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Abstract 
 

Programming lab sessions help students learn to program in a practical way. Although these sessions 

are typically valuable to students, it is not uncommon for some participants to fall behind throughout 

the sessions and leave without fully grasping the concepts covered during the session. In my thesis, I 

will be presenting LabEX, a system for instructors to understand students' progress and learning 

experience during programming lab sessions. LabEX utilizes statistical techniques that help 

distinguishing struggling students and understand their degree of struggle. LabEX also helps instructors 

to provide in-situ feedback to students with its real-time code review. LabEX was evaluated in an entry-

level programming course taken by more than two hundred students in UNIST, establishing that it 

increases the quality of programming lab sessions. 
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I. Introduction 
 

In recent times, higher education institutions hold programming lab sessions to help students learn to 

code in a first-hand manner. Students learn as much as, if not more, in these sessions than by listening 

to lectures [1]. This further emphasizes the significance of practice in the context of computer science 

education. In a typical lab session, participants are provided with a number of coding tasks and 

instructors and teaching assistants (TAs) help them throughout the session when necessary. 

 

In a typical lab session, an assistant helps ten or more students, therefore, it is difficult to always reach 

out to all participants who need support. This becomes more evident in case of large-scale lab sessions 

where students have diverse coding and problem-solving skills. Additionally, they possess different 

cultural and personal thresholds for asking questions. As a result, students have a very different course 

of solving the tasks - some may be stuck on an introductory task while others have finished all the 

problems. Participants ask questions at a very different rate as well - some ask simple syntactic questions 

very often while others may not ask any question even if they are struggling very much. 

 

    
 

Figure 1: A visualization of time-window analysis of TA’s time in two sessions. A stacked area shows 
the amount of time TAs helped each student in 10-minute window over time. 

 

Figure 1a shows the amount of time TAs spent to help each student in our experimental lab sessions. 

Clearly, a large amount of TAs' time is monopolized by a single student (orange color); the student 

asked a lot of simple questions, many of which he could have figured out by himself. We observed that 

other students in the lab were struggling and needed help, but TAs were not aware of it at the moment 

because 1) those students did not ask for help, and 2) some TAs were occupied with helping the 

monopolizing student. 

(a) Group A (w/o LabEX) (b) Group B (w/ LabEX) 
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It is generally a non-trivial task for lab assistants to have a comprehensive picture of overall students’ 

progress. An instructor can easily have a wrong impression of how students are doing based on his/her 

limited, biased interaction with students – students asking a lot of basic questions or those leaving the 

session early after finishing all the tasks. More importantly, it is even more difficult for lab instructors 

to qualitatively assess and help improve students’ solutions during the lab session since feedback are 

usually provided to only those participants who ask for help. The works of silent students who never 

ask for help/feedback are unlikely to be reviewed by a lab staff. 

 

This dissertation presents LabEX, a lab-session monitoring system that helps instructors better 

understand how students are learning in real-time by providing them with a comprehensive view of the 

lab sessions. With LabEX, instructors can easily inspect how students are progressing with their tasks; 

LabEX also helps with identifying struggling students and notifying lab staff so that they can give assist 

them at once. In addition, LabEX summarizes students' solutions for instructors enabling them to readily 

distinguish poor ones and provide students with timely feedback. The contributions of this thesis are 

the design, implementation, and evaluation of LabEX. The specific list of contributions is as follows: 

 

Modeling students struggle. LabEX employs statistical methods to help spotting struggling students 

as well as their degree of struggle. Using the order statistics [2] of the completion times for each task, 

LabEX estimates their distribution. That helps to identify students who have fallen behind their peers 

wiring on a task. LabEX uses more detailed information about the students’ interactions and time spent 

on the task to rank the struggling students. 

 

In-situ code review and feedback. A code clustering technique is used by LabEX to group similar 

solutions and display them to lab assistants in order to help them with qualitative review of students’ 

solutions. Clustering similar solutions, helps assistants to readily identify creative solutions and share 

them with participants. They can also detect poor solutions and advise the students to improve their 

work. We believe that such in-situ feedback greatly improves participants learning experience in the lab. 

 

Large-scale real-world experience. LabEX was tested in an introductory-level programming course 

taken by 272 freshmen in one semester at our institute. LabEX was successfully employed in the 

programming lab sessions for the course (36 sessions in total) helping 17 lab staff (16 TAs and one 

instructor). The study reveals that LabEX helps to significantly improve the lab session experiences for 

both lab assistants and students. A separate controlled experiment was also conducted with a goal to 

assess LabEX in a quantitative fashion. The experiment results confirm that LabEX assists lab staff to 

efficiently use their time to help students. 
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II. Background and Related Works 
 

There has been vast amount of studies on improving learning experiences in the context of large-scale 

lab classes, computer science education, and learning in MOOC (Massive Open Online Courses). Here 

is a summary of the most relevant work and description of the background of this study.  

 

In several domains, situational awareness tools help users comprehend and respond to their surrounding 

situation [3]. These tools are used especially in mission critical domains, such as monitoring systems 

for power plant operators and air traffic controllers. In educational contexts, similar tools are designed 

to assist instructors to better understand their audience and teach more efficiently. Codeopticon [4] 

increases a tutor’s situational awareness in MOOC teaching sessions while watching hundreds of 

learners writing code in real-time. LabEX aims to improve lab staff’s situational awareness for offline 

lab sessions having different teaching context.  

 

With the rise of MOOC, there have been a lot of studies on improving the quality of learning experience 

in MOOCs. Generally, many researchers strive to classify different groups of learners by inspecting 

students’ engagement and behaviors [5] [6] [7]. A particular challenge in MOOC is high dropout rate of 

learners. DropoutSeer [8] employs visual analytics methods to help instructors better understand 

learning patterns related to learners’ dropout behavior.  

 

Receiving appropriate feedback is an important part of learning experience. In classrooms where the 

number of learners significantly exceeds the number of instructors and TAs, manual assessment of 

students’ work and providing them with qualitative feedback is quite demanding, especially in 

programming courses where students may come up with many different solutions. In [9] [10], clustering 

techniques are used to help instructors explore the variations among thousands of solutions submitted 

in MOOC, enabling them to provide appropriate feedback. Although the techniques applied in our work 

are inspired from prior work, LabEX aims to improve offline lab sessions with real-time feedback. More 

specifically, we provide instructors with a summary of different solutions in real-time during a lab 

session so that they can provide students with timely and personalized feedback.  

 

Jupyter Notebook [11] is an interactive interface that allows users to write and execute codes online. Its 

usefulness has made many to utilize it in different domains such as machine learning and statistical 

modeling. Jupyterhub [12] builds a multi-user hub which creates a single Jupyter notebook server for 

everyone in a group. Students of a programming course for instance, can connect to Jupyterhub and 

write their solutions in a Jupyter notebook.  
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LabEX effectively employs Jupyterhub as one of its main building blocks where each student is 

provided with a Jupyter notebook server upon logging in. Jupyter’s interface provides students with 

more convenience to write, run and submit their solutions as opposed to the UNIX command line 

environment which is usually used in typical programming lab sessions. 

III. Design Goals 
 

Before LabEX was designed, we studied the programming lab sessions by participating in them and 

observing how they are run as well as interviewing few lab assistants. We attended five lab sessions of 

an introductory-level programming course in our institute and observed the whole sessions. The 

sessions started with a summary of each week’s lessons delivered during the lectures, followed by an 

hour and a half of problem-solving by the participants. The major observations are listed as below: 

• The instructor and TAs were busy answering questions and clarifying tasks during the entire 

sessions. 

• 20% of the students asked more than 80% of the questions; the questions by the 20% students 

are often very trivial, such as questions on simple syntax errors, implying that they ask questions 

too readily instead of spending some time to think over them by themselves. 

• Students were overlooked a few times when they raised hand to ask questions because all 

assistants were busy. 

• Some students seemed to be stuck at a problem and were reluctant to ask for assistance; as a 

result, they left without having their tasks completed. 

To conclude, the instructor and TAs could not have a comprehensive view of lab sessions and spent 

much time assisting a small number of participants who asked questions. They did not have the time, 

for instance, to share their opinion about students’ progress or difficulty of tasks with other lab staff.  

 

An interview with the lab assistants at the end of the semester confirmed our findings. One TA 

commented, "Sometimes students are stuck in a difficult problem for long, and we only noticed it at the 

end of the session." Another TA said, "The progress among students differs very much, and I want to 

be able to find and help those who are behind." The TAs and instructor both mentioned that they are too 

busy during lab sessions and cannot afford to discuss their thoughts on, for example, what aspects of 

the tasks students find difficult or what common mistakes students make. 

 

Based on these findings, the following three goals are set for the design of LabEX: 

 

• Provide lab staff with a summary of students’ progress. Lab staff always need to be aware of the 

overall progress of participating students; if there is an issue – such as a difficult task or unclear 
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description of problems – lab staff need to promptly respond within the limited lab session time. 

• Assist instructors spot students needing help. Ideally, instructors must allocate their assistance to 

those students who are struggling more as opposed to those who ask many questions. Therefore, it 

is necessary to enable assistants to readily spot students who are struggling and need help. 

• Provide lab staff with a suitable way to perform code review. The quality of code matters in 

programming and it would be ideal for lab staff to qualitatively review all students’ codes. Since it 

is not feasible to read all code lines, LabEX provides an efficient tool to help assistants to review 

more code with less effort. 

IV. Understanding Struggling Students 
 

In programming lab sessions, it is important for TAs and instructor to identify struggling students and 

provide them with help so that they understand the material and complete their tasks. However, in large-

scale lab sessions where participants are with a diverse level of programming skills and different cultural 

and personal threshold to ask for help, it is challenging for lab staff to identify truly struggling students. 

 

Furthermore, it is not ideal to sightlessly help students immediately after they express any sign of 

struggle, because then they lose the chance to explore and learn by themselves. Hence instructors should 

give students sufficient time to solve problems independently; at the same time, they should spot 

struggling students and assist them before they lose interest and give up. 

 

LabEX employs statistical methods to detect struggling students and measure their degree of struggle, 

so that instructors can efficiently help those struggling students. 

V. Estimating Distribution of Problem Solving Times 
 

Task Avg. Time SD Min. Time Max. Time 

1 6.3 4.5 1.0 20.0 

2 9.2 8.0 2.0 34.0 

3 4.8 6.2 2.0 25.0 
Table 1: Students' Task Completion Times in a Session (Min.) 

 

One important feature that can express the level of student’s struggle is the amount of time a student 

takes to complete a task. Therefore, LabEX utilizes task completion time as a major factor in finding 

struggling students. However, students spend an unequal amount of time to solve an individual problem 

in lab sessions. The time to complete a particular task depends on many factors such as a student’s 
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understanding level, the required skills to solve the problem, and inherent difficulty of the problem. In 

our observation students spend as little as less than a minute, and as much as 34 minutes to solve a 

problem in the 1.5-hour lab sessions (See Table 1). 

 

  
 

 

 

 

 
 

Although task completion times vary significantly with problems and students as shown in Table 1, we 

observed that for most problems, the completion times of all students closely follow log-normal 

distribution. Figure 2a shows the task completion times of students in a single lab session for one 

sampled problem. The vertical bars specify the number of students who solve the problem within a 

given time window; the red line represent the estimated log-normal distribution. We can see that the 

shape of the vertical bars and the lognormal distribution look very similar. 

 

To verify that the task completion solving times follow log-normal distribution, we employ a quantile-

quantile plot (Q-Q plot); we take the logarithm of the task completion times and plot the values in a Q-

Q plot. Figure 2b shows the plots for three sampled problems; the plots for other problems are similar 

to one of the three plots. When we computed the coefficient of determination, or r2 values, they are 

close to 1, indicating the data is linearly related to the model (log-normal distribution). 

 

We observed some outliers; first and last few data points are plotted further away from the regression 

lines for some problems. Thus, when we estimate log-normal distribution from our observed data, we 

ignore first few data points if the estimated parameters using them are significantly different from the 

estimations using other data points. The outliers in the tail (last few data points) are of less significance 

(a) A Sample Task (b) Q-Q Plots 

Figure 2: Assessment of Modeling Problem Solving Times with A Log-Normal Distribution; (a) shows 
the distribution of task completion times and the estimated log-normal distribution for a sample 
problem. (b) shows that the task completion times for sampled task follow log-normal distribution 
with the coefficient determination value (r2 value) close to 1. 
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in our use case, because they do not need to be exactly modeled. The data points represent students 

taking exceedingly long time to complete a problem, and we aim to help those students before they 

spend too much time on a single problem. 

 

Note that for identifying struggling students, a simple heuristic such as averaging the task completion 

times of first N students to use as a reference point cannot be used because it is unstable; the average 

value of ordered times varies significantly depending on the sample size N, which is hard to determine. 

 

5.1 Estimating Parameters with Order Statistics 
 

Ideally, we want to have the parameters of the distribution for the problem sets before lab sessions, so 

that we can identify difficult problems and struggling students in a timely manner.  

 

While it is not possible to obtain the distribution parameters in advance, we can incrementally estimate 

the parameters as we get data points during a lab session by using the properties of order statistics [2]. 

That is, we examine the completion times of first k students for each problem to estimate the distribution 

parameters of the problem. It should be noted that naively estimating the parameters with k samples 

based on maximum likelihood estimation is incorrect because the k samples are biased. The k data 

points are not uniformly sampled, but they are smallest k samples, hence, correlated with each other. 

 

To take the sampling bias into account we use order statistics to estimate the distribution parameters. 

Given a probability distribution X and n random samples from X, the kth order statistics of n samples is 

the distribution of the kth minimum value in the n samples. For our estimation we model kth student’s 

completion time as a sample drawn from kth order statistics of n samples (where n is total number of 

students in a lab), rather than a sample drawn from distribution X itself. 

 

In this formulation where kth student’s time xk follows distribution Xk,n (the kth order statistics of n 

samples from distribution X), the maximum likelihood estimation of parameter µ and σ of X can be 

obtained as following: argmaxµ,σ P(X1,n = x1 , X2,n = x2 , … , Xk,n = xk ; µ , σ). To accurately estimate the 

parameters to maximize the likelihood, it requires running computationally expensive algorithms such 

as EM [13]; this is ineffective since we need the estimations in real-time. 

 

Instead of maximizing the above likelihood to get an accurate estimation, we compute MLE for 

individual data points to obtain multiple candidate estimations; then we select the one that best fits for 
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all k data points.1  This heuristic is efficient when applied in real-time and gives reasonably good 

estimation for our purpose. In order to obtain candidate estimation values, we compute MLE for the 

order statistics for standard log-normal distribution with Monte-Carlo simulation beforehand. Let the 

precomputed MLE of ith order statistics of n samples be oi; hence we have o1, o2, …, ok. Then we 

compute µ and σ with the completion time xi and oi using the equation ln(oi) = (ln(xi)- µ)/ σ. Since there 

are two unknowns, two data points are required; we randomly select two data points ({xi,oi},{xj,oj}) to 

compute the values. Because there may exist some outliers in first few data points, we exclude them in 

the estimation if the parameters computed with those data points are significantly different from other 

estimated values. 

 

After collecting sufficient number of candidate estimations of µ and σ, we verify how well they describe 

the k data points. The candidate parameters are applied to the likelihood function [14]: 𝐿(𝜇, 𝜎) =

∏ 𝑓𝑥(𝑥𝑖; 𝜇, 𝜎)𝑖=𝑘
𝑖=1 × (1 − 𝐹𝑥(𝑥𝑘; 𝜇, 𝜎))𝑛−𝑘  where fx and Fx denote pdf and cdf of log-normal 

distribution. Then the parameter that gives the highest likelihood is selected to determine the final 

distribution. 

 

The distributions of problem completion time that we estimate can be used for multiple purposes. In 

LabEX we mainly use them in two ways; to infer the difficulty of problems and identify struggling 

students. 

 

5.2 Modeling Students Struggle 
 

To model struggling students and their degree of struggle, we further monitor the interactions of students 

while they work on lab session tasks. Among many interactions that can be monitored we focus on the 

following two: the frequency of running the solutions for each task and the amount of code changes 

(measured in key strokes) between the code executions. Although we also monitor other values such as 

the number of total runs for a task, we discovered in lab session trials that the two values – frequency 

of runs and code changes between runs – are most effective in representing struggling students. This is 

on par with our findings in lab observations; we noticed that students, when struggling, often repeat 

running their code, try (many) minor and trivial code changes, or just idle away. 

 

While task completion times follow a log-normal distribution, the above two measures are well 

described by a normal distribution. With the three measures we identify struggling students for a task 

                                                      
1This heuristic is similar to the technique presented in [20] 
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in the following way. After we estimate the distribution of the task completion time, we select a 

threshold time that pinpoints bottom X% (30% by default) students in the distribution; we only consider 

the bottom 30% as potentially struggling students. For those, we define the degree of struggle using the 

three measures – the time spent on the task, frequency of runs, and amount of code change between 

runs. The values of the three measures are first normalized to standard normal/log-normal distributions; 

then we compute the distance of how far away the three values are from the average of the distributions. 

The degree of struggle is a weighted sum of those distances. We compute the degrees for all the tasks 

for struggling students and sort them by their degrees to help lab staff to identify those who need most 

help. 

VI. Qualitative Code Review 
 

6.1 Clustering Students’ Solution 
 

Merely completing a task (by passing unit tests) does not guarantee that a student has learned the 

concepts well, especially in programming exercises where students can come up with a variety of 

solutions. Plenty of undesirable solutions are usually found, in our experience, among all answers to 

just a single problem. Oftentimes these undesirable solutions are left unnoticed during lab sessions, and 

students leave the sessions not having a chance to receive feedback and improve their code. 

 

Identifying undesirable solutions during lab sessions is challenging because an instructor has to review 

all the students’ codes which is time consuming. In one 100-minute lab session in our institute, students 

wrote 8,253 lines of code in total in a single session excluding intermediate solutions. To review all the 

solutions the instructor must check more than one line of code every second. This is clearly impossible. 

 

In the following, we demonstrate an example of an undesirable solution, which was written by a student 

in a lab session. 
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Although the code returns correct answers for all the positive integer inputs, the code is generally 

considered poor because of its style. His solution reveals that 1) he is not aware of the modulo operator 

in Python, 2) he does not fully understand how if-statement works (unnecessary check in line 6), 3) he 

is confused about loop controls (unnecessary continue statement in line 9), and 4) he does not know 

making special cases is not a good style (line 2). 

 

To enable effective and timely feedback, LabEX makes reviewing process easy with a code clustering 

technique. There have been many works in detecting/clustering similar code in the context of software 

maintenance and plagiarism detection; in LabEX we apply the technique in the context of real-time 

code review. Thus, our clustering algorithm is less accurate but much more lightweight and suitable for 

real-time usage. 

 

 
Algorithm 1: LabEX's Code Clustering Algorithm 

 

Algorithm 1 describes the clustering algorithm in LabEX. Our algorithm is along the same lines of AST 

(Abstract Syntax Tree) fingerprinting algorithms [14] [15], but much simpler and lightweight. Our 

algorithm is based on hierarchical clustering [16], thus it can simply control the granularity of the 

clustering. For each solution code, the algorithm creates a signature of the code with its AST. Each AST 

node is encoded into one-byte character; the specific names of variables and the values of constants are 

ignored. Then the distances – edit distance [17] by default, but tree edit distance [18] can be used as 

well – among all the signatures are computed. The computed distances are sorted and retrieved to merge 

the two clusters containing the corresponding code signatures. This is repeated while the retrieved 

distance is smaller than a given threshold, or all the distances are retrieved. 

 

Although the algorithm is not as accurate or robust as other AST fingerprinting algorithms, it is 

lightweight and effective in our context. The first two steps of the algorithm – creating signatures and 

computing distances – can be run incrementally as a new solution is submitted. Hence the clustering 
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effectively runs fast by only computing the last step of the algorithm. Having prompt response time is 

important in our use case because a lab instructor should be able to quickly adjust the clustering 

parameters as he reviews solution code. 

 

6.2 Comparing Code Clustering Algorithms 
 

To test if our clustering algorithm serves well our purpose, we have evaluated three code clustering 

algorithms – our algorithm in LabEX, OverCode [9], and CloneDigger [19]. For the evaluation, we 

have collected the solutions of students for three problems in a lab session; we hired seven experienced 

programmers to score the pair-wise similarity scores of the solutions in 5-point scale. Then we measure 

the quality of the created clusters of the three algorithms with the following metric that computes 

pairwise similarity score sum (PSS). 

𝑃𝑆𝑆(𝐶) =  
1
𝑘 ∑

2
|𝐶𝑘|(|𝐶𝑘| − 1)

𝐾

𝑘=1

∑ 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦)
𝑥,𝑦∈𝐶𝑘

−
2

𝐾(𝐾 − 1) ∑ ∑ ∑ ∑ 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦)
𝑥∈𝐶𝑘′𝑥∈𝐶𝑘

𝐾

𝑘′=𝑘+1

𝐾−1

𝑘=1

 

The function averages the similarity scores of codes in same clusters and subtracts the average similarity 

scores of codes in different clusters. Table 2 compares the average PSS values over the three problems 

for the clustering algorithms. The total number of student solutions is 182. Clearly the clustering 

algorithm of LabEX achieves the highest score in PSS, which implies that the clusters of our algorithm 

is most similar to how an experienced programmer would cluster the solutions 

among the compared algorithms. 
 

Algorithm LabEX OverCode CloneDigger 

Avg. PSS 0.29 -2.50 -1.70 

Avg. Exec. Time 0.017 6.612 6.720 
Table 2: Evaluation of Clustering Algorithms. 

 
For the execution times, our clustering algorithm is fastest among the algorithms. LabEX needs to 

repeatedly run clustering algorithm in real-time, as an instructor adjusts the clustering granularity to re-

cluster solutions for code review; hence the execution time is important. In our experience, lab staff 

were reluctant to use the code review interface if it takes more than a couple of seconds for the clustering. 

While the execution times of our algorithm are less than 0.1 second, OverCode takes 8.3 seconds and 

CloneDigger takes 13.8 seconds to run in the worst case. We believe that the execution time of 8.3 

seconds is too slow to be used in our context. 
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6.3 Reviewing with Clusters 
 

In code review interface, instructors simply select the lab task to review the students’ code, which are 

displayed after being clustered by their similarities. Figure 3 shows the code review interface that 

displays three code clusters in the text areas. The clusters are sorted by their sizes; if its size is below a 

threshold (five by default) the cluster is considered as an outlier and its header is colored in yellow. 

Solution code within each cluster can be scrolled and reviewed.  

 

As the instructor reads solution code, he may feel that the clustering is too fine-grained or too coarse-

grained. In such cases he can slide the knob on the top-right to review code in more or less number of 

clusters. In our experience, the number of clusters for a task is as little as just one or two, and as many 

as one-third of class size. We observed that having too many clusters often indicate that the students are 

exploring in too many directions and need some guideline.  

 

The solution code is tagged with student’s name in order for the lab staff to easily locate the student and 

give feedback on his code. Each solution code also has a button which, when clicked on, adds the code 

to the verified solutions list that will be given to the students after the lab session. 

VII. LabEX User Interface 
 

Having presented the major components of LabEX, now we describe how all the functionalities are 

combined to form an intuitive user interface. 

Figure 3: Snapshot of Code Reviewing Interface (Student names are anonymized.): (A) displays a 
cluster of solutions, clusters of small size have yellow headings. (B) shows a slider bar, by which the 
granularity of the clustering can be adjusted. (C) presents the button that once clicked, adds the code 
to the official solution. 
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7.1 Students Interface 
 

As an extension of Jupyter Notebook, LabEX provides a notebook-like interface to students. Using a 

web browser, students interactively edit and run their code embedded in a document, which provides 

task descriptions, videos, and links to background information. In LabEX, students can easily retrieve 

their previous trials, which is useful to students as well as lab staff when they help them. Interactions 

of students in web browsers are recorded in the server for real-time analysis. 

 

7.2 Lab Staff Interface 
 
students’ progress in real-time. LabEX has two main interfaces – one to monitor overall students’ 

progress and another to review student solution code. Figure 4 shows the interface to monitor the overall 

progress. The progress is shown for each student and each task; a small box representing a task is 

marked as green if the student completes the task, gray if he is working on it, white if he has not started 

on the task, and red if he is having a difficulty (according to our model described in Section 4). The 

progress is sorted so that the student who completed most number of tasks is placed at the top. This 

helps lab staff to quickly figure out the overall progress in a single look; it also makes it easy to find the 

tasks students are stuck in or understand the performance skew among students. 

 

Figure 4: Snapshot of Progress Overview (Student names are anonymized.): (A) displays a cell 
representing a students’ status on a task. (B) displays a list of struggling students and the corresponding 
tasks. (C) shows a student’s solution code; it also shows previous versions with highlighted diffs. (D), 
once clicked, shows additional statistics such as time spent on the task. 
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Lab staff may click on an individual box representing a particular student and task to see the solution 

code of the student for the task. It retrieves his most recent solution as well as his previous trials since 

they are often useful in understanding the misconceptions students might have. 

 

On the right side we list struggling students that LabEX identifies based on the statistical model. The 

list is ranked by the degree of struggle, and it contains the name of the student, his desk number, the 

task id, and the time spent on the task. The list entry can be clicked on to review the student’s current 

and previous solution codes. 

 

Another main interface in LabEX is the code review page. The page, as shown in Figure 3 displays the 

solutions of students for a selected task. As described previously, similar solutions are clustered so that 

an instructor can effectively review the solution code. The page provides a sliding bar for adjusting the 

granularity of the clusters, so an instructor can group solutions more (or less) aggressively as necessary. 

 

The code review interface can be used during lab sessions to identify poor solutions and give real-time 

feedback to the students. Students appreciated such real-time feedback and liked the opportunity to 

improve their solution. Moreover, the interface helps find creative/interesting solutions so that they can 

be shared with the rest of the students during or after lab sessions. If an instructor decides to include 

student’s code in the verified solutions list, he simply clicks on a button next to the student’s code. 

 

7.3 Mobile View 
 

In offline lab sessions, lab staff rarely sit in front of computers; they usually walk around to check with 

students and help them. If they have to visit on a desktop computer for the lab status, they are likely to 

miss important issues. Thus, it is essential for lab staff to be able to view important summary of lab 

status on their mobile devices. 

 

LabEX provides mobile-friendly interfaces for small mobile screens. Especially, LabEX compiles the 

list of struggling students and make it available to view on mobile devices and check their status. With 

this view, lab staff can quickly check on struggling students to provide them with assistance. 

VIII. Evaluation 
 

We evaluated LabEX with a case study and real-world experiment in a large-scale programming course 

in our institute. 
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8.1 Case Study 
 

To quantitatively evaluate LabEX, we performed a small case study; we gathered 55 freshmen attending 

the course, and randomly divided them into two groups to run two separate lab sessions with and without 

LabEX. 

 

The two groups (Group A and Group B) have 28 and 27 students each. Our experimental lab sessions 

were 50 minutes long, and students were given the same problem set consisting of four problems. Three 

(same) TAs helped the two groups of students in the two sessions. The participating students have three 

months to four years of programming experience, except for a student with ten years of experience; half 

of the students have six months of programming experience. 

 

The session for Group A was run without LabEX; in Group B’s session the TAs utilized LabEX to 

identify struggling students and help them. Before the session, we told the students in Group B that we 

would be monitoring their progress in LabEX and help them as necessary; we also suggested the 

students to try to limit their questions below four if possible. We did not have such request for Group A 

because in our previous experience, such a policy (without LabEX) made TAs not be able to properly 

help students, hence made many students underachieve in lab sessions. 

 

Figure 1 shows the amount of time the TAs helped each student; Figure 1a represents Group A and 

Figure 1b represents Group B. Horizontal axis is for elapsed time in minutes, and vertical axis shows 

the amount of time each student is helped by a TA in a 10-minute window centered at the current elapsed 

time. A color in the chart represent a student in the lab session. The stacked bar charts at the top, show 

the total time TAs spent assisting each student. 

 

We can immediately see that in Group A, the TAs spent significantly more amount of time to help 

students compared to Group B; for Group A, TAs spent 81 minutes in total in helping the students and 

for Group B, they spent 48 minutes. Also, in Group A, much of TAs’ time is monopolized by a single 

student, who kept asking many simple questions that he could have figured out by himself. 

 

However, the students in Group B performed as well as, if not better, than the students in Group A. The 

students in Group A successfully completed 1.18 problems on average, and the students in Group B 

completed 1.26 problems. If we exclude the exceptional student in Group A, who had ten years of 

programming experience and previously won two medals in local programming competitions, the 

students in Group A completed 1.07 problems on average. 

 



16 
 

To test if the improvements are statistically significant, we perform a t-test. In Group A and Group B, 

16 and 20 students are assisted by the TAs. The mean time spent for each student in Group B is 2.4 

(min.) and the standard deviation (SD) is 1.39. In Group A the mean and SD are 5.06 and 5.26 

respectively, and the two-tailed p-value equals 0.0365. By conventional criteria, these numbers 

demonstrate that there is a significant difference between the two groups. That is, TAs spent less time 

to help students in Group B with LabEX compared to Group A, even though students in Group B 

achieved as well as students in Group B. Furthermore, we perform f-test and obtained F-statistic value 

of 14.28. This leads us to conclude that the variances in assisted time for each student in Groups A and 

B are significantly different with p-value less than 0.0001; i.e., students in Group A are unevenly helped 

by the TAs, while students in Group B are more evenly helped by the TAs.  

 

From this analysis, we concluded that TAs spend their time more efficiently, if they are assisted with 

LabEX; we believe that TAs can use the saved time in improving the quality of the lab session by, for 

example, creating hints for some problems or making more difficult problems for advanced students. 

 

8.2 Real-World Experiment 
 

We applied LabEX in a large entry-level programming class in our institute. The class teaches basic 

concepts in programming using Python language and it is taken by 272 students, most of who are 

freshmen. The students in the class are divided into six groups and assigned to one of six 100-minute 

lab sessions given every week; thus, there are roughly 45 students in each lab session. There were two 

to three TAs in each lab session, half of whom were undergraduate students and the rest were graduate 

students. 

 

8.3 Methodology 
 

In collaboration with the lab instructor and TAs, we adopted LabEX in the lab sessions for six weeks  

in total. In the first two weeks we disabled the monitoring interface for comparison and only traced 

students’ interactions. For the remainder four weeks we enabled the interface and encouraged the lab 

staff to use the interface. We watched all the lab sessions that LabEX was used in; we attended 36 

sessions in total and stayed for the entire sessions in most cases.  

 

The lab sessions are run in a naturalistic way; there was no particular tasks for lab staff or students; and 

we mostly observed 

the lab staff, the students, and their interactions. A couple of times, we gave suggestions to lab staff 

based on our observations after lab sessions. 
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At the end of our study, we conducted 15-minute informal interviews with the lab staff and a few 

selected students. In the interviews we asked them to discuss some of their interactions we observed 

during the lab sessions. They also stated their opinion on their experiences using LabEX and suggested 

possible improvements. 

 

8.4 Qualitative Observations 
 

As in our case study, we noticed that a number of students take up TAs time, asking many trivial 

questions or try to get as many hints as possible; we realized that not only do those students make little 

effort to complete the tasks, but they also monopolize the instructors’ time. After having noticed it in 

the first couple of sessions, we suggested to the lab instructor to limit the number of questions a student 

may ask during a lab session. This scheme, however, did not work well in the first two weeks because 

(without LabEX) the lab staff were not aware of how students are doing and limiting the number of 

questions made it harder for them to grasp what is going on in the lab. Hence after a few sessions, they 

let the students to freely ask questions again. 

 

After we enabled LabEX monitoring interface in the third week, we suggested to try the scheme once 

again and limit the number of questions in the lab sessions. The lab instructor was hesitant in the 

beginning, but when the scheme was applied, it turned out to be very successful. With the progress 

summary in LabEX the lab staff were fully aware of the overall progress and could identify struggling 

students to help them; the instructor and TAs seemed comfortable running the lab sessions. The 

instructor and TAs saved much time therefore found the chance to review student solutions, discuss 

their findings in the lab, improve lab tasks, and think of more challenging tasks. 

 

We also observed that the instructor quickly adapted to employing LabEX in various lab situations. 

When LabEX informed that a particular task seemed too difficult based on the estimated distribution of 

the task completion time, he gave a short lecture (or hint) for the task after reviewing a few 

corresponding completed solutions using the code reviewing interface. After a few similar occurrences, 

the instructor began to take advantage of the progress summary to decide when to give hints for a task. 

 

The code review interface was appreciated and frequently used in the lab sessions. Mostly, the interface 

helped discover poor solutions, but it also assisted to find intriguing solutions. In one occasion a student 

utilized Python’s list comprehensions in his answer, a rather advanced syntax for entry-level learners. 

Having acknowledged that he knew more advanced topics, the lab staff were able to assign the student 

more challenging tasks, giving him the chance to further improve his skills. In another occasion, a 
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student submitted a wrong solution for a task to implement find_min() function in a binary search tree. 

Although his solution did not properly handle a recursive case, it passed all the given tests because the 

test codes did not fully cover corner cases. After learning this, the instructor updated the test codes and 

pointed out the issue to the student. The student appreciated the prompt feedback and fixed his code. 

One TA, who taught in the lab class for two semesters in a row, was particularly interested in LabEX 

system and suggested several improvements. For example, he asked to display students’ names when 

hovering over a certain part of the progress screen or asked to use a particular syntax highlight style in 

the code review interface. 

 

8.5 Post-Study Interview 
 

After the end of all the lab sessions, the lab instructor and TAs participated in an informal 15-minute 

post-interview. The questions were designed to evaluate LabEX’s impact on elevating lab sessions’ 

efficiency to help students with conceptual learning and skill acquisition. They all recognized the 

distinct improvement of lab sessions brought by LabEX since it saved them time and helped them to 

reach out to students in real need for help. TA1 commented, "I could spot students who had a hard time 

with a task and were reluctant to ask a question because they either were shy or had given up.". TA2 

said, "Approaching struggling learners proactively to help them cheered them up and increased their 

determination to solve the problems". 

 

The lab staff commonly stated that they appreciate the code clustering interface. They stressed that the 

tool enabled them to evaluate students code qualitatively, which they could not do previously for its 

timely process. Some of them found it to be fun to go over "outliers" to find poor-quality solutions and 

discuss it with the students who wrote them.  

 

TA3 pointed out that it was helpful to be able to go over previously tried solutions of a student. When 

asked why he reviewed a student’s solution code (current and previous tries) before helping him, he 

replied, "I wanted to understand his line of thoughts and check if he knows the concepts."  

 

We observed that undergraduate TAs, compared to graduate TAs, are generally more passionate about 

discussing their experience of using LabEX and helping students. Possibly it is because they 

participated in the same lab class just a few semesters ago; they might have felt frustration and 

embarrassment previously in the lab sessions and may want to help students in similar situations. 
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8.6 Discussions and Limitations 
 
From our real-world evaluation, we showed that LabEX is useful and improves the quality of 

programming lab sessions. We observed noticeable difference in the way lab staff interact with students 

after applying LabEX. All the lab staff enjoyed using the system and helping students that need more 

help.  

 

A few TAs expressed their concern regarding the scalability of LabEX in terms of its visual interface. 

They mentioned that the progress summary interface may not be able to effectively display the progress 

of very large number (like 1,000 or more) of students. While we believe that such an extremely large 

lab class is not ideal, we could virtually split the lab and assign them to multiple LabEX sessions.  

 

Another concern is that LabEX would not be as effective in more advanced-level programming courses. 

We do not have experience of applying LabEX for advanced level courses, and its efficacy may be 

different for those courses. 

 

IX. Conclusion 
 
Programming lab sessions give students hands-on experience and enable them to improve their skills 

through guidance and feedback from instructors. In large-scale lab sessions, however, it is challenging 

for lab instructors to be fully aware of how individual student is learning, hence the instructors may not 

be able to give necessary guidance and feedback to all students.  

 

This dissertation presents LabEX, a system for real-time monitoring of how students learn in 

programming lab sessions. LabEX helps instructors to comprehend the overall status of all students as 

well as the pace of individual students. Using statistical models, LabEX identifies struggling students 

and draws instructors’ attention to them. LabEX applies a code clustering algorithm for real-time code 

review, which enables lab instructors to detect undesirable solution codes and provide necessary 

feedback and programming advice.  

 

We evaluated LabEX in a large programming course attended by 272 students. LabEX was used by 17 

lab staff for six weeks and 36 sessions. All the lab staff found LabEX to be helpful and used it throughout 

the lab sessions. Our study confirmed that LabEX noticeably improved the quality of lab sessions 

for lab staff as well as the students attending the sessions. 
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