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Abstract

Launching CryoSat-2, which is a current radar altimeter mission for the monitoring of polar region 

enables to produce monthly based sea ice thickness since April 2010. The Sea ice thickness cannot be 

measured directly by satellite. Sea ice freeboard that is an elevation above sea level can be converted in to 

sea ice thickness by assuming hydrostatic equilibrium. Sea ice leads (e.g., linear cracks in sea ices) are 

regarded as sea surface tie points for the estimation of sea ice freeboard. Identifying the sea ice leads is 

one of the core factors to retrieve sea ice thickness. The surface elevation is estimated by the use of 

Threshold First maxima Retracker Algorithm (TFMRA) for a 40% threshold using CryoSat-2 L1b data 

and the leads are detected by machine learning approaches such as decision trees and random forest. The 

machine learning produces better accuracy for the sea ice thickness than previous simple thresholding 

approach, validating EM-31, airborne sea ice thickness observations. A novel method to overcome 

previous threshold based lead detection methods for identifying leads is developed, which is waveform 

mixture algorithm that linear mixture analysis is applied in terms of waveforms. The waveform mixture 

algorithm can distinguish leads without beam behavior parameters and backscatter sigma-0 but just use 

waveforms, which is less affected by updating baseline for CryoSat-2. In addition to the development of 

the algorithms, a scientific research is carried out. Causes for sea ice anomaly phenomenon in November 

2016 is investigated. Eventually, sea ice the volume derived by thickness is used for the analysis of sea ice 

extent minimum in November 2016 and suggest a new insight of sea ice minimum phenomenon. Unlike 

sea ice extent, the sea ice volume is not a minimum in November 2016. However, since the base period 

for sea ice volume is short, it is hard to mention climatology of sea ice volume.
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Monitoring and Characterization of Arctic Sea Ice using Radar 

Altimetry

Chapter 1

1. Introduction

1.1 The role of sea ice in the Earth climate system

Arctic sea ice is significant component in the Earth climate system. While sea ice occupies a small 

part of the Earth, sea ice greatly influences on the Earth climate. Since sea ice is sensitive to climate 

forcing, it is considered as a major indicator of climate change (Doscher et al., 2014). Sea ice plays a 

significant role in controlling thermal feedback process because of high reflectivity for solar radiation. 

The albedo of ice and snow is about 0.7 to 0.9, which is much larger than the albedo of ocean (< 0.1). The 

sea ice prevents the Earth from warming by the solar radiation. As the Arctic sea ice melts, the Arctic 

Ocean absorbs more sunlight. The warmed water melts sea ice again. It is called as ice-albedo feedback. 

This process known as ice albedo accelerates decline of sea ice (Curry et al., 1995; Perovich et al., 2002; 

Flanner et al., 2011). Taylor et al. (2013) suggested that ice albedo feedback is most contributing to the 

Arctic amplification. The ice albedo feedback also influences on the non-linear behavior of climate 

change (Winton, 2013). Eventually, recent study revealed that ice albedo feedback shifted seasonal ice 

zone model results and remote sensing data (Kashiwase et al., 2017). Sea ice extent and thickness will 

gradually decrease and ice albedo feedback will be expected to have a bigger effect on Arctic 

amplification and climate change.

Arctic Ocean is closely associated with ocean circulation, developing cold and salty water mass. Sea 

ices in the Arctic Ocean is repetitively freezing and thawing. Brines in the sea water are rejected to the 

underlying water by freezing sea ice (Schumacher et al., 1983). Sea ices also are melting by releasing 

freshwater during summer season. The water in the Arctic becomes denser and colder and leads deep 

water formation. This process begins to initiate thermohaline circulation, which is the global scale pattern 

of sea water movement driven by vertical density gradient (Fig. 1.1) (Aagaard and Carmack, 1989; Barry 

et al., 1993; Mauritzen and Hakkinen, 1997). Since the saltier water under the forming sea ice that deep 

water, the saltier water sinks at the formation of ice, triggering global circulation of sea water (Shokr and 

Sinha, 2015). The change in the freezing and melting sea ice clearly influence on thermohaline circulation.

Forming less sea ice might induces slow thermohaline circulation, not making enough denser water. The 
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reduction of sea ice in the Arctic brings the change in the structure of thermohaline in the Arctic Ocean, 

which impacts on convection in the North Atlantic Ocean (McPhee et al., 2009). 

Figure 1. 1 Global thermohaline circulation map. Image from NASA Earth Observatory.

Heat exchanges are active between Arctic Ocean and atmosphere due to their temperature differences. 

The thermal conductivity of sea ice (2.25 W/mK) is lower than other metal materials such as aluminum 

(205 W/mK) and copper (401 W/mK). The thermal conductivity of sea ice is even lower when snow is on 

the sea ice (0.1 to 0.25 W/mK) (Shokr and Sinha, 2015). Sea ice can minimize heat exchanges between 

Ocean and atmosphere due to low thermal conductivity of sea ice (Maykut, 1978, 1982). Therefore, sea 

ice acts as an insulator between ocean and atmosphere, which prevent the ocean from losing heat.

Sea ice provides habitat, shelter, and breeding for plants such as algae and animals, including 

penguins, seals and polar bears as well. There is a concern that the loss of sea ice likely lead to the 

decrease of animal population (Shokr and Sinha, 2015).

In addition to the scientific importance of sea ice, the sea ice plays role in economic purposes such as 

marine navigation. Northern sea route is recently highlighted as Arctic sea ice melts, reducing navigation 
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coast for shipping. Records of recent shrinking sea ice concentration and thickness from remote sensing 

data help find seaway opening. The monitoring and prediction for sea ice will continue for identifying 

opening Arctic Ocean for the routes (Shokr and Sinha, 2015).

1.2 Arctic amplification

Over the past few decades, the Arctic sea ice has greatly diminished due to global warming and 

Arctic amplification (Parkinson and Cavalieri, 2008; Parkinson and Comiso, 2013). The Arctic 

amplification is that the increase of averages near-surface temperatures in the Arctic is more than twice 

than that of global average (Fig. 1.2) (Screen and Simmonds, 2010). Manabe and Wetherald. (1975) first 

suggested the amplified Arctic with climate model simulation. It is now considered as a natural feature in 

the global climate system (Serreze and Barry, 2011).

Figure 1. 2 Annual surface air temperature anomaly for the period 1960-2009 (50 years). The linear trend 

shows that average temperatures in Northern high latitudes is higher than other latitudes (Serreze and 

Barry, 2011).

Polyakov et al. (2002) suggested that there is no Arctic amplification using temperatures at land 



4

stations and ice camps in 125 years. The temperature even decreased for 1940 to 1960. However, there 

was no study to support above research results. Serreze and Barry. (2011) assisted land stations around 

coast have limitation to represent over the ocean and needed gridded fields based on satellite retrievals or 

atmospheric reanalysis. Screen and Simmonds. (2010) certainly proved temperature over the Arctic Ocean 

is increasing trends using ERA-Interim data. 

The Arctic amplification resulted in some changes over the Arctic Ocean. First, the Arctic 

amplification deepened ice albedo feedback, reducing snow on the land and ice on the ocean. Second, 

heat flux is converged into the Arctic, which makes change temperature in the Arctic. Third, a cloud cover 

and water vapor in the Arctic is increased. Francis and Hunter. (2006) document that the increase in the 

cloud cover and water vapor contribute to augment longwave flux to the surface, which is the attribution 

of northward sea ice retreat.

In response to Arctic amplification, melting sea ice is intensified and prolonged. As the sea ice melts, 

dark open water is exposed to the solar radiation, rising sensible heat contents in the mixed layer (Serreze 

and Barry, 2011). Since modern satellite era, 1979, it is observed that sea ice is continuously decreasing 

with negative trend (11.5 % per decade to 2010) in September. The historical minimum extent of sea ice

in September was recorded in 2002, 2005, 2007 and 2012. The Arctic has transformed toward a ‘new 

Arctic’ by the increase in first year sea ice, a warmed ocean, and the increase in near surface air 

temperature (Maslanik et al., 2011). The ice albedo feedback is anticipated to strengthen due to massive 

loss of sea ice, lessening the cohesiveness of sea ice. The sea ice is becoming more vulnerable to 

atmospheric and oceanic forcing.

Accurate monitoring of sea ice parameters such as extent, concentration, thickness, volume, and 

snow depth on the sea ice is essentially needed to better understand polar and global climate system. 

1.3 Remote sensing of sea ice

Since Polar region is basically located on remote area with extreme climate, it is hard to access. The 

in-situ measurements of sea ice are difficult. An ice breaker is commonly operated to measure various 

features of sea ice surface as well as ocean. However, it is limited in summer season and cannot cover a 

large scale. Sea ice has been measured with various techniques. Although upward looking sonar 

(Rothrock et al. 1999; Wadham. 1997), electromagnetic system (e.g., EM-31) (Eicken et al., 2011; Hass et 

al., 2006), and mass balance buoys (Perovich et al., 2006; Perovich et al., 2014) can measure accurate 

thickness and snow information on the sea ice, these techniques measure sea ice features within a limited 
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spatiotemporal resolution. Satellite remote sensing techniques can observe and monitor sea ices in a basin 

scale with a relatively high spatiotemporal resolution. 

Three main sensors have been used for remote sensing of sea ice: 1) optical sensors, 2) thermal 

infrared sensors, and 3) microwave sensors. 

Applications of optical remote sensing for sea ice is relatively inefficient due to the interruption of 

clouds and cannot be used without sun light while it provides much higher spatial resolution under the 

clear sky and easy to interpret. The albedo of sea ice measured using Advanced Very High Resolution 

Radiometer (AVHRR), providing seasonal albedo for Arctic sea ice over the vast area (Lindsay and 

Rothrock, 1994). 

Thermal infrared (TIR) remote sensing can provide data regardless of sun light. However, it is also 

affected by the presence of clouds because the clouds emit the amount of radiation in the spectral band 

10-12μm wavelength. A representative TIR-based sea ice parameter is ice surface temperature (IST). Yu 

et al. (1995) retrieved IST using radiance 11.0 μm from AVHRR since polar atmosphere is almost 

transparent under clear sky condition. IST products is being produced by MODerate Imaging 

Spectroradiometer (MODIS) 31 and 32th band with an advanced equation for retrieval of IST using a split 

window technique, which is for the consideration of water vapor content in the atmosphere using the 

difference between 11.0 and 12.0 μm (Hall et al., 2004).

Passive and active microwave remote sensing have been widely used to observe polar region because 

microwave penetrates through cloud, dust, and rainfall owing to their relatively long wavelengths (> 

10mm) as well as it can observe during both day and night. While passive microwave sensors measure 

emitted radiation from objects, active microwave sensors transmit signals and measure backscatter after 

reflecting surface. Passive sensors on the satellite can observe sea ice with a synoptic scale and high 

temporal resolution because of their wide swath. Active sensors (i.e., Synthetic Aperture RADAR, SAR) 

on the satellite have been used for the small scale process of sea ice and ship navigation (up to a few 

meters). 

In contrast to TIR radiation affected by the physical temperature, passive microwave (PM) radiation 

is mainly affected by the emissivity of radiating layer. The emissivity in the wavelength of microwave is 

dominantly influenced by the properties and physical composition of medium, including surface 

roughness, salinity, crystalline structure, and moisture contents. Sea ice have higher emissivity, emitting 

high energy than open water in the microwave region. This is the fundamental principle for discriminating 

between sea ice and open water using PM remote sensing. Sea ice concentration describes how much 
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occupies ice fraction in a specific grid resolution, which is one of the longest climate satellite based 

parameters since late 1978. There are various algorithms to retrieve the sea ice concentration using 

different channels and satellites such as Special Sensor Microwave Imager/Sounder (SSMIS) and 

Advanced Microwave Scanning Radiometer (AMSR)-E and 2 (Andersen et al., 2007; Ivanova et al., 

2014). Sea ice extent defines a region where is covered with ice, calculating the number of cells that sea 

ice concentration over 15%. A thicker sea ice has lower salinity content than thin sea ice because brine is 

rejected by growing sea ice. Thus, the emissivity of thin sea ice is higher than that of thick sea ice, 

differentiating sea ice type.

Active microwave sensors (i.e., SAR) also can be used for the observations of sea ice. While the 

SAR provides much higher spatial resolution than passive microwave, pre-process for SAR data is 

difficult and it is hard to interpret. The SAR is useful for fine scale sea ice process such as deformation, 

polynya, and sea ice leads. It is also can be used for the validation of passive microwave data.

1.4 Sea ice altimetry

Sea ice thickness is significant parameter in a climate system as well. Additionally, climate models 

need accurate and detailed sea ice thickness information for the successful projection of future climate 

because sea ice thickness plays important role in controlling heat flux between atmosphere and ocean. 

Laser and radar satellite based altimeter are commonly used sensors to measure sea ice thickness. Laxon 

et al. (2003) firstly retrieved sea ice thickness using European Remote Sensing Satellite-1 (ERS-1) and 

ERS-2 satellite data based on radar altimeter but observational latitude was just up to 80°N. Ice, Cloud, 

and land Elevation Satellite-1 (ICESat-1) was launched to observe elevation change in polar region by 

NASA in 2003, carrying a laser altimetry. After the launch of ICESat-1, the retrieval of sea ice thickness 

was possible with a basin scale. ICESat-1 measured Arctic and Antarctic sea ice thickness using various 

methods, revealing declining sea ice thickness (Kwok et al., 2007; Zwally et al., 2008; Farrell et al., 2009). 

Unfortunately, it stopped due to the failure of its main instrument in 2009. CryoSat-2 has been operating 

to observe sea ice thickness by radar altimetry since 2010. The CryoSat-2 can provide temporally 

continuous monthly sea ice thickness (Laxon et al., 2013; Ricker et al., 2014; Kurtz et al., 2014; Lee et al., 

2016). The major difference between ICEsat and CryoSat-2 is that the wavelength bands is different. 

While the wavelength of ICEsat main sensor, Geoscience Laser Altimeter System (GLAS) is 1064, 532 

nanometer (infrared, visible green light), the wavelength of CryoSat-2 main sensor, SIRAL is 13.575 GHz. 

CryoSat-2 radar signal can penetrate snow depth but ICEsat-2 cannot penetrate snow depth due to short 

wavelength, which possibly estimate snow depth using the elevation difference. The size of footprint is 
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also different. ICEsat’s footprint is ~ 70m, enabling more specific observation than CryoSat-2. However, 

it takes about two months to cover pan-Arctic using ICEsat and is easily affected by clouds. CryoSat-2 

needs a one month to cover pan-Arctic because the footprint of CryoSat-2 is ~500 m. However, there are 

some uncertainty factors that interferes successful estimation of sea ice thickness. Snow depth is vitally 

needed for estimation of sea ice thickness using hydrostatic assumption equation. Zygmuntowska et al. 

(2014) assessed that snow depth is the most contributing variable in terms of uncertainty. Snow depth 

from Warren et al. (1999) is currently used, which cannot capture year-to-year variability. For radar 

altimeter, radar signal can penetrate snow depth but the penetration depth cannot be readily quantified 

since it depends on snow conditions such as wet or dry. Finally, the density of sea ice, snow, and sea water 

in hydrostatic assumption is used as fixed value. In order to retrieve more accurate and precise sea ice 

thickness, above uncertainty factors should be resolved. 

1.4.1 Basic principle of radar altimetry

Satellite radar altimeters basically measure the distance between satellite and surface on the Earth 

(i.e., ocean, sea ice, and ice sheet). The radar altimeter transmits signals to the Earth and receives reflected 

echoes from the surface. The range (R) (i.e., elevation between satellite and Earth surface) can be 

measured by multiplying the time that takes transmitted electromagnetic pulse to arrive Earth surface at 

nadir point and receive to the altimeter and the speed of light. The time is the two-way of travel time (t). 

The electromagnetic wave in vacuum propagates with the speed of light (c). The range can be written as  

R = 
��

�
                                 (1)

However, the electromagnetic waves can be decelerated and refracted through the atmosphere by water 

vapor and ionization.

1.4.2 Concept of SAR altimetry and CryoSat-2

Traditional beam-limited radar altimeters such as ERS 1/2 and Envisat have relatively coarse spatial 

resolution (i.e., 2-10 km). In order to improve lateral resolution, the aperture of radar need to be extended 

but the extension of aperture is practically impossible on satellite. The extended aperture can be achieved 

by transmitting coherent signal with an along track direction. 

CryoSat-2 (i.e., SAR altimeter, so called delay/Doppler altimeter) transmits burst of radar pulses (i.e., 

64) with high Pulse Repetition Frequency (PRF, 18.181kHz), which forms Doppler beams because of the 

along-track movement of the satellite (Wingham et al., 2006). In this process, the footprint is divided into 

subsections. With the help of the high PRF, each Doppler beam is coherently correlated and pointed at the 

same location on the Earth surface. This is called beam stacking. Multi-looking is conducting by 
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averaging the stacking beams to reduce speckles and thermal noises (Salvatore. 2013). This process 

enables CryoSat-2 to reach high resolution of ~ 300m along track and ~1500 m across track, which can 

identify small leads between sea ices for the retrieval of sea ice thickness.

Radar signals of each of the three target features have different characteristics because of the impact 

of several factors, especially surface roughness, on the signals. In particular, flat surfaces produce strong 

signals, and rough surfaces produce weak signals. The temporal distribution of power when signal radar 

signal reaches the surface is called waveform. The shape of the typical waveform of ice floes is similar to 

that of ocean (Figs. 1.3a and 1.3b). The sea ice waveform has large variation as it contains both diffuse 

(e.g., from ice floes and ridges) and specular (e.g., from lead and new ice) signals. In particular, since the 

surface of MYI is rougher than that of FYI, more diffuse reflection occurs on MYI. Leads have a typical 

specular reflection and symmetric waveform because they are relatively flat and there is little surface 

wave in leads (Fig. 1.3c). 

Figure 1. 3 Typical normalized echo power waveform of CryoSat-2 SAR mode data over (a) sea ice, (b) 

ocean, and (c) leads.

In order to determine surface elevation, a retracking algorithm should be applied to waveforms. 

Various retracking algorithms have been developed depends on type and it tracks main scattering horizon 

at the leading edge. The TFRMA algorithm one of the retracking algorithms is explained in detail in the 

section 2.3.1.

CryoSat-2, carrying SIRAL was launched in September 2010 by the European Space Agency (ESA). 

CryoSat-2 is a satellite dedicated to Polar research. SIRAL is a radar altimeter with a central frequency of 

13.575 GHz (Ku-band) and a bandwidth of 320 MHz. CryoSat-2 takes an advantage of SIRAL to detect 
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smaller leads (e.g., ~ 300 m) with an efficient use of the instrument’s energy compared to the previous 

radar altimeter missions such as GeoSat and Jason (Wingham et al., 2006). In this study, we used SAR 

mode, mainly operating on sea ice regions and SIN mode, mainly operating on steep regions such as 

margin of ice shelf and ice sheet of level 1b baseline C data, which has 256 and 1024 range bins, 

respectively (Scagliola, 2014). CryoSat-2 data is updated from baseline B to baseline C to improve 

quality of Level 1b products as well as Level 2. The main changes are as follows: 1) the number of range 

bin is restored. For example, the number of range bin of SAR mode changed from 128 to 256 and the 

number of range bin of SARIn mode changed from 512 to 1024. 2) the peak power of Level 1b 

waveforms for SAR and SARIn mode is reduced. 3) beam behaviour parameters such as stack standard 

deviation, stack skewness, and stack kurtosis are changed as peak power changed. It has three operation 

modes: Low Resolution Mode (LRM), Synthetic Aperture Radar (SAR), and SAR interferometry (SIN). 

ESA explains that data collected in SAR and SIN modes are optimized to estimate sea ice thickness 

because the sensor in the operation modes can measure sea ice characteristics with high spatial resolution 

comparable to the size of leads (ESA 2013). In the CryoSat-2 waveform data, the power of the received 

microwave signal is recorded in 256 range bins in SAR mode and 1024 range bins in SIN mode. The 

interval of each range bin is almost 1.563 ns (~ 0.234 m). Detailed specifications of CryoSat-2 are 

presented in Tab. 1.1.  

Table 1. 1 The specifications of CryoSat-2 (SIRAL)

CryoSat-2

Center frequency 13.575 GHz

Bandwidth 320 MHz

Pulse Repetition Frequency (PRF) 1.97 kHz (LRM) / 18.181 kHz (SAR and SIN)

Pulse duration 44.8 microsec.

Samples in echo 128 (LRM and SAR) / 512 (SIN)

Antenna footprint 0.29 km

Range bin sample 0.4684 (LRM) / 0.2342 m (SAR and SIN)

Five parameters (i.e., SSD, stack skewness, stack kurtosis, PP, and backscatter sigma-0) were used to 

distinguish leads from ice floes and ocean as they can represent surface characteristics such as surface 

roughness and dielectric property. SSD was available from L1B data; stack skewness and stack kurtosis 
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were available from Level 2I (L2I) data, which are provided by ESA. SSD is the variation of stacked 

power distribution with an incidence angle (Wingham et al., 2006). Stack skewness and stack kurtosis 

measure asymmetry and peakedness of the range stacked power distribution, respectively (Wingham et al., 

2006). PP is commonly used to identify leads and ice floes (Laxon et al., 2013;Peacock and Laxon, 

2004;Ricker et al., 2014; Rose et al., 2013). The equations to calculate SSD, stack skewness and kurtosis, 

and PP are summarized in Tab. 1.2.

Table 1. 2 The equations to retrieve SSD, stack skewness and kurtosis, and PP.

Parameter Equation

SSD
1

2

∑ SP�(i)∑ SP�(i)�
���

�
���

∑ SP��
��� (i)

Stack skewness
�

�
∑ (��(�)��)��
���

[
�

���
∑ (��(�)��)��
��� ]�/�

, μ =
�

�
∑ SP(i)�
���

Stack kurtosis
�

�
∑ (��(�)��)��
���

[
�

���
∑ (��(�)��)��
��� ]�

− 3, μ =
�

�
∑ SP(i)�
���

Pulse peakiness
� � ����

∑ ��
�
���

n = 128 (SAR) and 512 (SIN)

where, SP stands for integrated stacked power that is not obtainable in the L1b data. 

The integrated stacked power is the summation of each single look echo power. 

p��� is the maximum power of the waveform from L1b data and p� is the power 

of ith range bin. k is a multiplying factor based on the assumption that the waveform 

is almost centered in the range bins. A k value of 1 was used in this study following 

(Armitage and Davidson, 2014).

The radar backscatter sigma-0 (i.e., backscatter coefficient) from Level 2 (L2) data, documenting the 

observed surface, is a function of dielectric properties, the radar frequency, incidence angle, the target 

surface roughness, geometric shape and volume scattering (Wingham et al., 2006). The SAR L1b 

waveforms can be converted into watts using power scaling parameters that are available in the L1b 

product. The radar equation is solved using transmit power, range, and instrument gain and bias 

correction to retrieve backscatter sigma-0. A bias correction value is then applied to remove any residual 

bias (Salvatore 2014). Since these parameters are sensitive to change in surface condition, they can be 

used to discriminate leads from ice floes. 
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1.5 Overview of papers

Lead detection is crucial for estimating sea ice thickness using altimeters. Currently, simple threshold 

based lead detection methods were widely used. However, these methods could misidentify ices as leads 

because sea ice surface is very heterogeneous, which might underestimate sea ice freeboard. I proposed 

machine learning based lead detection methods such as decision trees and random forest, which is 

superior to thresholds based lead detection methods. Finally, machine learning approaches produced more 

accurate sea ice thickness than threshold based lead detection method compared to EM-bird (i.e., in-situ 

sea ice thickness data).

Sanggyun Lee, Jungho Im, Jinwoo Kim, Miae Kim, Minso Shin, Hyun-Cheol Kim, and Lindi J. 

Quanckenbush. (2016): Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using 

Machine Learning-Based Lead Detection, Remote Sensing, 8(9), 698. doi: 10.3390/rs8090698.

Since threshold based lead detection methods, including machine learning methods mainly use beam 

behavior parameters and backscatter sigma-0, it is vulnerable to the updating CryoSat-2 baseline. For 

example, the beam behavior parameters and backscatter sigma-0 should be scaled to apply a newly 

updated baseline data. I developed an alternative lead detection method using waveform mixture 

algorithm, which can stably detect leads. A linear spectral analysis was applied to waveforms. The 

waveforms were regarded as endmembers. The waveform mixture algorithm is less influenced on the 

updating CryoSat-2 baseline and produced comparable results to decision tree method but better than 

previous threshold based methods.

Sanggyun Lee, Hyun-Cheol Kim, and Jungho Im. (2017): Arctic Lead Detection Using a Waveform 

Mixture Algorithm from CryoSat-2 Data, The Cryosphere Discussion (in revision), 10, 1-21. doi: 

https://doi.org/10.5194/tc-2017-170.

A significant drop of sea ice extent was occurred in November 2016. It is closely related to the 

extreme warm air temperature in mid-latitudes in August to September, which was record breaking 

temperature since 1980. After that an average temperature in October and November in the Arctic was 

also the highest since 1980. I investigated this sea ice anomaly phenomenon using sea ice concentration, 

sea ice thickness, and atmospheric reanalysis data. However, sea ice concentration and thickness in 

November 2016 have a different aspect. Preconditioned sea ice, extreme warming in mid-latitudes, warm 

southerly winds with strong cyclonic storm, and high SST were the major reasons for sea ice extent 

minimum in November 2016.

Sanggyun Lee, Daehyun Kang, Jungho Im, and Myong-In Lee. (2017): Anomalous slow sea ice 
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recovery in fall and winter 2016 by extreme waring event in mid-latitudes, Geophysical Research 

Letter or Nature Geosciences, to be submitted. 

This dissertation can be divided into two parts. First, I have developed novel lead detection methods 

is essentially needed for the retrieval sea ice thickness as well as estimated sea ice thickness and lead 

fraction. Second, sea ice anomaly phenomenon in November 2016 was investigated using the sea ice 

thickness and volume is derived by waveform mixture analysis. The ultimate goals of this dissertation are 

as follows: 1) increasing the utilization of sea ice thickness data with novel lead detection methods, 2) 

analyzing sea ice anomaly phenomenon using estimated sea ice thickness and volume with a different 

perspective.

1.6 Research questions and hypotheses

Research question 1. Can improved lead detection method enhance the accuracy of satellite altimeter 

based sea ice thickness?

Research hypothesis 1.1: Machine learning approaches based lead detection method better 

discriminate lead, sea ice and ocean than existing methods.

Research hypothesis 1.2: The improved lead detection method produces more accurate sea ice 

freeboard and thickness.

Research question 2. Can waveform mixture algorithm detect leads accurately than traditional methods?

Research hypothesis 2.1: Waveform mixture algorithm can replace the traditional threshold based 

lead detection methods

Research hypothesis 2.2: Monthly lead fraction derived by waveform mixture algorithm shows 

seasonal cycle of lead fraction.

Research question 3. What factors contribute to slow recovery of sea ice in November 2016?

Research hypothesis 3.1: Anomalous high air temperature in mid-latitudes in August to September, 

preconditioned sea ice, warm southerly winds, and high SST may contribute sea ice anomaly in 

November 2016. 
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Research hypothesis 3.2: Sea ice volume derived by thickness provides a new insight for the 

analysis of sea ice minimum.
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Chapter 2

2. Arctic sea ice thickness estimation from CryoSat-2 satellite data using 

machine learning-based lead detection

2.1 Introduction

Sea ice impacts the Earth’s radiation balance because thermal feedback between the Sun and the 

Earth is highly sensitive to sea ice reflectivity. Thus Arctic sea ice is considered an important factor in 

understanding the global climate change process (Screen and Simmonds. 2010). The reflectivity of sea ice 

strongly depends on the spatial distribution and extent of the ice (Lindsay 2001; Laine 2004), which have 

rapidly changed due to global warming over the past two decade (Parkinson and Cavalieri. 2008; Kang et 

al., 2014). Boe et al (2009) used various climate model simulations to predict that the Arctic Ocean would 

probably be ice-free by the end of the 21st century. Furthermore, several studies have shown that the 

decline of sea ice is occurring faster than model predictions (Stroeve et al., 2007; Wang and Overland, 

2012). Thus, there is an increasing need for accurate monitoring of sea ice concentration and thickness to 

better understand polar and global climate systems and processes.  

Sea ice thickness has been measured with various methods. While direct field measurements of sea ice 

thickness using a submarine upward looking sonar (Rothrock et al., 1999;Wadhams, 1997) or an 

electromagnetic system (e.g., EM-31) (Eicken et al., 2001; Haas et al., 2006) can provide accurate ice 

thickness information, such techniques can only be applied to local areas within a very limited time frame. 

Observation of sea ice thickness over vast areas has utilized various space-borne radar and laser altimeter 

sensors (Laxon et al., 2003; Kowk et al., 2007; Laxon et al., 2013; Rose 2013; Kurtz et al., 2014; Ricker 

et al., 2014) . Laxon et al. (2003) retrieved sea ice thickness using European Remote Sensing Satellite-1 

(ERS-1) and ERS-2 satellite data based on radar altimetry. Kwok et al. (2007) also estimated sea ice 

thickness using Ice, Cloud, and land Elevation Satellite (ICESat) data based on laser altimetry. 

Unfortunately, the operation of ICESat stopped in 2009 due to failure of its main instrument. Since the 

launch of CryoSat-2 in 2010, researchers have developed various methods to use the radar altimetry 

observations to estimate sea ice thickness from CryoSat-2 data (Rose et al., 2013; Kurtz et al., 2014; 

Laxon et al., 2013; Ricker et al., 2014).

Sea ice thickness can be estimated from sea ice freeboard based on isostasy (Forsström et al., 2011). 

Derivation of sea ice freeboard is an important procedure for estimating the ice thickness by laser or radar 

altimeter measurements. In particular, identification of leads (i.e., fractures between sea ice floes) is 

crucial to estimate the freeboard. The height of leads extracted by such measurements enables calculation 

of the local sea surface height (LSSH), and then freeboard can be estimated using LSSH, actual sea 
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surface height, and the surface elevation of the ice extracted by altimetric measurements. Kwok et al. 

(2007) detected leads through direct comparison between the surface elevation profiles extracted by 

ICESat data and near-coincident Synthetic Aperture Radar (SAR) images. Zwally et al. (2008) assumed 

that the lowest 2% values of the surface elevation profiles from ICESat would correspond to leads. In 

addition to these relatively simple methods, Farrell et al. (Farrell et al., 2009) proposed a threshold-based 

method to distinguish leads from ice floes using various parameters extracted from ICESat level 1b data 

such as gain, reflectivity, radiance, and waveform characteristics. In the case of CryoSat-2, pulse 

peakiness (PP) and stack standard deviation (SSD) parameters are frequently used for lead detection. For 

example, Ricker et al. (Ricker et al., 2014) used various waveform parameters such as PP, SSD, stack 

kurtosis, and sea ice concentration to distinguish leads from ice floes. Although these lead detection 

methods have been developed in several studies, determination of ice thickness from CryoSat-2 still 

suffers from a lack of precise lead discrimination (Onana et al., 2013). Simple thresholding methods 

might not perfectly distinguish leads from ice floes because parameters such as PP, SSD, stack skewness, 

stack kurtosis, and backscatter sigma-0 (section 2.1) typically contain aliasing between leads and ice floes, 

which can result in large errors and uncertainties in sea ice thickness estimates. Therefore, advanced 

techniques to optimize such thresholds and minimize the associated errors are needed. This study 

proposes decision tree and random forest machine learning approaches to identify leads and ice floes from 

CryoSat-2 and MODIS in order to estimate sea ice thickness. 

2.2 Data

Freeboard height and ice thickness for March and April in 2011–2014 were calculated from CryoSat-

2 data based on machine learning based-lead detection approaches. MODIS and sea ice type data were 

used as ancillary data when estimating sea ice thickness. The estimated ice thickness was validated using 

CryoSat Validation experiment (CryoVex) field campaign data (i.e., airborne electromagnetics data) over 

northwestern Greenland acquired in April 2011.

2.2.1 MODIS

MODIS onboard the Terra and Aqua satellites, which were launched in 1999 and 2002, respectively, 

has 36 spectral bands from 0.4–14.4 μm and plays a vital role in observing the Earth’s environments such 

as the land, lower atmosphere, and oceans. MODIS images are an ideal way to separate leads and ice 

floes because of the albedo difference between the two. MOD02QKM, one of the MODIS L1B products, 

is a calibrated and geolocated dataset with two bands (0.645μm and 0.858μm) at 250 m ground sample 

distance. In this study, training data of leads, ice, and ocean for the machine learning models were 

extracted from MOD02QKM images through visual interpretation based on reflectance differences. 
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2.2.2 Sea ice type

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean & Sea 

Ice Satellite Application Facility (OSI SAF) provides sea ice type data (http://osisaf.met.no/p/ice/) with 

10 km resolution. The sea ice type includes First-Year Ice (FYI) and Multi-Year Ice (MYI) based on 

differences in ice surface roughness. The sea ice type was used as an input variable to calculate sea ice 

thickness from ice freeboard. 

2.2.3 Airborne Electromagnetics data

The CryoVex airborne and field campaign was conducted to validate the measurements of CryoSat-2. 

As a part of the campaign, sea ice thickness was measured with an airborne electromagnetic (AEM)-bird 

sensor onboard the AWI Polar-5 aircraft. AEM uses electric conductivity differences between sea water 

and ice to measure sea ice thickness with an accuracy of ±0.1 m over level ice (Haas et al., 2010). From 

14–17 April 2011, AEM measured four tracks of ice thickness around the Lincoln Sea. Considering the 

length of the tracks and sample size, two of the data tracks were used to validate the sea ice thickness 

estimated from CryoSat-2 in this study.

2.3 Sea ice thickness estimation and machine learning algorithms for lead detection

2.3.1. Sea ice thickness estimation

Estimation of the snow-covered Arctic sea ice thickness from CryoSat-2 measurements is based on 

the assumption of hydrostatic equilibrium (Forsström et al., 2011) (Fig. 2.1). If the sea ice freeboard (h��)

is accurately determined from altimeter measurements, the freeboard can be directly converted into sea 

ice thickness by Equation 1.

h�� =
���

�������
h�� +

��

�������
h� (1)

where ρ�� , ρ��, and ρ� are the density of sea water, sea ice, and snow, respectively, and h� is the snow 

depth. Although the density parameters and snow depth should be observed concurrently with the 

altimeter measurements to best estimate the ice thickness, this is challenging due to the extreme weather 

conditions of the Arctic Ocean. Thus, studies have used typical values based on field measurements or 

numerical simulation. For example, Giles et al. (2007) and Wadhams (1997) used the density of sea water, 

sea ice, and snow as 1023.8 ± 3, 915.1 ± 5, and 319.5 ± 3 kg/m3, respectively, from field observations. In 

this study, 916.7 kg/m3 and 882 kg/m3 were used as the density of FYI and MYI, respectively, according 

to Alexandrov et al. (2010). Snow depth simulated by the W99 climatology model of Warren et al. (1999)

have been widely applied. However, the original W99 data only captures seasonal variability of snow 

depth. Kurtz and Farrell (2011) thus applied a modification to the snow depth data to reflect the 
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significant decline in MYI over the last few years. Kurtz and Farrell (2011) suggested reducing the snow 

depth over FYI by 50%. In this study, FYI and MYI were discriminated by the ice type products derived 

by EUMETSAT OSI SAF and we used the typical density and snow depth values derived by Kurtz and 

Farrell (2011).

Figure 2. 1 Schematic diagram of the freeboard and thickness processing from CryoSat-2.

As mentioned above, it is important to determine the sea ice freeboard from CryoSat-2 data in order 

to successfully estimate the ice thickness. Fig. 2.2 shows the procedure to determine the sea ice freeboard 

from CryoSat-2 L1B data. Initially the surface height of the sea ice (i.e., the distance between the sea ice 

surface and the WGS84 ellipsoid) is estimated by Equation 2.

η��� ��� = H��� − R��� − R��� − ΔR (2)

where H��� is the height of the satellite platform mass above the WGS84 ellipsoid. R��� is the window 

delay field, which means the distance between the mid-point of the range bin (i.e., 64th range bin in SAR 
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mode and 256th range bin in SIN mode) of the waveform data and the satellite platform. R��� is a range 

correction term associated with the phase range due to geophysical properties such as atmospheric effects. 

These variables are given in CryoSat-2 L1B data; detailed descriptions and processing methods of the 

variables are well explained in Wingham et al. (2006). ΔR is another correction term derived by various 

retracking methods (Brown, 1977;Davis, 1997;Martin et al., 1983;Wingham et al., 1986). The aim of 

these terms is to determine the range offset between the mid-point of the range bin and a realistic range 

point of the leading edge of sea ice. The retracking method used in this study is the TFMRA (Rose 2013; 

Laxon et al., 2013; Ricker et al., 2014)

Figure 2. 2 The sea ice freeboard processing procedure using CryoSat-2 data.

Davis (1997) introduced the threshold retracking concept, which is useful for measuring the surface 

elevations of ice sheets or sea ice from radar altimeter data (Kurtz et al., 2014;Laxon et al., 2013;Ricker et 

al., 2014). The retracking method determines the range point of the leading edge between the threshold 

level and the range point of the first maximum power peak. The threshold level (ρ�) is determined by

ρ� = P� + α(P��� − P�) here, P� =
�

�
∑ P�
����
���� (3)
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where P� is the thermal noise of the CryoSat-2 system. α is the threshold value, the percentage of the 

maximum waveform amplitude above the thermal noise. P��� is the first maximum power of the 

waveform. n� is the range bin of the first unaliased waveform. P� is the power at the ith range bin of the 

waveform. Finally, the retracking point (n�) as the leading edge is estimated using the following equation.

n� = (n� − 1) +
��������

���������
(4)

where n� is the first range point exceeding the threshold level. It is essential to detect the first peak in the 

range bin. Here, Rose (2013) indicated that the maximum power peak in the range bin may not be the first 

peak due to time delay effects of complicating factors such as multiple scattering (i.e., in the surface) and 

volume scattering. Thus, the true range point (i.e., local maxima in the waveform) is detected by the peak 

detection algorithm, which identifies the range point using derivatives of the waveform signal (Ricker et 

al., 2014; Helm et al., 2014). Lastly, ΔR, the retracking correction, is calculated using Eq. 5. 

ΔR = C��(n� − n��) (5)

where n� is the retracking point and n�� is an on-board retracking point. C�� is a factor to convert 

from range bins to meters, which is 23.24 cm/bin for CryoSat-2. Fig. 2.3 shows an example of the peak 

detection algorithm. This figure illustrates that the range point of the first maximum power (the open 

square) was found prior to the maximum power peak, and the retracking point (the open circle) was 

determined between the range point of the first maximum power and the threshold level (the dotted line). 

While various threshold values (α) have been used in the literature, several studies have found that 

thresholds of 40% and 50% give the best result for determining the leading edge of the ice floe (Ricker et 

al., 2014; Helm et al., 2014). A threshold of 40% was used in the retracking method in this study as it was 

frequently used in the literature (Rose 2013; Ricker et al., 2014).
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Figure 2. 3 A typical waveform of sea ice from CryoSat-2 data. The dotted line denotes the threshold 

level estimated by the threshold retracking method (� = 40 %). The open square indicates the range point 

of the first maximum power peak determined by the peak detection algorithm. The open circle indicates 

the range point of the leading edge.

The next step removes the distance between the actual sea surface and the WGS84 ellipsoid from the 

surface height (ηsea_ice) in order to estimate the sea ice freeboard. In general, the actual sea surface height 

(SSH) is estimated from the sum of the mean SSH and local sea surface height anomaly (SSHA). Mean 

SSH data were obtained from the Technical University of Denmark 10 (DTU10) product (Andersen and 

Knudsen, 2009); local SSHA data were derived from the proposed lead detection method (section 3.2) 

that extracts leads from CryoSat-2 data. The SSHA observations were discontinuous because leads were 

detected at irregular intervals, thus linear interpolation and low-pass filtering were applied to make 

spatially continuous SSHA. The local SSHA was used to remove the surface height from the mean SSH at 

the leads. Although many studies have tried to develop effective lead detection methods, it is still very 

difficult to accurately identify leads due to limited reference data, irregular shape and size of leads, and 

characteristics leads share with ice or ocean. To overcome these challenges and correctly identify leads, 

this study proposed a novel lead detection method explained in section 2.3.2.
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A correction to the sea ice thickness estimates from freeboard should be applied to account for the 

penetration of microwave radiation on snow and lower propagation speed in the snow pack. First of all, 

while typical microwave pulses do not penetrate the snow surface when the snow layer is wet during the 

melting season, it is well known that a Ku-band microwave penetrates the air/snow interface of dry and 

cold snow during the freezing season (Beaven et al., 1995;Connor et al., 2013). This complexity makes it 

difficult to determine the optimum penetration depth to correct the sea ice freeboard. Nevertheless, Laxon 

et al. (2013) believed that microwaves fully penetrate the snow layer. Since the speed of microwave is 

typically lower in the snow pack (Matzler and Wegmuller, 1987), it should also be corrected. However, 

given the uncertainty in these corrections, we did not apply the correction terms in order to enable 

consistent comparison with Laxon et al. (2013) and Ricker et al. (2014) who did not apply these 

corrections. 

2.3.2. Machine learning algorithms for lead detection

In order to detect leads using machine learning approaches, reference samples were extracted using 

MODIS data. All 5-min MOD02QKM images above latitude 65°N in March and April 2011–2014 were 

downloaded. Cloud-free images were selected through visual interpretation. A total of 48 cloud-free 

March and April images were selected from MOD02QKM between 2011 and 2014 to clearly identify sea 

ice, leads, and ocean based on visual interpretation of the images (Fig. 2.4). However, visual 

interpretation with MODIS is not always reliable because the leads in the MODIS images could refreeze 

and new thin ice is formed. CryoSat-2 paths were geolocated over the MODIS images to extract five 

parameters (i.e., SSD, stack skewness, stack kurtosis, PP, and backscatter sigma-0) for each class (i.e., 

lead, sea ice, and ocean). The time difference between CryoSat-2 paths and MODIS images was set to 

within 30 minutes (12 minutes on average) to minimize sampling errors as sea ice sometimes moves fast. 

Since there were more leads found in the Arctic in April than March, the number of samples for April was 

larger than that for March. It should be noted that we could not extract samples all over the Arctic Region 

because spatiotemporal coincidence between CryoSat-2 and MODIS was limited during the given time 

period. Lead reference samples were not collected when the size of leads was smaller than 250m 

considering the movement velocity of sea ice. 
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Figure 2. 4 Overlay of a CryoSat-2 path on a near-real-time MODIS image. The CryoSat-2 path 

(red line) was geolocated on the MODIS image in the north of Svalbard on 6 April 2011. The 

time difference between the two was 30 minutes. Based on visual interpretation, five parameters 

were extracted for target features (i.e., leads, sea ice, and ocean).

Since the characteristics of sea ice surface have monthly and annual variations, three schemes were 

examined to develop machine learning models in this study. The first scheme was classification of

monthly data (CM), which used the reference samples by month regardless of year and developed the 

machine learning models for both months (i.e., March and April). The second was classification of annual 

data (CA), which divided the samples by year and developed the models separately for each year (i.e., 
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2011, 2012, 2013, and 2014). Individual classifications (IC) used all reference data to develop the 

machine learning models to consider the tradeoff between transferability and accuracy.

Table 2. 1 Reference data used in the machine learning models by scheme and target feature.

Scheme

Target feature (number of observations)

Leads Sea ice Ocean

CM (March) 331 660 724

CM (April) 641 1284 1220

CA (2011) 179 357 357

CA (2012) 458 919 919

CA (2013) 209 419 420

CA (2014) 126 249 248

IC 972 1944 1944

In order to detect leads, we used two rule-based machine learning approaches: decision trees and 

random forest. Decision trees are one of the most widely used machine learning algorithms for inductive 

inference. To implement decision trees, See5.0 was used. See5.0 recursively splits training data into 

subdivisions based on a set of attributes defined at each node in a tree. An attribute is selected at each 

node and two branches that descend from that node use a value of the attribute as a threshold. Selecting an 

attribute (i.e., STD, stack skewness, stack kurtosis, PP, or backscatter sigma-0 in this study) at each node 

is crucial for successful classification. In general, statistical properties such as information gain or the 

Gini index are used to choose an appropriate attribute in decision trees. See5.0 uses information gain to 

select which candidate attribute is used at each node. See5.0 has been widely used for various remote 

sensing applications, including land cover/land use classification (Im et al., 2008a;Lu et al., 2014), 

climate region delineation (Rhee et al., 2008), vegetation species mapping (Li et al., 2013), ice mapping

(Kim et al., 2015), and change detection (Im and Jensen, 2005;Im et al., 2008b). Using a See5.0 decision 

tree has some advantages. First, it provides a non-parametric classification, and thus it does not require 
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any assumptions in terms of the distribution of training data. See5.0 can also handle non-linear 

relationships between classes and features, even with missing values. In addition, See5.0 transforms a 

decision tree into a series of production rulesets, which makes it easier and more straightforward for 

human interpretation of results.

Random forest uses an ensemble approach that combines a boosting sampling strategy and 

Classification And Regression Trees (CART) (Breiman 2001) to improve the weaknesses of a single 

CART such as overfitting and sensitivity to training data configuration. CART uses a Gini index to 

measure impurity from training samples while See5.0 uses the concept of entropy. The Gini index is 

defined as shown in equation (6)

Gini index(S) = 1 - ∑ p�
��

��� (6)

where c is the number of classes and p� is the proportion of S belonging to class i. Gini gain is used to 

identify the most appropriate attribute at each node. Since it is similar to the information gain, it is defined 

by replacing the entropy with the Gini index in the equation (6). However, a single CART is often 

unstable and tends to overfit training data. Bagging can overcome such weaknesses by creating on

independent trees and help minimize errors that can be caused from unstable classifiers. Random forest 

produces numerous independent trees through two bagging-based randomization processes: 1) using a 

random subset of training data for each tree and 2) using a random subset of input variables at each node 

of a tree. Breiman (2001) pointed out that it is not necessary to use a separate dataset for model validation 

as random forest uses out-of-bag data (i.e., training data that are not used) for internal cross validation. A 

majority voting strategy is used to combine the results from multiple classifiers to determine the final 

class for a given sample. In addition, random forest provides the relative importance of a variable using 

out-of-bag data when the variable is permuted. Because of these strengths, random forest has proved 

robust in various remote sensing applications (Ghimire et al., 2012; Long et al., 2013; Maxwell et al., 

2014; Rhee et al., 2014; Kim et al., 2014)
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2.4 Results and Discussion

2.4.1 Characteristics of five parameters based on CryoSat-2 waveform

Fig. 2.5 depicts the box plots of the five parameters (i.e., SSD, stack skewness, stack kurtosis, PP, 

and backscatter sigma-0) by feature (i.e., leads, sea ice, and ocean) using the reference samples (refer to 

Tab. 2.1). Among the three target features, ocean showed the narrowest distribution for all parameters 

except SSD. This is because the ocean surface is relatively homogeneous. Since the state of the sea ice 

surface varies significantly, all parameters resulted in wide distribution in the sea ice plots. Waveform 

over ocean generally has higher backscattered signal intensity than that over sea ice because of the higher 

diffuse reflection of ocean. However, the backscatter sigma-0 value of ocean was lower than that of sea 

ice (Fig. 2.5). This might be because the ocean samples were mostly collected around the Svalbard islands, 

where strong winds frequently cause high waves, which may reduce the backscattered intensity. Leads 

showed large variation for all parameters because the size and shape of leads were diverse with different 

neighboring environments such as sea ice melting and re-freeze states, combined with the samples being 

collected in March and April across multiple years, which undoubtedly increased the variation of the 

parameter values. The narrow distribution of the SSD of leads in Fig. 5 implies that the range stacked 

power of single look echoes of around lead have high power, making the variation of range stacked power 

simple. The median values of each parameter seem to distinguish lead, sea ice, and ocean. However, the 

distribution of the parameter values of sea ice and leads partly overlapped, possibly due to off-nadir 

observations of CryoSat-2. This implies that simple thresholding approaches are not suitable to clearly 

identify leads from sea ice.
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Figure 2. 5 Box plots of 5 parameters (i.e., SSD, stack skewness, stack kurtosis, PP, and 

backscatter sigma-0) over leads, sea ice, and ocean using the March and April samples from 

2011 to 2014. The vertical height of the boxes indicates the interquartile range of the samples. 

While a parallel line inside the boxes means a median value of the samples for each parameter, 

the dots represent the outliers.

2.4.2 Comparison of lead detection performance

Both See5.0 and random forest produced similar classification results for the three features. Tab. 2.2

summarizes the overall accuracy by model and scheme through 10-fold cross validation. All of the cases 

produced very high overall accuracy (> 90%). The most common misclassification for both approaches 

was between leads and sea ice, possibly due to sampling around the boundaries between them. Since CM

and CA resulted in varied accuracy patterns and did not produce significantly higher accuracy than IC, we 

focused the following discussion on IC. Using IC can reduce temporal variability by including all samples 

in the subsequent analyses including sea ice freeboard and thickness estimation.
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Table 2. 2 Accuracy assessment results of See5.0 and random forest by scheme through 10-fold 

cross validation. The overall accuracy in percentage averaged for 10 folds is provided.

Scheme See 5.0 Random Forest

CA

(March)
99.50 99.43

CA

(April)
93.47 90.40

CM

(2011)
92.49 94.80

CM

(2012)
94.87 96.96

CM

(2013)
95.07 95.48

CM

(2014)
94.40 91.60

IC 94.20 94.05

Tab. 2.3 presents relative variable importance for lead classification by model when using IC. While 

stack skewness and sigma-0 were used at every node in See5.0, SSD was not used at all. For the random 

forest analysis, sigma-0 was identified as the predominant contributing variable, followed by stack 

kurtosis, PP, and stack skewness. Similar to See5.0, SSD was the least contributing variable to lead 

detection in random forest. Stack skewness was useful because it was able to distinguish ocean from leads 

and sea ice with very low error. Interestingly, backscatter sigma-0 was considered a critical parameter for 

lead detection in both See5.0 and random forest, but it has not been used in previous studies for lead 

detection. Backscatter sigma-0 represents not only surface roughness but also dielectric properties, radar 

frequency, incidence angle, and geometric shape, while the other parameters are mainly sensitive to 

surface roughness. Tab. 2.4 summarizes threshold-based rules produced using See 5.0 by IC. Previous 

studies have used SSD, for example, Laxon et al. (2013) and Ricker et al. (2014) used SSD < 4 as one of 

the conditions to detect leads. However, SSD was not primarily used in the threshold-based rules in this 

study. It should be noted that the rules were an integration of multiple factors, which implies that the 

simple thresholding approaches might over- or under-estimate leads resulting in uncertainty in sea ice 
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thickness estimation.

Table 2. 3 Relative variable importance (i.e., contribution) to lead detection using See5.0 and random 

forest by IC.

SSD Stack skewness Stack kurtosis PP Sigma-0

See5.0 

Usage (%)
0 100 21 40 100

Random forest

Mean accuracy 

decrease (%) 

19.97 20.44 36.75 20.50 97.72

Table 2. 4 An example of threshold-based rules produced by See5.0 using IC to classify leads, sea ice, 

and ocean.

SSD Skewness Kurtosis PP Sigma-0

Lead
> 0.73 > 17.53 > 27.8

≤ 25.6 > 0.73 ≤ 17.53 > 27.8

Sea ice

≤ 0.73 ≤ 14.89

≤ 0.73 > 0.043 14.89< Sigma-0 < 16.48

> 0.73 ≤ 27.8

≤ 25.6 > 0.73 ≤ 17.53 27.8< sigma − 0 < 31.47

Ocean

≤ 0.73 ≤ 0.043 > 14.89

≤ 0.73 > 0.043 > 14.89

> ��. � > �. �� ≤ ��. �� > ��. �

Fig. 2.6 shows two examples of identifying leads using four different lead detection methods. A 
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simple thresholding approach based on PP and SSD (i.e., PP > 0.25 and SSD < 4 for leads and PP < 0.45 

and SSD > 4 for ice floes) used in Rose (2013) was adopted to identify leads (Figs. 2.6a and 2.6e). The 

simple thresholding method resulted in somewhat over-identification of leads; some leads were 

mistakenly found on the ice. Laxon et al. (2013) also used a similar thresholding approach based on PP 

(personal communication) and SSD (leads: PP > 18 and SSD < 4; ice floes: PP < 9 and SSD > 4), which 

also resulted in overestimation of leads on the ice (Figs. 2.6b and 2.6f). Although PP and SSD are 

considered useful parameters for lead detection, simple thresholding based on just two parameters appears 

insufficient for effectively distinguishing leads from ice. Since surface height on leads is considered as 

LSSH, if leads are identified on the ice then LSSH would be overestimated, which would result in an 

increased bias towards smaller freeboard and thinner sea ice estimates. On the other hand, the two 

machine learning approaches applied—See5.0 decision trees and random forest—resulted in improved 

lead detection and less overestimation of leads compared with the existing approaches (Figs. 2.6c/g and 

2.6d/h, respectively). Different lead detection approaches were quantitatively assessed and compared 

(Tabs. 2.5–2.8) using error matrices. Since the approaches by Rose (2013) and Laxon et al. (2013) 

considered ice floes and leads only, i.e., excluding ocean, the accuracy assessment was conducted without 

ocean samples for consistent comparison between the proposed approaches and the existing literature. 

The machine learning approaches to lead detection resulted in higher overall accuracy and Kappa 

coefficients than the approaches used by Rose (2013) and Laxon et al. (2013). Both See5.0 and random 

forest produced high producer’s accuracy for leads and sea ice. However, the user’s accuracy for leads, as 

well as overall accuracy and kappa coefficient of random forest were slightly higher than those of See5.0. 

Random forest uses an ensemble approach based on numerous independent trees through randomization, 

which can avoid problems associated with sampling biases. On the other hand, See5.0 uses only a single 

tree, but provides more straightforward rules to understand the results at the cost of possible overfitting 

and sampling biases. Based on the lead detection results in this study, both See5.0 and random forest can 

be used to identify leads with minimal difference in the performance. However, in order to analyze the 

physical meaning among the parameters for lead detection, See5.0 would be better as it provides rulesets 

in simple forms, compared to the ensemble results of random forest. While all four lead detection 

methods have high producer’s accuracy for both leads and sea ice, the existing approaches (i.e., Rose 

(2013) and Laxon et al. (2013)) produced much lower user’s accuracy for leads than the proposed 

methods, implying overestimation of leads.
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1

2

Figure 2. 6 Examples of lead detection results around east Franz Josef Land on 11 April 2014 (a-d) and Beaufort Sea on 11 April 2011(e-h) using 3

four methods: (a/e) Rose (2013), (b/f) Laxon et al. (2013), (c/g) See5.0 in the present study, and (d/h) random forest in the present study. Red and 4

blue dots represent leads and sea ice, respectively5

6
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Table 2. 5 The error matrix based on the See5.0-based lead detection results for IC.

Reference

Classified as
Lead Sea ice Sum User’s Accuracy (%)

Lead 36 5 41 87.8

Sea ice 6 192 198 96.7

Sum 42 197 239

Producer’s accuracy (%) 85.7 97.5

Overall accuracy (%) 95.4

Kappa coefficient (%) 84

Table 2. 6 The error matrix based on the random forest-based lead detection results for IC.

Reference

Classified as
Lead Sea ice Sum User’s Accuracy (%)

Lead 36 2 38 94.7

Sea ice 6 195 201 97.0

Sum 42 197 239

Producer’s accuracy (%) 85.7 98.9

Overall accuracy (%) 96.2

Kappa coefficient (%) 86.4
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Table 2. 7 The error matrix based on the lead detection results by the approach of Rose (2013).

Reference

Classified as
Lead Sea ice Sum User’s Accuracy (%)

Lead 36 28 64 56.2

Sea ice 6 169 175 96.7

Sum 42 197 239

Producer’s accuracy (%) 85.7 85.8

Overall accuracy (%) 85.7

Kappa coefficient (%) 59.3

Table 2. 8 The error matrix based on the lead detection results by the approach of Laxon et al. 

(2013).

Reference

Classified as
Lead Sea ice Sum User’s Accuracy (%)

Lead 41 45 86 47.7

Sea ice 1 152 152 99.3

Sum 42 197 239

Producer’s accuracy (%) 97.6 77.2

Overall accuracy (%) 80.7

Kappa coefficient (%) 53

Fig. 2.7 shows the comparison of the SSHA and freeboard from the different lead detection methods. 

SSHA is a subtraction of LSSH from the mean SSH, representing the relative vertical location of leads. 

The proposed machine learning-based lead detection methods (Figs 2.7a and 2.7b) detected fewer leads 

than the existing methods (Figs. 2.7c and 2.7d) with few leads above the latitude of 87°N, where leads are 

rarely found in April. Almost all the leads detected by the proposed See5.0 and random forest approaches 

were also detected by the approaches from Laxon et al. (2013) and Rose (2013). SSHA was linearly 

interpolated and smoothed using a 3×3 (pixel) moving average filter. The freeboard, a derivation of 

surface height from the sum of SSHA and mean SSH, was smoothed by a 30×30 (pixel) moving average 

filter to remove signal noise. While the overall shape of the freeboard lines with latitudes looks similar, 
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the average freeboards by approach—See5.0, random forest, Rose (2013), and Laxon et al. (2013)—were 

0.095 m, 0.092 m, 0.089 m, and 0.090 m, respectively. The average freeboards of Rose (2013) and Laxon 

et al. (2013) were relatively underestimated compared to the freeboards by See5.0 and random forest 

because of their over-identification of leads on the ice especially over higher latitudes (> 85°N; Figs. 2.7c 

and 2.7d). Laxon et al. (2013) found lower SSHA (Fig. 2.7h) between 76–80°N that appeared to be ocean. 

However, since the proposed machine learning-based lead detection approaches discriminates ocean from 

sea ice and leads, ocean was excluded in the SSHA. 
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Figure 2. 7 SSHA and freeboard extracted by each method using CryoSat-2 data from UTC 03:47 to 03:57, 09 April 2012 based on IC: (a) – (d) are the 

interpolated and smoothed SSHA; (e) – (h) are the smoothed freeboard.

.
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2.4.3 Spatial distribution of Arctic sea ice freeboard and thickness

Figs. 2.8 and 2.9 present the IC ice freeboard and thickness maps, respectively, for March and 

April from 2011–2014 using a polar stereographic projection with 25×25 km2 grid. A typical MYI 

zone near the Canadian Archipelago and northwestern Greenland has relatively thick freeboard and 

thickness except for 2012. The retrieval of freeboard and thickness in these regions appears to show 

relatively poor LSSHA due to the very limited leads in the regions. On the other hand, sea ice 

freeboard and thickness around the Kara Sea and Laptev Sea were consistently stable and low for all 

cases during March and April from 2011–2014. Interestingly, unlike other years, sea ice thickness was 

relatively high in the central Arctic in 2012, while it was generally low in the typical MYI zone. 

Annual variability of sea ice thickness was high on the MYI zones, compared to the FYI zones. The 

amount of sea ice freeboard and thickness apparently diminished from 2011–2013.

Laxon et al. (2013) determined Arctic sea ice thickness from February to March 2012 using 

CryoSat-2 data. Although it was averaged for two months, the overall distribution of sea ice thickness 

over MYI zones was similar to the results of this study (not shown). Sea ice freeboard and thickness 

maps for March 2013 from this study were slightly different from the results in Ricker et al. (2014). 

This is possibly because the two studies used different smoothing approaches to waveform data, lead 

detection methods, and gridding approaches to CryoSat-2 track data. Farrell et al. (2009) showed two-

month averaged sea ice freeboard maps from 2003–2008 using ICESat data. However, sea ice 

freeboard from ICESat will be different from the sea ice freeboard determined in this study because 

the height of the sea ice freeboard derived by laser altimetry (i.e., from ICESat) includes snow depth 

on the sea ice. Farrell et al. (2009) observed a slightly thicker sea ice freeboard between 2003 and 

2008 (up to 0.75 m) than the 2011–2014 period in the present study. The major differences were 

found in the Canadian Archipelago, Northern Greenland, and the central Arctic where the freeboard

was observed as being high in Farrell et al. (2009) while it decreased from 2011–2013 in this study. 
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Figure 2. 8 Arctic sea ice freeboard from CryoSat-2 for March and April between 2011 and 2014 

based on IC scheme. Non-sea ice areas were masked out using the EUMETSAT OSI SAF sea ice type 

data.
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Figure 2. 9 Arctic sea ice thickness from CryoSat-2 for March and April between 2011 and 2014 

based on the IC scheme. Non-sea ice areas were masked out using the EUMETSAT OSI SAF sea ice 

type data
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2.4.5 Comparison with AEM-bird data

The monthly ice thickness that was averaged by grid using the novel machine learning-based lead 

detection approaches was compared to the averaged AEM-bird data collected 15 and 17 April 2011 

during the CryoVex campaign as well as the thickness derived by the lead detection methods from 

Rose (2013) and Laxon et al. (2013). This comparison considered the three schemes and two lead 

detection methods (Fig. 10). The sea ice thickness determined using See5.0 with CA produced the 

best validation performance on both days with r ~ 0.83 and root mean square error (RMSE) ~ 0.29 m 

(Fig. 10c). (Connor et al., 2013) 

Figure 2. 10 Scatterplots between the Cryosat-2-derived sea ice thickness and the averaged AEM-bird 

ice thickness for validation.

While Rose (2013) and Laxon et al. (2013) produced similar performance, the sea ice thickness 

from See5.0 generally showed better performance than that derived using the existing methods. 

However, there are several uncertainty factors for sea ice thickness estimation using CryoSat-2 

measurements (2014), including: 1) the error of range measurements from CryoSat-2, 2) the 

uncertainty of detection of leads, resulting in over- or under-estimation of SSHA, 3) the uncertainty of 
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means scattering horizon in the snow cover, and 4) the uncertainty of snow depth and the density of 

snow, ice, and sea water. Zygmuntowska et al. (2014) estimated the uncertainty of Arctic sea ice 

thickness and volume in terms of sea ice density and snow depth by using the Monte Carlo approach. 

They revealed that using snow loading (i.e., W99) produced higher uncertainty with respect to the 

estimation of sea ice thickness than using mean density. In the present study, we used the densities 

from Alexandrov et al. (2010) that do not have year-to-year variability. In order to more accurately 

estimate sea ice thickness, such changes should be carefully considered, which requires further 

examination. Ricker et al. (2014) analyzed random and systematic uncertainties of Arctic sea ice 

thickness from CryoSat-2 using the partial derivative of equation 1 based on the assumption of 

hydrostatic equilibrium. They showed that random uncertainty affects the estimation of sea ice 

thickness less than systematic uncertainty caused by the selection of a retracker threshold and the 

unknown penetration level of the signals on snow. To remove systematic uncertainty caused by the 

choice of a retracker threshold, Kurtz et al. (2014) used a waveform fitting approach to retrieve sea ice 

freeboard. Any of the above mentioned factors could result in uncertainty in this study. The lead 

detection models proposed in this study produced higher accuracy than the existing approaches for 

lead detection, which implies a possible reduction of the uncertainty caused by the second factor.

In order to examine the influence of snow penetration on the thickness estimation, we conducted 

a simple sensitivity analysis on snow penetration by testing different penetration ratios with the 

assumption that radar signals penetrate into the snow depth with the same rate over the entire Arctic 

region. The results showed that higher accuracy (i.e., lower RMSE) was achieved with increasing 

penetration depth ratios. Nevertheless, it is difficult to quantify how many centimeters of snow the Ku-

band penetrates simply because the snow penetration depth highly depends on the spatiotemporal 

distribution of snow and whether it is dry or wet. In order to further enhance the sea ice freeboard and 

thickness produced in this study, snow penetration depth should be considered.

2.5 Conclusions

In this study, a novel machine learning-based lead detection approach was proposed to quantify 

Arctic sea ice freeboard and thickness from CryoSat-2 data. The estimated sea ice thickness was 

validated with AEM-bird data. Accurate lead detection is crucial in estimating LSSH, which is 

essential to retrieve the freeboard and thickness (Rose 2013; Farrell et al., 2009). The results showed 

that the proposed lead detection approach successfully estimated the sea ice thickness, compared to 

the existing methods. The overall accuracies by the proposed lead detection methods—decision trees 



40

(See5.0) and random forest—were 95.4% and 96.2%, respectively, which were higher than those 

produced using the existing methods.

A total of five parameters were used to detect leads, including SSD, stack skewness, PP, stack 

kurtosis, and backscatter sigma-0. Among the parameters, backscatter sigma-0, which prior methods 

had not considered, played a significant role in determining the threshold-based rules to distinguish 

leads from ice floes. The lead detection models developed by year or month (i.e., CM and CA) did not 

produce better performance than the combined model that used all samples for March and April from 

2011–2014. This suggests that sea ice thickness in other months such as May or June could be 

retrieved when additional reference samples from the months were combined with the existing data. 

That way, a standard lead detection model can be proposed, which can be applied for any year and 

month. The results also showed that Arctic sea ice freeboard and thickness consistently decreased 

from 2011–2013, especially in the Canadian Archipelago region, but rebounded in 2014. Future 

research includes developing a machine learning-based lead detection model that can be applied to 

any year and month, and modeling snow depth penetration using CryoSat-2 data.
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Chapter 3

3. Arctic lead detection using a waveform mixture algorithm from 

CryoSat-2 data

3.1 Introduction

Sea ice leads (hereafter referred to as “leads”), linearly elongated cracks in sea ice, are a common 

feature in the Arctic Ocean. Leads facilitate an amount of heat and moisture exchanges between the 

atmosphere and the ocean because of the temperature differences between them (Maykut. 1982; 

Perovich et al., 2011). Although leads occupy a small portion of the Arctic Ocean, there is much more 

heat transfer between the atmosphere and ocean through leads than sea ice (Maykut, 1978; Marcq and 

Weiss, 2012). Furthermore, Lüpkes et al. (2008) showed that a 1% change in sea ice concentration 

owing to an increase of lead fraction could increase near surface temperature up to a 3.5 K in the 

Arctic. Thus, the detection and monitoring of leads in the Arctic Ocean are crucial because they are 

closely related to the Arctic heat budget and the physical interaction between the atmospheric 

boundary layers and sea ice in the Arctic.

Satellite sensors have been the most efficient way to monitor leads in the entire Arctic region 

since the 1990s (Key et al., 1993; Lindsay and Rothrock, 1995; Miles and Barry, 1998). AVHRR and 

Defense Meteorological Satellite Program (DMSP) satellite visible and thermal images were used to 

detect leads in the early 1990s. Recently, MODIS IST product with 1km spatial resolution was used to 

detect leads to map pan-Arctic lead presence (Willmes and Heinemann, 2015; Willmes and 

Heinemann, 2016). They mitigated cloud interference using a fuzzy cloud artefact filter and 

investigated lead dynamics based on a comparison between pan-Arctic lead maps and the 

characteristics of the Arctic Ocean such as shear zones, bathymetry, and currents. While optical 

sensors have a finer spatial resolution, they are not pragmatic in the dark regions during polar nights

(from December to February). In addition, leads are easily contaminated by clouds. Microwave 

instruments such as passive microwave sensors and altimeters have been used to detect leads and to 

produce lead fractions. Röhrs and Kaleschke (2012) utilized the polarization ratio of AMSR-E

channels and retrieved daily thin ice concentration. With the help of the thin ice concentration, lead 

orientations and frequencies were derived using an image analysis technique (i.e., Hough transform) 

(Bröhan and Kaleschke, 2014). Air-borne and space-borne radar altimeters can detect leads as well. 

Zygmuntowska et al. (2013) used Air-borne Synthetic Aperture and Interferometric Radar Altimeter 

System (ASIRAS), similar to CryoSat-2, to identify leads based on waveform characteristics and a 

Bayesian classifier. Zakharova et al. (2015) and Wernecke and Kaleschke (2015) utilized space-borne 
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altimeters such as Satellite with Argos and Altika (SARAL) and CryoSat-2 to identify leads, 

respectively. While Zakharova et al. (2015) applied simple thresholds to identify leads along with 

Satellite with Argos and Altika (SARAL/Altika) tracks and estimated regional lead fractions, 

Wernecke and Kaleschke (2015) optimized thresholds to detect leads and produced pan-Arctic lead 

fraction maps using CryoSat-2 with the analysis of lead width, and sea surface height.

Linear mixture analysis based on the assumption that the spectra measured by sensors for a pixel 

are a linear combination of the spectra for all components within the pixel (Keshava and Mustard, 

2002) was first applied to the altimetry research field in the Polar Region by Chase and Hoyer (1990). 

They estimated sea ice type and concentration using linear mixture analysis based on Geosat 

waveforms. However, Geosat with a relatively small number of bins and coarser spatial resolution is 

not sufficient to detect small leads in the winter and spring seasons in the Arctic. In this study, we 

adopted the linear mixture analysis concept to waveforms from SIRAL, CryoSat-2, to identify leads 

and produced monthly pan-Arctic lead fractions from January to May and October to December 

between 2011 and 2016. Waveform endmembers that are crucial to implement linear mixture analysis 

(Fig. 1). N-FINDR (N-finder) algorithm was used to select waveform endmembers from extracted 

waveforms by Decision tree (DT) from Lee et al. (2016), which can mitigate subjective selection of 

endmembers. The detected leads were visually evaluated with MODIS images (at 250 m resolution) 

and compared with other thresholds based lead detection methods. The lead detection of waveform 

mixture analysis is not easily affected by the update of the CryoSat-2 baseline, which is novel and 

different from previous threshold based lead detection methods. The main objectives of this study are 

to 1) develop a novel lead detection method based on waveform mixture analysis, 2) identify recent 

pan-Arctic lead fractions.
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3.2 Data 

3.2.1 Sea ice edge data

EUMETSAT OSI SAF provides multiple sea ice products such as sea ice concentration, sea ice 

edge, sea ice type, sea ice emissivity, and sea ice drift. The sea ice edge product was developed using 

the polarization ratio of 19 GHz and 91 GHz, the spectral gradient ratio of 37 GHz and 19 GHz from 

SSMIS, and anisFMB from The Advanced Scatterometer (ASCAT) with Bayesian approach (Aaboe et 

al., 2016). In this study, monthly averaged sea ice edge data was used to mask out monthly lead 

fraction maps. The open ice cover in the sea ice edge product was regarded as an open ocean.

3.2.2 Monthly lead fraction maps

Lead fraction maps produced from previous studies (Röhrs and Kaleschke, 2012; Wernecke and 

Kaleschke, 2015; Willmes and Heinemann, 2016) were used to compare to the lead fraction maps 

generated using the proposed waveform mixture analysis in this study. Röhrs and Kaleschke (2012) 

produced daily thin ice concentration maps using AMSR-E data with a 6.25 km grid, which can detect 

leads that are wider (i.e., width) than 3 km. The daily thin ice concentration that was over 0.5 (i.e., 

50%) was considered to be a lead and binary daily lead maps were averaged to properly compare 

other monthly lead fraction maps. A threshold optimization based lead detection method with the 

CryoSat-2 was used in Wernecke and Kaleschke (2015) and monthly lead fraction maps were 

calculated with the grids of 99.5 km. The thin ice concentration maps (Röhrs and Kaleschke, 2012) 

and the lead fraction maps using CryoSat-2 (Wernecke and Kaleschke, 2015) are available on their 

website (http://icdc.cen.uni-hamburg.de/1/daten/cryosphere.html). Willmes and Heinemann (2016) 

also produced daily lead maps over the entire Arctic Region, classifying land, cloud, sea ice, lead-

artefact, and lead with the spatial resolution less than 2 km. The only lead class considers to make 

daily binary lead fraction maps and the sum of lead class is divided by days in a month (i.e., 28 or 30 

or 31) to make monthly lead fractions maps. This data is available on their website 

(http:/dx.doi.org/10.1594/PANGAEA.854411) ). In this study, we compared the monthly lead fraction 

maps from January to March 2011 as AMSR-E based lead fraction maps were only available until 

2011. 
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3.3 Methods

3.3.1 Waveform mixture analysis 

Spectral linear mixture analysis assumes that the spectra measured by sensors for a pixel is a 

linear combination of the spectra of all components within the pixel (Keshava and Mustard. 2002). 

This technique is widely used to resolve spectral mixture problems in hyperspectral image analysis 

(Foody and Cox, 1994; Dengsheng et al., 2003; Changshan. 2004; Iordache et al., 2011). Waveform 

mixture analysis is based on the concept of spectral linear mixture analysis. Since the waveform of 

altimetry within a footprint could be considered to be a mixture of leads and various types of sea ice, 

linear mixture analysis can be applied in this framework. In order to successfully implement 

waveform mixture analysis, the proper selection of an endmember is essential. The basic linear 

mixture model is defined as follows in equation 1.

                               �� = ∑ ���
�
��� ��                           (1)

where �� = {��, ��, ��,…, ��} represents waveform vectors and p means a bin in the waveform. ���

is an abundance fraction, which provides proportions in terms of endmember. �� is the endmember 

vectors. Equation 1 is constrained under ∑ ���
�
��� = 1 and ��� ≥ 0. In this study, we used MATLAB 

toolbox for linear unmixing with the interior point least square algorithm provided by Chouzenoux et 

al. (2014).This algorithm can handle huge data with inequality constraints, allowing reduced 

computational cost and high flexibility (Chouzenoux et al., 2014). While an endmember in remote 

sensing data represents a single pixel solely with a pure material, in this study, waveforms of CryoSat-

2 L1b data were used as endmembers such as the waveform of pure lead and first-year ice (FYI) (Fig. 

3.1). Chase and Holyer (1990) concerned by two problems with the application of linear mixture 

analysis to the waveform of altimeter data. First, the waveform within a footprint may not be linearly 

mixed between leads and sea ice. CryoSat-2 is more sensitive to the specular reflection of leads than 

the diffuse reflection of sea ice when both leads and sea ice exist within the same footprint, which 

implies the waveform may tend to be similar to the endmember of leads (Chase and Holyer. 1990). 

Since CryoSat-2 has large number of range bins, representing vertical resolution than the number of 

range bins from Geosat, could reduce the overestimation of leads. Secondly, the waveform of the 

altimeter (i.e., Geosat) is somewhat weighted on the centre of a footprint rather than representing an 

entire footprint. This could be an error source when applying linear mixture analysis to waveform data 

(Chase and Holyer. 1990). However, the CryoSat-2 L1b waveform is produced by averaging more 

than 200 weighted waveforms with various incidence angles, which can alleviate such a problem.  
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3.3.2 Endmember selection

The selection of endmembers is essential in the framework of waveform mixture analysis. We 

collected 48 CryoSat-2 files that traverse over the Arctic Ocean from January to May and from 

October to December 2011-2016 and extracted lead and ice waveforms by using the decision trees 

(DT) algorithm developed for lead detection by Lee et al. (2016). DT has proven to be very effective 

in various remote sensing classification tasks (Lu et al., 2014; Li et al., 2013; Kim et al., 2015; 

Torbick and Corbiere, 2015; Amani et al., 2017; Tadesse et al., 2017). The most representative 

waveforms (i.e., endmembers) is a key factor to implement waveform mixture analysis successfully. 

In order to prevent subjective selection of endmembers, a number of candidate endmembers were 

extracted DT algorithm and N-FINDR algorithm selected a pure lead and ice endmember. Therefore, 

the criterion of selection of endmembers is followed by DT and N-FINDR algorithm. Waveforms 

from March to April between 2011 and 2014 were compared to those from January to May, and 

October to December between 2011 and 2016 (not shown), resulting in little difference between them. 

This justified the use of the DT algorithm proposed by Lee et al. (2016) to extract waveform samples 

of leads and sea ice because the DT algorithm developed in March and April 2011-2014. The total 

number of sea ice and lead waveforms is 420,858 and 8,501, respectively. The N-FINDR uses an 

iterative simplex volume expansion by endmembers, assuming that the volume defined by a simplex 

with pure pixels is always greater than any other combination of pixels, and thus the algorithm has 

been widely used for automatically selecting representative endmembers (Winter, 1999; Zortea and 

Plaza, 2009; Erturk and plaza, 2015; Ji et al., 2015; Chi et al., 2016). The lead classification based on 

waveform mixture analysis was evaluated with 250 m MODIS images collected from March to May 

and in October. We used Earth view 250m reflective solar bands scaled integers in MOD02QKM 

product and adjust contrast to emphasize lead and sea ice in the images. It should be noted that since 

MODIS images with spatial resolution of 250 m were not available in January, February, November, 

and December due to polar nights, the evaluation with MODIS images and lead classification results 

based on CryoSat-2 could not be used. To secure the reliability of the comparison, the temporal 

difference between the MODIS images and CryoSat-2 data was always under 30 minutes. 

The waveform mixture analysis model produces abundance data (i.e., lead and sea ice abundance) 

at along-track points with respect to each endmember of the leads and sea ice (Fig. 3.1). While the 

lead abundances are high on the leads, the ice abundances are low on the leads, vice versa (Fig. 3.1). 

Thresholds have to be determined to make a binary classification between leads and sea ice. Optimum 

thresholds to produce binary lead classification from lead and sea ice abundances were identified 

through an automated calibration. To implement the automated calibration, reference point data of 

leads and sea ice were determined by visual inspection of four MODIS images collected on 17 April 

2014, 25 May 2015, 10 October 2015, and 27 March 2016. While the calibration was conducted using 
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half of the reference data randomly selected, the validation was performed using the remaining data. 

Threshold combinations from 0.2 to 0.9 with a step size of 0.01, for both lead and sea ice abundances,

were tested and the one resulting in the highest accuracy was determined to be an optimum threshold 

combination. 

Figure 3. 1 Lead and ice abundance derived by waveform mixture analysis on 10 Oct. 2015. (a) Lead 

abundance, (b) Ice abundance. The colour bar expresses abundances from 0 to 1.

Lead detection results were evaluated using three accuracy metrics—producer’s accuracy, user’s 

accuracy, and overall accuracy (Tab. 3.1). Producer’s accuracy (a/(a+c), lead classification accuracy), 

which is associated with omission errors, is calculated as the percentage of correctly classified pixels 

in terms of all reference samples for each class. User’s accuracy (a/(a+b), lead classification accuracy), 

which is related to commission errors, is calculated as the fraction of correctly classified pixels with 

regards to the pixels classified to a class. Overall accuracy ((a+d)/(a+b+c+d), lead classification) is 

calculated as the total number of correctly classified samples divided by the total number of validation 

sample data. The lead and ice references using MODIS is manually labelled along with CryoSat-2 

tracks with naked eyes.
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Table 3. 1 Error matrix for calculation of user’s, producer’s and overall accuracy in terms of lead and 

ice classification.

MODIS references

Lead Ice Sum

CryoSat-2 

based lead

Lead a b (a+b)

Ice c d (c+d)

Sum (a+c) (b+d) (a+b+c+d)

A monthly lead fraction was derived by dividing the number of lead observations by the number 

of total observations within a 10 km grid in a month. We have compared lead fraction maps with the 

different spatial resolution (i.e., 10, 50, and 100 km) to decide proper spatial resolution. While 10 km 

lead fraction maps might be possible considering the number of CryoSat-2 observations in high 

latitudes, 10 km lead fractions in low latitudes may be insufficient to represent to lead fraction 

because the lead fraction is sensitive to change in the number of lead observations in the situation of 

the small number of CryoSat-2 observations. We divided into two sections in the Arctic Ocean, 

considering the number of CryoSat-2 observations. While spatial resolution of lead fraction is 10 km 

below 75°N, the spatial resolution of lead fraction is 50 km over 75°N since the number of CryoSat-2 

observations rapidly decreased below 75°N. The partition of Arctic Ocean makes lower sensitivity in 

low latitudes. It is noted that while there are more than 30 CryoSat-2 observations in the 10 km grid 

around the centre of the Arctic, CryoSat-2 observations less than 5 are in the 10 km grid around the 

coast line of Arctic Ocean. This will be dealt with in the results section with more details. 

3.3.3 Calculation of sensitivity in a 10x10 km grid 

Since each grid has a different number of CryoSat-2 observations, a sensitivity analysis was 

conducted in terms of the number of observations by grid. Thirty (30) percent of the number of lead

and ice observations in 10x10 km grids was repetitively permuted (i.e., the number of lead and ice 

observation in a grid randomly changed whenever iteration occurred) and the standard deviation of 

the resultant lead fractions through 50 iterations was calculated in grids. The higher the standard 
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deviation in a grid, the more sensitive the observed lead fraction is to the number of available 

observations. Since the number of CryoSat-2 observation around coast line is small (5-10), the thirty 

percent of the number of lead and ice observation is randomly changed, resulting in large variation of 

lead fraction in a grid. Meanwhile, the number of Cryosat-2 observation in high latitude is large (>30). 

The random change of the thirty percent of the number of lead and ice observation results in small 

variation of lead fraction in a grid. The sensitivities in terms of the calculation of monthly lead 

fraction maps depend on the number of CryoSat-2 observation. It should be noted that the standard 

deviation is zero when no lead observation is found, which means lead fraction is also zero. 

Sensitivities were calculated from January to April 2011 because these months were used to compare 

the lead fractions from the proposed waveform mixture analysis to those in the existing literature. 
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3.4 Results 

3.4.1 Performance of lead classification

Exemplary results waveforms in the L1b SAR data are shown in Fig. 3.2. Such a waveform 

represents temporal distribution of reflected power when the radar pulses reach the surface, describing 

flat or rough surface. In this case, since the leading edge of each waveform starts from a different 

range bin, the beginning of the waveform was set at 1% of the maximum echo power (Figs. 3.2). For 

more detailed explanation about processes to develop L1b waveform data, refer to Salvatore (2013).  

Figure 3. 2 Representative waveforms of (a) leads and (b) sea ice over the Arctic Ocean selected by 

N-FINDR algorithm during January to May and October to December between 2011 and 2016. Refer 

to the methods section for N-FINDR algorithm.

Fig. 3.2 shows representative waveforms of leads and sea ice extracted by the N-FINDR 

algorithm as endmembers. The waveform of leads is dominated by specular reflection, resulting in a 

narrow peak curve. The representative waveform of sea ice has a wider distribution due to its rough 

surface when compared to that of leads. Considering different types of sea ice such as young ice, FYI, 

and Multi-Year Ice (MYI), the representative waveform of sea ice is similar to that of FYI based on 

visual inspection (Zygmuntowska et al., 2013; Kurtz et al., 2014; Ricker et al., 2014; Wernecke and 

Kaleschke. 2015).

The optimum thresholds for the lead and sea ice abundances were determined to be 0.84 and 0.57 

through the automated calibration, respectively. According to the thresholds, leads were identified 

with the conditions of lead abundance > 0.84 and sea ice abundance < 0.57. Selected examples of lead 

detection results based on waveform mixture analysis are presented in Fig. 3.1 with threshold-based 
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lead detection results from the existing literature (Rose, 2013; Laxon et al., 2013; and Lee et al., 2016). 

Simple thresholding approaches based on two waveform parameters, PP and SSD were used in Rose 

(2013) and Laxon et al. (2013), respectively. It should be noted that since the existing methods were 

developed using parameters such as beam behaviour parameters and backscatter sigma-0 extracted 

from baseline B data, rescaling was conducted on the parameters extracted from a newly updated 

baseline C data for reasonable comparison (Scagliola and Fornari, 2015). 

Multiple lead classification methods based on CryoSat-2 data were evaluated by visual inspection 

with high resolution (250m) MODIS images. The waveform mixture analysis produced better results 

than previous lead detection methods using simple thresholding approaches such as Rose (2013) and 

Laxon et al. (2013) (Fig. 3.3). While the performance of waveform mixture analysis was comparable 

to the DT algorithm from Lee et al. (2016), waveform mixture analysis slightly over-estimated leads 

resulting in lower user’s accuracy than user’s accuracy for leads by DT (Fig. 3.4). This is inevitable 

result because waveforms used in waveform mixture analysis are basically extracted by DT from Lee 

et al. (2016). 

Lead classification results should be assessed during all the months (i.e., January to May, and 

October to December) and years (i.e., 2011 to 2016) using MODIS images to thoroughly evaluate the 

proposed waveform-based algorithm for lead detection. However, lead classification results in January, 

February, November, and December were not assessed using MODIS images due to polar nights. 

Thus, the lead classification results in these months could possibly have uncertainties. 
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Figure 3. 3 Visual comparison of lead classifications: (a) – (d) lead classifications based on Rose 

(2013), (e) – (h) lead classifications based on Laxon et al. (2013), (i) – (l) lead classifications based on 

decision trees from Lee et al. (2016), and (m) – (p) lead classifications based on the proposed 

waveform mixture analysis. The MODIS data were collected in March (a, e, i, and m), April (b, f, j, 

and n), May (c, g, k, and o), and October (d, h, l, and p).
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Figure 3. 4 Accuracy assessment results for lead detection by method—three existing methods and 

the proposed waveform mixture algorithm (WMA).

3.4.2 Spatiotemporal distribution of lead fraction maps

The monthly lead fraction maps in January to May, and October to December from 2011 to 2016 

are shown in Figs. 3.5 and 3.6. The areas around the coast line of the Arctic Ocean clearly show 

higher lead fraction due to the shear zone (i.e., an area of deformed sea ice along the coast, Serreze 

and Barry, 2005) and outflow of sea ice. In particular, high lead fraction was found around Beaufort 

Sea during the spring season (MAM) because of the Beaufort Gyre, a wind-driven ocean current. It is 

widely known that the Chuckchi Sea is the main strait that warm Pacific water flows through into the 

Arctic (Woodgate et al., 2006; Woodgate et al., 2010). However, the lead fraction around the 

Chuckchi Sea was lower than the lead fraction around Beaufort Sea in January to April (i.e., winter 

season) 2011 and 2016, excluding 2015. While the lead fraction decreases from October to March (i.e., 

freezing season) with the minimum in March, the lead fraction starts to increase from April. This 
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indicates an increasing lead fraction, which corresponds to the seasonal cycle of sea ice thickness. 

However, the lead fraction around the Beaufort Sea decreases in March and April of 2013 and 2016 

(Figs. 3.5 and 3.6). The lead fraction in the spring season in 2013 was particularly high possibly due 

to the sea ice extent minimum in September 2012, which required a relatively long period of time to 

freeze up in the spring of 2013 (Figs 3.5 and 3.6). December to January is usually considered as a 

freezing season. Nevertheless, the lead fraction around the central Arctic increased in January 2016. 

This result corresponds to the findings of Kim et al. (2017) and Ricker et al. (2017). 
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Figure 3. 5 Monthly lead fraction maps based on waveform mixture analysis in January to May, 

October to December between 2011 and 2013. The range of the colour bar was set from 0 to 0.5 to 

emphasize lower values.



55

Figure 3. 6 Monthly lead fraction maps based on waveform mixture analysis in January to May, 

October to December between 2014 and 2016. The range of the colour bar was set from 0 to 0.5 to 

emphasize lower values.
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3.4.3 Grid sensitive analysis in 10x10 km 

As mentioned in section 3.3.3, the number of CryoSat-2 observation decreases from the North 

Pole toward the coast line of Arctic Ocean. This results in an increase in sensitivities when calculating 

monthly lead fraction around the coast line of Arctic Ocean based on the small number of CryoSat-2 

observations. The number of lead and ice observations is shown in Fig. 3.7a-h. While there are a few 

lead observations around coast line, a large number of ice observations was found in the central Arctic. 

The high standard deviation values around the coast line of the Arctic Ocean zone imply that the 

reliability of lead fractions was low, while the relatively large number of CryoSat-2 observations 

around the North Pole produced low standard deviation indicating less sensitivity (Fig. 3.7i-l). There 

was spatial difference of sensitivity by month (i.e., January to April) because of the different number 

of lead observations. Especially, since there was no lead observation in the East Siberian coast and 

Eastern Laptev Sea, the sensitivity (i.e., standard deviation) was also zero (Fig. 3.7c and d). It should 

be noted that the corresponding lead fraction might not represent actual lead fraction in a 10 x 10 km 

grid. This is a drawback when calculating monthly lead fraction maps with satellite altimeters.
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Figure 3. 7 (a-d) the number of lead observations, (e-h) the number of ice observations, (i-l) the 

standard deviation of the results based on the sensitivity analysis of lead fraction from January to 

April 2011.
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3.5 Discussion

3.5.1 Comparison of lead classification methods

While all classification methods produced high producer’s accuracy for the ice class exceeding 

93 %, the approaches from Lee et al. (2016) and Laxon et al. (2013) resulted in a bit higher producer’s 

accuracy for leads than the other methods (Fig. 3.4). Although Laxon et al. (2013) produced the 

highest producer’s accuracy for leads (i.e., 94.5 %), which means that this method robustly detected 

leads, the user’s accuracy for ice was the lowest, suggesting a huge number of false alarms for leads 

on the ice. Overestimation of leads may increase sea surface height anomaly (SSHA), which will lead 

to the underestimation of sea ice freeboard (Lee et al., 2016). 

Since the overall accuracy metrics of the proposed waveform mixture analysis approach was 

comparable to those of the existing methods, especially DT, the waveform-based method can be used 

for estimating SSHA. Threshold-based lead detection methods have to be re-scaled whenever baseline 

data are updated. For example, beam behaviour parameters and backscatter sigma-0 changed slightly 

between when baseline B and baseline C data were used. Thus, thresholds must also be updated in 

order to appropriately identify leads using the threshold-based methods. However, waveform mixture 

analysis is free from the change of baseline data because waveforms can still be used to detect leads 

using updated baseline data. This is the strong point of waveform mixture analysis when compared to 

the existing methods.

The use of waveform mixture analysis might not work well to detect leads in cases of refreezing 

leads. In Figs. 3c, g, k, and o, the dark area in the MODIS scenes around the latitude of 84.26°N and 

longitude of 43°W was determined to be a lead class with visual inspection of the images and 

waveforms. Rose (2013) classified this region as ice. Laxon et al. (2013) and waveform mixture 

analysis detected one lead in that region. In fact, since the leads were refrozen, the waveforms in that 

region were more similar to the typical FYI waveform. In the context of waveform mixture analysis, 

this region could be classified as ice. Additionally, rough lead by strong wind tends to be classified as 

ice. Therefore, in order to more accurately detect leads, a surface elevation anomaly is needed as well 

as beam behaviour parameters, backscatter sigma-0, and waveform mixture analysis because the 

surface elevation anomaly on refreezing leads would be low like other leads.

3.5.2 Comparison to other lead fraction maps 

Four monthly lead fraction maps (Röhrs and Kaleschke, 2012; Wernecke and Kaleschke, 2015; 

Willmes and Heinemann, 2016) were compared to evaluate the pros and cons of each method used to 

produce the maps (Fig. 3.8). Basically, all four methods represent the spatiotemporal pattern of leads 

well for the freezing season from January to March. Scene-based lead fraction maps (i.e., AMSR-E in 

Figs. 3.9a, b and c, and MODIS in Figs. 3.8d, e, and f) and altimeter-based lead fraction maps (i.e., 
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CryoSat-2 in Figs. 3.8g to l) have fundamentally different spatial characteristics as AMSR-E and 

MODIS are sensitive to different surface features. Scene-based lead fraction maps better represent the 

linear feature of leads and coastal polynya than altimeter-based lead fraction maps. Since the AMSR-

E-based approach only detects relatively large (~ 3 km) leads, lead fractions are generally lower than 

in the fraction maps using the other approaches. While altimeter-based lead fractions in January 2011 

(Figs. 3.8g and j) in the Chuckchi Sea were high, scene-based lead fractions (Figs. 3.8a to f) were low 

in January 2011. There are deformed and fragmented sea ices in the Chukchi Sea, which is different 

from the general lead shape. Altimeter-based lead detection methods identified leads between 

deformed and fragmented sea ices, generating a higher lead fraction in the Chukchi Sea in January 

2011 (Figs. 3.8g and j). However, scene-based lead fraction methods did not detect leads in the 

Chuckchi Sea well, resulting in a lower lead fraction. The MODIS-based lead detection method that 

used IST did not detect leads in the Chukchi Sea (Figs. 3.8d, e, and f). In the AMSR-E images, sea ice 

signals were dominant in the footprint around the Chukchi Sea and cracks between deformed and 

fragmented sea ices were identified as ice.

Altimeter-based monthly fraction maps might be insufficient to represent monthly lead fractions 

in the coast line of the Arctic Ocean due to the limited number of CryoSat-2 observations in a month. 

Nonetheless, altimeter-based lead fraction maps well documented the overall spatial distribution of 

leads, in particular, high lead fractions in the shear zone. Wernecke and Kaleschke (2015) used a 

random cross validation technique to derive optimum thresholds based on ground references (i.e., 

MODIS images). They identified leads conservatively to reduce false classifications. The 

classification results strongly depend on ground reference data. Since relatively high resolution (250m) 

MODIS images were used to construct reference data in this study, the waveform mixture analysis 

was able to identify small leads through the calibration process of the abundance data (Fig. 3.3). 

Although the proposed waveform mixture analysis produced lead fraction maps with a higher spatial 

resolution than those in Wernecke and Kaleschke (2015), the lead fractions around the coast line of 

the Arctic Ocean from Wernecke and Kaleschke (2015) appeared to have less uncertainty. This is 

because of the larger number of lead observations in a much coarser grid than that from our results. 

The grid sensitivity analysis should be considered when interpreting the lead fraction maps around the 

coast line of the Arctic Ocean derived by the proposed waveform mixture analysis. 

The choice of monthly lead fraction maps depends on the user’s interest. Scene-based lead 

fraction maps better represent coastal polynya and the intrinsic form of leads (Röhrs and Kaleschke, 

2012; Willmes and Heinemann, 2016). CryoSat-2 based lead fraction maps might not represent the 

linear shape of typical leads well like cracks which includes deformed and fragmented sea ices that 

are not in linear form. This is also a way to exchange heat and momentum transfer between the 

atmosphere and ocean, which can be detected as leads. 
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Figure 3. 8 Comparison to other lead fraction maps in January to March 2011. (a-c) Monthly mean 

thin ice concentration maps using AMSR-E from Röhrs and Kaleschke (2011). (d-f) Monthly mean 

lead fraction maps using MODIS from Willmes and Heinemann (2015). (g-i) Monthly lead fraction 

maps using CryoSat-2 from Wernecke and Kaleschke (2015). (j-l) Monthly lead fraction maps based 

on waveform mixture analysis using Cryosat-2 in this study.
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3.5.3 Lead dynamics 

The features of the Arctic sea ice dynamics are driven by wind and, to a lesser degree, ocean 

currents (Kwok and Untersteiner, 2011). The Arctic Ocean circulations have contributed to the change 

in the state of sea ice. The lead fraction in northwestern Greenland in Figs. 5 and 6 is low because of 

the convergence of sea ice by two major circulations, which was clearly shown in Kwok (2015). 

Kwok et al. (2013) revealed that the currents speed of Beaufort Gyre and Transpolar Drift increased 

from the years of 1982 to 2009 and this makes the fraction of multi-year ice decrease. However, the 

increasing lead fraction from the years of 2011 to 2016 in this study was not seen due to the high 

inter-annual variability of lead fraction, particularly in the spring season (Fig. 3.9). High uncertainties 

in the marginal sea ice zone might result in not catching the increasing trend of Arctic lead fraction 

shown in the literature. In order to properly compare the Arctic current circulations and lead fraction, 

long-term lead fraction data are needed.  

The inter-annual variability of lead fraction is related to atmospheric anomalous phenomena. In a 

situation of large inter-annual variability of lead fraction in spring season from 2011 to 2016, the lead 

fraction in spring season decreased from 2013 to 2014, especially, around Beaufort Sea (Figs. 3.5, 3.6, 

and 3.9). The increase and decrease of lead fraction is linked to the change in sea ice thickness. The 

decrease of lead fraction in March and April from 2013 to 2014 corresponds to the increase of sea ice 

thickness in March and April from 2013 to 2014 (Tilling et al., 2015; Lee et al., 2016). Tilling et al. 

(2015) assessed the main cause of increase of sea ice thickness to be an anomalous cool summer in 

2013. While November to March is considered to be the freezing season, the lead fraction increased in 

the central Arctic between December 2015 and January 2016 (Fig. 3.7). Kim et al. (2017) and Ricker 

et al. (2017) explained a plausible reason for the reduction in sea ice growth. Warm and moist air from 

the Atlantic Ocean strongly intruded into the Arctic, weakening sea ice growth. Furthermore, the high 

lead fraction in the Beaufort Sea in February to April 2016 was attributable to the high ice drift speed 

(Ricker et al., 2017). 
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Figure 3. 9 Averaged seasonal lead fraction in spring (MAM), fall (ON), and winter (DJF) between 

2011 and 2016. The lead fraction from June to September was not available because leads were hard 

to distinguish from melt ponds using CryoSat-2 in the summer season.
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3.5.4 Novelty and limitations

In this study, we developed an alternative lead detection method (i.e., waveform mixture analysis) 

using CryoSat-2 L1b data, which can overcome the drawbacks of previous threshold based lead 

detection methods. Regardless of an update in CryoSat-2 baseline data, the proposed waveform 

mixture analysis can consistently identify leads without rescaling parameters such as beam behaviour 

parameters, pulse peakiness, and backscatter sigma-0. Such parameters must be rescaled to implement 

threshold based lead detection methods when using updated CryoSat-2 baseline data. In addition, the 

proposed waveform mixture analysis outperformed the existing simple thresholding-based methods 

(Rose, 2013; Laxon et al., 2013), and was comparable to the machine learning-based thresholding 

method (Lee et al., 2016). In addition, this study showed the high inter-annual variability of Pan-

Arctic lead fractions in recent years (i.e., 2011-2016), which implies that recent sea ice state becomes 

more vulnerable to atmospheric and oceanic forcing. 

On the other hand, the waveform mixture analysis depends on the quality of the endmembers. 

Although the use of the N-FINDR algorithm decreased the subjective selection of endmembers, 

waveform samples of leads and sea ice derived by DT algorithm from Lee et al. (2016) may introduce 

uncertainty because the algorithm was validated for March and April from 2011 to 2014. The spatial 

resolution of monthly lead fraction maps improved up to 10km, showing detailed spatial distribution 

of leads in the Arctic in high latitudes. For example, some regions have various lead fractions with 10 

km spatial resolution but various lead fraction in some regions cannot be described with 100 km 

spatial resolution because lead fraction are averaged, resulting in blur spatial patterns. 
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3.6 Conclusions 

The waveform mixture analysis was proposed to detect leads with CryoSat-2 L1b data. The lead 

and sea ice waveforms were considered as endmembers that are essential to implement waveform 

mixture analysis. The endmembers (i.e., representative waveforms of leads and sea ice) were 

extracted by the N-FINDR algorithm among numerous waveforms (i.e., 420,858 waveforms of sea ice 

and 8,501 waveforms of leads). The thresholds to make a binary classification were determined by 

calibrating lead and sea ice abundances with reference data extracted from high resolution (250m) 

MODIS images. The results show that the proposed approach robustly classified leads with better 

performance than previous simple thresholding approaches for lead detection (Rose 2013; Laxon et al., 

2013). Furthermore, the lead detection of waveform mixture analysis was comparable to the decision 

tree based lead detection method (Lee et al., 2016), suggesting a sea ice freeboard can be retrieved 

with the robust lead detection method using waveform mixture analysis. Monthly lead fraction maps 

were produced using the proposed waveform mixture approach, showing clear inter-annual variability. 

Scene-based lead fraction maps have different characteristics from altimeter-based lead fraction maps 

due to different sensors, algorithms, and spatial resolutions but showed similar spatial distribution. 

The results of the lead fraction maps are consistent with the findings of recent studies (Tilling et al., 

2015; Ricker et al., 2017; Kim et al., 2017). The lead dynamics based on monthly lead fraction maps 

were examined with the Arctic Atmospheric and oceanic circulations. 

Unlike thresholds based lead detection methods, the waveform mixture analysis is free from the 

update of baseline version of CryoSat-2 data, which will be useful for future altimeter missions. The 

recent strong inter-annual variability of Arctic sea ice conditions was found. In this context, this 

waveform mixture analysis can be used to consistently produce monthly lead fraction maps during the 

extended CryoSat-2 mission for monitoring Arctic sea ice.



65

Chapter 4

4. Anomalous slow sea ice recovery in fall and winter 2016 by extreme 

warming event in mid-latitudes

4.1 Introduction

Polar amplification is a phenomenon in which the surface air temperatures in high latitudes more 

increase than averaged temperatures in the entire Earth in terms of in the perspective of climate 

change (Serreze et al., 2009; Park et al., 2015). Recently, the frequency of warming events in the 

Arctic is increasing based on buoy and reanalysis data (Graham et al., 2017). Satellite observations 

have revealed that Arctic sea ice extent is continuously diminished since end of 1970 as temperatures 

in the Arctic have increased (Cavalieri et al., 2003; Cavalieri and Parkinson, 2012). Arctic sea ice 

minimum anomaly phenomenon began to stand out from 2002. (Serreze et al., 2003). Since 2002, sea 

ice extent in September highlighted by breaking sea ice extent minimum record. Arctic sea ice extent 

in September 2002 was lowest since 1978 due to anomalous southerly warm winds and ice 

divergence by consistent low pressure and high temperatures (Serreze et al., 2003). The sea ice 

anomaly continue in 2007 and 2012 as well. The higher Sea surface temperature (SST) and the 

fraction of open water likely contributed to sea ice extent anomaly in September 2007 (Comiso et al., 

2008; Parkinson and Comiso, 2013). A considerable attention focused on sea ice extent in September 

2012 owing to the historical minimum extent, 3.4 x 10�km�

(Parkinson and Comiso, 2013). Preconditioned sea ice and a strong storm in the central Arctic in 

August 2012 were major role in declining sea ice (Parkinson and Comiso, 2013). The warming 

condition by southerly warm winds is a primary contributor to these sea ice anomalies rather than 

climate modes such as Arctic Oscillation (AO) and North Atlantic Oscillation (NAO).

Arctic sea ice in winter season has experienced anomaly phenomena as well. Strong winds bring 

humid and warm air from the Atlantic Ocean to the Arctic in January and February 2005, 2006 

(Comiso, 2006; Sorteberg and Walsh, 2008). Especially, a strong cyclonic-storm contributed to ice 

anomaly around Barents, Kara Seas in winter 2015-2016 (Cullather et al., 2016; Boisvert et al., 2016; 

Kim et al., 2017). The sea ice anomaly in winter season considerably delay ice growth, accelerating 

melt following spring and summer season (Comiso et al., 2008). For example, sea ice extent in 

January, February and April 2017 also record minimum extent, which is apparently influenced by sea 

ice minimum anomaly in fall and winter 2016. The study of sea ice anomaly in fall and winter season

needs to be focused to increase predictability of sea ice in spring season and to understand the nature 

of sea ice anomaly phenomenon in fall and winter season.
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The objective of this study is to investigate Arctic sea ice anomaly in November 2016, which is 

strongly connected to extreme warming in mid-latitudes and atmospheric circulation from August to 

October 2016. Sea ice concentration and CryoSat-2-derived sea ice thickness are used to represent sea 

ice state. Atmospheric circulation is examined by Modern-Era Retrospective Analysis for Research 

Applications version 2 (MERRA-2) atmospheric reanalysis. SST data was also used to identify 

warming ocean in the Pacific and Atlantic.

4.2 Data and Methods

4.2.1 Sea ice concentration and thickness

EUMETSAT OSISAF provides sea ice concentration data in 10km spatial resolution. The 

brightness temperatures (��) of SSM/I 19V, 37V, and 37H were used to develop sea ice concentration 

as input data (Tonboe et al., 2016). The �� was corrected due to wind roughening and air temperature 

over open water and water vapor in the atmosphere before calculating sea ice concentration. Sea ice 

concentration anomaly is calculated to represent the rapid change in sea ice in August to November

2016 for a base period of 2007-2016. 

Sea ice thickness plays significant role in controlling heat and momentum exchanges between 

ocean and atmosphere, thermohaline circulation, and freshwater discharge in the Arctic environment 

(Toole et al., 2010; Nicolaus et al., 2012; Meier et al., 2014). The sea ice thickness better indicate the 

surface distribution, where sea ice concentration is higher than 90%, especially, in the center of Arctic. 

The retrieval algorithm for sea ice thickness in this study is same as Lee et al. (2016) but lead 

detection method is different. A new lead detection method proposed by Lee et al. (2017) was used, 

which is waveform mixture algorithm developed on the basis of baseline C data to minimize 

uncertainties. However, a correction of lower propagation speed in the snow pack proposed by Kwok 

et al. (2014) was not applied in Lee et al. (2016). The sea ice thickness from Lee et al. (2016) applied 

by lower propagation correction was used in this study. Furthermore, since lead detection methods 

from Lee et al. (2016) were developed based on baseline B data, the thresholds for lead detection by 

machine learning could introduce uncertainties for application to the baseline C data. It should be 

noted that sea ice thickness in melt season (i.e., May to September) is not available because it is 

difficult to distinguish leads from melt ponds on the sea ice. The sea ice thickness anomaly in 

November for a base period of 2011 – 2016 to describe surface variation particularly in the center of 

Arctic.

4.2.2 MERRA-2 reanalysis and SST data

MERRA-2 provides various atmospheric variables from 1980, which is improvement version of 

MERRA (Molod et al., 2015; Bosilovich et al., 2016). Although reanalysis data is vulnerable to the 
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discontinuities by changing observation systems, it is very useful to represent scares and 

heterogeneous regions (Lindsay et al., 2014). I specifically used 2-m air temperature, sea level 

pressure, and 10-m wind, describing atmospheric spatial patterns in the Arctic. The anomaly is

calculated based on the period from 1980 to 2016.

I used National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation (OI) 

monthly SST developed using in-situ and satellite data, identifying the intrusion of warm SST in 

Pacific and Atlantic sector with the anomaly period of 1982 to 2016. 

4.3 Results 

4.3.1 Anomalous warming event in mid-latitudes and Arctic

As with arctic amplification, average temperature in mid-latitudes gradually increased (Doscher 

et al., 2014). It is reported that extreme warming event occurred in 2016 (NOAA, 2017, Thirumalai et 

al., 2017). Fig. 4.1a shows record breaking warming in mid-latitudes between 40 - 70°N in August 

and September 2016, which is higher about 91.3 % and 64 % than global average, respectively. 

Meanwhile, the average temperature between 40 - 70°N did not rise sequentially but rather the

average temperature dramatically decreased in August and September due to Eurasian cooling. It is 

revealed that the loss of sea ice is largely related to the Eurasian cold winter (Cohen et al., 2012; Mori 

et al., 2014; Tang et al., 2013). The highest average temperature in the Arctic region (i.e., 70 - 90°N) 

in October and November 2016 is recorded, which is higher about 92 % and 140 % than global 

average (Fig. 4.1b). The high temperature of mid-latitudes and Arctic in August to November

promotes ice-albedo feedback in the Arctic, slowing the growth of sea ice in fall. The lowest sea ice 

extent in November 2016 is eventually recorded (Fig. 4.1c). 
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Figure 4. 1 2-m air temperature anomaly from 1980 to 2016 in August to November in different area: 

(a) mid-latitudes, (b) Arctic region. (c) Sea ice extent anomaly in November from 1979 to 2016.  
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4.3.2 Sea ice minimum extent in November 2016

There is a significant drop of sea ice extent in November 2016 (Fig. 4.1c), which is negative 16.8 % 

of whole November from 1978. In the spatial pattern of sea ice in November 2016, Kara, Barents, and 

East Siberia Sea showed a negative anomalies, which largely contributes to the minimum sea extent in 

November 2016 (Fig. 4.2d and h).

A strong low pressure (<996hPa) located on Central Arctic and high pressure around west 

Eurasia moved warm air to the Arctic with Southerly winds in August 2016 (Fig. 4.3a). The warm air 

is easier to be moved to the North due to the low fraction of sea ice in Kara and Barents Sea. In 

September 2016, the strong low pressure is moved to Beaufort Sea and the high pressure in Eurasia 

continental has grown (Fig. 4.3b). Due to such high and low pressure system position, warm air from 

sub-Arctic continuously moved to the Arctic. The southerly winds in August and September 2016 by 

high and low pressure system position might be the reason to make significant negative anomaly in 

the central Arctic in September 2016 (Fig. 4.2b, 4.3a and b). The substantial negative anomaly of sea 

ice in the central Arctic in September 2016 is more obvious than sea ice anomaly in September 2012 

that is historically lower sea ice extent. 

The constant southerly warm winds in August and September might greatly contribute to record 

high air temperature in the Arctic region (i.e., 70 - 90°N) in October 2016 (Fig 4.1b). While the 

negative anomalies in central Arctic is recovered, there still remains a negative anomaly in the central 

Arctic in October 2016 (Fig. 4.2c). The low pressure in the central Arctic in August and September 

moves toward to Pacific region with more intensity and the high pressure in Eurasian continent is 

further extended, promoting the inflow of warming air into the Arctic in October 2016 (Fig. 4.3a to c). 

Although the warm anomaly is dominant around Northeast of Greenland, the positive anomaly of sea 

ice concentration is observed, which is possibly connected to the convergence of sea ice by ice drift. 

Eurasian cooling begins in October 2016, dropping average temperature in mid-latitudes (Fig. 4.1a 

and Fig. 4.3c).  

Eventually the average temperature in Arctic region reaches historical high temperature in 

November 2016 by the convergence of warm air to the Arctic, which is 140 % higher than global 

average (Fig. 4.1b). While the sea ice concentration anomaly is almost zero around central Arctic and 

Canadian Archipelago, the negative anomaly of sea ice concentration still exists in Kara, Barents, and 

East Siberia Sea (Fig. 4.2d). The preconditioned sea ice by southerly warm winds in August to 

October contributes considerable negative sea ice anomaly around Kara, Barents, and East Siberia Sea, 

which attributes sea ice minimum extent in November 2016 (Fig. 4.1c, 4.2d and h). Additionally, 

warm anomaly in North America is further moved to the Arctic due to southerly winds (Fig. 4.3d).
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Figure 4. 2 (a-d) sea ice concentration anomaly in August to November from 2007 to 2016. (e-h) sea 

ice concentration in August to November 2016.    



71

Figure 4. 3 (a-d) spaital distribution of 2-m air temperature, sea level pressurel and 10-m wind 

anoamly in August to November from 1982 to 2016.

SST also might influence on unusual Arctic warming and the minimum sea ice extent in 

November 2016. Fig. 4.4 shows that strong positive anomalies are observed in Pacific and Atlantic 

sector. The temporal variability of SST in Pacific is higher than that of in Atlantic (Fig. 4.5). The SST 

anomaly in August and September 2016 shows comparable high temperature to SST in 2007 and 2012

(Fig. 4.5). However, the SST anomaly in November shows the highest temperature from 1982 in the 

both of Pacific and Atlantic region. This is the possible factor for negative sea ice anomaly in Kara, 

Barents, and East Siberia Sea. The historical sea ice extent minimum in November 2016 is possibly 

the results of couplet of high air temperature and SST. 
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Figure 4. 4 Spatial distribution of SST anomaly (a) August, (b) September, (c) October, and (d) 

November 2016.

Figure 4. 5 SST anomaly in different sector in August to November 1982 – 2016.
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4.4 Discussion

4.4.1 Comparison of previous anomaly phenomena 

Arctic sea ice anomaly phenomena have been intensified since 2002, strengthening ice albedo 

feedback. The weakened sea ice could not easily restore previous state and the ice albedo feedback

continues. Key factors behind the minimum record of sea ice extent in November 2016 are 

complicated rather than one factor. Implying influences on sea ice anomaly in November 2016 could 

be possible based on previous analysis from literatures. High SST and open water fraction in August 

and September is likely the cause of bottom melting, which was a major reason for the sea ice 

anomaly in September 2007 (Perovich et al., 2008; Stroeve et al., 2008). The continuous high SST in 

August to September 2016 probably contributes the bottom melting, explaining considerable the 

negative anomaly of sea ice around central Arctic in September 2016, which implies precondition for 

sea ice extent in November 2016.

It is not easy to conclude whether the frequency and magnitude of winter storm is increasing 

(Sorteberg and Walsh 2008; Simmonds et al., 2008; Bengtsson et al., 2006). The summer and winter 

storms in Arctic apparently have affected to the significant loss of sea ice (Zhang et al., 2013; 

Parkinson et al., 2013; Boisvert et al., 2016). A storm in August to October transverses the Arctic 

Ocean, taking heat and moisture from sub-Arctic, where is unusual warm to the Arctic. In this process, 

sea ice was probably sheared off, facilitating sea ice the exposure to water, which contributes

precondition of sea ice for anomaly in November 2016.  

The resilience of sea ice is continuously decreased by the precondition of sea ice and atmospheric 

and oceanic phenomena. The sea ice could easily be broken with even smaller Arctic storms before.

4.4.2 Sea ice thickness in November 2016 

The region where the anomaly of sea ice concentration anomaly is almost zero explored with sea 

ice thickness anomaly for a base period of 2011 to 2016 (Fig. 4.6a and b). Although a base period for

the sea ice thickness anomaly seems short and different from sea ice concentration, the spatial 

variation in the central Arctic can be identified. In the area where anomaly is almost zero, a negative 

anomaly is observed around Canadian Archipelago but a positive anomaly is observed around Laptev 

Sea. The sea ice thickness in November 2014 around Laptev Sea was under 1 m, which might be the 

major cause of the positive anomaly. The northwesterly Sea ice drift also likely contributes the 

positive anomaly around Laptev Sea, converging sea ice (Fig. 4.6d). A monthly sea ice emissivity in 

November 2016 derived by SSMIS 50GHz channel provides similar spatial characteristic to sea ice 

thickness regardless of the spatial distribution of air temperature (Fig. 4.6e). 

Since the period of sea ice thickness is shorter than that of sea ice concentration, it is hard to 

directly compare sea ice thickness anomaly and sea ice concentration anomaly. Nonetheless, sea ice 
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variation in central Arctic, Canadian Archipelago, and Northwestern Greenland can be identified

using sea ice thickness, where sea ice concentration anomaly is almost zero in fall and winter season. 

This imply the sole use of sea ice concentration for the analysis of sea ice anomaly phenomenon is 

inefficient. Especially, sea ice volume in November 2016 is not minimum in a based period of 2011 –

2016 even though sea ice extent in November 2016 is historical minimum (Fig. 4.7). It should be 

noted that volume uncertainty (±0.4-1.4) should be considered (Ricker et al., 2017). If satellite based 

sea ice thickness and volume are properly provided throughout the year, the aspect of sea ice 

minimum might be little different. The sea ice thickness and volume information with a long period 

could offer more valuable information of sea ice than sea ice concentration.

Figure 4. 6 (a) Sea ice concentration anomaly in November 2016 from 2007 and 2016. (b) Sea ice 

thickness derived by CryoSat-2 anomaly in November from 2011 – 2016. (c) Sea ice thickness in 

November 2016 derived by CryoSat-2. (d) Sea ice drift in November 2016. (e) Sea ice emissivity in 

November 2016.
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Figure 4. 7 Sea ice extent and volume in November from 2011 to 2016.
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4.5 Conclusions

As global warming and Arctic amplification have been intensified, it is not surprise to renew the 

record of sea ice minimum extent. The significant drop of sea ice extent in November 2016 is 

occurred compared to previous November. There are four major reasons for sea ice minimum extent 

in November 2016: 1) preconditioned sea ice, 2) extreme warming in mid-latitudes, 3) warm 

southerly winds with strong cyclonic storm, and 4) high SST. Various factors influenced on sea ice 

anomaly in November 2016. An unusual warming event in August and September 2016 is happened 

in mid-latitudes, which is record breaking warming since 1980. The constant southerly winds by high 

and low pressure position induce unusual warming in the Arctic, moving warm air from mid-latitudes 

to the Arctic. A warm ocean also contributes sea ice anomaly phenomenon in the both of Pacific and 

Atlantic Ocean sector as well, which is almost highest SST ever in November 2016. Furthermore, sea 

ice volume likely represents sea ice state than sea ice extent.

Average temperature in mid-latitudes and Arctic is expected to rise further in summer. This 

affects sea ice cover in fall and winter season like the example in November 2016 and sea ice in 

following spring is also influenced. To understand sea ice condition in spring season, sea ice state in 

fall and winter needs to be further studied. The sea ice cover is apparently influenced by winds, 

surface air temperature, currents, and SST and they have a lag time relationship. Thus, the deep 

understanding of atmospheric and oceanic anomalies in mid-latitudes and Arctic will increase sea ice 

predictability.
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Chapter 5

5. Conclusions

Sea ice thickness is a significant parameter in climate-related process. Climate scientists need 

accurate sea ice thickness for successful projection of future climate. Unfortunately, sea ice thickness 

is more difficult parameter to retrieve than other parameters such as sea ice concentration. A large 

scale sea ice thickness estimation using satellite began in 2003 (Laxon et al., 2003). CryoSat-2 is a 

current mission for monitoring changes in polar region, which can cover up to 88°N and °S. 

The main objective this dissertation is to develop novel CryoSat-2 based lead detection methods 

using machine learning approaches and waveform mixture algorithm, which might improve accuracy 

for sea ice thickness as well as to use sea ice thickness and volume for the analysis of sea ice anomaly.

In the retrieval of Arctic sea ice thickness, accurate lead detection is essential to estimate sea ice 

freeboard and thickness. I applied machine learning approaches, including decision trees and random 

forest to lead detection, which is superior to previous simple threshold based lead detection methods. 

This study showed that the over estimation of leads on the ice could induce lower sea ice freeboard.

Consequently, sea ice thickness also was more accurate than sea ice thickness derived by previous

simple threshold based lead detection methods. 

I proposed a new method to detect leads by using waveform mixture algorithm. The endmember 

is crucial to implement linear mixture algorithm and CryoSat-2 L1b waveforms were considered as 

endmembers extracted by N-FINDR algorithm. Compare to threshold based lead detection methods, 

waveform mixture analysis produced better results and comparable machine learning based lead 

detection. Monthly lead fraction maps derived by waveform mixture algorithm showed strong inter 

annual variability of recent lead fraction from 2011 to 2016. Additionally, unlike traditional lead 

detection methods using beam behavior parameters and backscatter sigma-0, the waveform mixture 

algorithm is less influenced by updating CryoSat-2 data.

The minimum of sea ice extent in November 2016 was happened compared to previous 

November from 1978. Four possible reasons to affect sea ice anomaly in November 2016 are 

considered: 1) preconditioned sea ice, 2) extreme warming in mid-latitudes, 3) warming southerly 

winds with strong cyclonic storm, and 4) high SST. However, unlike sea ice extent in November 2016, 

sea ice volume derived by thickness in November 2016 is unlikely minimum from 2011.

I tried to improve lead detection methods to increase the application of sea ice thickness data. 

The sea ice thickness was used to analyze sea ice anomaly in November 2016, which showed a new 

perspective for sea ice minimum. However, there are still uncertainties factors that prevents accurate 

retrieval of sea ice thickness and volume, especially, snow depth at a basin scale and densities.
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Chapter 6

6. Outlook and Future works

It is found that sea ice cover is decreasing by satellite observation since late 1970 as well as its 

variability is becoming strong and unpredictable. Climate model simulation predicts ice-free ocean in 

the Arctic Ocean by the end of the 21 century (Boe et al., 2009). Furthermore, several model studies 

showed that the observation of the sea ice decline are faster than model simulation results (Stroeve et 

al., 2007; Wang and Overland. 2012). In this context, satellite observations with a high spatiotemporal 

resolution are essentially needed to observe polar region. Various studies have been conducted and 

more development is expected in the future. 

Advanced modeling techniques such as machine learning have not been widely used with a 

satellite altimetry in a polar remote sensing society. I tried to use machine learning techniques to 

improve lead detection methods, which produce sea ice thickness with higher accuracy than previous 

threshold based lead detection methods. Additionally, linear mixture analysis that is generally used in 

the hyper-spectral image analysis was applied for lead detection using waveforms from CryoSat-2 

L1b data. These methods produced better results than previous results and overcome the limitation of 

existing methods. I expect that various polar related parameters will be retrieved through the fusion 

between machine learning approaches that is a promising tool and satellite altimetry and passive 

microwave satellite for monitoring of polar region. It can be useful to analyze long-term trend and

anomaly of sea ice using retrieved parameters. The use of extended CryoSat-2 mission to 2020 and 

ICEsat-2 data will be launched in 2018 will be actively used for better understanding polar region. 

For the future works, daily sea ice thickness will be considered by the use of combination of 

channels and Polarization Ratio (PR) and Gradient Ratio (GR) from Passive microwave satellites such 

as AMSR-E and 2. This study will allow the daily variability of sea ice thickness to be explored. The 

relationship between the change in sea ice thickness and surface heat flux in the Arctic has not much 

been studied yet. The impact of change in sea ice thickness on surface heat flux will be investigated, 

which could affect climate in Arctic and Northern hemisphere mid-latitudes.
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