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Abstract 

 

As the applications of lithium-ion batteries (LIBs) are expanding from mobile electronic devices to 

electrical vehicles (EVs) and energy storage systems (ESSs), concerns about their safety hazard also 

increased.1 The safety issues for LIBs are originated from flammable organic liquid electrolytes.2 In this 

regard, all-solid-state lithium-ion batteries (ASLBs) employing nonflammable inorganic solid 

electrolytes (SEs) have emerged as a promising alternative.3-7 In another aspect, as the price of Li 

sources soared, Na-ion batteries (NIBs) are considered to be promising next-generation batteries 

especially for ESS application.8 Due to similarities of NIBs to LIBs in terms of 

chemistry/electrochemistry, extensive research efforts have been focused on NIBs in recent years.9 

Furthermore, development of Na-ion conducting SEs opened a research field for all-solid-state Na-ion 

batteries (ASNBs).10-15  

Herein, the highly conductive Ca-doped Na3PS4 SEs and their use for bulk-type ASNBs will be 

presented in this thesis.  
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I. Introduction 

 

 Because of the high energy and power densities of lithium-ion batteries (LIBs), they have become vital 

components in portable electronic devices. Nowadays, their range of applications is expanded to large-

scale areas such as battery-driven electric vehicles (EVs) and energy storage systems (ESSs).1  

However, in case of the conventional LIBs using organic liquid electrolytes, they have some problems 

like flammability, leakage, low Li-ion transference number and so on.2 Furthermore, the cost issues for 

lithium originated from the limited resources, the recent rapid rises in the price of Li2CO3, and the 

geologically uneven distribution are serious obstacles for large-scale application.8 In this regard, all-

solid-state sodium-ion batteries (ASNBs) could be a solution.3, 10-15 Sodium is very abundant resources 

rather than lithium. Moreover, it has similar redox potential (Na: -2.71 V vs. NHE, Li: -3.04 V vs. NHE 

at 25℃) and chemistry to lithium.8 Solid electrolytes (SEs) also have many other merits compared to 

organic liquid electrolytes such as high thermal stability, high transference number, wide operating 

temperature etc.17 Although β ”-alumina (~10-2 S cm-1 at room temperature) was the first 

commercialized Na-ion conductors for Na-S batteries aiming for the application to large-scale energy 

storage systems,18 these oxide electrolytes are not suitable to fabricate room-temperature-operable 

ASNBs because they need a deteriorating high-temperature sintering process.3, 10 In contrast, sulfide 

electrolytes are simply sinterable by cold-pressing owing to their covalent nature of the bonds.3, 10, 19 

Moreover, recently, sulfide Na superionic conductors (10-4-10-3 S cm-1 at room temperature) have been 

extensively developed.  

Tatsumisago and co-workers developed the first sulfide Na superionic conductor, cubic Na3PS4 (c-

Na3PS4), showing a conductivity of 0.2 mS cm-1 at room temperature, which was contrasted by a 

previously known tetragonal Na3PS4 (t-Na3PS4, 0.001 mS cm-1).10 By X-ray structural analysis, the high 

conductivity of the cubic phase was attributed to existence of the three-dimensional ionic conduction 

pathways between Na1 and Na2 sites.20 Consistently, the first-principles investigations showed that the 

occupancy of Na2 site (or Na disorder) be the key to the high ionic conductivity in c-Na3PS4.21 Then, 

extensive efforts for further developments have been followed.  

 The first approach was an aliovalent substitution of P. The replacement of P in c-Na3PS4 with 6 mol.% 

Si resulted in 0.74 mS cm-1.11 And ~0.25 mS cm-1 was also achieved by doping with Ge, Ti and Sn in 

Na3PS4 (Na3+xMxP1-xS4, M: Ge4+, Ti4+, Sn4+).22 These enhancements were explained that the excess Na, 

which led to an increased occupancy of the interstitial Na2 site, enabled the increase in conductivity.11, 

20 This reasoning was supported by the subsequent theoretical calculation results.21 The second direction 

was an isovalent substitution of P or S in Na3PS4 with the larger element of Sb, As, Se: High ionic 

conductivities of ~1 mS cm-1 were achieved for tetragonal Na3SbS4,13, 23 tetragonal Na3P0.62As0.38S4,15 

and cubic Na3PSe4.12, 24 The last strategy was to generate Na vacancy defect. Contrary to the attention 
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to the cubic structure as the origin of high ionic conductivity of c-Na3PS4 in the initial report,10 ab initio 

calculations showed that a stoichiometric c-Na3PS4 is a poor ionic conductor whereas an introduction 

of Na vacancies drastically enhances the conductivities.21, 24-25 Consistently, it was reported that creation 

of Na vacancy by aliovalent substitution of S in Na3PS4 with Cl, which resulted in tetragonal 

Na2.9375PS3.9375Cl0.0625, could achieve a high conductivity of 1 mS cm-1.14 However, this value was 

obtained by using spark-plasma-sintered pellets, where grain boundary or inter-particle resistances 

could be significantly minimized, compared with the pellets prepared by conventional cold-pressing 

process.  

 Herein, the development of the new sodium superionic conductor will be presented in this thesis, Ca-

doped cubic Na3PS4. Aliovalent substitution of Na in t-Na3PS4 with Ca results in the cubic phase (Na3-

2xCaxPS4) and creates Na vacancies, enabling to drastically enhance the ionic conductivities up to ~1 

mS cm-1 at 25℃ (x = 0.135) by using simple cold-pressing process. The fast ionic movements in Ca-

doped c-Na3PS4 are investigated by 23Na solid-state nuclear magnetic resonance (NMR) spectroscopy. 

Density functional theory (DFT) calculations confirm the evolution of cubic structure by Ca-doping, 

the excellent Ca-dopability, and the increased activation barrier by Ca-doping. Furthermore, promising 

electrochemical performance of TiS2/Na-Sn ASNBs employing Na2.730Ca0.135PS4 is highlighted.  
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II. Theoretical & Mathematical Development 

 

2.1 Principle of Lithium-ion Batteries 

 

A battery is the system that chemical energy of the electrode materials is converted to electric energy 

by using electrochemical reactions. The types are classified into the primary battery and secondary 

(rechargeable) battery. The primary battery can be used once for a certain period of time. On the other 

hand, the secondary battery can be used repeatedly for a long time by recharging.26  

In the secondary battery, the ion inserted into electrode is a carrier that stores electric energy in 

electrode by achieving charge neutrality with electrons come from current collectors. The ion can also 

accelerate the reaction rate within the electrode by moving quickly toward the electrode in the 

electrolytes areas. Furthermore, the storable amounts of electric energy are determined by the quantity 

of ions. Therefore, the electrode materials and the type of ion are the main components of deciding the 

actually storable electric energy. Generally, it is called the lithium secondary batteries using the carriers 

as lithium-ion.26  

 The batteries used in mobile devices such as cell-phones, laptops, camcorders, etc. are the lithium 

secondary batteries. They have the advantages that they have high working potential and can be used 

repeatedly. In addition, they have high energy density because lithium-ion is a light carrier. Normally, 

lithium secondary batteries use transition metal oxide materials as cathode and carbon materials as 

anode. In case of using electrolytes as liquid electrolytes, it is called lithium-ion batteries (LIBs).26 And 

their schematic diagram is presented in Figure 1.  

 More specifically, cathode materials should have the stable structure because lithium-ion in the lattice 

structure participate in reversible redox reactions. Accordingly, transition metal oxide materials are 

usually used as cathode materials. On the other hand, anode materials should have the standard 

reduction potential similar to lithium for high energy storage. In case of electrolytes, Li salts and organic 

liquid electrolytes which have high electrochemical, thermal, chemical stability are used. Furthermore, 

for preventing short circuit by contact between cathode and anode, the separators composed of polymer 

materials which can be melted at high temperature or ceramic materials having high thermal stability 

are used.26  
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Figure 1. Schematic diagram of conventional LIBs 
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2.2 All-Solid-State Sodium-ion Batteries 

 

 Since the first lithium-ion batteries (LIBs) using organic liquid electrolytes are commercialized in the 

early 1990s by Sony Corporation,27 LIBs have been widely used for portable electronic devices.1-2 

However, these conventional LIBs are having difficulties in expanding their application areas to large-

scale storage systems. Because the conventional LIBs suffer from their flammability, leakage, low Li-

ion transference number, etc.2 Furthermore, there exist the cost issues for lithium originated from the 

limited resources, the recent rapid rises in the price of Li2CO3, and the geologically uneven distribution.8 

In this regard, all-solid-state sodium-ion batteries (ASNBs) using inorganic solid electrolytes (SEs) are 

promising alternative to conventional LIBs.3, 10-15 Sodium has not only similar redox potential but also 

chemistry to lithium. Additionally, it is very abundant resources rather than lithium.8 Moreover, SEs 

have several advantages compared to organic liquid electrolytes: broad operating temperature, non-

flammability, unity transference number (the cation is only mobile), absence of desolvation.3, 17  

 In all-solid-state batteries, there are two kinds of fabrication processes. One is the thin film type which 

uses the expensive vacuum deposition equipment.28-29 Therefore, their application areas are restricted 

to small-scale systems. The other one is the bulk type method. This method doesn’t require the highly 

expensive vacuum deposition process. Hence, this bulk type process is promising for not only portable 

electronic devices but also large-scale applications. And the schematic diagram of this bulk type all-

solid-state batteries are shown in Figure 2.3, 30-32  

  



18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic diagram of bulk-type all-solid-state batteries3 
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2.2.1 Inorganic and organic solid electrolytes 

 

 Although organic liquid electrolytes-based batteries have superior electrochemical performance, they 

suffer from serious safety issues such as flammability, leakage, undesired concentration polarization 

and narrow operating temperature. In contrast, the solid electrolytes (SEs) do not have these 

drawbacks.17 Thanks to these characteristics, they are considered as a promising candidate for the large-

scale energy storage systems.3-7, 10-15  

 The SEs can be categorized as organic and inorganic. The representative organic solid electrolyte (or 

solid polymer electrolyte) is poly(ethylene oxide) (PEO). This organic solid electrolyte has several 

advantages, such as flexibility, light weight, stability with lithium metal, good processability, low shear 

modulus, high resistance to volume changes of the electrodes in the cell.7, 9 However, there are also 

some disadvantages. The critical drawback is low ionic conductivity at room temperature (10-5~10-7 S 

cm-1).33 Therefore, most of organic SEs should be operated at relatively high temperature (at least 

60℃).34-35 In case of inorganic SEs, on the other hand, they have higher ionic conductivity at room 

temperature and thermal stability compared to organic SEs. From these reasons, many research have 

been performed.7, 9  

 More specifically, the inorganic SEs can be divided into three types: oxide, sulfide and the others 

(hydride, halide, borate or phosphate, etc.).3, 7 The sodium β”-alumina solid electrolyte (BASE, β”-

Al2O3),36-37 NASICON (Na1+xZr2SixP3-xO12, 0 < x < 3)38-39 are the well-known oxide SEs. Their ionic 

conductivities are 10-3~10-4 S cm-1 at room temperature. These values are higher than organic SEs. 

Furthermore, they can be handled in the atmosphere and have high electrochemical stability.7 However, 

it is hard to apply the oxide SEs to bulk-type ASNBs, because of their high interfacial resistance between 

electrolytes and electrodes.32, 40-41 For solving this problem, a sintering process is performed. 

Unfortunately, after this process, although the interfacial resistance is significantly decreased, unwanted 

side reactions are occurred.40-41 Therefore, the oxide SEs are not suitable for bulk-type ASNBs. In 

contrast of these oxide SEs, the sulfide SEs are suitable for bulk-type ASNBs because of their 

deformability.10, 32 The bulk-type ASNBs using sulfide SEs are fabricated by simple cold-pressing 

method.10, 32 Therefore, there are no side reactions during the fabricating process. This is the reason why 

the sulfide SEs are extensively studied.3-5, 9-10, 17, 30-31  
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III.  Experimental Method & Materials 

 

3.1 Preparation of Materials 

 

The t-Na3PS4 or Ca-doped Na3PS4 powders were prepared by mechanochemical milling of 

stoichiometric mixture of Na2S (Sigma Aldrich), CaS (99.9%, Sigma Aldrich), and P2S5 (99%, Sigma 

Aldrich) at 500 rpm for 3-5h, followed by heat-treatment at 700 oC or 550 oC for 12 h in a sealed fused 

silica ampoule. For the preparation of the c-Na3PS4 powders, the same milling condition as for the Ca-

doped Na3PS4 was employed, followed by heat-treatment at 270 oC for 1 h in a sealed fused silica 

ampoule. 

 

3.2 Materials Characterization 

 

 For the X-ray diffraction (XRD) measurements, the samples were sealed hermetically using Be 

window inside the glove box. D8-Bruker Advance diffractometer equipped with Cu Kα radiation 

(1.54056 Å) was used with a continuous scanning mode of 0.025o s-1. Rietveld refinements were carried 

out using the GSAS program. Profiles were fitted with a pseudo-Voigt function. The 23Na static NMR 

spectra and the spin-lattice relaxation rate 1/T1 were acquired by using 400 MHz Avance II+ (Bruker 

solid-state NMR), for which the 23Na resonance frequency was 105.84 MHz. Samples were sealed in 4 

mm ZrO2 rotor under Ar-filled glove box. All signals were obtained after π/2 pulse at temperature range 

of 165-435 K. Chemical shifts were calibrated to 0.1 M NaCl aqueous solution. 

 

3.3 Computational details 

 

Density-functional theory (DFT) calculations in the Perdew-Burke-Ernzerhof (PBE) generalized 

gradient approximation (GGA) in the software package VASP and the pseudopotentials generated under 

projector-augmented wave (PAW) method are used. To find structural ground states, a 4 x 4 x 4 

Monkhorst-pack (MP) k-point grid was used for integrations within the Brillouin zone (BZ) based on 

t-Na3PS4 unit cell containing 16 atoms. Energy cut-off for plane wave basis was set to 500 eV and force 

criteria for the structure optimization was 0.01 eV/Å 

Activation barrier for the Na vacancy migration was calculated by the nudged elastic band method 

(NEB). The supercell contains 8 formula units of t-Na3PS4 to minimize the interaction between the 

periodic cells. A 3  3  2 k-point grid was used and the plane-wave energy cutoff was set to 500 eV 

for the NEB calculation. 

Gamma-point only used for the molecular dynamics (MD) simulations as a K-points set. About 4.2% 
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of Na vacancies with and without Ca ions are introduced in the MD simulations (one Na ion is removed 

from the supercell containing 24 Na ions), to figure out the role of Ca ions. The MD simulations were 

taken on the canonical ensemble and the time step was set to 0.2 ps. Temperatures were chosen at 1400K, 

1100K, 800K, 700K, 600K and 500K, and the MD simulations were performed 40000 time steps for 

statistical analysis. 

 

3.4 Electrochemical Characterization 

 

After the Na3-2xCaxPS4 pellets were prepared by cold-pressing at 370 MPa, the ionic conductivity was 

measured by an AC impedance method using an Iviumstat (IVIUM Technologies Corp.) with symmetric 

Na-ion blocking Ti/Na3-2xCaxPS4/Ti cells. The TiS2/Na-Sn ASNBs were fabricated as follows: 

Composite electrodes were prepared from the TiS2/c-Na3PS4 or TiS2/Na2.730Ca0.135PS4 mixture with a 

weight ratio of 50:50. Na3Sn prepared by mixing of Na metal (Sigma Aldrich) with Sn metal powders 

(Sigma Aldrich) served as the counter electrode, exhibiting an operating voltage of ~0 V (vs. Na/Na+). 

As the separating solid electrolyte bilayer, 100 mg of c-Na3PS4 pellets were used. 10 mg of the as-

prepared electrodes were spread on the separating solid electrolyte layer, followed by pressing at 370 

MPa. Then, 50 mg of the as-prepared Na3Sn was attached on the other side of separating solid 

electrolyte layer by pressing at 370 MPa. All the procedures were performed in a 

polyaryletheretherketone (PEEK) mould (diameter = 13 mm) with two Ti metal rods as current 

collectors. All processes for fabricating the all-solid-state cells were performed in an Ar-filled dry box. 

Galvanostatic charge-discharge measurements were performed at 30 oC between 1.0-2.5 V. 
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IV.  Results & Discussion 

  

Ca2+ ion is the most suitable divalent ion that can substitute Na+ ion because of their similar ionic sizes 

(Ca2+: 100 pm, Na+: 102 pm). Figure 3a shows the X-ray diffraction (XRD) patterns of Na3-2xCaxPS4 

prepared by solid-state reaction at 700 oC. Without Ca-doping (x = 0.000), doublet peaks appear, which 

is an indicative of tetragonal phase. As the amount of Ca increases, however, the doublet peaks are 

merged to be the single ones, reflecting evolution of the cubic phase. However, those single peaks are 

seen to be asymmetric, implying coexistence of the cubic and tetragonal phases, which is confirmed by 

X-ray Rietveld refinement analysis later. As an unknown phase starts to evolve at x = 0.450 (Figure S1), 

the doping range of Ca in Na3PS4 is determined to be 0 < x < 0.450. Figure 3b presents an X-ray Rietveld 

refinement profile for Na2.730Ca0.135PS4. All the peaks could be indexed to the cubic structure (a = 

6.9768(1) Å, Z = 2, I4̅3m, Table S1). The Rietveld refinement results for all the compositions are also 

provided in Figure S2 and Tables S2-17. The refinement was carried out by assuming the co-existence 

of Ca-free t-Na3PS4 and Ca-doped c-Na3PS4 phases. The unit cell structure consists of a body-centered 

cubic sublattice of PS4
3- tetrahedra through which Na1 sites with higher occupancies and Na2 sites with 

lower occupancies are interconnected in three-dimensional pathways (Figure 3c). Ca occupies in the 

Na1 site, which agrees well with the DFT calculation. As the amount of Ca is increased, the lattice 

volume for Ca-doped c-Na3PS4 is slightly decreased (~1% for Na2.730Ca0.135PS4, Table S1), which could 

be explained by the slightly smaller ionic size of Ca2+ than Na+. 

 DFT calculations were carried out to investigate the formation energies and the corresponding c/a ratio, 

varied by Ca-doping and Na vacancy (VNa) which is generated to compensate the higher charge of Ca2+ 

(Figure 3d). A calculated c/a ratio for the pristine t-Na3PS4 is 1.021 which is in good agreement with 

the experimental observation (1.017).16 The calculated structures with different vacancy-concentrations 

(Na2.9375PS4 and Na2.875PS4) and -sites (VNa1 vs. VNa2) maintain tetragonal geometries with c/a = 1.017-

1.031. Therefore, VNa without Ca doping does not induce the cubic structure. In contrast, VNa with Ca 

doping stabilizes the cubic structure. As shown in the triangles in Figure 3d (the red region of ‘Ca + 

VNa’, Na2.750Ca0.125PS4), when Ca and VNa coexist, the c/a ratio tends to decrease to 0.995 and 0.98, 

exhibiting the most stable energies. Also, when more VNa is added (the blue region of ‘Ca + 2VNa’, 

Na2.625Ca0.125PS4, denoted squares and diamonds), the structure gets even closer to cubic geometry. The 

tetragonal-to-cubic phase transition could be associated with the interaction of Ca2+ and VNa. The 

detailed vacancy formation energies for undoped and Ca-doped Na3PS4 are also compared in Table 1. 

The formation energies for Ca-doped Na3PS4 (~0.6 eV) are approximately half of those for the undoped 

Na3PS4 (~1.0 eV), indicating the excellent dopability of Ca2+ with inducing VNa in Na3PS4.  In 

particular, I find that VNa near Ca2+ is the most stable. Strong coulombic repulsion between Ca2+ and 

Na+ ions prevents Na+ ions from being located in the original Na site close to Ca2+, which creates Na 
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vacancies around Ca2+. 

Variation of the Na-ionic conductivities at 25 oC as a function of Ca substitution (x) in a series of Na3-

2xCaxPS4, measured by AC impedance method using ion-blocking Ti/Na3-2xCaxPS4/Ti symmetric cells, 

are displayed in Figure 3e (Nyquist plots and Arrhenius plots of conductivities are shown in the inset in 

Figure 3e, and Figure S3, respectively). t-Na3PS4 without Ca-doping shows a conductivity of 0.077 mS 

cm-1. This value is lower than that for c-Na3PS4 (0.210 or 0.1 mS cm-1 in this work) but much higher 

than that for t-Na3PS4 in a previous report (~0.001 mS cm-1).10 The discrepancy may stem from different 

Na vacancies, affected by experimental conditions such as impurities.24-25 As the amount of Ca-doping 

(x) increases, the conductivity drastically increases and hits a maximum value of 0.94 mS cm-1 at x = 

0.135, which is comparable to those for other state-of-the-art sulfide Na superionic conductors (Table 

S18, pros and cons for each materials are also compared). The subsequent increase of the amount of Ca 

(x) results in the decrease in conductivities (e.g, 0.12 mS cm-1 at x = 0.30). Despite the enhancement in 

conductivity by Ca-doping, the activation energies for Ca-doped Na3PS4 (0.36-0.49 eV) turned out to 

be higher than other superionic conductors (typically, 0.2-0.3 eV)3 and, surprisingly, even higher than 

that for t-Na3PS4 (0.35 eV), which will be discussed in later section. For the samples prepared at 550 

oC, the Ca-doping-driven transition from tetragonal to cubic phases and enhancement in conductivities 

along with the increased activation energies are also confirmed (Figures S4, S5). 

The Arrhenius equation for conductivity is given by Equation 1.42 

T = AT exp(-Ea/kBT)        (1) 

where  is the conductivity, T is the temperature in K, AT is the pre-exponential factor, Ea is the 

activation energy (or activation barrier), kB is the Boltzmann constant. 

The pre-exponential factor AT in the Arrhenius equation for ionic conductivity is a function of the site 

occupancy for mobile ions (nc), according to Equation 2.42   

AT  nc(1-nc)         (2) 

As demonstrated by much lower vacancy formation energies by Ca-doping, compared with the undoped 

cases (Table 1), the excellent dopability of Ca in Na3PS4 indicates that the site occupancy of Na (the 

occupancy for Na1 site) could approach more readily to 0.5 where nc(1-nc) becomes maximum, 

compared with the undoped Na3PS4. In this context, the parabolic curve of the conductivity as a function 

of the amount of Ca-doping (x) in Na3-2xCaxPS4 in Figure 3e could be associated with the function of 

site occupancy nc(1-nc). The similar behavior is also found in the classical example of Li4-3xAlxSiO4 (0 

 x  0.5).42 Whereas the end members of solid-solution, Li4SiO4 and Li2.5Al0.5SiO4 are almost insulating, 

the conductivity for the intermediate composition (x = 0.25) exhibits an optimal conductivity of ~10-5 

S cm-1 at 100 oC. 
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Figure 3. Characterization of Ca-doped Na3PS4 (Na3-2xCaxPS4 (0  x  0.300)) prepared at 700 oC. a) 

Powder XRD patterns for Na3-2xCaxPS4. b) X-ray Rietveld refinement profile for Na2.730Ca0.135PS4. c) 

Crystal structure of Na2.730Ca0.135PS4 with the unit cell outlined. d) Calculated formation energy as a 

function of c/a ratio, varied by Ca doping and VNa concentration. The filled, empty, and half-filled 

symbols are denoted to represent vacancy positions and concentrations in Na1 or Na2 site of t-Na3PS4. 

The circles denote Na2.9375PS4 (empty or filled in black) and Na2.8750PS4 (half-filled in green). The other 

symbols represent concentrations of vacancy, and positions of Ca and VNa for Ca-doped Na3PS4; 

Na2.750Ca0.125PS4 (up and down triangle in red). Na2.625Ca0.125PS4 (square in blue and diamond in violet, 

empty or filled). The short dashed line (---) and the dash dot line (--) indicate the c/a ratios for t-Na3PS4 

by the experiment16 and calculation, respectively. e) Na-ion conductivities at 25 oC and activation 

energies for Na3-2xCaxPS4. Nyquist plots are shown in the inset in (e).  
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Table 1. Calculated vacancy formation energy for Na3PS4 without and with Ca-doping.  

Doping Concentration of Ca Concentration of vacancy Composition Formation energy [eV] 

Without Ca-doping 

- 1.67% Na2.9500PS4 1.00 

- 2.08% Na2.9375PS4
a) 1.01 

- 4.17% Na2.8750PS4
b) 1.13 

With Ca-doping 

3.13% 1.67% Na2.900Ca0.0500PS4 0.59 

6.25% 2.08% Na2.875Ca0.0625PS4 0.58 

12.50% 4.17% Na2.750Ca0.1250PS4
c) 0.58 

12.50% 8.33% Na2.625Ca0.1250PS4
d) 1.61 

a) V2.1%-Na1(2), b) V4.2%-Na1(2), c) V4.2%-Na1(2) / Ca-Na1(2), d) V8.3%-Na1(2)&1(2) / Ca-Na1(2) 
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In an attempt to obtain alternative information about Na-ion dynamics, 23Na solid-state NMR spectra 

for t-Na3PS4 and Na2.730Ca0.135PS4 were obtained. Figure 4a displays 23Na static NMR spectra recorded 

at various temperatures. At low temperature of 165 K, the both spectra show broad complex asymmetric 

signals, which are attributed to second-order quadrupolar and dipolar interactions.25 As the temperature 

increases, the broad spectra become narrower, which is referred to motional narrowing.25, 43 For Ca-

doped Na3PS4, at 345 K the spectra shows a symmetric peak, which could be interpreted that Na-ion 

mobility is high enough to average out the quadrupolar and dipolar interactions. In stark contrast, t-

Na3PS4 shows the asymmetric resonance signal even at high temperature of 435 K. Figure 4b shows 

23Na NMR spin-lattice relaxation rates (1/T1) as a function of temperature. For Ca-doped Na3PS4, 1/T1 

exhibits a maximum at 360 K where the hopping frequency of Na ions is regarded to be equivalent to 

the Lamor frequency0.25 In contrast, 1/T1 for t-Na3PS4 does not reach maximum at high temperature 

of 435 K, implying that Na-ion mobility in t-Na3PS4 at 435 K is still lower than the order of Lamor 

frequency.25 In short, both the motional narrowing (Figure 4a) and spin-lattice relaxation rate results 

(Figure 4b) confirm much faster diffusion of Na ions in Ca-doped c-Na3PS4 than in t-Na3PS4, which 

agrees perfectly with the conductivity results (Figure 3e).   

Furthermore, the activation energy for Na-ion diffusion in t-Na3PS4 and Ca-doped Na3PS4, obtained 

from the slope of log[1/T1] as a function of 1000/T (Figure 4b), appears to be 0.226 and 0.346 eV, 

respectively.25 These values are lower than those obtained by the AC method (0.35 and 0.49 eV, 

respectively, Figure 3e), which is reasonable considering additional contributions such as electrode-

electrolyte interfacial and grain boundary resistances for the AC method.19 Importantly, in line with the 

AC impedance results (Figure 3e), the abnormal behavior of higher activation energies of Na-ion 

diffusion for Ca-doped Na3PS4 than that for t-Na3PS4 is confirmed by the 23Na NMR results (Figure 4b).  

Lastly, using the Einstein–Smoluchowski equation, a self-diffusion coefficient for Ca-doped Na3PS4 at 

360 K, where 1/T1 reaches maximum, is calculated to be 1.4  10-7 cm2 s-1.25 The Nernst-Einstein 

relation then gives the corresponding ionic conductivity of 11 mS cm-1. Using the Arrhenius equation 

with the activation energy of 0.346 eV, a conductivity of 1.4 mS cm-1 at 25 oC was obtained (see 

Supporting Information for details). Despite the rough estimation, interestingly, this value is comparable 

to that measured by the AC method (0.94 mS cm-1, Figure 3e). 

In most cases for superionic conductors, enhanced ionic conductivities have been observed according 

to the decreased energy barriers.6, 44 It is general explanation that highly polarizable elements, such as 

S and I, as a framework constituent are advantageous for fast ionic conduction because the energy 

barrier could be lowered.42 Ceder and coworkers provided an insight that body centered cubic (bcc) 

anion frameworks allow direct hopping of Li ions between adjacent tetrahedral site with low energy 

barriers, enabling high ionic conductivities.6 In a recent report by Mo and coworkers, significantly 

lowered energy barriers by concerted migrations of multiple ions are revealed, which rationalized the 
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high ionic conductivities for non-bcc structured superionic conductors.44 All the above-mentioned 

instances placed a strong emphasis on correlation between high conductivity and low energy barrier.  

In this regard, the result for Ca-doped Na3PS4, namely the enhanced conductivities with the increased 

energy barriers, is not common.   
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Figure 4. Results of 23Na static NMR for t-Na3PS4 and Ca-doped cubic Na3PS4 (Na2.730Ca0.135PS4). a) 

23Na NMR spectra and b) 23Na NMR spin-lattice relaxation rate 1/T1 at different temperatures. 

Activation energies are shown in (b). 
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As an effort to understand this abnormal behavior of Ca-doped Na3PS4, the following theoretical 

methods were carried out; i) the nudged elastic band (NEB) method to examine the effect of Ca2+ on 

mobility of Na+ which is locally distributed around Ca2+, ii) ab-initio molecular dynamic (MD) to 

analyze the averaged macroscopic effect of Ca2+ on the Na+ mobility in the entire systems. 

As shown in Figure 5, the Na+ migration barriers in the out-of-plane and in-plane directions for 

undoped Na3PS4 (Na2.875PS4) are quite low; ~0.08 eV. In sharp contrast, the Na migration barriers near 

Ca2+ in the out-of-plane and in-plane directions for Ca-doped case (Na2.750Ca0.125PS4) appears to be 2-3 

times higher; 0.26 eV and 0.14 eV, respectively. Ca2+ has a higher positive charge than Na+, pushing 

away nearby Na+ ions due to strong Coulomb repulsion. Thus, VNa is easily formed near Ca2+, and easily 

trapped, resulting in high migration barrier. The detailed information on the energy barriers for the other 

paths is summarized in Figure S6 and Table 2.  

 

  



30 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Calculated migration barriers for Na vacancy (VNa) in the undoped and Ca-doped Na3PS4. 

The insets show the initial, transition, and final states. a) Out-of-plane and b) in-plane migration barriers 

for Na2.875PS4. c) Out-of-plane and d) in-plane migration barriers for Na2.750Ca0.125PS4. 
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Table 2. Calculated Na vacancy (VNa) energy barriers for Na3PS4 without and with Ca-doping.  

Defect type Composition Energy barrier [eV] 

Na vacancy (in plane) 
Na23P8S32

a) 

(Na2.875PS4) 

0.0753 

Na vacancy (out of plane) 0.0831 

Na vacancy + Na substitution with Ca2+ at Na1 site (in plane) 
Na22Ca1P8S32

a)  

(Na2.750Ca0.125PS4) 

0.223 

Na vacancy + Na substitution with Ca2+ at Na2 site (in plane) 0.135 

Na vacancy + Na substitution with Ca2+ at Na2 site (out of plane) 0.257 

a) 4.17% of VNa concentration 
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Figure 6 shows the mean square distance (MSD) of total Na at 1100 and 700 K, which are relatively 

high and low temperatures, respectively. As shown in Figure 6a, at 1100 K, the MSD for Ca-doped 

Na3PS4 (Na2.750Ca0.125PS4, red) is much higher than that for pristine t-Na3PS4 having no VNa (blue).  

This result confirms that the large number of VNa created by Ca-doping generates Na+ ion pathways and 

facilitates the Na+ migration. This is also in line with the suggestion in previous report that the 

conductivity for Na3PS4 is governed by the vacancy rather than structure.14, 21, 24-25 However, when t-

Na3PS4 has the same VNa concentration without Ca doping (Na2.875PS4), the MSD (black) is relatively 

higher than that of the Ca-doped counterpart. This could be rationalized by the higher energy barrier to 

Na+ migration induced by Ca2+. Similar tendency is found for the Na+ migration at 700 K.  As shown 

in Figure 6b, the MSD for both undoped t-Na3PS4 (Na2.875PS4) and Ca-doped Na3PS4 (Na2.750Ca0.125PS4) 

exhibits linearly increasing behaviors up to 30 ps. After 30 ps, however, the slope of Ca-doped Na3PS4 

becomes zero, while the slope of undoped Na3PS4 keeps linearly increasing. This is because the thermal 

energy is not sufficient for Na+ ions to migrate beyond the energy barrier created by Ca2+. These MD 

calculations match with the trapping effect shown in the NEB results (Figures 5, S6). Detailed MSD 

data for other temperatures are shown in Figure S7. 

In short, by the complementary analysis so far, it could be rationalized that the overall conductivity 

would be determined by interplay between the enhancement by the VNa generated by Ca-doping and the 

depression by the increased energy barriers nearby the Na sites in which Ca2+ is occupied. It is believed 

that the Ca-doped Na3PS4, showing the high conductivities and the high activation energies, is an 

exceptional case that the former prevails the latter. 
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Figure 6. MSD depending on the time step for a) 1100 K and b) 700 K. 

 

  



34 

 

Finally, TiS2/Na-Sn ASNBs were fabricated using c-Na3PS4 (0.1 mS cm-1) and Ca-doped Na3PS4 

(Na2.730Ca0.135PS4, 0.94 mS cm-1) and cycled between 1.0-2.5 V at 30 oC. Figure 7a shows the first two-

cycle discharge-charge voltage profiles at 50 A cm-2. The charge capacities at second cycle for the 

cells using c-Na3PS4 and Na2.730Ca0.135PS4 are 191 and 205 mA h g-1, respectively. These values, 

corresponding with extraction of 0.8 mole of Li, are not only much higher than those for the TiS2-based 

ASNBs in previous reports14-15 but also comparable to those for the TiS2/Li cells using liquid 

electrolytes.8 The charge capacities for TiS2/Na-Sn cells employing c-Na3PS4 and Na2.730Ca0.135PS4, as 

a function of cycle number, varied by different current densities, are also displayed in Figure 7b (voltage 

profiles at different current densities and different cycle numbers are shown in Figure S8). At high 

current densities, capacity gap varied by the solid electrolytes becomes distinct. At 0.50 mA cm-2, while 

the TiS2/Na-Sn ASNB using c-Na3PS4 shows negligible capacities of 11 mA h g-1, the one using 

Na2.730Ca0.135PS4 retains 20% capacity at 50 A cm-2 (40 mA h g-1). Moreover, capacity retention for 

TiS2/Na-Sn ASNBs employing Na2.730Ca0.135PS4 after 25 cycles is 91.9% which is contrasted by 91.0% 

for the case using c-Na3PS4. Overall, the decent electrochemical performances for TiS2/Na-Sn ASNBs 

using Na2.730Ca0.135PS4 highlights the high conductivity of Ca-doped Na3PS4 and the good compatibility 

between TiS2 and Ca-doped Na3PS4. 
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Figure 7. Electrochemical performance of TiS2/Na-Sn ASNBs using c-Na3PS4 and Ca-doped Na3PS4 

(Na2.730Ca0.135PS4) at 30 oC. a) First two-cycle discharge-charge voltage profiles at 50 A cm-2
 (0.06C). 

b) Charge capacity as a function of cycle number, varied by different current densities. The numbers 

are the current densities in A cm-2. 
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V. Conclusion 

  

In summary, the highly conductive Na3-2xCaxPS4 solid electrolytes were synthesized (x = 0.135, ~1 mS 

cm-1
 at room temperature) with a range of nominal compositions of 0.000 ≤ x ≤ 0.450. From the 

structural analysis using XRD, Rietveld refinement and DFT, the tetragonal-to-cubic phase transition 

with Ca doping was identified (P4̅21c → I4̅3m). Furthermore, the abnormal behavior that the activation 

energy is increased with high ionic conductivity was studied by DFT, NEB, MD calculations and NMR 

analysis. Finally, the high capacity and stable cycling performance of TiS2/Na-Sn ASNBs using Na3-

2xCaxPS4 were demonstrated.  
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VI.  Supporting information 

 

6.1 Conductivity from 23Na NMR results 

 

 At which the spin-lattice relaxation rate (1/T1) is maximum (at 360 K), jump frequency for Na ions 

(1/) is regarded to be equivalent to the Lamor frequency 0 (Equation S1).  

1/ = 0               (S1) 

0 = B0               (S2) 

where  is the magnetogyric ratio (for 23Na, 70.761 × 106 rad s-1 T-1), B0 is 9.4 T. 

Thus,  is calculated to be 1.50  10-9 s at 360 K (or 1/ is calculated to be 6.65  108 s-1). 

Using the Einstein-Smoluchowski equation (Equation S3), the self-diffusion coefficient (Dsf) is 

obtained to be 1.4  10-7 cm2 s-1 at 360 K. 

Dsf = a2/(6)              (S3) 

where a is a jump distance, assuming 3.5 Å based on the distance between the Na1 sites. 

The Nernst-Einstein relation is given in Equation S4. 

 = Nq2Dc/(kBT)              (S4) 

where N is the charge carrier density, for Na2.730Ca0.135PS4, 5.46/(6.975  10-8 cm)3 = 1.61  1022 cm-3, 

q is the elementary charge (For Na+, 1.602  10-19 C), kB: the Bolzmann constant, 1.380  10-23 J K-1, T 

is 360 K, Dc is the conductivity diffusion coefficient. 

Assuming f/HR is 1 in Equation S5, Equation S4 relates the conductivity () with the self-diffusion 

coefficient (Dsf) (Equation S6). Then, the conductivity () is obtained to be 1.1  10-2 S cm-1 at 360 K. 

Dc = (f/HR)Dsf              (S5) 

where f is the correlation factor, HR is the Haven ratio. 

 = Nq2Dsf/(kBT)                               (S6) 

By the Arrhenius equation (Equation 1), the conductivity at 25 oC is obtained to be 1.4  10-3 S cm-1 by 

applying the Ea value of 0.346 eV. 
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6.2 Formation energy from DFT 

 

The vacancy formation energy for t-Na3PS4 depending on Ca2+ ion and vacancy concentrations are listed 

in the Table 1. The calculations for all the possible configurations were performed. Among them, the 

most stable structures were selected to calculate their formation energies in Table 1. 

The vacancy formation energies were calculated using the formular presented by Wei et al.45 

Ef[A] = Etot[A] - Etot[bulk] - ∑ 𝑛𝑖𝜇𝑖𝑖                                           (S7) 

where Etot[A] is the calculated total energy of the system with the vacancy and Ca ion. And Etot[bulk] is 

the calculated total energy of the system without the vacancy and Ca ion respectively. μi indicates the 

atomic chemical potential of species i that varies based on different experimental environment (Table 

S19). ni is the number of atoms of species i, added (ni > 0) or removed (ni < 0) from the pristine structure 

with no defect. 
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6.3 Supporting figures 

 

 

 

Figure S1. Powder XRD patterns for Na3-2xCaxPS4 prepared at 700 ℃. Unknown peaks are d

enoted ‘*’. 
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Figure S2. X-ray Rietveld refinement profiles for Na3-2xCaxPS4 prepared at 700 ℃. 

 

  



41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Arrhenius plots of Na-ion conductivities for Na3-2xCaxPS4 prepared at 700 ℃. 
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Figure S4. XRD patterns for Na3-2xCaxPS4 prepared at 550 oC. 
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Figure S5. Conductivities and activation energies at 25 oC for Na3-2xCaxPS4 prepared at 700 oC and 

550 oC.  
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Figure S6. Calculated migration barriers for Na vacancy (VNa) in the Na3PS4 (Na2.750Ca0.125PS4). The 

inset shows the initial, transition, and final states. Migration barriers on the plane under the Ca2+ ion 

(a, b) and on the plane containing Ca2+ ion (c, d). 
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Figure S7. MSD depending on the time step for a) 1400 K, b) 800 K, c) 600 K, and d) 500 K. 
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Figure S8. Discharge-charge voltage profiles for TiS2/Na-Sn ASNBs employing Na2.730Ca0.135PS4. 
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6.4 Supporting tables 

 

Table S1. Crystallographic information for Na3-2xCaxPS4 prepared at 700 ℃, obtained by the Rietveld 

analysis.  

x  

a (Å) c (Å) Rwp V (Å3) 
Phase fraction of  

c-Na3PS4 [wt%] 
For nominal 

composition 

For Ca-doped  

c-Na3PS4 phase 

0.000 - 6.9555 7.0887 0.0984 342.95 - 

0.075 0.112 6.9803 6.9803 0.1008 340.11 67.7(5) 

0.120 0.171 6.9773 6.9773 0.1065 339.67 70.6(4) 

0.135 0.148 6.9768 6.9768 0.0637 339.61 91.7(1) 

0.150 0.166 6.9750 6.9750 0.1085 339.34 90.5(1) 

0.180 0.212 6.9723 6.9723 0.1024 338.94 85.8(3) 

0.225 0.245 6.9695 6.9695 0.1096 338.54 92.2(1) 

0.300 0.300 6.9516 6.9516 0.0651 335.93 100 
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Table S2. Crystallographic data and Rietveld refinement results for the sample with x = 0.000 for Na3-

2xCaxPS4 prepared at 700 ℃. 

Crystal System Tetragonal 

Space Group P -4 21 c (No. 114) 

Lattice Parameter, Volume, Z a = 6.9555(3) Å, c = 7.0887(4) Å 

 V = 342.95(4) Å3, Z = 2 

Atoms x y z Wyckoff Occupancy Uiso 

Na1 0 0.5 0.4234(10) 4d 1 0.034(3) 

Na2 0 0 0 2a 1 0.036(5) 

P 0 0 0.5 2b 1 0.025(3) 

S 0.3129(5) 0.3460(5) 0.1656(5) 8e 1 0.024(1) 

*Rp : 0.0757, Rwp : 0.0984, Rexp : 0.0856, R(F2) : 0.1951, 𝜒2 = 1.327 

 

 

 

Table S3. Selected interatomic distances and angles for the sample with x = 0.000 for Na3-2xCaxPS4 

prepared at 700 ℃. 

Selected interatomic distance (Å) 

Na1-S 3.037(5) × 2 Na2-S 3.451(4) × 4 

 2.972(6) × 2  2.908(4) × 4 

 2.808(4) × 2   

P-S 2.054(3) × 4   

Selected interatomic angles (°) 

S-P-S 110.3(2) × 2   

 109.1(1) × 4   
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Table S4. Crystallographic data and Rietveld refinement results for the sample with x = 0.075 for Na3-

2xCaxPS4 prepared at 700 ℃. 

Crystal System Cubic 

Space Group I -4 3 m (No. 217) 

Lattice Parameter, Volume, Z a = 6.9803(3) Å 

 V = 340.11(4) Å3, Z = 2 

Atoms x y z Wyckoff Occupancy Uiso 

Na1 0.5 0.5 0 6b 0.697(4) 0.036(4) 

Na2 0.75 0.5 0 12d 0.115(11) 0.036(4) 

Ca 0.5 0.5 0 6b 0.0373 0.036(4) 

P 0 0 0.5 2a 1 0.020(5) 

S 0.1726(4) 0.1726(4) 0.1726(4) 8c 1 0.022(3) 

* Rp : 0.0793, Rwp : 0.1008, Rexp : 0.0883, R(F2) : 0.1991, 𝜒2 = 1.601 

 

 

 

Table S5. Selected interatomic distances and angles for the sample with x = 0.075 for Na3-2xCaxPS4 

prepared at 700 ℃. 

Selected interatomic distance (Å) 

Na1-S 3.449(3) × 4 Ca-S 3.449(3) × 4 

 2.851(1) × 4  2.851(1) × 4 

Na2-S 2.640(2) × 4 P-S 2.086(5) × 4 

Selected interatomic angles (°) 

S-P-S 109.471(3) × 2   

 109.471(2) × 4   
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Table S6. Crystallographic data and Rietveld refinement results for the sample with x = 0.120 for Na3-

2xCaxPS4 prepared at 700 ℃. 

Crystal System Cubic 

Space Group I -4 3 m (No. 217) 

Lattice Parameter, Volume, Z a = 6.9773(1) Å 

 V = 339.67(2) Å3, Z = 2 

Atoms X y z Wyckoff Occupancy Uiso 

Na1 0.5 0.5 0 6b 0.682(3) 0.036(3) 

Na2 0.75 0.5 0 12d 0.100(10) 0.036(3) 

Ca 0.5 0.5 0 6b 0.0570 0.036(3) 

P 0 0 0 2a 1 0.030(4) 

S 0.1691(4) 0.1691(4) 0.1691(4) 8c 1 0.019(2) 

* Rp : 0.0821, Rwp : 0.1065, Rexp : 0.0865, R(F2) : 0.3357, 𝜒2 = 1.757 

 

 

 

Table S7. Selected interatomic distances and angles for the sample with x = 0.120 for Na3-2xCaxPS4 

prepared at 700 ℃. 

Selected interatomic distance (Å) 

Na1-S 3.472(3) × 4 Ca-S 3.472(3) × 4 

 2.849(1) × 4  2.849(1) × 4 

Na2-S 2.654(2) × 4 P-S 2.043(5) × 4 

Selected interatomic angles (°) 

S-P-S 109.471(1) × 6   
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Table S8. Crystallographic data and Rietveld refinement results for the sample with x = 0.135 for Na3-

2xCaxPS4 prepared at 700 ℃. 

Crystal System Cubic 

Space Group I -4 3 m (No. 217) 

Lattice Parameter, Volume, Z a = 6.9768(1) Å 

 V = 339.61(1) Å3, Z = 2 

Atoms x y z Wyckoff Occupancy Uiso 

Na1 0.5 0.5 0 6b 0.693(1) 0.032(1) 

Na2 0.75 0.5 0 12d 0.105(3) 0.032(1) 

Ca 0.5 0.5 0 6b 0.0493 0.032(1) 

P 0 0 0 2a 1 0.026(1) 

S 0.1708(1) 0.1708(1) 0.1708(1) 8c 1 0.026(1) 

* Rp : 0.0473, Rwp : 0.0637, Rexp : 0.0406, R(F2) : 0.2423, 𝜒2 = 2.470 

 

 

 

Table S9. Selected interatomic distances and angles for the sample with x = 0.135 for Na3-2xCaxPS4 

prepared at 700 ℃. 

Selected interatomic distance (Å) 

Na1-S 3.460(1) × 4 Ca-S 3.460(1) × 4 

 2.849(1) × 4  2.849(1) × 4 

Na2-S 2.646(1) × 4 P-S 2.064(2) × 4 

Selected interatomic angles (°) 

S-P-S 109.471(1) × 2   

 109.471(0) × 4   
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Table S10. Crystallographic data and Rietveld refinement results for the sample with x = 0.150 for 

Na3-2xCaxPS4 prepared at 700 ℃. 

Crystal System Cubic 

Space Group I -4 3 m (No. 217) 

Lattice Parameter, Volume, Z a = 6.9750(1) Å 

 V = 339.34(2) Å3, Z = 2 

Atoms x y z Wyckoff Occupancy Uiso 

Na1 0.5 0.5 0 6b 0.682(4) 0.033(2) 

Na2 0.75 0.5 0 12d 0.101(6) 0.033(2) 

Ca 0.5 0.5 0 6b 0.0553 0.033(2) 

P 0 0 0 2a 1 0.026(3) 

S 0.1703(3) 0.1703(3) 0.1703(3) 8c 1 0.026(2) 

* Rp : 0.0817, Rwp : 0.1085, Rexp : 0.0872, R(F2) : 0.2405, 𝜒2 = 1.553 

 

 

 

Table S11. Selected interatomic distances and angles for the sample with x = 0.150 for Na3-2xCaxPS4 

prepared at 700 ℃. 

Selected interatomic distance (Å) 

Na1-S 3.463(2) × 4 Ca-S 3.463(2) × 4 

 2.848(1) × 4  2.848(1) × 4 

Na2-S 2.648(1) × 4 P-S 2.057(3) × 4 

Selected interatomic angles (°) 

S-P-S 109.471(1) × 6   
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Table S12. Crystallographic data and Rietveld refinement results for the sample with x = 0.180 for 

Na3-2xCaxPS4 prepared at 700 ℃. 

Crystal System Cubic 

Space Group I -4 3 m (No. 217) 

Lattice Parameter, Volume, Z a = 6.9723(1) Å 

 V = 338.94(2) Å3, Z = 2 

Atoms x y z Wyckoff Occupancy Uiso 

Na1 0.5 0.5 0 6b 0.651(3) 0.034(4) 

Na2 0.75 0.5 0 12d 0.101(10) 0.034(4) 

Ca 0.5 0.5 0 6b 0.0707 0.034(4) 

P 0 0 0 2a 1 0.020(4) 

S 0.1705(4) 0.1705(4) 0.1705(4) 8c 1 0.018(2) 

* Rp : 0.0782, Rwp : 0.1024, Rexp : 0.0845, R(F2) : 0.2573, 𝜒2 = 2.804 

 

 

 

Table S13. Selected interatomic distances and angles for the sample with x = 0.180 for Na3-2xCaxPS4 

prepared at 700 ℃. 

Selected interatomic distance (Å) 

Na1-S 3.460(3) × 4 Ca-S 3.460(3) × 4 

 2.847(1) × 4  2.847(1) × 4 

Na2-S 2.646(2) × 4 P-S 2.059(5) × 4 

Selected interatomic angles (°) 

S-P-S 109.471(2) × 2   

 109.471(1) × 4   
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Table S14. Crystallographic data and Rietveld refinement results for the sample with x = 0.225 for 

Na3-2xCaxPS4 prepared at 700 ℃. 

Crystal System Cubic 

Space Group I -4 3 m (No. 217) 

Lattice Parameter, Volume, Z a = 6.9695(1) Å 

 V = 338.54(2) Å3, Z = 2 

Atoms x y z Wyckoff Occupancy Uiso 

Na1 0.5 0.5 0 6b 0.628(2) 0.036(3) 

Na2 0.75 0.5 0 12d 0.104(8) 0.036(3) 

Ca 0.5 0.5 0 6b 0.0817 0.036(3) 

P 0 0 0 2a 1 0.021(3) 

S 0.1710(3) 0.1710(3) 0.1710(3) 8c 1 0.020(2) 

* Rp : 0.0837, Rwp : 0.1096, Rexp : 0.0907, R(F2) : 0.2736, 𝜒2 = 1.813 

 

 

 

Table S15. Selected interatomic distances and angles for the sample with x = 0.225 for Na3-2xCaxPS4 

prepared at 700 ℃. 

Selected interatomic distance (Å) 

Na1-S 3.455(2) × 4 Ca-S 3.455(2) × 4 

 2.846(1) × 4  2.846(1) × 4 

Na2-S 2.642(1) × 4 P-S 2.064(4) × 4 

Selected interatomic angles (°) 

S-P-S 109.471(1) × 6   
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Table S16. Crystallographic data and Rietveld refinement results for the sample with x = 0.300 for 

Na3-2xCaxPS4 prepared at 700 ℃. 

Crystal System Cubic 

Space Group I -4 3 m (No. 217) 

Lattice Parameter, Volume, Z a = 6.9516(1) Å 

 V = 335.93(1) Å3, Z = 2 

Atoms x y z Wyckoff Occupancy Uiso 

Na1 0.5 0.5 0 6b 0.591(1) 0.039(2) 

Na2 0.75 0.5 0 12d 0.108(4) 0.039(2) 

Ca 0.5 0.5 0 6b 0.100 0.039(2) 

P 0 0 0 2a 1 0.025(2) 

S 0.1712(2) 0.1712(2) 0.1712(2) 8c 1 0.020(1) 

* Rp : 0.0496, Rwp : 0.0651, Rexp : 0.0411, R(F2) : 0.2929, 𝜒2 = 2.560 

 

 

 

Table S17. Selected interatomic distances and angles for the sample with x = 0.300 for Na3-2xCaxPS4 

prepared at 700 ℃. 

Selected interatomic distance (Å) 

Na1-S 3.445(1) × 4 Ca-S 3.445(1) × 4 

 2.839(1) × 4  2.839(1) × 4 

Na2-S 2.635(1) × 4 P-S 2.061(2) × 4 

Selected interatomic angles (°) 

S-P-S 109.471(1) × 2   

 109.471(0) × 4   

 

 

  



56 

 

Table S18. Characteristics for sulfide Na superionic conductors. 

Composition Structure 25 [mS cm-1] Ea [eV] 
Density 

[cm3 g-1] 
Notes Ref 

Na3PS4 Tetragonal  
0.001 

0.077a) 

0.416 

0.35a) 
2.22  

J. Solid-State Chem 

1992 16 

Na3PS4 Cubic 0.2 or 0.46 0.197 2.21  
Nat. Commun. 2011; 

JPS 2014 10 

94Na3PS4·6Na4SiS4 Cubic 0.74 0.238 2.21  RSC Adv. 2014 11 

Na3PSe4 Cubic 1.16 0.21 3.53  
Adv. Energy Mater. 

2015 12 

Na10SnP2S12 Tetragonal 0.356 0.356 2.77  
Nat. Commun. 2016 
46 

Na3SbS4 Tetragonal 
1.1b) 

0.1-0.2c) 

0.20b) 

0.30-0.37c) 
2.85 

Dry-air stable 

Solution-processable 

Angew. Chem. Int. Ed. 

2016 13 

Na2.9375PS3.9375Cl0.0625 Tetragonal 1d) 0.249 2.19  Sci. Rep. 2016 14 

Na3P0.62As0.38S4 Tetragonal 1.46 0.256 2.34  Adv. Mater. 2017 15 

Na2.730Ca0.135PS4 Cubic 0.94 
0.49e) 

0.346f) 
2.22  This work 

a) obtained in this work; b) obtained from solid-state synthesized samples; c) obtained from solution-

processed samples; d) obtained using spark-plasma-sintered pellets; e) obtained by AC method; f) 

obtained by 23Na NMR 
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Table S19. Chemical potential of Na and Ca for decomposed products. 

Defect type Element Chemical potential Decomposed products 

Vacancy Na -2.866 eV Na3PS4 + NaS + P 

Interstitial Ca -5.814 eV CaS + Na + Na2S + Na3P + Na3P11 + Na3PS4 + NaP + P 
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