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Mechanisms of Brain Edema Formation in Mouse Models of Intracerebral Hemorrhage  

by 

Qingyi Ma 

Doctor of Philosophy, Graduate Program in Physiology 
Loma Linda University, December 2011 

Dr. Jiping Tang, Chairperson 
 
 

Perihematomal edema causes major neurologic deterioration following 

intracerebral hemorrhage (ICH), mainly resulting from the disruption of the blood-brain 

barrier (BBB) by multiple mediators, including inflammatory mediators and thrombin. 

The objective of our study was to investigate the mechanisms by which inflammation and 

thrombin respectively lead to the formation of brain edema following ICH. Our long-term 

goal is to develop new therapeutic strategies against ICH-induced brain edema by 

targeting: (1) VAP-1 mediated inflammatory response and (2) PDGFR-α orchestrated 

BBB impairment. Vascular adhesion protein-1 (VAP-1) was previously shown to 

promote leukocyte adhesion and transmigration. Additionally, PDGFR-α was also found 

to play a role in orchestrating BBB impairment.  

ICH injury was induced by collagenase-injection (cICH) or autologous arterial 

blood-injection (bICH) in mice. Two VAP-1 inhibitors, LJP1586 and semicarbazide 

(SCZ) were administered one hour after cICH. For mechanistic studies, VAP-1 siRNA 

and human recombinant VAP-1 protein were administered intracerebroventricularly. The 

data showed that VAP-1 inhibition reduced brain edema and neurobehavioral deficits at 

24 and 72 hours after ICH induction. These two compounds were also found to decrease 

other adhesion molecules and cytokines expression, neutrophils infiltration and 



xv 

microglia/macrophage activation. The effect of VAP-1 siRNA was consistent with that of 

pharmacological inhibitions, whereas human recombinant VAP-1 protein abolished the 

protective effect of VAP-1 inhibition. The anti-inflammatory effects of VAP-1 were also 

corroborated using blood-induced ICH. We then proceeded to elucidate the role of 

PDGFR-α inhibitor-induced neuroprotection in ICH. 

In our ICH model, we found that PDGFR-α and its endogenous agonist PDGF-

AA, were upregulated in response to bICH-induced brain injury. The results showed that 

suppression of PDGFR-α preserved BBB integrity following bICH while activation of 

PDGFR-α led to BBB impairment. A p38 inhibitor reversed the effect PDGFR-α 

activation in naïve animals.  PDGFR-α activation was suppressed by thrombin inhibition 

and exogenous PDGF-AA administration increased PDGFR-α activation, regardless of 

thrombin inhibition. In our thrombin injection model, animals receiving the treatment of a 

PDGF-AA neutralizing antibody or Gleevec, a PDGFR-α antagonist, showed minimized 

thrombin-induced BBB impairment.  We concluded that anti-inflammation by targeting 

VAP-1 or BBB preservation by targeting PDGFR-α may serve as new treatments against 

brain edema following ICH. 

 

 

  



1 

CHAPTER ONE 

INTRODUCTION 

 
Spontaneous intracerebral hemorrhage (sICH) is the result of small vessel 

bleeding into brain parenchyma and the subsequent formation and expansion of 

hematoma. It is responsible for about 15-20% of cerebrovascular diseases and represents 

the deadliest and least treatable subtypes of all stoke (Ribo and Grotta 2006). Even if the 

patient survives the initial attack, the growing hematoma triggers a series of life 

threatening events leading to the accumulation of brain edema, progression of 

neurobehavioral deficits, and possibly death (Strbian et al 2008).  

Multiple pathologies can lead to sICH. Chronic hypotension and cerebral amyloid 

angiopathy were regarded as primary causes, and accounts for approximately 70-80% of 

all sICH cases (Fewel et al 2003). The secondary causes include vascular malformation, 

aneurysms, neoplasm and coagulopathy. Vascular malformations, including both 

arteriovenus malformations (AVMs) and cavernous malformation were one of the most 

common causes of ICH. AVMs, an abnormal connection between veins and arteries, 

were associated with an estimated mean annual hemorrhage risk of 4% (Fewel et al 2003).  

ICH induces both primary brain injury and secondary brain injury. Primary injury 

is mainly caused by the physical disruption of blood vessels and the mass effect 

following hematoma formation, which is still untreatable. Hematoma expansion and brain 

edema formation were considered the major contributors to midline shift and leads to the 

deterioration consciousness (Mayer et al 1994). Rebleeding occurred within the first 24 

hours and may contribute to hematoma enlargement (Brott et al 1997; Kazui et al 1996).  

Recombinant activated factor VII has been used to minimize early hematoma growth in 
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order to prevent hematoma expansion and brain injury (Mayer 2003). Secondary brain 

injury and brain edema occurs within 24 hours after the onset of ICH, which represented 

potential therapeutic targets. After ICH, inflammatory cells: neutrophils, macrophages 

and activated microglia can be found in and around the hematoma. Their products such as: 

cytotoxic enzymes, free oxygen radicals and nitric oxide all contributed to neuronal 

injury and cell death (Yang et al 1994). Thrombin was responsible for the BBB 

disruption and early brain edema formation (Lee et al 1997). Both apoptosis and necrosis 

have been found in animal model (Matsushita et al 2000) and human subjects (Qureshi et 

al 2003). Blood toxicity also contributed to brain edema development and tissue injury 

following ICH (Xi et al 1998). 

 

Blood-Brain Barrier Disruption and Brain Edema 

Brain edema resulted in an increase in intracranial pressure, herniation (Ropper 

1986) immediately formed around hematoma and is associated with poor neurological 

outcomes after ICH (Xi et al 2006).  There are two types edema involved in ICH, 

vasogenic edema and cytotoxic edema.  Both result from BBB disruption, sodium pump 

failure, and neuronal death (Fewel et al 2003). The primary form is vasogenic edema, a 

consequence that occurs mainly from disruption of the BBB and partly determined the 

devastating nature of ICH. The profile of brain edema has been examined in blood 

injection ICH animal model. Brain edema prominently increased at 24 hours, peaked at 

72 hours and kept a high level until 7 days (Xi et al 2002). Brain edema formation has 

been widely studied and categorized into three phases (Xi et al 2006). In the first few 

hours following ICH, the brain edema results from the hydrostatic pressure and clot 
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retraction which lead to the movement of serum from the clot into the surrounding tissue; 

within two days the coagulation cascade, especially thrombin, contributes to brain edema 

formation. The third phase involved red blood cell lysis and hemoglobin toxicity (Xi et al 

2002).  

BBB is a physical and physiological barrier which controls the transportation of 

compounds between blood and brain. It is a complex system made of a layer of 

endothelium cells which line the blood vasculature throughout the brain. Tight junctions 

hold adjacent endothelium cells together and restrict diffusion of small molecules through 

paracellular route (gaps between endothelium cells) (Ballabh et al 2004; Neuwelt 2004). 

Astrocytes, also an important component of BBB, surround the endothelium layer and 

promote the BBB maturation and maintenance (Rieckmann and Engelhardt 2003).   
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Figure 1: Phases of brain edema formation after ICH. Yellow showed the first early 
phase (first few hours); Blue showed second phase (first 2 days); Red showed third phase. 
Adapted from (Xi et al 2006). 
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BBB disruption is the hallmark of ICH-induced brain damage following ICH and 

contributes to vasogenic edema formation. BBB is not opened immediately but remains 

impermeable to large molecules for the first several hours following ICH (Wagner et al 

1996). In a murine blood injection model of ICH, Yang and colleagues found that BBB 

permeability around the hematoma increased between 12 to 48 hours but not at 4 hours 

(Yang et al 1994). In collagenase injection ICH murine model, BBB damage occurs after 

30 minutes due to the degradative effect of collagenase to the endothelial basement 

membrane, which keeps opening from 5 hours to 7 days (Rosenberg et al 1993). 

Although the underlying mechanisms of brain edema formation following ICH remains 

to be elucidated, mounting evidences has suggested that multiple factors such as: 

thrombin, inflammatory mediators, hemoglobin degradation productions and matrix 

metalloproteinases (MMPs) promote brain edema formation following ICH (Keep et al 

2008; Yang et al 1994).  Breaking the balance between hydrostatic and oncotic pressure 

gradients across systemic capillaries may also contribute to brain edema formation (Xi et 

al 2002). Under normal condition, the tight junction between endothelial cells controls 

the fluid diffusion and active secretion across capillaries (Betz et al 1989). However, 

BBB dysfunction occurred under pathophysiological conditions, such as ICH, the 

presence of plasma proteins in the brain tissue breaks down the oncotic pressure gradient 

that normally acts to retain water in the circulating blood. Hydrostatic pressure may then 

become the main driving force controlling fluid transportation into brain tissue and 

promote the brain edema formation (Gazendam et al 1979). 
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Based on these evidences, we expect that focusing our study on brain edema, 

especially vasogenic brain edema will lead to development of new therapeutic strategies 

for ICH-induced brain injury.  

 

Inflammatory Response in Brain Injury 

It is well known that the leukocytes will infiltrate into brain parenchemal during 

inflammation. Whether the leukocytes enter into the non-inflamed central nervous system 

(CNS) for immunosurveillance is still unclear. Previous studies reported that activated 

lymphocytes cross BBB into the brain parenchymal in the absence of inflammation while 

resting lymphocytes fail to enter the CNS (Engelhardt and Ransohoff 2005; Hickey 1991; 

Wekerle et al 1986). The mechanisms of lymphocyte entry into CNS under normal 

condition may be distinct from that during inflammation. Carrithers and colleagues 

explored the molecular events of the lymphocytes entry. Their results indicated that early 

migration of lymphocyte is independent of the integrin VLA-4 and endothelial VCAM, 

but does require increased surface expression of endothelial P-selectin (Carrithers et al 

2000). However, study from Piccio and colleagues didn`t provide identical result. In a 

novel intravital microscopy model, they fail to observe the adhesive interaction of 

lymphocytes and nonactivated endothelium in non-inflamed cerebral microcirculation 

while the pretreatment with LPS or TNF-α stimulate the adhesion cascade, suggesting 

that the inflammatory response can be primed by systemic stimuli (Piccio et al 2002).   

An inflammatory response is a common reaction of the brain tissue to various 

forms of insult. It also plays an important role in brain injury induced by ICH. This 

process is marked by inflammatory cells infiltration/activation and pro-inflammatory 
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cytokine released in and around the injury site. The inflammatory response following 

ICH comprises of both cellular and molecular components (Wang and Dore 2007). When 

hemorrhage occurred, blood-borne leukocytes, including neutrophils and macrophages 

enter into the brain tissue accompanied by resident microglia activation. They are the 

cellular components of the inflammatory response. The molecular components are the 

products released by these inflammatory cells, including cytokines, chemokines and other 

inflammatory factors. 

Neutrophils are the major type of leukocytes which mediate secondary brain 

injury following ICH. In a collagenase-injection mouse model, Wang and colleague 

found that neutrophils infiltrated into and around the hematoma about 4 hours after injury 

and peaked at 3 days (Wang and Tsirka 2005a). Other studies conducted in an autologous 

blood-injection model showed that neutrophils appeared within 1 day and disappeared at 

3 to 7 days (Gong et al 2000; Xue and Del Bigio 2000a; Xue and Del Bigio 2000b). 

Microglia is a type of macrophage in the CNS and accounts for about 5-20% of the total 

glial population (Lawson et al 1992). Under normal condition it exists at resting stage. 

When it is activated by an inflammatory response following brain injury,  a series of 

morphological changes takes place, such as enlargement in size with stout processes, 

activation of phagocytic function and an upregulation of some specific genes (Wang and 

Tsirka 2005c). In a collagenase-injection model, studies showed that microglia activation 

was earlier than neutrophils infiltration. It occurred in the perihematomal region around 

1-2 hours, markedly increased at 1 day, peaked at 7 days, and then declined to the base 

levels at 3 weeks (Wang et al 2003; Wang and Tsirka 2005b). A similar time course was 

observed in an autologous blood model, microglia activation appeared 1-4 hours, peaked 
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3-7 days and lasted as long as 4 weeks (Gong et al 2000; Hickenbottom et al 1999; Xue 

and Del Bigio 2000a).  

The role of the inflammatory response has been widely investigated in ICH. 

Mounting evidences indicated that the accumulation of systemic immune cells, 

specifically blood-derived leukocytes, are the primary orchestrators of brain injury 

following ICH (Wang and Dore 2007). The infiltrations of these systemic immune cells 

result in an enhanced disruption of the BBB, causing an increase in brain edema, and 

subsequent deterioration in neurobehavioral function. Immune cells lead to brain injury 

through pro-inflammatory cytokines. Many brain cell types including glial cells, neuron 

and endothelial can produce pro-inflammatory cytokines, but infiltrated leukocytes and 

activated microglia/macrophages are the major sources of cytokines after brain injury 

(Emsley and Tyrrell 2002). Lu and colleagues performed DNA microarray analysis of 

gene expression following ICH. Their results showed that a large number of pro-

inflammatory genes were upregulated, including transcription factors, cytokines, 

chemokines, extracellular proteases and adhesion molecules (Lu et al 2006). TNF-α and 

IL-1β are two major pro-inflammatory cytokines that have been widely reported in 

various animal models of brain injury. In ICH model previous studies showed that TNF-α 

appeared as early as 1 day after ICH (Gong et al 2000) and downregulation of TNF-α 

provided neuroprotective effects in an ICH animal model (Mayne et al 2001a; Mayne et 

al 2001b). In both collagenase and autologous blood injection models, TNF-α was 

markedly increased following ICH injury (Mayne et al 2001b; Xi et al 2001). In addition, 

IL-1β levels were upregulated in an autologous blood-injection ICH model in both 

porcine and rat (Aronowski and Hall 2005; Wagner et al 2006). TNF-α and IL-1β may be 
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responsible for brain edema formation after ICH. Evidences showed that the direct 

injections of TNF-α and IL-1β into brain resulted in the opening of the BBB and 

subsequent vasogenic edema formation. (Gordon et al 1990; Holmin and Mathiesen 2000; 

Megyeri et al 1992).  Hua and colleagues also found that TNF-α contributed to brain 

edema formation after ICH (Hua et al 2006). Thus, TNF-α and IL-1β might be potential 

therapeutic targets for the treatment of ICH induced brain injury.  

 

Thrombin in Brain Injury 

Thrombin, a serine protease generated by the cleavage of prothrombin, and is the 

final-stage protease in the coagulation cascade. However, thrombin`s cellular effects are 

pluripotent and not limited to coagulation activation alone. Previous studies showed that 

thrombin and prothrombin also express in brain cells, including neuronal cells (Dihanich 

et al 1991) and astrocytes (Deschepper et al 1991), but its pathophysiological role in 

human brain is still unclear. It may be involved in microtubule-associated protein tau 

proteolysis and that failure to metabolize tau may lead to its aggregation in 

neurodegenerative diseases (Arai et al 2006). In vitro studies also indicated that thrombin 

can cleave amyloid precursor protein (Igarashi et al 1992) and apolipoprotein E (Marques 

et al 1996). 

Thrombin is not detectable in circulating blood under normal condition, but 

markedly increases in coagulated blood (Lee et al 1997). The dual role of thrombin in 

ICH has been well described in previous studies. On one hand, thrombin itself can 

directly damage BBB and cause brain edema formation in ICH, but on the other hand, 

thrombin is an essential element for the coagulation cascade to stop bleeding. Previous 
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studies showed that thrombin at high concentrations kills cultured neurons and glia cells. 

However, at low concentrations thrombin was neuroprotective both in vitro and in vivo 

after ischemia (Striggow et al 2000). The thrombin receptor activation or an intracellular 

Ca2+ signal (single or repetitive spikes of [Ca2+]i) may contribute to this protective effect.  

The dose dependent manner of thrombin on ICH induced brain edema has also been 

determined. Thrombin preconditioning is conducted in an ICH animal model (Hua et al 

2003; Xi et al 1999). They found that low dose thrombin preconditioning reduces brain 

edema caused by infusion of high dose thrombin, lysed red blood cells or iron. The 

precise mechanism of thrombin-induced brain tolerance in hemorrhagic stroke is still 

unclear. However, the upregulation of HIF-1α signals, activation of thrombin receptors, 

increase of iron handling proteins, and heat shock proteins in the brain may be associated 

with the induced tolerance. 

Generally thrombin is produced in the brain immediately and is responsible for 

BBB disruption after ICH. Xi and colleagues found that blood clot formation is a 

mandatory step for rapid (at 1 hour) and prolonged (24 hours) edema in both white and 

gray matter after ICH (Xi et al 1998) and thrombin might be involved in this process. 

Contributing to BBB disruption and edema formation provides a plausible explanation 

for the role of thrombin. Mounting evidence showed that thrombin infusion into brain 

produces the same amount of BBB disruption as seen from blood injection suggesting 

that thrombin could directly disrupted BBB (Yang et al 1994). Furthermore, thrombin 

can activate PAR receptors and induce downstream protein production, such as vascular 

endothelial growth factor (VEGF) which results in the increase of endothelial cells 

permeability (Sarker et al 1999; Wang et al 1996). Thrombin may also cause brain edema 
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by enhancing excitotoxicity, activating gelatinases and stimulating cytokine release.   

Intracerebral infusion of thrombin significantly increased TNF-α level in the brain 

whereas less brain edema was found in TNF-α knockout mice compared to wild-type 

mice after ICH (Hua et al 2006). Thrombin can also activate matrix metalloproteinases-2 

(MMP-2) in endothelial cells (Nguyen et al 1999), which causes break-down of 

extracellular matrix, resulting in BBB disruption. Src kinases may also mediate thrombin 

induced acute BBB injury, and the administration of Src inhibitor, PP2 attenuated BBB 

permeability and edema formation at 24 hours after thrombin injection (Liu et al 2010).  

 

Proposed Novel Therapeutic Targets for Brain Edema 

VAP-1 

In 1992, VAP-1 was first discovered as a 90 Kilodalton endothelial cell molecule 

in synovial vessels from arthritis patients by using a monoclonal antibody 1B2 (Salmi 

and Jalkanen 1992). It markedly reduced the binding of lymphocyte to high endothelial 

venules in frozen section adhesion assays and in flow chamber assays. One year later, the 

localization of VAP-1 expression was determined by the same group. They found that in 

addition to abundant expression in lymphatic organs, VAP-1 also widely expressed in 

endothelial cells in several non-lymphatic tissues, including skin, brain, kidney, liver and 

hearts (Salmi et al 1993). 

What is VAP-1 in nature? VAP-1 belongs to semicarbazide-sensitive monoamine 

oxidases (SSAO) family. This characteristic was identified by cDNA cloning which 

encoded a type II transmembrane protein with high identity to the copper-containing 

amine oxidase family. Further experiment confirmed that VAP-1 possessed amine 
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oxidase activity (Smith et al 1998), which can catalyze deamination of primary amine 

and release biological products, including aldehydes, hydrogen peroxide and ammonium. 

Coinciding with the discovery the enzymatic nature of VAP-1, its adhesion molecule 

function was observed by Smith and colleagues. In their experiment, they conducted a 

VAP-1 cDNA transfection in the endothelial cell and found that VAP-1 led to 

lymphocytes binding that can be partially inhibited with anti-VAP-1 mAbs (Smith et al 

1998). Taken together, these findings suggested that the VAP-1 is a novel type of 

adhesion molecule with SSAO enzymatic activity.  

Mounting evidences suggest that VAP-1 is an inflammation-inducible endothelial 

glycoprotein. Studies with human samples by confocal microscope showed that VAP-1 

exists both on the luminal surface and in the intracellular granules in human endothelial 

vessels (HEVs). In samples from patients with inflammatory bowel diseases or chronic 

dermatoses, VAP-1 level was also found to be upregulated at sites of inflammation 

(Salmi et al 1993). Furthermore, the mechanism controlling VAP-1 functions has been 

explored. In normal endothelial cells, VAP-1 is stored in intracellular granules within the 

cytoplasm. Under inflammatory condition, VAP-1 is induced and translocated to the 

endothelial surface (Salmi and Jalkanen 2001). The translocation of VAP-1 to the cell 

surface was observed directly after inflammation in experimental canine and pig 

inflammatory models. VAP-1 increased on the endothelial cell surface 60 minutes after 

the induction inflammation, peaked at 8 hour and lasted until 48 hours (Jaakkola et al 

2000). Similar to P-selectin, VAP-1 translocates from the intracellular onto the luminal 

surface of vasculature at the site of inflammation.  However, the underlying mechanism 

and mediators inducing VAP-1 expression and translocation remains unclear. Thirteen 
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inflammatory factors including TNF-α and thrombin were used to define the mediators 

leading to the induction of VAP-1 in human endothelial cells. Unfortunately, none of 

them increased cell surface expression of VAP-1 (Salmi et al 1993). It is very rare that 

only single mediator is involved in inflammation in vivo, therefore, this study suggested 

that the VAP-1 might be induced by a combination of multiple mediators.  

 

Role of VAP-1 in Inflammatory Response 

In Vitro Studies  

Yoong and colleagues studied the role of VAP-1 in T cell infiltration in human 

hepatocellular carcinoma. They found that VAP-1 and ICAM-1 mediated tethering and 

firm adhesion steps respectively, and VAP-1 antibody inhibited T cell binding to 

endothelium in an in vitro tissue binding assay (Yoong et al 1998). Another study 

showed that VAP-1 was involved in the binding of tumor-infiltrating lymphocytes (TIL), 

lymphokine-activated killer (LAK) cells, and NK cells to the vasculature. VAP-1 

antibody treatment can diminish the number of adhesive cells by 60% (Irjala et al 2001). 

It has been shown that amine oxidase activity is necessary for VAP-1 functions. Lalor et 

al reported that VAP-1 antibody reduced lymphocyte binding to TNF-α treated HSE cells 

by 50% while enzymatic inhibition of VAP-1 diminished both adhesion and 

transmigration of lymphocytes to a level similar to that seen with VAP-1 antibody (Lalor 

et al 2002). This finding suggested that the enzymatic activity of VAP-1 is responsible 

for both transmigration and adhesion mediated by VAP-1. Study from Koskinen and 

colleagues further confirmed this finding (Koskinen et al 2004). They found a diminished 

leukocyte rolling and transmigration through human endothelial cells after the 
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administration of enzyme inhibitors in vitro, and also, the capacity of VAP-1 to 

transmigrate was abolished by point mutation of the enzyme activity. 

 

In Vivo Studies  

Functions of VAP-1 in inflammatory response have been studied in human and 

animal models. In peritoneal inflammatory models in rabbits, VAP-1 mediated the firm 

adhesion and recruitment steps and functioned as a molecular brake during granulocyte 

rolling (Tohka et al 2001). The authors also observed that the velocity of ganulocytes 

rolling was increased after VAP-1 suppression. As a result, a 44% of firm bound 

leukocytes reduction and an approximately 70% of granulocyte extravsasion 

diminishment were observed after anti-VAP-1 antibodies treatment. Similar results were 

also obtained in other animals models via blockage of VAP-1 adhesion function. In a rat 

liver allograft rejection model, Martelius found that lymphocyte infiltration was 

decreased after suppression of VAP-1 function with a new anti-rat VAP-1 mAb 174-5 

(Martelius et al 2004). In peritonitis and air pouch inflammation models, VAP-1 antibody 

inhibited the migration of granulocytes and monocytes (Merinen et al 2005).  

Since VAP-1 has both adhesion molecule function and enzymatic function which 

are essential for mediating leukocyte infiltration in vitro (Lalor et al 2002), a number of 

inhibitors targeting VAP-1 enzymatic function have been developed and used to suppress 

the leukocyte adhesion cascade. In inflamed air-pouch model in rat, Koskinen and 

colleagues found that a novel SSAO inhibitor BTT-2027 prevented the extravasation of 

polymorphonuclear(PMN) leukocytes, which was the first report to possibly regulate 

inflammatory reaction in vivo (Koskinen et al 2004). Their findings were further 
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confirmed in VAP-1 knockout mice (Stolen et al 2005). In this study, VAP-1 deficit mice 

resulted in the reduction of lymphocyte homing into lymphoid organs and attenuated 

inflammatory response in peritonitis. In other animals models, such as an acute rat liver 

allograft rejection model, semicarbazide, a SSAO inhibitor, markedly diminished 

lymphocyte infiltration in the grafts (Martelius et al 2008).  

 

VAP-1 Signaling Functions  

The signaling functions of the catalytic activity of VAP-1 have been studied. The 

potent biological products of VAP-1, aldehyde, H2O2 and NH3 may induce other adhesion 

molecules or proinflammatory cytokines expression. They are cytotoxic at high 

concentration and potentially trigger VAP-1 downstream signals (Salmi and Jalkanen 

2001; Yu and Zuo 1997). Reactive oxygen species, H2O2 is involved in the regulation of 

genes expression in vascular endothelial cells (Bogdan et al 2000). Mounting evidence 

showed that the H2O2 formation is associated with leukocyte infiltration by the induction 

of P-selectin expression and leukocyte rolling (Johnston et al 1996). In human 

endothelial cells, both P- and E-selectin are induced on the transcriptional and 

translational levels by VAP-1 enzymatic activity. In VAP-1 transgenic mouse, P-selectin 

induction is VAP-1 enzyme activity-dependent (Jalkanen et al 2007). In an age-related 

mouse macular degeneration (AMD) model, VAP-1 suppression diminished the 

expression of pro-inflammatory cytokines, such as TNF-α, MCP-1, and adhesion 

molecule, such as ICAM-1 (Noda et al 2008). Lalor and colleagues directly provided 

specific substrates of VAP-1 in the liver endothelial cells and led to the activation of 

endothelial cells. They also found that the VAP-1 mediated activation was dependent on 
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NFkB, PIK and MAP kinase pathway. They also found upregulation of E-selectin, 

ICAM-1 and VCAM-1 as well as chemokine CXCL8, and coupled an intensified 

inflammatory response (Lalor et al 2007). 

 

VAP-1 in Stroke 

Limited studies explored the role of VAP-1 in a stroke-induced inflammatory 

response. Since an inflammatory response contributes to brain injury and immune cells 

infiltration has also been observed after stroke, it is possible that VAP-1 is involved in 

immune cell infiltration after stroke. In myocardial samples of ischemic heart in humans, 

VAP-1 expression was markedly upregulated on endothelial cells and VAP-1 neutralizing 

antibody reduced the number of adherent granulocytes by 60% (Jaakkola et al 2000). In a 

transient forebrain ischemia rat model, a small molecule VAP-1 inhibitor was 

administered either at the onset or 6 hours of reperfusion. VAP-1 inhibitor treatment 

limited neutrophils adhesion and prevented infiltration even when treated 6 hours after 

reperfusion, and subsequently provided neuroprotection (Xu et al 2006). 
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Soluble VAP-1 (sVAP-1) may also play an important role after stroke. Airas and 

colleagues found that sVAP-1 was markedly increased in the serum of acute stroke 

patients less than 6 hours after ischemia and may promote vasculopathy (Airas et al 

2008).  Hernandez-Guillamon and colleagues reported that the baseline VAP-1/SSAO 

activity predicts the intracranial bleeding after tissue plasminogen activator (tPA) 

treatment (Hernandez-Guillamon et al 2010). They found elevated plasma VAP-1 

activity in patients who subsequently suffered a hemorrhage and had deleterious 

neurological outcome. Additionally, in a rat model, they found that the VAP-1 inhibitor 

prevented the side effect associated with delayed tPA treatment. The authors also 

elucidated the potential mechanisms:  In vitro, tPA promotes neutrophil degranulation 

and MMP-9 release which mediate the BBB injury. VAP-1 is an adhesion molecule and 

mediates leukocyte infiltration. Therefore, the inhibition of VAP-1 may protect against 

tPA induced vascular damage by inhibition of leukocyte infiltration. More currently, the 

same group found that the plasma VAP-1/SSAO activity is increased in hemorrhagic 

stroke patients and may predict neurological outcome after ICH (Hernandez-Guillamon et 

al 2011). All these clinical reports suggested that VAP-1 is a potential therapeutic target 

for ICH induced brain injury. 

 

PDGF/PDGFRs 

Platelet derived growth factors (PDGFs), a growth promoting protein in human 

platelets, has been studied for more than three decades (Alvarez et al 2006). PDGF was 

identified as a serum growth factor in smooth muscle cells (Ross et al 1974) and 

fibroblasts (Kohler and Lipton 1974) in 1974. A number of other cell types also produce 
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PDGFs, including vascular endothelial cells, astrocytes and neurons (Fager 1995; Heldin 

and Westermark 1999).  

PDGF family has four members, PDGF-A, B, C and D. PDGF was purified from 

human platelet (Antoniades et al 1979) originally identified as a disulfide-linked dimer of 

two different polypeptide chains, A and B (Johnsson et al 1982). Currently other PDGF 

members, including PDGF-CC and DD were identified as protease-activated ligands 

(Bergsten et al 2001; LaRochelle et al 2001; Li et al 2000). All of them are assembled 

into disulphide-linked dimers in the endoplasmic reticulum as inactive precursor 

molecules, PDGF-AA, AB, BB, CC and DD. Subsequent proteolysis is essential for their 

activation (Fredriksson et al 2004). Both A and B polypeptides are synthesized as a 

precursor and is processed intracellularly before they are released. The mature PDGF-A 

and B polypeptide chains have approximately 100 amine acid and share 60 % sequences 

homology (Heldin and Westermark 1999; Heldin et al 2002).  PDGF-C and D have an N-

terminal CUB domain which does not exist in the PDGF-A and B precursors and keeps 

the full-length proteins latent by blocking receptor binding. After secretion the CUB 

domain is cleaved extracellularly by proteolysis in the hinge regions (Fredriksson et al 

2004). The PDGF ligands have high similarity to vascular endothelial growth factor 

(VEGF) family which is composed of 8 cysteine residues that are conserved between 2 

chains (Joukov et al 1997).  

Platelet derived growth factor receptors, a subfamily of tyrosine kinase receptors, 

consist of two members, PDGFR-α and PDGFR-β, and are expressed throughout various 

cell-types in the brain, including astrocytes, neurons (Heldin and Westermark 1999), and 

capillary endothelial cells (Marx et al 1994). These receptors are transmembrane proteins 
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that contain 5 immunoglobulin-like extracellular domains for ligands binding and 

intracellular tyrosine kinase domain. The dimeric structure of PDGF allows it to bind two 

receptors simultaneously. Ligand binding promotes PDGF receptors homodimerization or 

heterodimerization and phosphorylation of each other in trans on specific tyrosine 

residues and initiates downstream signaling cascades (Alvarez et al 2006). The different 

PDGF chains recognize different receptors. PDGF-A chain only bound to receptor α 

whereas B chain recognizes both receptor α and β. Thus, PDGF-AA only stimulates 

PDGFR-αα homodimers, PDGF-BB stimulates formation of PDGFR-αα, PDGFR-αβ and 

PDGFR-ββ formation, and PDGF-AB stimulates formation of PDGFR-αα, and PDGFR-

αβ. Two novel PDGFs, PDGF-C and D bound to receptor α and receptor β respectively 

and therefore, they can induce the dimerization of PDGFR-αα or PDGFR-ββ. As a 

growth factor, PDGFR signaling pathway plays an essential role during development and 

it is also associated with a number of pathological disease conditions (Andrae et al 2008; 

Hellberg et al 2010). 

 

PDGFs in Physiological Conditions and Diseases 

All the PDGFs and their receptors are expressed during the embryo development 

and have important functions in this process.  Knock-out of PDGFs or the receptors is 

lethal embryonically/perinatally (Hoch and Soriano 2003). Previous study showed that 

the downregulation of PDGF-B and receptor β resulted in kidney dysfunction and 

increased heart size (Lindahl et al 1997). PDGF-A knock-out caused defective 

development of lung alveoli (Bostrom et al 1996).  It was suggested that the main role of 

PDGF during embryonal development is the formation of the kidneys, blood vessels, 
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lungs, connective tissue and CNS (Alvarez et al 2006). Other studies indicated that 

PDGFs may orchestrate wound healing process, including cellular migration and 

proliferation, extracellular tissue production and angiogenesis etc. After being wounded, 

cells in the injured tissue, including endothelial cells, smooth muscle cells and activated 

fibroblasts are stimulated by thrombin to secret PDGFs around the site of the wound 

(Heldin and Westermark 1999).  PDGFs stimulate the formation of granulation tissue by 

the production of fibronectin and hyaluronic acid, components of extracellular matrix 

(Blatti et al 1988; Heldin 1992). PDGFs may play another role in wound healing process, 

possibly strengthen vessel wall (Risau et al 1992).  

PDGFs were found to be associated with multiple diseases, especially in 

tumorgenesis.  PDGFs are essential in autocrine stimulation of tumor cells as well as in 

paracrine signaling between tumor cells and surrounding stroma (Li and Eriksson 2003).  

It has been reported that PDGF-C and D were expressed in many tumors and tumor cell 

lines, such as globlastoma and medullobalstoma. Up-regulation of PDGFR-α was also 

detected in most malignant grades gliomas, the more malignant the higher expression 

(Andrae et al 2008). 

During the study of PDGFs in the CNS development process, the neuroprotective 

effect of PDGFR-β signaling was found in that PDGF administration to the CNS 

prevented against NMDA-induced injury (Egawa-Tsuzuki et al 2004). Another study 

showed that PDGF signaling, possibly through PDGFR-α, has also been implicated in 

neuropathic pain following nerve injury (Narita et al 2005).  In other neuronal injury 

animal models, such as axotomy-induced neuronal death, neurotoxin-induced neuronal 

injury, 6-hydroxydopamine-induced Parkinson's dopaminergic neuronal death, and in 
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ischemia-induced stroke, PDGF-CC protein or gene delivery protected different types of 

neurons from apoptosis in both the retina and brain (Tang et al 2010).  In vitro study also 

showed the neuroprotective effect of PDGFs via anti-oxidative stress; the effect of 

PDGF-BB was more potent than that of PDGF-AA. This might be due to the activation 

and additive effects of two PDGFRs after PDGF-BB stimulation (Zheng et al 2010).  

PDGF-B and PDGFR-β axis is involved in the development of vascular system, 

angiogenesis and blood vessel muturation. Hellström and colleagues found that PDGF-B 

and PDGFR-β critically contributes to the recruitment of vascular smooth muscle cells 

and pericytes during embryonic blood vessel formation in mouse (Hellstrom et al 1999).  

Battegay and colleagues found that PDGF-BB modulates endothelial proliferation and 

angiogenesis in vitro by activation of PDGFR-β, but not PDGF-AA and PDGFR-α 

(Battegay et al 1994). The different functions of PDGFR-α and PDGFR-β in 

angiogenesis is also determined in vivo study. Study from Zhang and colleagues 

compared the combination effect of FGF2 with PDGF-AA or PDGF-AB on angiogenic 

and vessel stability using in vivo angiogenesis and ishchemic hind-limb animal models. 

They found that the combination of FGF2 with PDGF-AB, but not PDGF-AA can 

stabilize newly formed vessels, suggesting that PDGFR-β is essential for angiogenesis 

and vascular stability (Zhang et al 2009).  

Recent studies indicated that PDGFRs, especially PDGFR-α specifically 

orchestrates the disruption of the BBB (Shen et al 2011; Su et al 2008; Yao et al 2010). 

One study led by Su and colleagues has shown that PDGFs injection into the CSF of 

naïve mice increased the extravasation of Evans blue one hour after administration. Their 

study suggested that increase of cerebrovascular permeability led by PDGFs is through a 
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PDGFR-α dependent process (Su et al 2008). Yet another study led by Yao and 

colleagues recently found that cocaine-induced PDGF-BB increased vascular 

permeability and that administration of a PDGF-BB neutralizing antibody abolished this 

effect (Yao et al 2010). Pericytes play a critical role in supporting endothelial cell (EC) 

tube formation and stabilization and vascular maturation including basement membrane 

matrix deposition. In 2010, study from Armulik and colleagues determined the direct role 

of pericytes at BBB in vivo by using pericyte-deficient mice. Their results showed that 

pericyte deficiency increases the BBB permeability and a transcytosis route occurs to 

transport macromolecular across the BBB in pericyte-deficient vessels. The PDGFR 

antagonist, imatinib and PDGF-B retention motif knockout (Pdgfbret/ret) can preserve 

BBB integrity by arresting endothelial transcytosis (Armulik et al 2010). Earlier than 

these studies, an in vitro study reported that PDGF mediates tight junction and adherens 

junction protein redistribution and increases permeability in Madin-Darby canine kidney 

(MDCK) Cells (Harhaj et al 2002).  

 

Principle for PDGF/PDGFRs Inhibition 

Since PDGF/PDGFRs play important roles in the pathology of multiple diseases, 

it is essential to develop strategies to inhibit PDGF signaling. PDGF and PDGFR are 

functional only after dimerization. Therefore, any attempt to inhibit dimerization may 

potentially block PDGF/PDGFRs signaling (Andrae et al 2008). Neutralizing antibodies 

for PDGF ligands and receptors have been widely used to evaluate the function of PDGF 

signaling in multiple animal models mimicking different pathogenic processes. An 

oligonucleotide, (called aptamer) specifically binding target proteins has been developed 
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to block PDGFs functions in rodent disease models. Another efficient way is to generate 

drugs to inhibit the tyrosine kinase activity by acting on or near the ATP binding site of 

the kianse domain.  Gleevec (imatinib mesylate, STI157), the most popular one of these 

drugs, blocks PDGFR-α, PDGFR-β and the bcr-abl fusion protein c-kit and Flt3 (Carroll 

et al 1997). Gleevec represents a new class of anticancer drugs and has been approved by 

Food and Drug Administration (FDA) for the therapy of chronic myelogenous leukemia 

and other cancers. It was regarded as a new gold standard for the treatment of chronic 

myeloid leukemia  at all stages (Peggs and Mackinnon 2003).  Currently a study found 

that a proximal 5'-flanking region of the human PDGF-A promoter contains one nuclease 

hypersensitive element (NHE) that is critical for PDGF-A gene transcription. Their study 

also established that ligand-mediated stabilization of G-quadruplex structures within the 

PDGF-A NHE can silence PDGF-A expression (Qin et al 2007). 
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Abstract 

In order to understand a disease process, effective modeling is required that can 

assist scientist in understanding the pathophysiological processes that take place. 

Intracerebral hemorrhage (ICH), a devastating disease representing 15% of all stroke 

cases, is just one example of how scientists have developed models that can effectively 

mimic human clinical scenarios. Currently there were three models of hematoma 

injections that are being used to induce an ICH in subjects. They include the 

microballoon model introduced in 1987 by Dr. David Mendelow, the bacterial 

collagenase injection model introduced in 1990 by Dr. Gary Rosenberg, and the 

autologous blood injection model introduced by Dr. Guo-Yuan Yang in 1994. These 

models have been applied on various animal models beginning in 1963 with canines, 

followed by rats and rabbits in 1982, pigs in 1996, and mice just recently in 2003. In this 

review, we will explore in detail the various injection models and animals subjects that 

have been used to study the ICH process while comparing and analyzing the benefits and 

disadvantages of each.  
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Introduction 

Intracerebral hemorrhage (ICH) is a devastating disease accounting for roughly 15% 

of all stroke types. As many as 50,000 individuals are affected annually in the United 

States with a large number of those individuals facing chronic morbidities and early 

mortalities.  

Over the years, basic science research has focused on reducing and/or blocking 

the cascade of harmful events in ICH with the goal of improving clinical outcomes. But 

in order to effectively study the mechanisms behind these events, proper modeling is 

needed that can mimic pathophysiologic processes in humans. Studies on various animal 

models began in 1963 with canines, followed by rats and rabbits in 1982, pigs in 1996, 

and mice just recently in 2003. These animal subjects have been thoroughly studied 

individually and compared to human models looking for parallel between the two groups.  

As important as it is to find an animal subject that will mimic processes in the human 

brain, creating the actual hematoma is another challenge. Currently there are three models 

of injections that are being used to induce an ICH in subjects. They include the 

microballoon model introduced in 1987 by Dr. David Mendelow, the bacterial 

collagenase injection model introduced in 1990 by Dr. Gary Rosenberg, and the 

autologous blood injection model introduced by Dr. Guo-Yuan Yang in 1994 (Rosenberg 

et al 1990; Sinar et al 1987; Yang et al 1994).  

In this retrospective review, the history behind the development of the ICH model 

will be presented and discussed. Furthermore, the advantages and disadvantages of each 

model type and animal subject will be evaluated.  
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ICH Models 

Microballoon Model  

In 1987, Sinar et al (Sinar et al 1987) made a microballoon insertion model in rats 

as a way to study the mass effects of ICH.  A microballoon mounted on a No.25 blunted 

needle was inserted into the right caudate nucleus after a burr hole was created on the 

skull. The microballoon was inflated to 0.05 ml over a period of 20 seconds and was kept 

inflated for 10 minutes before being deflated. At the end of the study, the authors looked 

at brain histology, intracranial pressure, and cerebral blood flow. They found the 

microballoon model to be successful in producing an effective brain lesion with an 

extensive area of ischemic damage noted on the right caudate nucleus. Additionally there 

was a reduction in cerebral blood flow and an increase in intracranial pressure at the site 

of damage.  

The advantage of the microballoon model is that it mimics the space-occupying 

aspect of the hematoma. The disadvantage is it fails to address the potential effects of 

blood and subsequent substances released by the clot formation. This could potentially be 

the reason why there is a smaller degree of ischemia in this model versus what would be 

expected with an equivalent volume of blood (Nath et al 1986; Yang et al 1994).  

 

Collagenase Injection Model  

Collagenases are proteolytic enzymes which degrade basement membrane and 

interstitial collagen (Harris and Krane 1974). Additionally, they have been shown 

through immunocytochemical studies to surround blood vessels (Montfort and Perez-

Tamayo 1975). As a result, in 1990, Rosenberg et al made a new model for spontaneous 

ICH using bacterial collagenase injections directly in the brains of Sprague-Dawley rats 
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(Rosenberg et al 1990). In this model, male rats were placed in a stereotactic apparatus 

and 2 µl of saline containing 0.01-0.1 U bacterial collagenase (Type XI or VII) was 

infused into the left caudate nucleus over nine minutes. Bleeding occurred as early as ten 

minutes after collagenase injection, with edema also seen at the site of hemorrhage 

(Rosenberg et al 1990). Other modifications to this model were made, including: 

injection site changes, adjustments to collagenase concentration, injection rates/volumes, 

and heparinization. This model conceptually integrates small vessel breakdown to 

produce hemorrhage and allows a controllable amount of variability in hemorrhage size 

(James et al 2008). The advantage of this model is its ability to mimic spontaneous 

intraparenchymal bleeding in humans while avoiding the technical difficulties with 

handling blood (Andaluz et al 2002). It also mimics the hematoma expansion of 

continuous bleeding which occurs naturally in ICH patients (Fujii 1972; Kazui et al 

1996). The disadvantages of this model are related to bacterial collagenase’s ability to 

introduce a significant inflammatory reaction (Andaluz et al 2002). 

 

Blood Injection Model  

Blood injection ICH model has become the standard model for experimental ICH. 

The first recorded publication using arterial blood as a single injectable agent was 

conducted by Ropper et al in 1982 (Rohde et al 2002). Using a 27-gauge cannula, fresh 

blood from the ventricle of a donor rat was infused over one second into the right caudate 

nucleus of the subject ICH rat. This method did not account for key sources of variability. 

Hence in 1984, a variation of Ropper’s model was performed by Bullock et al (Bullock et 

al 1984) to study the changes in intracranial pressure and cerebral blood flow. Instead of 
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using donor blood, Bullock used a 22-gauge needle that bridged the right caudate nucleus 

to the femoral artery. For the first time, the study was able to look at ICH under arterial 

pressure – thus, effectively evaluating the pathophysiology of ICH. One of the main 

disadvantages of this method was the lack of reproducibility due to the potential 

variations in blood pressure.  

That is why in 1994, a study out of the University of Michigan by Yang et al 

(Yang et al 1994), discovered that the use of a microinfusion pump could address the 

concerning issues previous authors had run into. Using a microinfusion pump, a constant 

rate of autologous blood (extracted from the femoral artery) was infused into the right 

caudate nucleus, creating a controllable and reproducible hematoma. This single blood 

injection model has been applied to most of the recent ICH studies. Unfortunately, one of 

the major issues with Yang’s technique was the reflux of blood up the needle tract and 

into the ventricular system or extension into the subdural space with a more rapid 

injection rate. Additionally, the inability of this technique to reproduce the systemic 

arterial pressure which can influence the hematoma size is also seen as a slight 

disadvantage. And finally, the use of the femoral artery created problems down the road 

when it came time to assess neurobehavioral deficits.  

To address the concern of blood reflux up the needle tract, a double injection 

model was created just two years later. In 1996, a study led by Deinsberger et al 

(Deinsberger et al 1996) out of the Justus Liebig University in Germany, modified the 

single arterial blood injection model originally designed by Yang and instead used a 

double arterial blood injection model. What Deinsberger and his team proposed was 

injecting 5 µl of fresh autologous blood into the caudate nucleus and waiting ten minutes 
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to allow for clot formation. That way, when it was time to inject the rest of the 

autologous blood to mimic the hematoma, the chances of reflux would be minimized 

significantly. This was the main advantage of the double blood injection model over the 

single injection model-it minimized blood reflux through the needle tract. The 

disadvantages however, were the obvious difficulties with infusion and increase potential 

of clot formation because of the time lag between injections.  

 

Large Animal Models 

Monkeys  

Chimpanzees and rhesus monkeys share over 90 % of their DNA with humans in 

addition to physiologic, structural and size similarities, making them ideal candidates for 

preclinical study.  In 1982, Segal et al used macaque monkeys to demonstrate the effects 

of local therapy on hematoma formation using the thrombolytic urokinase.  Their 

treatment was given after injection of 6 ml autologous blood into the right internal 

capsule.  Additionally in 1988, Bullock et al (Bullock et al 1988)used adult Vervet 

monkeys to demonstrate and quantify a 90-120 minute decrease in the regional cerebral 

blood flow (rCBF) following an ICH.  A key refinement to the primate model made by 

Bullock was the use of a catheter that infused blood directly from the femoral artery into 

the right caudate, thereby keeping the infusion pressure closer to arterial pressure and 

reducing complications from blood handling and delay. 

The experiments using monkeys were costly and the various levels of restrictions 

and regulations were concerning. Hence, their use in ICH modeling was quickly 

discontinued.  
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Canines  

Like monkeys, canines have long been the subject of medical research across the 

same range of fields, most notably having contributed to cardiovascular physiology (Fujii 

et al 1994).  But like monkeys, use of canines in research involves similarly stringent 

criterion and cost.  In 1963, Whisnant et al developed a model for experimental ICH by 

performing single injections of 0.5 to 1.5 ml of fresh autologous venous blood into the 

basal nuclei or deep white matter region in canines - producing varying sizes of ICH.  In 

1975, Sugi et al (Sugi et al 1975) used canines to develop a single autologous arterial 

blood injection model, noting lactate elevations in CSF after injection.  In 1999, Qureshi 

et al (Qureshi et al 1999a) made single autologous blood injections (7.5 ml) over 20-30 

minute under arterial pressure into the deep white matter adjacent to the basal ganglia of 

canines. The needle was pointed 20 degrees lateral to the vertical axis. The complications 

encountered in this study were the increased frequency of transtentorial herniation.  

Hence, they then used smaller injection volumes ranging from 2.8 to 5.5 mL which 

successfully induced formation of ICH with fewer complications (Qureshi et al 1999b).  

In 1999, Lee et al made use of an infusion pump for injection of 3-5 ml of non-

heparinized autologous arterial blood into the temporo-parietal cortex (Lee et al 1999). 

This method took eight minutes in canine subjects and allowed for the formation of 

consistently-sized clots.   

In 1985, the microballoon method was used by Takasugi et al (Takasugi et al 

1985) who modified this method by injecting venous blood directly into the balloon as an 

attempt to minimize reflux.  This model mimicked both the increased pressure and blood 

volume following ICH. Using this model, Takasugi was able to classify the chronological 
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stages after ICH and concluded that the increased repair time after ICH was correlated to 

the degree of histologic injury to the surrounding tissue, rather than to the size of the 

hematoma itself. 

 

Pigs  

Known for their large, gyrated brain and well-developed white matter, the large 

hematoma volume in pigs post-ICH enables a closer examination of the area compared to 

other animal species (Wagner et al 1996). In 1996, Wagner et al (Wagner et al 1996) 

developed a lobar hemorrhage model in pigs where 1.7 ml of autologous arterial blood 

was slowly injected using an infusion pump into the frontal white matter. The slow 

injection reduced the likelihood of ventricular rupture or leakage of blood along the 

needle track. Compared with rapid infusions at high pressures, this method more closely 

modeled ICH in humans where bleeding generally originates from small 

intraparenchymal arteries.  In 2000, Kuker et al (Kuker et al 2000) injected 0.5 to 2.0 ml 

of venous blood with a blood reservoir into the anterior frontal lobe to study the 

characteristics of hematomas using magnetic resonance imaging. This study used 

Takasugi’s method of prior microballoon catheter insertion to reduce needle pathway 

reflux. A different study in 2002 led by Rohde et al (Rohde et al 2002)modified this 

model into a double-injection procedure (with a main injection of 2 to 3 ml of autologous 

venous blood with blood reservoir in their study) to better prevent post-injection reflux.     

Pigs were also used in collagenase injection models. Collagenase infusions of 10 µl by 

micro-infusion pump over 20 to 30 minutes were made into the right somatosensory 

cortex by Mun-Bryce et al in 2001 (Mun-Bryce et al 2001). This study examined tissue 
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excitability following ICH and evaluated the outcomes using magnetic resonance 

imaging in addition to electro- and magneto-encephalography.  Use of collagenase, which 

is released from injured cells (Nath et al 1986), does address the clinically relevant 

phenomenon of vasogenic edema following ICH.  The levels of collagenase however, are 

far above those encountered in clinical ICH and therefore correlations must take this into 

account.  

 

Small Animal Models 

Rabbits  

Rabbits were first used by Kaufman et al in 1985 (Kaufman et al 1985) in a single 

autologous blood injection model. The study failed to yield conclusive results and in fact, 

the rabbit died shortly after injection. A decade later, arterial blood was injected using an 

infusion pump by Koeppen et al (Koeppen et al 1995).  Arterial blood extracted from the 

ear was injected into the right thalamus and to minimize reflux, needle withdrawal was 

delayed. The study found that subjects exhibited a reduction in neurobehavioral deficits.  

Compared to larger animal models, use of rabbits is less costly, meets a higher success 

rate, and allows for an extended period of study with less mortality. Qureshi et al in 2001 

(Qureshi et al 2001) modified this model in order to look at patterns of cellular injury. In 

this model, a 30-gauge needle penetrated the brain, while autologous arterial blood was 

infused into the white matter of the left frontal lobe. Instead of using arterial blood, 

Gustafsson et al in 1999 (Gustafsson et al 1999) used autologous venous blood which 

was injected manually in the brain. Although a hematoma did form, the use of venous 

blood differs from what is seen in humans.  
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Rats 

The earliest rat model using a single arterial blood injection method was 

conducted in 1982 by Ropper et al (Ropper and Zervas 1982). The study reported that 

blood and not the mass effect as was previous postulated, was responsible for the changes 

in regional cerebral blood flow. Unfortunately because of the nature of the design, certain 

outcomes could not be evaluated-the disadvantage of using donor blood introduces 

various immune reactions while the lack of arterial pressure fails to mimic a true human 

ICH experience. Additionally, variability in outcomes was an issue because of the 

potential for reflux up the needle tract and the potential for blood volume discrepancies. 

Several of these issues were addressed later by Bullock et al in 1984 (Bullock et al 1984). 

For instance, blood infusion was conducted more rapidly under arterial pressure, and in a 

smaller time window (10 sec); however, it was difficult to reproduce reliably.  The blood 

pressure variations from animal to animal resulted in different injury volumes and the 

small time window required significant technical mastery. This was followed by 

development of a method which instead held the rate of infusion constant using 

microinfusion pumps (Yang et al 1994). The use of microinfusion pumps allowed 

production of a controllable and reproducible lesion with a slower injection rate and a 

lower pressure than in an arterial pressure model (100 mmHg). A remaining shortcoming 

was that a more rapid injection rate resulted in a variable reflux of blood along the needle 

track and poorly reproducible lesions. 

To address the issue of needle tract reflux, the double injection method was 

developed by Deinsberger et al in 1996 (Deinsberger et al 1996). In this model, a smaller 

volume of blood was first infused, allowing for clot formation and a reduction in blood 
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reflux. While technically challenging, this technique met with great success in 

reproducibility and minimization of pathway reflux. The use of venous blood in the 

single blood injection model was addressed by Masuda et al in 1988 (Masuda et al 1988). 

While they described a significant success rate in the production of intraparenchymal 

hematomas, the use of venous blood did not faithfully replicate the conditions in the 

major form of clinical ICH, which involves rupture of an arterial vessel. 

In 1990, Rosenberg et al established a new model for spontaneous ICH using 

bacterial collagenase infused directly into the brain in Sprague-Dawley rats (Rosenberg et 

al 1990). This model was especially popular because it was the closest mimicker of 

spontaneous ICH in human beings (Andaluz et al 2002).  

 

Mice 

The ICH model in mice was derived from experiments in rats. A single arterial 

blood injection into the right basal ganglia in mice was described by Nakamura et al in 

2004 (Nakamura et al 2004). This study compared the effects of autologous arterial blood, 

donor whole blood, and saline injections to brain edema development. The study found 

that donor blood injection was associated with a significantly greater increase in edema in 

the ipsilateral cortex compared to an autologous blood injection model.  

 In 2003, Belayev et al (Belayev et al 2003) placed a cannula into the left striatum 

and injected 5 µl of heparinized cardiac blood from a donor mouse. Following the 

injection, seven minutes were given for clotting to occur, and a final injection of blood 

was given (10 µl). Double injection methods, such as this one in mice, were met with 

great success because of their consistency. Soon after, a triple injection method in mice 
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was developed using venous blood by Ma et al in 2006 (Dimitrijevic et al 2006). Two 

infusions of 5 µl of blood were separated by a seven minute pause for clot formation. 

After the second infusion, a one minute pause was given for additional formation, 

followed by a 20 µl infusion of blood. This method also produced consistent outcomes.  

In 2008, Rynkowski et al (Rynkowski et al 2008) published a protocol for a 

modified double blood injection model in mice.  In this model, 30 µl of autologous blood 

from the central tail artery was injected directly into the right stratium in two steps as 

previously described (Belayev et al 2003). In both the double and triple injection mouse 

models, potential immunoreactive blood from other mice was used, and although 

heparinized to minimize clot formation, it prevented proper study of pathologic processes 

associated with the hematoma formation.  

In 1997, Choudri et al (Choudhri et al 1997) first utilized the previously 

established rat model for collagenase injection in mice by infusing 1 µl of bacterial 

collagenase into the right basal ganglia over four minutes.  This was followed by Clark et 

al in 1998 (Clark et al 1998) who performed a two minute injection of 0.5 µl volume 

collagenase into the right caudate and globus pallidus, followed by a three minute delay 

to reduce tract reflux. Additionally, Clark’s group performed a 28-point neurobehavioral 

evaluation at 24 and 48 hours.  Neurobehavioral scoring has since been adopted by other 

groups as a way to follow functional differences with administration of various 

substances meant to worsen or improve the injury in ICH (Clark et al 1998; Thiex et al 

2004).  

Both rats and mice have been widely used in research because of their feasibility 

and ease with which to anesthetize compared to larger animals. Transgenic systems exist 
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primarily in mice, making this the optimal model for studying genomic effects on ICH 

and secondary mechanisms of injury. However, the relatively small size makes them 

difficult to implement techniques that are used in larger animals.  

 

Conclusion 

In this review, we looked at the three main models that have been developed to 

understand the physiology behind ICH-microballoon infusion, collagenase injection, and 

autologous blood injection model. Additionally, we compared the various animals species 

that have been used to conduct these experiments, including monkeys, canines, pigs, 

rabbits, mice, and rats. Although there are no ideal subjects or models that can mimic the 

natural process in humans, each model can be used to study certain aspects of the 

pathophysiological process behind an ICH. In the future, the ideal ICH model should 

have characteristic that can model spontaneous intracerebral hemorrhage in humans and 

allow for effective studies on physiology, procedural interventions, and mechanisms of 

secondary brain injury. 

 

Specific Aims 

The objective of our study is to determine the mechanisms by which inflammation 

and thrombin respectively lead to perihematomal brain edema in experimental ICH. We 

will investigate an inflammatory mediator, vascular adhesion protein-1 (VAP-1) and a 

thrombin pathway receptor, platelet derived growth factor receptor alpha (PDGFR-α). 

Our central hypothesis is that the inhibition of an inflammatory mediator or a 

thrombin pathway receptor will attenuate brain edema, and improve neurological 
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function in ICH mouse models. To verify the importance of these key factors, we will 

test our hypothesis with the two following specific aims. 

Specific Aim 1 is to determine the role of VAP-1 in inflammation and brain edema in 

two ICH mouse models. Our specific hypothesis is that VAP-1 inhibition will attenuate 

brain edema via reduction of leukocytes infiltration and inflammatory mediators, thus 

improving neurological outcome in ICH mouse models. 

Sub-aim 1A: Examine the effect of VAP-1 inhibition on brain edema and neurological 

deficits in a collagenase-injection ICH mouse model (cICH).  

Sub-aim 1B: Confirm the role of VAP-1 in inflammation after ICH by modulating VAP-

1 activity.  

Sub-aim 1C: Examine the effect of VAP-1 inhibition on brain edema and neurological 

deficits in a blood-injection ICH mouse model (bICH).  

Specific Aim 2 is to determine the role of PDGFR-α in ICH-induced brain injury in mice 

and its mechanism in BBB disruption. Our specific hypothesis is that suppression of the 

thrombin pathway receptor, PDGFR-α, will preserve BBB integrity, reduce brain edema 

and improve neurological function via p38 MAPK mediated MMP activation/expression 

in an ICH mouse model. 

Sub-aim 2A: Determine the outcome of PDGFR-α suppression on BBB preservation and 

brain edema in a bICH mouse model.  

Sub-aim 2B: Determine whether PDGFR-α disrupts BBB integrity via p38 MAPK 

mediated MMP activation in both bICH and naïve mice.  

Sub-aim 2C: Investigate the role of thrombin in PDGFR-α activation in both bICH and 

thrombin injection model.  
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Figure 3 Schematic for the VAP-1 mediated leukocyte transmigration and PDGFR-α 
activation within the neurovascular unit following ICH.  Thrombin is the potential 
upstream regulator of VAP-1 and PDGFR-α. Aim 1: VAP-1 mediates transmigration of 
leukocyte into brain parenchyma. Infiltrated leukocytes will release pro-inflammatory 
cytokines, enhance adhesion molecules expression and tight junction opening, finally 
lead to brain edema. Aim 2; Thrombin upregulates PDGF-AA expression and activates 
PDGFR-α which triggers the downstream MMPs activation/expression via p38-ATF-2 
pathway. This ultimately leads to BBB disruption and brain edema. 
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Abstract 

The systemic immune response plays a vital role in propagating the damage of an 

intracerebral hemorrhage at the site of local injury. Vascular adhesion protein-1 (VAP-1), 

a semicarbazide-sensitive- amine-oxidase, was found in previous studies to play a role in 

migration of immune cells. In the present study, we hypothesize that VAP-1 inhibition 

may decrease brain injury by attenuating the transmigration of immune cells to the injury 

site, and by doing so, reduce cerebral edema and improve neurobehavioral function in 

mice. Two VAP-1 inhibitors, LJP1586 and semicarbazide (SCZ) were given 1 h after 

ICH induction by either collagenase or autologous blood-injection. VAP-1 siRNA, a 

VAP-1 gene silencer, and human recombinant AOC3 protein, a VAP-1 analogue, were 

delivered by intracerebroventricular injection. Post assessment included neurobehavioral 

testing, brain edema measurement, quantification of neutrophil infiltration and 

microglia/macrophage activation, and measurement of ICAM-1, P-selectin, MCP-1 and 

TNF-α expression 24 h after ICH, neurobehavioral testing and brain edema measurement 

also did at 72 h in cICH. We found that LJP1586 and SCZ reduced brain edema and 

neurobehavioral deficits 24 h after ICH induction. These two drugs were also found to 

decrease levels of ICAM-1, MCP-1, TNF-α, and inhibit neutrophilic infiltration and 

microglia/macrophage activation. We conclude that VAP-1 inhibition provided anti-

inflammation effect by reducing adhesion molecule expression and immune cell 

infiltration after ICH.  

 

Keywords: brain edema, inflammation, intracerebral hemorrhage (ICH), anti-

inflammation, vascular adhesion protein-1 (VAP-1)  
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Introduction 

Intracerebral hemorrhage (ICH) is a fatal stroke subtype that affects roughly 

120,000 individuals in the United States each year (Ribo and Grotta 2006). Responsible 

for 10-15% of all strokes, ICH accounts for one of the highest morbidity and mortality 

rates, leaving those individuals who survive with lasting disabilities (Dennis et al 1993). 

As the population in the world continues to shift towards an aged majority, the incidence 

of ICH will be expected to grow and the demand for a better understanding of the 

pathophysiology will be expected.  

The inflammatory response in an ICH is characterized by activation of local 

immune cells such as microglial cells. This local inflammatory reaction is partly 

responsible for the damages to the brain following injury. However, mounting evidence 

suggests that accumulation of systemic immune cells, specifically blood-derived 

leukocytes, are the primary orchestrators of this damage (Wang and Dore 2007). 

Infiltration of these systemic immune cells result in enhanced disruption of the blood-

brain-barrier (BBB), causing an increase in cerebral edema formation, and subsequent 

deterioration in neurobehavioral function. As a result, studies have re-directed their 

attention to focus more on preventative measures that can decrease the accumulation of 

systemic immune cells to the site of injury. In focal ischemic stroke models, investigators 

found that systemic immune cell recruitment was mediated in part by the increase in 

adhesion molecule expression along the endothelial cell walls (Yilmaz and Granger 

2008). As a result, these systemic immune cells propagated the local immune response by 

releasing pro-inflammatory cytokines at the site of injury, increasing cerebral edema and 
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worsening neurobehavioral function (Aronowski and Hall 2005; Barone and Feuerstein 

1999; Emsley and Tyrrell 2002).  

Vascular adhesion protein-1 (VAP-1), a cell-surface expressed glycoprotein, has 

recently emerged as a potential target for inflammatory regulation in the brain. Classified 

as a semicarbazide- sensitive-amine-oxidase (SSAO)(Salmi and Jalkanen 1992), VAP-1 

can also function as an adhesion molecule, promoting leukocyte adhesion and 

transmigration. Under normal conditions, VAP-1 is expressed within cytosolic vesicles of 

endothelial cells where it remains dormant. However, under inflammatory conditions, 

VAP-1 migrates to the luminal surface of endothelial cells within the blood vessels where 

it mediates binding and transmigration of systemic immune cells into tissues, disrupting 

the BBB along with it (Salmi and Jalkanen 2005).  

As a result in the present study, we investigated the role of VAP-1 in ICH-

induced brain injury, specifically investigating its role in regulating the systemic immune 

response. We hypothesize that VAP-1 blockage will attenuate the infiltration of systemic 

immune cells by downregulating adhesion molecule expression and therefore, improve 

neurologic outcomes. In order to test this aim, we used a small molecule VAP-1 inhibitor, 

LJP1586 (O'Rourke et al 2008) to inhibit the VAP-1 activity. Additionally, since the 

SSAO enzyme activity is necessary for leukocyte transmigration (Koskinen et al 2004), 

another VAP-1 inhibitor, semicarbazide, was used as testament to the anti-inflammatory 

effects of LJP1586. Additionally, we injected VAP-1 siRNA, a VAP-1 gene silencer, to 

specify the inhibition of VAP-1, as well as recombinant AOC3 protein, a VAP-1 

analogue, to neutralize the effect of LJP1586.  
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Materials and Methods 

Animals 

All procedures for this study were approved by the Animal Care and Use 

Committee at Loma Linda University and complied with the NIH Guide for the Care and 

Use of Laboratory Animals (National Institutes of Health Publication 85-23, revised 1985) 

and with Guidelines for the Use of Animals in Neuroscience Research by the Society for 

Neuroscience. Eight week old male CD1 mice (weight 35-45 grams, Charles River, MA, 

USA) were housed in a 12-hour light/dark cycle at a controlled temperature and humidity 

with free access to food and water. During surgery, body temperature was monitored and 

kept constant. Following surgery using one of the two established models, either the 

collagenase-ICH (cICH), or blood-ICH (bICH), the skull hole was closed with bone wax, 

the incision was closed with sutures, and the mice were allowed to recover. To avoid 

postsurgical dehydration, 0.5 ml of normal saline was given to each mouse by 

subcutaneous injection immediately following surgery. 

 

Intracerebral Hemorrhage Mouse Models and Treatment (Figure 4) 

ICH model was induced by collagenase injection (cICH) as previously described 

(Rosenberg et al 1990; Tang et al 2004; Tang et al 2005). Briefly, mice were 

anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) (2:1 v/v, intraperitoneal 

injection) and positioned prone in a stereotactic head frame (Kopf Instruments, Tujunga, 

CA). A cranial burr hole (1 mm) was drilled near the right coronal suture 1.4 mm lateral 

to the midline. A 27-gauge needle was inserted stereotactically into the right basal 

ganglia coordinates: 0.9 mm posterior to the bregma, 1.4 mm lateral to the midline, and 4 

mm below the dura. Collagenase (VII-S, Sigma; 0.075 U in 0.5 ul of saline) was infused 
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into the brain over 2 min at a rate of 0.25 ul/min with a microinfusion pump (Harvard 

Apparatus, Holliston, MA). Sham-operated mice were subjected to needle insertion only. 

The needle was left in place for an additional 10 min after injection to prevent possible 

leakage of the collagenase solution.  

Three experiments were carried out in the cICH model. 1. Mice were divided into 

four groups: sham (n=22), vehicle (ICH, n=32), LJP1586 treatment (3 mg/kg, 10 mg/kg, 

intraperitoneal injection, n=37) and semicarbazide treatment (100 mg/kg, 200 mg/kg, 

intraperitoneal injection, n=30). Both drugs were dissolved in phosphate-buffered saline 

(PBS, pH 7.4) and given 1 h after ICH induction. Both sham and vehicle animals 

received the same volume of PBS injection. 2. VAP-1 siRNA (Sigma Aldrich) was 

dissolved in sterilized water and given (100 pmol, 2 ul, intracerebroventricular injection) 

48 h before ICH. The same volume of scramble siRNA (siGENOME Non-Targeting 

siRNA, Thermol Fisher Scientific) was administered as control. The animals were 

divided into five groups, sham (n=8), vehicle (ICH, n=8), siRNA plus sham (n=12), 

siRNA plus ICH (n=12), and scramble siRNA plus ICH groups (n=12). 3. Human 

recombinant AOC3 (VAP-1) protein (Abnova Co.) was given 10 min before ICH 

induction to neutralize the effects of LJP1586. Mice were divided into five groups: sham 

(n=8), vehicle (ICH, n=6), AOC3 (30 ng, 90 ng/animal, intracerebroventricular injection) 

plus LJP 1586 (10 mg/kg, intraperitoneal injection, n=22), AOC3 plus sham (n=6), and 

AOC3 plus ICH group (n=10). 

ICH was induced using the autologous blood injection model (bICH) which was 

modified from previous descriptions (Belayev et al 2003; Rynkowski et al 2008; Wang et 

al 2008). Briefly, mice were anesthetized with ketamine (100 mg/kg) and xylazine (10 
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mg/kg) (2:1 v/v, intraperitoneal injection) and positioned prone in a stereotactic head 

frame (Kopf Instruments, Tujunga, CA). A scalp incision was made along the midline 

and a burr hole (1 mm) was drilled on the right side of the skull (0.2 mm anterior and 2.0 

mm lateral of the bregma). The mouse tail was warmed with hot water for 2 min and then 

cleaned with 70% ethanol before cutting off 10 mm of the tail tip with sterilized surgical 

scissors. Next, 30 ul of autologous tail blood was collected in a capillary tube without 

heparin and blown into a 1cc insulin syringe. The syringe was fixed onto the 

microinjection pump while the needle was stereotaxically inserted into the brain through 

the burr hole. At first the needle was stopped at 0.7 mm above the target position and 5 ul 

of blood was delivered at a rate 2 µl/min. The needle was then advanced to the target 

position. After 7 min, the remaining 25 ul blood was injected at a rate of 2 µl/min. The 

needle was left in place for an additional 10 min after injection to prevent possible 

leakage and withdrawn slowly in 7 min.  

Mice were treated with LJP1586 (10 mg/kg, intraperitoneal injection, n=6) or 

semicarbazide (200 mg/kg, intraperitoneal injection, n=6) 1 h after ICH induction. We 

also did sham (n=6) and vehicle group (n=7).  

All animals were neurologically tested and sacrificed 24 h or 72 h after ICH induction. 

Evaluation of neurological function was carried out by a blind investigator. Brain 

samples were collected for measurement of brain water content, Western blot or 

immunohistochemistry. 
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Figure 4: Experimental Design and Animal Group Classification 
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VAP-1 siRNA Injection  

siRNA was administered by intracerebroventricular (ICV) injection to the mouse 

brain as previously described (Luo et al 2007). Briefly, mice were anesthetized with 

ketamine (100 mg/kg) and xylazine (10 mg/kg) (2:1 v/v, intraperitoneal injection) and 

positioned prone in a stereotactic head frame (Kopf Instruments, Tujunga, CA). A scalp 

incision was made along the midline and a burr hole (1 mm) was drilled in the right side 

of the skull (1.0 mm lateral of the bregma). According to the manufacture instructions, 2 

ul (100 pmol) of VAP-1 siRNA (Sigma) suspended in sterile water or scramble siRNA 

was delivered into the ipsilateral ventricle with a Hamilton syringe over 2 min. The 

needle was left in place for an additional 5 min after injection to prevent possible leakage 

and then withdrawn slowly in 4 min. After the removal of the needle, the burr hole was 

sealed with bone wax, the incision was closed with sutures and the mice were allowed to 

recover. Intracerebral hemorrhage induced by collagenase injection was conducted 48 h 

later. Mice were sacrificed for edema measurement and VAP-1 protein expression 24 h 

after ICH. We did not measure the ICP because of the size challenges which mice impose. 

Furthermore, multiple invasive operations can affect study results quite unfavorably. 

 

Human Recombinant AOC3 (VAP-1) Protein Injection 

Human recombinant AOC3 (VAP-1) protein (Abnova Co.) was administered in 

the same manner as the VAP-1 siRNA injection described above. According to the 

manufacture’s instruction, 1 µl (30 ng/mouse) or 3 µl (90 ng/mouse) protein solutions 

was delivered into the ipsilateral ventricle with a Hamilton syringe at a rate of 0.5 µl/min. 

The needle was left in place for an additional 5 min after injection to prevent possible 

leakage and withdrawn slowly in 4 min. After the removal of the needle, the burr hole 
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was sealed with bone wax. The collagenase was then injected into the ipsilateral basal 

ganglia to induce hemorrhage. Afterwards, the incision was closed with sutures and the 

mice were allowed to recover. Mice were sacrificed for edema measurement 24 h after 

ICH induction. 

 

Hemorrhage Volume 

 Hemoglobin assay was used as previously described (Tang et al 2005). Briefly, 

mice were sacrificed 24 h after ICH and transcardially perfused with ice phosphate-

buffered saline (PBS). Both ipsilateral and contralateral hemisphere were collected and 

kept in a -70 °C freezer. The ipsilateral hemisphere was homogenized for 60 sec in a tube 

with distilled water (total volume 3 mL). After centrifugation (12000 g, 30 min), 400 µl 

Drabkin’s reagent (Sigma-Aldrich) was added into a 100 µl aliquots of the supernatant 

and allowed to react for 15 min. The absorbance of this solution was read with a 

spectrophotometer (540 nm) and the amount of blood in each brain was calculated using 

a standard curve generated with known blood volumes 

 

Neurobehavioral Function Test 

Neurobehavioral functions were evaluated by the modified Garcia test (Garcia et 

al 1995; Wu et al 2010). In the modified Garcia test, four items including side stroke, 

vibrissae touch, limb symmetry, and lateral turning were tested with a maximum 

neurological score able to be achieved at 12 (healthy animal). We also did performed the 

beam balance test (Zausinger et al 2000) and modified wire hanging test (Gerlai et al 

2000) to further assess neurobehavior. The maximum score able to be reached per test 
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was 5 (data not shown). The behavior test was conducted at different time point after ICH 

induction by a blinded investigator. 

 

Brain Water Content Measurement  

Brain water content was measured as previously described (Tang et al 2004; Tang 

et al 2005; Tejima et al 2007). Briefly, mice were decapitated under deep anesthesia. 

Brains were immediately removed and cut into 4 mm sections. Each section was divided 

into four parts: ipsilateral and contralateral basal ganglia, ipsilateral and contralateral 

cortex. The cerebellum was collected as an internal control. Tissue samples were weighed 

on an electronic analytical balance (APX-60, Denver Instrument) to the nearest 0.1 mg to 

obtain the wet weight (WW). The tissue was then dried at 100°C for 24 h to determine 

the dry weight (DW). Brain water content (%) was calculated as [(WW - DW)/WW] x 

100. 

 

Western Blotting  

Western Blotting was performed as described previously (Chen et al 2008; 

Ostrowski et al 2005). Animals were euthanized 24 h after ICH. Intracardiac perfusion 

with cold phosphate-buffered saline (PBS, pH 7.4) solution was performed, followed by 

removal of the brain and separation into ipsilateral and contralateral cerebrums. The brain 

parts were stored appropriately at -80°C immediately until analysis. Protein extraction 

from whole-cell lysates were obtained by gently homogenizing them in RIPA lysis buffer 

(Santa Cruz Biotechnology, Inc, sc-24948) with further centrifugation at 14,000 g at 4°C 

for 30 min. The supernatant was used as whole cell protein extract and the protein 

concentration was determined using a detergent compatible assay (Bio-Rad, Dc protein 
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assay). Equal amounts of protein (50 μg) were loaded on an SDS-PAGE gel. After being 

electrophoresed and transferred to a nitrocellulose membrane, the membrane was blocked 

and incubated with the primary antibody overnight at 4°C. The primary antibodies were 

goat polycolonal anti-ICAM-1 (Santa Cruz Biotechnology, 1:500), goat ploycolonal anti-

P-selectin (Santa Cruz Biotechnology, 1:500), rabbit polyclonal anti-MCP1 (Abcam 

1:1000), and rabbit polycolonal anti-TNF-alpha (Millipore, 1:1000). Nitrocellulose 

membranes were incubated with secondary antibodies (Santa Cruz Biotechnology) for 1h 

at room temperature. Immunoblots were then probed with an ECL Plus 

chemiluminescence reagent kit (Amersham Biosciences, Arlington Heights, IL) and 

visualized with the imagine system (Bio-Rad, Versa Doc, model 4000). The data were 

analyzed by the software Image J.  

 

Assessment of Histology  

At 24 h after ICH, mice were perfused under deep anesthesia with cold 

phosphate-buffered saline (PBS, pH 7.4), followed by infusion of 4% paraformaldehyde. 

The brains were then removed and fixed in formalin at 4°C for a minimum of 3 days. The 

brains were then dehydrated with 30% sucrose in phosphate-buffered saline (PBS, pH 7.4) 

and the frozen coronal slices (10 μm thick) were then sectioned in cryostat (CM3050S; 

Leica Microsystems). Immunohistochemistry was performed (Titova et al 2008) using 

the following primary antibodies: rabbit anti-Iba-1 antibody (Wako Chemicals USA, Inc) 

and rabbit anti-human myeloperoxidase polyclonal antibody (1:300; Dako Cytomation 

Inc.). The positive cell numbers were counted as previous described (Wang and Dore 

2008). The number of immunoreactive cells from 12 locations per mouse (3 sections per 
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mouse, 4 fields per section, n=4, microscopic field 20x) were averaged and expressed as 

positive cells per field. 

 

Statistical Analysis 

Data were expressed as means ± s.e.m. Statistical difference between two groups 

was analyzed using the t-test. Multiple comparisons were statistically analyzed with one-

way analysis of variance (ANOVA) followed by Tukey multiple comparison post-hoc 

analysis or Student-Newman-Keuls test. A p-value of less than 0.05 was considered 

statistically significant. For the rating scale data (neurobehavioral test), data were 

expressed as median ± 25th-75th percentiles. We used the Kruskal-Wallis One Way 

Analysis of Variance on Ranks, followed by the Steel-Dwass multiple comparisons tests. 

For the western blot data, we used the Kruskal-Wallis One Way Analysis of Variance on 

Ranks, followed by the Student-Newman-Keuls Method for Pairwise Multiple 

Comparison Procedures. 

 

Results 

VAP-1 Inhibition Had no Effect on Hemorrhagic Volume 

Hemorrhagic volume was estimated at 24 h after collagenase injection by 

hemoglobin assay with spectrophotometry (Tang et al 2005). There was no statistical 

difference observed between cICH vehicle mice and 10 mg/kg LJP1586 treated mice 

(38.712 ± 2.35 µl, n=8 and 39.03 ± 2.32 µl, n=8, respectively; t14= -0.0969, P=0.924; 

Figure 5A). 
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Neurobehavioral Deficits Improve with VAP-1 Inhibitors.  

Two VAP-1 inhibitors were applied after cICH. LJP1586 is a selective, novel 

small molecule inhibitor of rodent and human VAP-1 activity with relative little effects 

on other monoamine oxidases. Its anti-inflammation effects have been studied in LPS-

induced lung inflammation (O'Rourke et al 2008). Semicarbazide, a reference compound 

for inhibiting SSAO activity, was the other VAP-1 inhibitor (Mercier et al 2007).  

To evaluate the sensorimotor deficits after cICH, the modified Garcia test was conducted 

at both 24 h and 72 h post-cICH. The results showed that vehicle mice presented with 

severe neurobehavioral deficits compared to sham mice (P<0.05 versus Sham). However, 

following treatment with high-dose LJP1586 (10 mg/kg) and high-dose semicarbazide 

(10 mg/kg), a significant improvement in neurobehavioral function was seen with the 

modified Garcia test at both 24 h and 72 h (P<0.05 versus Vehicle, Figure 5B). For the 

beam balance test, a significant improvement in neurobehavioral function was seen 

following treatment with high-dose LJP1586 and high-dose semicarbazide at both 24 h 

and 72 h (P<0.05 versus Vehicle, data not shown); however, in the wire hanging test, 

high-dose LJP1586 (10 mg/kg) dramatically improved neurobehavioral function 

compared to vehicle group at both 24 h and 72 h (P<0.05 versus Vehicle, data not shown), 

while high-dose semicarbazide significantly improved neurobehavioral function only at 

72 h (P<0.05 versus Vehicle, data not shown). 

Overall, it was found that VAP-1 inhibitors could improve neurobehavioral 

functions in a cICH model at both acute and delayed stages.  

Brain water content was also measured 24 h and 72 h post-cICH (Figure 5C, D). 

Following treatment with low-dose (3 mg/kg) and high-dose (10 mg/kg) LJP1586, brain 

edema was found to be significantly reduced in the ipsilateral basal ganglia compared to 
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vehicle groups (Ipsilateral basal ganglia: 24 h, 3 mg/kg, 80.53 ± 0.30 vs. Vehicle, 81.82 ± 

0.32, P<0.05; 10 mg/kg, 80.41 ± 0.27 vs. Vehicle, 81.82 ± 0.32, P<0.01; 72 h, 10 mg/kg, 

80.92± 0.17 vs. Vehicle, 82.96 ± 0.21, P<0.05). In the ipsilateral cortex, high-dose 

LJP1586 (10 mg/kg) significantly reduced brain edema compared to vehicle (Ipsilateral 

cortex: 24 h, 10 mg/kg, 79.21 ± 0.15 vs. Vehicle, 80.31 ± 0.29, P<0.05; 72 h, 79.70 ± 

0.12 vs. Vehicle, 80.37 ± 0.18, P<0.05). With high-dose semicarbazide treatment (200 

mg/kg), brain edema decreased in the ipsilateral basal ganglia compared to vehicle at 

both 24 h and 72 h (ipsilateral basal ganglia: 24 h, 200 mg/kg, 80.68 ± 0.16 vs. Vehicle, 

81.82 ± 0.32, P<0.05; 72 h, 81.17 ± 0.24 vs. Vehicle, 82.96 ± 0.21, P<0.05), however, in 

the ipsilateral cortex, only post-treatment at 72 h significantly reduced brain water 

content (Ipsilateral cortex: 200 mg/kg, 79.76 ± 0.10 vs. Vehicle, 80.37 ± 0.18, P<0.05).  
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Figure 5. Effect of VAP-1 inhibitors, LJP1586 and semicarbazide (SCZ) on hemorrhagic 
volume, neurological score and brain water content at 24 h and 72 h after cICH in mice.  
A, Result of hemoglobin assay for hemorrhagic volume in vehicle and LJP1586 (10 
mg/kg) treated mice (n=8). NS, not significant. B, The neurological score for the 
modified Garcia test (healthy animal: 12) at 24 h and 72 h in Sham, ICH and ICH with 
treatments. C, LJP1586 and SCZ reduced brain water content at 24 h after cICH in mice. 
Brain samples were collected from Sham, ICH and ICH with treatments. D, The 
neurological score for the modified Garcia test (healthy animal: 12) at 72 h in Sham, ICH 
and ICH with treatments. Brain sections (4 mm) were divided into four parts: ipsilateral 
basal ganglia (Ipsi-BG), ipsilateral cortex (Ipsi-CX), contralateral basal ganglia (Cont-
BG), contralateral cortex (Cont-CX). Cerebellum (Cerebel) is the internal control. # 
P<0.05 versus Sham. * P<0.05 versus Vehicle. ** P<0.01 versus Vehicle. 
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VAP-1 Inhibitors Down-Regulate Levels of ICAM-1, MCP-1, and 
TNF-α after ICH Injury 

In an in vitro study, VAP-1 was found to produce biologically active mediators 

that could act as signals to induce expression of E- and P-selectins, as well as intercellular 

adhesion molecule-1 (ICAM-1) in endothelial cells (Jalkanen et al 2007). As a result, we 

investigated whether VAP-1 activity had any effect on the expression of adhesion 

molecules, i.e. ICAM-1, P-selectin, 24 h post-ICH injury. Additionally, in the 

development of choroidal neovascularization (CNV), the expression of a number of 

inflammatory molecules such as TNF-α and MCP-1 was suppressed after VAP-1 

blockade (Noda et al 2008). As a result, we also studied the effect of VAP-1 inhibition on 

cytokine expression, looking specifically at MCP-1 and TNF-α. 

Our results demonstrated that cICH injury produced a significant increase in the 

expression of P-selectin (P<0.05 versus Sham, Figure 6A) and ICAM-1 (P<0.01 versus 

Sham, Figure 6B). Treatment with high-dose LJP1586 (10 mg/kg) and semicarbazide 

(200 mg/kg) significantly decreased the expression of P-selectin (P<0.05 versus Sham, 

Figure 6A) and ICAM-1(P<0.05 versus Vehicle, Figure 5B). Levels of the pro-

inflammatory cytokines MCP-1 and TNF-α were significantly increased 24 h post-cICH 

(MCP-1, P<0.01; TNF-α, P<0.05 versus Sham, Figure 6C,D). Treatment with high-dose 

LJP1586 (10 mg/kg) and semicarbazide (200 mg/kg) markedly reduced the level of 

MCP-1 and TNF-α (P<0.05 versus Vehicle, Figure 6C,D). 
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VAP-1 Inhibition Blocks Migration of Systemic Neutrophils and 
Microglia/Macrophage Activation. 

In order to determine the effect VAP-1 had on inflammatory cells, we checked 

neutrophilic infiltration by MPO staining and microglia/macrophage activation by Iba-1 

staining. At the same time, quantification of both the MPO and Iba-1 positive cells in the 

perihematomal area were determined. The results demonstrated that post-treatment with 

LJP1586 at 24 h showed a significant reduction in the MPO positive cell numbers (11.89 

± 2.57, n=4 and 25.03 ± 1.31, n=4 respectively; t6=4.547, P=0.01; Figure 7A,C) while the 

microglia/macrophage activation was also attenuated in the perihematomal area 

compared with vehicle mice (4.23 ± 0.57, n=4 and 7.81 ± 0.50, n=4 respectively; 

t6=4.731, P=0.003; Figure 7D,E). 
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Figure 6: Adhesion molecules and pro-inflammatory cytokine levels were increased in 
vehicle group and decreased by VAP-1 inhibitors 24 h after cICH in mice. A, Analysis of 
P-selectin level in ipsilateral hemisphere at 24 h following ICH by Western blot. NS, not 
significance. B, Analysis of ICAM-1 level in ipsilateral hemisphere at 24 h following 
ICH by Western blot. C, Analysis of MCP-1 level in ipsilateral hemisphere at 24 h 
following ICH by Western blot. D, Analysis of TNF-α level in ipsilateral hemisphere at 
24 h following ICH by Western blot. All the brain samples were ipsilateral hemisphere 
collected from Sham, ICH and ICH with treatments (LJP1586: 10 mg/kg; SCZ: 200 
mg/kg). ## P < 0.01 versus Sham group. # P<0.05 versus Sham. * P<0.05 versus Vehicle, 
n=6-8. 
 

 



60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 



61 

 
 
 
 
 
 
 
 

 

 
Figure 7: Effect of VAP-1 inhibitor, LJP1586 on neutrophils infiltration and 
microglia/macrophage activation in the perihematomal region 24 h after cICH in mice. A, 
Represented photograph of immunofluorescence staining for myeloperoxidase (MPO) 
showing that the MPO positive cell were increased in vehicle group and decreased in 
LJP1586 treatment (10 mg/kg) group at 24 h after ICH. Sections from mice brain were 
probed with anti-MPO antibody and rabbit TX Red secondary antibody (red). Scale bars, 
20 µm. B, The schematic diagram shows the four areas (black squares) for the MPO 
positive cells counting in the perihematomal region. C, Bar graph illustrating the 
quantification of MPO positive cells in the perihematomal region at 24 h in Sham, 
Vehicle and LJP 1586 treatment (10 mg/kg) (12 fields/brain). It showed that inhibition of 
VAP-1 significantly reduced the number of MPO positive cells. D, Represented 
photograph of immunohistochemistry staining for Iba-1 positive cells showed that the 
activated microglia/macrophage was increased in vehicle group and decreased in 
LJP1586 treatment (10 mg/kg) group 24 h after ICH. Sections from mice brain were 
probed with rabbit anti-Iba1 antibody and goat anti-rabbit secondary antibody. Scale bars, 
50 µm. E, Bar graph illustrating the quantification of Iba-1 positive cells in vehicle and 
LJP 1586 treatment (10 mg/kg) in the perihematomal region (12 fields/brain). The data 
revealed that VAP-1 inhibition by LJP1586 significantly reduced the number of activated 
Iba-1 positive cells. * P<0.05 versus Vehicle group, n=4. 
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VAP-1 siRNA Decreases VAP-1 Levels after ICV Injection.  

To examine the specificity of the anti-inflammatory effects of VAP-1 inhibitors, 

VAP-1 siRNA as well as scramble siRNA (nontargeting siRNA) was given 48 h prior to 

cICH induction. Protein levels of VAP-1 where then detected in the ipsilateral 

hemisphere by western blot at 24 h. In sham mice, siRNA injection significantly reduced 

VAP-1 levels (P<0.05, Figure 8A). Compared with scramble siRNA injection, VAP-1 

levels in cICH mice were significantly decreased with siRNA injection (P<0.05, Figure 

8A). Additionally, neurobehavioral functions and brain edema were evaluated 24 h post-

cICH induction. Compared with cICH mice, the siRNA injected mice showed an 

improvement in neurobehavioral functions (P<0.05 versus Vehicle, Figure 8B). 

Moreover, brain edema in the ipsilateral basal ganglia was also significantly reduced 

(Ipsilateral basal ganglia: siRNA+ICH, 81.73±0.23 vs. ICH, 82.75 ± 0.27, P<0.05, Figure 

8C). 
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Figure 8: Effect of VAP-1 siRNA on neurological score and brain water content at 24 h 
after cICH in mice. VAP-1 siRNA was injected 48 h before ICH and brain samples were 
collected 24 h after ICH from Sham, siRNA+Sham, scramble siRNA+ICH and 
siRNA+ICH. VAP-1 siRNA was injected 48 h before ICH while neurobehavioral 
function and brain water content were evaluated 24 h after ICH. VAP-1 siRNA improved 
neurobehavioral functions and decreased brain water content 24 h after collagenase-
induced ICH in mice. A, Western blotting with rabbit anti-VAP-1 antibody showed that 
the VAP-1 level in the ipsilateral hemisphere was reduced 72 h after VAP-1 siRNA 
injection in a collagenase-induced intracerebral hemorrhage. B, The neurological score 
for the modified Garcia test (healthy animal: 12) at 24 h in Sham, siRNA+Sham, ICH, 
non+ICH and siRNA+ICH. C, VAP-1 siRNA reduced brain water content 24 h after ICH. 
Brain samples were collected from Sham, siRNA+Sham, ICH, nontargeting 
siRNA+Sham and siRNA+ICH. Brain sections (4 mm) were divided into four parts: 
ipsilateral basal ganglia (Ipsi-BG), ipsilateral cortex (Ipsi-CX), contralateral basal ganglia 
(Cont-BG), contralateral cortex (Cont-CX). Cerebellum (Cerebel) is the internal control. 
“non+ICH” presented nontargeting (scramble) siRNA+ICH. # P<0.05 versus Sham group. 
* P<0.05 versus Vehicle group. For western blot, * P<0.05 versus Scramble siRNA 
+ICH group. 
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Human Recombinant AOC3 (VAP-1) Protein Abolishes the Anti-
inflammatory Effects of the VAP-1 Inhibitor  

The human recombinant AOC3 (VAP-1) protein was given as a neutralizer for 

LJP1586. The recombinant protein (30 ng/mouse, 90 ng/mouse) was given by ICV 

injection 10 min before cICH induction. High-dose LJP1586 (10 mg/kg) was then 

administered 1 h after cICH. Both neurobehavioral function and brain edema were 

evaluated 24 h post-cICH.  

In the modified Garcia test, both the low-dose (30 ng/mouse) and high-dose (90 

ng/mouse) AOC3 protein markedly reversed the protective effects of LJP1586 treatment 

(P<0.05, Figure 9A). For the wire hanging and beam balance tests, high dose AOC3 

injected mice demonstrated a more severe neurobehavioral deficit than the ICH group 

alone. Compared with LJP1586 treated mice, neither low-dose nor high-dose AOC3 

protein attenuated the effects of LJP1586 (P<0.05 versus ICH+LJP, data not shown). 

With regards to brain edema, the data showed that in the ipsilateral basal ganglia, high-

dose AOC3 protein in cICH mice resulted in a markedly higher accumulation of edema 

than cICH mice alone (ipsilateral basal ganglia: 90 ng/mouse+ICH, 84.07 ± 0.39 vs. ICH, 

82.32 ± 0.30, P<0.05, Figure 9B). Both low-dose and high-dose AOC3 reversed the 

edema lowering effects of LJP1586 (Ipsilateral basal ganglia: 30 

ng/mouse+ICH+LJP1586, 82.57 ± 0.29 vs. ICH+LJP1586, 80.94 ± 0.32, P<0.01; 90 

ng/mouse+ICH+LJP1586, 82.81 ± 0.30 vs. ICH+LJP1586, 80.94 ± 0.32, P<0.01, Figure 

6B). In the ipsilateral cortex, there was no statistical significance found between the cICH 

mice group and the cICH plus AOC3 protein group. And finally, high-dose AOC3 

protein (90 ng/mouse) significantly increased brain edema compared to the mice treated 
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with LJP1586 (Ipsilateral cortex: 90 ng/mouse+ICH+LJP1586, 80.672 ± 0.21 vs. 

ICH+LJP1586, 79.58 ± 0.20, P<0.05, Figure 9B). 

 

Recombinant AOC3 Protein Reversed the Effect of VAP-1 Inhibition 
on Migration of Systemic Neutrophils and Activation 

Microglia/Macrophage 

In order to further confirm the role of VAP-1 in inflammation, we evaluated the 

neutrophilic infiltration by MPO staining and microglia/macrophage activation by Iba-1 

staining following recombinant AOC3 protein injection with LJP1586. Additionally, 

quantification of both the MPO and Iba-1 positive cells in the perihematomal area were 

determined. Our results showed that there was no statistically significant difference in 

MPO positive cell numbers between recombinant AOC3 protein administration with 

LJP1586 post-treatment mice and vehicle mice (24.48 ± 3.2, n=4 and 25.27 ± 1.92, n=4, 

respectively; t6= 0.424, P=0.69; Figure 9C,D); while the microglia/macrophage activation 

failed to show a difference in the perihematomal area compared with vehicle mice (5.98 

± 0.83, n=4 and 7.06 ± 0.86, n=4, respectively; t6= 0.905, P=0.40; Figure 9E,F). 

 

VAP-1 Inhibitors Improved Neurobehavioral Functions and Reduced 
Brain Edema in an Autologous Blood Injection ICH Model  

Our results have suggested thus far that VAP-1 inhibition can significantly reduce 

brain edema and improve neurobehavioral functions in a cICH model. To strengthen 

these results, the autologous blood injection ICH model (bICH) was also applied to 

confirm the anti-inflammatory effects of VAP-1 inhibition. Both VAP-1 inhibitors, 

LJP1586 and semicarbizade, were administered 1 h after bICH induction in high 

concentrations (LJP1586, 10 mg/kg; semicarbizde, 200 mg/kg). Both neurobehavioral 
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functions and brain edema were evaluated at 24 h. The results showed that treated mice 

performed markedly better in the modified Garcia test compared with vehicle mice 

(P<0.05, Figure 10A). Additionally, compared with vehicle mice, both treatment groups 

had significantly reduced brain edema accumulations in the ipsilateral basal ganglia 

(ipsilateral basal ganglia: 10 mg/kg LJP1586, 80.59±0.28 vs. Vehicle, 81.49±0.15, 

P<0.05; 200 mg/kg SCZ, 80.58 ± 0.10 vs. Vehicle, 81.49±0.15, P<0.05, Figure 10B). 
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Figure 9:  Effect of recombinant AOC3 (VAP-1) protein on neurological score, brain 
water content and neutrophils infiltration and microglia/macrophage activation at 24 h 
after cICH in mice. Recombinant AOC3 protein was injected 10 min before ICH 
induction. A, The neurological score for the modified Garcia test (healthy animal: 12) at 
24 h after ICH in Sham, ICH, ICH+LJP1586 (10 mg/kg), ICH+LJP1586 (10 
mg/kg)+VAP-1 protein (30 ng/animal, 90 ng/animal), Sham+VAP-1 protein (90 
ng/animal) and ICH+VAP-1 protein (90 ng/animal).  B, Recombinant AOC3 protein 
reduced brain water content at 24 h after ICH. Brain samples were collected from Sham, 
ICH, ICH+LJP1586 (10 mg/kg), ICH+LJP1586 (10 mg/kg)+VAP-1 protein (30 
ng/animal, 90 ng/animal) , Sham+VAP-1 protein (90 ng/animal) and ICH+VAP-1 protein 
(90 ng/animal). C, Represented photograph of immunofluorescence staining for 
myeloperoxidase (MPO) MPO positive cell in vehicle group and recombinant 
AOC3+LJP1586 treatment (10 mg/kg) group at 24 h after ICH. Sections from mice brain 
were probed with anti-MPO antibody and rabbit TX Red secondary antibody (red). Scale 
bars, 20 µm. D, Bar graph illustrating the quantification of MPO positive cells in the 
perihematomal region at 24 h in Vehicle and recombinant AOC3+LJP1586 treatment (10 
mg/kg) (12 fields/brain). It showed that recombinant AOC3 abolished the effect of 
LJP1586 on reducing the number of MPO positive cells. E, Represented photograph of 
immunohistochemistry staining for Iba-1 positive cells in vehicle group and recombinant 
AOC3+LJP1586 treatment (10 mg/kg) group 24 h after ICH. Scale bars, 50 µm. F, Bar 
graph illustrating the quantification of Iba-1 positive cells in vehicle and recombinant 
AOC3+LJP1586 treatment (10 mg/kg) group in the perihematomal region (12 
fields/brain). * *P<0.01, * P<0.05, NS, not significant. 
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Figure 10: VAP-1 inhibitors, LJP1586 and semicarbazide improved neurological score 
and decreased brain water content 24 h after bICH in mice.  A, The neurological score for 
the modified Garcia test (healthy animal: 12) at 24 h in Sham, ICH and ICH with 
treatments (LJP1586: 10 mg/kg; SCZ: 200 mg/kg). B, VAP-1 inhibitors, LJP1586 and 
semicarbazide reduced brain water content at 24 h after autologous blood induced ICH in 
mice. Brain samples were collected from Sham, ICH and ICH with treatments (LJP1586: 
10 mg/kg; SCZ: 200 mg/kg). Brain sections (4 mm) were divided into four parts: 
ipsilateral basal ganglia (Ipsi-BG), ipsilateral cortex (Ipsi-CX), contralateral basal ganglia 
(Cont-BG), contralateral cortex (Cont-CX). Cerebellum (Cerebel) is the internal control. 
## P< 0.01 versus Sham group. * P<0.05 versus Vehicle group. 
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Discussion 

Intracerebral hemorrhage is a fatal stroke subtype that currently has no effective 

treatment option. In the present study, we investigated the effects of VAP-1 inhibition on 

ICH-induced brain injury. Specifically investigating the potential of this inhibition to 

reduce the migration of systemic immune cells to the site of injury and prevent the 

propagation of further parenchymal damage.  

ICH is induced in mice by either one of two paradigms: by injection of autologous 

tail blood into the basal ganglia, or by injection of a clostridial bacterial collagenase into 

the basal ganglia (James et al 2008). In the cICH model, formation of the hematoma is 

generated by direct disruption of blood vessels, mimicking a spontaneous ICH in humans 

(MacLellan et al 2008). However, bacterial collagenase has been known to induce an 

exaggerated inflammatory response in the brain; although in vitro studies have refuted 

this hypothesis (Matsushita et al 2000). As a result, to avoid the possible interference of 

bacterial collagenase in the normal inflammatory response after ICH, the autologous 

blood injection model was also employed to verify the anti-inflammatory properties of 

VAP-1 inhibition.   

VAP-1 is a homodimeric protein molecule present in a wide variety of cell types, 

including endothelial cells. Specifically, VAP-1 supports leukocyte adhesion by binding 

to and oxidatively deaminating a primary amino group presented on the leukocyte surface, 

resulting in the formation of a temporary bond between the two cell types (Salmi et al 

2001). Thus, blocking of VAP-1 would be expected to inhibit leukocyte migration. In our 

study, we found that VAP-1 inhibition down-regulated the adhesion molecule ICAM-1 

and reduced the infiltration of systemic immune cells, specifically neutrophils, to the site 
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of injury.  Additionally, with the reduction in systemic immune cells accumulating at the 

injury site, there was a marked reduction in pro-inflammatory cytokines, TNF-α and 

MCP-1, and a reduction in activation of microglial/macrophages. This prevented further 

propagation of the local immune response. Clinically this translates into a significant 

reduction in cerebral edema accumulation and marked improvement in neurobehavioral 

function which was the case at both 24 h and 72 h post-ICH.  

VAP-1’s involvement in leukocyte infiltration has been studied in various 

experimental models. Most have implicated this protein as the key player in adhesion and 

transmigration of circulating systemic immune cells to the site of local injury. In ischemic 

models, VAP-1 has been shown to mediate leukocyte adhesion/infiltration in diabetic 

OVX females given chronic estrogen-replacement therapy (Xu et al 2006). Studies on 

VAP-1 knockout mice found that absence of VAP-1 led to abnormal leukocyte 

trafficking and attenuation of the inflammatory response in peritoneal infection (Stolen et 

al 2005). Additionally, in vitro studies have directly implicated VAP-1 in inducing E/P-

selectin and ICAM-1 expression during inflammatory conditions in endothelial cells 

(Jalkanen et al 2007). Studies investigating the relationship between VAP-1 and ocular 

inflammation found VAP-1 to be involved in leukocyte extravasations (Noda et al 2008). 

Specifically, noting that VAP-1 inhibition reduced the expression of ICAM-1 and 

macrophage recruitment, while decreasing the secretion of pro-inflammatory markers 

TNF-α and MCP-1 to the choroidal tissue. In our study, we were able to show using 

immunohistochemistry that there was a strong presence of infiltrated neutrophils and 

activated microglia/macrophages around the hematoma region 24 h after the cICH injury. 

Additionally, treatment with the VAP-1 blocker LJP1586 significantly decreased the 
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MPO-positive cell numbers and activated microglia/macrophages numbers, implying that 

VAP-1 mediates the infiltration of these systemic immune cells and propagation.  

To strengthen our hypothesis that VAP-1 inhibition could provide anti-

inflammatory effects in ICH, we injected VAP-1 siRNA to knockdown VAP-1 

expression. Our data showed that VAP-1 protein level in sham and cICH operated mice 

were significantly reduced after VAP-1 siRNA injection, and also cICH operated mice 

showed a lower VAP-1 level than sham. The same phenomenon has been reported in 

human ischemic stroke models (Airas et al 2008). The study by Airas and colleagues 

showed that in the acute phase of ischemic stroke, VAP-1 positive vessels were strongly 

diminished in the ipsilateral hemisphere, but the VAP-1 levels in the serum were 

significantly increased. Additionally, we introduced human recombinant AOC3 protein to 

neutralize the effects of LJP1586.  Our data showed that both low-dose and high-dose 

exogenous VAP-1 protein delivery counteracted the effect of VAP-1 inhibitor. It 

produced a worse performance in cICH mice with VAP-1 inhibition, and restored brain 

edema back to the level of the cICH mice. We also found that the administration of 

exogenous VAP-1 protein exacerbated neurobehavioral deficits and brain edema in cICH 

mice and only slightly worsened it in sham mice.  

One limitation of our study is the injection pattern of siRNA and human 

recombinant VAP-1 protein. Although we have no direct evidence that siRNA and 

recombinant protein may cross the BBB, previous studies have shown that following 

cICH, there is a marked increase in BBB permeability by 30 min which is maintained 

from 5h to 7 days, with normal permeability being restored by day 14 (Rosenberg et al 

1993).  
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In conclusion, this study shows that VAP-1 inhibition ameliorates ICH-induced 

brain damage in adult male mice by attenuating the adhesion and transmigration of 

circulating systemic immune cells to the site of local injury. By doing so, VAP-1 

inhibition prevents the propagation of the local inflammatory process and in turn, reduces 

cerebral edema, improves neurobehavioral function and may act as a potential therapeutic 

target for future clinical direction. 
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Abstract 

Objective: Perihematomal edema results from disruption of the blood-brain barrier (BBB) 

by key mediators, such as thrombin, following intracerebral hemorrhage (ICH). Platelet 

derived growth factor receptor alpha (PDGFR-α), a tyrosine kinase receptor, was found 

in previous studies to play a role in orchestrating BBB impairment. In the present study, 

we investigated the role of PDGFR-α following ICH-induced brain injury in mice, 

specifically investigating its effect on BBB disruption. 

Methods: Brain injury was induced by autologous arterial blood (30 µl) or thrombin (5 

U)-injection into mice brains. A PDGFR antagonist (Gleevec) or agonist (PDGF-AA) 

was administered following ICH.  PDGF-AA was injected with a thrombin inhibitor, 

hirudin in ICH mice. Thrombin-injected mice were given Gleevec or PDGF-AA 

neutralizing antibody. A p38 MAPK inhibitor, SB203580 was delivered with PDGF-AA 

in naïve animals. Post-assessment included neurological function tests, brain edema 

measurement, Evans blue extravasation, immunoprecipitation, western blot and 

immunohistology assay. 

Results: PDGFR-α suppression prevented neurological deficits, brain edema and Evans 

blue extravasation at 24-72 hours following ICH. PDGFR-α activation led to BBB 

impairment and this was reversed by SB203580 in naïve mice. Thrombin inhibition 

suppressed PDGFR-α activation and exogenous PDGF-AA increased PDGFR-α 

activation, regardless of thrombin inhibition. Animals receiving a PDGF-AA neutralizing 

antibody or Gleevec showed minimized thrombin injection-induced BBB impairment. 

Interpretation: PDGFR-α signaling may contribute to BBB impairment via p38 MAPK 

mediated MMP activation/expression following ICH and thrombin may be the key 
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upstream orchestrator. The therapeutic interventions targeting the PDGFR-α signaling 

may be a novel strategy to prevent thrombin-induced BBB impairment following ICH. 

 

Introduction 

Spontaneous intracerebral hemorrhage (ICH) is the result of small vessel bleeds 

within the brain parenchyma and the subsequent formation and expansion of the 

hematoma. This process represents the deadliest and least treatable stroke subtype, 

accounting for close to 15-20% of all strokes (Ribo and Grotta 2006). One of the main 

reasons for its devastating nature is the formation of perihematomal cerebral edema, a 

consequence that occurs from disruption of the blood-brain barrier (BBB). To this date, 

many factors have been implicated in orchestrating the disruption including thrombin, 

inflammatory mediators, hemoglobin degradation products (He et al 2010), and matrix 

metalloproteinases (MMPs) (Keep et al 2008). Yet the mechanism to explain how the 

process is carried out still remains to be elucidated. 

Platelet derived growth factor receptors (PDGFRs) are a subfamily of tyrosine 

kinase receptors including two members, PDGFR-α and PDGFR-β, expressed throughout 

various cell-types in the brain, including astrocytes, neurons (Heldin and Westermark 

1999), and capillary endothelial cells (Marx et al 1994). These receptors have 

extracellular domains which ligands, platelet derived growth factors (PDGFs) can bind to 

initiate downstream signaling pathways. Recently, several lines of evidence have 

suggested that PDGFRs, especially PDGFR-α may be involved in the stroke process, 

specifically orchestrating the disruption of the BBB (Su et al 2008; Yao et al 2010). In 

one study the authors observed that PDGFR-α agonists injection into the CSF of naïve 
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mice significantly increased Evans blue extravasation compared to just PBS injected 

animals (Su et al 2008).  

As a result in the present study, we investigated the role of the PDGFR-α 

following an ICH-induced brain injury in mice, specifically investigating its position as a 

key orchestrator of BBB disruption. We hypothesize that PDGFR-α signal may 

contribute to BBB impairment via a p38 MAPK pathway mediated MMPs 

activation/expression following ICH injury and thrombin, an established mediator of 

BBB injury in ICH, may be the upstream regulator of PDGFR-α activation. In order to 

test this aim, first we investigated the expression of PDGFR-α and its` ligand, PDGF-AA 

in brain following ICH.  We next used both a PDGFR antagonist (Gleevec) and agonist 

(PDGF-AA) to manipulate PDGFR-α activation, and measured the phosphorylation level 

of the PDGFR-α while observing the pre-determined outcomes. We also gave a p38 

MAPK inhibitor known as SB 203580 hydrochloride, to potentially reverse the BBB 

disruption induced by PDGFR-α activation. Because of our hypothesis that thrombin may 

act as the key upstream orchestrator, hirudin, a thrombin specific inhibitor was also 

administered into animals with or without PDGFR-α agonist injection following ICH. 

Furthermore, in an established thrombin injection model, PDGFR-α antagonist or PDGF-

AA neutralizing antibody was introduced to determine the role of thrombin in activating 

and/or inhibiting the PDGFR-α pathway. 
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Materials and Methods 

Animals 

All procedures for this study were approved by the Institutional Animal Care and 

Use Committee (IACUC) at Loma Linda University. Please see details in Supplementary 

Text. 

 

Intracerebral Hemorrhage Mouse Model 

ICH was induced using the autologous arterial blood injection model (bICH) 

which was modified as previously described (Rynkowski et al 2008). Please see details in 

Supplementary Text. 

 

Injection of Thrombin into Basal Ganglia 

Animals were fixed in the same manner as the autologous blood injection model 

described above with the same coordinates used. Thrombin (Sigma) was dissolved in 

sterilized PBS and delivered into the right basal ganglia (5 U/5 µl per mouse). Control 

animals were given 5 µl of PBS.  

 

Experimental Design 

Four separate experiments were conducted (Fig 11, experiment 1-4) in two 

models. Experiment 1: Gleevec was administered (intraperitoneal injection) at three 

doses 1 hour following bICH. Post-assessment included western blot, zymography (6 

hours), neurological deficits, brain edema and Evans blue extravasation (24 and 72 hours).  

Experiment 2: PDGF-AA was co-injected with blood into right basal ganglia. 

Neurological deficits and brain edema were determined at 24 hours; PDGF-AA was 
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injected with or without a p38 MAPK inhibitor into right basal ganglia in naïve animals. 

Evans blue extravasation was detected at 1 and 24 hours.  

Experiment 3: The thrombin specific inhibitor, hirudin with or without PDGF-AA was 

injected with blood into right basal ganglia.  Post-assessment included western blot (6 

hours), neurological deficits and Evans blue extravasation (24 hours). 

Experiment 4: Gleevec was administered (intraperitoneal injection) 1 hour following 

thrombin injection. PDGF-AA antibody was co-injected with thrombin into right basal 

ganglia. Post-assessment included western blot, zymography (6 hours) and Evans blue 

extravasation (24 hours). Please see details in Supplementary Text. 

 

Neurobehavioral Function Test 

Neurobehavioral functions were evaluated by modified Garcia test (Garcia et al 

1995; Wu et al 2010) and corner turn test (Hua et al 2002). Please see details in 

Supplementary Text. 

 

Brain Water Content Measurement  

Please see details in Supplementary Text. 

 

BBB Permeability  

BBB permeability was evaluated with Evans blue staining (250 µl of 4% solution 

in saline) as previously described (Seiffert et al 2004). Please see details in 

Supplementary Text. 
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Immunoprecipitation 

Please see details in Supplementary Text. 

 

Western Blotting  

Please see details in Supplementary Text. 

 

Gelatin Zymography 

MMP-2/9 activity was measured by gelatin zymography modified from previous 

study (Chen et al 2009). Please see details in Supplementary Text. 

 

Immunofluorescence 

Please see details in Supplementary Text.     

 

Statistics 

Data was expressed as mean ± standard error of the mean. Analysis was 

performed using GraphPad Prism software. For the rating scale data (modified Garcia 

test), data were expressed as median ± 25th-75th percentiles. Please see details in 

Supplementary Text. 
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Figure 11: Experimental design and animal groups classification. bICH = autologous 
arterial blood-induced intracerebral hemorrhage; Zymo = zymography assay; WB = 
western blotting; EB = Evans blue assay; Anti-PDGF-AA Ab = Anti-PDGF-AA antibody. 
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Results 

PDGFR-α and PDGF-AA Were Upregulated Following bICH Injury  

Western blot was performed to determine the profile of PDGFR-α at 3, 6, 12, 24 

and 72 hours and endogenous PDGF-AA level at 6 hours following bICH. Western blot 

results revealed that PDGFR-α level (Fig 12A, B) was increased 3 hours post bICH and 

reached a peak around 6 hours in which the PDGFR-α level was almost six times more 

than sham animals (p < 0.05). Following this peak, the level of PDGFR-α declined at 12 

hours (p < 0.05) and 24 hours, returning close to normal level by 72 hours. Endogenous 

PDGF-AA (Fig 12C, D), a specific PDGFR-α ligand/agonist was significantly increased 

in the ipsilateral hemisphere (Ipsi) 6 hours post bICH compared to both contralateral 

(Contra) hemisphere (p < 0.05) and sham animals (p < 0.05). The double 

immunofluorescence staining revealed that the PDGFR-α immunoreactivity was mainly 

found on the neurovascular structure, including perivascular related astrocytes and the 

endothelial cells (Fig 12E). 

 

PDGFR-α Suppression Improved Neurobehavioral Functions, 
Reduced Brain Edema, and Preserved BBB Integrity 

A PDGFR-α antagonist, Gleevec was administered at three doses (30, 60, and 120 

mg/kg) by intraperitoneal injection 1 hour following bICH. Neurobehavioral functions, 

brain edema and BBB permeability were evaluated at 24 and 72 hours following bICH. 

The results at 24 hours revealed that vehicle animals demonstrated severe deficits 

compared to sham animals in both modified Garcia test (p < 0.01; Fig 13A) and corner 

turn test (p < 0.01; Fig 13B). Following Gleevec administration at medium (60 mg/kg; p 

< 0.01) and high doses (p < 0.05; 120 mg/kg), there was a significant improvement in 
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neurological score in modified Garcia test. With regards to corner turn test, the medium 

dose (60 mg/kg) significantly improved neurobehavioral function compared to vehicle 

animals (p < 0.05). We also evaluated neurobehavioral function at the delayed stage (72 

hours) post bICH using the medium dose Gleevec treatment. The results demonstrated 

that the medium dose treatment could significantly improve neurobehavioral function 

following both modified Garcia test and corner turn test at 72 hours compared to vehicle 

animals (p < 0.05).  

At 24 hours post bICH, the medium (60 mg/kg) and high-dose (120 mg/kg) 

treatment significantly decreased brain edema in the ipsilateral basal ganglia (ipsi-BG) 

compared to vehicle group (ipsi-BG: 60 mg/kg, 80.82 ± 0.30 vs vehicle, 81.88 ± 0.23, p < 

0.05; 120 mg/kg, 80.92 ± 0.34 vs vehicle, 81.88 ± 0.23, p < 0.05; Fig 3C). In the 

ipsilateral cortex (ipsi-CX), brain edema was significantly increased in the vehicle group 

compared to sham group (ipsi-CX; vehicle, 80.22 ± 0.26 vs sham, 79.12 ± 0.21, p < 0.05). 

Although following Gleevec treatment the brain edema showed a trend towards reduction, 

there was no statistical significance reached. With regards to the 72 hours post bICH 

medium-dose (60 mg/kg) treatment, we found a significant reduction in brain edema in 

the ipsilateral basal ganglia compared to the vehicle group (ipsi-BG: 60 mg/kg, 81.75 ± 

0.20 vs vehicle, 83.29 ± 0.23, p<0.05; Fig 3D). Evans blue extravasation (Fig 3E) was 

significantly increased at both 24 hours and 72 hours compared to sham groups (p < 0.01), 

and significantly reduced after medium-dose (60 mg/kg) Gleevec treatment (p < 0.05).  
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PDGFR-α Suppression Inhibited MMP Activity and MMP-10/13 
Expression through Orchestration of The p38 MAPK Pathway Post 

bICH 

Phosphorylated PDGFR-α (Fig 14A, B) was significantly increased compared to 

sham animals (about seven times; p < 0.05) while Gleevec treatment (60 mg/kg) 

significantly reduced PDGFR-α phosphorylation level (p < 0.05) 6 hours post bICH. 

Gleevec treatment (60 mg/kg) also significantly reduced the active MMP-9 level (p < 

0.05) but not MMP-2 compared to vehicle animals (Fig 14C-E), and reduced MMP-10 (p 

< 0.05; Fig 14F, G) and MMP-13 expression (p < 0.05; Fig 4H, I). The results also 

revealed that phosphorylated p38 MAPK was significantly reduced following Gleevec 

treatment (p < 0.05) yet, did not reduce the phosphorylation level of Erk1/2 and JNK1/2 

(Fig 14J, K). Additionally, we also found that phosphorylated ATF-2, the substrate of 

p38 was also significantly reduced (p < 0.05; Fig 14L, M). Additionally, the cellular 

localization of PDGFR-α downstream mediators was determined by double 

immunofluorescence staining. Similar to the PDGFR-α, MMP-9, MMP-13 and phosphor-

p38 immunoreactivity were mainly found in the neurovascular structure, including 

astrocytes and the endothelial cells, and MMP-10 was only found in the  endothelial cells 

(Supplemental Fig 1). 

 

  



85 

 
Figure 12: Expression of PDGFR-α and PDGF-AA after autologous arterial blood 
induced intracerebral hemorrhage (bICH). (A) Western blot assay for the profiles of 
PDGFR-α expression in the ipsilateral hemisphere in sham and bICH mice 3, 6, 12, 24 
and 72 hours following operation. (C) Western blot assay for PDGF-AA expression in 
sham, ipsilateral (Ipsi) and contralateral (Contra) hemisphere in bICH mice 6 hours 
following operation; (E) Representative photographs of immunofluorescence staining for 
PDGFR-α (red) expression in astrocytes (GFAP, green) and endothelial cells (vWf, green) 
in the perihematomal area 6 hours following bICH. Scale bar: 50 µm. Quantification of A 
and C is shown in B and D, respectively. n = 6 mice per group and per time point. Error 
bars represent mean ± standard error of the mean. # p < 0.05 vs Sham; * p < 0.05 vs 
bICH (6 h); # p < 0.05 vs Sham; @ p < 0.05 vs Contra. 
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Figure 13: PDGFR-α suppression improved neurological functions, reduced brain edema 
and Evans blue extravasation at 24 and 72 hours following bICH. PDGFR-α antagonist, 
Gleevec was administered 1 hour following bICH.  Modified Garcia test (A) and corner 
turn (B) at 24 and 72 hours following operation in sham, vehicle and Gl treatment groups 
(24 hours: 30, 60 and 120 mg/kg; 72 hours: 60 mg/kg). Brain edema at 24 hours (C) and 
72 hours (D) following operation in sham, vehicle and Gl treatment groups (24 hours: 30, 
60 and 120 mg/kg; 72 hours: 60 mg/kg). Brain sections (4 mm) were divided into four 
parts: ipsilateral basal ganglia (Ipsi-BG), ipsilateral cortex (Ipsi-CX), contralateral basal 
ganglia (Cont-BG), contralateral cortex (Cont-CX). Cerebellum (Cerebel) is the internal 
control. (E) Evans blue extravasation at 24 and 72 hours in the ipsilateral hemisphere 
following operations in sham, vehicle and Gl treatment groups (60 mg/kg). n = 6-12 mice 
per group. Error bars represent median ± 25th-75th percentiles (A) or mean ± standard 
error of the mean (B, C, D and E). # p < 0.05 vs Sham; ## p < 0.01 vs Sham; * p < 0.05 
vs Vehicle; ** p < 0.01 vs Vehicle. 
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Figure 14: Characterization of PDGFR-α pathway at 6 hours following bICH in mice. 
PDGFR-α antagonist, Gleevec (60 mg/kg) was administered 1 hour following bICH. (A) 
Immunoprecipitation assay (IP) for phosphor-PDGFR-α level with phosphotyrosine-
specific antibody (P-tyr) in the ipsilateral hemisphere in sham, vehicle and Gl treatment 
(60 mg/kg) mice. The precipitated protein was also visualized with PDGFR-α-specific 
antibodies (R-alpha). IgG was visualized as a loading control. (C) Gelatin zymography 
assay for MMP-9 and MMP-2 activity in the ipsilateral hemisphere in sham, vehicle and 
Gl treatment (60 mg/kg) mice; Western blot assay for MMP-10 (F), MMP-13 (H), 
JNK/p-JNK, Erk/p-Erk and p38/p-p38 (J), p-ATF-2 (L) in the ipsilateral hemisphere in 
sham, vehicle and G1 treatment (60 mg/kg) mice. Quantification of A, C, F, H, J, and L is 
shown in B, D, E, G, I, K, and M, respectively, n = 6 mice per group. Error bars represent 
mean ± standard error of the mean. # p < 0.05 vs Sham; * p < 0.05 vs Vehicle; ns 
indicates not significant. 
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PDGFR-α Activation Increased Brain Edema Post bICH  

At 24 hours post PDGF-AA delivery, neurobehavioral deficits were evaluated 

using modified Garcia test (Supplemental Fig 2A) and corner turn test (Supplemental Fig 

2B). Our results revealed no difference in deficit severity compared to vehicle treatment 

animals, although two out of nine animals with PDGF-AA injection died in 24 hours. We 

also found that the brain edema in the ipsilateral basal ganglia was significantly increased 

compared to vehicle animals (ipsi-BG: PDGF-AA, 82.59 ± 0.24 vs Vehicle, 81.87 ± 0.23, 

p < 0.05; Supplemental Fig 2C) 24 hours after PDGF-AA delivery. 

 

PDGFR-α Activation Impaired BBB Integrity But Was Reversed 
Using a p38 MAPK Inhibitor in Naïve Mice 

At 24 hours following PDGF-AA injection, Evans blue extravasation was 

significantly increased in the ipsilateral hemisphere compared to just PBS injection mice 

(p < 0.01). BBB permeability was also detected 1 hour following PDGF-AA injection. 

The results showed that the Evans blue extravasation was also increased compared to just 

PBS injection (p < 0.05; Fig 15A). A p38 MAPK inhibitor, SB 203580 hydrochloride 

was co-injected with PDGF-AA into the right basal ganglia of naïve mice. 24 hours later, 

we found that the Evans blue extravasation was significantly diminished compared to 

PDGF-AA injection animals (p < 0.05; Fig 15B).  

 

Thrombin Inhibition Preserved BBB Integrity, While Suppressing 
PDGFR-α Activation and PDGF-AA Expression Post bICH  

Thrombin inhibitor, hirudin was co-injected with autologous arterial blood into 

the right basal ganglia of mice. 24 hours following hirudin injection, Evans blue 

extravasation (Fig 16A) was significantly reduced in hirudin injected animals compared 
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to vehicle animals (p < 0.05). Hirudin treatment also significantly improved neurological 

scores following modified Garcia test (p < 0.05; Supplemental Fig 13A), but failed to 

show improvement with corner turn test (Supplemental Fig 3B). Our results demonstrated 

that level of phosphorylated PDGFR-α (Fig 6B, C) and PDGF-AA (Fig 16D, E) were 

both significantly decreased in hirudin treated animals compared to vehicle animals (p < 

0.05) 6 hours post bICH. 

 

PDGFR-α Activation Reversed the Protective Effects of Thrombin 
Inhibition on BBB Integrity Post bICH  

Our results demonstrated that Evans blue extravasation was significantly 

increased compared to only hirudin treated mice (p < 0.05) 24 hours following hirudin 

and PDGF-AA co-injection (Fig 17A). The protection asserted by hirudin on 

neurobehavioral function was reversed following PDGF-AA administration in modified 

Garcia test (p < 0.05; Supplemental Fig 4A) but not in corner turn test (Supplemental Fig 

4B) 24 hours after injection. Additionally, we also observed that the level of 

phosphorylation of PDGFR-α significantly increased by PDGF-AA compared to just 

hirudin treated mice (p < 0.05) 6 hours after injection (Fig 17B, C).  
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Figure 15: PDGFR-α activation by exogenous PDGF-AA increased Evans blue 
extravasation in naïve mice. (A) Evans blue extravasation in the ipsilateral hemisphere at 
1 and 24 hours following PDGF-AA injection or 24 hours following PBS injection in 
naïve mice; (B) Evans blue extravasation in the ipsilateral hemisphere at 24 hours in 
PDGF-AA or PDGF-AA+p38 inhibitor co-injection naïve mice. n = 6-7 mice per group. 
Error bars represent mean ± standard error of the mean. * p < 0.05 vs PBS; ** p < 0.01 vs 
PBS; & p < 0.05 vs PDGF-AA (24 hours). 
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Figure 16: Thrombin inhibition reduced Evans blue extravasation, phosphor-PDGFR-α 
and PDGF-AA levels following bICH injury. Thrombin inhibitor, hirudin (5 U) was co-
injected with autologous arterial blood. (A) Evans blue extravasation in the ipsilateral 
hemisphere 24 hours following operation in sham, vehicle and hirudin treatment (5 U) 
mice; (B) Immunoprecipitation assay (IP) for phosphor-PDGFR-α level with 
phosphotyrosine-specific antibody (P-tyr) in the ipsilateral hemisphere 6 hours following 
operation in sham, vehicle and hirudin treatment (5 U) mice. The precipitated protein was 
also visualized with PDGFR-α-specific antibodies (R-alpha). IgG was visualized as a 
loading control. (D) Western blot assay for PDGF-AA level in the ipsilateral hemisphere 
6 hours following operation in sham, vehicle and hirudin treatment (5 U) mice. 
Quantification of B and D is shown in C and E, respectively, n = 5-7 mice per group. 
Error bars represent mean ± standard error of the mean.  # p < 0.05 vs Sham; * p < 0.05 
vs Vehicle.  
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Figure 17: Activation of PDGFR-α by PDGF-AA reversed thrombin inhibition by 
hirudin following bICH. Thrombin inhibitor, hirudin (5 U) with or without PDGF-AA 
(200 ng) was co-injected with autologous arterial blood. (A) Evans blue extravasation in 
the ipsilateral hemisphere 24 hours following bICH in hirudin (5 U) and hirudin (5 U) + 
PDGF-AA (200 ng) mice; (B) Immunoprecipitation assay (IP) for phosphor-PDGFR-α 
level with phosphotyrosine-specific antibody (P-tyr) in the ipsilateral hemisphere 6 hours 
after bICH in hirudin (5 U) and hirudin (5 U) + PDGF-AA (200 ng) mice. The 
precipitated protein was also visualized with PDGFR-α-specific antibodies (R-alpha). 
IgG was visualized as a loading control. Quantification of B is shown in C. n = 6-7 mice 
per group. Error bars represent mean ± standard error of the mean. & p < 0.05 vs Hirudin.  
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PDGFR-α Suppression Reduced Thrombin-Induced BBB Impairment 
through the PDGFR-α/ p38/MMPs Pathway 

Our results showed that Gleevec treatment significantly diminished Evans blue 

extravasation compared to thrombin injected animals (p < 0.05; Fig 18A). 

Phosphorylated PDGFR-α was significantly increased 6 hours following thrombin 

injection and significantly reduced in the Gleevec treated mice compared to just thrombin 

injected mice (p < 0.05; Fig 18B, C). Gleevec treatment significantly reduced MMP-9 

level (p < 0.05) but not MMP-2 (Supplemental Fig 5A-C) 6 hours following thrombin 

injection. Similarly, MMP-10 (Supplemental Fig 5D, E) and MMP-13 (Supplemental Fig 

5F, G) expression were also significantly reduced after treatment (p < 0.05). Additionally, 

Gleevec treatment significantly diminished the phosphorylation level of p38 MAPK (p < 

0.05; Supplemental Fig 5H, I) as well as p38 MAPK substrate, ATF2 (p < 0.05; 

Supplemental Fig 5J, K) compared to just thrombin injected mice. 

 

Neutralization of PDGF-AA with Anti-PDGF-AA Antibody Reduced 
Thrombin-Induced BBB Impairment  

PDGF-AA level was significantly increased 6 hours in ipsilateral hemisphere 

following thrombin injection compared to contralater hemisphere and sham (p < 0.05; Fig 

18D, E). 24 hours after PDGF-AA antibody injection, Evans blue extravasation level was 

significantly diminished compared to either control (Thrombin+inactive antibody) or just 

thrombin injected mice (p < 0.05; Fig 18F). 
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Figure 18: Gleevec and PDGF-AA neutralizing antibody reduced Evans blue 
extravasation 24 hours following thrombin injection in mice. PDGFR-α antagonist, 
Gleevec (60 mg/kg) was administered 1 hour following thrombin (5 U) injection. Inactive 
PDGF-AA antibody (PDGF-AA Ab) or PDGF-AA antibody (PDGF-AA Ab, 1.2 µg) was 
co-injected with thrombin (5 U) into right basal ganglia. (A) Evans blue extravasation in 
the ipsilateral hemisphere 24 hours following operation in sham, thrombin (5 U) and Gl 
treatment (60 mg/kg) groups; (B) Immunoprecipitation assay (IP) for phosphor-PDGFR-
α level with phosphotyrosine-specific antibody (P-tyr) in the ipsilateral hemisphere 6 
hours following thrombin injection in sham, thrombin (5 U) and Gl treatment (60 mg/kg) 
mice. The precipitated protein was also visualized with PDGFR-α-specific antibodies (R-
alpha). IgG was visualized as a loading control. (D) Western blot assay for PDGF-AA in 
Sham, ipsilateral (Ipsi) and contralateral (Contra) hemisphere in thrombin injection mice 
6 hours following operation; (F) Evans blue extravasation in the ipsilateral hemisphere 24 
hours following operation in thrombin (5 U), thrombin (5 U)+inactive PDGF-AA 
antibody (PDGF-AA Ab), and PDGF-AA antibody (PDGF-AA Ab, 1.2 µg) mice. 
Quantification of B and D is shown in C and E, respectively. n = 5-8 mice per group. 
Error bars represent mean ± standard error of the mean. # p < 0.05 vs Sham; * p < 0.05 vs 
Thrombin; @ p < 0.05 vs Contra; & p < 0.05 vs Thrombin+inactive Ab. 
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Discussion 

Intracerebral hemorrhage is a fatal stroke subtype that currently has no effective 

treatment option. Even if patients survive the initial attack, the growing hematoma 

triggers a series of life threatening events leading to accumulation of cerebral edema, 

progression of neurobehavioral deficits, and possibly death (Strbian et al 2008). In the 

present study, we investigated the effects of the PDGFR-α and its ability to orchestrate 

BBB disruption following an ICH injury. Our findings suggest that therapeutic 

interventions targeting the PDGF-AA/PDGFR-α system may be a novel strategy to 

prevent BBB impairment and thus attenuate the subsequent accumulation of brain edema 

responsible for both structural and functional damage following ICH injury.  

In order to determine the role of PDGFR-α on BBB disruption in ICH, a PDGFR 

antagonist, Gleevec was used to suppress PDGFR-α activity, which has showed 

protective effect on BBB integrity in ischemic stroke model (Strbian et al 2008). Gleevec 

represented a new class of anticancer drugs and has been approved by US Food and Drug 

Administration for the therapy on chronic myelogenous leukemia and other cancers by 

inhibition of several tyrosine kinase, including PDGFR-α. It was regarded as a new gold 

standard for treatment of chronic myeloid leukemia  at all stages (Peggs and Mackinnon 

2003) while some dose-related adverse events have been observed in some patients 

during Gleevec therapy, such as nausea, vomiting, diarrhea, and fluid retention etc. 

(Deininger et al 2003; O'Brien et al 2003). In our study, we observed a dose-dependent 

effect of Gleevec treatment on neurological function improvement after ICH.  The 

medium dose (60 mg/kg) significantly improved neurological function while the low 

dose (30 mg/kg) or high dose (120 mg/kg) did not. 
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Increased BBB permeability following PDGF administration is not a new concept. 

Previous study led by Su and colleagues has suggested just that – specifically showing 

that PDGF injections into the CSF of naïve mice could increase the Evans blue 

extravasation compared to just PBS injections (Su et al 2008). Yet another study led by 

Yao and colleagues recently found that cocaine-induced PDGF could increase vascular 

permeability and that administration of a PDGF neutralizing antibody could abolish this 

effect (Yao et al 2010).  Similar to these studies, we found that ICH injury resulted in a 

transient increase in PDGFR-α/PDGF-AA levels, peaking at 6 hours and returning to 

baseline by 72 hours. This resulted in a significant increase in brain edema accumulation 

and BBB disruption which we measured at 24 hours. To our surprise, there was no 

simultaneous decline in neurological functions with further brain edema accumulation in 

the bICH with exogenous PDGFR-α agonist group compared to the bICH vehicle group. 

We attributed this unexpected outcome to the inability of neurological function test to 

pick up subtle changes in edema accumulation that occurred between the vehicle and 

agonist group.  

With regards to mechanics, we now discuss the potential downstream signaling of 

PDGF-AA/ PDGFR-α which we hope will explain the mediation of the BBB disruption. 

MAPK pathway has been established as one of the downstream effectors of PDGFR-α 

signaling (Dibb et al 2004). There are several subfamilies of MAPKs including the 

extracellular signal-regulated kinases (ERK1/2), ERK5, the Jun amino-terminal kinases 

(JNK1–3) and the p38 kinases (Gehart et al 2010). Generally, p38 and JNK are 

detrimental in stroke models, with previous research showing that p38/MAPK2 is 

involved in control of the tight junctional closures among astrocytes (Zvalova et al 2004) 
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and plays a key role in orchestrating BBB disruption and vasogenic edema formation 

following focal cerebral ischemia and reperfusion (Nito et al 2008). In our study, we 

found that p38 MAPK level, and not Erk or JNK level, were significantly decreased 

following Gleevec treatment - and that phosphorylated ATF2 (activating transcription 

factor 2), a substrate of p38 and JNK, was also markedly decreased. Moreover, the p38 

MAPK inhibitor, SB 203580 hydrochloride, which was administered with PDGF-AA in 

naïve animals, was found to reverse the PDGF-AA induced BBB impairment. These 

findings suggest that PDGF-AA/ PDGFR-α system may orchestrate the damage to the 

BBB integrity through a p38 MAPK signaling pathway.  

The detrimental role of matrix metalloproteinases, especially MMP-9 and MMP-2 

has been well documented in the literature with regards to their effects on BBB integrity 

following ICH injury (Power et al 2003; Rosenberg and Navratil 1997; Tang et al 2004). 

Current studies suggested that MMP-10 and 13 were upregulated in both animal and 

human brain infarcted tissue following ischemic stroke damage (Cuadrado et al 2009; 

Rosell et al 2005). Similar to other members in the MMP family, MMP-13 (collagenase-

3) can breakdown collagen and gelatin structures and in previous in vitro studies has been 

shown to cleave pro-MMP-9 to active MMP-9 (Knauper et al 1997) – which can occur 

following MMP-10 as well (Nakamura et al 1998). With regards to this study, we found 

that PDGFR-α suppression significantly reduced MMP-9 activity but not MMP-2. We 

also observed that the expression of MMP-10 and MMP-13 were significantly decreased 

following PDGFR-α suppression. All of which resulted in preservation of the BBB 

integrity. In all, taken together MMPs may be the direct downstream proteins of PDGFR-

α/p38 pathway and direct mediators of BBB impairment following ICH. 
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Now that we’ve discussed downstream orchestrators of PDGFR-α induced BBB 

damage, we wanted to investigate who was responsible for the upstream regulation of 

PDGFR-α signaling following ICH injury. Previous literature has alluded to the notion 

that thrombin regulates the expression of PDGF-AA through a PAR-1 receptor found in 

endothelial cells (Chandrasekharan et al 2004). Therefore in the present study, two 

different mice models were conducted to investigate the potential relationship between 

thrombin and PDGF-AA. First in the autologous arterial blood-induced ICH model, we 

found that PDGF-AA expression was significantly down-regulated following the delivery 

of hirudin, a thrombin specific inhibitor. We also found that the effects of hirudin on 

BBB preservation were reversed by exogenous PDGF-AA injection. In the thrombin 

injection model, we first found the increase of phosphorylated PDGFR-α level as well as 

its downstream signals, p38 MAPK and MMPs, and the diminishment following 

PDGFR-α suppression by Gleevec treatment.  In this case, we also found that the PDGF-

AA level was significantly upregulated in the ipsilateral hemisphere. Additionally, a 

PDGF-AA neutralizing antibody given with thrombin markedly reduced BBB 

permeability. Taken together, these findings demonstrated that thrombin is an essential 

upstream regulator of PDGF-AA/PDGFR-α system. 

Why not just block thrombin? The dual role of thrombin in ICH has been well 

described in previous studies. On one hand, thrombin itself can directly damage the BBB 

and cause brain edema formation following ICH; while on the other hand, it can act as an 

essential element in the coagulation cascade to stop bleeding. The concentration of 

thrombin generated in the brain following ICH has been calculated. Normally, 1 ml of 

whole blood can provide roughly 260 to 360 units of thrombin from prothrombin. That 
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means that about 15 U of thrombin is generated following a 50 µl blood injection (about 

30 µl plasma) (Lee et al 1996). A number of studies have regarded thrombin generated 

during blood clotting and hematoma formation as a major cause of brain edema 

formation (Lee et al 1997; Xi et al 1998). One study led by Xi et al. revealed that 

thrombin is also responsible for prolonged brain edema following ICH (Xi et al 1998).  

Mounting evidence that thrombin infusion into the brain produces the same 

amount of BBB disruption suggested that thrombin could be directly responsible for the 

breakdown (Yang et al 1994). Moreover, thrombin can cleave its receptors and induce 

downstream protein production, such as vascular endothelial growth factor (VEGF) 

which can lead to increased endothelial cell permeability (Sarker et al 1999). Therefore, 

antithrombin therapy using intravenous is considered as a way to prevent brain tissue 

damage during invasive procedure including surgical removal of hematomas and possibly 

even direct infusion of thrombin inhibitors into hematomas (Matsuoka and Hamada 

2002).  Unfortunately, a series of studies showed that the thrombin inhibitors, such as 

argatroban and hirudins, can provide protective effects in animal models (Kitaoka et al 

2002; Xue et al 2009) but, while in phase 1 clinical trials hemorrhagic transformations 

and increased hemorrhages were major adverse effects that occurred in patients (Hursting 

et al 1997; Matsuoka and Hamada 2002). As a result, it is very reasonable to develop a 

therapy strategy that can disrupt downstream thrombin mediators following ICH because 

they provide fewer side effects than direct thrombin inhibition. 

It is also important to note that in addition to PDGF-AA, thrombin also regulates 

the expression of other PDGFs, such as PDGF-BB (Stenina et al 2001) which has led to 

BBB disruption in previous study (Su et al 2008). Although in our study we hypothesized 
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that PDGFR-α activation may be responsible for BBB impairment, our study cannot rule 

out the possibility that other PDGFs may be involved in BBB disruption and thus remains 

one of the main limitations of this study.  

Since the PDGF signals expressed transiently and peaked 6 hours after ICH, one 

of the limitations of our study was the potential narrow therapeutic time window. 

Previous study showed that BBB permeability in the perihematomal region increased 

markedly 8 to 12 hours after ICH, and continued to rise for 48 hours(Yang et al 1994). 

And the early BBB disruption is associated with the thrombin which is generated by the 

hematoma (Lee et al 1997). Our study was based on the pathophysiology of intracerebral 

hemorrhage and brain edema formation and may provide insight in understanding the 

mechanism of BBB disruption and clue on brain edema therapy. In the present study, 

Gleevec was administered 1 hour after ICH. However, the profile of PDGFR-α 

expression showed that at 12 hours and 24 hours after ICH, the PDGFR-α level was still 

3.08 times and 1.76 times higher than that of sham animals respectively, therefore, a 

delayed treatment will be conducted in our future study to further establish the 

therapeutic time window. 

In conclusion, our findings suggest that PDGFR-α may contribute to BBB 

impairment and brain edema formation induced by ICH. Thrombin may in fact be the 

upstream regulator of PDGFR-α signaling that regulates PDGF-AA expression (potential 

mechanisms see Supplemental Fig 5). Targeting the PDGFR-α signaling may provide an 

alternative treatment to thrombin-induced BBB injury following ICH. 
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Supplementary Text 

Animals 

All procedures for this study were approved by the Institutional Animal Care and 

Use Committee (IACUC) at Loma Linda University. Eight-week old male CD1 mice 

(weight about 30 g, Charles River, MA, USA) were housed in a 12 hours light/dark cycle 

at a controlled temperature and humidity with free access to food and water. Following 

surgery the skull hole was closed with bone wax, the incision was closed with sutures, 

and the mice were allowed to recover. To avoid postsurgical dehydration, 0.5 ml of 

normal saline was given to each mouse by subcutaneous injection immediately following 

surgery. 

 

Intracerebral Hemorrhage Mouse Model 

ICH was induced using the autologous arterial blood injection model (bICH) 

which was modified from previous descriptions (Rynkowski et al 2008). Briefly, mice 

were anesthetized with ketamine (100 mg/kg) and xylazine (10 mg/kg) (2:1 v/v, 

intraperitoneal injection) and positioned prone in a stereotactic head frame (Kopf 

Instruments, Tujunga, CA). A scalp incision was made along the midline and a burr hole 

(1 mm) was drilled on the right side of the skull (0.2 mm anterior and 2.0 mm lateral of 

the bregma). The mouse tail was cleaned with 70% ethanol before a penetration into the 

tail central artery with a sterilized 27 G needle was done. Next, 30 ul of autologous tail 

arterial blood was collected in a capillary tube without heparin and blown into a 500 ul 

Hamilton syringe. The syringe was fixed onto the microinjection pump while the needle 

was stereotaxically inserted into the brain through the burr hole. At first the needle was 

stopped at 0.7 mm above the target position and 5 ul of blood was delivered at a rate of 2 
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µl/min. This allowed for a small clot to form which would prevent reflux of the 

remaining blood to be injected back up the needle tract. The remaining 25 ul blood was 

injected at the appropriate target site at a rate of 2 µl/min after 5 min. The needle was left 

in place for an additional 10 min after injection to prevent possible leakage and 

withdrawn slowly in 5 min.  

 

Experimental Design 

Experiment 1-3 was conducted in autologous arterial blood injection model and 

experiment 4 was conducted in thrombin injection model. 

Experiment 1: The PDGFR-α antagonist, Gleevec was dissolved in PBS and administered 

(intraperitoneal injection) at three different dosages (30, 60, 120 mg/kg) 1 hour following 

bICH. Vehicle animals were given the same volume injection, but with PBS. Western 

blot and zymography were conducted at 6 hours after ICH; Neurological deficits, brain 

edema and Evans blue staining for BBB permeability were performed at 24 and 72 hours.  

Experiment 2: PDGF-AA protein (Abcam) was simultaneously injected with autologous 

blood into the right basal ganglia. Neurological deficits and brain edema were determined 

at 24 hour; PDGF-AA (200 ng/2 ul PBS per mouse) was also injected into naïve animals 

with SB 203580 hydrochloride (0.4 ug/2 ul PBS per mouse), a p38 MAPK inhibitor, or 

PBS. Vehicle groups received the same volume of PBS injection. Evans blue 

extravasation was detected at 1 and 24 hours in the PDGF-AA with PBS groups and at 24 

hours for the PDGF-AA with SB 203580 hydrochloride group.  

Experiment 3: The thrombin specific inhibitor, hirudin (Sigma) was dissolved in 

sterilized PBS and injected (5 U/5ul PBS per mouse) into the basal ganglia with 

autologous blood. Hirudin, PDGF-AA and autolougous blood were injected into the basal 
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ganglia in others. Western blot was conducted at 6 hours following injection. 

Neurological deficits, brain edema and Evans blue extravasation were detected at 24 

hours after injection.  

Experiment 4: The PDGFR-α antagonist, Gleevec (60 mg/kg) was administered 

(intraperitoneal injection) 1 hour following thrombin injection. The PDGF-AA antibody 

(1.2 ug/mouse, Millipore) was injected with thrombin into the right basal ganglia. The 

control animals were given thrombin with the same dose of inactive PDGF-AA antibody 

boiled for 5 min in a 95 °C water bath. Western blot and zymography were conducted 6 

hours following injection. Evans blue extravasation was detected at 24 hours after 

injection. 

 

Neurobehavioral Function Test 

Neurobehavioral functions were evaluated by the modified Garcia test (Garcia et 

al 1995; Wu et al 2010) and corner turn test (Hua et al 2002). In the modified Garcia test, 

four items including side stroke, vibrissae touch, limb symmetry, and lateral turning were 

tested with a maximum neurological score able to be achieved at 12 (healthy animal). In 

the corner turn test, animals were allowed to enter into a corner with a 30 ºC angel. The 

animals will try to exit the corner with either a right turn or left turn. Ten trials were 

performed for each animal. The outcome was presented with the percentage of right turn 

to 10 trials. All neurobehavioral function tests were conducted at different time point 

following bICH induction by a blinded investigator. 
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Brain Water Content Measurement  

Brain water content was measured as previously described (Rynkowski et al 2008) 

with slight modifications. Briefly, mice were decapitated under deep anesthesia. Brains 

were immediately removed and cut into 4 mm sections around the needle track. Each 

section was divided into four parts: ipsilateral and contralateral basal ganglia, ipsilateral 

and contralateral cortex. The cerebellum was collected as an internal control. Each part 

was weighed on an electronic analytical balance (APX-60, Denver Instrument) and then 

dried at 100 °C for 24 h to determine the dry weight (DW). Brain water content (%) was 

calculated as [(WW - DW)/WW] x 100. 

 

BBB Permeability  

To evaluate BBB permeability mice were intraperitoneally injected with Evans 

blue (250 ul of 4% solution in saline, Sigma, St. Louis, MO) as previously described 

following a slight modification (Seiffert et al 2004). After three hours circulation, mice 

were perfused under deep anesthesia with cold phosphate-buffered saline (PBS, pH 7.4) 

until the outflow was clear. Then the brain was removed and separated into ipsilateral and 

contralateral cerebrums and stored appropriately at -80 °C immediately until analysis. 

The ipsilateal parts of the brains were homogenized in PBS and centrifuged (15000 g, 

4 °C, 30 min). The supernatant was collected and mixed with equal volume of 

Trichloroacetic acid (TCA) overnight. After centrifugation (15000 g, 4 °C, 30 min), 

Albumin–Evans blue complex concentrations were measured spectrophotometerically at 

a wavelength of 610 nm.  
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Sample Preparation 

Mice were euthanized 6 hours following bICH. Perfusion with cold phosphate-

buffered saline (PBS, pH 7.4) solution was performed, followed by removal of the brain 

and separation into ipsilateral and contralateral cerebrums. The brain parts were stored 

appropriately at -80 °C immediately until analysis. Protein extraction was obtained by 

gently homogenizing them in RIPA lysis buffer (Santa Cruz) with phosphatase inhibitors 

(Sigma) with further centrifugation at 14,000 g at 4 °C for 30 min. The supernatant was 

collected and the protein concentration was determined using a detergent compatible 

assay (Bio-Rad, Dc protein assay). Samples were stored at -80 °C for 

immunoprecipitation, western blot or zymography. 

 

Immunoprecipitation 

Immuonprecipitation for phosphorylated PDGFR-α was carried out according to 

the manufacture instructions.  Equal amounts of protein (200 ug) was mixed with anti-

PDGFR-α (1:100, cell signaling) in microcentrifuge tube and incubated for 2 hours at 

4 °C. Then protein A/G PLUS-Agarose (Santa Cruz) was added and left to shake 

overnight at 4 °C.  The mixture was washed 3 times with the centrifuge (1000 g, 5 min, 

4 °C). The pellet was collected and re-suspended in equal volumes of loading buffer. 

Samples were run on SDS-PAGE gels and probed with antibodies to PDGFR-α and p-

PDGFR-α. 

 

Western Blotting  

Western Blotting was performed as previously described (Chen et al 2008).  After 

samples preparation, equal amounts of protein were run on an SDS-PAGE gel. After 
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being electrophoresed and transferred to a nitrocellulose membrane, the membrane was 

blocked and incubated with the primary antibody overnight at 4°C. The primary 

antibodies were anti-phospho-JNK1/2 (1:1000, cell signaling), anti-JNK1/2 (1:1000, cell 

signaling), anti-phospho-ERK1/2 (1:1000, cell signaling), anti-ERK1/2 (1:1000, Santa 

Cruz), anti-phospho-p38 (1:1000, cell signaling), anti-p38 (1:1000, cell signaling), anti-

phospho-ATF2 (1:1000, Abcam), anti-PDGF-AA (1:1000, Millipore), anti-MMP-13 

(1:1000, Abcam), anti-MMP-10 (1:1000, Santa Cruz), and p-Tyr (PY99) (1:1000, Santa 

Cruz). Nitrocellulose membranes were incubated with secondary antibodies (Santa Cruz) 

for 1 hour at room temperature. Immunoblots were then probed with an ECL Plus 

chemiluminescence reagent kit (Amersham Biosciences, Arlington Heights, IL) and 

visualized with the image system (Bio-Rad, Versa Doc, model 4000). All data was 

analyzed using the software Image J. 

 

Gelatin Zymography 

MMP-2/9 activity was measured by gelatin zymography modified from previous 

studies (Chen et al 2009). Equal amounts of protein was mixed with zymography sample 

buffer and loaded on a 10% gelatin zymogram gels (invitrogen). Gels were then washed 

with denature buffer (Bio-Rad) for 1 hour and incubated in development buffer for 72 

hours at 37 °C. Gels were stained with 0.5% coomassie blue G-250 for 1 hour and 

destained with the same buffer without G-250 till the clear bands were seen on the blue 

background. Human MMP-9 (Chemicon) was used as gelatinase standard. The gel image 

was taken and later calculated using the image J software. 
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Immunofluorescence 

Six hours following bICH, mice were perfused under deep anesthesia with cold 

phosphate-buffered saline (PBS, pH 7.4), followed by infusion of 10% paraformaldehyde. 

Brains were then removed and fixed in formalin at 4 °C for a minimum of 3 days. 

Samples were then dehydrated with 30% sucrose in phosphate-buffered saline (PBS, pH 

7.4) and the frozen coronal slices (10 μm thick) were then sectioned in cryostat 

(CM3050S; Leica Microsystems). Double immunofluorescence was performed as 

previously described (Chen et al 2009). Anti-PDGFR-α antibody (1:100, R&D), anti-

MMP-9 (1:50, Santa Cruz), anti-MMP-13 (1:50, Abcam), anti-MMP-10 (1:50, Santa 

Cruz) and anti-phospho-p38 (1:50, Cell signaling) were incubated separately with  

primary antibodies: anti-GFAP antibody (1:200, Dako), anti-vWF antibody (1:100, 

Millipore) overnight at 4 °C, followed by incubation with appropriate fluorescence 

conjugated secondary antibodies (Jackson Immunoresearch, West Grove, PA). The slices 

were visualized underneath a fluorescence microscope (Olympus BX51, Olympus 

Optical Co. Ltd, Japan), and pictures were taken with software MagnaFire SP 2.1B 

(Olympus, Melville, NY).      

 

Statistics 

Data was expressed as mean ± standard error of the mean. Analysis was 

performed using GraphPad Prism software. Statistical differences between two groups 

were analyzed using Student`s unpaired, two-tailed t-test. Multiple comparisons (without 

rating scale data) were statistically analyzed with one-way analysis of variance (ANOVA) 

followed by Student-Newman-Keuls test. Statistically significance was defined as p < 

0.05. For the rating scale data (modified Garcia test), data were expressed as median ± 
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25th-75th percentiles. We used the Kruskal-Wallis One Way Analysis of Variance on 

Ranks, followed by the Steel-Dwass multiple comparisons tests. 
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Supplemental figure 1. Immunofluorescence for the expression of MMP-9, MMP-
10, MMP-13 and phospho-p38 MAPK in the astrocytes and endothelial cells in the 
perihematomal area 6 hours following bICH. Representative photographs of 
immunofluorescence staining revealed that MMP-9 (A), MMP-13 
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Supplemental figure 1, Continued. (C) and phosphor-p38 (D) (red) expressed in 
astrocytes (GFAP, green) and endothelial cells (vWf, green), and MMP-10 (B) expressed 
in endothelial cells (vWf, green). Scale bar: 50 µm. 
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Supplemental figure 2: PDGFR-α activation failed to exacerbate neurobehavioral 
functions (A, B), but increased brain edema in bICH mice (C). Modified Garcia test (A) 
and corner turn (B) at 24 hours following operation in sham, vehicle and PDGF-AA 
treatment (200 ng) mice; (C) Brain edema 24 hours following operation in sham, vehicle 
and PDGF-AA treatment (200 ng) mice; # p < 0.05 vs Sham; * p < 0.05 vs Vehicle. n = 
7-12 mice per group. Error bars represent median ± 25th-75th percentiles (A) or mean ± 
standard error of the mean (B and C).  # p < 0.05 vs Sham; * p < 0.05  vs Vehicle.  
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Supplemental Figure 3: Thrombin inhibition improved neurobehavioral functions 
following bICH injury. Modified Garcia test (A) and corner turn (B) 24 hours following 
operation in sham, vehicle and hirudin treatment (5 U) mice. n = 7 mice per group. Error 
bars represent median ± 25th-75th percentiles (A) or mean ± standard error of the mean 
(B).  # p < 0.05 vs Sham; * p < 0.05 vs Vehicle.  
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Supplemental Figure 4: Activation of PDGFR-α by PDGF-AA reversed thrombin 
inhibition by hirudin following bICH. Modified Garcia test (A) and corner turn (B) 24 
hours after bICH in hirudin (5 U) and hirudin (5 U)+PDGF-AA (200 ng) mice. n = 7 
mice per group. Error bars represent median ± 25th-75th percentiles (A) or mean ± 
standard error of the mean (B). & p < 0.05 vs Hirudin.  
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Supplemental Figure 5: Characterization of the PDGFR-α downstream pathway at 6 
hours following thrombin injection in mice. (A) Zymography assay for MMP-9 and 
MMP-2 activity in the ipsilateral hemisphere in sham, thrombin and Gl treatment (60 
mg/kg) mice; Western blot assay for MMP-10 (D), MMP-13 (F), and p38/p-p38 (H), p-
ATF-2 (J) in the ipsilateral hemisphere in sham, thrombin and Gl treatment (60 mg/kg) 
mice. Quantification of A, D, F, H and J is shown in B, C, E, G, I and K, respectively, n = 
5-8 mice per group. Error bars represent mean ± standard error of the mean. # p < 0.05 vs 
Sham; * p < 0.05 vs Thrombin.  
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Supplemental Figure 6: Schematic of PDGFR-α signaling pathway triggered by 
thrombin post-ICH. Thrombin promotes PDGFR-α activation via upregulation of PDGF-
AA, leading to p38 MAPK signaling but not ERK or JNK MAPKs signaling, and 
subsequent activation of downstream transcription factor, ATF-2.  Activation of ATF-2 
results in expression of MMPs which degrade extracellular matrix and finally lead to 
BBB disruption.  
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CHAPTER FOUR 

SUMMARY AND CONCLUSION 

 
Our data presented in the previous chapters indicated that the inhibition of VAP-1 

mediated inflammatory response or PDGFR-α mediated BBB permeability reduced brain 

edema and improved neurological function in ICH mouse models. Furthermore, we 

explored the underlying mechanisms and found: (1) VAP-1 inhibition downregulated the 

level of other adhesion molecules, such as ICAM-1, P-selectin, pro-inflammatory factors, 

such as MCP-1 and TNF-α, and also inhibited the leukocyte infiltration and 

macrophage/microglia activation, (2) PDGFR-α was transiently upregulated in ipsilateral 

hemisphere following ICH injury and orchestrated blood-brain barrier permeability via 

p38-ATF2-MMPs pathway. Thrombin was the upstream regulator of PDGFR-α activity.  

Thus, our study developed new therapeutic strategies for brain edema treatment by 

targeting an inflammatory mediator, VAP-1 and a BBB orchestrator, PDGFR- α.   

 

Significance of Anti-inflammation and BBB Damage in ICH 

Multiple factors have been suggested to induce BBB damage following ICH, 

including the inflammatory response (immune cells and their products, cytokine and 

chemokine), thrombin and MMPs.    

The earliest report of antileukocyte therapy was from Mendelow`s lab. They made 

a global depletion of circulating leucocytes and platelets by whole body irradiation in a 

rodent ICH model  and  found protection against both cerebral ischemia and edema 
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formation (Kane et al 1992). Recently Zhao and colleagues injected 15-Deoxy-

Delta(12,14)-prostaglandin J2 (15d-PGJ2), a physiologic agonist for PPAR gamma into  

striatal hematoma and found a restriction of neutrophil infiltration as well as the 

reduction of neurobehavioral deficits and neuronal damage (Zhao et al 2006). Some 

studies focused on the inhibition of MMPs. Wang and colleagues showed that the 

administration of MMPs inhibitor GM6001 (100 mg/kg) ameliorated dysregulation of 

gelatinase activity, neutrophil infiltration, production of oxidative stress, brain edema and 

degeneration of neurons (Wang and Tsirka 2005a). From the same group another study 

reported that the tripeptide macrophage/microglial inhibitory factor (MIF), Thr-Lys-Pro 

inhibited microglial activation and macrophage infiltration, reduced brain edema and 

improved the neurological function (Wang and Tsirka 2005b).  In 2003, Power and 

colleagues applied minocycline one hour after a collagenase-induced ICH in rat.  They 

found that minocycline suppressed monocytoid cell activation as well as MMP-12 

expression after 7 days of treatment. The apoptotic cell death was reduced and functional 

recovery was also observed (Power et al 2003). Aside from the immune cells inhibition, 

treatment focused on the cellular components of inflammation has also been investigated. 

TNF-α-specific antisense oligodeoxynucleotide (Mayne et al 2001b) and adenosine A2A 

receptor agonists (Mayne et al 2001a) have been applied following ICH. Reduced cell 

death and improved neurological functions were also observed. Application of IL-1ra was 

a promising way to affect IL-1. Masada and colleagues have applied an adenovirus vector 

for IL-1ra and found reduction of brain edema in an autologous blood model of ICH in 

rat (Masada et al 2001). Additionally, Wu and colleagues found that caspase-1 inhibitor, 

Ac-YVAD-CMK protected BBB integrity by reducing IL-1β expression in a collagenase-
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injection ICH mouse model (Wu et al 2010). Studies by Titova and colleagues targeted 

CD-18, an integrin on brain injury in a collagenase-induced ICH in CD-18 knockout mice. 

Twenty four hours later, the numbers of infiltrated neutrophils were markedly reduced. 

And CD-18 knockout mice also show a reduced brain edema and improved neurological 

functions (Titova et al 2008). 

Currently, there are no effective therapeutic strategies to prevent ICH induced 

BBB disruption in human although a large number of investigations have been conducted. 

In experimental animal models, studies mainly focused on mediators which have been 

shown to be upregulated following ICH injury or compounds related to BBB 

permeability, such as inflammatory cytokines, thrombin and MMPs (Abbott et al 2006; 

Power et al 2003). MMPs were upregulated following ICH and can lead to BBB damage 

and hemorrhage by degradation of extracellular matrix (ECM) components (Alvarez-

Sabin et al 2004; Rosenberg et al 1993). TIMP-2, an endogenous MMPs inhibitor 

reduced extracellular matrix proteolysis and protected BBB (Rosenberg et al 1992). 

Some MMPs inhibitors, such as BB-1101 and GM6001, have been found to preserve 

BBB integrity, reduce brain edema and neurological deficits (Power et al 2003; 

Rosenberg and Navratil 1997). Therefore, targeting inflammatory response or BBB 

impairment orchestrators are essential for the development of alternative therapeutic 

strategies for ICH induced brain injury. 

 

Mechanism of VAP-1 in Anti-Inflammation 

In 1992, Salmi and Jalkanen discovered VAP-1, a 90 Kilodalton endothelial cell 

molecule in synovial vessels from arthritis patients. They also found that VAP-1 antibody 
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reduced the binding of lymphocyte to high endothelial venules (Salmi and Jalkanen 1992). 

Since then, the roles of VAP-1 in inflammatory response have been widely investigated 

both in vitro and in inflammatory disease animal models.  

In vitro studies, Yoong and colleagues reported that VAP-1 and ICAM-1 

mediated, tethering and firm adhesion steps respectively, in T cell infiltration in human 

hepatocellular carcinoma and VAP-1 antibody inhibited T cell binding to endothelium in 

an in vitro tissue binding assay (Yoong et al 1998). Another study suggested that the 

enzymatic activity of VAP-1 was responsible for both transmigration and adhesion. VAP-

1 antibody resulted in a 50% reduction of lymphocyte binding to TNF-α treated HSE 

cells (Hepatic sinusoidal endothelial) while inhibition of VAP-1 amine oxidase activity 

reduced both adhesion and transmigration of lymphocytes to a level similar to that seen 

with the use of VAP-1 antibody (Lalor et al 2002).  VAP-1 function has also been 

verified in various inflammatory animal models. In peritoneal inflammation models in 

rabbit, Tohka and colleagues observed an increase in granulocyte rolling velocity and 

reduced  firm bound and extravsasion leukocytes and indicated that VAP-1 functions as a 

molecular brake during granulocyte rolling and mediates the firm adhesion and 

recruitment (Tohka et al 2001). In an age-related mouse macular degeneration (AMD) 

model, VAP-1 suppression diminished the expression of pro-inflammatory cytokines, 

including TNF-α, MCP-1 as well as adhesion molecule, ICAM-1 (Noda et al 2008). 

Since VAP-1 are involved in the inflammatory response as shown by above evidences, 

studying the role of VAP-1 in ICH-induced inflammation and the underlying mechanisms 

is critically important for stroke therapy. 
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For the first time, we studied the functions of VAP-1 in ICH-induced 

inflammatory response in mouse models. In our study, we used small VAP-1 molecular 

inhibitors, LJP 1586 (O'Rourke et al., 2008) as well as  a reference compound,  

semicarbazide to inhibit the VAP-1(SSAO) activity. The administration of a small 

molecular VAP-1 inhibitor, LJP1586 reduced brain edema and improved neurological 

function in both collagenase and blood-induced ICH mouse models. Moreover, we found 

that the protective effect was achieved by anti-inflammation since, VAP-1 inhibition 

downregulated adhesion molecules and pro-inflammatory factors expression as well as 

neurophils infiltration and microglia activation. With regards to mechanism, VAP-1 

siRNA or human recombinant AOC3 protein was also applied to validate the 

neuroprotective role of LJP1586 by VAP-1 inhibition as well.  All our data showed that 

the inhibition of VAP-1 provided neuroprotection by anti-inflammatory effect in ICH 

models.  

Our study investigated the function of VAP-1 in both callagenase injection and 

autologous blood injection models which are the most widely used rodent ICH models 

(Andaluz et al., 2002). With the collagenase injection model (cICH), the strength is that 

the formation of the hematoma was generated by direct disruption of blood vessels, 

mimicking a spontaneous ICH in humans (MacLellan et al., 2008). Additionally, the 

amount of collagenase injected correlates well with the final size of the hematoma. 

However, bacterial collagenase has been known to induce an exaggerated inflammatory 

response in the brain. Although in vitro study showed that the concentration of 

collagenase used in vivo cannot cause apoptosis,  higher doses of collagenase induces 

neuronal damage (Matsushita et al., 2000). Autologous blood injection model (bICH) 



122 

closely mimics the clinical manifestation of ICH partly because it lacks an exaggerated 

inflammatory response. However, bICH does not allow an opportunity to evaluate re-

bleeding or the effects of microvascular breakdown. In order to avoid the limitation of 

each model and the possible interferes of bacterial collagenase in the inflammatory 

response after ICH, we investigated the anti-inflammation effect of VAP-1 blockade in 

both models. Our results showed that the inhibition of VAP-1 in autologous blood 

injection ICH model also provided neuroprotective effect. 

VAP-1 was called inflammatory inducible protein, however, the underlying 

mechanism and mediators inducing VAP-1 expression or translocation were still unclear. 

In 1997, Salmi and colleagues used an organ culture technique for the investigation of the 

regulation of VAP-1 expression in a more physiological micromilieu microenvironment. 

After treatment with inflammatory mediators in human tonsillar tissue, IL-1 and TNF-α 

upregulated VAP-1 expression but thrombin did not (Arvilommi et al 1997).  As the 

authors mentioned VAP-1 upregulation was organ-specific and may be induced by the 

combination of multiple factors, and in vitro studies do not completely reflect the 

pathophysiological condition, therefore, this result cannot rule out the possibility that 

thrombin may regulate VAP-1 expression or translocation in other organs during 

inflammation.  Thrombin has multiple functions during inflammation.  It played a role in 

leukocyte extravasation (Kaur et al 2001; Lorant et al 1991) and regulate cytokines 

expression, including TNF-α (Hua et al 2006).  It has been reported that thrombin 

regulates adhesion molecules expression and translocation in endothelial cells, including 

P-selectin, E-selectin, ICAM-1 and VCAM-1 (Kaplanski et al 1998; Lorant et al 1991; 

Minami and Aird 2001; Rahman et al 1999; Sugama et al 1992). VAP-1 was determined 
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to be a molecular brake during granulocyte rolling and mediates recruitment in vivo 

(Tohka et al 2001) and also regulates the expression of other adhesion molecule. Based 

on these observations, it is rational to suggest that the thrombin may regulate VAP-1 

expression and translocation in brain tissue during inflammation.  

 

Dual Roles of PDGF/PDGFRs 

As a growth factor the functions of PDGF/PDGFR system during development 

have been well established, however, a high level of PDGF expression in tissue may 

change the function in an unfavorable local environment. In 1995, Kim and colleagues 

found that the serum-deprived normal rat kidney fibroblast (NRK) cells treated with 

PDGF-AA or PDGF-BB homodimers presented with apoptotic cell death. Epidermal 

growth factor also induced apoptotic cell death under identical conditions.  The potential 

mechanism was that the inability to transit the G1/S checkpoint determined the direction 

of the PDGF signal to apoptosis (Kim et al 1995). Studies in 1997, based on previous 

studies showed that a p53-independent apoptotic pathways existed following irradiation, 

the same group found that the activation of PDGF signaling led to apoptotic cell death in 

mutant p53-containing, hormone-independent, highly metastatic prostate carcinoma cells 

following irradiation (Morris et al 1997). 

However, the anti-apoptotic cell death function of PDGFs was also reported in 

several cell types, including smooth muscle cells, fibroblasts and cardiomyocytes 

(Harrington et al 1994; Romashkova and Makarov 1999; Vantler et al 2005; Vantler et al 

2010). In 2004, Egawa-Tsuzuki reported that the infusion of PDGF-B reduced lesion size 

in a hypoxia ischemia animal model. And the PDGFR-β signaling was found to protect 
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against NMDA-induced CNS injury (Egawa-Tsuzuki et al 2004). A novel PDGF ligand, 

PDGF-CC was found to protect different types of neurons from apoptosis in both the 

retina and brain animal models, including axotomy-induced neuronal death, neurotoxin-

induced neuronal injury, 6-hydroxydopamine-induced Parkinson's dopaminergic neuronal 

death and ischemia-induced stroke (Tang et al 2010).   

PDGF/PDGFRs are also involved in the development of BBB structure and 

stabilization. It is well known that pericytes play a critical role in supporting endothelial 

cell (EC) tube formation and stabilization and vascular maturation including basement 

membrane matrix deposition. In 2010, study from Stratman and colleagues reported that 

endothelial-derived PDGF-BB was required to control pericyte motility, proliferation, 

and recruitment along the EC tube. The combined inhibition of PDGF-BB and HB-EGF-

induced signaling in quail embryos with soluble receptor traps or antibodies reduced 

pericyte recruitment to EC tubes, decreased basement membrane matrix deposition, and 

increased vascular hemorrhage phenotypes in vivo (Stratman et al 2010). Currently, 

Raines and colleagues studied the role of pericyte in the transport of insulin across the 

endothelial cell layer and found that PDGF-B deficiency enhanced hepatic vascular 

transendothelial transport and insulin sensitivity (Raines et al 2011). 

In contrast, Su and colleagues found that tPA therapy induced hemorrhagic 

transformation was mediated by its substrate, PDGF-CC, an endogenous agonist of 

PDGFR-α. Their finding suggests that BBB disruption induced by PDGF was a PDGFR-

α dependent process since the injection of different PDGFs into the CSF of naïve mice 

could increase the extravasation of Evans blue one hour following administration (Su et 

al 2008). Yet another study led by Yao and colleagues recently found that cocaine-
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induced PDGF-BB could increase vascular permeability and that administration of a 

PDGF-BB neutralizing antibody could abolish this effect (Yao et al 2010). Earlier studies, 

reported that PDGF mediated tight junction and adherens junction protein redistribution 

and increased permeability in Madin-Darby canine kidney (MDCK) cells (Harhaj et al 

2002). All the data suggests that PDGF/PDGFR may play a multifaceted role under 

different stimulus conditions. 

 

Mechanism of PDGF/PDGFRs on BBB Damage 

The mechanisms about PDGFs/PDGFRs regulation on BBB integrity are still 

unclear. Previous study from Su and colleagues reported a PDGFR-α dependent pathway 

in tPA therapy caused BBB impairment. In our study, we proposed that another protease, 

thrombin was responsible for PDGFR-α activation.  

Mounting evidences indicated that thrombin might be an upstream regulator of 

PDGF ligands. In 1988, Kavanaugh investigated PDGF ligands expression after treatment 

with several compounds in microvascular endothelial cells, and found that thrombin 

stimulated B chain transcription and had little or no effect on A chain transcription 

(Kavanaugh et al 1988). Three years later, Shankar reported that both PDGF-AA and BB 

expression were stimulated with thrombin via GTP gamma S in human endothelial cells 

(Shankar et al 1992).  In 1995, Kanthou and colleagues treated human vascular smooth 

muscle cells (HVSMC) with a thrombin receptor agonist/activating peptide (TRAP) or 

thrombin. Their data revealed that thrombin and to a lesser extent TRAP induced PDGF-

AA protein expression (Kanthou et al 1995). In lung and airway epithelial cells, it has 

been reported that thrombin stimulated PDGF expression via its PAR-1 receptor and not 
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PAR-3 or PAR-4 receptor (Shimizu et al 2000). In 2005, Narita investigated if PAR-1 

PDGF pathway in spinal cord injury could contribute to the development of a neuropathic 

pain-like state in a sciatic nerve ligation mice model. They found that hirudin, PDGFR-

α/Fc chimera protein or a PDGFR-dependent tyrosine kinase inhibitor suppressed thermal 

hyperalgesia and tactile allodynia induced by sciatic nerve ligation (Narita et al 2005).  

All these previous reports supported our hypothesis that thrombin will result in BBB 

impairment possibly via the activation of PDGFR-α.  

In our study, we hypothesized that PDGFR-α activation may contribute to BBB 

impairment via p38 MAPK mediated MMP activation/expression following ICH and that 

thrombin may be the upstream regulator. We found that ICH-induced brain injury 

transiently upregulates PDGFR-α level and markedly increased PDGF-AA level mainly 

in endothelial cells and perivascular related astrocytes.  For the role of PDGFR-α in 

orchestrating BBB disruption after ICH, PDGFR-α antagonist, Gleevec which showed 

protective effect on BBB integrity in a mouse ischemic stroke model was used one hour 

after ICH.  We used three different doses and observed a dose-dependent effect of 

Gleevec treatment on the improvement of neurological function after ICH. While some 

dose-related adverse events reported in some patients during Gleevec therapy, such as 

nausea, vomiting, diarrhea, and fluid retention etc. (Deininger et al 2003; O'Brien et al 

2003) do not occur. Moerover, We attempted to invetigate the downstream signals of 

PDGFR-α and found that PDGFR-α agonist, PDGF-AA induced BBB disruption and was 

reversed by a p38 inhibitor in naïve mice. MMPs were evaluated as potential downstream 

mediators of PDGFR-α on BBB disruption. Base on previous studies that thrombin led to 

BBB damage and regulated PDGFs expression, thus we proposed that thrombin may be 
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responsible for PDGFR-α activation. Our data showed that PDGF-AA reversed the effect 

of thrombin inhibitor, hirudin on BBB disruption and indicated that thrombin was the 

upstream regulator of PDGFR-α regulator. Furthermore, in our thrombin injection model, 

animals receiving a PDGF-AA neutralizing antibody or Gleevec, the PDGFR-α 

antagonist, showed minimized thrombin-induced BBB impairment. Therefore, we 

concluded that PDGFR-α signaling may contribute to BBB impairment following ICH 

and that thrombin may be the key upstream orchestrator. 

In summary, our study investigated the mechanisms of brain edema development 

from two directions: inflammatory response and BBB orchestrators leading to direct BBB 

disruption.  We found that the inhibition of inflammatory mediator, VAP-1 or a BBB 

orchestrator, PDGFR-α reduced brain edema and improved neurological function. 

Therefore, targeting VAP-1 or PDGFR-α signaling may provide potential therapy 

treatments to ICH-induced brain injury. 

 

Future Studies 

Our study just focus on PDGFR-α signaling, however, PDGFR-β signaling may 

also be involved in BBB impairment since thrombin also regulates the expression of 

PDGF-BB (Stenina et al 2001) which is the agonist of both PDGFR-α and PDGFR-β and 

increases BBB permeability (Su et al 2008). Gleevec is a tyrosine kinase antagonist, 

which not only inhibits PDGFR-α but also inhibits PDGFR-β. Thus we do not deny the 

potential effect of PDGFR-β on BBB disruption. Therefore, a further study is warranted 

to explore the role of PDGFR-β on BBB damage in ICH. Measuring the activation of 

PDGFR-β after ICH will be helpful to clarify the role of PDGFR-β BBB damage. PDGF-
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BB + PDGFR-α neutralizing antibody can be injected to test the effect on BBB 

permeability. If PDGF-BB plus PDGFR-α neutralizing antibody increases BBB 

permeability, PDGFR-β may also be responsible for BBB damage. 
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