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ABSTRACT OF THE THESIS 

Longitudinal Behavioral Assessment of Neonatal Traumatic Brain Injury 

By 

Joel E. Kamper 

Master of Arts, Graduate Program in Clinical Psychology 
Loma Linda University, March 2011 
Dr. Richard E. Hartman, Chairperson 

Traumatic brain injury (TBI) in children and infants is a primary cause of 

cognitive and behavioral problems that can persist through adulthood. In this study, the 

long-term behavioral effects of neonatal and juvenile TBI (jTBI) were characterized 

using mice.  At an age of post-natal 7 or 10 days, mice underwent moderate or severe 

closed skull impact or sham surgery. Behavioral testing was conducted at 6 and 8 months 

post-injury. Tests administered included the open field activity (general activity levels), 

zero maze (anxiety), forced swim (depression), rotarod (coordination and balance), and 

water maze (general/spatial learning).  jTBI mice showed elevated activity levels, 

impaired sensorimotor abilities, impaired spatial learning, and less efficient spatial search 

strategy use compared with sham animals.  These differences were consistent and stable 

up to 8 months post-injury, suggesting that deficits acquired as the result of a TBI can 

have long-lasting behavioral impacts. 
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Introduction/Literature Review 

 

Introduction 

Traumatic brain injury (TBI) is a debilitating condition, often requiring supportive 

care as the only treatment (IOM, 2009) due to the lack of other options.  It is estimated 

that 4,000 persons in the United States experience a TBI each day, ranging in severity 

from mild to fatal (Morales et al., 2005).  To put it another way, 5.3 million Americans – 

or nearly 2% of the population – live with this type of injury (Thurman, Alverson, Dunn, 

Guerrero, & Sniezek, 1999). 

 Because of ethical concerns regarding the study of brain injury with human 

subjects, animals – often mice or rats – are used to study this condition.  While much 

research has been done with TBI using animals, few studies have looked at the 

neurobehavioral effects of neonatal TBI (jTBI) over a long-term span of time.  This study 

seeks to fill this gap in the literature. 

A TBI can be described as any physical trauma to the brain, whether the result of 

a closed head-type or penetrating head injury, and can cause damage through several 

pathways.  A common explanation (Wallesch, Curio, Galazky, Jost, & Synowitz, 2001) 

regarding the physical mechanisms of TBI describes two primary types and one 

secondary type of brain damage:  (1) Focal damage from the local impact, (2) diffuse 

axonal injury – a shearing of axons or severing of white matter pathways in the brain, 

resulting from rapid head acceleration and deceleration, and (3) secondary types of 

damage related to factors such as mass compressive effects, fluid retention or edema, and 

hemorrhage (Gennarelli, 1994).  These three types of physical injury are often seen in 
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motorbike or bicycle accidents, in which the head struck the pavement.  Because the 

meninges and fluid surrounding the brain allow some movement within the skull, 

suddenly striking one’s head in this manner can lead to all three of the above mentioned 

types of damage.  

 

Human Studies 

In humans, TBI is associated with a wide array of symptoms.  Cognitive 

dysfunction is often observed (H. S. Levin, Eisenberg, Wigg, & Kobayashi, 1982), with 

the severity and nature of symptoms hinging on the severity and location of injury.  

Problems with memory, concentration, and attention are common.  Common neurological 

deficits include loss of coordination, limb weakness, seizures, slurred speech, epilepsy, 

restlessness, or agitation. A large meta-analysis of long-term TBI consequences also 

noted that victims have problems with social functioning and conduct problems (IOM, 

2009). 

 

Location and Mechanism 

 Both primary types of TBI (diffuse axonal injury and focal lesions) can have 

similarly devastating effects (Wallesch, Curio, Galazky, Jost, & Synowitz, 2001).  

Because executive, memory, and behavioral/personality regulation functions are 

mediated by the frontal lobes, any type of damage in this area due to a TBI, whether focal 

or the result of more diffuse mechanisms, is often the primary reason for less-than-

optimal outcomes after an injury (Mazaux et al., 1997).  This type of damage relates to 
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the patient’s long-term social and occupation functioning, which can predict their long-

term outcomes (Mazaux, et al., 1997). 

 In a study examining differences between focal and diffuse types of injury, 

however, it was determined that, whereas frontal lobe-type symptoms were common to 

both primary mechanisms of TBI, the quality and character of these symptoms differed 

(Wallesch, et al., 2001).  For example, the presence of more diffuse types of axonal injury 

was associated with problems in interference-type cognitive tasks, like the Stroop task, 

and with semantic fluency.  Additionally, those with frontal lobe contusions often had 

problems with visuomotor planning and performance.  Focal injuries generally affected 

specific functions in a more particular way, such as problems with concept formation and 

behavioral symptoms – depending on the location of the injury – but not with interference 

problems (Wallesch, et al., 2001).  

 

Animal Models 

 Animal models are necessary to test hypotheses concerning the mechanisms and 

symptoms of TBI and to develop clinical therapeutic interventions in the laboratory 

(Laurer & McIntosh, 1999; Shohami, Novikov, & Bass, 1995).  Through the 

characterization of TBI models and subsequent pre-clinical treatment trials using animals, 

help for those who experience this injury can be made available. 

 The physiological and behavioral effects of TBI in animal models often closely 

mirror what is seen in clinical patients.  Graded injuries tend to produce graded effects, 

with less severe injuries producing similar symptoms to more severe injuries, but to a 

lesser degree as a result of more subtle morphological changes (Zohar et al., 2003).  The 
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initial damage can then trigger a cascade of neurochemical and physiological changes in 

the brain that result in reproducible patterns of behavioral manifestations (Fujimoto, et 

al., 2004; Milman, Zohar, Maayan, Weizman, & Pick, 2008; Zohar, et al., 2003).  The 

following sections delineate results often seen in several animal models, as well as the 

mechanism and types of injury often used in laboratory settings.   

 

Mechanism of Injury 

 In animals, the controlled cortical impact (CCI) method is often used 

experimentally to cause the injury because of its consistent and reproducible histological 

and behavioral deficits (Brody, et al., 2007).  This model has been shown to best replicate 

clinical effects of impact events (Fujimoto, et al., 2004).  For this technique, animals are 

fully anesthetized, the skull is exposed, and a partial removal of the skull or craniotomy is 

performed (Brody, et al., 2007).  An impactor is then used to damage the exposed brain 

with a fixed weight at a specified height and fixed velocity.  This technique has been 

shown to cause consistent performance differences in multiple domains, including spatial 

learning and memory, motor functioning, and spontaneous activity (Fujimoto, et al., 

2004; Saatman, Feeko, Pape, & Raghupathi, 2006).  Furthermore, adjusting the depth and 

location of impact can affect behavioral deficits and cell death (Saatman, Feeko, Pape, & 

Raghupathi, 2006). 

 Another TBI model used is the fluid percussion model.  This technique uses a 

pulse of fluid to create inertial forces that act on the brain.  A fluid-filled tube is fed into 

the part of the brain chosen for TBI, and a pressure wave inside this fluid is created to act 

on the exposed brain.   Fluid percussion models in rodents have been shown to cause 
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massive brain changes such as blood flow, cerebral metabolism, blood brain barrier 

(BBB) breakdown, and cell death (Fujimoto, et al., 2004), and cause more diffuse-type 

injures than the CCI model.. 

 A third model used to experimentally study TBI is the impact-acceleration model.  

This technique works by resting the anesthetized animal’s head on a foam pad, allowing 

for movement after it is impacted by a weight (Marmarou et al., 1994).  This creates focal 

and acceleration-type injuries, including cell death and axonal injury in areas devoid of 

focal lesions (Foda & Marmarou, 1994).  Although this model of damage most closely 

mirrors that which is seen in clinical TBI patients, especially motor-vehicle accidents 

(Fujimoto, et al., 2004), few long-term behavioral experiments using animals have 

implemented this model (Adelson, Dixon, & Kochanek, 2000).  This is because the 

forces needed to create replicable analogues of human TBI behavior in animal models 

using this method cause extremely high rates of mortality in the subject animals 

(Fujimoto, et al., 2004).  Using a less-severe injury model to retain an appropriate 

numbers of experimental subjects results in a disappearance of the behavioral effects of 

the TBI. 

 

Studying TBI 

 Brody et al., (2007) described a new, electromagnetically (EM) CCI 

device that allows for fine control of the impact location and depth, without need for the 

frequent calibration necessary in other devices.  This device uses an EM coil to deliver 

cortical impact at a very high, precise velocity and was shown to cause reproducible 
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behavioral and histological deficits in adult mice; similar to what is seen using other, 

pneumatic CCI devices (Brody, et al., 2007). 

 Several types of neurobehavioral test are often administered in TBI experiments 

(Fujimoto et al., 2004).  The Morris water maze test of spatial learning and memory 

(Morris, 1984) and the rotating cylinder (rotarod) test of motor coordination and balance 

(Crawley, 2000) are often used in the literature.  Other tests, such as the open-field 

activity test (Hall & Ballechey, 1932) measure spontaneous activity, and can provide a 

measure of hyperactivity-like behaviors.   

These and other neurobehavioral tests are often used to assess brain injury 

constructs that clearly map to specific neurobehavioral deficits seen in human TBI 

patients.  Even symptoms like depression can be experimentally modeled among TBI 

animals using learned helplessness-type paradigms (Milman, Rosenberg, Weizman, & 

Pick, 2005).  Assessing animals across time points allows observation of changes over 

time, and whether consistent performance gaps exist between TBI and control groups. 

 According to some researchers, there are certain time periods during which these 

tests are sensitive to discern brain injured from control animals (Fujimoto, et al., 2004).  

Regardless of the exact protocol used, control mice will exhibit improvements in rotarod 

and water maze performance over time, presumably due to improvements in motor and 

spatial learning.  The water maze task (Morris, 1984) in particular makes a good case that 

improved performance on the spatial paradigm is the result of improved spatial learning 

attribute, due to the fact that the platform location and release point of the animal into the 

water are counterbalanced and change across trials. 
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 Improved performance over time on the rotarod and water maze is also noted 

among TBI animals.  Brody et al. (2007) found effects for test day on both the water 

maze and rotarod tasks across groups (TBI and control), suggesting that the injured 

animals improved their performance over time.  Other research has confirmed this 

hypothesis and found that mice suffering from neuron decortication (which presents 

similar symptoms to those of a brain injury) improved their performance on both the 

water maze and rotarod over time, although these gains in performance were not enough 

to match the performance of the control animals (Cendelin, Korelusova, & Vozeh, 2008).  

In most cases, then, the increase in performance across time for the water maze and 

rotarod by TBI mice is not as great or sufficient enough to match that of the control 

animals, presumably due to the present brain injury (Colombel, Lalonde, & Caston, 2002; 

Milman, et al., 2005; Saatman, et al., 2006). 

 

Dogs and Pigs 

 Larger mammals, such as dogs and pigs, are less-often used when doing 

behavioral TBI research (Fujimoto, et al., 2004).  Although plenty of studies examining 

the physiology of TBI using dogs or pigs have been published, there is little in the 

literature that involves the behavioral aspects of such models.  This is because behavioral 

tests are not well established in large animals for TBI (Fujimoto, et al., 2004).  Similarly, 

animals housing and financial considerations – which are considerably higher with larger 

animals like dogs or pigs – also serve as deterrants to using these animals.   Finally, 

although physiological data are important to consider, behavior remains the final criterion 

by which a study or model should be judged; if a model does not produce clinically 
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relevant behavioral results, its connection to clinically-relevant therapeutic techniques is 

limited.  

 

Rats 

 Of the many behavioral tests used to study TBI, most began by using rats as an 

analogue (Fujimoto, et al., 2004; Morris, 1984).  Rats that undergo TBI have also been 

found to display more prolonged injury effects compared to other animals (Fujimoto, et 

al., 2004).  It is unclear if this effect is due to a difference in injury models, or if other 

animals like mice recover faster (Fujimoto, et al., 2004).  Either way, rats make excellent 

subjects for doing TBI research. 

 Behavioral deficits in rats that have undergone TBI show consistent deficits 

between control and injury groups (Fujimoto, et al., 2004; Morris, 1984; Piot-Grosjean, 

Wahl, Gobbo, & Stutzmann, 2001; Prins, Lee, Cheng, Becker, & Hovda, 1996).  In 

particular, large group differences on learning-based tasks like the Morris water maze 

suggest that brain regions such as the hippocampus are especially vulnerable to TBI 

(Hamm et al., 1992).  These effects in rats are very similar to learning-based deficits seen 

in clinical TBI populations (Hamm, et al., 1992). 

 Similarly, rat research has demonstrated experimentally-produced mood 

disturbances in rats after TBI, which are very similar to the long-term effects seen 

clinically (N. C. Jones et al., 2008).  These findings suggest that long-term anxiety in TBI 

patients may be due, at least in part, to neurobiological factors relating to their injury. 

 Rats have been associated with studying the behavioral effects of brain damage 

since the formation of the classic neurobehavioral tests in this subject area (Hamm, Pike, 
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O'Dell, Lyeth, & Jenkins, 1994; Morris, 1984).  Rats provide a great deal of consistency 

between animals, allowing the researcher to use fewer rats to achieve the same statistical 

power, compared to a greater number of mice (Fujimoto, et al., 2004).   

 

Mice  

 Mice are often used for TBI research (Brody et al., 2007; Fujimoto, et al., 2004; 

Hartman et al., 2001; Milman, et al., 2005; Saatman, et al., 2006; Zohar, et al., 2003).  

They often produce similar behavioral profiles to those seen in rats, and are testable using 

most of the same neurobehavioral tests (Fujimoto, et al., 2004).  The primary benefit to 

using mice over rats is the availability of testing transgenic mice in a TBI model, which 

can allow for the examining of the effects of a particular gene mutation or genetic 

predisposition to brain injury (Fujimoto, et al., 2004; Saatman, et al., 2006).  

Additionally, the lowered cost of housing needed for doing research with mice make 

them an attractive option. 

 

The Effects of Age 

Humans and animals that experience a TBI at a young age such as infancy may 

face worse long-term outcomes (Donders & Warschausky, 2007; Prins, Povlishock, & 

Phillips, 2003).  Non-accidental head trauma is the leading cause of traumatic death 

during infancy (Gerber & Coffman, 2007).  The short-term mortality rate is 15%-38%.  

Half of the survivors suffer from cognitive/neurological deficits; only 30% recovered 

with no measurable deficits (Gerber & Coffman, 2007).  In a characterization of adults 

that had experienced early (age 6-12) or late (minimum age of 16) TBI, researchers found 
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that the participants with early TBI had worse cognitive, psychosocial, and 

neurobehavioral outcomes the later group.  Another study that looked at TBI in children 

and adolescents found similar results; after controlling for severity, the younger children 

exhibited persistent cognitive impairment, while the adolescent group showed greater 

recovery over time (H. S. Levin, et al., 1982). 

TBI early in life can greatly affect the developing brain.  Children who had 

experienced a head injury had greater activation of many brain areas while sustaining 

attention during MRI relative to controls, signifying that the brain of a child or infant who 

experiences a head injury can have permanent structural changes in the brain (Kramer et 

al., 2008).  Thus, imaging studies and neuropsychological tests suggest that TBI patients 

face worse outcomes if the injury is experienced at a younger age. 

  Animal models have also described the hazards of TBI at a young age.  Neonatal 

rats that experienced focal damage and diffuse axonal injury as the result of a TBI were 

found to have reduced resilience for healing and normal reorganization following injury 

compared to older mice (Prins, Povlishock, & Phillips, 2003).  Additionally, an increase 

in dopamine production in the brains of infant pigs that experienced a  TBI compared has 

been noted compared to juveniles that had a TBI and controls; this increase can have 

devastating long-term effects and lead to increased neuronal injury (Walter et al., 2004).  

In humans, young human TBI patients had worse long-term outcomes than patients that 

experienced a head injury as older children or adolescents (Donders & Warschausky, 

2007). 

 These findings are in opposition to the so-called “Kennard effect” (Kennard, 

1938), which suggests that recovery is often more extensive after youthful brain damage 
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than after similar damage later in life.  Some studies have noted that young age confers 

an advantage in recovering from focal vascular lesions (H. S. Levin, 2003).  Similarly, 

(Kolb & Gibb, 1991) demonstrated increased dendritic branching for post-natal day 10 

(P10) rats with frontal lobe lesions, but less branching for post-natal day 1 (P1) rats with 

the same lesions.  These differences in age were corroborated through additional research 

done by (Kolb, 1987) in (Prins & Hovda, 2003), who posited a “narrower definition” of 

the Kennard effect to account for the improved outcomes of P10 rats compared to their 

P1 neonatal counterparts. 

However, although this principle may be useful as a general guideline, there are 

many exceptions to the “rule.”  For instance, some research has shown that young age 

confers no advantage for severe diffuse brain injury (H. S. Levin, 2003).  This is possibly 

due to alterations in white matter connectivity, which is a hallmark effect of TBI 

(Gennarelli, 1994; Wallesch, et al., 2001).  Similar studies have shown that, in age-

matched groups, children and adolescents that experienced a severe diffuse head injury 

exhibited memory deficits, and that these effects were more pronounced and long-lasting 

in children (H. S. Levin, et al., 1982).   

Further evidence posits that the younger brain can demonstrate abnormal growth, 

depending on the regions affected.  For instance, children with left-hemisphere brain 

damage were found to vary on how much language they could learn, depending on the 

cause of injury (Curtiss, de Bode, & Mathern, 2001).  Similarly, removal of the anterior 

portion of an infant rat cortex was found to cause abnormal development of the posterior 

portion (Kolb & Holmes, 1983).  It seems, then, that although the young brain retains 
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more plasticity than the adult brain, it is also more vulnerable to disruptions in 

development and organization (Kalat, 2004). 

 

Activity 

 Increased rates of hyperactivity are often seen in children and adolescent TBI 

patients (Geraldina et al., 2003; Kramer, et al., 2008; H. Levin et al., 2007; Max et al., 

2004).  Symptoms of these secondary or acquired ADHD symptoms (SADHD) are 

mutually exclusive to a prior diagnosis of ADHD (Max, et al., 2004), and are positively 

related with worse TBI outcomes (Max et al., 1998).  SADHD symptoms after TBI in 

children are also related to transient personality changes, but not to the age of injury or 

gender. 

 In a study of children ages 0-18 years that experienced a TBI, the age of the 

patient when injured tended to vary the presence or absence of psychological problems 

(Geraldina, et al., 2003).  Younger patients tended to exhibit more internalizing problems 

such as anxiety or depression, where as the older groups (ages 6-13 and 14-18) 

demonstrated high levels of hyperactivity after injury, with the 6-13 age group showing 

hyperactive symptoms in 30% of patients regardless of TBI severity, compared to 3-7% 

in the general population. 

 There are few studies which describe the effects of TBI on activity levels in 

animals.  One of the few studies which have examined activity levels created an animal 

model to study this effect, using adult gerbils as a model.  30 animals were divided into 

three groups, one sham surgery and two TBI (mild and moderate injury) (Li et al., 2006).  

Activity levels were assessed using the open field and T-maze tasks.  Whereby the mild 
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injury group only demonstrated transient hyperactivity after injury, the moderate group 

showed prolonged hyperactive symptoms throughout the 7 days of follow-up testing (Li, 

et al., 2006).  This evidence points to a positive link between hyperactivity and severity, 

similar to the results of pediatric clinical studies (Max, et al., 2004).   

 

Affective Symptoms 

 Affective symptoms like anxiety and depression are common after a TBI 

(Geraldina, et al., 2003; Jorge, 2005; Jorge et al., 2004; Jorge, Robinson, Starkstein, & 

Arndt, 1994; Jorge & Starkstein, 2005; H. S. Levin, et al., 1982).  Younger patients tend 

to express more internalizing symptoms after a TBI than adolescent patients, and can 

experience social issues as a result of affective symptoms (IOM, 2009).  The incidences 

of depression and anxiety after TBI have been reported as high as 77% and 70%, 

respectively (Granacher, 2003; Jorge & Starkstein, 2005).   

 Affective symptoms are also present in experimental models of TBI.  Anxiety 

after an injury, as measured by several neurobehavioral tests, was present up to 6 months 

following a TBI (N. C. Jones, et al., 2008).  Although less-often reported than other 

domains like sensorimotor or spatial learning (Fujimoto, et al., 2004), pervasive affective 

symptoms are an important aspect to any clinically-relevant model. 

 

Motor Deficits 

 Sensorimotor deficits are common in most TBI patients, and often include ataxia, 

weakness, seizures, and a general lack of coordination (IOM, 2009).  Motor problems are 

similarly common in infants and young children who experience a TBI (Ewing-Cobbs et 
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al., 1998).  These motor problems were noticeably more severe in this younger age group 

than in older adolescents, and included relatively severe hemiparesis that interfered with 

daily activities.  Motor deficits in TBI patients are thought to arise from the disruption of 

any of a host of relevant vestibulomotor processes in the brain, and may involve fine 

motor coordination as well as more severe and directly observable deficits like 

hemiparesis (Ewing-Cobbs, et al., 1998; Fujimoto, et al., 2004). 

 Similarly, motor deficits have been shown to be a relevant domain for studying 

and treating TBI in the animal literature (Hamm, et al., 1994).  Vestibular tests like the 

rotarod (B. J. Jones & Roberts, 1968) are sensitive to fine motor deficits by requiring 

animals to use complex and coordinated muscle movements, rather than simple strength.  

Motor deficits have long been studied in TBI research, and show the potential for 

accurate detection using neurobehavioral tests (Fujimoto, et al., 2004; Hamm, et al., 

1994).  Similarly, increased exposure to a motor task can result in learning and 

“rehabilitation” in animal models, mimicking the results obtained in physical therapy by 

TBI patients, and can demonstrate improvement of motor performance in TBI animals 

over time (Hamm, et al., 1994).  However, the rate of recovery is not as swift with more 

severely injured animals (Hamm, et al., 1994). 

 

Cognitive Symptoms 

 Cognitive deficits, such as problems with memory, are common after TBI 

(Donders & Warschausky, 2007; IOM, 2009; H. S. Levin, et al., 1982).  Younger 

children tend to exhibit more severe cognitive deficits than adolescents exposed to the 

same level of injury, and cognitive symptoms tend to persist longer in younger patients 
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(H. S. Levin, et al., 1982).  Cognitive problems in infants may receive less therapeutic 

attention early on due to the relative difficulty in assessing the cognition and memory of 

an infant or young child relative to an adolescent or adult. 

Cognitive and memory deficits after TBI are very well documented in the 

experimental literature (Brody, et al., 2007; Cendelin, et al., 2008; Fujimoto, et al., 2004; 

Hamm, et al., 1992; Hicks, Smith, Lowenstein, Saint Marie, & McIntosh, 1993; Morris, 

1984).  Behavioral tests are often employed to test an animal’s rate or retention of learned 

information.  The best grounded of these measures use an animal’s ability to spatially 

navigate towards a goal.  Spatial memory tasks are often used to assess declarative 

hippocampally-mediated memory in animal models, and are a good measure of general 

memory abilities (Morris, 1984).  This is because declarative memory is dependent on the 

hippocampus, which also mediates spatial memory.  Experimentally, memory deficits in 

animals have been observed with different ages and injury severities (Adelson, et al., 

2000; Brody & Holtzman, 2006; Dixon et al., 1999; Fujimoto, et al., 2004; Morris, 1984).  

Some research has suggested that memory deficits can occur up to a year after injury in 

animals, which is analogous to several decades of development in humans (Dixon, et al., 

1999).   

 

Search Strategy 

 The Morris water maze, described below, is considered to be a good test of spatial 

learning and memory (Brody & Holtzman, 2006; Morris, 1984).  However, although the 

data extracted from the test is useful for showing the degree of spatial learning and 

memory possessed by an animal or group of animals, other factors that may impact test 
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performance are not assessed.  These factors include the search strategy used by an 

animal to find the hidden platform.  Search strategy refers to an animal’s apparent 

utilization of different methods (spatially-mediated, random, exterior only, etc.) to find 

the platform in the “spatial” portion of the water maze.  Thus, two groups of animals may 

appear to have similar spatial memory abilities, while one group uses a more efficient 

search strategy to find the platform (Brody & Holtzman, 2006; Janus, 2004).  Search 

strategy analysis tests “compensation effects,” or the tendency of many clinical TBI 

patients to make up for cognitive deficits using other means, such as mediating poor 

memory through the use of reminders or alarms.  

 

Objectives/Hypotheses 

There are few studies that characterize jTBI in a long-term capacity. Whereas 

most behaviorally-oriented studies assess periods of between a few days and 6 weeks or 

so, none look at the long-term behavioral effects of jTBI (Fujimoto, et al., 2004).  Indeed, 

the few studies that describe long-term effects of TBI experimentally focus on adult 

models (Fujimoto, et al., 2004).  This study characterized the behavioral effects of jTBI 

over an 8-month period, at which time a mouse is in the same developmental age as a 

middle-aged person.  Short-term deficits have been demonstrated experimentally in 

animal models (Fujimoto, et al., 2004).  However, the paucity of long-term studies in the 

literature gives credence to the current study.  Similarly, few studies have exclusively 

looked at jTBI as a paradigm. 
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The main aim of this study was to characterize the long-term effects of jTBI.  This 

was done through analysis of several neurobehavioral tests, described in the methods 

section.  Thus, hypotheses surrounding each of the relevant domains were assessed. 

Regarding activity levels, it was hypothesized that jTBI animals will demonstrate 

higher activity levels for the open field test compared to sham animals, because of the 

increases in activity seen in both humans and animals (Li, et al., 2006; Max, et al., 2004).  

Similarly, because of the worse prognosis associated with earlier injury (Donders & 

Warschausky, 2007; Prins, et al., 2003; Walter, et al., 2004), it was hypothesized that 

younger (P7), more severely injured TBI mice will exhibit hyperactivity compared to 

other groups. 

Regarding affective symptoms, it was hypothesized that jTBI animals will 

demonstrate elevated anxiety-like symptoms on the zero maze, and higher depressive 

symptoms on the forced swim test, because of the increases in anxiety and depression 

noted both clinically and experimentally (N. C. Jones, et al., 2008; Jorge & Starkstein, 

2005).  Because of the tendency for earlier injuries to produce greater affective symptoms 

(IOM, 2009), it was also hypothesized that younger (P7) TBI animals will show greater 

anxiety-like and depressive behaviors compared to older (P10) TBI animals.  

Regarding sensorimotor abilities, it was hypothesized that jTBI animals will 

exhibit impaired sensorimotor performance compared to shams.  Similarly, more severe 

injuries have the strongest link to sensorimotor performance (Hamm, et al., 1994).  Thus, 

it was hypothesized that more severely injury animals would exhibit impaired 

performance compared with moderately injured animals. 
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Finally, regarding cognitive abilities, it was hypothesized that jTBI animals will 

exhibit impaired cognitive abilities (spatial memory) compared to sham animals, because 

of the incidences of cognitive problems associated with TBI in both humans and animals 

of this age group (Donders & Warschausky, 2007; Hicks, et al., 1993; H. S. Levin, et al., 

1982; Morris, 1984).   

A second aim of this study is to assess the efficacy of search strategy employed 

by mice during the Morris water maze.  Previous research has shown that brain-injured 

mice use fewer systematic and non-spatial search strategies, and use more repetitive 

looping (Brody & Holtzman, 2006).  No age/severity differences were noted.  Thus, it 

was hypothesized that jTBI mice as an overall group will use less effective search 

strategies than their sham surgery counterparts.  Similarly, more efficient search 

strategies should mean better spatial performance on the water maze.  Thus, it is 

hypothesized that search strategies will correlate with cognitive performance on the water 

maze. 
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Methods 

 

 The subjects for this study were 50 neonatal wildtype mice from Washington 

University in St. Louis, MO that experienced a TBI via EM CCI device with either a 

mild, severe, or sham injury before arriving at LLU.  The experimental mice experienced 

the TBI at either P7 or P10 and were tested several months later, approximating the motor 

and cognitive abilities of an adult who experienced a TBI as a child (Craig et al., 2003; 

Yager & Thornhill, 1997).  Approximately half of the total number of animals was 

controls that underwent a sham surgery, with the other half having experienced a TBI.  

Half of the TBI mice received the injury at P7 and half at P10, creating a total of five 

groups: Sham, P7 moderate, P7 severe, P10 moderate, P10 severe. 

 

Materials 

 Injury model.  TBI is operationally defined for this study as the amount of 

damage caused by an electromagnetically controlled cortical impact device set to a 

certain impact force, 5.2 m/s.  A “moderate” injury was specified as a 2.0mm impact 

depth, and a “severe” injury was defined as 2.5mm impact depth, per previous findings 

suggesting the clinical relevance of these two depths (Brody, et al., 2007).  Research has 

suggested that the degree of injury (an independent variable) scales well with the degree 

of brain damage and observed neurobehavioral deficits (Brody, et al., 2007; Fujimoto, et 

al., 2004; Saatman, et al., 2006). 

 This injury model is both valid and reliable.  It is valid in replicating TBI in 

humans because the method of injury, through impact, is very similar to what is often 
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seen in human TBI patients, both in behavior and in conducting MRI studies (Saatman, et 

al., 2006).  The EM method produces similar behavioral results to conventional weight-

drop methods of TBI (Brody et al., 2007).  Furthermore, the CCI method in general has 

been shown to differentiate between TBI and control animals, with greater impact forces 

scaling well and associating with more severe neurobehavioral differences  (Brody, et al., 

2007; Fujimoto, et al., 2004; Saatman, et al., 2006). 

 Concerning the reliability of this model, there exist several potential problems in 

regards to accurately detecting behavioral differences.  Potential issues include the 

performing of a craniotomy prior to injury to expose the cortex (Brody, et al., 2007), 

which is not a feature present in accidental TBI and thus must be questioned.  Similarly, 

completing this procedure involves anesthetizing the animals prior to the surgery; 

isoflurane will be used for this purpose.  However, isoflurane was found to have 

neuroprotective qualities in response to TBI (Statler et al., 2006), which could reduce the 

model’s ability to show accurate behavioral differences.  The CCI method using 

isoflurane, however, is standard and has been shown to have good sensitivity and 

specificity in studying TBI (Brody, et al., 2007; Fujimoto, et al., 2004; Saatman, et al., 

2006).  Consistent and repeated use of this model across different experiments using mice 

has shown consistent, reproducible patterns of brain damage and neurobehavioral deficits 

(Brody, et al., 2007; Fujimoto, et al., 2004; Saatman, et al., 2006).  The current 

experiment uses similar methods to what has been done before, thus showing good 

reliability for this model. 

The independent variables for this experiment are whether the animal being tested 

is a control or TBI mouse as well as whether the TBI was inflicted at P7 or P10 and a 
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mild or severe injury.  Thus, this project features two independent variables: severity and 

injury timepoint.  

Activity.  One behavioral construct that was examined is activity.  Using the 

open-field test (Hall & Ballechey, 1932), animals were placed in plastic bins 49cm long 

and were uninterrupted for 30 minutes.  The total distance the animal traveled during a 

trial, as well as its percentage of trial time spent moving was analyzed using the same 

computer system as the water maze.  These two variables are highly correlated, thus 

analysis focused on the animal’s distance traveled.  The latency of the animal to move 

has been noted as one of the most informative sets of data obtainable using this test 

(Royce, 1977; Stanford, 2007).       

 Anxiety.  Another construct studied was affective symptoms.  Anxiety symptoms 

after TBI have been shown to develop in both humans and animals (Granacher, 2003; N. 

C. Jones, et al., 2008).  This experiment tested for anxiety using data collected from the 

zero maze (Shepherd, Grewal, Fletcher, Bill, & Dourish, 1994).  The zero maze consists 

of a horizontal ring, approximately 7cm wide.  Half of the ring has walls surrounding the 

platform, making half of the surface “out in the open” and half “enclosed.”  The 

dependent variable is the percentage of time spent in the enclosed area.  Animals are 

placed on the ring for 5 minutes. 

 Depression.  Along with anxiety, depression after TBI was examined as a facet of 

the affective component.  This construct was tested using the forced-swim model of 

learned helplessness (Lahmame, Grigoriadis, De Souza, & Armario, 1997; Milman, et al., 

2005; Porsolt, Le Pichon, & Jalfre, 1977).  This test was developed to examine the 

antidepressive effects of pharmaceutical compounds, and has been found sensitive to 
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variations in depression-like behaviors between TBI and sham animals (Milman, et al., 

2005).  Animals are placed in a 30cm wide, 50cm tall glass cylinder for 10 minutes.  The 

trials were recorded and analyzed visually for movements suggesting a desire to escape 

the cylinder (active swimming or climbing up the side), or depression-mediated learned 

helplessness (purposeless swimming, no escape attempts).  An animal’s initial time to 

become helpless was recorded as the primary dependent variable.  

 Motor performance.  Another construct for this experiment is motor 

performance, specifically defined as the length of time it takes for an animal to fall off a 

rotating cylinder called the rotarod (Dunham & Miya, 1957; B. J. Jones & Roberts, 

1968).  Thus, the dependent variable is simply the latency of time before an animal falls 

from the beam.  The speed and acceleration of the cylinder can be manipulated to bring 

out motor deficits in TBI mice.  If an animal falls, an electric eye will stop the timer 

allowing for exact measurement of how long the trial lasted.  Through extensive use and 

testing, and by obtaining reproducible results, this test has been shown to be reliable 

(Fujimoto, et al., 2004; Saatman, et al., 2006).  Many experiments have used this test with 

TBI mice, and have obtained reliable, consistent results (Brody, et al., 2007; Hamm, et 

al., 1994). 

 This test has also been shown to be a valid measure of motor ability.  Motor skill, 

coordination, and balance are tested through the animal's attempts to remain on the beam, 

even as it moves and accelerates.  This sort of procedure is a test of motor skill, and has 

been shown to be able to differentiate between animals with both TBI and other motor-

type injuries and their respective controls (Brody, et al., 2007; Colombel, et al., 2002; 

Fujimoto, et al., 2004; Saatman, et al., 2006). 
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 To run the rotarod test, animals were placed on the cylinder at one of 3 

conditions: stationary (0 RPM), constant velocity (5 RPM), or accelerating velocity (5 

RPM + 5 RPM/5 sec).  Each iteration is administered to each animal for every rotarod 

test.  The three speeds allow the test greater sensitivity to detect differences, as well as 

allowing animals to acclimate to the test.  The accelerating paradigm is the most sensitive 

and useful for studying TBI (Brody, et al., 2007; Fujimoto, et al., 2004; Saatman, et al., 

2006).  

Cognitive/spatial performance.  Another construct for this experiment is 

cognitive performance, specifically defined as spatial learning and memory performance 

tested using the Morris water maze (Morris, 1984).  The main dependent variable for this 

task is how long it takes for an animal to find a platform, hidden under the surface of an 

opaque pool of water.  The water maze itself is a circular tank 110cm in diameter filled 

with opaque water and containing a platform approximately 10cm wide.  The animal is 

released from counterbalanced points along the wall of the tank and recorded using 

Ethovision behavioral tracking software, which visually tracks the animal’s trial.  The 

first task administered to the subjects, the cued task, features a clearly visible platform 

that can test for motor deficits and other physical limitations such as vision problems, 

swimming ability, and motivation to find the platform.  This task was administered for 10 

trials during a single day.  Following the cued task, the platform is submerged slightly 

under the water’s surface; the animal must rely on its spatial learning and memory to find 

the platform.  Release points vary for this spatial component, which lasted for 10 trials a 

day for 3 days.  The primary dependent variable for the cued portion was distance moved, 

or the total distance moved by an animal as recorded by Ethovision software.  For the 
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spatial paradigm, cumulative distance is the dependent variable, defined as the 

summation of the animal’s distance from the platform, measured 5 times per second.  In 

this way, cumulative distance is sensitive to both distance and time. 

Animals subjected to TBI by CCI – both by pneumatic impactor and 

electromagnet device – show clear spatial learning and memory deficits on this task 

compared to controls (Brody, et al., 2007).   The water maze is a standard test that has 

been used repeatedly (Fujimoto, et al., 2004; Saatman, et al., 2006) and has provided 

consistent results across studies to show spatial deficits in mentally impaired rats or mice.  

Thus, it is reliable for use with a TBI model. 

 This test is also a valid measure of spatial learning.  It has shown to be able to 

differentiate between injured and control animals in many protocols, including those 

looking at TBI (Brody, et al., 2007; Fujimoto, et al., 2004; Saatman, et al., 2006).  

Furthermore, it forces subject animals to learn and then recall the location of a submerged 

platform, which involves using the hippocampus and other cortical areas involved in 

spatial learning and memory (Morris, 1984).  By controlling for swimming deficits 

through the cued portion of the task (which involves a visible platform), spatial learning 

and memory differences can be accurately ascertained, and confounds/mediators like 

ability to swim are taken out the equation. 

 Search strategy.  To assess to efficacy of search strategy used for the Morris 

water maze, a pathway analysis was conducted.  A bank of 9 search strategies, similar to 

those used in past studies (Brody & Holtzman, 2006; Janus, 2004) were used to test an 

animal or group’s use of effective spatial strategies, using visual cues located in the 

testing environment, to locate the platform.  The first and last blocks from each day of 
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water maze testing were reviewed, and each track was assigned a search strategy based 

on previously published criteria (Brody & Holtzman, 2006).  The strategies were ranked 

on a 1-9 scale from most effective to least; data analysis involved a repeated-measures 

ANOVA to assess each group’s strategy usage.  The schema’s search strategies (Figure 

1) include: Spatial direct, swimming directly towards the platform; spatial indirect, taking 

a meandering but relatively expedient path towards the platform; focal correct, searching 

in the general vicinity of the platform; focal incorrect, searching in the incorrect area of 

the tank, but staying in a relatively small search area; scanning, searching the whole 

interior portion of the tank for the platform; random, having a random and disorganized 

strategy; focal incorrect, searching the wrong portion of the tank; chaining, or swimming 

in circles in the tank’s interior; peripheral looping, or swimming in circles around the 

outside perimeter of the tank; and circling, or swimming in tight, concentric circles.  To 

better organize the strategies, the first three strategies (spatial direct, indirect, and focal 

correct) can be conceptualized as “spatial” strategies, the second three (interior scan, 

random, focal incorrect) were grouped as “systematic: non-spatial” strategies, and the last 

three (chaining, peripheral looping, and circling) were grouped as “looping” strategies 

(Brody & Holtzman, 2006).  The efficiency and efficacy of the strategies is roughly 

linear, with spatial direct being the best strategy, and circling the worst (Brody & 

Holtzman, 2006). 

 

Procedure 

 The mice were tested using the activity, zero maze, forced swim, rotarod, and 

water maze tests in the Behavioral Neuroscience Laboratory at LLU.  Shortly after 
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Figure 1.   Strategy examples 
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arrival, at 6-months post-injury, the animals were run through a behavioral testing 

battery.  This battery contained the tests described above over a two-week time period, 

with the open-field, rotarod, forced swim, and zero maze tests being administered the first 

week, and the water maze taking up the entire second seek.  All tests except the water 

maze were run twice at two day intervals to provide a greater quantity of data and to 

assess the animals’ relative performance over time.  Approximately 7-8 weeks later, at 8-

months post-injury, the same battery was repeated in the same manner as before.   

 

Analyses  

To test the hypotheses that TBI animals would display worse long-term 

behavioral outcomes, a series of repeated-measures mixed-model ANOVA were run.  

These were completed using SPSS 17 as well as Statistica 6.0.  The nesting feature of the 

Statistica package was used for the water maze spatial analyses, allowing for analysis of 

overall group differences across testing timepoint (6 and 8 months), testing day (3 per 

timepoint), block (5 per day), and trial (2 per block).  The nesting parameter allowed 

different within-groups levels to be compared, such as timepoint x day, as well as more 

complicated analyses (timepoint x day x group).  This feature allowed better qualitative 

interpretation of the data based on findings outside the stated hypotheses. 

 

Power Analysis 

 An a priori power analysis was completed using G*Power 3.1 (Faul, Erdfelder, 

Lang, & Buchner, 2007).  The analysis was completed using previously collected pilot 

data and substituting current N’s to compute required N’s needed for the current study.  
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Data was available for the rotarod and open field tests that fit the parameters of the 

present study (at least 8 months post-injury).  Achieved results from the pilot data were 

tested to identify a necessary N for the current study.  A required N of 48 was suggested 

for the present study, based on a power equal to at least .8. 
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Results 

 

The hypothesis that TBI animals would exhibit higher activity levels compared to 

shams for the open field test was confirmed (Figure 2).  The interaction between trial and 

group was not significant, but there was a main effect overall for group.  TBI animals 

(M=711.78, SD=136.08) displayed overall higher activity levels compared to shams 

(M=591.68, SD=172.12), F(1, 47)=5.56, p<.03, power=.66, η²=.11. 

The hypothesis that severely injured P7 animals would exhibit more activity 

(hyperactivity) compared to other groups was confirmed (Figure 3).  The interaction 

between group and day/trial of testing was not significant.  There was a main effect for 

group F(4, 44)=4.707, p<.01, power=.93, η²=.30.  Follow-up testing was done by 

analyzing individual group differences using the Bonferroni to avoid artificially inflating 

type-I error.  Post-hoc testing revealed that P7 severe animals (M=836.61, SD=113.08) 

exhibited significantly higher overall activity levels than sham animals (M=591.68, 

SD=172.12), F(2, 17)=14.14, p<.005, power=.95, η²=.44.  Similarly, P7 severe animals 

exhibited significantly higher overall activity levels than P10 severe animals (M=662.81, 

SD=130.91), F(2, 17)=10.09, p<.005, power=.85, η²=.36.  The more liberal Least 

Significant Difference (LSD) test suggested that P7 severe animals exhibited higher 

activity than all groups except for P10 mild animals. 
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Figure 2. Activity levels over time – open field 
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Figure 3. Activity levels for individual groups – open field 
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The hypothesis that TBI animals would show more anxiety-like differences than shams 

on the zero maze was not confirmed (Figure 4).  The interaction between testing 

timepoint/day and the animal’s status as an injured or sham animal was not significant.  

TBI animals (M=0.57, SD=0.12) displayed fewer overall anxiety-like behaviors than 

shams (M=0.67, SD=0.12), F(1, 47)=5.29, p<.03, power=.62, η²=.10  rather than the 

hypothesized higher anxiety-like behavior in TBI animals. 

The hypothesis that younger P7 TBI animals would show more anxiety-like 

differences than older P10 TBI animals on the zero maze was not confirmed (Figure 5).  

The interaction between testing timepoint/day and the animal’s status as an injured or 

sham animal was not significant.  The main effect between P7 and P10 animals was also 

not significant, F(1, 37)=.00, p=.99, power=.05, η²=.00. 
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Figure 4. Anxiety-like behaviors over time – zero maze 
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Figure 5. Anxiety-like behaviors for P7P10 animals – zero maze 
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The hypothesis that TBI animals would show more depressive behaviors than 

sham animals was not confirmed (Figure 6).  Because the sphericity assumption was 

violated, χ²(2)=9.23, p<.01, the Huynh-Feldt correction statistic was used.  The 

interaction between TBI/sham and day of testing was not significant.  There was a main 

effect for test day F(1.35, 63.36)=43.75, p<.001, power=1.0, η²=.48.  The main effect for 

group was not significant, F(1, 47)=.22, p=.65, power=.07, η²=.01. 

The hypothesis that younger P7 TBI animals would show more depressive 

symptoms on the forced swim test than older P10 TBI animals was not confirmed (Figure 

7).  The interaction between testing day and age was not significant.  The main effect for 

age was not significant, F(1, 37)=.32, p=.58, power=.09, η²=.01. 
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Figure 6. Helplessness behaviors over time – forced swim 
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Figure 7. Helplessness behaviors between P7/P10 animals – forced swim 
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 The hypothesis that TBI animals would exhibit impaired sensorimotor abilities on 

the rotarod compared to shams was confirmed (Figure 8).  Sphericity assumptions were 

not violated, so the sphericity assumed metrics were used.  The interaction between group 

and timepoint was significant, F(1, 47)=10.621, p<.01, power=.89, η²=.18.  Additionally, 

there was a main effect for timepoint F(1, 47)=162.08, p<.001, power=1.0, η²=.78.  Sham 

animals (M=26.14, SD=5.21) demonstrated overall greater sensorimotor abilities than 

TBI animals (M=16.93, SD=6.11), F(1, 47)=25.64, p<.001, power=1.0, η²=.35. 

The hypothesis that severely injured TBI animals would show greater 

sensorimotor deficits on the rotarod than less severely injured TBI animals was not 

confirmed (Figure 9).  Sphericity assumptions were not violated, so the sphericity 

assumed metrics were used.  The interaction between day/timepoint and severity level 

was not significant.  The main effect for timepoint was significant, with both groups 

demonstrating better sensorimotor performance at 8 months than at 6 months, F(1, 

37)=102.07, p<.001, power=1.0, η²=.73.  The main effect between mild/moderate and 

severe animals was not significant, F(1, 37)=.09, p=.77, power=.06, η²=.002. 
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Figure 8. Sensorimotor performance over time – Rotarod 
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Figure 9. Sensorimotor performance for moderate/severe jTBI animals – Rotarod 
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The hypothesis that TBI animals would exhibit impaired spatial learning on the 

water maze compared to shams was confirmed (Table 1 & Figure 10).  The interaction 

between group and day/ of testing was not significant.  There was a main effect for 

timepoint, with both groups performing better at 8 months compared to 6 months, F(1, 

47)=37.92, p<.001, power=1.0, η²=.08.  There was a main effect for group, with TBI 

animals (M=7177.49, SD=1855.37) exhibiting higher overall cumulative distances from 

the platform than sham animals (M=5109.32, SD=1855.37), F(1, 47)=9.89, p<.01, 

power=.99, η²=.03 . 
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Table 1 

Mixed-model repeated measures nested ANOVA for spatial water maze 
 

 Degrees of Freedom F Significant? 

 
Experimental Group 1 9.89 Yes 

Timepoint 1 37.92 Yes 

Test Day 2 2.71 No 

Block 4 19.81 Yes 

Trial 1 10.12 Yes 

Group x Timepoint 1 1.38 No 

Group x Day 2 2.17 No 

Group x Block 4 0.64 No 

Group x Trial 1 0.65 No 

Timepoint x Test Day 2 10.12 Yes 

Timepoint x Block 4 1.98 No 

Timepoint x Trial 1 0.00 No 

Day x Block 8 2.58 Yes 

Day x Trial 2 2.17 No 

Block x Trial 4 2.54 Yes 

Group x Timepoint x 
Day 

 

2 1.78 No 

Group x Timepoint x 
Block 

 

8 0.34 No 

Group x Timepoint x 
Trial 

 

1 1.07 No 
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Figure 10: Spatial memory performance over time – water maze 
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 The hypothesis that TBI animals would show less effective search strategies on 

the Morris water maze compared to sham animals was confirmed (Figures 11 & 12).  The 

sphericity assumption was violated χ²(275)=367.39, p<.01 and thus the Huynh-Feldt 

corrected statistic was used.  The interaction between timepoint and TBI/sham was not 

significant.  There was a main effect for timepoint, F(19.56, 919.52)=2.23, p<.02, 

power=.99, η²=.05  with both groups using more spatial strategies as time went on.  There 

was also a main effect for group, with sham animals (M=1.57, SD=.15) utilizing more 

overall spatial strategies than TBI animals (M=1.76, SD=.26), F(1, 47)=5.35, p<.03, 

power=.62, η²=.10.   
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Figure 11. Water maze search strategy – 6 months post-injury 
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Figure 12. Water maze search strategy – 8 months post-injury 
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The hypothesis that search strategy would be correlated with spatial performance 

was partially confirmed (Tables 1-3).  While TBI animals did not display a relationship 

between their spatial performance and search strategy, sham animals did have a 

significant positive correlation at 6 months post-injury, r=.75, p<.05.  Neither group had a 

significant correlation at 8 months  post-injury. 

 

 

Table 2 

Bivariate correlations between spatial performance and search strategy at 6 and 8 
months post-injury 
Measure 1 2 3 4 
6 month spatial performance -    

8 month spatial performance .69** -   

6 month search strategy .19 .15 -  

8 month search strategy .20 .04 .63** - 

*p<.05, **p<.001 
 
 
 
Table 3 
 
Bivariate correlations between spatial performance and search strategy at 6 and 8 
months post-injury – sham animals 
Measure 1 2 3 4 
6 month spatial performance -    

8 month spatial performance .48 -   

6 month search strategy .75* .26 -  

8 month search strategy .36 -.01 .51 - 

*p<.05, **p<.001 

 

 



 

48 

Table 4 
 
Bivariate correlations between spatial performance and search strategy at 6 and 8 
months post-injury – TBI animals 
Measure 1 2 3 4 
6 month spatial performance -    

8 month spatial performance .744** -   

6 month search strategy .14 .12 -  

8 month search strategy .18 .02 .64** - 

*p<.05, **p<.001 

 

 



 

49 

Discussion 

 

 The overall results from this experiment show that there are long-term behavioral 

deficits following a moderate to severe brain injury in neonates.  jTBI mice as a group 

showed persistent deficits in hyperactivity, sensorimotor, and spatial learning domains, 

consistent with the literature of more short-term injuries (Fujimoto, et al., 2004; Max, et 

al., 2004). 

 Specifically, TBI animals displayed persistent hyperactivity over time.  These 

differences did not resolve with repeated exposures to the test but remained constant up 

to 8 months after the injury, equivalent to an adult human in terms of development.  

These results corroborate the clinical literature on ADHD after TBI in human patients of 

ages 0-18, consistent with the neonatal age used in this study (Geraldina, et al., 2003; 

Max, et al., 1998).  Similarly, results show that younger, more severely injured animals 

performed worse than other TBI groups over time.  Like the above TBI/sham differences, 

post-natal day 7 animals showed more hyperactivity than any group except P10 mild 

animals.  These results corroborate the shorter-term data in the literature suggesting that 

more severe injuries will produce greater sensorimotor deficits (Li, et al., 2006; Max, et 

al., 2004). 

 TBI animals did show long-term motor deficits compared to sham animals.  These 

differences existed at both the 6 month and 8 month timepoints, suggesting a statistical 

lack of “rehabilitation” over time, with motor deficits between sham and TBI animals 

growing larger over time due to the slower rate of adaptation to the task demonstrated by 

the TBI animals.  This finding coincides with the findings of other studies, that have 
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demonstrated in the short-term that moderate or severely injured animals demonstrate a 

much slower rate of recovery (Hamm, et al., 1994).  These findings do run contrary to 

other examples in the literature, which found no discernable sensorimotor deficits after 

11 weeks (Fujimoto, et al., 2004; Lindner et al., 1998), and normal sensorimotor 

performance in 2.0mm animals 30 days after injury using identical TBI parameters 

(Brody, et al., 2007).  However, these studies all examined TBI in older juvenile or adult 

animals rather than the neonatal groups used in this study.   

The injury severity may explain the lack of differences seen between animals of 

the two injury conditions.  While the literature has shown that animals injured to different 

degrees recover at different rates, the relatively severe injury model used in this study 

may demonstrate a floor effect for the lack of recovery demonstrated.  Thus, moderately 

injured mice performed just as poorly as severely injured mice because both groups 

represent the lower end of functional recovery observed on this test.  Although other 

studies have demonstrated baseline-level sensorimotor recovery anywhere between a few 

days after surgery to 11 weeks (Brody, et al., 2007; Hamm, et al., 1994; Lindner, et al., 

1998), the younger sample used in this study may account for the floor effect observed in 

terms of sensorimotor performance.  Clinically, younger patients do often demonstrate 

worse motor performance than older children or adolescents which corroborates the 

results obtained by our animal model (Ewing-Cobbs, et al., 1998). 

TBI animals displayed lower overall anxiety-like behaviors than shams.  This was 

opposite the hypothesized effect.  The obtained result may be due to several sham 

animals that remained within the confines of the walled area nearly exclusively, nearly 

98% of the time.  Qualitatively these animals appeared calm and displayed normal 
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exploratory behaviors, but did not venture beyond the walled area for a large percentage 

of time.  Statistically, these animals were not outliers and thus were not removed from 

analysis.  TBI animals also expressed a much lower minimum score, due to some animals 

remaining in the lit area the vast majority of their trials.  These animals also did not 

appear overly stressed (i.e., did not “freeze” in the open), but simply appeared 

unmotivated to explore.  If the above results are considered valid, they contradict 

previously published evidence showing elevated anxiety in humans and animals 

following TBI (Granacher, 2003; N. C. Jones, et al., 2008; Jorge & Starkstein, 2005).  

However, most of the experimental animal data has used rats rather than mice.  Although 

no published evidence comparing rats and mice on the zero maze was found, it is possible 

that the obtained results are indicative of a simple species difference. 

TBI animals displayed no differences in depressive-like symptoms on the forced 

swim test.  These results were similar to those observed by other studies at the 6-month 

timepoint (N. C. Jones, et al., 2008).  Depressive effects have been seen experimentally 

up to 90 days after injury, and this test has been shown to be a good measure of 

helplessness and depression (Lahmame, et al., 1997; Milman, et al., 2005; Porsolt, et al., 

1977).  However, published experimental data have either not focused on TBI or not 

obtained results after 90 days.  For these reasons, any follow-up long-term testing should 

include shorter timepoints (e.g. 30 or 90 days) to corroborate the injury model with 

previously published data.   

TBI animals showed persistent spatial learning deficits on the Morris water maze 

compared to sham animals.  These results are consistent with past literature, which has 

shown the water maze to be an effective discriminant between TBI and sham animals 



 

52 

(Brody, et al., 2007; Fujimoto, et al., 2004; Morris, 1984; Prins, et al., 2003; Zohar, et al., 

2003).  However, no studies have extrapolated cognitive differences following TBI out to 

8 months in a juvenile model.  These results are consistent with clinical literature, which 

has shown similar memory deficits following a TBI (Donders & Warschausky, 2007; H. 

S. Levin, et al., 1982).  The fact that obtained results from this study showed a consistent 

learning deficit, rather than a timepoint-sensitive interaction, suggests that the cognitive 

deficits have stabilized by 8 months, and little improvement would be seen past that 

point. 

TBI animals displayed less efficient search strategies on the Morris water maze 

compared to sham animals.  Although both groups used more spatial-type strategies from 

initial testing at 6 months post-injury to the final 8 month timepoint, sham animals used 

more overall spatial strategies than TBI animals, suggesting a qualitative memory 

difference between the two groups.  The fact that TBI animals used a greater percentage 

of less efficient non-spatial type strategies compared to shams points to a “compensation 

effect” whereby TBI animals circumvent their memory deficits using other means.  The 

fact that these differences occurred even after 8 months show that TBI animals show 

persistent hippocampus-mediated learning and memory deficits that do not resolve over 

time. 

While TBI animals did not demonstrate any relationship between their spatial 

performance and search strategy, sham animals did exhibit a relationship at 6 months 

post-injury.  This suggests that a more efficient search strategy is associated with better 

spatial performance in sham animals, but not in TBI animals.  The lack of a relationship 

between strategy and performance in TBI animals indicates that a more efficient search 
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strategy is not associated with an increase in actual spatial performance.  Thus, although 

TBI animals showed improvements in their spatial abilities and search strategies over 

time, consistent between-group differences and the lack of a performance-strategy 

relationship suggest that TBI animals do not benefit from a more efficient strategy.  Sham 

animals, however, showed a correlation between their spatial abilities and strategy use at 

6 months, suggesting they were able to benefit from employing more spatial-type 

strategies.  The lack of a relationship at 8 months in sham animals may represent a 

possible floor effect in strategy use, as sham animals had less room to improve strategy 

usage relative to their overall spatial performance, given their relatively high use (40%) 

of spatial strategies at 6 months. 

In terms of power, appropriate N’s were used for this experiment as suggested by 

pilot data (suggested N=48).  Appropriate power (>.80) was achieved for all significant 

effects other than between-group differences for the activity test.  However, as power 

analyses are more concerned with type-II error and a significant difference was found, 

this was less of a concern.  All non-significant findings demonstrated a lack of 

appropriate power.  This is more of a concern, and calls into question several non-

significant findings, particularly the depressive findings, as between-group anxiety 

differences achieved a more reliable power of .62.  The lack of a standardized forced 

swim protocol, due to its relative scarcity in the TBI literature, may account for the large 

within-group variability and small effect sizes noted for depressive effects.  Future 

research would benefit from a more robust a priori power analysis incorporating all 

planned behavioral tests.     
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In summary, this study has shown that persistent, stable deficits still exist up to 8 

months post-injury in neonatal mice.  These results suggest that a middle-aged human 

who suffered a TBI as a newborn may see effects as late as middle age or beyond.  

Because longitudinal human studies of this nature would take an immensely long time, 

animal research should be used to expedite the study of long-term TBI and design 

therapeutic interventions.  Whereas few differences between the two ages or severities 

existed, many TBI-sham differences were noted.  These differences were persistent, 

suggesting long-term impairment in sensorimotor and  hippocampally-mediated memory 

domains, and the presence of hyperactivity in TBI animals (compared to shams).  Using 

these domains as a guide, future research can focus on specific interventions that target 

these domains to bring rehabilitation to the many clinical victims of TBI. 
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