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ABSTRACT 
 

Amino acids are often used as sleep-inducing supplements, yet the neural basis underlying sleep 

regulation remains unclear. Here we employed Drosophila as a genetic model to demonstrate that 

threonine facilitates sleep onset via a specific GABAergic pathway. Feeding wild-type flies with 

sucrose supplemented with individual amino acids differentially affected their sleep behaviors. 

Glycine, a co-agonist for the N-methyl-D-aspartate receptor, lengthened the average duration of sleep 

bouts and thus improved the sleep quality, consistent with its effects on human sleep. On the other 

hand, threonine markedly increased the daily amount of sleep and shortened latency to sleep onset in a 

dose-dependent manner. Threonine-fed flies also fell asleep faster than control-fed flies when their 

sleep was disturbed in midnight which implicates the SPET is regulated in time of day independent 

manner. Circadian clock components are reported to have intimate relationship with sleep behavior. 

However, our genetic ablation of clock component revealed that the sleep-promoting effects of a 

threonine (SPET) is independent of clock components. GABA-transaminase (GABAT) is a 

mitochondrial enzyme that metabolizes GABA in glial cells so that it results in increased GABA in 

brain in the absence of this enzyme. Genetic ablation or pharmacological inhibition of GABA-

transaminase masked SPET. Pharmacological inhibition of GABA reuptake by feeding nipecotic acid 

(NipA) also abolished SPET. A transcriptional reporter for intracellular Ca2+ levels revealed that a 

threonine diet led to excitation of a specific subset of GABAergic neurons, whereas a conditional 

blockade of the synaptic transmission in GABAergic neurons suppressed SPET. Transgenic RNA 

interference of GABAB receptor in neurons suppressed SPET whereas RNA interference of GABAB in 

glia fully sustains it. It further implicated metabotropic GABA receptors in the neural output pathway 

of SPET. Finally, we have elevated the endogenous threonine levels by genetic down-regulation of 

threonine metabolizing enzyme. Hypomorphic mutants of threonine 3-dehydrogenase (CG5955) had 

elevated threonine levels and showed shorter time for latency to sleep in both natural and sleep-

disturbed condition. Pan-neuronal knock down of CG5955 by RNA interference was sufficient for 

enhancing sleep drive. Taken together, these findings reveal a neural mechanism underlying how 

animals adaptively adjust their sleep behaviors based on a specific diet and define a novel sleep-

regulatory pathway that intimately links essential threonine metabolism to the control of sleep drive. 

Given genetic elevation of endogenous threonine levels facilitates sleep onset, threonine can be 

considered as an endogenous sleep enhancer. 

 

 

 

Keywords: sleep regulation | threonine | GABA  
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I. INTRODUCTION 
 

1.1 Sleep  

Sleep is somewhat life-threatening physiology of animals since during sleep stage they 

dramatically lose consciousness and sensibility which then become helpless about the environmental 

threats. But evolutionary pressure has allowed sleep to be here. There must be an exceedingly 

important role of sleep beyond its huge opportunity costs. Obviously deprivation of sleep causes 

several physiological defects. It has been known that poor sleep causes mood and emotion changes as 

well as impaired motor function (1). Also deprivation of sleep affects every aspects of cognition 

problems including diminished ability for alertness (2), decision making (3), long term memory 

consolidation (4), learning (5) and executive function (6). The alterations of immunity (7) and 

metabolism (8) are also parts of symptoms. Chronic total sleep deprivation, ultimately, brings a death 

(9). Despite its wide range of impacts on life, not much is known about its architecture.  

The circadian clock and sleep homeostasis are two key regulators that shape daily sleep behaviors 

in animals (10). In stark contrast to the homeostatic nature of sleep, the internal machinery of sleep is 

vulnerable to external (e.g., environmental change) and internal (e.g., genetic mutation) conditions 

that lead to adaptive changes in sleep behaviors. The sleep behavior is conserved among mammals, 

insects, and even lower eukaryotes (11, 12).  

 

1.2 Role of inhibitory neurotransmitter GABA in sleep 

To date, a number of sleep-regulatory genes and neurotransmitters have been identified in animal 

models as well as in human (13-15). For instance, gamma-aminobutyric acid (GABA) is a non-

proteinogenic amino acid which acts as a prominent inhibitory neurotransmitter in brain. Early study 

found that the global central increase of GABA by either infusion of GABA or inhibition of GABA 

transaminase (GABAT) increased slow-wave sleep in cats (16, 17). In humans it has been shown that 

increase of GABA decreased latency to sleep as well as the amount of waking (18) while it has no or 

little effects on the duration of sleep stages (19, 20). The sleep regulatory role of GABA has been well 

established via the action of GABA(A) receptor. Muscimol, the GABA(A) agonist, significantly 

enhanced low frequencies of electroencephalogram (EEG) during slow-wave sleep (21, 22). Similarly, 

another agonist of GABA(A) receptor gaboxadol (THIP) could increase non-rapid eye movement 

sleep (non-REMS) and the enhancement of slow-wave activity in both rats and humans (23, 24). In 

the structural view point, gallopin et al., found that anterior hypothalamic neurons which were known 

to regulate sleep are GABAergic (25). 

The sleep regulatory role of GABA is now well documented and is also conserved through 
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invertebrate to vertebrate (26). Recent study showed that in the absence of GABAT internal GABA 

level was increased which results in sleep promotion in drosophila (27) which is comparable to 

humans. The long-sleep phenotype in GABA-T mutants accompanies higher sleep consolidation and 

shorter latency to sleep onset, consistent with the observations that pharmacological enhancement of 

GABAergic transmission facilitates sleep in flies and mammals, including humans (17, 18, 20). In 

addition, resistance to dieldrin (Rdl), a Drosophila homolog of the ionotropic GABA receptor, 

suppresses wake-promoting circadian pacemaker neurons in adult flies to exert sleep-promoting 

effects (28-31) . Similarly, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), an agonist of the 

ionotropic GABA receptor, promotes sleep in insects and mammals (23, 24, 32) while downregulation 

of GABAB-R2 in the large PDF neurons (l-LNv) could reduce sleep maintenance during the second 

half of the night (33).  

 

1.3 Possibilities of amino acids as sleep medications 

Many sleep medications modulate GABAergic transmission. A prominent side effect of anti-

epileptic drugs relevant to GABA is also drowsiness (34). Conversely, glycine supplements improve 

sleep quality in a way distinct from traditional hypnotic drugs, minimizing deleterious cognitive 

problems or addiction (35, 36). N-methyl-D-aspartate receptor (NMDAR), one of the ionotropic 

glutamate receptors, has been identified as a neural substrate for glycine-dependent sleep promotion 

(37, 38). Because glycine and D-serine act as co-agonists of the glutamate receptor, we hypothesized 

that other amino acids might display neuromodulatory effects, particularly on sleep behaviors.  

 

1.4 Drosophila as a model animal for sleep study 

To dissect out molecular and neural components important for sleep regulation of amino acids, the 

employment of a proper sleep model and its quantitative analyses in genetically traceable organisms 

are essential. Since the first identification of the voltage-gated potassium channel Shaker as a sleep-

regulatory gene in Drosophila (39), fruit flies have been one of the most advantageous genetic models 

to dissect molecular and neural components important for sleep homeostasis and sleep plasticity. In 

flies, any period of immobility lasting more than 5 minutes is considered as sleep episode (40, 41). 

This operational definition of sleep is based on differential arousal threshold after a given period of 

immobility, and is widely accepted for measuring fly sleep using the standard Drosophila Activity 

Monitor (DAM) System. Amount of sleep minutes, then, is the most straightforward sleep parameter 

which can be calculated by summing up each length of sleep episodes. This system further provides 

more sophisticated sleep parameters such as average sleep bout length (ABL) and latency to sleep 

onset. Not only the parameters interact intimately, but also they are regulated independently in 

coincidence with the complexity of sleep behavior. 
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1.5 Threonine as a novel sleep regulating molecules 

Threonine is a ketogenic amino acid where catabolism of the amino acid consists of three 

independent pathways result in two ketones (L-2-amino-acetoacetate, 2-ketobutyrate) and glycine. In 

this study we found a novel sleep-regulating molecule by screening 20 amino acids on sleep behavior 

in a quantitative manner in drosophila. Threonine supplements during behavior assay gradually 

increases total sleep amount and decreases latency to sleep both in a day by day and a dose-dependent 

manner. Several lines of our genetic and pharmacological evidence suggest that GABAergic 

transmission mediates the SPET. While circadian clocks have been thought to control the latency to 

sleep, we demonstrated that the SPET neither requires circadian pacemaker neurons nor the 

functionality of circadian clocks. Importantly, genetic engineering that elevates endogenous levels of 

threonine was sufficient to enhance sleep drive. Taken together, we propose threonine as a novel 

sleep-regulatory molecule that promotes sleep primarily by facilitating wake to sleep transition 

 

1.6 Summary 

In this study, we employed a Drosophila genetic model of sleep behaviors to discover sleep-

promoting effects of a threonine diet (SPET). Although circadian clocks may govern the timing of 

sleep onset, we demonstrated that SPET relies on a clock-independent GABAergic pathway to 

adaptively affect sleep onset latency. Moreover, genetic elevation of endogenous threonine levels was 

sufficient to enhance the sleep drive. We, thus, propose threonine as a novel sleep-regulatory molecule 

that facilitates the transition from arousal to sleep. 
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II. MATERIALS AND METHODS 
2.1 Fly Stocks.  

Flies were raised on standard cornmeal-yeast-agar medium at 25˚C. The strains, including w1118 

(BL5905), GABA-T[PL](BL19461), Df(3L)BSC731 (BL26829; GABA-T deficiency), 

Df(3L)BSC839 (BL27917; CG5955 deficiency), Pdfr[BG00979] (BL12523), ELAV-Gal4 (BL458), 

GAD1-Gal4 (BL51630), REPO-Gal4 (BL7415), UAS-GABA-B-R1 RNAi (BL51817), and UAS-

CG5955 RNAi (BL64566), were obtained from the Bloomington Drosophila Stock Center. 

CG5955[GS20382] (201409), Rdl[1] (106453), and Rdl[MD-RR] (106444) were obtained from the 

Kyoto Stock center. Per[01], Clk[Jrk], Pdf-Gal4, Cry-Gal4, to-Gal4, UAS-TNT, UAS-shibirets, and 

UAS-mLexA-VP16-NFAT have been described previously (25, 26, 47-51). 

 

 

2.2 Sleep Analyses.  

All behavioral tests were performed using individual male flies, unless otherwise indicated. Each 

fly was housed in a 65 × 5 mm glass tube containing 5% agarose with 2% sucrose (behavior food). 

Locomotor activity was recorded using the Drosophila Activity Monitor system (Trikinetics) under 

12-h LD cycles at 25°C and quantified by the number of infrared beam crosses per minute. Sleep 

bouts were defined as no activity for ≥5 min. Sleep parameters were analyzed using an Excel macro 

(52). For amino acid supplements, each amino acid was dissolved at the indicated concentrations in 

the behavior food. For oral administration of GABA-T or GABA transporter inhibitors, EOS (Tokyo 

Chemical Industry) or NipA (Sigma) was directly dissolved to 10 mM in behavior food containing the 

indicated concentrations of threonine. Flies were pre-fed on amino acid- and/or inhibitor-containing 

behavior food for 3.5 days and their sleep behaviors were monitored for 24 h. 

 

 

2.3 Measurement of Sleep Latency after Arousal.  

Arousal threshold after mechanical stimulus was measured as described previously (53) with 

minor modifications. Briefly, locomotor activities were recorded in standard LD cycles, while 

behavioral test tubes containing individual male flies were scraped with a thin wood stick at zeitgeber 

(ZT) 16 (lights-on at ZT0; lights-off at ZT12). Mechanical stimuli used in our tests include: 1) 

scraping sound and vibration without direct scraping (weak stimulus), 2) gentle scraping (medium 

stimulus), and 3) hard scraping repeated 3–4 times (strong stimulus). Flies were defined as aroused if 

they displayed inactivity for > 5 min prior to the stimuli but showed any locomotor response within 

10 min. The percentage of aroused flies were calculated for each experiment and averaged for each 
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group from three independent experiments. Latency to sleep onset after arousal was individually 

calculated and averaged for each group. To calculate the percentage of light-aroused flies and sleep 

latency after arousal, LD-entrained flies were exposed to an 1-min light pulse at ZT16 instead of the 

mechanical stimuli. 

 

 

2.4 Video Analyses of Locomotor Activity.  

Male flies were pre-fed on control or amino acid-containing behavior food for four LD cycles at 

25°C. After brief anesthetization, flies were individually placed into 6-well plates with an approximate 

height of 2 mm. After 25 min of habituation, time-lapse images were obtained at 10 Hz using 

HandyAVI software (AZcendant). Approximately 3000 frames (corresponding to a 5-min video 

recording) were analyzed using ImageJ software to quantify the locomotor activity of each fly. 

Positional changes in X- and Y-axes were measured from two consecutive frames, and a difference 

larger than three pixels was considered as movement.  

The parameters used in the assay were calculated as follows:  

Total distance = sum(sqrt(x_change(:)^2+y_change(:)^2)); (in cm) 

MovingTime = (number of moved-frames)*(sec/frame); (in sec) 

MovingSpeed = Total distance*1000/MovingTime; (in mm/sec) 

MovingBouts = number of transition from non-moved to moved 

Averaged moving bout length = MovingTime/MovingBouts 

 

 

2.5 Whole-Brain Imaging.  

Transgenic flies were pre-fed on control or amino acid-containing behavior food for four LD 

cycles at 25°C prior to imaging experiments. Whole brains were dissected in phosphate-buffered 

saline (PBS) and fixed in PBS containing 3.7% formaldehyde. Fixed brains were washed three times 

in PBS containing 0.3% Triton X-100 (PBS-T), blocked in PBS-T containing 0.5% normal goat serum, 

and then incubated with mouse anti-GFP (NeuroMab) and rabbit anti-GABA (Sigma) antibodies for 2 

days at 4°C. After washing three times in PBS-T, brains were further incubated with anti-mouse Alexa 

Fluor 488 and anti-rabbit Alexa Fluor 594 antibodies (Jackson ImmunoResearch) for 1 day at 4°C, 

washed three times with PBS-T, and then mounted in VECTASHIELD mounting medium (Vector 

Laboratories). Confocal images were acquired using a Multi-Photon Confocal Microscope 

(LSM780NLO, Carl Zeiss) with Plan-Apochromat 40x/1.3 Oil lens and analyzed using ImageJ 

software.  
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2.6 Quantitative PCR.  

Total RNA was purified from 10 flies per each genotype (five males and five females) using Trizol 

Reagent, according to the manufacturer’s instructions (Thermo Fisher Scientific). cDNA was prepared 

from DNase I-treated RNA samples using the M-MLV Reverse Transcriptase reagent (Promega) and 

random hexamers. Diluted cDNA samples were quantitatively analyzed by SYBR Green-based Prime 

Q-Mastermix (GeNet Bio) and gene-specific primers using the LightCycler 480 real-time PCR system 

(Roche). To validate the efficiency of transgenic RNA interference, total RNAs from head or body 

extracts were analyzed similarly. 

Primer sets were used as following sequences: 

qPabp5b: 5’-ATCTCCCACAGGACGTCAAC-3’; 

qPabp3b: 5’-GCGACGAAGAGAAGGATCAC-3’; 

qCG5955_F: 5’-TTCTGATCACAGGTGGCTTG-3’; 

qCG5955_R: 5’-CGATCTTCTGGAGACCCTTG-3’; 

 

 

2.7 Threonine Measurement.  

Quantitative measurement of threonine was performed as described previously (54) with minor 

modifications. Briefly, 30 female flies were homogenized in 200 µL of PBS containing 0.05% Triton 

X-100. Whole-body extracts were clarified twice by centrifugation, and total proteins in the extracts 

were quantified using the Pierce BCA Protein Assay Kit according to manufacturer’s instructions 

(Thermo Fisher Scientific). After boiling, soluble extracts were further clarified by centrifugation and 

subjected to an enzymatic reaction. Each reaction mixture included 40 µL of 5× HEPES reaction 

buffer (500 mM HEPES pH 8.0, 1 mM NADH, 0.25 mM pyridoxal 5-phosphate, and 5 mM 

dithiothreitol), 160 µL of soluble body extracts, and 1 U of alcohol dehydrogenase (Sigma). In parallel, 

control reactions with a serial dilution of threonine stock solution (16 mM) were used to generate a 

standard curve for quantification. The enzymatic reactions were set up in a 96-well microplate 

(Corning) and incubated for 30 min at 4°C followed by 10-min incubation at 25°C. Absorbance at 340 

nm was measured for each reaction mixture using an Infinite M200 microplate reader (Tecan) before 

1 µL of bacterially purified L-threonine aldolase (LTA) was added to each reaction mixture. The 

reaction mixture was further incubated at 37°C for 5 min and post-LTA absorbance was measured to 

calculate decreases in NADH levels. 

 

 

2.8 Protein Purification of L-threonine Aldolase.  

The coding sequence of LTA was PCR-amplified from genomic DNA of Pseudomonas aeruginosa 

(a gift from R.J. Mitchell) and cloned into a modified pDuet vector (a gift from C. Lee). Bacterial 
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purification of His-tagged LTA proteins using Ni-NTA Agarose (Qiagen) was performed as described 

previously (55). Purified proteins were dialyzed using a dialysis buffer (50 mM NaH2PO4, pH 8.0, 10 

µM pyridoxal 5-phosphate, and 1 mM dithiothreitol), diluted in 50% glycerol, quantified using Pierce 

BCA Protein Assay Kit (Thermo Fisher Scientific), and stored at −80°C prior to use. 

Genomic sequence of LTA is amplified with the following primer set:  

pLTA_F 5’-GATC GGATCCATGACCGATCACACCCAACAG-3’ 

pLTA_R 5’-GATC AAGCTTTCAGGCGCCCATCACCAG-3’ 
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III. RESULTS 
 

3.1 Threonine Diet Increases Sleep Bout Numbers and Shortens Sleep Latency to Promote 

Sleep.  

3.1.1  Threonine enhances sleep drive by shortening latency to sleep. 

To determine if amino acid supplements modulate sleep in Drosophila, we quantitatively assessed 

sleep behaviors in wild-type flies fed 5% sucrose containing 17.5 mM of each amino acid in 12-h 

light:12-h dark (LD) cycles at 25°C. As expected, glycine supplementation enhanced the sleep quality 

by significantly lengthening the average duration of sleep episodes (Fig. 1). The strongest impact on 

sleep quantity and quality was observed with cysteine supplementation. However, the cysteine-fed 

flies showed significant defects in moving speed which could be a representation of sickness. 

Therefore, compromised locomotion and lethality due to a cysteine diet led to its exclusion from 

further analyses (Fig. 3). Intriguingly, threonine supplementation potently elevated total sleep amount 

by increasing the number of sleep bouts. Unlike glycine, it does not accompany with the increase in 

average duration of sleep episodes. In addition, sleep latency after lights-off was specifically 

shortened by threonine compared with that by other amino acids. SPET is dose-dependent and 

observed in both male and female flies (Fig. 2). This implicates the ubiquitous roll of threonine on 

sleep as well as the threonine as a direct sleep regulating factor.  

3.1.2  Sleep-promoting effects of threonine is not result from locomotion defects. 

Among various sleep-relevant parameters we measured, waking activity indicates an activity/min. 

This parameter is partially indicative for locomotive defects. To address the locomotive defects effects 

on SPET, we used 2-dimentional locomotive tracking method. Although a threonine diet led to lower 

waking activity, a video recording of fly locomotor activities with time frames of higher resolution 

confirmed that the threonine supplement did not impair general locomotion since it does not affects 

moving speed of flies (Fig. 3). Moreover, tryptophan or histidine supplements similarly lowered 

waking activity but did not affect sleep behaviors comparable to threonine. Thus, we conclude that 

sleep-promoting phenotype of threonine is genuine while phenotype from cysteine is resulting from 

locomotion defects. 
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Fig. 1. Threonine diet facilitates sleep onset to promote sleep. Wild-type male flies were loaded on to 

5% sucrose food containing 17.5 mM of each amino acid (day 0) and entrained in LD cycles at 25ºC. 

Total sleep amount, latency to sleep onset after lights-off, activity counts while awake, total sleep 

bouts number and average sleep bout length were calculated from individual flies on day 4 and 

averaged per each amino acid. Essential amino acids were indicated by a grey background. Error bars 

indicate SEM (n=29–213). *P < 0.05, **P < 0.01, ***P < 0.001 to control (black bars) as determined 

by Student’s t-test.  
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Fig. 2. Sleep-promoting effects of a threonine diet are dose-dependent and observed in both male and 
female flies. (A-B) Wild-type male (A) or female (B) flies were loaded on to 5% sucrose food 
containing the increasing amount of threonine (day 0) and entrained in LD cycles at 25ºC. Sleep 
behaviors in individual flies were analyzed similarly to the data presented in Fig. 1. Data represent 
average +/- SEM (n=11–213). *P < 0.05, **P < 0.01, ***P < 0.001 to control (black bars) as 
determined by Student’s t-test. 
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Fig. 3. A threonine diet does not impair general locomotion. Wild-type male flies were loaded on to 5% 

sucrose food containing 17.5 mM of each amino acid (day 0) and entrained in LD cycles at 25ºC. 

Locomotor activities in individual flies were video-recorded for 5 min on day 4. Total moving 

distance, moving speed, the number of moving bouts, and averaged moving bout length (ABL) were 

calculated from individual flies and averaged per each condition. Error bars indicate SEM (n=34–76). 

n.s., not significant; *P < 0.05, **P < 0.01, ***P < 0.001 to control (black bars) as determined by 

Student’s t-test. 
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3.1.3  Orally administrated threonine helps sleep drive in a time of day independent manner. 

The increase of sleep often considered as more deep sleep than usual. To determine if SPET 

involves an increase in arousal threshold (i.e., sleep depth), we quantified arousal responses to sensory 

stimuli. To test the arousal threshold, a range of mechanical stimuli is introduced in the middle of 

night and the percentage of aroused flies was calculated for each strength of stimuli. Control- and 

threonine-fed flies displayed no significant differences in the percentage of aroused flies when 

awakened by a range of mechanical stimuli in the middle of night (Fig. 4). However, latency to the 

first sleep episode after mechanical awakening was substantially shortened in threonine-fed flies. 

Similar results were obtained when nighttime sleep was interrupted by a pulse of light (Fig. 4). So we 

can conclude that threonine could promote latency to sleep onset in a various condition including 

light-awakened, mechanically-awakened as well as clock dependent sleep onset. Taken together, these 

data suggest that a higher sleep drive but not a change in sleep depth contributes to SPET.  

  



 23 

 

 
Fig. 4. A threonine diet causes a higher sleep drive. (A) Control- and threonine-fed flies were 

awakened by a range of mechanical stimuli 4 hours after lights-off on day 4. Aroused flies were 

defined as described in Methods. The percentage of aroused flies per each condition was averaged 

from three independent experiments. Sleep latency after arousal was calculated from individual flies 

and averaged per each condition (n=12–27). Error bars indicate SEM. Two-way ANOVA detected 

significant effects of threonine supplementation on sleep latency after arousal (F[1,119] = 20.43, P < 

0.0001) but not on % aroused flies (F[1,16] = 0.227, P = 0.6402). n.s., not significant; **P < 0.01, 

***P < 0.001 as determined by Bonferroni’s multiple comparisons. (B) Wild-type male flies were 

loaded on to 5% sucrose food containing the indicated amount of threonine (day 0) and entrained in 

LD cycles at 25ºC. Control- and threonine-fed flies were exposed to an 1-min light pulse at ZT16 (i.e., 

4 hours after lights-off) on day 4. The percentage of light-aroused flies per each condition was 

averaged from three independent experiments. Sleep latency after light-arousal was calculated from 

individual flies and averaged per each condition (n=61–74). Error bars indicate SEM. n.s., not 

significant; **P < 0.01, ***P < 0.001 to control (black bars) as determined by Student’s t-test. 
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3.2 Genetic or Pharmacological Elevation of Synaptic GABA Masks SPET.  

3.2.1  Sleep-promoting effects of threonine is a clock-independent feature. 

Rdl and wide awake (wake) are two evolutionarily conserved genes that have been implicated in 

the regulation of sleep latency in Drosophila (12, 15). WAKE silences wake-promoting circadian clock 

neurons to promote sleep onset in a manner that is dependent on the circadian neuropeptide Pigment-

dispersing factor (Pdf) and its receptor, Pdfr. In addition, WAKE genetically and biochemically 

interacts with RDL to control sleep latency. Therefore, we questioned whether the effects on sleep 

latency observed with SPET involved this clock-dependent pathway for facilitating sleep onset. Han 

is a pdf receptor mutant while Per01, jrk and cryb are hypomorphic mutants of core clock components. 

However, neither genetic mutations in clock-relevant genes nor transgenic manipulation of circadian 

pacemaker neurons by blocking synaptic transmission impacted sleep latency in SPET (Fig. 5).  
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Fig. 5. Neither mutations in clock-relevant genes nor transgenic manipulation of circadian pacemaker 

neurons impact on SPET. (A) Circadian clock mutants (per01, jrk, han, and cryb) were loaded on to 5% 

sucrose food containing 25 mM of threonine (day 0) and entrained in LD cycles at 25ºC. Sleep 

behaviors in individual flies were analyzed similarly to the data presented in Fig. 1. Data represent 

average +/- SEM (n=19–46). n.s., not significant; **P < 0.01, ***P < 0.001 as determined by 

Student’s t-test. (B) SPET was comparable between trans-heterozygous Rdl mutants and their 

heterozygous controls. Two-way ANOVA detected no significant interaction between genotype and 

threonine supplementation (sleep amount, F[2,130] = 0.6833, P = 0.5067; sleep latency, F[2,130] = 

0.4653, P = 0.6290). Error bars indicate SEM (n=12–30). ***P < 0.001 as determined by Sidak’s 

multiple comparisons test. (C) Neither blocking of synaptic transmission in Pdf-expressing clock 
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neurons (Pdf>TNT) nor genetic ablation of cry-expressing clock neurons (cry>rpr or cry>hid) 

affected SPET. Two-way ANOVA detected no significant interaction of threonine supplementation 

with Pdf>TNT (sleep amount, F[1,49] = 0.4167, P = 0.5216; sleep latency, F[1,49] = 0.01406, P = 

0.9061) or with cry ablation (sleep amount, F[2,101] = 1.094, P = 0.3387; sleep latency, F[2,101] = 

1.153, P = 0.3197). Error bars indicate SEM (n=8–20). *P < 0.05, **P < 0.01, ***P < 0.001 as 

determined by Sidak’s multiple comparisons test.  
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3.2.2  Flies having higher GABA levels does not show additive sleep-increase by threonine. 

Intriguingly, we found that mutants trans-heterozygous for a hypomorphic allele over 

chromosomal deficiency in the genetic locus of GABA-T did not exhibit SPET compared with 

heterozygous controls (Fig. 6). However, it is possible that short sleep latency in GABA-T mutants 

masks SPET because of a floor effect. Therefore, we tested if oral administration of the GABA-T 

inhibitor ethanolamine O-sulfate (EOS) could decrease SPET. EOS treatment increased the amount of 

daily sleep and shortened sleep latency modestly in control flies but substantially suppressed SPET 

(Fig. 6). GABA-T is a mitochondrial enzyme that metabolizes GABA into succinic semialdehyde (8), 

thereby suppressing GABAergic transmission. Accordingly, we reasoned that SPET might involve a 

GABA-dependent sleep drive, and therefore, increases in synaptic GABA levels caused by GABA-T 

mutation probably masks SPET. This idea was further supported by our observation that nipecotic 

acid (NipA), which blocks GABA reuptake from synaptic clefts (24), comparably suppressed SPET 

(Fig. 6). These genetic and pharmacological data together suggest that threonine supplementation 

enhances GABAergic transmission to mediate SPET. 
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Fig. 6. Genetic or pharmacological elevation of GABA masks SPET. (A) SPET was desensitized in 

GABA-T trans-heterozygous mutants compared with their heterozygous controls. Sleep behaviors in 

individual flies were analyzed similarly to the data presented in Fig. 1. Data represent average +/- 

SEM (n=15–36). Two-way ANOVA detected significant interactions between GABA-T mutation and 

threonine supplementation on both sleep amount (F[2,147] = 12.21, P < 0.0001) and sleep latency 

(F[2,147] = 26.53, P < 0.0001). (B) Co-administration of GABA-T inhibitor (EOS) or GABA 

transporter inhibitor (NipA) with threonine blocked SPET. Where indicated, 10 mM of EOS or NipA 

was added to behavior food to pharmacologically increase GABA levels. Data represent average +/- 

SEM (n=22–37). Two-way ANOVA detected significant interactions of threonine supplementation 

with EOS (sleep amount, F[2,155] = 14.07, P < 0.0001; sleep latency, F[2.155] = 11.2, P < 0.0001) or 

with NipA (sleep amount, F[2,162] = 13.09, P < 0.0001; sleep latency, F[2.162] = 26.58, P < 0.0001)). 

n.s., not significant; **P < 0.01, ***P < 0.001 to controls (black bars) as determined by Tukey’s 

multiple comparisons test. 

  

B

0
200
400
600
800

1000
1200
1400

0

20

40

60

80

Sl
ee

p 
Am

ou
nt

(m
in

)

****** n.s. n.s.

Sl
ee

p 
La

te
nc

y (
m

in
)

control EOS
(10 mM)

NipA
(10 mg/ml)

control EOS
(10 mM)

NipA
(10 mg/ml)

***

***

n.s. n.s.

0
200
400
600
800

1000
1200
1400

0

10

20

30

40

50

60

A
Sl

ee
p 

Am
ou

nt
(m

in
)

Sl
ee

p 
La

te
nc

y (
m

in
)

Df(3L)BSC731
GABA-T[PL]

+
+

+
+

+
+

+
+

*** *** n.s.

Df(3L)BSC731
GABA-T[PL]

***

**

n.s.

control 17.5 mM Thr 25 mM Thr

n.s.
n.s.

n.s.
n.s.



 29 

3.3 SPET Implicates GABAergic Excitation and Transmission.  

3.3.1  Threonine diet specifically excites a subset of GABAergic neurons.  

To determine if the threonine diet activates GABAergic neurons, we utilized a transcriptional 

reporter of intracellular Ca2+ levels as a quantitative proxy for neural activity. The transgenic Ca2+ 

indicator employs calcium-dependent nuclear import of the transcriptional activator LexA (CaLexA) 

to drive the expression of green fluorescent protein (GFP) (25). Accordingly, we reasoned that this 

strategy is ideal for monitoring long-term changes in neural activity on a threonine diet because 

threonine supplementation exhibited cumulative effects on baseline sleep in LD cycles (data not 

shown). Confocal microscopy of adult fly brains revealed the strongest GFP expression by CaLexA in 

neurons projecting into antennal lobes (AL), medial antenno-cerebral tract (mACT), and lateral horn 

(LH) (Fig. 7), probably reflecting differences in baseline Ca2+ levels among glutamate decarboxylase 

1 (GAD1)-expressing GABAergic neurons. More importantly, threonine, but not arginine, 

supplementation induced CaLexA signals in a subgroup of GABAergic neurons lateral to antennal 

lobes (LN) (Fig. 8), indicating their specific excitation by the threonine diet. 
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Fig. 7. Transcriptional Ca2+ reporter showed baseline Ca2+ level dependent expression pattern which is 

distinct from nuclear GFP expression. Confocal imaging of nuclear GFP (top, green) or a 

transcriptional reporter for intracellular Ca2+ (CaLexA-induced GFP) (bottom, green) expressed in 

GABAergic neurons by a transgenic GAD1-Gal4 driver. Adult fly brains were immuno-stained with 

mouse anti-GFP and rabbit anti-GABA antibodies (magenta). AL, antennal lobe; D, dorsal; LH, lateral 

horn; LN, laternal interneurons; mACT, medial antenno-cerebral tract; V, ventral; VN, ventral 

interneurons. 
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Fig. 8. Threonine diet excites a specific subset of GABAergic neurons. (A) Representative images of 

LN and VN in control- or threonine-fed flies. Arrow heads indicate threonine-induced expression of 

GFP by CaLexA in LN. (B) The number of LN or VN expressing CaLexA-induced GFP was 

quantified in each hemisphere from control-, threonine-, or arginine-fed flies. Data represent average 

+/- SEM (n=14–32). n.s., not significant; **P < 0.01 as determined by Student’s t-test.  
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3.3.2 GABAergic transmission via a metabotropic GABA receptor contributes to SPET. 

To further validate the involvement of GABAergic transmission in SPET, we expressed a shibirets1 

transgene (26) in GAD1-expressing GABAergic neurons. The shibirets1 is a temperature-sensitive 

mutant allele in a Drosophila homolog of dynamin that interferes with synaptic vesicle recycling and 

thus, blocks synaptic transmission at restrictive (29°C) but not permissive (21°C) temperatures. We 

indeed observed that the synaptic blockade of GABAergic neurons at 29˚C significantly suppressed 

SPET (Fig. 9), indicating that SPET requires pre-synaptic output from GABAergic transmission. 

Moreover, RNA interference (RNAi)-mediated depletion of a metabotropic GABA receptor R1 in 

neurons, but not in glial cells, desensitized SPET (Fig. 10). Taken together, these data suggest that 

SPET implicates the excitation of GABAergic neurons and their neural transmission via a specific 

subtype of GABA receptors. 
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Fig. 9. A thermogenetic blockade of GABAergic transmission masked SPET. Transgenic flies were 

entrained in LD cycles at restrictive (29ºC) or permissive (21ºC) temperature. Sleep behaviors in 

individual flies were analyzed similarly to the data presented in Fig. 1. Data represent average +/- 

SEM (n=20–32 for 29ºC; n=29–41 for 21ºC). Two-way ANOVA detected significant interactions 

between genotypes and threonine supplementation on sleep amount (F[2,163] = 9.811 P < 0.0001) and 

sleep latency (F[2,163] = 18.08, P < 0.0001) at 29ºC. n.s., not significant; *P < 0.05, **P < 0.01, ***P 

< 0.001 as determined by Sidak’s multiple comparisons test.   
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Fig. 10. Pan-neuronal knock down of metabotropic receptor partially blocks SPET. (A) Pan-neuronal 

(ELAV-Gal4) but not pan-glial (REPO-Gal4) deletion of a metabotropic GABA receptor (GABAB-R1) 

by transgenic RNA interference (RNAi) significantly suppressed SPET. Sleep behaviors in individual 

flies were analyzed similarly to the data presented in Fig. 1 except that sleep analyses on day 3 were 

shown. Data represent average +/- SEM (n=26–41). Two-way ANOVA detected significant 

interactions between genotype (pan-neuronal RNAi) and threonine supplementation (sleep amount, 

F[1,131] = 13.37, P = 0.0004; sleep latency, F[1,131] = 2.381, P = 0.1252). No significant interaction 

was observed between pan-glial RNAi and threonine supplementation. n.s., not significant; *P < 0.05, 

**P < 0.01, ***P < 0.001 to Gal4 heterozygous controls as determined by Tukey’s multiple 

comparisons test. (B) Validation of transgenic RNAi for GABAB-R1. The RNAi transgene for 

GABAB-R1 was overexpressed by pan-neuronal (ED2) Gal4 driver. Total RNA was extracted from 

50 fly heads, treated with DNase I, and reverse-transcribed to synthesize cDNA samples. Relative 

mRNA levels of GABAB-R1 or polyA-binding protein (normalizing control) were measured by 

quantitative realtime PCR using gene-specific primers. Relative expression was then calculated by 

normalizing to the relative mRNA level in Gal4 heterozygous controls (black bars, set as 1). Data 

represent average +/- SEM (n=3). ***P < 0.001 as determined by Student’s t-test.  
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3.4 Genetic Increase in Threonine Levels Facilitates Sleep Onset.  

Because SPET was evident with dietary threonine at relatively high concentrations, we next 

determined if elevation in physiological threonine levels could act as an endogenous promoter of 

sleep. We reasoned that genetic mutations in threonine-metabolizing enzymes might cause an increase 

in steady-state levels of endogenous threonine. CG5955 is a fly homolog of threonine 3-

dehydrogenase that converts threonine and NAD+ into L-2-amino-acetoacetate, NADH, and H+ (Fig. 

11). We found a transposable P-element insertion in the proximal promoter region of the CG5955 

locus that decreased relative levels of CG5955 mRNA (Fig. 11). CG5955 mutants trans-heterozygous 

for the hypomorphic allele over the chromosomal deficiency indeed displayed a higher ratio of 

threonine to protein levels than heterozygous controls (Fig. 12). Although mutations in CG5955 did 

not potently affect daily sleep amounts, sleep latency was significantly shortened (Fig. 12). Pan-

neuronal depletion of CG5955 expression was sufficient for shortening sleep latency (Fig. 13), 

mimicking the sleep phenotype in CG5955 trans-heterozygous mutants. Taken together, these data 

demonstrate that genetic elevation in endogenous levels of threonine, particularly in the neurons, is 

sufficient to drive sleep, further supporting threonine as a sleep enhancer. 
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Fig. 11. Schematics of threonine catabolizing enzyme pathway and its genetic locus. (A) A threonine 

metabolic pathway catalyzed by threonine 3-dehydrogenase (CG5955). (B) An insertional mutant 

allele of P element ([GS20382]) in the CG5955 locus. An amplicon used in quantitative PCR is 

depicted by a grey line. 
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Fig. 12. Mutations in threonine 3-dehydrogenase elevate endogenous threonine levels and shorten 

sleep latency. (A) Trans-heterozygous mutations in CG5955 decreased relative levels of CG5955 

mRNA (left, normalized to polyA-binding protein mRNA levels) but elevated those of endogenous 

threonine (right, normalized to protein levels). Data represent average +/- SEM (n=3). (B) Trans-

heterozygous mutations in CG5955 shortened sleep latency. Total sleep amount and latency to sleep 

onset after lights-off were calculated from individual flies in LD cycles at 25ºC and averaged per each 

genotype. Error bars indicate SEM (n=122–151). n.s., not significant; *P < 0.05, **P < 0.01, ***P < 

0.001 to heterozygous controls as determined by one-way ANOVA, Tukey’s multiple comparisons test.   
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Fig. 13. Pan-neuronal depletion of CG5955 by RNAi shortened sleep latency. (A) Total sleep amount 

and latency to sleep onset after lights-off were calculated from individual flies in LD cycles at 25ºC 

and averaged per each genotype. Error bars indicate SEM (n=122–151). n.s., not significant; *P < 

0.05, **P < 0.01, ***P < 0.001 to heterozygous controls as determined by one-way ANOVA, Tukey’s 

multiple comparisons test. (B) Validation of transgenic RNAi for CG5955. The RNAi transgene for 

CG5955 was overexpressed by fat body-specific (TO) Gal4 driver. Total RNA was extracted from 10 

whole flies, treated with DNase I, and reverse-transcribed to synthesize cDNA samples. Relative 

mRNA levels of CG5955 or polyA-binding protein (normalizing control) were measured by 

quantitative realtime PCR using gene-specific primers. Relative expression was then calculated by 

normalizing to the relative mRNA level in Gal4 heterozygous controls (black bars, set as 1). Data 

represent average +/- SEM (n=3). ***P < 0.001 as determined by Student’s t-test.  
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IV. DISCUSSION 
 

4.1 Sleep plasticity by threonine diet does not share previously reported sleep latency regulating 

pathway. 

Studies on sleep homeostasis have been establishing molecular and cellular machinery that 

sustains baseline sleep as well as compensates for sleep deficits. On the other hand, sleep plasticity 

could be considered as a process of how the sleep machinery interacts intimately with external sleep-

regulatory factors (e.g., light, temperature, or starvation) to re-shape the architecture of animal sleep 

accordingly. Using a Drosophila genetic model, we investigated plasticity in sleep behaviors induced 

by a threonine diet and elucidated an underlying neural mechanism of SPET. Wake-promoting 

circadian pacemaker neurons are important for sleep latency at the transition from light to dark (15). 

In addition, expression of WAKE in clock neurons and its association with RDL is a key mechanism 

in the circadian control of sleep onset (12-15). However, our evidence indicates that dietary threonine 

facilitates sleep onset in a light- or circadian-clock-independent manner. Moreover, we found that 

SPET operates via a specific GABAergic pathway implicating a metabotropic GABA receptor, 

thereby defining a novel pathway for control of sleep latency.  

 

4.2 Threonine-induced sleep regulation is distinct from previously reported sleep plasticity 

relevant to food intake. 

Sleep is a complex yet sensitive physiology which is highly vulnerable to both environmental and 

genetic conditions. The sleepiness after a meal (postprandial sleep) gates a relationship between food 

intake represented by metabolism and sleep. Previous studies demonstrated that the availability and 

quality of nutrients affects sleep behaviors in Drosophila. Sucrose contents in food and their gustatory 

perception dominate over dietary protein to affect daily sleep (27-29). Starvation promotes arousal in 

a manner dependent on the circadian clock genes Clock and cycle (30) as well as neuropeptide F 

(NPF), a fly ortholog of mammalian neuropeptide Y(31). In addition, starvation-induced suppression 

of daily sleep requires a subset of circadian pacemaker neurons that expresses NPF. We observed, 

however, that NPF-expressing neurons are dispensable for SPET (Fig. 14). Other studies indicate that 

protein may be one of the nutrients contributing to postprandial sleep drive in Drosophila, suggesting 

its relevance to SPET (32, 33). Although leucokinin (Lk) and Lk receptor (Lkr) play an important role 

in postprandial sleep and starvation-induced arousal (34), we found that SPET was comparable 

between control and their hypomorphic mutant flies (Fig. 15). Therefore, SPET and its neural basis 

reveal a sleep-regulatory mechanism distinct from those involved in sleep plasticity relevant to food 

intake. 
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4.3 Structural similarities of threonine derivative AKB and GABAergic derivatives. 

What is the molecular basis of SPET? One hypothesis is that a molecular sensor specifically 

expressed in a subset of GABAergic neurons responds to an increase in threonine levels, activates 

GABAergic transmission, and shortens latency to sleep onset. Alternatively, but not exclusively, 

structural similarities among threonine, GABA, and their metabolic derivatives (e.g., alpha-

ketobutyrate, a derivative of threonine metabolism; gamma-hydroxybutyrate, a direct derivative of 

GABA) may explain the implication of GABAergic transmission in SPET (Fig.16). 

4.3.1 Beta-hydroxybutyric acid upregulates GABAergic signals. 

GABAergic signaling has been implemented in treating various neuronal diseases such as sleep, 

mood change and epilepsy by targeting GABA receptors. The efficacy of ketogenic diet on medically 

refractory epilepsy has also been discussed through GABAergic aspect. Though the involvement of 

GABAergic is not clear, ketogenic diet could succeed to improve sleep quality as well (42). Notably, 

beta-hydroxybutyrate (BHB), one of the ketone bodies having anti-convulsive effects, has been 

reported to be extensively related with GABAergic signaling. Early studies have shown that the 

GABA was increased upon BHB application possibly via facilitating transamination of aspartate to 

yield glutamate which then metabolized into GABA by the action of glutamate decarboxylase (Gad) 

(43, 44). After a decade from then two other possibilities for GABAergic regulation of BHB has been 

arose. In 2009, Yuka and his colleagues showed BHB-dependent inhibition of GABAT activity in 

cultured astrocytes (45). Following research demonstrated rather direct involvement of BHB in 

GABA synthesis where BHB became a substrate for Gad1 and turns into GABA (46).  

4.3.2 Binding affinities of gamma-hydroxybutyrate and beta-hydroxybutyrate on GABA 

receptors. 

Gamma-hydroxybutyrate(GHB) is a substance occurred from deamination of GABA. In 1964, 

Laborit, in his review paper, classified the effects of GHB into hypnotic, hypothermic, anticonvulsant 

and anesthetic (47). The mechanism of GHB effects is not clear but it can bind to GABAB receptor 

and seemed to require GABAB receptor to exert its effects (48, 49). Only a single study provided by 

Nathan et al., in 2012, showed high affinity of GHB about α4βδ GABAA receptor subunit so far (50), 

nevertheless, the relationship between GHB and GABA receptors is quite evident. Thus, there is no 

such an evidence of GABA receptor binding affinity for BHB yet, it nevertheless could be an another 

possible scenario for GABAergic regulation of BHB. In fact, early electrophyolosical study, which 

have based on the structural similarities between BHB and GABA, showed BHB could induce 

stimulus-evoked IPSPs on hippocampal tissue slice (51), though it is somewhat controversial for now. 

4.3.3 Alpha-ketobutyric acid is a threonine derivative which has high structural similarity with 

beta-hydroxybutyrate 

Threonine is a ketogenic amino acid where catabolism of the amino acid consists of three 

independent pathways result in two ketone bodies (L-2-amino-acetoacetate, 2-ketobutyrate) and 
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glycine. Intriguingly, in 1987, Ronald and Eric evidently showed that, in the NADH-linked enzymatic 

assay, high concentration of 2-ketobutyrate(AKB) interferes the enzymatic reaction between BHB and 

BHB dehydrogenase probably due to the structural similarities between AKB and BHB (52). To our 

surprise, as like other molecules (GABA, BHB, GHB) having anti-convulsiveness several studies 

have reported the anti-convulsive effects of L-threonine also (53-55) which thereby, suggests the 

relationship between threonine and GABA possibly mediated via AKB.  

Given that dietary GABA could results in increase of threonine (56), the GABAergic link shown 

here could rather be cyclic effects among molecules, nonetheless the intimate relationship between 

four butyric acid-derivatives is discernable.  

 

4.4 Threonine could systemically change redox status which alters properties of GABA 

receptors 

Just like ketogenic diet alters the redox status which is represented by [NAD+]/[NADH] ratio, a 

ketogenic amino acid, threonine, could alter the redox status. Both type of GABA 

receptors(ionotropic/metabotropic) are structurally diverse since they are constituted from various 

receptor subunits. The structural diversity might result in functional plasticity. In other word, the 

context dependent regulation could be the key to GABAergic physiology. Among others, there is an 

evidence that the GABAA receptor is modulated by redox reagent (57, 58). During the wakefulness, 

brain consumes energy in every single second for every single activity which is followed by gradual 

dropping in NAD/NADH ratio (59). It’s instinctive to think that animals have evolved to have sleep 

arranging mechanism corresponding to the ratio to buffer NADH attenuation due to awake status. 

There is not much known about NAD/NADH in sleep regulation. Nonetheless, a research of 

NAD/NADH dependent regulation of core clock component, CLOCK/BMAL1, supports the idea (60). 

In this sense, the redox state change could help animals to become asleep state possibly by embracing 

the GABAergic signaling. Hence, even if 2-ketobutyrate can binds to GABA receptors, it might 

require the redox power supplied via metabolism of threonine to be physiologically functional. 

 

4.5 High permeability of threonine via blood brain barrier among amino acids. 

It’s noteworthy that the brain proportion of threonine is only required for the SPET [Fig.10 and 

Fig.13]. Previous study discussed about the poor permeability of glycine and serine crossing blood 

brain barrier (BBB) but threonine seemed doing much better than them. BBB is a highly selective 

membrane constituted of epithelial cells to prevent any unpleasant visitors from blood stream and is 

also conserved in insects(61). Water, gas and small lipid-soluble molecule could enter the brain by 

passive diffusion otherwise active transport is needed. It seems like glycine and serine are too much 

soluble to cross the BBB while water solubility of glutamate is too low to travel through blood 

reaching brain [Fig. 19]. The solubility and the size of threonine together could make threonine to 
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cross the BBB well. Alternatively, peripherally metabolized threonine signal results in the BBB to be 

more permeable (i.e. inflammatory signaling) so that entrance of hydrophilic molecule being generous. 

Or, it would be about the transporters residing BBB which requires further investigation.  

 

4.6 Existence of threonine deaminase remarks importance of threonine metabolism 

Amino acid metabolism involves the transfer of the amino group between amino acids and alpha-

keto acids by various transaminases and thus, relies on the availability of the amino acid pool. On the 

other hand, a group of amino acids, including glutamate, glycine, serine, and threonine, have specific 

deaminases that selectively remove their amino group (62). The presence of specific deaminases is 

indicative of active mechanisms for fine control in metabolism and possibly in other physiological 

processes. This idea is further supported by the fact that glutamate, glycine, and serine are 

neuromodulators important for brain function, including sleep regulation. Because serine, glycine, and 

threonine together constitute a metabolic pathway (Fig.17), SPET may be indirectly due to glycine- or 

serine-dependent activation of sleep-promoting NMDAR (37, 38). However, sleep-modulatory effects 

of dietary glycine and threonine were distinct from each other. In addition, neuronal depletion of 

NMDAR did not substantially compromise SPET (Fig. 18). Accordingly, we speculate that threonine 

may act as a neuromodulator, similar to other amino acids with specific deaminases.  

 

4.7 Ending remarks 

Given our genetic evidence that threonine probably acts as an endogenous sleep enhancer and that 

serine, in contrast, has wake-promoting functions, particularly in starvation conditions (Sonn et al., 

manuscript submitted), we define the essential metabolic pathway of serine-glycine-threonine as a key 

module for sleep regulation involving metabolic sleep cues. Future studies should address if specific 

sleep needs affect the threonine metabolic pathway as a homeostatic mechanism of sleep drive. In 

addition, it will be interesting to determine if SPET is conserved among other animals, including 

humans. 
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Fig. 14. Genetic ablation of NPF-expressing neurons does not compromise SPET. Head involution 

defective (hid), a pro-apoptotic gene, was overexpressed in NPF-expressing neurons by two 

independent Gal4 drivers. Sleep behaviors in individual transgenic flies were analyzed similarly to the 

data presented in Fig. 1. Data represent average +/- SEM (n=19–24). Two-way ANOVA detected no 

significant interaction of threonine supplementation with NPF(2) ablation (sleep amount, F[1,83] = 

0.09440, P = 0.7594; sleep latency, F[1,83] = 3.045, P = 0.0847) or with NPF(3) ablation (sleep 

amount, F[1,86] = 1.482, P = 0.2268; sleep latency, F[1,86] = 0.06404, P = 0.8008). *P < 0.05, **P < 

0.01, ***P < 0.001 as determined by Sidak’s multiple comparisons test. 
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Fig. 15. Trans-heterozygous mutations in Lk or Lkr gene do not abolish SPET. Sleep behaviors in 

individual flies were analyzed similarly to the data presented in Fig. 1. Data represent average +/- 

SEM (n=14–31). Two-way ANOVA detected no significant interaction between Lk mutation and 

threonine supplementation (sleep amount, F[1,82] = 0.03376, P = 0.8547; sleep latency, F[1,82] = 

0.1483, P = 0.7012). Significant interaction of Lkr mutation with threonine supplementation on sleep 

latency (F[1,63] = 6.821, P = 0.0112 ) but not on sleep amount (F[1,63] = 2.043, P = 0.1578) is 

probably due to a floor effect. n.s., not significant; *P < 0.05, **P < 0.01, ***P < 0.001 to 

heterozygous controls fed on the same food as determined by Sidak’s multiple comparisons test.  
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Fig. 16. Structural and functional relevance of a-ketobutyric acid, a threonine derivative, to GABA 

and GABA derivatives. Space filling model of each chemical was adopted from Wikipedia 

(https://en.wikipedia.org/) 

3D model (JSmol) Name / Formula Description

Butyric acid

C3H7COOH
• Backbone

a-ketobutyric acid

C4H6O3

• A threonine derivative

• Interferes with b-hydroxybutyrate

dehydrogenase

b-hydroxybutyric acid

C4H8O3

• Ketone body

• A preferred substrate for GABA synthesis

• Inhibits GABA-T activity

• Increases GABAergic signaling

g-hydroxybutyric acid

C4H8O3

• A precursor of GABA, glutamate, and 

glycine

• Acts on g-hydroxybutyric acid receptor

• A weak agonist of GABAB receptor

• Targets a4bdGABAA receptor at high 

affinity

g-aminobutyric acid

C4H9NO2

• A major inhibitory neurotransmitter 

(GABA)

• Sleep-promoting effects

• Anti-convulsive effects
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Fig. 17. A metabolic pathway of serine, glycine, and threonine. A schematic diagram of enzymes 

(Drosophila homologs) and biochemical reactions in serine, glycine, and threonine metabolism was 

modified from KEGG pathway database (http://www.genome.jp/kegg/pathway.html). SHMT, serine 

hydroxymethyltransferase; AXGT, alanine:glyoxylate aminotransferase. 
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Fig. 18. Pan-neuronal depletion of Nmdar1 or Nmdar2 does not mask SPET. Sleep behaviors in 

individual flies were analyzed similarly to the data presented in Fig. 1. Data represent average +/- 

SEM (n=7–26). Two-way ANOVA detected no significant interaction of threonine supplementation 

with Nmdar1 depletion (sleep amount, F[1,77] = 0.007919, P = 0.9293 ; sleep latency, F[1,77] = 2.369, 

P = 0.1279 ) or with Nmdar2 depletion (sleep amount, F[1,44] = 0.1550, P = 0.6957; sleep latency, 

F[1,44] = 1.966, P = 0.1679). n.s., not significant; ***P < 0.001 as determined by Sidak’s multiple 

comparisons test.  
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Fig. 19. Table of general properties of amino acids 

 
  

Name MW (g/mol) Solubility in water 
(mg/L) at 25� Nature Reference

Alanine 89.094 164000 aliphathic YALKOWSKY,SH & DANNENFELSER,RM (1992)

Arginine 174.204 182000 basic YALKOWSKY,SH & DANNENFELSER,RM (1992)

Asparagine 132.119 29400 polar, neutral YALKOWSKY,SH & DANNENFELSER,RM (1992)

Aspartate 133.103 5390 acidic YALKOWSKY,SH & DANNENFELSER,RM (1992)

Cysteine 121.154 277000 polar, neutral BEILSTEIN

Glutamate 146.122 8570 acidic Yalkowsky, S.H., He, Yan, Jain, P. Handbook of Aqueous Solubility Data 
Second Edition. CRC Press, Boca Raton, FL 2010, p. 157

Glutamine 146.146 41300 polar, neutral YALKOWSKY,SH & DANNENFELSER,RM (1992)

Glycine 75.067 249000 unique YALKOWSKY,SH & DANNENFELSER,RM (1992)

Histidine 155.157 45600 basic YALKOWSKY,SH & DANNENFELSER,RM (1992)

isoleucine 131.175 34400 aliphathic YALKOWSKY,SH & DANNENFELSER,RM (1992)

Leucine 131.175 21500 aliphathic YALKOWSKY,SH & DANNENFELSER,RM (1992)

Lysine 146.19 >1000000 basic Gerhartz, W. (exec ed.). Ullmann's Encyclopedia of Industrial Chemistry. 5th 
ed.Vol A1: Deerfield Beach, FL: VCH Publishers, 1985 to Present., p. VA2 63

Methionine 149.208 56600 aliphathic YALKOWSKY,SH & DANNENFELSER,RM (1992)

Phenylalanine 165.192 26900 aromatic YALKOWSKY,SH & DANNENFELSER,RM (1992)

Proline 115.132 162000 unique O'Neil, M.J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, 
and Biologicals. Cambridge, UK: Royal Society of Chemistry, 2013., p. 1393

Serine 105.093 425000 polar, neutral YALKOWSKY,SH & DANNENFELSER,RM (1992)

Threonine 119.12 97000 polar, neutral YALKOWSKY,SH & DANNENFELSER,RM (1992)

Tryptophan 204.229 13400 aromatic YALKOWSKY,SH & DANNENFELSER,RM (1992)

Tyrosine 181.191 453 aromatic CRC HANDBOOK

Valine 117.148 58500 aliphathic YALKOWSKY,SH & DANNENFELSER,RM (1992)

GABA 103.12 1300000 polar, neutral Yalkowsky, S.H., He, Yan, Jain, P. Handbook of Aqueous Solubility Data 
Second Edition. CRC Press, Boca Raton, FL 2010, p. 157
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