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Abstract 

 

Recently, our understanding of complex genomes, proteomes, bio-molecules, and even many 

metabolic pathways has been developed significantly as growing a fundamental knowledge of the 

biochemistry of life. These newly revealed findings have incredibly influenced in recent bio-

technologies, such as synthetic biology having massive potential to solve the missing connected dots. 

To have better understanding of microbe, microfluidic approaches were innovatively introduced to the 

field with the potential to revolutionize high-throughput biological assays. 

In this study, suggested approach to address limitations of conventional microbiology is 

microfluidics integrated with synthetic biology. At first, the microbial biosensors will be introduced into 

microfluidic ratchet platform for a quantitative analysis of microbial bio-signal. The microfluidic device 

using microfabricated arrowhead-shaped ratchet structures has an intrinsic function that concentrates 

motile microbes in a microchamber array. Additionally, the ratchet structure provides the concentrated 

microbes to grow better in a continuous-feed mode. A continuous exposure of detection analytes leads 

the amplification of fluorescence signal from microbes in a microchamber. Therefore, it was noted that 

the substantial amplification of bio-signal was achieved from the microfluidic device and measured 

signals were analyzed in quantitative manner. 

As a second practical application of the microfluidic approach, for high-throughput screening (HTS) 

application, a fluid array will be developed by using immiscible character between water and oil for 

microbial incubation, analysis, selective extraction, recovery process and the demonstration of practical 

applications. From the characterization of the fluid array platform, HTS will be demonstrated based on 

two different categories: reporter-gene basis and growth complementation basis. The fluid array device 

showed not only demonstrations of high-throughput screening, but also advanced screening applications 

were also demonstrated with higher mutant library screening with 106 and C2C communication 

screening system. Outstanding mutants were sophisticatedly screened among 106 of a mutant library 

based on the hybrid type screening method. Also, the proposed C2C screening approach has enabled 

high-throughput compartmentalization and resulted in 10 possible mutants showing higher extracellular 

biomolecule secretion performance. 

The proposed microfluidic approaches can be practically useful combinations showing many 

advantages: 1) economical and reduced time requirement for real application without complex 
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instruments, 2) facile potentials to enable a multiplex quantitative analysis in a high-throughput manner, 

and 3) selective, direct and convenient measurement without pre- or post-treatment of sample solutions 

in near future the entire processes could be fully automated. In this dissertation, different type of 

microfluidic devices was developed for various collaborative purposes for the bottleneck of 

conventional microbiology. Therefore, the microfluidic devices have knocked a new door for high-

throughput screening application for synthetically engineered microorganisms and quantitative 

approaches for microbial biosensors. Thus, the research contributions in this doctoral dissertation are 

the microfluidic approaches to popularize and overcome conventional constraints from biological 

experimental tools by integration of total analysis system for synthetically engineered microbe cases. 
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Chapter 1. Introduction 

 

 

1.1 From basic microbiology to microfluidics 

Microorganisms are an attractive platform for both a biosensory platform that detects various 

intra/extracellular biochemicals [1] and a microbial factory that produces various valuable products 

including many enzymes [2, 3], antibiotics [4, 5], or chemicals [6, 7]. Our understanding of complex 

biological systems including genomes, proteomes, and metabolic pathways has been broadened with 

newly revealed knowledge of the biochemistry of the life. As increasing demand both for theoretical 

and practical application of microorganism, many experimental approaches, from conventional test 

tubes to the-state-of-arts instruments, have been introduced to the field to investigate better 

understanding of the biosystem as the useful platform [8]. When its early research phase of using only 

conventional experimental tools such as test tubes, handmade pipettes, and glass-based apparatuses, it 

was considerably difficult to examine complex biological system, especially cellular inside. However, 

due to the increasing use of powerful Micro-Electro-Mechanical Systems (MEMS) tools becoming 

easily accessible, microbiology researchers and bioengineers begun to use ‘bioMEMS’ as an 

experimental platform to answer more practical and complex biological questions [9]. 

 

1.2 Motivation of microfluidic approaches 1 : Integrative microbial 

biosensors 

Second practical application of the bioMEMS approach in this dissertation was a microfluidic 

device integrated with a microbial biosensor for heavy metal ion detection [10]. Most of the time, 

detection of toxic compounds and heavy metals is an important matter for our health issue. In particular, 

heavy metals such as cadmium, mercury, and lead are found in many industrial wastes, including 

vehicle emissions, lead-acid batteries, and chemical fertilizers, and they are generally denser than iron. 

Heavy metals are toxic to cells mostly via oxidative stress [11, 12] and also can accumulate over time 

in animal bodies, causing lung cancer [13], brain dysfunction [14], softening of bones [15], and kidney 

disease [16]. Generally, detection of heavy metal ions (HMIs) using conventional methods requires 
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skilled operation and methods requiring expensive instruments such as atomic absorption spectroscopy 

[17] and coupled plasma-atomic emission/mass spectroscopy [18], in addition to complex configuration 

of electrochemical instruments [19].  

 

Figure 1. Fundamental mechanism of heavy metal ion biosensor. (a) Whole-cell bioreporters for the 

detection of bioavailable metals [20]. (b) Applications of microbial cell sensors [21]. (c) A multi-

channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity [22]. (d) 

Rapid cell sensing chip for low-level arsenite detection [23]. 

 

To overcome the limitations of the conventional methods, microbial biosensors, which utilize pre-

engineered genetic circuits of live microbes, have been generated with the rapid growth of synthetic 

biology [24-26]. The microbial biosensors offer considerable advantages: they provide inexpensive and 

facile detection without complex equipment and provide flexibility for various analyses, and pre- and/or 

post- processes such as purification and separation are not required. For example, microbial 

fluorescence-based [27] and luminescence-based biosensors [28, 29] utilize the expression of reporter 

genes that can be specifically switched on by biochemical interaction events between cellular receptors 

and inducer molecules (e.g. HMIs). The optical or fluorescent signals produced by the microbes can be 

directly quantified during incubation of the microbes with test solutions, thereby enabling detection of 

target analytes with unknown concentrations. 

Recently, bioreactor systems have been miniaturized to not only shorten diffusion distances and 

enhance reaction kinetics but also to reduce the labor involved and sample consumption. For example, 

Gu et al. introduced a milliliter-scale bioreactor (58 mL working volume) that can be operated in a 

continuous and repeatable manner for testing toxic compounds in an aqueous solution. They found that 

higher growth rates and/or dilution rates enhanced the performance of microbial biosensors [30]. 

Additionally, Charrier et al. reported a bioreactor system with multiple wells that had a diameter of 

several millimeters and were connected in series. They immobilized microbial biosensors in the 

multiple wells and then applied a sample solution containing several heavy metals to utilize the 

Anal Bioanal Chem (2011) 400:1061–1070 Biosensors and Bioelectronics (2011) 26, 2484–2488

c d

a b

Adv Biochem Engin/Biotechnol (2010) 118: 1–30Adv Biochem Engin/Biotechnol (2010) 118: 31–64
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biosensors to express bioluminescence in response to the target analytes [22]. For further 

miniaturization, several research groups developed microfluidic devices and combined them with 

microbial biosensors for detecting toxic compounds and HMIs. For instance, Rothert et al. used a 

microbial whole-cell biosensor in a centrifugal microfluidic device to detect six different conditions of 

HMIs such as arsenite and antimonite by generating selective fluorescence signals from the biosensors 

[31].  

In addition, Garcia-Alonso et al. prepared a microfluidic device that had several microchannels in 

parallel and could screen multiple toxic compounds or a single compound at different concentrations 

on a chip by using chemical gradients and recombinant yeast cells [32, 33]. These approaches 

combining a microbial biosensor and a miniaturized device/system provided many advantages, 

including small sample volume consumption and short analysis time [31-33], high throughput [22, 31-

33], and enhanced sensitivity and selectivity, compared to conventional methods [30, 31]. However, 

most of these approaches appeared to rely on conventional batch-mode culture environments. Basically, 

the batch-type mixing of microbes and target analytes in a confined solution not only limits the 

maximum cell growth because of depletion of nutrients but also gradually reduces the number of target 

analytes available for additional induction over time. In contrast, it is advantageous to provide a 

continuous nutrient environment for microbes to enable high cell growth rates in a microchamber on a 

chip [34]. For this reason, a continuous culture and induction environment is essential to enhance 

detection sensitivity because continuous feeding of nutrients and target analytes (target HMIs) helps 

enhance the gene expression in the microbial biosensor.[10] 

 

Figure 2. Schematic diagram. The directed evolution of the yeast platform experiment integrated with 

microfluidic approach. The microdroplet emulsions were broken and released the cells from the 

microdroplets allowing the cells for recovery, induction, and sorting process. [35].  
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1.3 Motivation of microfluidic approaches 2 : High-throughput screening 

In this dissertation, the bioMEMS integrative approach is suggested and described as an 

experimental platform to overcome such limitations of the conventional microbiology. Especially, 

microfluidics was used for the following research projects as the representative platform to realize 

advanced challenges of microbiology. For the first practical application, a microfluidic fluid array was 

developed and suggested to apply microbial high-throughput screening (HTS) [36]. Basically wild-type 

microorganisms do not meet a sufficient level of yield rates for valuable bio-refineries but, with the 

help of synthetic biology and metabolic engineering, it became possible to make engineered 

microorganisms produce useful bio-refineries at an economic level. In a microorganism system, 

enhanced production of bio-refineries may require the alteration of its genotype involved in biosynthesis, 

regulation, or precursor forming reactions [37-39].  

 

Table 1. Comparison of various conventional screening methods 
 

 

 Method 

Screening 

performance 

(Throughput) 

Noted 

Advantages Disadvantages 

Conventional 

hand-based 

equipment 

    

Test tubes, flasks 101~3 Massive absolute 

sample number (good 

for mutation) 

 

Require for many 

labor 

Petri dishes 102~4 Detectable with single 

colony-based growth 

and expression 

Require for many 

labor 

Conventional 

instrumental 

based 

equipment 

    

Microplate reader 103~4 Most widely used Limited by a plate 

reading instrument 

GC / LC 102~3 Available for post 

product assay 

Low-throughput / 

limited by analysis 

instrument 

FACS 104~7 High-throughput 

 

Only detectable 

with fluorescence 

intensity 

 

Since the rational design of a biological system presents challenges due to the biological complexity, 

directed evolution and random mutagenic approaches have emerged to create the desired mutants [40-
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43]. These approaches easily generate large mutant libraries, making a high-throughput screening (HTS) 

process unavoidable for the selection of desired mutants. However, it is difficult to analyze a large 

number of mutants by using conventional laboratory instruments such as culture tubes and a microplate 

reader. Therefore, an efficient HTS technology is inevitably required to achieve the selection of target 

cells out of the mutant libraries [36].  

For the past decade, microfluidics has achieved great improvements with the potential to 

revolutionize high throughput biological assays [35, 44-46]. Since this microfluidic technique is a 

suitable platform for patterning liquid with a fully compartmentalized environment and high-throughput 

performance, many applications were developed to be an appropriate candidate for a biological assay, 

for example droplet-based microfluidics [47-50], small bioreactors using complex pneumatic valves 

[51] and liquid patterning of aqueous phase by immiscible oil separation [52-54]. These microfluidic 

platforms provide the enormous benefit of compatibility with fully automated experimental systems, 

minimized scaling of dimensions, reduced reagent consumption and shortened reaction time. Because 

of the advantages listed above, some researchers developed novel microfluidic devices for liquid 

patterning, in other words, digitization of sample [52, 54], self-priming [55, 56], and droplet patterning 

[35, 44-46, 57-63]. Since these liquid patterning technologies fulfill many requirements of the directed 

evolution by random mutation method, the device can provide a high-throughput screening technique 

as well as a fully compartmentalized environment for the detection of microbial secreted chemical 

products [36]. 
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Figure 3. Representative microfluidic devices for various biological applications. (a) Long-term 

monitoring of bacteria undergoing programmed population control in a microchemostat environment 

for a small microbial bioreactor [51]. (b) Programmable droplet manipulation device with concentration 

dilution, separation functions [49]. (c) Fluorescence-activated droplet sorting (FADS) for efficient 

microfluidic cell sorting based on enzymatic activity [50]. (d) Digital PCR on an integrated self-priming 

compartmentalization chip [56].  

 

 

  

Master thesis format figures. 2

Lab Chip, 2014, 14, 1176–1185

a b

c

PNAS, 2012, 20(109), 7665–7670

d

Lab Chip, 2009, 9, 1850–1858

Science, 2005, 309(5731), 137-140
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Chapter 2. Theory : Microbial Biosensors in 

Micro-/Nanofluidic Technologies 

 

2.1 Introduction of microbial biosensors 

Biosensors are analytical tools that are generally used to detect or recognize specific elements. 

Since the first biosensor was developed by Clark in 1962 [64], biosensors, with their great potential, 

have been widely studied and extensively applied in many situations. Typically, biosensors can be 

categorized by their fundamental platforms, including antibodies [65], protein receptors [66], enzymes 

[67, 68], and microorganisms [24-26]. Most of the biosensors in practical and clinical use in recent 

decades rely on enzymes [69] and nucleic acid oligonucleotides with an array platform [70, 71] due to 

their high specificity and sensitivity [68]. In parallel, microorganisms have been developed as 

biosensors and provide many advantages such as the ability to detect a wide range of substrates, reduced 

cost, mass production, and easier genetic modification compared to other platforms utilizing enzymes 

and mammalian cells [24-26].  

However, determination of target compounds or environmental factors using microbial biosensors 

seems to be imprecise as it requires traditional analytical methods including test tubes or hand-pipettes, 

making it highly dependent on the technical skill of the researchers. In addition to such instrumental 

limitations, the relatively poor sensitivity and selectivity of microbial biosensors are still critical issues 

and this can be attributed to the nature of biological sensing mechanisms. Another intrinsic limitation 

of microbial biosensors is the slow response caused by decelerated diffusion of substrates and products 

through the cell wall [25]. 

In this research review, not only the academic applications of microbial biosensor development 

were discussed, but also many cutting-edge micro/nanotechnologies developed for microbial biosensors. 

First of all, the basic principles of microbial biosensors was discussed. Micro/nanotechnologies 

categorized by read-out method was then introduced. Many recently developed technologies, 

instruments, or miniaturization systems with automation functions that have been integrated with 

microbial biosensors are discussed. In particular, it was focused on recent micro/nanotechnologies as a 

promising strategy to improve the sensitivity, selectivity, portability, and multiplexity of such microbial 

biosensors. The advantages of the incorporation of micro/nanotechnologies into microbial biosensors 
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also were reviewed over conventional methods to overcome the aforementioned limitations. Finally, 

recent biological technologies for enhancing the performance of microbial biosensors and several future 

perspectives were discussed [1]. 

 

Figure 4. Schematic diagram of microbial biosensor integration with micro-/nanotechnologies. (a) 

Micro/nanotechnolgies enhancing the performance of microbial biosensors, (b) limitations of 

conventional microbial biosensors, and (c) general features of biosensors. 

 

2.2 Microbial biosensors in recent decades 

2.2.1 Working mechanisms as biosensors 

In recent decades, many improved microbial biosensors have been reported, which show promise 

for a wide variety of applications (Figure 4. Schematic diagram of microbial biosensor integration with 

micro-/nanotechnologies. (a) Micro/nanotechnolgies enhancing the performance of microbial 

biosensors, (b) limitations of conventional microbial biosensors, and (c) general features of biosensors.). 

Microbial biosensors are generally defined as analytical devices composed of a microorganism that 

detects a target substrate and converts the detected signal to a quantifiable response in a physiological, 

electrical, or biochemical manner. The sensing and recognition mechanisms of microbial biosensors 

Microbial 

Biosensor

Intrinsic

heterogeneity

High

sensitivity &

selectivity

High 

resolution & 

accuracy

Portability 

Rapid 

response &

multiplexity

High-

throughput &

repeatability

Contamination 

and

storage period

Requiring 

skilled labor

Viability 

and 

durability

Difficulties 

in developing 

genetic circuits

c) Features of biosensors

b) Limitations of 

microbial biosensor

a) Micro-/nanotechnologies

for microbial biosensors

Microfluidics  

for enhanced 

sensitivity & 

selectivity

[17]

Multiplex 

detection of 

target analytes

[48]

Portable 

detection

instrument

[51]

Controllable 

bioreactor 

for long-term 

monitoring

[45]

Automated

colorimetric 

detection

[52]
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include various types of conventional optical (e.g. fluorescence or bioluminescence) [24, 26], 

electrochemical [25], and sensory-regulated devices [72]. Prior to delving into the conventional sensing 

mechanisms, sensory-regulated genetic devices that are classified as emerging biotechnology for 

microbial sensing mechanisms were briefly reviewed. 

Recently, novel molecular biological techniques have significantly improved microbial genetic 

manipulation and precise metabolic engineering for enhanced production of many useful biochemical 

signals. To regulate and optimize cell growth, behavior, and transduction of certain biochemicals, all 

biological systems have evolved with delicate sensory mechanisms. Sensory-regulative biosensors and 

their mechanisms can detect various cellular signals, and then transduce the signals in optical or 

electrochemical manner. Also, the regulation of cell behavior or metabolic pathways can be represented 

in other detectable manners because microorganisms detect not only environmental factors including 

nutrients, temperature, and pH, but also sense their own metabolic status [72]. In order to sense both 

intracellular and extracellular signals and then regulate the behavior of cell growth and responses, 

synthetically engineered biosensors including riboswitches [8], metabolite-responsive transcription 

factor (MTF)-based biosensors, and other RNA biosensors [73] have been developed in genetic circuit 

forms with recent progress in synthetic biology. These newly developed biosensors and their 

mechanisms provide an opportunity to sense other interesting metabolites/analytes with high sensitivity 

by allosterically regulating the metabolic pathways of microorganisms. The details of biotechnological 

approaches to microbial biosensors seem to be beyond the scope of this review. 

 

2.2.2 Advantages and limitations 

As mentioned earlier, microorganisms such as bacteria and yeast offer a promising strategy for 

developing microbial biosensors that possess various advantages from many perspectives. First, 

biosensors based on microorganisms offer an analysis cost for sensing elements that is considerably 

lower than that of other methods requiring conventional instruments such as gas chromatography, liquid 

chromatography, mass spectrophotometry, and other methods [74]. Since microorganisms can be 

produced in massive numbers using a simple culture process and cheap liquid nutrient media, the 

analysis cost can be dramatically reduced. Second, microbial biosensors show the potential to detect 

various target elements, and the engineering of such microbial biosensors for specific substrates appears 

to be easily achieved by using recent molecular biological techniques [72]. Genetic manipulation of 

microorganisms seems to be better controlled and tailored than engineering mammalian, plant, or other 

types of biosensors [75]. Third, other types of representative biosensors such as those based on enzymes 
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or antibodies are comparably unstable and very sensitive to pH and temperature. However, microbial 

biosensors that can be more robust show an excellent capacity to endure various environmental 

conditions. Despite the multiple advantages of microbial biosensor over conventional sensing 

instruments, the widespread use of microbial biosensors is hampered by a few intrinsic limitations of 

microorganisms such as comparably low sensitivity, which is closely coupled with both cell population 

size and optical signal [10, 76], poor selectivity in multiplex detection [77], intrinsic cellular 

heterogeneity both genotypically and phenotypically [78], and stochastic protein expression [79]. 

 

2.3 Conventional detection methods 

2.3.1 Optical detection methods 

Optics has played an important role in biosensor development as a fundamental tool for sensing 

signals. Microbial biosensors that detect interactions between microorganisms and analytes are no 

exception. Such interaction induces an engineered genetic circuit in a microorganism to activate a 

reporter gene for expression of a measurable signal. To quantify the optical signal which is sensitive 

enough to figure out the interaction between the reporter and inducer molecules, diverse detection 

systems have been developed. In the early days of development, a photon detector which absorbs 

photons using a semiconductor film to form electrons and holes for creating a current was used to detect 

luminescent signals in response to pathogens [80]. Fluorescence microscopy is also used for its wide 

range of applicability, which can not only measure signal but also provide in situ imaging [81]. 

Chromatography techniques such as high pressure liquid chromatography are very simple tools that are 

widely used for detecting colorimetric signals, because the signal can be even observed with the naked 

eye [82-85]. Following the introduction of microwell plates, use of conventional optical technologies 

in microbial biosensors became popular, and has led to the use of microbial biosensors in many 

applications. In particular, microwell plates have been successfully integrated with luminometers, 

which measure the intensity of luminescent light, to estimate adenosine triphosphate or luciferase and 

then used for most luminescence-based biosensor experiments [86-88]. Also, fluorescence 

spectrometers, which are composed of a diffraction grating structure to make a light source 

monochromatic and a photomultiplier tube to quantify the fluorescent light, are used for fluorescence-

based experiments [89-91]. 

 

2.3.2 Electrochemical detection methods 
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Electrochemical microbial biosensors are one of the most widely used platforms for microbial 

biosensors because of their high sensing accuracy [26] and possible applications such as point-of-care 

testing devices [92]. Therefore, many researchers and industries have introduced electrochemical 

microbial biosensors that can detect many types of target materials such as glucose [93, 94], heavy 

metal ions [95, 96], phenol [97, 98], and other chemicals [24, 99-101]. Electrochemical microbial 

biosensors generally consist of a working electrode, a transducer layer for detection (microorganisms), 

and recording equipment. The signal from the transducers, produced by the electrochemical reaction, is 

recorded and correlated with the concentration and composition of the chemical compounds present, 

and displayed as an electrical expression. These systems can be classified according to the mechanism 

used to detect the signal from the transducer: 1) conductometric- 2) amperometric-, 3) potentiometric-, 

and 4) voltammetric microbial biosensors [25].  

Conductometric microbial biosensors detect chemicals by the variation in conductivity of a sample 

solution via the consumption or production of ions by transducers. They can rapidly detect target 

chemicals with high sensitivity. In particular, they can easily be miniaturized because they do not 

require a reference electrode [102]. However, they have a low selectivity for chemical compounds 

because the variation in conductivity can be affected by electrical charges [103]. Amperometric 

microbial biosensors express the chemical concentration by recording the current signal through a 

sample [104]. In particular, amperometric microbial biosensors can provide outstanding sensitivity, 

owing to the advances made in the current measuring device (< pA) [25]. Potentiometric approaches 

use the potential difference from a reference (or grounded) electrode, and thus require three electrodes, 

two working electrodes and a reference electrode. Two major advantages of potentiometric 

electrochemical microbial sensors are their selectivity for target chemicals and their remarkable 

sensitivity. However, they are limited by their requirement for a reference electrode for stable and 

accurate sensing [25]. Voltammetric microbial biosensors are a comparably versatile platform for 

detection of chemical compounds; they record and correlate each electric signal (electric current and 

potential difference) with a corresponding sample [105]. Voltammetric approaches can provide high 

selectivity and measurability via the position and density of the peak current signal. However, they 

require complex components and their detection speed is low. 

Currently, micro/nanotechnologies are being rapidly applied to and integrated with electrochemical 

detection technologies that employ microbial biosensors [106, 107]. The principal goals of such 

integration of micro/nanotechnologies with electrochemical microbial biosensors are for: 1) 

miniaturization and portability, 2) high-throughput screening, 3) enhanced sensitivity and selectivity, 

and 4) simple and rapid immobilization of microorganisms (transducers) which replaces conventional 

transducers [108]. 
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2.3.3 Detection equipment 

Conventional detection equipment for microbial biosensor like microplate readers has been used 

for establishing the fundamental methods for selecting superior microorganisms, detecting toxic 

compounds, or monitoring environmental conditions [83, 87, 88]. However, such microplate readers 

could not completely fulfill the requirement of microbial biosensors. In fact, not only do they show 

weaknesses in throughput, portability, sensitivity and selectivity, but they also still require the skilled 

labor to implement the biosensing process. Although microwell plate-based detection has proven useful 

for enhancing throughput and reducing the consumption of resources, these endeavors did not overcome 

the limitations of even higher sensitivity, full automation, or provide a portable usage environment. 

These unsolved complications became the motivation for novel integration with micro/nanotechnology, 

which is attracting attention from both the scientific and industrial communities. 

 

2.4 Micro/nanotechnological detection methods 

To overcome the limitations of conventional detection methods, several examples of innovative 

integration of microbial biosensors with recent micro/nanotechnologies have been proposed in the past 

decade. For instance, microfluidic systems showed many advantages by minimizing the sample and 

reagent volumes required, shortening analysis time with high resolution and repeatability, and 

demonstrating multiple assays on a chip in a high-throughput manner [10]. In addition, it was 

demonstrated that microfluidic systems can not only provide microorganisms with an ideal cell culture 

microenvironment that is close to in vivo one [80], but also enable high portability and more rapid 

analysis compared to conventional methods [81]. Moreover, micro/nanofabrication showed remarkable 

potential for microbial biosensors from the viewpoint of 1) enhanced optical and electrochemical 

measurements, 2) improved immobilization and automated culture environments, and 3) high 

portability and more practical applications. In the following sections, various micro/nanotechnologies 

that can effectively improve microbial biosensors will be discussed in comparison with conventional 

analytical methods [82]. 

 

2.4.1 Microfluidics 
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Microfluidic technology has been used for a broad range of biological assays. Especially 

microfluidic technology provides various, miniaturized cell-culture environments in a small scale, 

which facilitate not only sensitive [10, 109] and parallel analysis [110] of cell cultivation and/or 

fermentation in a high-throughput manner but also the concentration gradient generation for multiplex 

analysis [10, 111]. It is noted that this feature is appropriate for the microbial biosensor because 

microfluidics technology reduces cost and labor and improves sensitivity and selectivity with high 

resolution. For example, Biran et al. fabricated a novel microwell by using optical fiber to improve the 

sensitivity [112]. A different etching rate between the core and the cladding in the optical fiber was 

used to form a well on the core part and a wall on the cladding part. Since the core size was appropriate 

for immobilizing a single cell in each microwell, it facilitated multiple individual microbial biosensors 

with high sensitivity. Using this method, the mercury concentration was able to be detected by 

measuring the fluorescent signal from individually immobilized E. coli RBE27-13 harboring pECFP. 

Also, Rothert et al. reported a centrifugal microfluidic platform integrated with the microbial biosensor 

to reduce time and resource consumption, and increase portability [113]. Computerized numeric control 

machining was used to fabricate poly(methyl methacrylate) in the shape of a compact disk, and 

centrifugal forces made the mixing process efficient between the reagent and E. coli AW10 harboring 

pSD10. This microfluidic platform reduced the resources consumed but the analytical performance of 

the microbial biosensor for detecting arsenite and antimonite was not affected, showing the advantage 

of microfluidic integration with microbial biosensor. 

Additional miniaturization was incorporated by using micro/nanofabrication technologies and was 

further facilitated by soft-lithography [114]. In particular, microfluidic devices are made of 

polydimethylsiloxane (PDMS), which is a representative material for microfluidics, is transparent and 

biocompatible, and is appropriate for a biosensor platform. Because soft-lithography allows flexible 

channel design, microfluidic devices can be used for microbial biosensors to screen different toxic 

compounds in separated and parallel channels, enabling a high-throughput assay on a chip. For instance, 

García-Alonso et al. reported eight parallel microfluidic channels used for detecting methyl-

methanesulfonate, depending on its concentration [115]. This tool facilitates a rapid qualitative 

measurement of the harmfulness of the toxic material on the Saccharomyces cerevisiae RAD54. 

A PDMS microfluidic device for a microbial biosensor has been developed to improve sensitivity 

by magnetically controlling position or increasing the number of bacterial cells. For example, a 

microfluidic device integrated with magnetically functionalized reagents was developed by García-

Alonso et al., which facilitated removal and relocation of microbial biosensors conveniently [116]. The 

yeast cell was magnetized for easy handling of its position by coating polyallylamine 

hydrochloride(PAH)-stabilized magnetic particles, which are positively charged (e.g. 15 nm in 
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diameter). Since the used cells can be easily discarded by the flow of culture media without external 

magnets, the device can be reused with good reproducibility. The technique appears to resolve the 

problem of cell retention, which is a major hurdle in the development of microfluidic devices, and make 

it easy to control the nutrient conditions and analyte input. Also, a novel magnetotactic bacterium, 

Magnetospirillum gryphiswaldense MSR-1, has been developed by Roda et al. (Figure 5a) [117].  

 

 

Figure 5. Various micro/nanotechnologies for enhancing the performance of microbial biosensors. 

(a) A magnetotacic array device was introduced that can improve the positioning of microbial biosensor 

by separating a detection area from a cultivation area [117]. (b) A microfluidic device was developed 

for multiplex detection of small volume samples [10]. (c) Miniaturized bioreactor facilitates not only 

the cultivation of bacterial cells but also the real-time monitoring of toxic material at a practical level 

[118]. (d) An inkjet-printed paper based liquid chromatography method facilitates the multiplex 

detection with naked eye [119]. 

 
A permanent magnet trapped the bacteria in a detection area that was in contact with a charge 

coupled device sensor. Since the position of the bacteria could easily be controlled, not only it was easy 

to wash them out and reuse the instrument but it also increased sensitivity by decreasing the noise-to-

signal ratio because the culturing and detecting positions were placed far apart. In addition, a novel 

microfluidic device was introduced that allowed continuous supply of nutrient for increasing cell 

growth rates and the number density in a microchamber (Figure 5b) [10]. Because the device 

implemented a microfabricated ratchet structure to prevent motile bacterial cells, E. coli HK621 and 

HK622, from escaping from a culture microchamber, the accumulated fluorescent signals were 

significantly amplified over time. The microfluidic device increased the sensitivity of microbial 
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biosensors over three orders of magnitude compared to conventional methods in heavy metal detection. 

In addition, it showed high potential for a high-selective microbial biosensor platform. 

 

2.4.2 Microbioreactors 

For various biological assays, optimization studies for initial environmental conditions are typically 

performed in miniaturized-scale under several conditions as similar as possible to the actual large-scale 

conditions for industrial cultivation and fermentation. These optimization approaches are often called 

the scale-down approach [120]. Gu et al. developed a miniaturized bioreactor for reducing the working 

volume while retaining the main function of the conventional bioreactor [121]. This bioreactor was 

composed of a culturing chamber, injected air, a water-based temperature controller, cell inoculation, 

and chemical injection parts. This instrument made it possible to conduct long-term continuous 

experiments using only a small amount of medium; it required approximately 4 L per week by using 

E.coli TV1061 harboring pGrpELux5. Based on the initial miniaturized bioreactor mentioned earlier, a 

multi-channel bioreactor has also been developed for detecting multiple components [122]. Four 

different bioluminescent bacteria, E.coli DPD2794, DPD2540, TV1061, and GC2, were placed in each 

channel for testing, for example, water samples. Since the small size allowed minimal media 

consumption and easy setup, this instrument was very economical. Thousand et al. have improved a 

bioreactor through the addition of oxygen and a pH controller (Figure 5c) [118]. These additions 

allowed more sensitive detection due to stricter regulation, which is basically important for cell growth 

rates. 

 

2.4.3 Micro/nanofabrication 

Micro/nanofabrication processes have been actively developed and applied to various research and 

industrial fields during the last two decades. This seems to be possible because of numerous 

developments in machining tools and measuring equipment [123]. In this context, 

micro/nanofabrication techniques are also applied to and integrated with electrochemical detection 

using microbial biosensors. Typically, micro/nanofabrication is combined with microbial biosensors 

for several improvements such as a stable and simple process for transducer immobilization and 

miniaturization for high-throughput screening [124]. 

The photolithography technique is a fundamental micro/nanofabrication process for fabrication of 

miniaturization systems. Micropatterned electrodes can easily be fabricated on a silicon wafer using a 



24 

 

photo mask and vacuum evaporation of metallic ions such as gold and platinum [125]. Therefore, a 

miniaturized electrode can dramatically increase the reaction speed of sensors when applied to 

electrochemical microbial biosensors. For example, Popovtzer et al. suggested using photolithography 

for detection of water toxicity by microbial biosensors (Figure 6a) [126]. Eight miniaturized sensor 

cells were integrated on a single disposable chip with a partial gold coating, allowing individual 

operation. Each chamber consisted of three embedded electrodes: a gold working electrode, a counter 

electrode, and a reference electrode, respectively. Using the fabricated chip, they measured the 

potentiostatic signal from microbial biosensors and then determined the presence of ethanol and phenol 

in water. 

 

Figure 6. Novel micro/nanoscale structures and materials for enhancing the performance of 

electrochemical detection of microbial biosensors. (a) A miniaturized microbial biosensor was 

integrated with eight electrochemical sensing cells fabricated by photolithography techniques. Toxic 

materials such as phenol and ethanol in water were detected in a high throughput manner [126]. (b) A 

microfluidic device enabled microbial biosensors to conduct quantitative analysis and live monitoring 

b

d

c
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of AQDS. Laminar flows generated by a Y-shape microfluidic channel network made it possible to 

reduce reaction and response time in electrochemical detection [127]. (c) Electrodes were fabricated by 

using microfabrication techniques including deep reactive ion etching and then applied to microbial 

biosensors. Since the microstructured electrodes enhanced electric signal from microbial biosensors, 

the induction factor improved over two times [128]. (d) Metallic nano-particles integrated with silk 

microfibers showed remarkable sensing ability for the detection glucose in various concentrations [129]. 

 

In addition, with recent advances in photolithography techniques, many microfluidic devices have 

also been combined with electrochemical microbial biosensors. The integration of microfluidic devices 

provides numerous advantages for high-throughput screening via miniaturization. Li et al. reported a 

laminar-flow based microfluidic device for live monitoring and quantitative analysis of anthraquinone 

disulfide (AQDS) in solution (Figure 6b) [127]. In particular, they used laminar flow in microchannels 

for elimination of the separation membrane, which was an essential element in previous microfluidic 

devices. Furthermore, it can provide a short hydraulic retention time (e.g. 2 min) and a rapid response 

time (< 21 min) for Geobacter sulfurreducens cells by continuous provision of substrate. 

When combined with electrochemical microbial biosensors, screen-printed electrodes (SPEs) 

provided several improvements such as a low detection limit, a simple fabrication process, and a wide 

range of printing materials. Additionally, SPEs were used for enhanced immobilization of 

microorganisms on the working electrode [130]. Shitanda et al. fabricated an amperometric microbial 

biosensor using a carbon electrode on which biomaterials had been printed [131]. The ink suspension 

(algae, sodium alginate solution, and cells) was printed onto the screen-printed carbon electrode and 

directly immobilized there via cross-linking using a CaCl2 solution. Hence, the microbial biosensor 

could amperometrically detect atrazine, using Chlorella vulgaris cells. This device introduced a simple 

immobilization process and demonstrated cost-effectiveness and high portability compared with 

previous algal biosensors. Another miniaturized electrochemical microbial biosensor was developed by 

Ben-Yoav et al. (Figure 6c) [128]. They integrated a pillar structure on a silicon wafer and coated a 

metallic substrate with three-dimensional (3D) nanostructures, using the deep reactive ion etching 

process, electrodeposition, and electro-polymerization of a conducting polymer (polypyrrole, PPy). 

They confirmed the effects of electrode materials such as copper and gold. Additionally, they 

investigated the effect of increasing the surface area using an electrodeposited and PPy-coated 3D 

micro/nanostructure. Finally, they successfully showed that surface-modified electrodes can 

significantly increase the signal from microorganisms. 

 

2.4.4 Micro/nanomaterials 
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Micro/nanomaterials have been drawing significant attention for electrical and chemical 

modification of substrates because they possess outstanding electrochemical properties derived from 

the large surface-to-volume ratio and the rapid transport of electrons. For this reason, many researchers 

attempted to employ micro/nanomaterials to modify and/or functionalize electrodes and then integrate 

them with microbial biosensors. As a result, the sensitivity of electrochemical microbial biosensors 

significantly improved. The most popular micro/nanomaterial seems to be carbon nanotubes (CNTs) 

[132] because addition of CNTs can easily modify electrodes. For example, they can increase electrical 

conductivity, functionalize cationic surfactant to stabilize certain molecules, and improve response time 

towards, thereby resulting in the improvement of microbial biosensors. Of course, conventional CNT-

based electrodes have some weaknesses such as high background current (noise) and a decreased 

electron diffusion rate during operation due to overlapping of the diffusion layer. Timur et al. introduced 

a method for modifying CNT-based electrodes using a mixture of CNT and redox osmium (Os-redox) 

polymer solution to overcome the noise-to-signal ratio limitations [133, 134]. They optimized the 

required conditions for phenol detection using Pseudomonas putida cells. This was possible by using a 

mixture of CNT and Os-redox polymer and manipulating pH and temperature as well. 

In addition, some different and integrative approaches were taken for modifying electrodes with 

nanoparticles and microfibers. In particular, Deng et al. developed a novel device for electrochemical 

microbial biosensors by using a silk-derived (S-derived) carbon fibrous mat with metallic nanoparticles 

(Au-Pt) (Figure 6d) [129]. The micro/nanomaterial used in their work contained amino groups in the 

fibrous component, allowing self-assembly of nanoparticles on the carbon fibrous mat. The 

immobilization of S-derived carbon fibers on nanoparticles allowed the efficient electron tunneling that 

in turn amplified the electrical communication between the microbial biosensor and the electrode 

surface. This resulted in a novel microenvironment that sustained the bioactivity of microbial biosensors, 

showing high sensitivity and a low detection limit compared with commercialized carbon paper-based 

biosensors. 

 

2.5 Micro/nanotechnological platforms for microbial biosensors 

2.5.1 Automation, portability, and multiplexity platforms 

Micro/nanotechnology has contributed to the development of new instruments for 1) fully 

automated processes [135], 2) miniaturization for portability [136], and 3) complexed multicomponent 

detection [137]. First, a semi-automated system has been developed by Knight et al. to reduce the time 
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required for measuring the fluorescent signal of RAD54 protein in Saccharomyces cerevisiae [138]. 

The combination of a laser light source, a detector, and an automated cell culture chamber enabled 

continuous measurements of fluorescent signals, which in turn were rapidly processed in real-time. 

Although it was a prototypic semi-automated instrument, a reliable result could be acquired 6 times as 

fast as using a standard colony-based growth test. An instrument has also been developed by Cho et al. 

for automated and continuous detection systems with low cost, which was composed of robot arms, 

multiple microwell plates, a temperature controller, and a photo-multiplier tube sensor used for 

measuring the intensity of light with a photoelectron [135]. The robot arms made it possible to conduct 

experiments continuously, without manual control, enabling real-time toxicity monitoring at 10-min 

intervals for up to a month. By using this instrument, the toxicity of wastewater samples without further 

purification was detected by Janthinobacterium lividum YH9. 

Second, significant research efforts have been made for portable detectors because portability 

became an important issue for practical applications of microbial biosensors and the demand for in situ 

testing had led to the improvement of portable microbial biosensors. Most recognition and detection 

systems are composed of a biosensing chamber, a light-proof chamber, and a luminometer. For example, 

a freeze-drying method was developed by Choi et al. to extend the period of use of the portable 

biosensor so that sensor cells, E.coli DPD2794, DPD2540, TV1061, and GC2, can easily be transported 

and used for environmental detection and monitoring after rehydration of lyophilized cell [136]. This 

portable biosensor kit showed remarkable potential for practical application; it was achieved by 

increasing the retention period. Also, a portable microbial biosensor was reported by Berno et al., which 

detects benzene not only in laboratory samples but also in outdoor samples for in situ testing [139].  

Third, basically the multiplexity of a biosensor determines practicality because the performance of 

the biosensor is decided not only by its portability but also by its capability to deal with multiple 

components in a single process. For example, Charrier et al. reported that integration of removable 

multi-well cards, an optical setup for bioluminescence monitoring, a fluidic channel network for media 

and sample loading, and a computer interface for full automation, allowed the detection of multiple 

components [137]. Four bacterial cells, E. coli DH1 pBzntlux, pBarslux, pBcoplux, and XL1 

pBfiluxCDABE, were immobilized in an agarose matrix on a multi-well card, media and samples were 

flown along the fluidic channels, bioluminescent signals from E. coli were measured by a CCD camera, 

and all experiments were controlled and all data processing were automated by a computer. Although 

the microbial biosensors showed intrinsic weaknesses in cross-talk and synergistic effects for a heavy 

metal mixture, it was well demonstrated that a multiplex detection using microbial biosensors can be 

incorporated.  
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Table 2 Comparison of microbial biosensors integrated with micro-/nanotechnologies 
 

Integrated technology Microorganism Detection method Substrate Dynamic range/(LOD) Improvements 

Instrument      

Automated S. cerevisiae Fluorescence Methylmethan sulfonate (MMS) 0.01% Reducing time compared with Ames Test (6 times faster) [138] 

Automated J. lividum Luminescence EC50  Real-time automated toxicity monitoring for a month [135] 

Portable E. coli Luminescence Phenol 

Mitomycin C 

H2O2 

Ethanol 

0.15 mM ~ 5 mM  

0.27 ppm ~ 2 ppm  

0.0006% ~ 0.0025%  

1% ~ 3% 

Increasing the retention period by using freeze-drying method [136] 

Portable E. coli Luminescence Benzene 0.5 ppm Introduction of battery for in situ test [139] 

Multiplexed E. coli Luminescence Arsenic / Cd 5 M /  0.5 M Multiplexed detection by immobilization in multi-well kit [137] 

Multiplexed E. coli Colorimetry Hg / Ag 

Cu /  Cd 

Pb /  Cr 

Ni 

0.002 ppm 

0.02 ppm 

0.14 ppm 

0.23 ppm 

Multiplexed detection by inkjet-printing assisted colorimetry [119] 

Microfluidics      

Microwell E. coli Fluorescence Hg 100 nM Improved sensitivity by separating the E. coli individually [112] 

Compact Disk E. coli Fluorescence Arsenite 

Antimonite 

1 M ~ 5 mM Reducing the consumtion of resource by miniaturized platform [113] 

PDMS chip (magnetic)  S. cerevisiae Fluorescence MMS 0.28 M ~ 450 M Improved sensitivity by regulating the position of yeast [116] 

PDMS chip (magnetic) M. gryphiswaldense Luminescence DMSO 

Taurochenodeoxycholic acid (TCDCA) 

2% ~ 50% 

0.001 mM ~ 10 mM 

Improved sensitivity by regulating the position of E. coli [117] 

PDMS chip E. coli Fluorescence Cd 

Hg 

2 nM ~ 20 M 

2 nM ~ 20 M 

Improved sensitivity by accumulating E. coli and multiplexed design [10] 

Microfluidic 

 

G. sulfurreducens Amperometric Anthraquinone disulfide (AQDS)  Live monitoring, quantitative analysis [127] 

Bioreactor      

Miniaturized bioreactor E .coli Luminescence Ethanol 3.4% Reducing time and the consumption of resources by miniaturized bioreactor [121] 

Miniaturized bioreactor E. coli Luminescence Tributyltin 0.02 M Improved sensitivity by regulating the oxygen and pH [118] 

Miniaturized bioreactor E. coli Luminescence Pheonl 

Mitomycin  

Cerulenin 

300 ppm 

50 ppb 

5 ppm 

Multiplexed detection by miniaturized parallel bioreactor [122] 

Micro-/nanofabrication       

Photolithography  E. coli Voltametric p-aminophenol  Miniaturization, eight testing chamber on single chip [126] 

Screen printing E. coli Amperometric Methyl parathion 2 ~ 400 M Miniaturization, reproducibility, stability [131] 

DRIE process E. coli Amperometric Nalidixic acid  Improved detection signal [128] 

 

Micro-/nanomaterials 

     

Carbon nanotube (CNT) P. putida Amperometric Phenol 0.5 ~ 4 mM Prevent electric noise signal [133, 134] 

Microfiber-nanoparticle E. coli Amperometric Glucose 0.25 ~ 0.55 mM Self-assembly of nanoparticle (microfiber), improved electric properties [129] 
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2.5.2 Screening platform 

Up to now, it was reviewed that a broad range of micro/nanotechnlogies is suitable for microbial 

biosensors to better detect target chemical compounds and/or environmental factors. In this section, it 

should be shortly emphasize that micro/nanotechnologies have high potential for providing an 

unprecedented screening platform that overcomes critical technological limitations of conventional 

platforms including instruments and methods. In particular, it is worthy to discuss 

micro/nanotechnological screening platforms for microbial biosensors because they facilitate the 

screening process of a large number of combinatorial library in a high-throughput manner; the larger is 

the mutant library size, the higher the chances are expected to find desired, optimal microbial biosensors 

(strains). Of course, the sensory-regulative biosensors are closely correlated with various screening 

platforms for both the identification of synthetic biosensors and the selection of most efficient 

biosensors out of the combinatorial library. On the other hands, the conventional screening platform 

appears to be unsuitable for dealing with such a large mutant library size because of the low throughput 

[72].  

Here, two representative micro/nanothnological screening platforms were reviewed. First, Wang et 

al. successfully integrated a microfluidic system with a sensory-regulative microbial biosensor for 

cellular metabolite analysis [140]. A single microorganism is encapsulated and compartmentalized in 

the microfluidic microdroplet platform. The platform allowed high-throughput analysis of extracellular 

secreted metabolites and recognition of genetic elements that were responsive to allosteric regulative 

effects. Using the microfluidic platform with sensory-regulative riboswitches, the xylose over-

consuming strain was effectively enriched and identified as a representative result. It appears to be 

impossible to achieve such accomplishment using conventional experimental platforms especially due 

to the limited throughput. In other words, it is obvious that not only the selection of extraordinary sample 

but also the identification of riboswitches benefited from micro/nanotechnologies. Second, another 

microfluidic platform was introduced by Karns et al. [141], which implemented electrophoretic 

mobility shift assays of microbial riboswitches from Bacillus subtilis on a chip. The electrophoretic 

mobility shift assay by the microfluidic platform enabled more promising and quantitative analysis of 

riboswitches. Therefore, the microfluidic platform has demonstrated its potential or ability to provide a 

facile library screening means via selection and validation of novel riboswitches. Although these types 

of integrative approaches have just begun the very first step toward the high-throughput screening 

platform, it is highly believed that micro/nanotechnologies can effectively incorporate a novel screening 
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platform for microbial biosensor that can be further accelerated with the aid of sensory-regulative 

biosensors and riboswitches. 

 

2.6 Conclusion and future perspectives 

In this review, the integration of micro/nanotechnologies with microbial biosensors and their 

applications were discussed previously. Microbial biosensors have been under a wide range of 

investigations in recent decades, but they seem to be typically limited by several factors such as low 

sensitivity, poor selectivity, difficult sensor engineering, and stochastic heterogeneity. With the rapid 

expansion of interdisciplinary convergence research, microbial biosensors have been integrated with 

many recent micro/nanotechnologies to overcome such limitations. Also, sensory-regulative biosensors 

are emerging as a novel sensing mechanism. These innovative regulative microbial biosensors, 

including riboswitches, require efficient screening methods to select extraordinary samples from 

numerous possible combinations. Hence, micro/nanotechnological screening platforms such as 

microfluidics platforms have been introduced with an effective integration strategy. Far more practical 

platforms than presented here can be developed and used to provide wider insight into how the microbial 

pathway dynamically controls the overall microbial status, including cell viability, genetic 

communication processes, and up-down regulation of productivity for various targets. 

First of all, micro/nanotechnologies have contributed to improving the performance of optical 

microbial biosensors by considerably ameliorating the problems posed by conventional optical 

detection methods. In parallel, micro/nanotechnologies have revolutionized the electrochemical 

detection sensitivity and selectivity of microbial biosensors. To date, many attempts made to combine 

micro/nanotechnologies with microbial biosensors were proven successful because they fulfilled 

various demands from the industrial and environmental fields through miniaturization and high-

throughput assay on a run. In addition, automation and miniaturization of instruments and bioreactors 

with optical/electrochemical detection systems allowed microbial biosensors to be used in an effective, 

efficient, and practical manner. Development of portable detectors and supporting tools has raised the 

possibility of previously impractical applications. Furthermore, micro-/nanofluidics further 

incorporated real miniaturization of the culture environment for microbial biosensors, reducing the 

consumption of resources and increasing their sensitivity from the viewpoint of optical detection. 

Automated and miniaturized systems for multiplex detection suggested new analytical methods for the 

identification of real, unknown multi-samples with improved selectivity. In particular, many microbial 
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biosensors integrated with micro/nanomaterials showed many unique advantages including high 

sensitivity, high selectivity and rapid response time with high resolution and accuracy.  

Nevertheless, many hurdles in micro/nanotechnology-assisted microbial biosensors still remain 

before they will successfully substitute for other types of artifactual biosensors. Although microbial 

biosensors with high portability and high multiplexity have been widely studied and even demonstrated, 

several challenging issues should be taken into serious consideration. To address these issues, further 

investigation on immobilization techniques, long-term cultivation and rapid response time of 

microorganisms, the intrinsic toxicity of chemicals, solvents, and micro/nanomaterials, bio-compatible 

fabrication processes and materials, and reusability, contamination, and shelf-life of microbial 

biosensors. For instance, unless a long shelf-life without unwanted contamination is guaranteed, 

microbial biosensors cannot substitute for other similar biosensors because any contamination of culture 

media or other sources may nullify the function of the microbial biosensors. Lastly, integration with 

advanced micro/nanotechnologies heralds the beginning of a new era for microbial biosensors. Many 

interesting possibilities and promising opportunities within the field of microbial biosensors still remain. 

Proper integration between microbiological sciences and micro/nanotechnologies will thus unlock the 

full potential of microbial biosensor technology in the near future.  
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Chapter 3. Quantitative Analysis of  

Microbial Biosensors for Heavy Metal Ion Detection 

 

3.1 Importance of heavy metal ion detection 

Heavy metals are naturally found in many industrial wastes, and those heavy metal ions such as 

cadmium, mercury, and lead are relatively denser. Since heavy metals are toxic to living organisms, 

detection of toxic compounds and heavy metal ions in environments is important. Because the heavy 

metal ions cause oxidative stress to the cells and the accumulation over time in animal bodies, causing 

many critical diseases. Detection methods of heavy metal ions (HMIs) using conventional approaches 

inevitably includes trained labors and expensive instruments such as atomic absorption, plasma-atomic 

emission/mass spectroscopy, and complex configuration of electrochemical instruments [1]. 

 

3.2 Integration of microbial biosensor with microfluidic device 

In order to overcome such bottleneck of the conventional methods, microbial biosensors have been 

artificially engineered through the significant progress of synthetic biology. The microbial biosensors 

provide considerable advantages: they offer low-cost, easier detection not requiring complex equipment, 

and facile flexibility for various post-analyses. More recently, the miniaturized analytical system such 

as microfluidic systems have utilized microbial biosensors to enhance the performance of the detection 

method and reduce labor and sample consumption. For example, Rothert et al. introduced the whole-

cell-fluorescence-based biosensing on a centrifugal microfluidic platform to detect HMIs [31]. The 

device showed limited detection threshold because of the conventional batch-type chemical processing 

during cell culture and genetic induction. 

In this chapter, a microfluidic microbial biosensor device was developed that not only concentrates 

motile microbes in a compartmentalized microchamber array using microfabricated ratchet structures 

but also grows the concentrated microbes in a continuous-feed mode. This novel device enabled the 

feeding of nutrients and various concentrations of HMIs (e.g., Pb2+ and Cd2+) in the compartmentalized 

microchambers in a continuous manner, thereby introducing a simple and convenient chemostat-like 

culture environment. Using the combination of the chemostat-like culture environment and 
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synthetically engineered microbial biosensors, both the sensitivity and selectivity of the microbial 

biosensors were characterized for detecting HMIs and then compared the result with that obtained using 

conventional batch-type methods [10].  

 

3.3 Experimental methods 

3.3.1 Reagents and materials 

For visualization and quantification of the microfluidic channels, green, red, and yellow dyes and 

50 mM fluorescein isothiocyanate (FITC) were mixed with deionized water, respectively. As the target 

HMI, Pb2+ and Cd2+ were prepared in a cell culture solution (tryptone broth (TB), 1% tryptone, and 0.5% 

NaCl) with ampicillin (75 g/mL). A Luria broth (LB) agar plate was prepared by mixing agar (1% 

w/v) for colony formation. For detection of HMIs, analyte solutions of PbCl2 (Cat. No. 203572) and 

CdCl2 (Cat. No. 439800) were purchased from Sigma-Aldrich and diluted into autoclaved distilled 

water to the desired concentrations when necessary. 

 

3.3.2 Preparation of bacterial cells 

Two Escherichia coli K-12 strains (MG1655 and DH5) were used as platform cells to develop 

microbial sensors. The MG1655 strain harboring pTKU4-2 plasmid that constitutively expresses green 

fluorescent protein (GFP) was used for testing cell growth in the chemostat-like microfluidic device. 

DH5 cells harboring plasmids pHK194 and pHK200 were used for detecting Pb2+ and Cd2+ and named 

as the HK621 and HK622 strains, respectively [142]. For continuous induction testing in the 

microfluidic device, a single colony of the E. coli on an LB agar plate was grown in 5 mL in LB broth 

in a test tube that was rigorously agitated in a rotary shaking incubator (37°C and 200 rpm) overnight. 

The cells were then introduced into the microfluidic device. For batch-type detection in test tubes, the 

cells were grown to mid-log phase in 5 mL of LB broth until the optical density at a wavelength of 600 

nm reached OD600 = 0.5 and various concentrations of the HMI were added for induction of fluorescent 

reporter gene expression followed by incubation at 37°C and 200 rpm overnight. For a fair, reasonable 

comparison of the batch-type biosensing method with the chemostat-like biosensing method, the cell 

density of the batch-type method was intentionally enhanced by centrifugation (Combi 514R, Han-Il 

Instrument, Incheon, Republic of Korea) at 3000 rpm for 10 min at 25°C. 
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3.3.3 Design and fabrication of the microfluidic device 

The microfluidic device was fabricated and its channel feature was 200 µm wide and 10 µm deep. 

The microfluidic device consisted of a mixing channel network and a microchamber array for 

compartmentalized cell culture on a chip as used in our previous study [143]. The microchamber array 

was integrated with ratchet structures to physically isolate the microbes from the main channel but 

chemically allow the transport of nutrients and small molecules to and from the main channel [143-

145]. The microfluidic device was fabricated using standard soft lithography as used in our previous 

work. Briefly, an SU-8 (Microchem 2025, Newton, MA, USA) master (approximately 10 μm thick) 

was fabricated using standard photolithographic procedures. The surface was silanized using 

trichloro(3,3,3-trifluoropropyl)silane (Sigma Aldrich, Korea) in a vacuum jar for 1 h. 

Polydimethylsiloxane (PDMS) was then cast, cured, and peeled off to prepare the microfluidic devices. 

The PDMS devices were treated with oxygen plasma under 50 sccm of O2 and 50 W for 30 s (Cute-MP, 

Femto Science, Korea) prior to the experiments. This treatment was performed to make the surfaces of 

the PDMS channel hydrophilic so that the solutions flowed along the channel easily and no bubbles 

were trapped. 

 

3.3.4 Experimental setup and data analysis 

An inverted fluorescence microscope (Ti-U, Nikon, Tokyo, Japan) equipped with a CCD camera 

(ORCA R2, Hamamatsu Photonics, Hamamatsu, Japan) and a 10× lens was used to measure the 

fluorescence from the FITC and E. coli. For data analysis and image processing, Image J (NIH, 

Bethesda, MD, USA) and OriginPro 8 (OriginLab, Northampton, MA, USA) were used when necessary. 

 

3.4 Ratchet microstructure-based microfluidic device  

3.4.1 Generation of concentration gradients and culture chambers with ratchet 

structures 

Figure 7 shows the microfluidic device consisting of a mixing channel network [143] and a test 

microchamber array. The device has 6 sets of control and test channels and each set has five cell-culture 

chambers in a column to minimize uncertainty in measuring fluorescent and optical signals from 

microbial biosensors. Figure 7b shows a scanning electron microscope (SEM) image from Ch. 6. Each 
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microchamber is connected to the main channel through ratchet structures that not only guide and 

accumulate motile microbes from the main channel but also prevent the trapped microbes from escaping 

to the main channel.  

In addition, the ratchet structures offer a chemostat-like culture environment for the microbes to 

grow in a continuous-feed mode that continuously supplies fresh nutrients and inducer molecules (HMI) 

from the main channel to the chambers and, at the same time, washes away secreted metabolites from 

the chamber to the main channel. These aspects were well characterized in our previous work [144]. To 

test the mixing channels, a solution with green food dye was loaded in the top-left reservoir (c1) whereas 

a solution with red food dye was applied in the top-right reservoir (c2). The solutions flowed along the 

mixing channels and mixed together, resulting in the generation of concentration gradients from Ch. 1 

to Ch. 6. The control channels (Ch. 7) were positioned in parallel with each test channel for direct 

comparison. Figure 7c shows that each set of test and control chambers exhibited different colors. 

 

 

Figure 7. A microfluidic device for microbial biosensors for detecting HMIs (Pb2+ and Cd2+). (a) 

Microscopic image shows the microfluidic channels consisting of a concentration gradient generator 

and a microbe culture chamber array. (b) SEM image shows one set of test channels and control channels. 

Chambers are connected to the main channel with ratchet structures that enable chemicals and 

molecules to be transported but prevent motile cells in the chamber from escaping to the main channel. 

(c) Microscopic images to visualize concentration gradients in the test chambers and the control 

chambers. (d) Quantification of concentration gradients by using fluorescence intensity (50 M FITC 

solution). 
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Therefore, the mixing channels successfully generate concentration gradients suggesting utility for 

high-throughput assays. The concentration gradients of HMI were indirectly characterized by 

application of a buffer solution with fluorescein (50 M FITC) and then quantified as shown in Figure 

7d. As designed and expected, each test channel showed different fluorescence intensities, 

corresponding to the following concentrations: 100% (50 M), 63 (31.5 M), 39 (19.5 M), 23 (11.5 

M), 10 (5 M), 5 (2.5 M), and 0% (buffer only) from Ch. 1 through Ch. 7. Because HMIs are much 

smaller than FITC and thus have higher diffusivity than FITC, the concentrations of HMIs in the 

microfluidic device are likely the same as the quantified concentration of FITC.  

 

3.4.2 Bacterial cell growth in a chemostat-like culture environment 

E. coli cell growth was tested by using fresh and spent TB medium as shown in Figure 8a to 

determine whether cellular growth was affected by continuous feeding generated using ratcheting 

structure. Because the microfluidic device can generate various concentration gradients as designed, a 

single experiment provided six different culture conditions plus a control on a chip. To determine 

whether cellular growth properly increases in microchambers as nutrients are supplied, the growth of 

E. coli cells as shown in Figure 8b were monitored that constitutively express green fluorescent protein 

(GFP) using a fluorescent microscope. Figure 8c shows the quantified fluorescence intensities 

corresponding to the cell growth results presented in the growth of E. coli cells as shown in Figure 8b. 

At t = 0 h, the number of fluorescent E. coli cells in each microchamber appeared to be unbiased. 

However, the fluorescence intensities, although they only indirectly represent the growth rate of the 

cells in each chamber, significantly changed over time in every chamber. For Ch. 1, in which 100% 

fresh medium was added (continuous feed mode), the fluorescent intensities showed an exponential 

increase between 3 h and 7 h, which is likely to be proportional to the increase in the number of 

fluorescent cells. In contrast, for Ch. 7, in which 100% spent TB medium was added (similar to the 

batch-type mode), the fluorescent intensities did not increase and remained almost constant over time. 

For other various intermediate conditions, the growth rates appeared to be precisely proportional to the 

nutrient gradients.  
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Figure 8. Bacterial cell growth (E. coli) in continuous-feed and batch modes. (a) A microimage 

showing experimental conditions in which concentration gradients of fresh TB media and spent TB 

media are produced at the same time from left to right and vice versa. (b) Fluorescent time-lapse images 

show cell growth in various nutrient-feeding conditions. Ch. 1 represents a continuous-feed mode (100% 

fresh TB), whereas Ch. 7 (control) represents a batch-type mode (100% spent TB). (c) Quantification 

of GFP signals of the cells in the chambers reveal various growth rates determined by the mixing ratios 

(concentrations) of the fresh and used TB. 

 

Even though fully grown fluorescent cells, after overnight incubation in a test tube, were injected 

into the device, the cell growth in the microchambers was observed further as nutrients were supplied. 

Additionally, the fluorescent cells were not able to escape from the microchambers with the ratchet 

structures, but nutrients and metabolites could freely diffuse into and out of the microchambers. The 

chemostat-like cell culture environment dramatically increased the cell density on the chip, which in 

turn was helpful to improve the performance of microbial HMI detection compared to conventional cell 

culture environments such as test tubes and microplate instruments that only allow a batch-type culture 

environment. This remarkable rise of cell growth may play a key role in increasing the biosensing 

sensitivity because intense fluorescence signals were measured in response to target HMIs continuously 

delivered in the microchambers.  
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3.5 Detection of heavy metal ion by microbial biosensors in microfluidic 

device 

3.5.1 Characterization of gene expression level to detect HMIs 

Two types of microbial whole-cell biosensors were employed by harboring artificially engineered 

plasmids for detection of Pb2+ or Cd2+ in solution. The detection mechanism was based on the negative 

control of the GFP reporter gene mediated by CadC-type transcriptional repressors, which bind to Pb2+ 

or Cd2+ divalent ions and derepress the GFP reporter promoters. Two cadC transcriptional modules were 

cloned from the genome of Bacillus oceanisediminis 2691 [142]. These microbial biosensors were 

integrated into the ratchet structure-integrated microfluidic device to provide a chemostat-like 

environment for improving the sensitivity of the sensors. The microbial biosensors HK621 for Pb2+ ions 

and HK622 for Cd2+ ions using the microfluidic device was characterized. The HMIs dissolved in TB 

medium (20 M) was introduced to the left-top reservoirs and only TB media was introduced to the 

right-top and right-bottom control reservoirs.  

 

Figure 9. Detection of HMIs by the microfluidic device and the microbial biosensors. (a) and (c) 

Detection of Pb2+ ions using E. coli HK621 cells at various concentrations ranging from 20 M to 0 

M (control). (b) and (d) Detection of Cd2+ ions using E. coli HK622 cells at various concentrations 

ranging from 20 M to 0 M (control). The fluorescent intensities depended on the concentrations of 

HMIs over time. 
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As shown in Figure 9a and Figure 9c, each microfluidic device was used for seven different 

detection experiments on a chip with various concentrations of Pb2+. After five hours of cell culture, the 

fluorescent intensities showed a linear dependency on the concentration of the Pb2+ ion; a higher 

concentration was associated with stronger fluorescence intensity. After 10 h, the differences among 

the normalized fluorescence intensities from Ch. 1 to Ch. 6 appeared to decrease. This effect was 

attributed to the continuous supplementation with Pb2+ ions, which activated microbial transcription to 

over-express the biosensor construct and trigger the accumulation of GFP within the cells. For Cd2+ ion 

detection, the fluorescence intensities showed a nonlinear dependency on the concentration of Cd2+ as 

shown in Figure 9b and Figure 9d. The plasmid activity and cell growth appeared to be affected by 

high concentrations of Cd2+ in the solution. However, the continuous-feed culture enabled by the 

microfluidic device showed increased fluorescence intensity, especially with low concentrations of 

metal ions. It could therefore be speculated that Cd2+ ions gradually accumulate in cells up to a 

concentration sufficient to turn on the reporter gene without interfering with cellular growth. Therefore, 

the combination of the microfluidic device and the microbial biosensors improved the sensitivity and 

the dynamic range for HMI detection.  

 

3.5.2 Comparison of continuous induction and batch-type induction for HMI detection 

The detection performance for HMIs using the microfluidic device was compared to that of the 

conventional detection method using batch culture under the same microscopic image acquisition 

conditions. First, the fluorescent intensities were obtained from the microbial biosensors for different 

concentrations of Pb2+ ions (20 M, 200 nM, and 2 nM; none as a negative control) after 10 h of 

incubation in the chemostat-like environment as shown in Figure 9a and Figure 9b. Because the device 

enabled continuous supplementation of nutrients and maintained Pb2+ ions in their initial state in the 

detection chamber, a signal increase of approximately 4–5 fold was obtained when compared with the 

control experiment (without HMI) even at low concentrations such as 200 nM and 2 nM. However, the 

batch-type induction did not produce sufficient fluorescence signal to enable differentiation from the 

control signal because of the lower cell density and limited supplementation of Pb2+ ions. An 

alternative method of increasing the signal difference in the batch-type induction method was 

demonstrated by increasing the cell density by a factor of 15 using an external centrifuge as described 

in 3.2.2 experimental methods section. However, the fluorescence signals in the 15x batch-type 

induction were still much lower than those in continuous induction. Moreover, this method required an 

additional cell-concentrating step with increasing sample consumption and labor. Similar to the findings 
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during Pb2+ detection, Cd2+ ions showed a higher signal-to-noise ratio in the continuous induction 

method than in the batch-induction method, as shown in Figure 10c-d. Therefore, the microbial 

biosensors with a continuous chemostat-like environment improved the sensitivity and dynamic range 

of the microbial biosensors by approximately three orders of magnitude compared to the conventional 

batch-induction method for detecting HMIs [86]. The enhanced performance can be attributed to the 

continuous expression of the engineered genes and the larger number of cells in the detection chamber. 

Even with a low concentration of HMI (e.g., 2 nM), the genes appeared to continuously activated over 

time by continuous supplementation and/or intracellular accumulation of the target HMI, resulting in 

over-expression of GFP in the cells [19]. 

 

 

Figure 10. Comparison between continuous and batch-type induction of microbial biosensors. (a) 

and (b) Continuous and batch-type induction of E. coli HK621cells in various concentrations of Pb2+ 

ions such as 20 M, 200 nM, 2 nM, and 0 nM as a control. In continuous induction, the microbial cells 

were grown and treated with inducer molecules (Pb2+ ions) in the chemostat-like microfluidic device 

for 10 h. The batch-type induction and 15x accumulated batch-type induction were performed in 

conventional batch-type culture tubes for 10 h, and then the induced microbial cells were loaded into 

the microfluidic device for immediate fluorescent measurements. The 15x concentration enhancement 

was achieved by using a centrifuge immediately before loading into the microfluidic device. (c) and (d) 

Induction of E. coli HK622 cells in various concentrations of Cd2+ ions. All fluorescence images were 

obtained under the same microscopic configurations. 
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3.5.3 Characterization of the selectivity of the microbial biosensors 

The microfluidic device enables diverse characterizations of microbial biosensors in various HMI 

conditions. For example, to confirm the selectivity of the microbial biosensor, each type of microbial 

cells was tested with a non-target HMI; the microbial sensor cells that were designed for Pb2+ detection 

were exposed to a solution containing both 20 M Pb2+ and 20 M Cd2+ and vice versa. As described 

in Figure 11, the microbial biosensors showed the maximum fluorescent intensity in the target HMI 

conditions, indicating heavy metal selectivity. Although the results with the non-target HMI showed a 

low amount of fluorescence intensity caused by leaky expression or non-specific removal of the 

repressor on the cadC gene in the engineered microbes, the microfluidic device provides a quantitative 

platform with remarkable potential to characterize the whole-cell-based biosensing system in various 

HMI conditions with a considerably decreased response time and reduced sample consumption. The 

microfluidic device is also simple and operated by only using static hydraulic heads, thus showing high 

potential as a portable biosensor. 

 

Figure 11. High-throughput characterization of the selectivity and cross-talk of the two microbial 

biosensor cells, HK621 and HK622, respectively, using the microfluidic device. (a) Induction of the 

HK621 biosensor in a solution containing both 20 M Pb2+ and 20 M Cd2+ ions after 10 h. (b) Induction 

of the HK622 biosensor in the same solution after 10 h. The fluorescence intensities measured under 

the same microscopic conditions were normalized by the maximum fluorescence intensity value. 
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harnessed in the biosensing system to address the wide variations and low fluorescence signals in cadC–

gfp prototype constructs in the E. coli system (Figure 12). In the presence of heavy metal ions in cells, 

T7 RNA polymerase (T7 RNAP) was expressed, and the T7 promoter was activated and amplified 

expression level of its fluorescence protein. 

 

Figure 12. Improved heavy metal microbial biosensors carrying CadC-T7 circuits. 

The ratchet microfluidic structure isolated microbe into individual chambers physically, but 

allowed the nutrient solution to the chambers chemically. Using this chemostat-like microfluidic 

platform, two sets of microbial biosensors were used for HMIs detection by a transformation of the 

plasmid pCadC1945, pCadC640 in DH5 strain and newly developed plasmid pT7cadO1945 and 

pT7cadO640-H in BL21(DE3) strain. After the injection of cell mixtures and nutrient medium 

containing target HMIs, the microfluidic chambers were incubated for 5 hours at 60% humid incubator 

on top of the microscope stage. The fluorescence intensities were measured from the microbial 

biosensors with four different concentrations of Pb2+ and Cd2+ ions (20 M, 200 nM, 2 nM and a 

negative control). Compared to the previously constructed biosensor pCadC1945 and pCadC640, newly 

developed plasmid pT7cadO1945 and pT7cadO640-H showed higher fluorescence intensities for all 

concentrations at the same time point. These increased intensities may have been affected by mainly 

two factors that were 1) the development of the T7-based amplified genetic biosensor circuit as well as 

2) the intrinsic difference of growth rate between bacterial strain DH5 and BL21(DE3).  

For lead detection, the fluorescence intensity of pT7cadO1945 was increased approximately 7.8 

times than pCadC1945 at the optimal detection concentration of 20 M PbCl2 as shown in Figure 13. 

Especially for the concentration of 20 M of PbCl2, pT7cadO1945 showed significantly higher 

intensities than other concentrations (200 nM, 2 nM and negative control). This remarkable increase 

may be caused by continuous chemical expose from the ratchet microfluidic structure. For cadmium 
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detection, the noteworthy improvement of microbial biosensor was speculated with a linear correlation 

between HMI concentration and fluorescence intensity (Figure 13c and Figure 13d). For effective and 

efficient microbial biosensor, sensitivity and selectivity are most important features. Previously 

constructed biosensor plasmid pCadC640 showed non-linear fluorescence intensity compare to HMI 

concentration [10]. As cadmium concentrations in nutrient medium increased, the fluorescence intensity 

of pT7cadO640-H relatively increased. For optimal cadmium detection concentration of 20 M of 

CdCl2, fluorescence intensity of pCadC640 showed 5.6 times higher than pT7cadO640-H [146]. 

 

Figure 13. Detection of heavy metal ions by the microfluidic biosensor device. Time-course 

quantification of fluorescence intensities generated by E. coli cells grown in microfluidic chambers. 

Fresh nutrients with (a,c) lead and (b,d) cadmium ions were continuously supplied with various 

concentrations ranging from 0 to 20 μM. Prototypes and CadC-T7 biosensors are indicated by different 

symbols, respectively. 

 

3.6 Conclusion 

A microfluidic platform was developed that consisted of a micromixer to generate concentration 

gradients of HMIs and a microchamber array with ratchet structures to concentrate and 

compartmentalize motile microbial whole-cell biosensors. The microfluidic platform provided a 

chemostat-like culture environment with the microbial biosensors such that an extremely high cell 

population (density) in each microchamber was achieved because the microbes grew well in a 

continuous feed mode. In addition, the culture environment enabled higher reporter gene expression in 

the microbes, enhancing the sensitivity and dynamic range by three to four orders of magnitude for 
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detection of Pb2+ and Cd2+ when compared to conventional batch-type feeding and induction methods. 

This increase was achieved because the microfluidic platform not only provided fresh solutions 

containing nutrients and HMIs to the compartmentalized microbial biosensors but also simultaneously 

removed secreted metabolites.  

Additionally, newly developed HMI biosensor plasmids pT7cadO1945 and pT7cadO640-H were 

also tested in the same chemostat-like microfluidic platform. Overall, the fluorescence intensities of 

T7-based amplified biosensors (e.g. HK744 and HK756) were increased compare to the previously 

constructed microbial biosensors for all HMI concentrations. These results can be a straightforward 

proof of the improvement of microbial biosensors caused from mainly two factors 1) T7 promotor 

amplification and 2) the intrinsic growth rate. Although the fluorescence intensities obtained from 

microscopic images showed the relative HMI detection sensitivity depending on the experimental 

condition of microscope, the microfluidic platform dramatically amplified the detection range and 

signal using its original features that are the continuous supply of nutrient and HMI expose. These 

results from microfluidic platform can strongly support the improvement of molecular level of 

biosensor circuits. 

Notably, the total amount of the solutions used was much lower than that with other conventional 

methods (e.g. only 200 L was required for 6 experiments on a chip basis, compared to one sample in 

a 5 mL tube in conventional experiment). Moreover, the combination of the chemostat-like microfluidic 

platform and synthetic microbial biosensors offered remarkable advantages compared to conventional 

biosensors for detecting HMIs: 1) cost-effective and time-reduced detection without complex 

equipment, 2) flexibility for multiplex detection in a high-throughput manner, and 3) direct and 

convenient measurement without pre- or post-treatment of sample solutions. 
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Chapter 4. Development of Fluid Array 

for Screening of Small Mutant Microbial Library 

 

4.1 Microfluidic approaches for high-throughput microbial applications 

Microfluidic-based microdroplet devices, that were described in the previous chapter, were widely 

used as a great and latent tool for many biological fields including microorganism symbiosis [57], MIC 

(Minimal Inhibition Concentration) research [58], heterogeneous enzymatic assays [60] as well as 

molecular works such as high-throughput PCR reactions [59]. However, one of the important issues on 

the microdroplet in the practical field is a possibility to monitor and identify each microdroplet during 

long-term and complex experimental process. Owing to the micro-scale small size, random movement 

of the droplets and complex liquidity [147], it was considered as a challenge to trap the droplets with 

incubation or chemical reaction to detect and monitor the experimental processes. 

 In order to handle the issue, many research groups have tried to develop an effective method to 

immobilize the microdroplet with various trapping device. Edd et al. trapped microdroplets in a way of 

sequential manner using orifice structures which are exactly fitted with the target droplet diameter [148]. 

Huebner et al. have reported a two dimensional trapping structure successfully captured droplets, 

however, caused a serious shrinkage of droplet [61]. Although the trapping devices developed from 

both Huebner et al. [61] and Tan et al. [149] showed an excellent droplet trapping efficiency, those 

devices had disadvantages in device design dependent and not suitable for high-throughput assay. 

 

4.2 High-throughput screening methods for a microbial library 

Conventional HTS technologies for mutant libraries can be categorized into two types according 

to the screening mechanism: reporter-gene-based screening (e.g. fluorescence) and growth-based 

screening (e.g. auxotrophic growth factors) [8]. The reporter-gene-based screening method is widely 

used for microbial mutant libraries that show variation in fluorescent [150] or colorimetric intensities 

[151, 152]. In particular, for the fluorescence-based HTS, a fluorescence activated cell sorting (FACS) 

system is the state-of-the art instrument because it can sort >104 cells per second [8, 153]. Despite the 

advantages, including rapid process time, high resolution, and high-throughput, such FACS systems are 
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generally expensive, sometimes unavailable, or unsuitable due to the need of a fluorescent signal for 

detection. The growth-based screening method is based on the growth rate differences of the mutant 

libraries [8]. For another mechanism, the growth rate differences in a mutagenic library frequently occur 

because a mutation affects genes related to metabolic pathways. The growth-based screening of a 

mutant library is important for the identification of the auxotrophy associated with the loss of enzymatic 

function [8, 154]. However, the throughput of microplate readers is limited to 96 or 384 individual wells. 

Thus, they can only be useful for very small mutation libraries [150]. Moreover, cells are prepared for 

the HTS in bulk and batch type of culture conditions; hence, the fluorescence or growth rate of each 

cell can be affected by its neighboring cells. For this reason, compartmentalized cell culture 

environments are required for the practical microbial screening application. 

 

4.3 Microfluidic HTS methods 

 To advance the conventional HTS technologies, many microfluidic HTS approaches have been 

introduced and applied to the screening of mutant libraries. For example, droplets are one of the 

representative approaches because they can produce numerous, homogeneous, and discrete cell-

encapsulated samples [63, 155, 156]. Static droplets in an array format particularly showed a synergetic 

advantage at a high-throughput by enabling metabolic assays at the single cell level [156-158]. 

Additionally, a stationary fluid array was utilized to culture bacterial or mammalian cells, in which a 

fluid-sample-partitioning method was essential and played a key role in high-throughput biological 

assays [55]. These microfluidic devices and methods showed remarkable potential for high-throughput 

biological assays. However, they also exhibited several drawbacks. Numerous droplets on a 

microfluidic device should be fixed and/or tagged in a certain confined location for sequential analyses. 

Additionally, complex fluid control systems are required for handling numerous droplets. In fact, all 

the aforementioned microfluidic approaches showed a common point that less attraction has been drawn 

to extraction than culturing and screening of mutant libraries. Therefore, a more concrete sample 

extraction technique needs to be developed and integrated with a high-throughput cell culture technique 

to successfully demonstrate a microfluidic HTS application on a chip. 

In this chapter, microfluidic HTS platform was described in detail that enables not only the 

generation of a fluid array for the compartmentalization and culture of microorganisms, but also the 

extraction of target cells based on both phenotypical differences (e.g. reporter gene system and growth 

difference) of mutated libraries. A novel device was fabricated with a microwell array in a matrix format 

using the immiscible feature and the difference of specific gravity between oil and water. In addition, 
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an automated fluorescence imaging system with a custom-made image processing software was 

employed for high-throughput identification of target cells. Unlike other microfluidic approaches, our 

platform allows us to extract target cells in a simple manner. For reporter gene based screening, a spike 

recovery test was demonstrated the feasibility of the HTS platform. Lastly, the same platform was 

utilized to growth-based screening to sort a random mutation library according to cellobiose 

consumption rates. 

 

4.4 Experimental methods 

4.4.1 Reagents and materials 

Two types of oils with different specific gravity (SG) were used for compartmentalization of 

aqueous solutions: hydrocarbon oil (Hexadecane, SG = 0.76, Sigma-Aldrich, Korea) and fluorinated oil 

(FC-40, SG = 1.61, Sigma-Aldrich, Korea). Red food dye and 50 M of fluorescein isothiocyanate 

(FITC) solutions were used for the visualization and characterization of the fluid array. For cell culture, 

Luria Bertani broth (LB, Sigma-Aldrich, Korea) was prepared with proper antibiotics such as ampicillin 

(Amp, 75 g/mL), chloramphenicol (Cm, 50 g/mL) and kanamycin (Km, 50 g/mL) (all purchased 

from Bioshop Canada Inc.). M9 minimal medium (Minimal salt 5, Becton Dickinson, Franklin Lakes, 

NJ, USA) supplemented with 2 mM MgSO4, 0.1 mM CaCl2, and 0.3% (w/v) cellobiose was used for 

the growth-based screening of the mutant library. An LB agar plate was also prepared (1% of w/v, Agar, 

Becton Dickinson) for colony formation. To avoid shrinking of the produced fluid array, FC-40 oil was 

mixed with distilled water (0.1%, v/v) up to the limit of solubility in a rotary shaker at 60C. Distilled 

water was not fully mixed with the oils so that the final concentration of water in the oils was estimated 

to be approximately 0.02% (v/v) according to previous report [159]. For the extraction of target cells, 

both fused-silica capillary tubes (CAT no. #1068150011, Polymicro Technologies, Phoenix, AZ, USA) 

with 25.3 m inner diameter and 360 m outer diameter (OD) and commercially available insulin 

syringes with OD = 200 μm were used. 

 

4.4.2 Preparation of bacterial cells 

All Escherichia coli (E. coli) stains and plasmid used in this study are listed in Table 2. E. coli K-

12 strain MG1655 was used as a platform cell. The MG1655 strains, MG-GFP and MG-RFP, which 
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constitutively expresses either green or red fluorescent protein (GFP or RFP) were used for testing cell 

growth in the fluid array device. For the spike and recovery test used to demonstrate the fluorescence-

reporter-gene-based screening, two different recombinant strains were employed: MG1655 harboring 

pFAS and MG1655 ∆fadE harboring pFAS and pET28a-Km. Additionally, for the growth-based 

screening, the CP12chbasc strain was chosen because it utilizes -glucoside sugars such as cellobiose. 

The strain was then randomly mutated by using the EZ-Tn5TM transposon mutagenic kits (Epicentre, 

Madison, WI, USA) and an approximately 4,000 mutant library was generated. For cell culture, a single 

colony grown on an LB agar plate was picked up and a culture tube filled with 5 mL of LB medium 

and proper antibiotics was inoculated with it. The culture tube was vigorously agitated in a rotary 

shaking incubator (37ºC and 200 rpm) overnight. The cells were then diluted into fresh LB medium 

with the proper ratio in order to achieve a pre-designed number of cells per microwell and then 

introduced into the oxygen plasma treated fluid array platform. For the visualization of the individual 

cells in the CP12chbasc small mutant library, the BglBrick vector pBbE4c-rfp was transformed to the 

CP12chbasc strain to express RFP during the microscope speculation [160].  

Table 3. Plasmids and E. coli strains used and newly constructed in this study. 

Plasmid or E. coli strain Featured characteristics 

Plasmid  

pTKU4-2 GFP constitutive expression 

pTKU4-65 RFP constitutive expression 

pBbB4c-RFP pPrp-rfp, Propionate inducible RFP expression 

pFAS Fatty acid biosensor / RFP inducible expression 

pET28a-Km Kanamycin antibiotic resistance 

pEZ-TN5 from Epicentre Transposon mutagenesis kit 

E. coli strain  

MG1655 MG1655 Wild Type (WT) 

MG-GFP MG1655 harboring pTKU4-2 

MG-RFP MG1655 harboring pTKU4-65 

MG-Ctrl MG1655 harboring pFAS 

MG-∆fadE MG1655 ∆fadE harboring pFAS and pET28a-Km 

CP12chbasc AscG::pCP12 harboring pBbB4c-RFP 

CP12chbasc Library CP12chbasc random mutation library by pEZ-Tn5  

CP30chbasc Optimized cellobiose metabolism 
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4.4.3 Experimental setup and data analysis 

An inverted fluorescence microscope (IX-71, Olympus, Tokyo, Japan), equipped with a CCD 

camera (Clara, Andor, Belfast, Northern Ireland) and 1.5, 10, and 20 objective lenses, was used to 

acquire fluorescence images from the fluid array device. The images were automatically acquired by 

using a microscope stage controller (MAC5000/Bioprecision2, Ludl Electronic Products, Hawthorne, 

NY, USA). The fluorescence intensities of the images were then analyzed using a custom-made m-file 

in MATLAB R2014a (Mathworks, Natick, MA, USA). For additional data analysis and necessary 

image processing, Image J (NIH, Bethesda, MD, USA) and OriginPro 8 (OriginLab, Northampton, MA, 

USA) were used. A manually controlled probe positioner (PB50, MS Tech, Hwaseong, Korea) was 

used to fix either syringe needles or capillary tubes for the extraction of target cells.  

 

4.4.4 Fabrication of the fluid array device 

The microfluidic device was fabricated and the dimension of the microwells was 100 µm in 

diameter and 50, 100, and 150 µm in depth. As described previously [145], an SU-8 (Microchem 2075, 

Newton, MA, USA) master was fabricated using the standard photolithography technology [161]. The 

processed surface of a Si-wafer was silanized using trichloro(3,3,3-trifluoropropyl) silane (Sigma 

Aldrich, Korea) in a vacuum jar for 1 h. Polydimethylsiloxane (PDMS, Sylgard 184 Silicone Elastomer 

Kit, Dow Corning, Mid-land, MI, USA) was then casted, cured, and peeled off to prepare the 

microfluidic devices. The PDMS devices were dipped into distilled water for several hours, resulting in 

a fully moisturized state (i.e., the highest solubility of water into PDMS) so that the fluid in the 

microwell remained stable without apparent volume shrinkage over 24 h. 

 

4.4.5 Generation of a fluid array 

Figure 14 illustrates the generation and compartmentalization of a fluid array on a chip. The 

demolded PDMS devices were treated with oxygen plasma under 15 sccm of O2 and 70 W for 30 s 

(Cute-MP, Femto Science, Hwaseong, Korea) prior to the experiments [162]. This treatment was carried 

out to render the surfaces of the PDMS hydrophilic, which helped aqueous solutions to completely fill 

the microwell without air bubbles. An aqueous solution containing target cells was deposited on the 

PDMS surface, thereby filling all the microwells. Because of the capillary effect and the highly gas-

permeable property of PDMS, gas bubbles were naturally removed in a few minutes from the 



50 

 

microwells. The surface of the device was gently swept away using another PDMS slab to ensure 

complete formation of a fluid array and to remove the residual solution left on the surface (Figure 14A). 

  

 

Figure 14. Schematic of fluid array generation and capillary-based extraction process. (a) 

Thousands of microwells were fabricated on a PDMS surface on which a cell suspension solution was 

deposited. (b) A PDMS slab was used to gently sweep the PDMS surface, resulting in the formation of 

a fluid array. (c) The device was inverted and placed into a Petri dish filled with fluorinated oil for long-

term culture and observation. (d) Microscopic images were automatically acquired by using a motorized 

microscope stage and a controller system for a quantitative analysis. (e) The device was inverted again 

and immersed into hydrocarbon oil because the lighter hexadecane retains the heavier aqueous fluid 

array at the bottom, thereby preventing dehydration when capillary tubes or needles were used for the 

extraction of target samples. (f) Visualization of specific gravity differences of hexadecane (0.77), water 

(1.00), and FC-40 (1.76). 

 

Notably, the fluid array device was immediately turned upside down and placed into the transparent 

Petri dish that was filled with fluorinated oil (FC-40) to completely compartmentalize the microwells 

(Figure 14B). It should be noted that the process was very important to prevent fast evaporation of the 

fluid array into the atmosphere since the volume of the microwell was about 1.3 nL. Figure 14C shows 

that the fluid array retained its shape due to the specific gravity difference and the immiscible feature 

between the aqueous solution (e.g. water) and the oil. Notably, oxygen transport through the fluid array 

can be either allowed or inhibited by simply manipulating the immersion level of the PDMS in the oil, 

implying that aerobic or anaerobic environments can be created.  

 

4.4.6 Image processing method 

The fluorescence intensities of all microscopic images were analyzed by using a custom-made m-

file in MATLAB R2014a (Mathworks, Natick, MA, USA). A control image with eight microwells in a 
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four by two matrix format with the FITC solution was acquired and the eight fluorescence areas were 

defined as the quantification regions that are designed to be measured for the rest of the image process. 

Each fluorescence image containing eight microwells was then compared with the control image to 

reconstruct the fluorescence intensities of all original images. The background signals were subtracted 

accordingly from all fluorescence images to minimize unwanted noises. Additionally, it was necessary 

to relocate the center of the images to align them with the control image in order to homogenize the 

quantification regions. The fluorescence intensities of the quantification regions were automatically 

pixelated, binary-encoded, and then measured using the ‘convolution matching function’ provided in 

MATLAB. Using the aforementioned procedure, the fluorescence intensities of all the microwells in a 

fluid array were obtained automatically and then determined target microwells that contained target 

cells. For the extraction and re-culture processes, the net fluorescence intensities were numerated in a 

descending order and the top 5–10% of the microwells was selected and then extracted. 

 

4.5 Fluid array device characterization 

4.5.1 Characterization of a fluid array 

Various aspects of the fluid array were characterized for possible HTS applications as shown in 

Figure 15 and Figure 16. First, aqueous drops in contact with oils need to be maintained for long-term 

purposes. The small amount of aqueous fluid in the PDMS microwell was compartmentalized by oil 

with different interfacial energies so that the aqueous fluid may diffuse into the immiscible oils, 

resulting in the dehydration of the aqueous fluid over time [147]. The solubility of water molecules to 

the oil was previously reported to be in the range of about 10-5 mol/mm3, which is very low, but can be 

significant for small sample volumes [159]. In this study, the dehydration problem of the fluid array 

was simply avoidable by fully hydrating the oils, remaining stable for more than 24 h without apparent 

distortion and volume shrinkage (Figure 15a,b).  

Figure 16c shows a large number of microwells that were successfully filled with a fluorescent dye 

(FITC) solution. Fluorescence intensities of each patterned fluid were measured and quantified by the 

image processing method explained in the below section of Image processing method in 4.4.6 section 

for imaging processing method. The quantitative analysis result shows the linear correlation with the 

volume of each patterned fluid in the statistical histogram as shown in Figure 15d. The histogram 

represents the fluorescence intensities normalized by the average intensities obtained from a 150 m 

deep fluid array. The patterned fluids in the microwells with different depths show a remarkable 
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uniformity and microwells with higher aspect ratios tended to present a better uniformity than 

microwells with lower aspect ratios. For example, deeper microwells (e.g. 150 m in depth) show 

smaller standard deviation (± 0.031) than shallower ones (e.g. 50 m, ± 0.053). Therefore, the fluid 

array device can provide stable and uniform cell culture environment for the long-term culture of 

microorganisms at a high-throughput.  

 

 

Figure 15. Stability and uniformity test of a patterned fluid array. (a, b) Microscope images of 244 

microwells containing a color dye solution at 0 h (left) and 24 h (right). (c) A fluorescence microscope 

image of 244 microwells containing 100 μM of FITC solution. (d) Histograms of the patterned fluid 

array when the diameter of the microwell is 120 µm, 50 µm, and 100 µm, respectively. The depth of all 

microwells was fixed at 150 µm. Scale bar is 500 µm. 

 

The produced fluid array was also characterized in uniformity of arrays, stability for a long-term 

purpose, and prevention of dehydration. Using a custom-made image processing software, the 

fluorescence intensities was measure for all the microwells and then sorted them out in descending order 

to locate target microwells/cells. As shown in Figure 14e shows the SG differences among the water 

and two oils, the fluid array device was removed from the Petri dish and inverted into another Petri dish 
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filled with hydrocarbon oil for the next extraction process. The lighter hexadecane oil retained the 

aqueous fluid array at the bottom so that the dehydration of the microwells was completely prevented. 

A syringe needle or an empty capillary tube was used to extract the target fluid sample. The oils used 

in all the experiments were fully hydrated to minimize the dehydration of the fluid array. Otherwise, the 

fluid array would undergo dehydration and volume shrinkage during the long-term culture [147]. 

Additionally, Figure 16 shows the effect of PDMS hydration on the dehydration of the fluid array.  

 

Figure 16. Effect of PDMS hydration on the long-term stability of a fluid array. A fluorescent dye 

solution (FITC) was used for generating a fluid array on two different PDMS devices. (a), (c) A regular 

PDMS device shows the dehydration of the fluid array over time. (b), (d) A fully hydrated PDMS device 

shows high stability of the fluid array, providing an even better cell culture environment. Scale bars in 

the insets of (a) and (b) are 50 µm. 

 

 

 

 

 

4.5.2 Bacterial cell growth in the fluid array device 

The growth of E. coli cells constitutively expressing GFP was demonstrated that the fluid array 

device provided a compartmentalized microenvironment for the cells for 14 h as shown in Figure 17a. 
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The increase of fluorescence intensities over time can be attributed to both the cellular growth and 

continuous production of GFP. Three different PDMS thicknesses were also tested to investigate the 

effect of oxygen transport to the microwell on cell growth. A thick PDMS can transport less oxygen 

from the outside air to the microwell than a thin one, resulting in lower fluorescence intensities. The 

result indicates that the fluid array device enables the cells to grow better than conventional culture 

tubes and microplates. In particular, for the thinnest PDMS, the cell density was over OD600 = 3, which 

is rarely achieved when using conventional culture conditions as shown in Figure 17. 

 

Figure 17. Calibration result of the fluorescence intensities of E. coli cells harboring pTKU4-1that 

constitutively express GFP. (a) Fluorescence images were acquired after generating a fluid array with 

fully grown cells of which optical densities were OD600 = 0.7, 1.5, and 3, respectively. The fluorescence 

intensities were compared to those of the cells grown in the fluid array device for 14 h. (b) Quantitative 

results of the fluorescence images. Scale bar is 100 µm. 

 

Additionally, it was tested whether the fluid array device can be used to culture bacterial cells in 

anaerobic conditions. Since the gas permeability of oils is nearly zero for standard temperature and 

pressure, when the fluid array device was fully immersed into and covered with oil, no further oxygen 

transport from the air to the microwells was allowed. Figure 18C shows that cells fully grew for 14 h 

in aerobic and anaerobic conditions. The fluorescence intensities obtained in aerobic conditions were 
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much stronger than those obtained in anaerobic conditions. This can be attributed to the sufficient 

oxygen supply from the air to the cells through the PDMS for better cell growth and GFP expression; 

the more oxygen is supplied, the more GFP is produced [163].  

 

Figure 18. Various cell cultures using the fluid array device. (a) Time-lapse fluorescence images of 

GFP-expressing bacterial cells for 14 h. (b) Quantification of fluorescence intensities showing the effect 

of three PDMS thicknesses (e.g. 2.9 mm, 5.7 mm, and 15.1 mm) on cell growth (GFP expression levels) 

over time. (c) Fluorescence images of the GFP-expressing cells over time in aerobic and anaerobic 

culture conditions. (d) A mixture of GFP- and RFP-expressing cells was compartmentalized in the 2,172 

microwells and the fluorescence images were acquired and stitched. All scales bars are 100 m, unless 

otherwise indicated. 

 

Another modality of the cell growth is that the distribution of the cells is obviously different. In 

aerobic conditions, cells appear to swim around the microwells, resulting in a uniform distribution. On 

the other hand, when the fluid array device was immersed into oil for providing anaerobic conditions 

to the PDMS device, cells appeared to be concentrated near the perimeter of the microwell. This seems 

related to the oxygen transport because E. coli cells tend to move toward oxygen [164]. In fact, more 

oxygen exists in PDMS surface because both the solubility and diffusivity of oxygen in PDMS are much 

higher than those in the medium. Therefore, it was hypothesized that the cells migrate to the PDMS 

walls after consuming the oxygen in the medium due to the aerotaxis. Figure 18D demonstrates that the 

fluid array device allows high-throughput cell cultures on a chip with 2,176 microwells, thereby 
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showing high potential for HTS of a small mutant library. Two different strains, MG-GFP and MG-RFP, 

were mixed, patterned and then cultivated together for 14 h. The cells were successfully cultured in 

2,167 microwells out of the total microwells (e.g. 99.6%). Only five failures were observed because of 

SU-8 delamination during the microfabrication. 

 

4.5.3 Extraction and re-culture of selected target cells from the fluid array device 

Unlike most biological assays in microfluidic platforms, the screening requires the extraction or 

retrieval of target cells, followed by culture. Thus, an easy and simple extraction/retrieval method needs 

to be integrated in the previous cell culture process. The experimental setup for the extraction of the 

target cells simply consisted of the microscope stage controller and the probe positioner as shown in 

Figure 19.  

 

 

Figure 19 Snapshot of the custom-made extraction system. (a) An inverted fluorescence microscope. 

(b) An extraction manipulator that can be controlled along the z-axis using a manually controllable 

probe positioner. (c) A silica capillary tube (or syringe needle) for selective extraction. (d) A fluid array 

device is placed in a Petri dish (400 mm in diameter) filled with FC-40. (e) A motorized microscope 

stage of which position is controlled in a synchronous manner with a CCD camera. 
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The possibility of the extraction of target cells was also investigated by using a commercially 

available capillary tube or an insulin syringe needle. First, the polyimide coating of the capillary tube 

was removed by burning it to render the tube transparent and both optical and fluorescence images were 

acquired (Figure 20). The capillary tip was then placed on the target microwell to absorb the fluid, 

including target cells one by one. Figure 20b shows one example of microwells after the extraction 

process. The absorbed fluid in the capillary was visualized both optically and fluorescently in Figure 

20c and Figure 20d. It turned out that the estimated volume from the images was approximately 30% 

of the total volume of the microwell. This low value can be attributed to the surface tension caused by 

the PDMS microwell that may prohibit the complete absorption of the fluid through the capillary tube. 

 

 

Figure 20. Target cell extraction process. (a)–(b) Comparison of fluorescence images of a fluid array 

containing GFP-expressing cells before and after the capillary-based extraction process, respectively. 

(c)–(d) Optical (bright field) and fluorescence images of a capillary tube before and after the extraction 

process. An initially empty capillary tube absorbed the cell suspension solution in the microwell so that 

fluorescence signals were measured from the surface and inside of the channel. All scale bars are 100 

μm. 

 

Next, the extracted cells were re-cultured. Five fluid array devices/sets were prepared and, from 

each device, 30 syringe needle tips were used for the separate extraction and culture by inoculating 30 

culture tubes individually. The recovery ratio of the 30 culture tubes were quantified and the average 

recovery ratio was calculated to be about 84.6% as summarized in Table 4. This indicates that 126 

inoculations were successfully recovered out of 150 extractions. In addition, each set showed 

considerably smaller variation. Only two failures were observed out of 30 extractions. Therefore, 30% 

of the total volume of the microwell was more than enough to re-culture the cells in the microwell and 

the successful recovery ratio allowed the fluid array device in conjunction with the extraction and 

culture processes to HTS and high-throughput post-analysis of microorganisms in other bioassays. We 
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note that the silica capillary tubes (hydrophilic) showed a similar recovery ratio to the syringe needles 

when polyimide coatings were removed whereas a relatively low recovery ratio was obtained when the 

hydrophobic polyimide coatings remained unremoved as delivered; this is why the syringe needles were 

chosen for the rest of extraction experiments. 

 

Table 4. Recovery ratio of the extraction method using syringe needles. 
 

 Set 1 Set 2 Set 3 Set 4 Set 5 Avg. 

Recovery/ 

Extraction 

27/30 24/30 25/29 27/30 23/30 25.4 (± 1.5) 

Success ratio 90.0% 80.0% 86.2% 90.0% 76.6% 84.6% 

 

4.6 Demonstration of high-throughput screening application 

4.6.1 Spike and recovery test for reporter gene-based screening 

A spike and recovery test was applied to demonstrate that our microfluidic platform can be applied 

to the HTS of a small mutant library (<104) [165]. As shown in Figure 21a(i), two different strains were 

prepared: wild-type MG1655 and its FadE-deficient derivative MG1655 ∆fadE. The first strain was 

transformed with a fatty acid biosensor (pFAS), named MG-Ctrl, and used as a control group. The 

second strain was transformed with not only the same fatty acid biosensor plasmid, but also another 

plasmid (pET28a) for Km resistance, and was named MG-∆fadE, and used as an experimental group. 

It should be noted that the experimental strain exhibited stronger fluorescence signals (RFP) than the 

control group because the former produces more intracellular fatty acids than the latter. Next, the fluid 

arrays was produced with 2,832 microwells containing the spiked samples (approximately 10 cells per 

microwell) and cultured the cells for 14 h (iii). For the entire period of culture, fluorescence images 

were automatically acquired and their fluorescence intensities were analyzed to identify the target cells. 

From the analyzed results, about top 5% of all the microwells were chosen for every screening cycle 

and their cells were extracted (iv) using syringe needles as described previously. All extracted cells 

were re-cultured in a culture tube overnight (v) and the screening processes were repeated from (iii) to 

(v). Right before the next screening, the enrichment factors were quantified by counting the number of 

target cells that grew on a LB agar plate with Km. This was possible because only the target cells 
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possess a Km antibiotic resistance gene. To almost completely screen out the target cells, the screenings 

were repeated until the target cells were sufficiently enriched.  

 

Figure 21. The reporter gene-based screening process. (a) A schematic illustration shows the 

screening processes. i) Genetic modification of MG-∆fadE. ii) A mutant library is prepared. MG-∆fadE 

strain was spiked in MG-Ctrl strain at the ratios of ST:SN = 1:102 and ST:SN = 1:103, respectively. iii) A 

fluid array containing the spiked samples was generated and cultured over time. iv) Fluorescence 

intensities of all the microwells were analyzed and then target cells were chosen and extracted. v) The 

extracted cells were re-cultured in a culture tube and the screening processes were repeated. (b)–(c) The 

enrichment of the target cells for the ST:SN = 1:102 and ST:SN = 1:103 mixing ratios, respectively. The 

blue dotted lines represent the screening cycle when the ratio of target cells (MG-∆fadE) to the non-

target cells (MG-Ctrl) reverses. 

As illustrated in Figure 21a, the MG-∆fadE (target strain, ST) was spiked into the MG-Ctrl (non-

target strain, SN) at the mixing ratios of ST:SN = 1:102 and ST:SN = 1:103, respectively. In order to confirm 

both the mixing ratios at the initial stage, two different streaking and confirmation methods were used. 

For the high mixing ratio sample (1:102), we streaked 10 L of the cell mixture solution on an agar plate 

(no antibiotics) and incubated it overnight. Then randomly chosen 96 colonies were inoculated to a 96-

well microplate with the colonies one by one in a kanamycin environment. Since only the target strain 

possessed kanamycin resistance conferred by the pET28a-Km plasmid (refer to Table 3), which was 

intentionally engineered for easy streaking and selection on the agar plate, the surviving samples were 
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expected to be the target strains. As a result, only one well out of the 96 wells presented a fluorescence 

signal, confirming that the cell mixture sample was well prepared. For statistical and rational 

confirmation, 96-well microplates were used for 1% spiked samples (1:102). However, the same method 

could not be used for 0.1% spiked samples (1:103) for the same verification.  

For the low mixing ratio sample (1:103), an agar plate with Km resistance and then spread 100 μL 

of 1,000 cells by adjusting the population of the cell mixture sample based on the OD600 measurement. 

Subsequently, it was possible to confirm the screening result for the low mixing ratio (e.g., for the 

mixing ratio of ST:SN = 18:103, about 18 target cell colonies formed out of 103 spread cells including 

both target cells and non-target cells). In parallel, a fluid array device consisting of 2,832 microwells 

was prepared and the cell mixture sample was compartmentalized on the device. After the re-culture, 

target cells were enriched and the screening process was repeated. The mixing ratios of each screening 

process were confirmed as illustrated in Figure 21b and Figure 21c in the main manuscript. After 

several repeated cyclic screening rounds, more target cells were obtained than non-target cells. 

Consequently, the final mixing ratios reached ST:SN = 83:13 and ST:SN = 819:181 from the high (1:102) 

and low (1:103) mixing ratios, respectively. 

Figure 21b shows the gradual enrichment steps for the high mixing ratio of the target cells (MG-

∆fadE) to the non-target cells (MG-Ctrl) as the screening repeats. After four screening rounds, we 

obtained more target cells than the non-target cells and after six rounds, more than 80% of target cells 

were screened and dominant over the non-target cells. Figure 21c shows the enrichment steps for the 

low mixing ratio as the screening repeats. As expected, the target cells were gradually enriched, while 

the non-target cells were sufficiently diluted out in the enrichment conditions. After the first screening 

process, the initial mixing ratio of ST:SN = 1:103 reached ST:SN = 25:975, which is almost the same as 

the high initial mixing ratio of ST:SN = 1:102 (Figure 21b). Therefore, it is theoretically estimated that, 

after five additional screening processes, the resulting ratio should be close to ST:SN = 80:20. Not 

unexpectedly, in five additional screening processes, the final mixing ratio turned out to be ST:SN = 

819:181, which is close to the final result of the high mixing ratio experiment. It is noted that the 

quantification method for the number of cells used in this work may cause some systematic errors. The 

gradual escalations were possible because the extracted cells showing stronger fluorescence signals 

contained more ‘MG-∆fadE’ cells than ‘MG-Ctrl’ via the repeated cyclic screening. 

 

4.6.2 Screening of a small mutant library based on cell growth 
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The same microfluidic platform was applied to the screening of fast growing mutants that were fed 

cellobiose as a nutrient. The higher cellobiose consumption rate implies the faster cellular growth rate. 

For such cell growth-based screening, a CP12chbasc strain was used as a basal strain that expresses 

cryptic operons asc and chb under the synthetic CP12 constitutive promoter to confer efficient 

cellobiose metabolism [166-168]. The strain CP12chbasc was used to construct a random transposition 

mutant library (e.g. 4,000) (Figure 22a).  

 

Figure 22. Growth rate-based screening process. (a) A schematic representation of the mutagenic 

library construction. (b) Quantified results of a fluid array incubated in cellobiose environments for 20 

h. Three black arrows indicated three candidate strains consuming cellobiose as the carbon source. (c) 

OD600 values were obtained: the CP30chbasc strain (green), the three extracted samples (red, blue, and 

purple) consuming cellobiose, and other ten randomly extracted samples obtained by using a 

conventional microplate reader. 

 

Presumably, some mutants may have positive mutations in genes involved in cellobiose 

metabolism. Thus, the fluid array platform would allow us to sort and screen out the target cells with 

fast growth on cellobiose (0.2% in M9 minimal medium). a fluid array was precisely produced with 

approximately 20 cells per microwell (total 2,832 microwells). And then the cells were cultured for 20 

h, which was longer than the previous cell culture because the M9 minimal medium contains less 

nutrients than the LB medium. RFP fluorescence intensities from the cells were measured. The stronger 

fluorescence intensities indicate that the target mutant cells grow better by feeding on cellobiose and 

produce more RFP. From the analyzed fluorescence signals in Figure 22b, three potential candidates 

presenting superior cellobiose consumption rates were identified, followed by their extractions and re-

culture (see insets in Figure 22b). Non-target cells in 10 microwells showing relatively weaker 

fluorescence signals were randomly extracted for comparison with the target cells. Figure 22c shows 

the OD600 values of the target and non-target cells measured by using a microplate reader in the presence 
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of cellobiose nutrients as a sole carbon source for 20 hours. It is obvious that three extracted candidates 

showed much higher growth rates than the non-target cells while they showed slightly lower growth 

rates than the positive control strain CP30chbasc with optimized cellobiose metabolic pathways [166]. 

 

4.7 Discussion 

One may think that our platform uses similar analytical approaches as the commercialized 

OpenArray systemTM (Applied Biosystems, Foster City, CA, USA) that was developed for quantitative 

or real-time PCR in a high-throughput manner [169]. However, the fluid array and cell extraction 

platform described in this study was particularly developed for HTS of small mutant libraries, showing 

several and unique differences. First of all, the fluid array device can be easily fabricated by using the 

standard photolithography and repeatedly replicated by using a master mold via soft-lithography. In 

addition, the platform does not need any microfluidic accessories such as syringe pumps, pneumatic 

valves, and other fluid controller systems. As demonstrated, aerobic and anaerobic cultures of 

microorganisms can be easily chosen and even switched in the middle of the experiments. Additionally, 

for complete anaerobic culture, once the fluid array device is encapsulated within a small container into 

which nitrogen gas is continuously flown, the oxygen dissolved in the PDMS can be completely 

eliminated. The extraction process was performed manually in our experiments, but it should be easy 

to fully automate the process with the help of robotic arms equipped with needles. As shown in this 

study, the fluorescence images of the entire fluid array can also be automatically acquired by using a 

motorized stage with a z-axis auto-focusing function and then processed by using our in-house code to 

determine target cells for future HTS applications.  

Typically screening hinges on phenotypic features of target cells. For example, target cells can be 

engineered to exhibit stronger fluorescent signals as used in this work. In addition to the fluorescence 

signal method, several other methods can be used for screening target cells such as colorimetric methods, 

enzymatic reaction with appropriate metabolites, and two component system in which one cell secretes 

biomolecules to which the other responds. Notably, it seems straightforward that the fluid array platform 

can be combined with all of the aforesaid methods. For the growth-based screening, the target cells 

were successfully extracted, which fed on and digested cellobiose as a carbon source, by using a positive 

selection approach. In the case of screening target cells with poor growth rate, the fluid array platform 

allows us to sort target cells in the same manner as those with the high growth rate. Therefore, it is 

needless to say that the fluid array platform shows many advantages for various screening conditions 

and experimental demands that are not easily achieved in conventional culture environments. Lastly, 
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the platform can be further utilized for practical applications in many phenotypic screenings partially 

demonstrated in this study, isolations of extraordinary microorganisms under controlled environments, 

microbial resistance tests to various antibiotics, directed evolutions, optimization of metabolic pathways, 

discoveries of new metabolic factors, etc. Of course, the platform in its current version possesses several 

weaknesses: manual extraction method, low extraction volume, and screening performance. However, 

it does not seem to be challenging to overcome these weaknesses in the near future [36]. 

 

4.8 Conclusion 

A novel microfluidic HTS technique was developed in this study for a small mutant library by 

combining the fluid array device with the capillary-tube-based extraction and re-culture processes. The 

fluid array device consisted of microwells to culture microbial cells and a fluorinated oil container for 

high-throughput compartmentalization of the cells. Since each microwell of the fluid array device 

provided separate, but identical cell culture environments, the cell population in each microwell was 

extremely high, showing much higher values of OD600 than those obtained by using conventional culture 

methods. In addition, the extraction and re-culture of target cells out of the fluid array device enabled 

repeated cyclic screening. Using the spike and recovery test, the platform could be used for the HTS of 

a small mutant library based on reporter gene differences. Not only did the reporter gene based screening 

was performed, but it was demonstrated the feasibility of the growth based screening using the same 

platform, making it possible to screen and sort target cells in a certain ascending or descending order. 

Therefore, the combination of the fluid array device and the target cell extraction method developed in 

this study offers remarkable advantages over the conventional HTS techniques. Indeed, a relatively 

small number of microwells was used (<3,000 wells in 2 cm by 3 cm), but the expansion of the device 

up to a wafer scale (6” or higher) may increase the total number of microwells up to 106 to 107, showing 

high potential for the HTS and the enrichment of target cells. This proposed platform can be an 

alternative for HTS applications. However, the entire processes could be fully automated, including the 

generation of a fluid array, culture, image acquisition, processing, selective extraction, and re-culture, 

in the near future [36]. 
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Chapter 5. Advanced High-throughput Screening 

Applications by Fluid Array 

 

5.1 Microbial platform for fatty acid production 

Fatty acids have been used as the precursor substrate of various type of fuels and chemicals in the 

last few decades. Free fatty acids (FFAs) have attracted public interest due to its potential to meet the 

demand for controllable and renewable energy. Also the FFAs are considered to have many industrial 

uses including bio-fuels, cosmetics, lubricants/solvents and pharmaceutical drugs. Microorganisms 

show a considerable potential in terms of an efficient platform for FFAs production [170-172]. While 

the corn-based production methods for FFAs resulted in a competition with food, increased refinery 

costs, land-use efficiency and environmental concerns, FFAs production using microorganism E. coli 

is a more ideal approach for production purposes in terms of its economic costs, rapid growth, and 

comparably spatial-efficient method [173].  

 

5.2 Rationally designed engineering of TesA for improved microbial fatty 

acid production 

Since E. coli is a well-studied industrial organism, there are many studies regarding the improved 

production of FFAs using various approaches. Through many related metabolic pathways, microbial 

FFAs have been mostly synthesized from acyl-ACP (acyl carrier protein) by the key enzyme, 

thiosesterase I (TesA) [174, 175]. With the well-studied enzymatic characteristics of TesA, catalytic 

enzyme reaction of TesA have often been utilized to increase cellular FFAs in several alternative studies. 

However, a genetic overexpression for enzymatic component of the fatty acid synthase (FAS) does not 

always guarantee for maximization of the FFAs production in E. coli as reported by Jiang et al [176]. 

It is required to have the optimal ratio of enzymes and FAS components in the fatty acid synthetic 

pathway for the improvement of production yield. According to previous findings, Shin et al. reported 

a high-throughput screening approach of a TesA mutant library to screen out the extraordinary TesA 

mutant which produces a twofold greater amount of FFAs than the WT enzyme [175]. The constructed 

mutation library size reached 106 which is an impossible number to handle by using conventional 
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experimental tools. A two-step selection pressure system was therefore sequentially applied: (1) FFA-

dependent tetracycline resistance for growth-based antibiotic enrichment of the expected mutants and 

then (2) FFA-dependent RFP expression for FACS machine screening. However, in the process of such 

mass culture for growth enrichment, few extraordinary samples can only dominate the whole mutant 

library due to antibiotic competitive growth. Still, the individual growth of mutants that possibly have 

suboptimal production performances of FFAs can be negatively affected by competitive crosstalk of 

the bulky populated condition. Therefore, compartmentalization is required to apply in this screening 

application for avoiding such crosstalk. 

 

5.3 C2C communication screening for extracellular fatty acid production 

In addition to such modification of thioesterase enzymes to achieve the improvement of total 

biosynthesis for fatty acids, a secretion of fatty acid from inside of the microbial membrane is an 

important issue for optimization of FFAs production, due to an intracellular pH changes and a feedback 

inhibition of intracellular fatty acid. There are also innovative approaches including the precise control 

of enzyme activities/expression levels and optimizing/redesigning of metabolic pathways for the 

secretion purpose [38, 177, 178]. However, an understanding of a precise metabolic pathway still stayed 

in poor level due to too many cellular properties related with the metabolism. In contrary, random 

approaches such as transposon mutagenesis do not require preliminary knowledge of relevant metabolic 

pathways. For example, Shin et al. reported microbial secretion pathways of fatty acids on genomic 

DNA (gDNA) of E. coli by the identification for locations of transposon insertions.  

However, the previous research suggested FFA-Tet fusion genetic circuit which are vulnerable for 

an unknown crosstalk from in/-outside of the microbe, since the FFAs sensing system and the growth-

coupled genetic circuit were embedded together. Therefore, separation of the sensing part and the 

production part of microbe would convey new opportunity to perform the screening of extracellular 

FFAs secretion mutant from the transposon mutation library. In order to achieve such purpose, it is 

necessary to design a cell-to-cell communication system consists of donor cells and recipient cells 

whereas the donor cells (DC) produce/secrete certain biomolecules that precisely stimulate recipient 

cells (RC) with gene expression of the designed reporter gene including fluorescence and colorimetric 

way. 

Although there are some studies regarding a cell-to-cell communication on a microorganism level 

[179, 180], only few reported research publications have considered the possible effect of a cell-to-cell 

communication (C2C) based screening approach in a practical way [181-183]. Having a C2C 
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communication system for a screening purpose, apart from the functions of producing/sensing the 

secreted biomolecule in different cellular platforms, reduces cell-to-cell variation, stochastic 

heterogeneity of metabolic pathways and crosstalk from other intracellular bioactivities [184]. 

Conventionally, such C2C screening systems are performed by using a microplate with a lot of effort 

to seed two different cells in a single microplate array or spraying the recipient cells on an agar plate 

that has a colony of donor cells. However, such conventional approaches have critical limitations on 

the throughput of a sample, procedure reliability, and accuracy of colony locations. Therefore, more 

designated experimental methods to encapsulate such C2C donor/recipient cells in isolated arrays had 

more attention, for instance microdroplets in a microfluidic platform. The use of microdroplets in 

microfluidic platforms is usually suggested as an alternative for such C2C application [182]. However, 

since there is a technical tradeoff between compartmentalized arrays/throughput and selective 

extraction systems for many microfluidic approaches, up to date, no specialized microfluidic devices 

were introduced which have satisfied the requirement for both a high-throughput performance and a 

compartmentalization. 

  

5.4 Fluid array applied to two screening applications 

In this research, two different screening approaches were introduced to complement the two 

conventional microbial screening approaches mentioned earlier. First, the microfluidic fluid array 

platform [36] was applied for the screening of 106 TesA mutant library. The screening based on the 

fluid array platform has several advantages over our previous two-step screening pressure approach. 

For example, a hybrid type screening procedure with both reporter gene-based and growth-based 

screening was applied for randomly mutated cells in isolated culture conditions to avoid crosstalk from 

the bulk culture condition. Second, the C2C based high-throughput screening was designed, and we 

obtained the mutants showing outstanding secretion performance of fatty acid molecules. After the 

completion of two screening processes, the improved thioesterase I enzyme mutants were integrated 

with another screened mutant showing over-secretion performance of extracellular fatty acids. The 

combination of different fatty acid biosynthetic systems screened by the fluid array was synthesized 

and tested with fatty acid production by GC analysis. 
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Figure 23. A schematic diagram of two different screening strategies. (a) Engineering of TesA on 

plasmid and random gene deletion on gDNA for FA extracellular secretion. (b) A schematic of screening 

for TesA 106 library by the fluid array device. (c) Cell-to-cell communication based screening with DC 

and RC in compartmentalized environments. 

 

5.5 Experimental methods 

5.5.1 Material and reagents  

Two types of oils with different specific gravity (SG) were used for compartmentalization of 

aqueous solutions: hydrocarbon oil (Hexadecane, SG = 0.76, Sigma-Aldrich, Korea) and fluorinated oil 

(FC-40, SG = 1.61, Sigma-Aldrich, Korea). Red food dye and 50 M of fluorescein isothiocyanate 

(FITC) solutions were used for the visualization and characterization of the fluid array. For cell culture, 

Luria Bertani broth (LB, Sigma-Aldrich, Korea) was prepared with proper antibiotics such as ampicillin 

(Amp, 75 g/mL), chloramphenicol (Cm, 50 g/mL), kanamycin (Km, 50 g/mL) and tetracycline (Tet, 

50 g/mL) (all purchased from Bioshop Canada Inc.). An LB agar plate was also prepared (1% of w/v, 

Agar, Becton Dickinson) for colony formation. To avoid shrinking of the produced fluid array, FC-40 

oil was mixed with distilled water (0.1%, v/v) up to the limit of solubility in a rotary shaker at 60 °C. 

Distilled water was not fully mixed with the oils so that the final concentration of water in the oils was 
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estimated to be approximately 0.02% (v/v) according to previous report. For the extraction of target 

cells, both fused-silica capillary tubes (CAT no. #1068150011, Polymicro Technologies, Phoenix, AZ, 

USA) with 25.3 m inner diameter and 360 m outer diameter (OD) and commercially available insulin 

syringes with OD = 200 μm were used. 

For the analysis of the FFAs production, M9 minimal medium (Minimal salt 5, Becton Dickinson, 

Franklin Lakes, NJ, USA) supplemented with 2 mM MgSO4, 0.1 mM CaCl2, and 0.5% (w/v) glucose 

was used for the growth-based screening of the mutant library. Yeast extract 1 g/L (w/v) and trace 

elements were additionally added. The trace elements consist of 2.4 g of FeCl3•6H2O, 0.3 g of 

CoCl2•6H2O, 0.15 g of CuCl2•2H2O, 0.3 g of ZnCl2, 0.3 g of Na2MO4•2H2O, 0.075 g of H3BO3, and 

0.495 g of MnCl2•4H2O per liter. The pH was maintained at 7.0 with 2 N NaOH buffer solution by 

rigorous mixing of 57.7% Na2HPO4 and 42.3% NaH2PO4. For induction of the expression of 

thioesterase, 0.3 mM of Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added at OD600 of 1 [175]. 

 

5.5.2 Preparation of bacteria cells and GC analysis of FFAs microbial production 

E. coli K-12 strain MG1655 was used as a platform cell. For the high-throughput screening of TesA 

mutant library, fatty acid biosensor (FAB) cells were prepared with harboring biosensor plasmid pFAB 

as described in previous studies [175]. For production of FFAs, the essential enzyme TesA in a 

leaderless form (‘TesA) has been used in several studies. Before the construction of random mutation 

library, tetA-rfp fusion protein on the BioBrick plasmid pBbE8a-rfp was transformed for the tetracycline 

antibiotic resistance. Then, error-prone PCR mutagenesis of TesA was conducted and the PCR products 

were cloned into EcoRI and XhoI with substituted sites of pBbB6c-gfp by Mutagenex (Suwanee, GA, 

USA) resulted in 106 independent colonies as total library size without hot spots of certain mutation 

sites.  

Second screening based on cell-to-cell communication used the extracellular fatty acid biosensor 

(exFAB) which was engineered with PLR promoter as reported previously [177]. To construct donor 

cell library, E. coli strain MFDpir, which was used as the plasposon donor strain, was purchased from 

the Pasteur Institute (Paris, France). MFDpir cells were transformed with pTNMod-R6KKmR, and this 

plasposon was transferred to E. coli MG1655 by bacterial conjugation, as previously described [185]. 

After transformation of the plasposon, the cells were collected and plated on LB medium containing 

kanamycin. In total, approximately 25,000 clones containing the desired transposon insertion were 

obtained [186]. 
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GC analysis was conducted to analysis microbial FFAs production yield in a precise quantitative 

manner. Selectively extracted cells were cultivated in LB medium and diluted 1/100 in M9 minimal 

medium with 2% (w/v) glucose, phosphate buffer to maintain pH 7.0. When OD600 is reached 

approximately 1, IPTG was added to the final concentration of 0.3mM for genetic induction of 

thioesterase, TesA. After 48 hours of incubation with FFAs microbial production, each of 500 L 

cultures were stored in -20 degree refrigerator for an hour. Then, 50L of pure HCl and 500 L Ethyl 

Acetate were added in sequence. 30 sec of mixing by Vortex was conducted and centrifuged for 2 

minutes. 500 L of top supernatants were collected in GC vials for further GC analysis of microbial 

FFAs, respectively. 

 

5.5.3 Statistical modeling of the library coverage and the optimal seeding condition 

The two-different type of genetic screening tools, that are similar to a duel selection system, were 

simultaneously employed in this microfluidic screening process to obtain overproducing mutants from 

the ‘TesA mutant library. In our previous paper [175], the first screening tool was the modified genetic 

circuit for FFA-dependent tetracycline resistance, which differentiates the cellular doubling time to 

perform an antibiotic enrichment. The second tool was the FFA-sensing plasmid, which shows a dose 

response of fluorescence intensity, equivalent to the presence of intracellular fatty acids. The 

experimental calibrations of the RFP biosensor of FFA-sensing and the genetic circuit of FFA-

dependent tetracycline resistance were already investigated, previously [175]. 

For the appropriate screening coverage of the mutation library that we constructed, a simple 

statistical formula below was used and the equation was derived from Poisson's Law. According to the 

equation, P is defined as the probability to cover the whole mutation library, f is the number of the 

mutation library represented by collected colonies whereas N is defined as the amount of coverage 

required to get P.  

 

𝑁 =
ln(1−𝑃)

ln(1−
1

𝑓
)

  (eq. 1) 

 

For the 106-random mutation library of ‘TesA, the experiment which had initial seeding number of 

30 cells per chamber with 20 fluid array devices, was delicately designed after considering the library 



70 

 

coverage. Therefore, the experiment accomplished the screening of approximately 1.8  106 samples on 

the fluid array devices which statistically covered over 95% of the 106-whole mutation library by 

following the above equation (eq. 1). After seeding 30 cells at the initial state, we performed microbial 

incubation for 20 hours to provide more than enough time to differentiate the enrichment process of the 

FFA-dependent tetracycline resistance as well as the fluorescence signal from FAB biosensor plasmid.  

In terms of the throughput perspective, therefore, the 20 fluid array chips in parallel preparation were 

used, and covered more than 95% of 106 of the ‘TesA mutant library. Although it was difficult to 

quantify the enrichment of dominant cells that was happened again in the recovery process (e.g. test 

tubes with modified M9 medium with tetracycline antibiotic environment), it was assumed that 30 

different initially seeded library cells resulted in only few mutants because of the enrichment growth 

from the FFA-dependent tetracycline resistance. Among those chambers in the fluid array device, we 

measured the fluorescent intensity from RFP corresponding to the intracellular FFAs concentration in 

a quantitative manner as second screening criteria. By sorting the quantified fluorescence intensities, 

top <1% fluorescence samples were selected, extracted and recovered in the modified M9 medium. The 

fatty acid production yield by GC were analyzed from at least 5 individual colonies per one chamber 

extracted by a glass capillary. 

For C2C communication based screening, there are some experimental factors to be considered 

such as optimal ratio between the extracellular amount of fatty acids from DC and sensitivity of RC 

harboring exFAB biosensor prior to the actual microfluidic screening process. Various ratio of DC/RC 

were tested by a microplate reader to find the optimized mixing condition of two strains (Figure 24). 

The optimal seeding ratio of DC/RC at the initial state was determined to be 3:1 according to the 

previous result showing the highest fluorescence intensities from 4:1 and 2:1 cases. Considering a 

screening coverage for mutant library and compartmentalization efficiency, initial mixing ratio of 

DC/RC was 9:3. The mutation library of donor cells were prepared by the TN5 transposon insertion, as 

previously explained, which mutation library size reached approximately 25,000 mutants [186]. To 

cover all the mutant library, it was prepared to have three fluid array devices that had 3,000 individual 

arrays for 9 mutant DCs in each chambers, resulting in more than 90,000 cells were seeded. According 

to the equation (eq. 1), more than 99% of mutant library was statistically covered by three fluid array 

devices. After 20 hours of incubation in the modified M9 medium, top 1% of arrays showing the highest 

fluorescence signal of RCs were extracted and recovered on agar plates to make individual colonies. 

Individual 5 colonies from each agar plates were picked, re-incubated and analyzed the fatty acid 

production yield by GC analysis. 
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Figure 24. Optimized mixing ratio for DC/RC using a microplate reader. While the MG1655-envR 

were chosen as the positive control of donor cells showing higher extracellular fatty acid production, 

recipient cells MG1655 harbouring exFAB biosensor plasmid were calibrated using a microplate reader. 

Red filled bars indicate the optimized detection range for exogenous fatty acid detection by exFAB 

biosensor. 

 

5.5.4 Fabrication of the fluid array device 

The microfluidic device was fabricated and the dimension of the microwells was 100 µm in 

diameter and 150 µm in depth having 3,000 arrays in a single device (3  3 cm). Spacing between 

individual arrays on a device were delicately redesigned from 4  2 to 3  2 matrix with considering 

the  recovery efficiency of the glass capillary extraction process [36]. As described previously, an SU-

8 (Microchem 2075, Newton, MA, USA) master was fabricated using the standard photolithography 

technology. The processed surface of a Si-wafer was silanized using trichloro(3,3,3-trifluoropropyl) 

silane (Sigma Aldrich, Korea) in a vacuum jar for 1 hour. Polydimethylsiloxane (PDMS, Sylgard 184 

Silicone Elastomer Kit, Dow Corning, Mid-land, MI, USA) was then casted, cured, and peeled off to 

prepare the microfluidic devices. The PDMS devices were dipped into distilled water for several hours, 

resulting in a fully moisturized state (e.g. the highest solubility of water into PDMS) so that the fluid in 

the microwell remained stable without apparent volume shrinkage over 24 h. During long-term 

incubation (> 12 h), fluid array device was half dipped oil and half dipped water to minimize drying of 

array chambers. 
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5.5.5 Experimental setup and data analysis 

An inverted fluorescence microscope (IX-71, Olympus, Tokyo, Japan), equipped with a CCD 

camera (Clara, Andor, Belfast, Northern Ireland) and 1.5, 10, and 20 objective lenses, was used to 

acquire fluorescence images from the fluid array device. The images were automatically acquired by 

using a microscope stage controller (MAC5000/Bioprecision2, Ludl Electronic Products, Hawthorne, 

NY, USA) using the multi-dimensional acquisition (MDA) function from the image software 

Metamorph 7.1 (Molecular Devices, Sunnyvale, CA, USA). The fluorescence intensities of the images 

were then analyzed using a custom-made m-file in MATLAB R2014a (Mathworks, Natick, MA, USA). 

For additional data analysis and necessary image processing, Image J (NIH, Bethesda, MD, USA) and 

OriginPro 8 (OriginLab, Northampton, MA, USA) were used. A manually controlled probe positioner 

(PB50, MS Tech, Hwaseong, Korea) was used to fix either syringe needles or capillary tubes for the 

extraction of target cells. 

 

5.6 Screening of larger mutant library : Increased throughput of 106 

TesA mutants 

5.6.1 GC analysis of FFAs and genetic identification of extracted mutants 

The hybrid type screening suggested in this study integrated two such screening genetic tools into 

the one hybrid screening approach with several advantages. The fluid array brought the advantages over 

conventional experiments, for example, high-throughput compartmentalization, data sorting in a 

sequential manner, and avoiding competitive crosstalk caused by the FFA-tetracycline fusion genetic 

circuit. As discussed in Section 5.5.3 by considering the coverage of the mutant library and the 

throughput of the device, we determined that 30 individual mutant library cells per single chamber are 

more than enough to distinguish and meet the first screening criteria, the FFA-dependent tetracycline 

resistance. After incubation process in the fluid array platform and data analysis, capillary extractions 

were conducted by a descending order of the fluorescence signals from each chamber. Finally, the 17 

samples based on the hybrid type of screening criteria were chosen, and their FFA production yields 

were analyzed by GC analysis (Figure 25). The extracted samples were incubated repeatedly to compare 

the fluorescence signal of the negative control MG1655 in visualized images (Figure 26a) and the 

quantitative analysis (Figure 26b). The mutants showing higher fluorescent signals also showed 

increased FFA production yield as the results of the GC analysis (Figure 25).  
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Figure 25. Fatty acid GC analysis. (Left) All screened 17 mutants were identified each of mutation 

residues (Right) Average FFA production from the mutants that were selectively extracted by the order 

of fluorescence intensity. To see the difference of efficiency of the fluid array device, arbitrarily selected 

20 extractions were also analyzed their FFA production by GC analysis.   

 

 

 

Figure 26. Images of screened mutants on fluid array devices and quantification. (a) Fluorescence 

microscopic images of re-cultivated selected mutants and WT control. (b) Quantified fluorescence 

intensities of selected four mutants.  

 
We then identified the 17 mutated sequences of ‘TesA, as shown in Figure 25 and Table 5. The 

GC analysis data in Figure 26 was plotted against the relative FFAs production yields compared to the 

WT TesA strain. The identified mutation sequence of ‘TesA showed some meaningful genetic results. 

We not only found some mutation points that overlapped with our previous results, we also obtained 

newly discovered ‘TesA mutants that increases FFAs production by almost two fold. The substitution 

of aspartic acid to glycine at the 74th position in ‘TesA increased FFA production (Figure 27). This 
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result was consistent with previous work that the mutation at the 74th substitution (D74G) produced 1.5-

fold higher FFA [187]. As an N-terminus of the loop (residues 75–80) that significantly moves when 

‘TesA interacts with its substrates, the Asp 74 regulates the movements of the loop during catalysis 

[188]. Therefore, it was hypothesized that the change in the 74th residue might influence interaction 

between substrates and ‘TesA, resulting in higher FFA production. Research on the 171st residue has 

not been reported, however, it might be involved in increased FFA production as previously reported 

[187]. The change in the 122nd residue might influence the movement of F121 that surrounds the 

substrate-binding crevice, resulting in substrate affinity [188, 189]. The mutants harboring L7Q, L4I, 

and I6V exhibited approximately a 1.4 fold increase in FFA production. The role of the residues has 

not been reported previously, however, the mutation in N-terminal in ‘TesA might affect the properties 

of protein as mutation in the N-terminal of the protein affect activity [190]. It is difficult to explain how 

two mutations (V144A and L51R) improve the FFA production because there are no studies on the 

residues. Previously, mutations in noncatalytic residue altered substrate specificity and ligand binding, 

driven by structural changes of the protein [191]. The mutations (V144A and L51R) might act in a 

similar manner to that seen in the other studies. 

 

Table 5. Identification of mutations for screened mutants 
 

Mutations 

Number of colonies in total 

selected colonies  

(% percentage) 

Fold increase in 

FFA production 
Remarks 

L7Q 6/16 (37%) 1.3  

L51R 3/16 (18%) 1.3  

D74G 2/16 (~11%) 1.7 Same mutation (D74) 

from Shin et al. [175] 

V144A 2/16 (~11%) 1.4  

L4I 1/16 (~6%) 1.2  

I6V 1/16 (~6%) 1.3  

S10N, T84P, 

S122N, A171T 
1/16 (~6%) 1.2 Same mutation (A171) 

from Shin et al. [175] 

 

To see a relativeness between the screening performance of the fluid array and the FFAs production 

yields, the extracted mutant samples were categorized into two distinguished groups. The first group 

consists of 17 chosen mutants based on top <1% chambers showing the highest fluorescence intensities 

from the fluid array device and another group was arbitrarily selected 20 samples as comparison. In the 

first group, the average of production yield from the 17 mutants showed the improved production yields 
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of FFAs (Figure 25, right), compared to that of randomly selected 20 mutants, the second group. This 

result shows the hybrid type of screening method worked very well with a significantly different FFAs 

production yields between two categorized groups. 

 

5.6.2 Effect of mutations on TesA changes FFA production yield 

Throughout the hybrid screening process, several genetic mutants of ‘TesA were revealed and 

analyzed by DNA sequencing of the extracted cells. To confirm that the increase in FFA production 

originated from the replacement of revealed mutated ‘TesA, it is necessary to verify that the mutation 

sequences are also genuine to the WT MG1655 whether the replacement of ‘TesA plasmid is resulted 

in an improvement of FFA production. The WT TesA was replaced with top 4 isolated mutations 

showing the highest FFA microbial production (Figure 25) which mutated residues were I6V, L7Q, 

L51R, and D74G. After the replacement of mutation thioesterase, GC analysis of those mutation 

showed increased FFA production with ranging from 1.3 to 1.7 fold larger than the WT TesA (Figure 

27). These results indicate that the isolated ‘TesA mutant replacements directly accelerate fatty acid 

biosynthesis compared with the WT TesA. 

 

 

Figure 27. Free fatty acid production analysis. This analysis was obtained from selected TesA 

mutations which are artificially engineered TesA on a plasmid. The expression of mutated TesA 

enzymes were induced with 0.3mM IPTG. The black bar in the left column indicates FFA production 

of WT MG1655 control.  
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5.7 C2C communication based screening : New type of screening 

application 

5.7.1 Calibration of extracellular fatty acid biosensor 

 For C2C communication based screening system, it is required to have appropriate donor cells 

(DC) and recipient cells (RC). We prepared the DCs as random mutation library constructed by 

transposon insertion method which are expected to show different secretion performances because of 

the disrupted transport system for fatty acids. On the other hands, we engineered RC for extracellular 

fatty acid biosensor having replacement of promoter PLR instead of previous promoter Ptet [192]. This 

newly engineered extracellular fatty acid biosensors (exFAB plasmid) was induced by the presence of 

exogeneous fatty acids in a liquid state from DCs, presumably. We then evaluated the responses of 

exFAB with the different concentrations of exogenous fatty acids (Figure 28). The dynamic sensing 

range of the exFAB biosensor is defined from 0.05 to 0.4 g/L which considerably matches to the 

expected production yield of DCs. 

 

Figure 28. Optimal sensitivity test for exFAB biosensor plasmid. Different exogenous fatty acid 

concentrations were prepared ranging from 0.025 to 5 g/L. The extracellular fatty acid biosensor 

(exFAB) plasmid was engineered and tested its detection performance in the microplate reader with 

different concentrations of exogenous fatty acids in a liquid medium. Red bars indicate the expected 

fatty acid production yields from donor library cells.  
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Figure 29. Fluorescence microscopic images and quantification results of C2C communication 

based screening system. (a-c) Overlapped fluorescence images (GFP-RFP) of exFAB with control 

group as negative, mid-range, and positive fatty acid production yield. (d) Quantification data of 

fluorescence intensity from red fluorescence protein in the exFAB biosensor recipient cells (RCs). 
 

 

We next tested the response of the exFAB biosensors to the extracellular produced fatty acids from 

three different control microbial groups within the fluid array platform (Figure 29). The microbial 

control groups include WT MG1655 as negative, MG1655 with the WT TesA and MG1655-envR 

harboring the WT TesA as a positive control producing more fatty acid than others. For this experiment, 

it is confirmed that the exFAB biosensors with positive control group showed brighter fluorescence 

signal compared to the case of the wild type MG1655. Not only the WT MG1655 case, but also the 

exFAB biosensor itself showed similar fluorescence intensity that indicates almost no exogenous fatty 

acids in the liquid medium. 

 

5.7.2 Screening of mutant library using C2C communication system 

 The fluid array device was used again for effective C2C communication based on interaction 

between DC and RC in a chamber array environment. After 20 hours of incubation in a fluid array 

device, all the fluorescence intensities of individual arrays were quantified. Approximately 30 arrays 

per a fluid array device (top <1%) were selectively extracted, recovered and analyzed their production 

yield of fatty acids by GC analysis. We then chose outstanding 10 mutants showing higher secretion 

performance of fatty acids and identified sequences of the transposon insertion regions from each of 

selected samples. According to the GC analysis results (Figure 30), the average of total fatty acid 

production yields are varied ranging in mostly similar to that of WT. Whereas the WT MG1655 with 
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WT TesA showed intra/extracellular fatty acids ratio as 7:3, the isolated 10 mutants increased almost 

two fold extracellular fatty acids compared to the WT MG1655. It is noted that insertion transposon 

may have disrupted a transport system of fatty acid in FAS pathways. The transposon insertion 

sequences were not identified yet. 

 

Figure 30. Fatty acid prodcution by transposon mutants. The concentration of intra/extracellulular 

fatty acids were measured from ten mutants screened by C2C communication based screeening of the 

fluid array platform. Identification of such mutations are not sequenced yet. 

 

5.8 Conclusion 

A screening of more than 103 of the microbial mutant library has not been realized yet in the 

microfluidic platform, due to a tradeoff relation between high-throughput compartmentalized 

environment and difficulties in selective extraction. Using the fluid array platform developed previously, 

we were able to screen the fatty acids overproducing mutants from random mutant library of 106 with 

satisfying high-throughput arrays and the selective extraction. This platform can deal with the growth-

based screening as well as the reporter gene-based screening approach simultaneously. The screened 

microbial mutants showed that not only this platform can reveal extraordinary mutants, but also 

screening of suboptimal mutants producing more fatty acid than the wild type. There outstanding 

mutants showing almost a two fold increase in fatty acid production were isolated, compared to the wild 

type. Additionally, the platform can perform the experimental concept of C2C communication 

screening (e.g. donor/recipient cells) which was limited by conventional approaches and tools. The 

isolated mutants showed enhanced extracellular fatty acid production compared to that of WT control 

production yield. In the near future, identification of those screened mutants will be performed as well 

as further advanced genetic analysis of the mutations. 
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Chapter 6. Summary and Future Outlook 

 

6.1 Summary of findings 

In this dissertation, different type of microfluidic devices were developed for various collaborative 

purposes for the bottleneck of conventional microbiology [21, 33, 60, 63]. As described in previous 

chapters, the high-throughput screening of bacterial mutant library is still merely one of successful 

integration examples to demonstrate practical cases showing advantages of using the microfluidic 

device. Not only high-throughput screening application, but also microfluidic device integrated with 

microbial biosensors showed a promising research perspective as well as an industrial need for the better 

detector than current heavy instruments in a quantitative manner.  

First, microbial biosensors were investigated with a reviewing previous studies from other groups. 

There, micro/nanotechnologies for microbial biosensors were reviewed carefully (Chapter 2). With that 

background knowledge regarding microbial biosensors, various microbial biosensor applications were 

introduced and performed on ratchet structured microfluidic devices to improve sensitivity of the 

biosensors. With having the novel ratchet structures at the orifice of the microfluidic chamber, the 

motile cells were physically concentrated. While the cells are concentrated in the microfluidic chambers, 

the chemicals are diffused without any obstacles providing the continuous feeding of nutrients. 

Therefore, a simple and convenient chemostat-like culture environment met with the application of 

microbial biosensors that express a fluorescence signal in the presence of target heavy metal ions 

(Chapter 3). Concentration and accumulation of chemical nutrients in a continuous mode to the 

chamber enabled outstanding increase in a sensitivity of the microbial biosensors. 

Second, the fluid array device was developed (Chapter 4) by applying two common knowledges, 

such as immiscible character between water and oil, and specific gravity difference of all substrates. 

Since the concept of the fluid array device is a passive and open type instruments, it satisfies all the 

requirements for high-throughput screening research field including high-throughput microbial 

incubation, a simple and selective extraction method, and a good recovery efficiency for post analysis. 

Not only this fluid array device has shown a successful demonstration of high-throughput screening for 

small microbial mutant library, it was also successfully performed that a larger size of mutant library 

(> 106) based on the hybrid type of screening strategies. In addition, cell-to-cell communication based 

screening was applied to implement the concept of donor/recipient cells (Chapter 5).  
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Overall, the microfluidic approaches introduced in this dissertation were successfully used for the 

quantitative analysis and the high-throughput screening of synthetically engineered microbes. It is 

strongly believed that the bioMEMS technologies including such microfluidic approaches would be a 

practical step to realize fully integrated total analysis system for various biological applications which 

were limited by conventional approaches. 

 

6.2 Future outlooks and perspectives 

Although the fluid array has knocked the new door for high-throughput screening application for 

synthetically engineered microorganisms, most of achievements in this dissertation are still in the sub-

level of single cells. Therefore, the future research for screening of synthetic microbes should aim for 

an actual single cell analysis (not the single cell level). Yet there is no such device reported that achieves 

the actual single cell analysis with high-throughput more than 105~6. The reason why the actual single 

cell analysis is considered to be almost impossible and difficult task to achieve, is because of the 

technical tradeoff relation aforementioned in previous chapters. According to the fundamental statistic 

theory, in an example of free food ticket distribution to the random crowd, distribution with less number 

of tickets must have higher standard deviation (%) than the larger number ticket case. Therefore, the 

actual single cell analysis always requires highly sophisticated flow regulation system that can even 

control a single cell.  

However, solving this tradeoff issue can be alternatively suggested in this dissertation by the 

complementary experimental condition. For example, C2C communication based screening experiment 

in this dissertation (Chapter 5) defined the initial cell seeding number for donor cells as approximately 

9. The experiment would have been more sophisticated and accurate, if the initial cell seeding number 

was exactly encapsulated in number 1. There we can find a point of compromise by having a post colony 

analysis process that complements the disadvantages of sub-single cell level analysis. Because picking 

up the 10 individual colonies after the fluid array C2C screening may reduce significantly the possibility 

of missing samples during the whole screening process. 

Another future perspective issue for the fluid array would be the disadvantages from the passive 

and open type device structure. Since the fluid array device implies a simple but effective high-

throughput screening tool, the fluid device is still vulnerable in terms of stability. Compared to the 

conventional channel type microfluidic device, the fluid array has a significantly unstable status for 

example when the device is inverted for capillary extraction, and is exposed dehydration of aqueous 

phase. Therefore, future high-throughput microfluidic tools should aim for more solid platform and 
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procedures.  

The field of BioMEMS, more specifically, microfluidics still has tremendous potential to various 

biological applications. A variety of research demonstrated a highly synergetic and practical 

applications between microbiology and micro/-nanotechnology with the ability to control their physical 

and chemical characteristics within the active scale of micro/nanometer.  
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