates. Finally, additional Ostwald ripening can occur by the TBP 

facilitated Au(III) reduction on the nanoparticle surface.  

Our model of aggregated growth is summarized in Schemes 3.2 and 3.3 where the 

growth kinetics of step 1 and 2 can be controlled by the EOx/Au(III) ratio. The growth 

can be described by relating nanocrystallite growth and aggregative growth to the rate 
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parameters k4’ and kg. The rate of the AuNP seed formation is proportional to both EOx 

and Au(III) concentrations. In the UV-vis induction period (< 3 minutes), AuNP seeds 

are the dominant species. At the onset of aggregative growth, the growth rate is assumed 

to be proportional to the AuNP seed concentration (number density). The slower growth 

behavior in the limit of high Au(III) concentration is accounted in our model by AuNP 

seeds forming critical aggregates that grow anistropically via the “soft-templating” of the 

TBP at the edges of AuNP surfaces. The presence of L31 in the aqueous mixture will 

reduce the concentration of primary nanocrystals and the decrease in AuNP growth rate 

because of the preferential adsorption of L31 on certain crystallographic faces blocks 

growth in these directions. This “soft templating” by the L31and the preferential 

reduction of Au(III) on the lower coordination edge atoms may account for the larger 

AuNP sizes. 

 Our kinetic model can be extended as an empirical tool to quantify the effect of 

reaction conditions on AuNP size and shape. At the limit of low initial Au(III) 

concentration, the rate of nanocrystal seed formation is proportional to Au(III) 

concentration. In this regime, we predict that the particle sizes will be proportional to 

Au(III) concentration. When Km ~ Au(III) concentration, the AuNPs produced are 

polydisperse with multiple size populations (Figure 3.14). At the limit of high Au(III) 

concentration, RNP is constant giving an upper limit of AuNP number density and hence 

an upper limit of AuNP size.  

The utility of our approach is that the kinetics of gold growth can be modified 

through optimizing the phase behavior of quaternary mixtures of hydrophobic (mostly 

PPO) and hydrophilic (mostly PEO) block copolymers with water and Au(III). Our 
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results suggest that the yield of nanoplates may be further optimized via changes in 

ion/seed concentration, temperature and block copolymer binary mixture composition. 

The development of alternative synthetic routes leading to both high monodispersity and 

versatile surface chemistry is still a challenge above 40 nm.  This is particularly the case 

for triblock copolymers where establishing control over AuNP size and shape requires a 

detailed understanding of the mechanism and kinetics of precursor reduction and particle 

growth. Our preliminary results shows that the seeding methodology provides promise in 

controlled the TBP AuNP heterogeneity. 

 

 

 

Scheme 3.2 The proposed model of Au nanoparticle growth facilitated by TBPs. 
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CHAPTER FOUR 

CONCLUSIONS 

 
 Block copolymers incorporating particular polymer blocks with specific 

characteristics are attractive areas of pharmaceutical research. The physicochemical 

properties of triblock copolymers (TBPs) can be tailored by varying the individual block 

chain lengths.   Triblock copolymers, of various ethylene oxide (EO) and  propylene 

oxide (PO) block lengths, are explored in various drug delivery applications including the 

delivery to the central nervous system (CNS) across the blood brain barrier (BBB),1 oral 

delivery of drugs,2 and tumor-specific delivery of antineoplastic agents.3 Moreover, it is 

now realized that TBPs used for drug delivery cannot be considered only as inert 

components that protect drugs from degradation and increase the circulation time.4 TBPs 

can induce gene expression through mechanisms that differ from the delivery of DNA 

into a cell. Kabanov’s group made significant contributions in the development of 

Pluronic micelles as a tool for enhancing drug delivery to multidrug resistant cells.5 Thus, 

it is becoming increasingly evident that certain nanoparticles with particular properties 

can circumvent several defense mechanisms, providing an alternative delivery vehicle.6 

In the first part of the thesis, we used a novel approach to characterize the 

temperature dependent aggregation behavior of commercial F127 samples based on 

antioxidant molecules like BHT. We showed that the fluorescence of BHT is sufficiently 

sensitive to its microenvironment to be used as a reliable marker of temperature-induced 

micellization. In the absence of F127, collisional quenching of the BHT fluorescence is 
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observed associated with higher temperature. The BHT fluorescence method for 

determining the concentration and temperature dependent Pluronic F127 aggregation was 

described. Since trace levels of BHT are present in commercial F127 preparations as a 

preservative, the BHT fluorescence may provide researchers a convenient way to 

characterize polymer aggregation without having to add an external dye. An important 

application of this novel method is the in-situ characterization of the temperature-

dependent aggregation of commercial Pluronic batches. Additionally, this approach to 

determine the CMC and CMT can be applied to any copolymer system that contains 

phenolic antioxidants such as BHT. With increasing temperature above the CMT, light 

scattering results suggest the coalescence of micelles, PPO core dehydration, and 

decreased heterogeneity in micelle size distributions. The electronic BHT transitions are 

directly impacted by the local environment where the partitioning in the micelle is 

influenced by steric and hydrogen bonding interactions with the PEO and PPO segments. 

This is the case when the changes in the fluorescence intensities with increasing 

temperature are compared. A higher fluorescence intensity value with increasing 

temperature implies greater accommodation to the PPO environment reflecting the higher 

quantum yield of BHT in the micelle interior. Furthermore, DLS, AFM and TEM data 

show high micellar heterogeneity around the CMT lending support to a multi-step model 

of aggregation.  

 We next explored the synthesis and characterization of the gold nanoparticles 

using environmentally benign and cost effective reagents. The concerns for the 

environmental and economic impact of organic solvents and detergents in gold 

nanoparticle (AuNP) synthesis increased recently.7 These concerns motivated this 
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research for more environmentally benign alternatives. One approach is to synthesize 

AuNPs from tetrachloroauric (III) acid (HAuCl4) using triblock copolymers (TBPs). 

However, a major challenge to using TBPs is the heterogeneous nature of the formed 

nanocrystals. Establishing control over AuNP size and shape requires a detailed 

mechanistic understanding of precursor reduction and nanoparticle growth. By using 

mixtures of TBPs (L31 and F68), a more flexible method for adjusting the 

hydrophobic/hydrophilic environment is demonstrated. This method also allows us to 

tune the size and shape. It is shown that adjusting the TBP/Au (III) ratio can change 

AuNP morphology and size. Kinetic models are used to rationalize why the addition of 

L31 slows the rate of AuNP formation and growth. Experimental evidence of sigmoidal 

growth kinetics, early time bimodal gold nanoparticle size distributions and 

polycrystallinity suggest that aggregative AuNP growth is an important mechanism. 

 The nucleation and growth of anisotropic gold nanoparticles were accomplished 

using nonionic TBPs. Kinetic control was achieved by varying the Pluronic/Au (III) ratio. 

The yields and sizes of anisotropic nanoparticles are higher in L31/F68 solutions than in 

F68 alone. The presence of the L31 inhibited the rate of primary nanocrystal formation 

and subsequent growth. Our simple kinetic model includes noncompetitive inhibition 

where L31 induces changes in the F68 conformation that prevents F68 EOx units from 

binding to gold ions. The role of the L31 in the growth phase producing higher energy 

nanostructures having larger surface areas may be caused by the inhibition of growth on 

certain crystallographic faces. 

 The kinetic models presented here can be extended as an empirical tool to 

quantify the effect of reaction conditions on AuNP size and shape. At the limit of low 
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initial Au (III) concentration, the rate of nanocrystal seed formation is proportional to Au 

(III) concentration. In this regime, it is predicted that the particle sizes will be 

proportional to Au (III) concentration. When Km  Au (III) concentration, the AuNPs 

produced are polydisperse with multiple size populations. At the limit of high Au (III) 

concentration, rate of the nanoparticle growth is constant giving an upper limit of AuNP 

number density and hence an upper limit of AuNP size. 

 The usefulness of the approach presented in this work derives from the 

observation that the kinetics of gold growth can be modified through the optimization of 

the phase behavior of quaternary mixtures of hydrophobic (mostly PPO) and hydrophilic 

(mostly PEO) block copolymers with water and Au (III). The data suggest that the yield 

of nanoplates may be further optimized via changes in ion/seed concentration, 

temperature and block copolymer binary mixture composition. A dissipative particle 

dynamics simulation of gold nanoparticles in PEO−PPO−PEO micelles indicates that 

gold atoms are wrapped by the copolymer and form spherical particles inside the 

micelles.8 The hydrophobic PO segments are adsorbed on the surface of AuNPs, whereas 

the hydrophilic EO segments are exposed to water forming stable Pluronic-gold colloids 

with two-layer structures. This simulated dynamic process suggests that the morphology 

(shape and size) of gold nanoparticles depend on the competition between the 

aggregation of gold clusters and stabilization by block copolymer micelles. 

 Sakai and Alexandridis using a TBP with a PO/EO ratio of 0.9 in Pluronic L64 

(EO13−PO30−EO13) achieved high yields of micro plates.9 They argued that more 

anisotropic particles were produced at this PO/EO ratio because reduction on the PEO 

ether backbone becomes the rate-limiting step. They further attributed the origin of the 
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plate morphology to AuCl4 reduction on the facets instead of the shape-directing action 

of the polymeric lyotropic liquid crystals as “soft” templates. In general, larger gold 

particles are produced by Pluronics having shorter PEO blocks because the rate of metal 

ion reduction appears to be limited by reduction on the gold surface instead of in the bulk 

solution.10 Furthermore, published results of TBP facilitated Au (III) reduction suggest 

that the interdependence of block copolymer adsorption on different facets of the growing 

crystal and crystal growth kinetics (rate of metal ion reduction) could determine 

nanoparticle shape.8-9, 11 

 The importance of the desired shape and size in gold nanoparticles for 

pharmaceutical uses cannot be underestimated. The functional properties of gold 

nanoparticles to a large degree are dependent on their size and shape. Gold spherical 

nanoparticles have a greater efficiency of uptake compared to gold nanorods due to the 

thermodynamic driving forces for membrane wrapping and receptor kinetics.12 Gold 

nanorods are reported to be more toxic compared to spherical particles,13 but it is likely 

that the toxicity is due to the unbound CTAB surfactant. 

Seeded growth route to synthesize monodisperse TBP stabilized AuNPs was 

made a further subject of this research. This was accomplished through the kinetic 

controls of the various reaction conditions. Three different aspects are very crucial in 

obtaining Au NPs with large size and good stability. First is the decrease in temperature 

of the solution. This allows a slowing down of the reaction mixture and prevention of 

secondary nucleation. Secondly, the control of the reaction pH further allows control of 

the reactivity of gold species. This is an important step in improving the monodispersity 

of the secondary particles. Thirdly, the number of Au atoms introduced in each growth 
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step permits the shifting of the system towards the focusing conditions. In this way the 

AuNP final distributions can narrow down resulting in the AuNPs with focused 

diameters. The ability to synthesize triblock copolymer-stabilized AuNPs with particular 

dimensions, with a controlled concentration and surface state, allows further expansion of 

the applicability of these NPs to biomedical applications.  

The goal of this proposed research was to increase the mechanistic understanding 

of the nucleation and growth of gold nanoparticles (Au NPs) from tetrachloroauric (III) 

acid (HAuCl4) using triblock non-ionic block copolymers (TBPs) of poly (ethylene 

oxide) (PEO) and poly (propylene oxide) (PPO).  Our goals were accomplished by 

varying the TBP/Au (III) ratios. We learned that the Au NP shape and size can be 

optimized by adjusting the parameters of TBP/Au ratio and Au NP seed size and 

concentration.  Furthermore, in the seeding methodology, Au NPs are present initially 

in the precursor solutions. We have shown that by varying the TBP/Au ratio and seed 

concentration, results in changing Au NP size and shape.  
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E:S  represents EOx: gold complexes Au(III, II, I)  

Part 1: 

Use steady state approximation to prove )]([ IIIAu
dt

dP  

Rate of formation of gold: 
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 From equation 5 

k3[E:SII]2=k2[E:SIII] 
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Sub (8) into (6) 
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(10) Thus ]:[]:[ '
4

''
33

IIIIII SEkSEkk
dt

dP
  

(11) ]:[][][ III
T SEEE    ET = total concentration of EOx block 

[E] = EOx free (not bound to gold) – cannot be 

measured  

[E:SIII] = EOx:AuIII complex  
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1  = dissociation constant  
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(15) In the limit of high [S] concentration define  ][''4max TEkR   
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Hence   )]([ IIIAu
dt

dP  

 

Part 2: Inhibition  
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Insert equations (19a), (21a), and (22) into (16a) 
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Here  and ’ represent the inhibiting effects of L31. In the absence of L31  = ’ 

=1. The term ]['
4 TEk corresponds to the rate in the limit of high AuIII concentration, in 

other words when SIII >> Km.  Under such conditions and L31 is absent ]['
4 TEkR  . 
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  (from equation 15) 
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